
Intel® 64 and IA-32 Architectures
Optimization Reference Manual

Order Number: 248966-046
January 2023

Notices & Disclaimers

Intel technologies may require enabled hardware, software or service activation.

No product or component can be absolutely secure.

Your costs and results may vary.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis
concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any
patent claim thereafter drafted which includes subject matter disclosed herein.

All product plans and roadmaps are subject to change without notice.

The products described may contain design defects or errors known as errata which may cause the product to
deviate from published specifications. Current characterized errata are available on request.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of
merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from
course of performance, course of dealing, or usage in trade.

Code names are used by Intel to identify products, technologies, or services that are in development and not
publicly available. These are not “commercial” names and not intended to function as trademarks.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this
document, with the sole exception that a) you may publish an unmodified copy and b) code included in this
document is licensed subject to the Zero-Clause BSD open source license (0BSD),
https://opensource.org/licenses/0BSD. You may create software implementations based on this document and in
compliance with the foregoing that are intended to execute on the Intel product(s) referenced in this document. No
rights are granted to create modifications or derivatives of this document.
© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its
subsidiaries. Other names and brands may be claimed as the property of others.

https://opensource.org/licenses/0BSD
https://opensource.org/licenses/0BSD

iii

CONTENTS
PAGE

CHAPTER 1
INTRODUCTION
1.1 TUNING YOUR APPLICATION. 1-1
1.2 ABOUT THIS MANUAL. 1-1
1.3 RELATED INFORMATION . 1-4

CHAPTER 2
INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
2.1 SAPPHIRE RAPIDS ARCHITECTURE. 2-1
2.1.1 Intel® 4th generation Intel® Xeon® Scalable Family of Processors.2-1
2.2 ALDER LAKE PERFORMANCE HYBRID ARCHITECTURE. 2-2
2.2.1 12th Generation Intel® Core™ Processors Supporting Performance Hybrid

Architecture .2-2
2.2.2 Hybrid Scheduling. .2-2
2.2.2.1 Intel® Thread Director .2-2
2.2.2.2 Scheduling with Intel Hyper-Threading Technology Enabled on Processors

Supporting x86 Hybrid Architecture .2-6
2.2.2.3 Scheduling with a Multi-E-Core Module .2-6
2.2.2.4 Scheduling Background Threads on x86 Hybrid Architecture .2-6
2.2.3 Recommendations for Application Developers .2-6
2.3 GOLDEN COVE MICROARCHITECTURE . 2-7
2.3.1 Golden Cove Microarchitecture Overview .2-8
2.3.1.1 The Front End .2-9
2.3.1.2 The Out-of-Order and Execution Engines. .2-9
2.3.1.3 Cache Subsystem and Memory Subsystem . 2-12
2.3.1.4 Avoiding Destination False Dependency. 2-12
2.4 ICE LAKE CLIENT MICROARCHITECTURE . 2-14
2.4.1 Ice Lake Client Microarchitecture Overview. 2-14
2.4.1.1 The Front End . 2-15
2.4.1.2 The Out of Order and Execution Engines . 2-15
2.4.1.3 Cache and Memory Subsystem . 2-17

Paired Stores . 2-18
2.4.1.4 New Instructions . 2-19
2.4.1.5 Ice Lake Client Microarchitecture Power Management . 2-20
2.5 SKYLAKE SERVER MICROARCHITECTURE. 2-21
2.5.1 Skylake Server Microarchitecture Cache. 2-22
2.5.1.1 Larger Mid-Level Cache . 2-22
2.5.1.2 Non-Inclusive Last Level Cache . 2-22
2.5.1.3 Skylake Server Microarchitecture Cache Recommendations 2-23
2.5.2 Non-Temporal Stores on Skylake Server Microarchitecture. 2-24
2.5.3 Skylake Server Power Management . 2-25
2.6 SKYLAKE CLIENT MICROARCHITECTURE. 2-28
2.6.1 The Front End . 2-29
2.6.2 The Out-of-Order Execution Engine . 2-29
2.6.3 Cache and Memory Subsystem . 2-31
2.6.4 Pause Latency in Skylake Client Microarchitecture . 2-32
2.7 INTEL® HYPER-THREADING TECHNOLOGY . 2-34
2.7.1 Processor Resources and HT Technology . 2-35
2.7.1.1 Replicated Resources . 2-36
2.7.1.2 Partitioned Resources . 2-36
2.7.1.3 Shared Resources . 2-36
2.7.2 Microarchitecture Pipeline and HT Technology . 2-36
2.7.3 Execution Core . 2-37
2.7.4 Retirement . 2-37
2.8 SIMD TECHNOLOGY . 2-37

CONTENTS

iv

PAGE

2.9 SUMMARY OF SIMD TECHNOLOGIES AND APPLICATION LEVEL EXTENSIONS 2-39
2.9.1 MMX™ Technology . 2-39
2.9.2 Streaming SIMD Extensions . 2-39
2.9.3 Streaming SIMD Extensions 2. 2-39
2.9.4 Streaming SIMD Extensions 3. 2-40
2.9.5 Supplemental Streaming SIMD Extensions 3 . 2-40
2.9.6 SSE4.1 . 2-40
2.9.7 SSE4.2 . 2-41
2.9.8 AESNI and PCLMULQDQ . 2-41
2.9.9 Intel® Advanced Vector Extensions . 2-41
2.9.10 Half-Precision Floating-Point Conversion (F16C) . 2-42
2.9.11 RDRAND . 2-42
2.9.12 Fused-Multiply-ADD (FMA) Extensions . 2-42
2.9.13 Intel AVX2 . 2-42
2.9.14 General-Purpose Bit-Processing Instructions . 2-42
2.9.15 Intel® Transactional Synchronization Extensions . 2-42
2.9.16 RDSEED . 2-43
2.9.17 ADCX and ADOX Instructions . 2-43

CHAPTER 3
GENERAL OPTIMIZATION GUIDELINES
3.1 PERFORMANCE TOOLS . 3-1
3.1.1 Intel® C++ and Fortran Compilers .3-1
3.1.2 General Compiler Recommendations .3-2
3.1.3 VTune™ Performance Analyzer .3-2
3.2 PROCESSOR PERSPECTIVES . 3-2
3.2.1 CPUID Dispatch Strategy and Compatible Code Strategy .3-2
3.2.2 Transparent Cache-Parameter Strategy. .3-3
3.2.3 Threading Strategy and Hardware Multithreading Support .3-3
3.3 CODING RULES, SUGGESTIONS AND TUNING HINTS . 3-3
3.4 OPTIMIZING THE FRONT END . 3-4
3.4.1 Branch Prediction Optimization .3-4
3.4.1.1 Eliminating Branches .3-4
3.4.1.2 Static Prediction .3-6
3.4.1.3 Inlining, Calls and Returns .3-7
3.4.1.4 Code Alignment. .3-8
3.4.1.5 Branch Type Selection .3-8
3.4.1.6 Loop Unrolling . 3-10
3.4.2 Fetch and Decode Optimization . 3-11
3.4.2.1 Optimizing for Micro-fusion. 3-11
3.4.2.2 Optimizing for Macrofusion . 3-12
3.4.2.3 Length-Changing Prefixes (LCP) . 3-16
3.4.2.4 Optimizing the Loop Stream Detector (LSD) . 3-17
3.4.2.5 Optimization for Decoded ICache . 3-18
3.4.2.6 Other Decoding Guidelines . 3-19
3.5 OPTIMIZING THE EXECUTION CORE . 3-19
3.5.1 Instruction Selection . 3-20
3.5.1.1 Integer Divide . 3-20
3.5.1.2 Using LEA . 3-21
3.5.1.3 ADC and SBB in Sandy Bridge Microarchitecture . 3-22
3.5.1.4 Bitwise Rotation . 3-23
3.5.1.5 Variable Bit Count Rotation and Shift . 3-24
3.5.1.6 Address Calculations . 3-24
3.5.1.7 Clearing Registers and Dependency Breaking Idioms . 3-25
3.5.1.8 Compares . 3-26
3.5.1.9 Using NOPs. 3-27
3.5.1.10 Mixing SIMD Data Types. 3-28
3.5.1.11 Spill Scheduling . 3-28
3.5.1.12 Zero-Latency MOV Instructions. 3-28
3.5.2 Avoiding Stalls in Execution Core . 3-30
3.5.2.1 Writeback Bus Conflicts . 3-30
3.5.2.2 Bypass between Execution Domains . 3-31
3.5.2.3 Partial Register Stalls . 3-31
3.5.2.4 Partial XMM Register Stalls . 3-32

v

CONTENTS

PAGE

3.5.2.5 Partial Flag Register Stalls . 3-33
3.5.2.6 Floating-Point/SIMD Operands . 3-34
3.5.3 Vectorization . 3-34
3.5.4 Optimization of Partially Vectorizable Code. 3-35
3.5.4.1 Alternate Packing Techniques . 3-37
3.5.4.2 Simplifying Result Passing. 3-37
3.5.4.3 Stack Optimization. 3-38
3.5.4.4 Tuning Considerations . 3-38
3.6 OPTIMIZING MEMORY ACCESSES. 3-40
3.6.1 Load and Store Execution Bandwidth . 3-40
3.6.1.1 Making Use of Load Bandwidth in Sandy Bridge Microarchitecture 3-40
3.6.1.2 L1D Cache Latency in Sandy Bridge Microarchitecture . 3-41
3.6.1.3 Handling L1D Cache Bank Conflict . 3-42
3.6.2 Minimize Register Spills . 3-43
3.6.3 Enhance Speculative Execution and Memory Disambiguation . 3-44
3.6.4 Store Forwarding . 3-45
3.6.4.1 Store-to-Load-Forwarding Restriction on Size and Alignment 3-46
3.6.4.2 Store-forwarding Restriction on Data Availability . 3-48
3.6.5 Data Layout Optimizations . 3-49
3.6.6 Stack Alignment . 3-51
3.6.7 Capacity Limits and Aliasing in Caches. 3-52
3.6.8 Mixing Code and Data . 3-52
3.6.8.1 Self-modifying Code . 3-52
3.6.8.2 Position Independent Code . 3-53
3.6.9 Write Combining . 3-53
3.6.10 Locality Enhancement. 3-54
3.6.11 Non-Temporal Store Bus Traffic . 3-55
3.7 PREFETCHING . 3-56
3.7.1 Hardware Instruction Fetching and Software Prefetching . 3-56
3.7.2 Hardware Prefetching for First-Level Data Cache. 3-56
3.7.3 Hardware Prefetching for Second-Level Cache . 3-58
3.7.4 Cacheability Instructions . 3-59
3.7.5 REP Prefix and Data Movement . 3-59
3.7.6 Enhanced REP MOVSB and STOSB Operation . 3-61
3.7.6.1 Fast Short REP MOVSB. 3-61
3.7.6.2 Memcpy Considerations . 3-61
3.7.6.3 Memmove Considerations . 3-63
3.7.6.4 Memset Considerations . 3-63
3.8 REP STRING OPERATIONS . 3-63
3.8.1 Fast Zero Length REP MOVSB . 3-64
3.8.2 Fast Short REP STOSB . 3-64
3.8.3 Fast Short REP CMPSB and SCASB . 3-64
3.9 FLOATING-POINT CONSIDERATIONS . 3-64
3.9.1 Guidelines for Optimizing Floating-point Code . 3-64
3.9.2 Floating-point Modes and Exceptions . 3-65
3.9.2.1 Floating-point Exceptions . 3-65
3.9.2.2 Dealing with floating-point exceptions in x87 FPU code. 3-66
3.9.2.3 Floating-point Exceptions in SSE/SSE2/SSE3 Code . 3-66
3.9.3 Floating-point Modes. 3-66
3.9.3.1 Rounding Mode . 3-67
3.9.3.2 Precision . 3-68
3.9.4 x87 vs. Scalar SIMD Floating-point Trade-offs . 3-69
3.9.4.1 Scalar SSE/SSE2 . 3-69
3.9.4.2 Transcendental Functions . 3-69
3.10 MAXIMIZING PCIE PERFORMANCE. 3-70
3.10.1 Optimizing PCIe Performance for Accesses Toward Coherent Memory and

Toward MMIO Regions (P2P) . 3-70
3.11 SCALABILITY WITH CONTENDED LINE ACCESS IN INTEL® 4TH GENERATION

INTEL® XEON® SCALABLE PROCESSORS . 3-71
3.11.1 Why it Happens. 3-71
3.11.2 How to Detect it . 3-71
3.11.3 How to Fix it . 3-72
3.11.4 Case Study: SysBench/MariaDB Metric CHA % Cycles Fast Asserted 3-73
3.11.5 Instruction Sequence Slowdowns . 3-74
3.11.5.1 Why it Happens. 3-74

CONTENTS

vi

PAGE

3.11.5.2 How to Detect it . 3-74
3.11.5.3 How to Fix it . 3-74
3.11.6 Misprediction for Branches >2GB . 3-75
3.11.6.1 Why it Happens. 3-75
3.11.6.2 How to Detect it . 3-75
3.11.6.3 How to Fix it . 3-76
3.12 OPTIMIZING COMMUNICATION WITH PCI DEVICES ON INTEL® 4TH GENERATION

INTEL® XEON® SCALABLE PROCESSORS . 3-77
3.12.1 Signaling Devices with Direct Move . 3-77
3.12.1.1 MOVDIR64B – Additional considerations . 3-77
3.12.1.2 Streaming Data . 3-78
3.13 SYNCHRONIZATION . 3-78
3.13.1 User-Level Monitor, User-Level MWAIT, and TPAUSE. 3-78
3.13.1.1 Checking for User-Level Monitor, MWAIT, and TPAUSE support 3-78
3.13.1.2 User-Level Monitor, User-Level MWAIT, and TPAUSE Operations 3-78
3.13.1.3 Recommended usage. 3-79

CHAPTER 4
INTEL ATOM® PROCESSOR ARCHITECTURES
4.1 GRACEMONT MICROARCHITECTURE. 4-1
4.1.1 Gracemont Microarchitecture Overview .4-1
4.1.2 Predict and Fetch .4-2
4.1.3 Dynamic Load Balancing. .4-4
4.1.4 Decode and the On-Demand Instruction Length Decoder .4-4
4.1.5 Allocation and Retirement .4-5
4.1.6 The Out-of-Order and Execution Engines .4-5
4.1.7 Cache and Memory Subsystem .4-7
4.1.8 Intel® AVX and Intel® AVX2 Instruction Support .4-8
4.1.8.1 256-bit Permute Operations .4-8
4.1.8.2 256-bit Broadcast with 128-bit Memory Operand .4-8
4.1.8.3 256-bit Insertion, Up-Conversion Instructions with 128-bit Memory Operand 4-8
4.1.8.4 256-bit Variable Blend Instructions .4-9
4.1.8.5 256-bit Vector TEST Instructions .4-9
4.1.8.6 GATHER Instructions. .4-9
4.1.8.7 Masked Load and Store Instructions .4-9
4.1.8.8 ADX Instructions. .4-9
4.1.8.9 BMI1, BMI2, and LZCNT Instructions . 4-10
4.2 TREMONT MICROARCHITECTURE . 4-10
4.2.1 Tremont Microarchitecture Overview . 4-10
4.2.2 The Front End . 4-11
4.2.3 The Out of Order and Execution Engines . 4-12
4.2.4 Cache and Memory Subsystem . 4-13
4.2.5 New Instructions . 4-13
4.2.6 Tremont Microarchitecture Power Management . 4-14

CHAPTER 5
CODING FOR SIMD ARCHITECTURES
5.1 CHECKING FOR PROCESSOR SUPPORT OF SIMD TECHNOLOGIES . 5-1
5.1.1 Checking for MMX Technology Support .5-2
5.1.2 Checking for Streaming SIMD Extensions Support. .5-2
5.1.3 Checking for Streaming SIMD Extensions 2 Support. .5-2
5.1.4 Checking for Streaming SIMD Extensions 3 Support. .5-3
5.1.5 Checking for Supplemental Streaming SIMD Extensions 3 Support5-3
5.1.6 Checking for SSE4.1 Support .5-4
5.1.7 Checking for SSE4.2 Support .5-4
5.1.8 DetectiON of PCLMULQDQ and AESNI Instructions .5-4
5.1.9 Detection of AVX Instructions .5-5
5.1.10 Detection of VEX-Encoded AES and VPCLMULQDQ. .5-7
5.1.11 Detection of F16C Instructions .5-7
5.1.12 Detection of FMA .5-8
5.1.13 Detection of AVX2. .5-9
5.2 CONSIDERATIONS FOR CODE CONVERSION TO SIMD PROGRAMMING 5-10

vii

CONTENTS

PAGE

5.2.1 Identifying Hot Spots . 5-12
5.2.2 Determine If Code Benefits by Conversion to SIMD Execution . 5-12
5.3 CODING TECHNIQUES . 5-12
5.3.1 Coding Methodologies. 5-13
5.3.1.1 Assembly. 5-14
5.3.1.2 Intrinsics . 5-14
5.3.1.3 Classes. 5-15
5.3.1.4 Automatic Vectorization . 5-16
5.4 STACK AND DATA ALIGNMENT . 5-17
5.4.1 Alignment and Contiguity of Data Access Patterns. 5-17
5.4.1.1 Using Padding to Align Data . 5-17
5.4.1.2 Using Arrays to Make Data Contiguous. 5-17
5.4.2 Stack Alignment For 128-bit SIMD Technologies . 5-18
5.4.3 Data Alignment for MMX Technology . 5-18
5.4.4 Data Alignment for 128-bit data . 5-19
5.4.4.1 Compiler-Supported Alignment . 5-19
5.5 IMPROVING MEMORY UTILIZATION . 5-20
5.5.1 Data Structure Layout . 5-20
5.5.2 Strip-Mining . 5-23
5.5.3 Loop Blocking. 5-24
5.6 INSTRUCTION SELECTION . 5-26
5.7 TUNING THE FINAL APPLICATION. 5-27

CHAPTER 6
OPTIMIZING FOR SIMD INTEGER APPLICATIONS
6.1 GENERAL RULES ON SIMD INTEGER CODE . 6-1
6.2 USING SIMD INTEGER WITH X87 FLOATING-POINT . 6-2
6.2.1 Using the EMMS Instruction .6-2
6.2.2 Guidelines for Using EMMS Instruction .6-2
6.3 DATA ALIGNMENT . 6-3
6.4 DATA MOVEMENT CODING TECHNIQUES . 6-5
6.4.1 Unsigned Unpack .6-5
6.4.2 Signed Unpack .6-5
6.4.3 Interleaved Pack with Saturation .6-6
6.4.4 Interleaved Pack without Saturation .6-7
6.4.5 Non-Interleaved Unpack. .6-8
6.4.6 Extract Data Element .6-9
6.4.7 Insert Data Element. 6-10
6.4.8 Non-Unit Stride Data Movement . 6-11
6.4.9 Move Byte Mask to Integer . 6-12
6.4.10 Packed Shuffle Word for 64-bit Registers . 6-12
6.4.11 Packed Shuffle Word for 128-bit Registers. 6-13
6.4.12 Shuffle Bytes. 6-13
6.4.13 Conditional Data Movement . 6-14
6.4.14 Unpacking/interleaving 64-bit Data in 128-bit Registers . 6-14
6.4.15 Data Movement . 6-14
6.4.16 Conversion Instructions . 6-14
6.5 GENERATING CONSTANTS. 6-14
6.6 BUILDING BLOCKS . 6-15
6.6.1 Absolute Difference of Unsigned Numbers . 6-15
6.6.2 Absolute Difference of Signed Numbers. 6-16
6.6.3 Absolute Value . 6-16
6.6.4 Pixel Format Conversion . 6-17
6.6.5 Endian Conversion . 6-18
6.6.6 Clipping to an Arbitrary Range [High, Low] . 6-19
6.6.6.1 Highly Efficient Clipping . 6-19
6.6.6.2 Clipping to an Arbitrary Unsigned Range [High, Low] . 6-21
6.6.7 Packed Max/Min of Byte, Word and Dword . 6-21
6.6.8 Packed Multiply Integers . 6-21
6.6.9 Packed Sum of Absolute Differences. 6-22
6.6.10 MPSADBW and PHMINPOSUW . 6-22
6.6.11 Packed Average (Byte/Word) . 6-22
6.6.12 Complex Multiply by a Constant. 6-22
6.6.13 Packed 64-bit Add/Subtract . 6-23

CONTENTS

viii

PAGE

6.6.14 128-bit Shifts . 6-23
6.6.15 PTEST and Conditional Branch . 6-23
6.6.16 Vectorization of Heterogeneous Computations across Loop Iterations 6-24
6.6.17 Vectorization of Control Flows in Nested Loops . 6-25
6.7 MEMORY OPTIMIZATIONS . 6-27
6.7.1 Partial Memory Accesses . 6-28
6.7.2 Increasing Bandwidth of Memory Fills and Video Fills . 6-29
6.7.2.1 Increasing Memory Bandwidth Using the MOVDQ Instruction 6-29
6.7.2.2 Increasing Memory Bandwidth by Loading and Storing to and from the Same DRAM Page6-29
6.7.2.3 Increasing UC and WC Store Bandwidth by Using Aligned Stores. 6-30
6.7.3 Reverse Memory Copy . 6-30
6.8 CONVERTING FROM 64-BIT TO 128-BIT SIMD INTEGERS . 6-33
6.8.1 SIMD Optimizations and Microarchitectures. 6-33
6.8.1.1 Packed SSE2 Integer versus MMX Instructions . 6-33
6.8.1.2 Work-around for False Dependency Issue . 6-34
6.9 TUNING PARTIALLY VECTORIZABLE CODE . 6-34
6.10 PARALLEL MODE AES ENCRYPTION AND DECRYPTION . 6-37
6.10.1 AES Counter Mode of Operation . 6-37
6.10.2 AES Key Expansion Alternative . 6-45
6.10.3 Enhancement in Haswell Microarchitecture. 6-47
6.10.3.1 AES and Multi-Buffer Cryptographic Throughput. 6-47
6.10.3.2 PCLMULQDQ Improvement . 6-47
6.11 LIGHT-WEIGHT DECOMPRESSION AND DATABASE PROCESSING . 6-47
6.11.1 Reduced Dynamic Range Datasets . 6-48
6.11.2 Compression and Decompression Using SIMD Instructions . 6-48

CHAPTER 7
OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS
7.1 GENERAL RULES FOR SIMD FLOATING-POINT CODE. 7-1
7.2 PLANNING CONSIDERATIONS . 7-1
7.3 USING SIMD FLOATING-POINT WITH X87 FLOATING-POINT. 7-2
7.4 SCALAR FLOATING-POINT CODE . 7-2
7.5 DATA ALIGNMENT . 7-2
7.5.1 Data Arrangement .7-2
7.5.1.1 Vertical versus Horizontal Computation .7-3
7.5.1.2 Data Swizzling .7-5
7.5.1.3 Data Deswizzling .7-7
7.5.1.4 Horizontal ADD Using SSE .7-8
7.5.2 Use of CVTTPS2PI/CVTTSS2SI Instructions . 7-10
7.5.3 Flush-to-Zero and Denormals-are-Zero Modes . 7-10
7.6 SIMD OPTIMIZATIONS AND MICROARCHITECTURES . 7-11
7.6.1 SIMD Floating-point Programming Using SSE3 . 7-11
7.6.1.1 SSE3 and Complex Arithmetics . 7-12
7.6.1.2 Packed Floating-Point Performance in Intel Core Duo Processor 7-14
7.6.2 Dot Product and Horizontal SIMD Instructions . 7-14
7.6.3 Vector Normalization . 7-16
7.6.4 Using Horizontal SIMD Instruction Sets and Data Layout . 7-18
7.6.4.1 SOA and Vector Matrix Multiplication . 7-20

CHAPTER 8
INT8 DEEP LEARNING INFERENCE
8.1 INTRODUCING INT8 AS DATA TYPE FOR DEEP LEARNING INFERENCE 8-1
8.2 INTRODUCING INTEL® DL BOOST . 8-1
8.2.1 Multiply and Add Unsigned and Signed Bytes (VPDPBUSD Instruction)8-2
8.2.2 Multiply and Add Signed Word Integers (VPDPWSSD Instruction).8-4
8.3 GENERAL OPTIMIZATIONS. 8-4
8.3.1 Memory Layout .8-4
8.3.2 Quantization. .8-4
8.3.2.1 Quantization of Weights .8-5
8.3.2.2 Quantization of Activations .8-5
8.3.2.3 Quantizing Negative Activations .8-6
8.3.3 Multicore Considerations .8-6

ix

CONTENTS

PAGE

8.3.3.1 Large Batch (Throughput Workload) .8-6
8.3.3.2 Small Batch (Throughput at Latency Workload) .8-6
8.3.3.3 NUMA. .8-6
8.4 CNNS. 8-7
8.4.1 Convolutional Layers. .8-7
8.4.1.1 Direct Convolution .8-7

Memory Layout .8-7
Matrix Multiplication .8-9
Blocking .8-9
Direct Convolution Example . 8-10

8.4.1.2 Convolutional Layers with Low OFM Count . 8-13
8.4.2 Post Convolution . 8-15
8.4.2.1 Fused Quantization/Dequantization. 8-15
8.4.2.2 ReLu . 8-16
8.4.2.3 EltWise. 8-17
8.4.2.4 Pooling. 8-17
8.4.2.5 Pixel Shuffler. 8-19
8.5 LSTM NETWORKS . 8-21
8.5.1 Fused LSTM Embedding . 8-21
8.5.2 Fused post GEMM. 8-21
8.5.3 Dynamic Batch Size . 8-24
8.5.4 NMT Example: Beam Search Decoder Get Top K . 8-24

CHAPTER 9
OPTIMIZING CACHE USAGE
9.1 GENERAL PREFETCH CODING GUIDELINES . 9-1
9.2 PREFETCH AND CACHEABILITY INSTRUCTIONS . 9-2
9.3 PREFETCH. 9-2
9.3.1 Software Data Prefetch. .9-2
9.3.2 Prefetch Instructions .9-3
9.3.3 Prefetch and Load Instructions .9-4
9.4 CACHEABILITY CONTROL . 9-5
9.4.1 The Non-temporal Store Instructions .9-5
9.4.1.1 Fencing .9-5
9.4.1.2 Streaming Non-temporal Stores .9-6
9.4.1.3 Memory Type and Non-temporal Stores. .9-6
9.4.1.4 Write-Combining .9-6
9.4.2 Streaming Store Usage Models .9-7
9.4.2.1 Coherent Requests .9-7
9.4.2.2 Non-coherent requests .9-7
9.4.3 Streaming Store Instruction Descriptions. .9-7
9.4.4 The Streaming Load Instruction .9-8
9.4.5 FENCE Instructions. .9-8
9.4.5.1 SFENCE Instruction .9-8
9.4.5.2 LFENCE Instruction .9-8
9.4.5.3 MFENCE Instruction .9-9
9.4.6 CLFLUSH Instruction .9-9
9.4.7 CLFLUSHOPT Instruction . 9-10
9.5 MEMORY OPTIMIZATION USING PREFETCH . 9-12
9.5.1 Software-Controlled Prefetch . 9-12
9.5.2 Hardware Prefetch . 9-12
9.5.3 Example of Effective Latency Reduction with Hardware Prefetch 9-13
9.5.4 Example of Latency Hiding with S/W Prefetch Instruction . 9-14
9.5.5 Software Prefetching Usage Checklist . 9-15
9.5.6 Software Prefetch Scheduling Distance . 9-16
9.5.7 Software Prefetch Concatenation . 9-16
9.5.8 Minimize Number of Software Prefetches . 9-17
9.5.9 Mix Software Prefetch with Computation Instructions . 9-19
9.5.10 Software Prefetch and Cache Blocking Techniques . 9-19
9.5.11 Hardware Prefetching and Cache Blocking Techniques . 9-23
9.5.12 Single-pass versus Multi-pass Execution . 9-24
9.6 MEMORY OPTIMIZATION USING NON-TEMPORAL STORES . 9-25
9.6.1 Non-temporal Stores and Software Write-Combining . 9-25

CONTENTS

x

PAGE

9.6.2 Cache Management . 9-26
9.6.2.1 Video Encoder . 9-26
9.6.2.2 Video Decoder . 9-26
9.6.2.3 Conclusions from Video Encoder and Decoder Implementation. 9-27
9.6.2.4 Optimizing Memory Copy Routines . 9-27
9.6.2.5 Using the 8-byte Streaming Stores and Software Prefetch. 9-28
9.6.2.6 Using 16-byte Streaming Stores and Hardware Prefetch . 9-29
9.6.2.7 Performance Comparisons of Memory Copy Routines . 9-30
9.6.3 Deterministic Cache Parameters . 9-30
9.6.3.1 Cache Sharing Using Deterministic Cache Parameters . 9-31
9.6.3.2 Cache Sharing in Single-Core or Multicore . 9-32
9.6.3.3 Determine Prefetch Stride . 9-32

CHAPTER 10
SUB-NUMA CLUSTERING
10.1 SUB-NUMA CLUSTERING . 10-1
10.2 COMPARISON WITH CLUSTER-ON-DIE . 10-1
10.3 SNC USAGE . 10-2
10.3.1 How to Check NUMA Configuration . 10-2
10.3.2 MPI Optimizations for SNC. 10-7
10.3.3 SNC Performance Comparison . 10-8

CHAPTER 11
MULTICORE AND HYPER-THREADING TECHNOLOGY
11.1 PERFORMANCE AND USAGE MODELS . 11-1
11.1.1 Multithreading . 11-1
11.1.2 Multitasking Environment . 11-2
11.2 PROGRAMMING MODELS AND MULTITHREADING . 11-3
11.2.1 Parallel Programming Models . 11-4
11.2.1.1 Domain Decomposition . 11-4
11.2.2 Functional Decomposition . 11-4
11.2.3 Specialized Programming Models . 11-4
11.2.3.1 Producer-Consumer Threading Models . 11-5
11.2.4 Tools for Creating Multithreaded Applications . 11-7
11.2.4.1 Programming with OpenMP Directives . 11-8
11.2.4.2 Automatic Parallelization of Code . 11-8
11.2.4.3 Supporting Development Tools . 11-8
11.3 OPTIMIZATION GUIDELINES. 11-8
11.3.1 Key Practices of Thread Synchronization. 11-8
11.3.2 Key Practices of System Bus Optimization . 11-9
11.3.3 Key Practices of Memory Optimization . 11-9
11.3.4 Key Practices of Execution Resource Optimization. 11-9
11.3.5 Generality and Performance Impact . 11-10
11.4 THREAD SYNCHRONIZATION . 11-10
11.4.1 Choice of Synchronization Primitives. 11-10
11.4.2 Synchronization for Short Periods . 11-11
11.4.3 Optimization with Spin-Locks . 11-13
11.4.4 Synchronization for Longer Periods . 11-13
11.4.4.1 Avoid Coding Pitfalls in Thread Synchronization . 11-14
11.4.5 Prevent Sharing of Modified Data and False-Sharing . 11-14
11.4.6 Placement of Shared Synchronization Variable . 11-15
11.5 SYSTEM BUS OPTIMIZATION. 11-16
11.5.1 Conserve Bus Bandwidth . 11-17
11.5.2 Understand the Bus and Cache Interactions . 11-17
11.5.3 Avoid Excessive Software Prefetches . 11-17
11.5.4 Improve Effective Latency of Cache Misses . 11-18
11.5.5 Use Full Write Transactions to Achieve Higher Data Rate . 11-18
11.6 MEMORY OPTIMIZATION . 11-19
11.6.1 Cache Blocking Technique . 11-19
11.6.2 Shared-Memory Optimization . 11-19
11.6.2.1 Minimize Sharing of Data between Physical Processors . 11-19
11.6.2.2 Batched Producer-Consumer Model . 11-20

xi

CONTENTS

PAGE

11.6.3 Eliminate 64-KByte Aliased Data Accesses . 11-21
11.7 FRONT END OPTIMIZATION. 11-21
11.7.1 Avoid Excessive Loop Unrolling . 11-21
11.8 AFFINITIES AND MANAGING SHARED PLATFORM RESOURCES. 11-22
11.8.1 Topology Enumeration of Shared Resources . 11-23
11.8.2 Non-Uniform Memory Access . 11-23
11.9 OPTIMIZATION OF OTHER SHARED RESOURCES . 11-25
11.9.1 Expanded Opportunity for HT Optimization . 11-25

CHAPTER 12
INTEL® OPTANE™ DC PERSISTENT MEMORY
12.1 MEMORY MODE AND APP-DIRECT MODE . 12-1
12.1.1 Memory Mode . 12-1
12.1.2 App Direct Mode . 12-1
12.1.3 Selecting a Mode . 12-2
12.2 DEVICE CHARACTERISTICS OF INTEL® OPTANE™ DC PERSISTENT MEMORY MODULE . . 12-3
12.2.1 Intel® Optane™ DC Persistent Memory Module Latency . 12-4
12.2.2 Read vs. Write Bandwidth . 12-4
12.2.3 Number of Threads for Optimal Bandwidth. 12-5
12.3 PLATFORM IMPLICATIONS OF HANDLING A SECOND TYPE OF MEMORY 12-8
12.3.1 Multi-Processor Cache Coherence. 12-8
12.3.2 Shared Queues in the Memory Hierarchy. 12-9
12.4 IMPLEMENTING PERSISTENCE FOR MEMORY . 12-9
12.5 POWER CONSUMPTION. 12-10
12.5.1 Read-Write Equivalence . 12-10
12.5.2 Spatial and Temporal Locality . 12-12

CHAPTER 13
64-BIT MODE CODING GUIDELINES
13.1 INTRODUCTION . 13-1
13.2 CODING RULES AFFECTING 64-BIT MODE. 13-1
13.2.1 Use Legacy 32-Bit Instructions When Data Size Is 32 Bits . 13-1
13.2.2 Use Extra Registers to Reduce Register Pressure . 13-1
13.2.3 Effective Use of 64-Bit by 64-Bit Multiplication. 13-2
13.2.4 Replace 128-bit Integer Division with 128-bit Multiplication. 13-2
13.2.5 Sign Extension to Full 64-Bits . 13-4
13.3 ALTERNATE CODING RULES FOR 64-BIT MODE . 13-5
13.3.1 Use 64-Bit Registers Instead of Two 32-Bit Registers

for 64-Bit Arithmetic Result . 13-5
13.3.2 Using Software Prefetch . 13-6

CHAPTER 14
SSE4.2 AND SIMD PROGRAMMING FOR TEXT-
PROCESSING/LEXING/PARSING
14.1 SSE4.2 STRING AND TEXT INSTRUCTIONS . 14-1
14.1.1 CRC32 . 14-4
14.2 USING SSE4.2 STRING AND TEXT INSTRUCTIONS . 14-5
14.2.1 Unaligned Memory Access and Buffer Size Management . 14-5
14.2.2 Unaligned Memory Access and String Library . 14-6
14.3 SSE4.2 APPLICATION CODING GUIDELINE AND EXAMPLES. 14-6
14.3.1 Null Character Identification (Strlen equivalent) . 14-6
14.3.2 White-Space-Like Character Identification . 14-9
14.3.3 Substring Searches . 14-11
14.3.4 String Token Extraction and Case Handling. 14-18
14.3.5 Unicode Processing and PCMPxSTRy. 14-22
14.3.6 Replacement String Library Function Using SSE4.2 . 14-26
14.4 SSE4.2 ENABLED NUMERICAL AND LEXICAL COMPUTATION. 14-28
14.5 NUMERICAL DATA CONVERSION TO ASCII FORMAT . 14-34
14.5.1 Large Integer Numeric Computation . 14-48
14.5.1.1 MULX Instruction and Large Integer Numeric Computation 14-48

CONTENTS

xii

PAGE

CHAPTER 15
OPTIMIZATIONS FOR INTEL® AVX, FMA AND AVX2
15.1 INTEL® AVX INTRINSICS CODING . 15-2
15.1.1 Intel® AVX Assembly Coding . 15-4
15.2 NON-DESTRUCTIVE SOURCE (NDS). 15-6
15.3 MIXING AVX CODE WITH SSE CODE . 15-7
15.3.1 Mixing Intel® AVX and Intel SSE in Function Calls . 15-9
15.4 128-BIT LANE OPERATION AND AVX . 15-10
15.4.1 Programming With the Lane Concept . 15-11
15.4.2 Strided Load Technique . 15-11
15.4.3 The Register Overlap Technique . 15-14
15.5 DATA GATHER AND SCATTER . 15-15
15.5.1 Data Gather . 15-15
15.5.2 Data Scatter . 15-17
15.6 DATA ALIGNMENT FOR INTEL® AVX. 15-19
15.6.1 Align Data to 32 Bytes . 15-19
15.6.2 Consider 16-Byte Memory Access when Memory is Unaligned 15-20
15.6.3 Prefer Aligned Stores Over Aligned Loads . 15-22
15.7 L1D CACHE LINE REPLACEMENTS . 15-22
15.8 4K ALIASING. 15-23
15.9 CONDITIONAL SIMD PACKED LOADS AND STORES . 15-23
15.9.1 Conditional Loops . 15-24
15.10 MIXING INTEGER AND FLOATING-POINT CODE . 15-26
15.11 HANDLING PORT 5 PRESSURE . 15-29
15.11.1 Replace Shuffles with Blends . 15-29
15.11.2 Design Algorithm With Fewer Shuffles . 15-31
15.11.3 Perform Basic Shuffles on Load Ports . 15-34
15.12 DIVIDE AND SQUARE ROOT OPERATIONS . 15-35
15.12.1 Single-Precision Divide . 15-37
15.12.2 Single-Precision Reciprocal Square Root. 15-38
15.12.3 Single-Precision Square Root . 15-40
15.13 OPTIMIZATION OF ARRAY SUB SUM EXAMPLE . 15-42
15.14 HALF-PRECISION FLOATING-POINT CONVERSIONS . 15-44
15.14.1 Packed Single-Precision to Half-Precision Conversion . 15-45
15.14.2 Packed Half-Precision to Single-Precision Conversion . 15-46
15.14.3 Locality Consideration for using Half-Precision FP to Conserve Bandwidth 15-46
15.15 FUSED MULTIPLY-ADD (FMA) INSTRUCTIONS GUIDELINES. 15-47
15.15.1 Optimizing Throughput with FMA and Floating-Point Add/MUL 15-48
15.15.2 Optimizing Throughput with Vector Shifts . 15-50
15.16 AVX2 OPTIMIZATION GUIDELINES . 15-51
15.16.1 Multi-Buffering and AVX2 . 15-55
15.16.2 Modular Multiplication and AVX2 . 15-55
15.16.3 Data Movement Considerations. 15-56
15.16.3.1 SIMD Heuristics to implement Memcpy(). 15-56
15.16.3.2 Memcpy() Implementation Using Enhanced REP MOVSB . 15-57
15.16.3.3 Memset() Implementation Considerations . 15-57
15.16.3.4 Hoisting Memcpy/Memset Ahead of Consuming Code . 15-58
15.16.3.5 256-bit Fetch versus Two 128-bit Fetches. 15-59
15.16.3.6 Mixing MULX and AVX2 Instructions . 15-59
15.16.4 Considerations for Gather Instructions . 15-65
15.16.4.1 Strided Loads. 15-68
15.16.4.2 Adjacent Loads . 15-69
15.16.5 AVX2 Conversion Remedy to MMX Instruction Throughput Limitation 15-71

CHAPTER 16
INTEL® TSX RECOMMENDATIONS
16.1 INTRODUCTION . 16-1
16.1.1 Optimization Outline . 16-2
16.2 APPLICATION-LEVEL TUNING AND OPTIMIZATIONS . 16-2
16.2.1 Existing TSX-enabled Locking Libraries. 16-3
16.2.1.1 Libraries allowing lock elision for unmodified programs . 16-3
16.2.1.2 Libraries requiring program modifications . 16-3
16.2.2 Initial Checks . 16-3

xiii

CONTENTS

PAGE

16.2.3 Run and Profile the Application . 16-3
16.2.4 Minimize Transactional Aborts . 16-4
16.2.4.1 Transactional Aborts due to Data Conflicts . 16-5
16.2.4.2 Transactional Aborts due to Limited Transactional Resources 16-6
16.2.4.3 Lock Elision Specific Transactional Aborts . 16-7
16.2.4.4 HLE Specific Transactional Aborts . 16-7
16.2.4.5 Miscellaneous Transactional Aborts . 16-8
16.2.5 Using Transactional-Only Code Paths . 16-9
16.2.6 Dealing with Transactional Regions or Paths that Abort at a High Rate 16-9
16.2.6.1 Transitioning to Non-Elided Execution without Aborting . 16-9
16.2.6.2 Forcing an Early Abort . 16-10
16.2.6.3 Not Eliding Selected Locks. 16-10
16.3 DEVELOPING AN INTEL TSX ENABLED SYNCHRONIZATION LIBRARY. 16-10
16.3.1 Adding HLE Prefixes . 16-10
16.3.2 Elision Friendly Critical Section Locks. 16-10
16.3.3 Using HLE or RTM for Lock Elision . 16-11
16.3.4 An example wrapper for lock elision using RTM. 16-11
16.3.5 Guidelines for the RTM fallback handler . 16-12
16.3.6 Implementing Elision-Friendly Locks using Intel® TSX. 16-13
16.3.6.1 Implementing a Simple Spinlock using HLE. 16-13
16.3.6.2 Implementing Reader-Writer Locks using Intel TSX . 16-15
16.3.6.3 Implementing Ticket Locks using Intel® TSX . 16-15
16.3.6.4 Implementing Queue-Based Locks using Intel® TSX . 16-15
16.3.7 Eliding Application-Specific Meta-Locks using Intel® TSX. 16-16
16.3.8 Avoiding Persistent Non-Elided Execution . 16-17
16.3.9 Reading the Value of an Elided Lock in RTM-based libraries . 16-19
16.3.10 Intermixing HLE and RTM . 16-19
16.4 USING THE PERFORMANCE MONITORING SUPPORT FOR INTEL® TSX 16-20
16.4.1 Measuring Transactional Success . 16-21
16.4.2 Finding locks to elide and verifying all locks are elided. 16-21
16.4.3 Sampling Transactional Aborts . 16-21
16.4.4 Classifying Aborts using a Profiling Tool. 16-21
16.4.5 XABORT Arguments for RTM fallback handlers . 16-22
16.4.6 Call Graphs for Transactional Aborts . 16-23
16.4.7 Last Branch Records and Transactional Aborts . 16-23
16.4.8 Profiling and Testing Intel TSX Software using the Intel® SDE 16-23
16.4.9 HLE Specific Performance Monitoring Events . 16-24
16.4.10 Computing Useful Metrics for Intel® TSX . 16-25
16.5 PERFORMANCE GUIDELINES . 16-25
16.6 DEBUGGING GUIDELINES . 16-26
16.7 COMMON INTRINSICS FOR INTEL® TSX . 16-26
16.7.1 RTM C Intrinsics . 16-26
16.7.1.1 Emulated RTM intrinsics on older gcc compatible compilers. 16-27
16.7.2 HLE Intrinsics on gcc and Other Linux Compatible Compilers . 16-28
16.7.2.1 Generating HLE intrinsics with gcc4.8 . 16-28
16.7.2.2 C++11 atomic support . 16-29
16.7.2.3 Emulating HLE intrinsics with older gcc-compatible compilers. 16-29
16.7.3 HLE intrinsics on Windows C/C++ compilers . 16-29

CHAPTER 17
POWER OPTIMIZATION FOR MOBILE USAGES
17.1 OVERVIEW . 17-1
17.2 MOBILE USAGE SCENARIOS. 17-1
17.2.1 Intelligent Energy Efficient Software . 17-2
17.3 ACPI C-STATES . 17-3
17.3.1 Processor-Specific C4 and Deep C4 States . 17-4
17.3.2 Processor-Specific Deep C-States and Intel® Turbo Boost Technology 17-4
17.3.3 Processor-Specific Deep C-States for Sandy Bridge Microarchitecture 17-5
17.3.4 Intel® Turbo Boost Technology 2.0 . 17-6
17.4 GUIDELINES FOR EXTENDING BATTERY LIFE . 17-6
17.4.1 Adjust Performance to Meet Quality of Features . 17-6
17.4.2 Reducing Amount of Work. 17-7
17.4.3 Platform-Level Optimizations. 17-7
17.4.4 Handling Sleep State Transitions . 17-8

CONTENTS

xiv

PAGE

17.4.5 Using Enhanced Intel SpeedStep® Technology . 17-8
17.4.6 Enabling Intel® Enhanced Deeper Sleep. 17-9
17.4.7 Multicore Considerations . 17-10
17.4.7.1 Enhanced Intel SpeedStep® Technology . 17-10
17.4.7.2 Thread Migration Considerations . 17-10
17.4.7.3 Multicore Considerations for C-States . 17-11
17.5 TUNING SOFTWARE FOR INTELLIGENT POWER CONSUMPTION . 17-12
17.5.1 Reduction of Active Cycles . 17-12
17.5.1.1 Multi-threading to reduce Active Cycles . 17-12
17.5.1.2 Vectorization . 17-13
17.5.2 PAUSE and Sleep(0) Loop Optimization. 17-14
17.5.3 Spin-Wait Loops . 17-15
17.5.4 Using Event Driven Service Instead of Polling in Code . 17-15
17.5.5 Reducing Interrupt Rate. 17-15
17.5.6 Reducing Privileged Time. 17-15
17.5.7 Setting Context Awareness in the Code. 17-16
17.5.8 Saving Energy by Optimizing for Performance . 17-17
17.6 PROCESSOR SPECIFIC POWER MANAGEMENT OPTIMIZATION FOR

SYSTEM SOFTWARE . 17-17
17.6.1 Power Management Recommendation of Processor-Specific Inactive

State Configurations . 17-17
17.6.1.1 Balancing Power Management and Responsiveness of Inactive To Active

State Transitions . 17-19

CHAPTER 18
SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS
18.1 BASIC INTEL® AVX-512 VS. INTEL® AVX2 CODING. 18-2
18.1.1 Intrinsic Coding . 18-2
18.1.2 Assembly Coding. 18-4
18.2 MASKING . 18-6
18.2.1 Masking Example . 18-7
18.2.2 Masking Cost . 18-11
18.2.3 Masking vs. Blending . 18-11
18.2.4 Nested Conditions / Mask Aggregation . 18-13
18.2.5 Memory Masking Microarchitecture Improvements. 18-14
18.2.6 Peeling and Remainder Masking . 18-15
18.3 FORWARDING AND UNMASKED OPERATIONS. 18-16
18.4 FORWARDING AND MEMORY MASKING . 18-17
18.5 DATA COMPRESS . 18-17
18.5.1 Data Compress Example. 18-18
18.6 DATA EXPAND. 18-22
18.6.1 Data Expand Example . 18-23
18.7 TERNARY LOGIC . 18-25
18.7.1 Ternary Logic Example 1 . 18-25
18.7.2 Ternary Logic Example 2 . 18-27
18.8 NEW SHUFFLE INSTRUCTIONS . 18-28
18.8.1 Two Source Permute Example. 18-29
18.9 BROADCAST . 18-32
18.9.1 Embedded Broadcast. 18-32
18.9.2 Broadcast Executed on Load Ports. 18-32
18.10 EMBEDDED ROUNDING . 18-33
18.10.1 Static Rounding Mode . 18-33
18.11 SCATTER INSTRUCTION . 18-35
18.11.1 Data Scatter Example . 18-35
18.12 STATIC ROUNDING MODES, SUPPRESS-ALL-EXCEPTIONS (SAE) . 18-38
18.13 QWORD INSTRUCTION SUPPORT . 18-38
18.13.1 QUADWORD Support in Arithmetic Instructions . 18-39
18.13.2 QUADWORD Support in Convert Instructions . 18-42
18.13.3 QUADWORD Support for Convert with Truncation Instructions 18-43
18.14 VECTOR LENGTH ORTHOGONALITY . 18-43
18.15 INTEL® AVX-512 INSTRUCTIONS FOR TRANSCENDENTAL SUPPORT 18-43
18.15.1 VRCP14, VRSQRT14 - Software Sequences for 1/x, x/y, sqrt(x) 18-43
18.15.1.1 Application Examples . 18-43
18.15.2 VGETMANT VGETEXP - Vector Get Mantissa and Vector Get Exponent 18-44

xv

CONTENTS

PAGE

18.15.2.1 Application Examples . 18-44
18.15.3 VRNDSCALE - Vector Round Scale . 18-44
18.15.3.1 Application Examples . 18-44
18.15.4 VREDUCE - Vector Reduce . 18-45
18.15.4.1 Application Examples . 18-45
18.15.5 VSCALEF - Vector Scale . 18-45
18.15.5.1 Application Examples . 18-45
18.15.6 VFPCLASS - Vector Floating Point Class . 18-46
18.15.6.1 Application Examples . 18-46
18.15.7 VPERM, VPERMI2, VPERMT2 - Small Table Lookup Implementation 18-46
18.15.7.1 Application Examples . 18-46
18.16 CONFLICT DETECTION. 18-46
18.16.1 Vectorization with Conflict Detection . 18-47
18.16.2 Sparse Dot Product with VPCONFLICT . 18-51
18.17 INTEL® AVX-512 VECTOR BYTE MANIPULATION INSTRUCTIONS (VBMI) 18-53
18.17.1 Permute Packet Bytes Elements Across Lanes (VPERMB) . 18-54
18.17.2 Two-Source Byte Permute Across Lanes (VPERMI2B, VPERMT2B). 18-55
18.17.3 Select Packed Unaligned Bytes from Quadword Sources (VPMULTISHIFTQB) 18-58
18.18 FMA LATENCY . 18-60
18.19 MIXING INTEL® AVX EXTENSIONS OR INTEL® AVX-512 EXTENSIONS WITH

INTEL® STREAMING SIMD EXTENSIONS (INTEL® SSE) CODE . 18-61
18.20 MIXING ZMM VECTOR CODE WITH XMM/YMM. 18-62
18.21 SERVERS WITH A SINGLE FMA UNIT . 18-63
18.22 GATHER/SCATTER TO SHUFFLE (G2S/STS) . 18-68
18.22.1 Gather to Shuffle in Strided Loads . 18-68
18.22.2 Scatter to Shuffle in Strided Stores . 18-69
18.22.3 Gather to Shuffle in Adjacent Loads . 18-70
18.23 DATA ALIGNMENT . 18-71
18.23.1 Align Data to 64 Bytes . 18-71
18.24 DYNAMIC MEMORY ALLOCATION AND MEMORY ALIGNMENT . 18-73
18.25 DIVISION AND SQUARE ROOT OPERATIONS . 18-73
18.25.1 Divide and Square Root Approximation Methods. 18-74
18.25.2 Divide and Square Root Performance . 18-75
18.25.3 Approximation Latencies . 18-75
18.25.4 Code Snippets . 18-78
18.26 CLDEMOTE . 18-84
18.26.1 Producer-Consumer Communication in Software. 18-84
18.27 TIPS ON COMPILER USAGE . 18-85

CHAPTER 19
INTEL® ADVANCED VECTOR EXTENSIONS 512 - FP16 INSTRUCTION SET FOR INTEL®
XEON® PROCESSORS
19.1 INTRODUCTION . 19-1
19.1.1 Terminology . 19-1
19.2 OVERVIEW . 19-2
19.3 FP16 NUMERIC INSTRUCTIONS . 19-3
19.3.1 Data Type Support. 19-3
19.3.2 Overview of Intrinsics. 19-4
19.3.3 Fundamental Complex-Valued Support . 19-5
19.3.4 Using Intel® AVX-512 Bit Masks for Real-Valued Operations. 19-6
19.3.5 Using Intel® AVX-512 Bit Masks for Complex-Valued Operations. 19-7
19.4 NUMERICS . 19-9
19.4.1 Introduction to FP16 Number Format . 19-10
19.4.2 Observations on Representing Numbers in FP16 Format. 19-10
19.4.3 Numeric Accuracy Guarantees . 19-12
19.4.4 Handling Denormal Values. 19-13
19.4.5 Embedded Rounding . 19-13
19.4.6 Legacy FP16 Data Type Conversion . 19-14
19.4.7 FP16 Conversions to and from Other Data Types. 19-14
19.4.8 Approximation Instructions and Their Uses. 19-15
19.4.8.1 Approximate Reciprocal . 19-15
19.4.8.2 Approximate Division . 19-15
19.4.8.3 Approximate Reciprocal Square Root . 19-16

CONTENTS

xvi

PAGE

19.4.9 Approximate Square Root . 19-17
19.5 USING EXISTING INTEL® AVX-512 INSTRUCTIONS TO AUGMENT FP16 SUPPORT . . . 19-17
19.5.1 Using Existing Instructions to Extend Intel® AVX-512 FP16 Intrinsics 19-17
19.5.2 Common Convenience Intrinsics . 19-18
19.5.3 Using Integer Comparisons for Fast Floating-Point Comparison 19-18
19.6 MATH LIBRARY SUPPORT . 19-19

CHAPTER 20
INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)
20.1 DETECTING INTEL® AMX SUPPORT . 20-2
20.2 INTEL® AMX MICROARCHITECTURE OVERVIEW . 20-2
20.2.1 Intel AMX Frequencies . 20-2
20.3 INTEL® AMX INSTRUCTIONS THROUGHPUT AND LATENCY . 20-3
20.4 DATA STRUCTURE ALIGNMENT. 20-3
20.5 GEMMS / CONVOLUTIONS . 20-4
20.5.1 Notation . 20-4
20.5.2 Tiles in the Intel® AMX Architecture . 20-4

TileLoad and TileStore Instructions . 20-5
20.5.3 B Matrix Layout . 20-6
20.5.4 Straightforward GEMM Implementation . 20-8
20.5.5 Optimizations. 20-10
20.5.5.1 Minimizing Tile Loads . 20-10

Location of the K Loop: Outside of the M_ACC and N_ACC Loops 20-10
Pre-loading Innermost Loop Tiles . 20-10
2D Accumulator Array vs. 1D Accumulator Array . 20-11

20.5.5.2 Software Pipelining of Tile Loads and Stores . 20-12
20.5.5.3 Optimized GEMM Implementation . 20-12

Variable Input Dimensions . 20-15
20.5.5.4 Direct Convolution with Intel® AMX . 20-15

Activations Layout . 20-15
Weights Layout . 20-16

20.5.5.5 Convolution - Matrix-like Multiplications and Summations Equivalence 20-17
20.5.5.6 Optimized Convolution Implementation . 20-19

Location of the KH, KW Loops . 20-21
20.6 CACHE BLOCKING . 20-21
20.6.1 Optimized Convolution Implementation with Cache Blocking. 20-21

Intel AMX-Specific Considerations. 20-23
20.7 MINI-BATCHING IN LARGE BATCH INFERENCE . 20-24
20.8 NON-TEMPORAL TILE LOADS . 20-25

Priority Inversion Scenarios with Temporal Loads. 20-25
Scenario 1: . 20-25
Scenario 2: . 20-26
Solution to Priority Inversions: Non-temporal Loads. 20-27

20.9 USING LARGE TILES IN SMALL CONVOLUTIONS TO MAXIMIZE DATA REUSE 20-27
20.10 HANDLING INCONVENIENTLY SIZED ACTIVATIONS. 20-28
20.11 POST-CONVOLUTION OPTIMIZATIONS . 20-29
20.11.1 Post-convolution Fusion. 20-29
20.11.2 Intel® AMX and Intel® AVX-512 Interleaving (SW Pipelining) . 20-32
20.11.3 AVOIDING THE H/W OVERHEAD OF PORT 5 FREQUENT

OPEN/CLOSE OPERATIONS . 20-34
20.11.4 Post-Conv Multiple OFM Accumulation and Efficient Down-Conversion 20-35
20.12 INPUT AND OUTPUT BUFFERS REUSE (AKA DOUBLE BUFFERING) 20-37
20.13 SOFTWARE PREFETCHES. 20-38
20.13.1 Software Prefetch for Convolution and GEMM Layers . 20-38
20.13.1.1 The Prefetch Strategy . 20-38
20.13.1.2 Prefetch Distance. 20-39
20.13.1.3 To Prefetch A or Prefetch B? . 20-39
20.13.1.4 To Prefetch or not to Prefetch C? . 20-40
20.13.2 Software Prefetch for Embedding Layer . 20-40
20.14 STORE TO LOAD FORWARDING . 20-40
20.15 MATRIX TRANSPOSE. 20-41
20.15.1 Flat-to-Flat Transpose of BF16 Data . 20-41

xvii

CONTENTS

PAGE

20.15.2 VNNI-to-VNNI Transpose . 20-46
20.15.3 Flat-to-VNNI Transpose . 20-48
20.15.4 Flat-to-VNNI Re-layout . 20-52
20.16 MULTI-THREADING CONSIDERATIONS. 20-53
20.16.1 Thread Affinity . 20-53
20.16.2 Hyper-Threading . 20-53
20.16.3 Work Partitioning Between Cores. 20-53
20.16.3.1 Partitioning over M . 20-54
20.16.3.2 Partitioning over N . 20-54
20.16.3.3 Partitioning over K. 20-55
20.16.3.4 Memory Bandwidth Implications of Work Partitioning over Multiple Dimensions20-55
20.16.4 Recommendation System Example . 20-56
20.17 SPARSITY OPTIMIZATIONS FOR INTEL® AMX . 20-58
20.18 TILECONFIG/TILERELEASE, CORE C-STATE, AND COMPILER ABI . 20-60
20.18.1 ABI. 20-60
20.18.2 Intrinsics . 20-60
20.18.3 User Interface . 20-61
20.18.4 Example. 20-63
20.18.5 Compilation Option. 20-65
20.19 INTEL® AMX STATE MANAGEMENT. 20-66
20.19.1 Extended Feature Disable (XFD) . 20-67
20.19.2 Alternate Signal Handler Stack in Linux Operating System . 20-67
20.20 USING INTEL® AMX TO EMULATE HIGHER PRECISION GEMMS . 20-67

CHAPTER 21
CRYPTOGRAPHY & FINITE FIELD ARITHMETIC ENHANCEMENTS
21.1 VECTOR AES. 21-1
21.2 VPCLMULQDQ . 21-2
21.3 GALOIS FIELD NEW INSTRUCTIONS. 21-2
21.4 INTEGER FUSED MULTIPLY ACCUMULATE OPERATIONS

(AVX512_IFMA - VPMADD52) . 21-3

CHAPTER 22
INTEL® QUICKASSIST TECHNOLOGY
22.1 SOFTWARE DESIGN GUIDELINES . 22-1
22.1.1 Polling vs. Interrupts (If Supported) . 22-1
22.1.1.1 Interrupt Mode . 22-1
22.1.1.2 Polling Mode. 22-2
22.1.1.3 Recommendations . 22-3
22.1.2 Use of Data Plane (DP) API vs. Traditional API . 22-3
22.1.2.1 Batch Submission of Requests Using the Data Plane API . 22-3
22.1.3 Synchronous (sync) vs. Asynchronous (async) . 22-3
22.1.4 Buffer Lists . 22-4
22.1.5 Maximum Number of Concurrent Requests . 22-4
22.1.6 Symmetric Crypto Partial Operations. 22-5
22.1.7 Reusing Sessions in QAT Environment . 22-5
22.1.8 Maximizing QAT Device Utilization . 22-5
22.1.9 Best Known Method (BKM) for Avoiding Performance Bottlenecks 22-5
22.1.10 Avoid Data Copies By Using SVM and ATS . 22-6
22.1.11 Avoid Page Faults When Using SVM. 22-6

CHAPTER 23
KNIGHTS LANDING MICROARCHITECTURE AND SOFTWARE OPTIMIZATION
23.1 KNIGHTS LANDING MICROARCHITECTURE . 23-2
23.1.1 Front End . 23-3
23.1.2 Out-of-Order Engine . 23-3
23.1.3 UnTile . 23-6
23.2 INTEL® AVX-512 CODING RECOMMENDATIONS FOR KNIGHTS LANDING

MICROARCHITECTURE. 23-7
23.2.1 Using Gather and Scatter Instructions. 23-8
23.2.2 Using Enhanced Reciprocal Instructions . 23-8

CONTENTS

xviii

PAGE

23.2.3 Using AVX-512CD Instructions . 23-9
23.2.4 Using Intel® Hyper-Threading Technology . 23-9
23.2.5 Front End Considerations. 23-9
23.2.5.1 Instruction Decoder . 23-10
23.2.5.2 Branching Indirectly Across a 4GB Boundary . 23-10
23.2.6 Integer Execution Considerations . 23-10
23.2.6.1 Flags usage. 23-10
23.2.6.2 Integer Division . 23-11
23.2.7 Optimizing FP and Vector Execution . 23-11
23.2.7.1 Instruction Selection Considerations . 23-11
23.2.7.2 Porting Intrinsics from Previous Generation . 23-13
23.2.7.3 Vectorization Trade-Off Estimation . 23-13
23.2.8 Memory Optimization . 23-16
23.2.8.1 Data Alignment . 23-16
23.2.8.2 Hardware Prefetcher . 23-17
23.2.8.3 Software Prefetch . 23-17
23.2.8.4 Memory Execution Cluster . 23-17
23.2.8.5 Store Forwarding . 23-18
23.2.8.6 Way, Set Conflicts . 23-18
23.2.8.7 Streaming Store Versus Regular Store . 23-19
23.2.8.8 Compiler Switches and Directives . 23-19
23.2.8.9 Direct Mapped MCDRAM Cache . 23-19

APPENDIX A
APPLICATION PERFORMANCE TOOLS
A.1 COMPILERS . A-2
A.1.1 Recommended Optimization Settings for Intel® 64 and IA-32 Processors. A-2
A.1.2 Vectorization and Loop Optimization . A-3
A.1.2.1 Multithreading with OpenMP* . A-3
A.1.2.2 Automatic Multithreading . A-3
A.1.3 Inline Expansion of Library Functions (/Oi, /Oi-) . A-3
A.1.4 Interprocedural and Profile-Guided Optimizations . A-3
A.1.4.1 Interprocedural Optimization (IPO) . A-3
A.1.4.2 Profile-Guided Optimization (PGO) . A-4
A.1.5 Intel® Cilk™ Plus . A-4
A.2 PERFORMANCE LIBRARIES . A-4
A.2.1 Intel® Integrated Performance Primitives (Intel® IPP) . A-5
A.2.2 Intel® Math Kernel Library (Intel® MKL) . A-5
A.2.3 Intel® Threading Building Blocks (Intel® TBB) . A-5
A.2.4 Benefits Summary . A-5
A.3 PERFORMANCE PROFILERS. A-5
A.3.1 Intel® VTune™ Amplifier XE . A-6
A.3.1.1 Hardware Event-Based Sampling Analysis. A-6
A.3.1.2 Algorithm Analysis . A-6
A.3.1.3 Platform Analysis . A-6
A.4 THREAD AND MEMORY CHECKERS . A-6
A.4.1 Intel® Inspector . A-7
A.5 VECTORIZATION ASSISTANT . A-7
A.5.1 Intel® Advisor . A-7
A.6 CLUSTER TOOLS . A-7
A.6.1 Intel® Trace Analyzer and Collector. A-7
A.6.1.1 MPI Performance Snapshot. A-7
A.6.2 Intel® MPI Library . A-7
A.6.3 Intel® MPI Benchmarks . A-8
A.7 INTEL® ACADEMIC COMMUNITY . A-8

APPENDIX B
USING PERFORMANCE MONITORING EVENTS
B.1 TOP-DOWN ANALYSIS METHOD. B-1
B.1.1 Top-Level .B-2
B.1.2 Frontend Bound .B-4
B.1.3 Backend Bound .B-4

xix

CONTENTS

PAGE

B.1.4 Memory Bound .B-4
B.1.5 Core Bound. .B-5
B.1.6 Bad Speculation .B-5
B.1.7 Retiring .B-6
B.1.8 Golden Cove Microarchitecture .B-6
B.1.9 Ice Lake Microarchitecture .B-6
B.1.10 Optane Persistent Memory .B-6
B.1.11 Skylake Microarchitecture .B-6
B.1.11.1 TMA Use Case 1 .B-7
B.1.11.2 TMA Use Case 2 .B-7
B.2 PERFORMANCE MONITORING AND MICROARCHITECTURE . B-8
B.3 INTEL® XEON® PROCESSOR 5500 SERIES . B-14
B.4 PERFORMANCE ANALYSIS TECHNIQUES FOR INTEL® XEON® PROCESSOR 5500 SERIES B-15
B.4.1 Cycle Accounting and Uop Flow Analysis . B-16
B.4.1.1 Cycle Drill Down and Branch Mispredictions . B-17
B.4.1.2 Basic Block Drill Down. B-20
B.4.2 Stall Cycle Decomposition and Core Memory Accesses . B-21
B.4.2.1 Measuring Costs of Microarchitectural Conditions. B-21
B.4.3 Core PMU Precise Events. B-22
B.4.3.1 Precise Memory Access Events . B-23
B.4.3.2 Load Latency Event. B-24
B.4.3.3 Precise Execution Events . B-26
B.4.3.4 Last Branch Record (LBR) . B-27
B.4.3.5 Measuring Per-Core Bandwidth . B-31
B.4.3.6 Miscellaneous L1 and L2 Events for Cache Misses . B-32
B.4.3.7 TLB Misses . B-32
B.4.3.8 L1 Data Cache . B-33
B.4.4 Frontend Monitoring Events . B-33
B.4.4.1 Branch Mispredictions. B-33
B.4.4.2 Frontend Code Generation Metrics. B-33
B.4.5 Uncore Performance Monitoring Events. B-34
B.4.5.1 Global Queue Occupancy . B-34
B.4.5.2 Global Queue Port Events . B-36
B.4.5.3 Global Queue Snoop Events . B-36
B.4.5.4 L3 Events . B-37
B.4.6 Intel QuickPath Interconnect Home Logic (QHL). B-37
B.4.7 Measuring Bandwidth From the Uncore . B-42
B.5 PERFORMANCE TUNING TECHNIQUES FOR SANDY BRIDGE MICROARCHITECTURE B-43
B.5.1 Correlating Performance Bottleneck to Source Location . B-43
B.5.2 Hierarchical Top-Down Performance Characterization Methodology and

Locating Performance Bottlenecks. B-44
B.5.2.1 Back End Bound Characterization . B-45
B.5.2.2 Core Bound Characterization . B-45
B.5.2.3 Memory Bound Characterization . B-46
B.5.3 Back End Stalls . B-47
B.5.4 Memory Sub-System Stalls . B-48
B.5.4.1 Accounting for Load Latency . B-48
B.5.4.2 Cache-line Replacement Analysis . B-50
B.5.4.3 Lock Contention Analysis. B-50
B.5.4.4 Other Memory Access Issues . B-51
B.5.5 Execution Stalls. B-53
B.5.5.1 Longer Instruction Latencies . B-53
B.5.5.2 Assists . B-53
B.5.6 Bad Speculation . B-54
B.5.6.1 Branch Mispredicts. B-54
B.5.7 Frontend Stalls . B-54
B.5.7.1 Understanding the Micro-op Delivery Rate . B-54
B.5.7.2 Understanding the Sources of the Micro-op Queue . B-56
B.5.7.3 The Decoded ICache . B-57
B.5.7.4 Issues in the Legacy Decode Pipeline . B-58
B.5.7.5 Instruction Cache . B-58
B.6 USING PERFORMANCE EVENTS OF INTEL® CORE™ SOLO AND INTEL® CORE™ DUO

PROCESSORS . B-59
B.6.1 Understanding the Results in a Performance Counter . B-59
B.6.2 Ratio Interpretation. B-59

CONTENTS

xx

PAGE

B.6.3 Notes on Selected Events . B-60
B.7 DRILL-DOWN TECHNIQUES FOR PERFORMANCE ANALYSIS . B-60
B.7.1 Cycle Composition at Issue Port. B-62
B.7.2 Cycle Composition of OOO Execution. B-62
B.7.3 Drill-Down on Performance Stalls . B-63
B.8 EVENT RATIOS FOR INTEL CORE MICROARCHITECTURE . B-64
B.8.1 Clocks Per Instructions Retired Ratio (CPI) . B-64
B.8.2 Front End Ratios . B-65
B.8.2.1 Code Locality . B-65
B.8.2.2 Branching and Front End . B-65
B.8.2.3 Stack Pointer Tracker . B-65
B.8.2.4 Macro-fusion . B-66
B.8.2.5 Length Changing Prefix (LCP) Stalls . B-66
B.8.2.6 Self Modifying Code Detection. B-66
B.8.3 Branch Prediction Ratios . B-66
B.8.3.1 Branch Mispredictions. B-66
B.8.3.2 Virtual Tables and Indirect Calls. B-66
B.8.3.3 Mispredicted Returns . B-67
B.8.4 Execution Ratios. B-67
B.8.4.1 Resource Stalls . B-67
B.8.4.2 ROB Read Port Stalls. B-67
B.8.4.3 Partial Register Stalls . B-67
B.8.4.4 Partial Flag Stalls . B-67
B.8.4.5 Bypass Between Execution Domains. B-67
B.8.4.6 Floating-Point Performance Ratios. B-68
B.8.5 Memory Sub-System - Access Conflicts Ratios . B-68
B.8.5.1 Loads Blocked by the L1 Data Cache . B-68
B.8.5.2 4K Aliasing and Store Forwarding Block Detection . B-68
B.8.5.3 Load Block by Preceding Stores. B-68
B.8.5.4 Memory Disambiguation. B-69
B.8.5.5 Load Operation Address Translation . B-69
B.8.6 Memory Sub-System - Cache Misses Ratios. B-69
B.8.6.1 Locating Cache Misses in the Code . B-69
B.8.6.2 L1 Data Cache Misses . B-69
B.8.6.3 L2 Cache Misses . B-69
B.8.7 Memory Sub-system - Prefetching . B-70
B.8.7.1 L1 Data Prefetching . B-70
B.8.7.2 L2 Hardware Prefetching . B-70
B.8.7.3 Software Prefetching . B-70
B.8.8 Memory Sub-system - TLB Miss Ratios . B-70
B.8.9 Memory Sub-system - Core Interaction. B-71
B.8.9.1 Modified Data Sharing. B-71
B.8.9.2 Fast Synchronization Penalty. B-71
B.8.9.3 Simultaneous Extensive Stores and Load Misses . B-71
B.8.10 Memory Sub-system - Bus Characterization . B-71
B.8.10.1 Bus Utilization . B-71
B.8.10.2 Modified Cache Lines Eviction . B-72

APPENDIX C
RUNTIME PERFORMANCE OPTIMIZATION BLUEPRINT: INTEL® ARCHITECTURE
OPTIMIZATION WITH LARGE CODE PAGES
C.1 OVERVIEW . C-1
C.1.1 ITLBs and Stalls. .C-2
C.1.2 Large Pages .C-3
C.2 DIAGNOSING THE PROBLEM . C-3
C.2.1 ITLB Misses. .C-3
C.2.2 Measuring the ITLB Miss Stall .C-5
C.2.3 Source of ITLB Misses .C-6
C.3 SOLUTION . C-6
C.3.1 Linux* and Large Pages .C-6
C.3.2 Large Pages for .text .C-7
C.3.3 Reference Code .C-7
C.3.4 Large Pages for the Heap .C-8

xxi

CONTENTS

PAGE

C.4 SOLUTION INTEGRATION . C-9
C.4.1 V8 Integration with the Reference Implementation .C-9
C.4.2 JAVA JVM Integration with the Reference Implementation .C-9
C.5 LIMITATIONS . C-10
C.6 CASE STUDY. C-10
C.6.1 Ghost.js Workload. C-11
C.6.2 Web Tooling Workload . C-11
C.6.2.1 Node Version . C-11
C.6.2.2 Web Tooling . C-11
C.6.2.3 Comparing Clear Linux* OS and Ubuntu* . C-11
C.6.3 MediaWiki Workload. C-12
C.6.4 Visualization of Benefits . C-13
C.6.4.1 Precise Events. C-13
C.6.4.2 Visualizing Precise ITLB Miss . C-13
C.7 SUMMARY . C-16
C.8 TEST CONFIGURATION DETAILS . C-16
C.9 ADDITIONAL REFERENCES. C-17

APPENDIX D
INSTRUCTION LATENCY AND THROUGHPUT
D.1 OVERVIEW . D-1
D.2 DEFINITIONS. D-2
D.3 LATENCY AND THROUGHPUT . D-2
D.3.1 Latency and Throughput with Register Operands .D-3
D.3.2 Table Footnotes . D-18
D.3.3 Instructions with Memory Operands . D-19
D.3.3.1 Software Observable Latency of Memory References . D-19

APPENDIX E
EARLIER GENERATIONS OF INTEL® 64 AND IA-32
PROCESSOR ARCHITECTURES
E.1 HASWELL MICROARCHITECTURE. E-1
E.1.1 The Front End .E-2
E.1.2 The Out-of-Order Engine .E-2
E.1.3 Execution Engine .E-3
E.1.4 Cache and Memory Subsystem .E-5
E.1.4.1 Load and Store Operation Enhancements .E-6
E.1.5 Unlamination .E-6
E.1.6 Haswell-E Microarchitecture .E-7
E.1.7 Broadwell Microarchitecture. .E-7
E.2 SANDY BRIDGE MICROARCHITECTURE . E-8
E.2.1 Sandy Bridge Microarchitecture Pipeline Overview. .E-9
E.2.2 The Front End . E-10
E.2.2.1 Legacy Decode Pipeline . E-10
E.2.2.2 Decoded ICache. E-12
E.2.2.3 Branch Prediction . E-13
E.2.2.4 Micro-op Queue and the Loop Stream Detector (LSD) . E-14
E.2.3 The Out-of-Order Engine . E-14
E.2.3.1 Renamer . E-15
E.2.3.2 Scheduler . E-16
E.2.4 The Execution Core . E-16
E.2.5 Cache Hierarchy . E-17
E.2.5.1 Load and Store Operation Overview . E-18
E.2.5.2 L1 DCache. E-19
E.2.5.3 Ring Interconnect and Last Level Cache . E-23
E.2.5.4 Data Prefetching . E-24
E.2.6 System Agent . E-25
E.2.7 Ivy Bridge Microarchitecture. E-26
E.3 INTEL® CORE™ MICROARCHITECTURE AND ENHANCED INTEL® CORE™

MICROARCHITECTURE. E-26
E.3.1 Intel® Core™ Microarchitecture Pipeline Overview . E-27
E.3.2 Front End . E-28

CONTENTS

xxii

PAGE

E.3.2.1 Branch Prediction Unit . E-29
E.3.2.2 Instruction Fetch Unit . E-29
E.3.2.3 Instruction Queue (IQ). E-30
E.3.2.4 Instruction Decode. E-31
E.3.2.5 Stack Pointer Tracker . E-31
E.3.2.6 Micro-fusion . E-31
E.3.3 Execution Core . E-31
E.3.3.1 Issue Ports and Execution Units . E-32
E.3.4 Intel® Advanced Memory Access . E-34
E.3.4.1 Loads and Stores . E-35
E.3.4.2 Data Prefetch to L1 caches. E-36
E.3.4.3 Data Prefetch Logic . E-36
E.3.4.4 Store Forwarding . E-37
E.3.4.5 Memory Disambiguation. E-38
E.3.5 Intel® Advanced Smart Cache . E-38
E.3.5.1 Loads . E-39
E.3.5.2 Stores. E-39
E.4 NEHALEM MICROARCHITECTURE . E-40
E.4.1 Microarchitecture Pipeline . E-40
E.4.2 Front End Overview. E-42
E.4.3 Execution Engine . E-43
E.4.3.1 Issue Ports and Execution Units . E-44
E.4.4 Cache and Memory Subsystem . E-45
E.4.5 Load and Store Operation Enhancements . E-46
E.4.5.1 Efficient Handling of Alignment Hazards . E-46
E.4.5.2 Store Forwarding Enhancement . E-46
E.4.6 REP String Enhancement . E-48
E.4.7 Enhancements for System Software . E-49
E.4.8 Efficiency Enhancements for Power Consumption . E-49
E.4.9 Hyper-Threading Technology Support in Nehalem Microarchitecture. E-49

APPENDIX F
EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE
OPTIMIZATION
F.1 OVERVIEW . F-1
F.2 INTEL ATOM® MICROARCHITECTURE . F-1
F.2.1 Hyper-Threading Technology Support in Intel Atom® MicroarchitectureF-3
F.3 CODING RECOMMENDATIONS FOR INTEL ATOM® MICROARCHITECTURE F-3
F.3.1 Optimization for Front End of Intel Atom® Microarchitecture. .F-3
F.3.2 Optimizing the Execution Core. .F-5
F.3.2.1 Integer Instruction Selection .F-5
F.3.2.2 Address Generation .F-6
F.3.2.3 Integer Multiply. .F-6
F.3.2.4 Integer Shift Instructions. .F-7
F.3.2.5 Partial Register Access. .F-7
F.3.2.6 FP/SIMD Instruction Selection .F-7
F.3.3 Optimizing Memory Access .F-9
F.3.3.1 Store Forwarding .F-9
F.3.3.2 First-level Data Cache .F-9
F.3.3.3 Segment Base . F-10
F.3.3.4 String Moves . F-10
F.3.3.5 Parameter Passing. F-11
F.3.3.6 Function Calls. F-11
F.3.3.7 Optimization of Multiply/Add Dependent Chains . F-11
F.3.3.8 Position Independent Code . F-13
F.4 INSTRUCTION LATENCY . F-13
F.5 SILVERMONT MICROARCHITECTURE . F-19
F.5.1 Integer Pipeline . F-22
F.5.2 Floating-Point Pipeline . F-22
F.6 GOLDMONT MICROARCHITECTURE . F-23
F.7 GOLDMONT PLUS MICROARCHITECTURE . F-26
F.8 CODING RECOMMENDATIONS . F-29
F.8.1 Optimizing The Front End . F-29

xxiii

CONTENTS

PAGE

F.8.1.1 Instruction Decoder . F-29
F.8.1.2 Front End High IPC Considerations . F-30
F.8.1.3 Branching Across 4GB Boundary. F-31
F.8.1.4 Loop Unrolling and Loop Stream Detector . F-31
F.8.1.5 Mixing Code and Data . F-32
F.8.2 Optimizing The Execution Core . F-32
F.8.2.1 Scheduling . F-32
F.8.2.2 Address Generation. F-32
F.8.2.3 FP Multiply-Accumulate-Store Execution . F-32
F.8.2.4 Integer Multiply Execution . F-33
F.8.2.5 Zeroing Idioms. F-34
F.8.2.6 NOP Idioms . F-34
F.8.2.7 Move Elimination and ESP Folding. F-34
F.8.2.8 Stack Manipulation Instruction. F-35
F.8.2.9 Flags usage . F-35
F.8.2.10 SIMD Floating-Point and X87 Instructions . F-35
F.8.2.11 SIMD Integer Instructions . F-35
F.8.2.12 Vectorization Considerations . F-36
F.8.2.13 Other SIMD Instructions . F-36
F.8.2.14 Instruction Selection . F-36
F.8.2.15 Integer Division. F-38
F.8.2.16 Integer Shift. F-39
F.8.2.17 Pause Instruction . F-39
F.8.3 Optimizing Memory Accesses . F-39
F.8.3.1 Reduce Unaligned Memory Access with PALIGNR . F-39
F.8.3.2 Minimize Memory Execution Issues . F-40
F.8.3.3 Store Forwarding . F-40
F.8.3.4 PrefetchW Instruction. F-41
F.8.3.5 Cache Line Splits and Alignment . F-41
F.8.3.6 Segment Base . F-41
F.8.3.7 Copy and String Copy . F-42
F.9 INSTRUCTION LATENCY AND THROUGHPUT . F-42

CONTENTS

xxiv

PAGE

EXAMPLES

Example 2-1. Class 0 Pseudo-code Snippet 2-4
Example 2-2. Class 1 Pseudo-code Snippet 2-4
Example 2-3. Class 2 Pseudo-code Snippet 2-5
Example 2-4. Class 3 Pseudo-code Snippet 2-5
Example 2-5. Breaking False Dependency through Zero Idiom 2-13
Example 2-6. Considering Stores 2-19
Example 2-7. Rearranging Code to Achieve Store Pairing 2-19
Example 2-8. Dynamic Pause Loop Example 2-33
Example 2-9. Contended Locks with Increasing Back-off Example 2-34
Example 3-1. Assembly Code with an Unpredictable Branch 3-5
Example 3-2. Code Optimization to Eliminate Branches 3-5
Example 3-3. Eliminating Branch with CMOV Instruction 3-6
Example 3-4. Static Branch Prediction Algorithm 3-6
Example 3-5. Static Taken Prediction 3-7
Example 3-6. Static Not-Taken Prediction 3-7
Example 3-7. Indirect Branch With Two Favored Targets 3-9
Example 3-8. A Peeling Technique to Reduce Indirect Branch Misprediction 3-10
Example 3-9. Loop Unrolling 3-11
Example 3-10. Macrofusion, Unsigned Iteration Count 3-14
Example 3-11. Macrofusion, If Statement 3-14
Example 3-12. Macrofusion, Signed Variable 3-15
Example 3-13. Macrofusion, Signed Comparison 3-15
Example 3-14. Additional Macrofusion Benefit in Sandy Bridge Microarchitecture 3-16
Example 3-15. Avoiding False LCP Delays with 0xF7 Group Instructions 3-17
Example 3-16. Independent Two-Operand LEA Example 3-21
Example 3-17. Alternative to Three-Operand LEA 3-22
Example 3-18. Examples of 512-bit Additions 3-23
Example 3-19. Clearing Register to Break Dependency While Negating Array Elements 3-26
Example 3-20. Spill Scheduling Code 3-28
Example 3-21. Zero-Latency MOV Instructions 3-29
Example 3-22. Byte-Granular Data Computation Technique 3-29
Example 3-23. Re-ordering Sequence to Improve Effectiveness of Zero-Latency MOV Instructions 3-30
Example 3-24. Avoiding Partial Register Stalls in Integer Code 3-32
Example 3-25. Avoiding Partial Register Stalls in SIMD Code 3-33
Example 3-26. Avoiding Partial Flag Register Stalls 3-33
Example 3-27. Partial Flag Register Accesses in Sandy Bridge Microarchitecture 3-34
Example 3-28. Reference Code Template for Partially Vectorizable Program 3-36
Example 3-29. Three Alternate Packing Methods for Avoiding Store Forwarding Difficulty 3-37
Example 3-30. Using Four Registers to Reduce Memory Spills and Simplify Result Passing 3-37
Example 3-31. Stack Optimization Technique to Simplify Parameter Passing 3-38
Example 3-32. Base Line Code Sequence to Estimate Loop Overhead 3-39
Example 3-33. Optimizing for Load Port Bandwidth in Sandy Bridge Microarchitecture 3-41
Example 3-34. Index versus Pointers in Pointer-Chasing Code 3-42
Example 3-35. Example of Bank Conflicts in L1D Cache and Remedy 3-43
Example 3-36. Using XMM Register in Lieu of Memory for Register Spills 3-44
Example 3-37. Loads Blocked by Stores of Unknown Address 3-45
Example 3-38. Situations Showing Small Loads After Large Store 3-46
Example 3-39. Non-forwarding Example of Large Load After Small Store 3-46
Example 3-40. A Non-forwarding Situation in Compiler Generated Code 3-47
Example 3-41. Two Ways to Avoid Non-forwarding Situation in Example 3-40 3-47
Example 3-42. Large and Small Load Stalls 3-47
Example 3-43. Loop-carried Dependence Chain 3-49
Example 3-44. Rearranging a Data Structure 3-49
Example 3-45. Decomposing an Array 3-50
Example 3-46. Examples of Dynamical Stack Alignment 3-51
Example 3-47. Instruction Pointer Query Techniques 3-53

xxv

CONTENTS

PAGE

Example 3-48. Using Non-temporal Stores and 64-byte Bus Write Transactions 3-55
Example 3-49. On-temporal Stores and Partial Bus Write Transactions 3-55
Example 3-50. Using DCU Hardware Prefetch 3-56
Example 3-51. Avoid Causing DCU Hardware Prefetch to Fetch Un-needed Lines 3-57
Example 3-52. Technique For Using L1 Hardware Prefetch 3-58
Example 3-53. REP STOSD with Arbitrary Count Size and 4-Byte-Aligned Destination 3-60
Example 3-54. Algorithm to Avoid Changing Rounding Mode 3-68
Example 3-55. Locking Algorithm for Sapphire Rapids 3-72
Example 3-56. Fixed Instruction Sequence with Improved Performance on Sapphire Rapids 3-75
Example 3-57. WordPress/PHP Case Study: with and without 2GB Fix for Branch Misprediction 3-76
Example 3-58. Identification of WAITPKG with CPUID 3-78
Example 3-59. Code Snippet in an Asynchronous Example 3-80
Example 5-1. Identification of MMX Technology with CPUID 5-2
Example 5-2. Identification of SSE with CPUID 5-2
Example 5-3. Identification of SSE2 with cpuid 5-3
Example 5-4. Identification of SSE3 with CPUID 5-3
Example 5-5. Identification of SSSE3 with cpuid 5-3
Example 5-6. Identification of SSE4.1 with cpuid 5-4
Example 5-7. Identification of SSE4.2 with cpuid 5-4
Example 5-8. Detection of AESNI Instructions 5-5
Example 5-9. Detection of PCLMULQDQ Instruction 5-5
Example 5-10. Detection of AVX Instruction 5-6
Example 5-11. Detection of VEX-Encoded AESNI Instructions 5-7
Example 5-12. Detection of VEX-Encoded AESNI Instructions 5-7
Example 5-13. Simple Four-Iteration Loop 5-14
Example 5-14. Streaming SIMD Extensions Using Inlined Assembly Encoding 5-14
Example 5-15. Simple Four-Iteration Loop Coded with Intrinsics 5-15
Example 5-16. C++ Code Using the Vector Classes 5-16
Example 5-17. Automatic Vectorization for a Simple Loop 5-16
Example 5-18. C Algorithm for 64-bit Data Alignment 5-18
Example 5-19. AoS Data Structure 5-21
Example 5-20. SoA Data Structure 5-21
Example 5-21. AoS and SoA Code Samples 5-21
Example 5-22. Hybrid SoA Data Structure 5-22
Example 5-23. Pseudo-code Before Strip Mining 5-23
Example 5-24. Strip Mined Code 5-24
Example 5-25. Loop Blocking 5-24
Example 5-26. Emulation of Conditional Moves 5-26
Example 6-1. Resetting Register Between __m64 and FP Data Types Code 6-3
Example 6-2. FIR Processing Example in C language Code 6-4
Example 6-3. SSE2 and SSSE3 Implementation of FIR Processing Code 6-4
Example 6-4. Zero Extend 16-bit Values into 32 Bits Using Unsigned Unpack Instructions Code 6-5
Example 6-5. Signed Unpack Code 6-5
Example 6-6. Interleaved Pack with Saturation Code 6-7
Example 6-7. Interleaved Pack without Saturation Code 6-7
Example 6-8. Unpacking Two Packed-word Sources in Non-interleaved Way Code 6-9
Example 6-9. PEXTRW Instruction Code 6-10
Example 6-10. PINSRW Instruction Code 6-10
Example 6-11. Repeated PINSRW Instruction Code 6-11
Example 6-12. Non-Unit Stride Load/Store Using SSE4.1 Instructions 6-11
Example 6-13. Scatter and Gather Operations Using SSE4.1 Instructions 6-11
Example 6-14. PMOVMSKB Instruction Code 6-12
Example 6-15. Broadcast a Word Across XMM, Using 2 SSE2 Instructions 6-13
Example 6-16. Swap/Reverse words in an XMM, Using 3 SSE2 Instructions 6-13
Example 6-17. Generating Constants 6-15
Example 6-18. Absolute Difference of Two Unsigned Numbers 6-15
Example 6-19. Absolute Difference of Signed Numbers 6-16
Example 6-20. Computing Absolute Value 6-16
Example 6-21. Basic C Implementation of RGBA to BGRA Conversion 6-17

CONTENTS

xxvi

PAGE

Example 6-22. Color Pixel Format Conversion Using SSE2 6-17
Example 6-23. Color Pixel Format Conversion Using SSSE3 6-18
Example 6-24. Big-Endian to Little-Endian Conversion 6-19
Example 6-25. Clipping to a Signed Range of Words [High, Low] 6-20
Example 6-26. Clipping to an Arbitrary Signed Range [High, Low] 6-20
Example 6-27. Simplified Clipping to an Arbitrary Signed Range 6-20
Example 6-28. Clipping to an Arbitrary Unsigned Range [High, Low] 6-21
Example 6-29. Complex Multiply by a Constant 6-23
Example 6-30. Using PTEST to Separate Vectorizable and non-Vectorizable Loop Iterations 6-24
Example 6-31. Using Variable BLEND to Vectorize Heterogeneous Loops 6-24
Example 6-32. Baseline C Code for Mandelbrot Set Map Evaluation 6-25
Example 6-33. Vectorized Mandelbrot Set Map Evaluation Using SSE4.1 Intrinsics 6-26
Example 6-34. A Large Load after a Series of Small Stores (Penalty) 6-28
Example 6-35. Accessing Data Without Delay 6-28
Example 6-36. A Series of Small Loads After a Large Store 6-28
Example 6-37. Eliminating Delay for a Series of Small Loads after a Large Store 6-29
Example 6-38. Un-optimized Reverse Memory Copy in C 6-30
Example 6-39. Using PSHUFB to Reverse Byte Ordering 16 Bytes at a Time 6-32
Example 6-40. PMOVSX/PMOVZX Work-around to Avoid False Dependency 6-34
Example 6-41. Table Look-up Operations in C Code 6-34
Example 6-42. Shift Techniques on Non-Vectorizable Table Look-up 6-35
Example 6-43. PEXTRD Techniques on Non-Vectorizable Table Look-up 6-36
Example 6-44. Pseudo-Code Flow of AES Counter Mode Operation 6-37
Example 6-45. AES128-CTR Implementation with Eight Block in Parallel 6-38
Example 6-46. AES128 Key Expansion 6-45
Example 6-47. Compress 32-bit Integers into 5-bit Buckets 6-48
Example 6-48. Decompression of a Stream of 5-bit Integers into 32-bit Elements 6-50
Example 7-1. Pseudocode for Horizontal (xyz, AoS) Computation 7-4
Example 7-2. Pseudocode for Vertical (xxxx, yyyy, zzzz, SoA) Computation 7-5
Example 7-3. Swizzling Data Using SHUFPS, MOVLHPS, MOVHLPS 7-5
Example 7-4. Swizzling Data Using UNPCKxxx Instructions 7-6
Example 7-5. Deswizzling Single-Precision SIMD Data 7-7
Example 7-6. Deswizzling Data Using SIMD Integer Instructions 7-8
Example 7-7. Horizontal Add Using MOVHLPS/MOVLHPS 7-9
Example 7-8. Horizontal Add Using Intrinsics with MOVHLPS/MOVLHPS 7-10
Example 7-9. Multiplication of Two Pairs of Single-Precision Complex Number 7-12
Example 7-10. Division of Two Pairs of Single-Precision Complex Numbers 7-12
Example 7-11. Double-Precision Complex Multiplication of Two Pairs 7-13
Example 7-12. Double-Precision Complex Multiplication Using Scalar SSE2 7-13
Example 7-13. Dot Product of Vector Length 4 Using SSE/SSE2 7-14
Example 7-14. Dot Product of Vector Length 4 Using SSE3 7-15
Example 7-15. Dot Product of Vector Length 4 Using SSE4.1 7-15
Example 7-16. Unrolled Implementation of Four Dot Products 7-15
Example 7-17. Normalization of an Array of Vectors 7-16
Example 7-18. Normalize (x, y, z) Components of an Array of Vectors Using SSE2 7-17
Example 7-19. Normalize (x, y, z) Components of an Array of Vectors Using SSE4.1 7-18
Example 7-20. Data Organization in Memory for AOS Vector-Matrix Multiplication 7-19
Example 7-21. AOS Vector-Matrix Multiplication with HADDPS 7-19
Example 7-22. AOS Vector-Matrix Multiplication with DPPS 7-20
Example 7-23. Data Organization in Memory for SOA Vector-Matrix Multiplication 7-21
Example 7-24. Vector-Matrix Multiplication with Native SOA Data Layout 7-22
Example 8-1. VPDPBUSD Implementation 8-3
Example 8-2. Quantization of Activations 8-5
Example 8-3. Direct Convolution 8-10
Example 8-4. Convolution for Layers with Low OFM Count 8-14
Example 8-5. Basic PostConv 8-16
Example 8-6. Uint8 Residual Input 8-17
Example 8-7. 8x8 Average Pooling with Stride 1 of 8x8 Layers 8-18
Example 8-8. Unfused Vectorized Pooling 8-18

xxvii

CONTENTS

PAGE

Example 8-9. Caffe Scalar Code for Pixel Shuffler 8-20
Example 8-10. Computing Output Offset for Fused Pixel Shuffler 8-21
Example 8-11. Sigmoid Approximation with Minimax Polynomials 8-22
Example 8-12. Sigmoid Approximation with scalef 8-23
Example 8-13. Pseudocode for Finding Top K 8-25
Example 9-1. Pseudo-code Using CLFLUSH 9-9
Example 9-2. Flushing Cache Lines Using CLFLUSH or CLFLUSHOPT 9-12
Example 9-3. Populating an Array for Circular Pointer Chasing with Constant Stride 9-13
Example 9-4. Prefetch Scheduling Distance 9-16
Example 9-5. Using Prefetch Concatenation 9-17
Example 9-6. Concatenation and Unrolling the Last Iteration of Inner Loop 9-17
Example 9-8. Data Access of a 3D Geometry Engine with Strip-mining 9-22
Example 9-7. Data Access of a 3D Geometry Engine without Strip-mining 9-22
Example 9-9. Using HW Prefetch to Improve Read-Once Memory Traffic 9-23
Example 9-10. Basic Algorithm of a Simple Memory Copy 9-27
Example 9-11. A Memory Copy Routine Using Software Prefetch 9-28
Example 9-12. Memory Copy Using Hardware Prefetch and Bus Segmentation 9-29
Example 11-1. Serial Execution of Producer and Consumer Work Items 11-5
Example 11-2. Basic Structure of Implementing Producer Consumer Threads 11-6
Example 11-3. Thread Function for an Interlaced Producer Consumer Model 11-7
Example 11-4. Spin-wait Loop and PAUSE Instructions 11-12
Example 11-5. Coding Pitfall using Spin Wait Loop 11-14
Example 11-6. Placement of Synchronization and Regular Variables 11-15
Example 11-7. Declaring Synchronization Variables without Sharing a Cache Line 11-16
Example 11-8. Batched Implementation of the Producer Consumer Threads 11-20
Example 11-9. Parallel Memory Initialization Technique Using OpenMP and NUMA 11-24
Example 13-1. Compute 64-bit Quotient and Remainder with 64-bit Divisor 13-3
Example 13-2. Quotient and Remainder of 128-bit Dividend with 64-bit Divisor 13-4
Example 14-1. A Hash Function Examples 14-4
Example 14-2. Hash Function Using CRC32 14-4
Example 14-3. Strlen() Using General-Purpose Instructions 14-6
Example 14-4. Sub-optimal PCMPISTRI Implementation of EOS handling 14-8
Example 14-5. Strlen() Using PCMPISTRI without Loop-Carry Dependency 14-8
Example 14-6. WordCnt() Using C and Byte-Scanning Technique 14-9
Example 14-7. WordCnt() Using PCMPISTRM 14-10
Example 14-8. KMP Substring Search in C 14-12
Example 14-9. Brute-Force Substring Search Using PCMPISTRI Intrinsic 14-13
Example 14-10. Substring Search Using PCMPISTRI and KMP Overlap Table 14-15
Example 14-11. I Equivalent Strtok_s() Using PCMPISTRI Intrinsic 14-19
Example 14-12. I Equivalent Strupr() Using PCMPISTRM Intrinsic 14-21
Example 14-13. UTF16 VerStrlen() Using C and Table Lookup Technique 14-22
Example 14-14. Assembly Listings of UTF16 VerStrlen() Using PCMPISTRI 14-23
Example 14-15. Intrinsic Listings of UTF16 VerStrlen() Using PCMPISTRI 14-25
Example 14-16. Replacement String Library Strcmp Using SSE4.2 14-27
Example 14-17. High-level flow of Character Subset Validation for String Conversion 14-29
Example 14-18. Intrinsic Listings of atol() Replacement Using PCMPISTRI 14-29
Example 14-19. Auxiliary Routines and Data Constants Used in sse4i_atol() listing 14-31
Example 14-20. Conversion of 64-bit Integer to ASCII 14-34
Example 14-21. Conversion of 64-bit Integer to ASCII without Integer Division 14-35
Example 14-22. Conversion of 64-bit Integer to ASCII Using SSE4 14-37
Example 14-23. Conversion of 64-bit Integer to Wide Character String Using SSE4 14-43
Example 14-24. MULX and Carry Chain in Large Integer Numeric 14-48
Example 14-25. Building-block Macro Used in Binary Decimal Floating-point Operations 14-49
Example 15-1. Cartesian Coordinate Transformation with Intrinsics 15-3
Example 15-2. Cartesian Coordinate Transformation with Assembly 15-4
Example 15-3. Direct Polynomial Calculation 15-6
Example 15-4. Function Calls and AVX/SSE transitions 15-10
Example 15-5. AoS to SoA Conversion of Complex Numbers in C Code 15-12
Example 15-6. Aos to SoA Conversion of Complex Numbers Using AVX 15-13

CONTENTS

xxviii

PAGE

Example 15-7. Register Overlap Method for Median of 3 Numbers 15-15
Example 15-8. Data Gather - AVX versus Scalar Code 15-17
Example 15-9. Scatter Operation Using AVX 15-18
Example 15-10. SAXPY using Intel AVX 15-20
Example 15-11. Using 16-Byte Memory Operations for Unaligned 32-Byte Memory Operation 15-21
Example 15-12. SAXPY Implementations for Unaligned Data Addresses 15-21
Example 15-13. Loop with Conditional Expression 15-25
Example 15-14. Handling Loop Conditional with VMASKMOV 15-25
Example 15-15. Three-Tap Filter in C Code 15-26
Example 15-16. Three-Tap Filter with 128-bit Mixed Integer and FP SIMD 15-26
Example 15-17. 256-bit AVX Three-Tap Filter Code with VSHUFPS 15-27
Example 15-18. Three-Tap Filter Code with Mixed 256-bit AVX and 128-bit AVX Code 15-28
Example 15-19. 8x8 Matrix Transpose - Replace Shuffles with Blends 15-30
Example 15-20. 8x8 Matrix Transpose Using VINSERTPS 15-33
Example 15-21. Port 5 versus Load Port Shuffles 15-35
Example 15-22. Divide Using DIVPS for 24-bit Accuracy 15-37
Example 15-23. Divide Using RCPPS 11-bit Approximation 15-38
Example 15-24. Divide Using RCPPS and Newton-Raphson Iteration 15-38
Example 15-25. Reciprocal Square Root Using DIVPS+SQRTPS for 24-bit Accuracy 15-39
Example 15-26. Reciprocal Square Root Using RSQRTPS 11-bit Approximation 15-39
Example 15-27. Reciprocal Square Root Using RSQRTPS and Newton-Raphson Iteration 15-40
Example 15-28. Square Root Using SQRTPS for 24-bit Accuracy 15-41
Example 15-29. Square Root Using RSQRTPS 11-bit Approximation 15-41
Example 15-30. Square Root Using RSQRTPS and One Taylor Series Expansion 15-42
Example 15-31. Array Sub Sums Algorithm 15-44
Example 15-32. Single-Precision to Half-Precision Conversion 15-45
Example 15-33. Half-Precision to Single-Precision Conversion 15-46
Example 15-34. Performance Comparison of Median3 using Half-Precision vs. Single-Precision 15-47
Example 15-35. FP Mul/FP Add Versus FMA 15-48
Example 15-36. Unrolling to Hide Dependent FP Add Latency 15-49
Example 15-37. FP Mul/FP Add Versus FMA 15-50
Example 15-38. Macros for Separable KLT Intra-block Transformation Using AVX2 15-51
Example 15-39. Separable KLT Intra-block Transformation Using AVX2 15-53
Example 15-40. Macros for Parallel Moduli/Remainder Calculation 15-59
Example 15-41. Signed 64-bit Integer Conversion Utility 15-60
Example 15-42. Unsigned 63-bit Integer Conversion Utility 15-61
Example 15-43. Access Patterns Favoring Non-VGATHER Techniques 15-65
Example 15-44. Access Patterns Likely to Favor VGATHER Techniques 15-66
Example 15-45. Software AVX Sequence Equivalent to Full-Mask VPGATHERD 15-67
Example 15-46. AOS to SOA Transformation Alternatives 15-69
Example 15-47. Non-Strided AOS to SOA 15-70
Example 15-48. Conversion to Throughput-Reduced MMX sequence to AVX2 Alternative 15-72
Example 16-1. Reduce Data Conflict with Conditional Updates 16-6
Example 16-2. Transition from Non-Elided Execution without Aborting 16-10
Example 16-3. Exemplary Wrapper Using RTM for Lock/Unlock Primitives 16-12
Example 16-4. Spin Lock Example Using HLE in GCC 4.8 and Later 16-14
Example 16-5. Spin Lock Example Using HLE in Intel and Microsoft Compiler Intrinsic 16-14
Example 16-6. A Meta Lock Example 16-16
Example 16-7. A Meta Lock Example Using RTM 16-17
Example 16-8. HLE-enabled Lock-Acquire/ Lock-Release Sequence 16-18
Example 16-9. A Spin Wait Example Using HLE 16-19
Example 16-10. A Conceptual Example of Intermixed HLE and RTM 16-20
Example 16-11. Emulated RTM intrinsic for Older GCC compilers 16-27
Example 16-12. C++ Example of HLE Intrinsic 16-29
Example 16-13. Emulated HLE Intrinsic with Older GCC compiler 16-29
Example 16-14. HLE Intrinsic Supported by Intel and Microsoft Compilers 16-30
Example 17-1. Unoptimized Sleep Loop 17-14
Example 17-2. Power Consumption Friendly Sleep Loop Using PAUSE 17-14
Example 18-1. Cartesian Coordinate System Rotation with Intrinsics 18-3

xxix

CONTENTS

PAGE

Example 18-2. Cartesian Coordinate System Rotation with Assembly 18-5
Example 18-3. Masking with Intrinsics 18-9
Example 18-4. Masking with Assembly 18-9
Example 18-5. Masking Example 18-11
Example 18-6. Masking vs. Blending Example 1 18-12
Example 18-7. Masking vs. Blending Example 2 18-13
Example 18-8. Multiple Condition Execution 18-14
Example 18-9. Peeling and Remainder Masking 18-15
Example 18-10. Comparing Intel® AVX-512 Data Compress with Other Alternatives 18-19
Example 18-11. Comparing Intel® AVX-512 Data Expand Operation with Other Alternatives 18-24
Example 18-12. Comparing Ternary Logic to Other Alternatives 18-26
Example 18-13. Matrix Transpose Alternatives 18-31
Example 18-14. Broadcast Executed on Load Ports Alternatives 18-32
Example 18-15. 16-bit Broadcast Executed on Port 5 18-33
Example 18-16. Embedded vs Non-embedded Rounding 18-34
Example 18-17. Scatter 18-36
Example 18-18. QWORD Example, Intel® AVX2 vs. Intel® AVX-512 18-39
Example 18-19. Scatter Implementation Alternatives 18-50
Example 18-20. Scalar vs. Vector Update Using AVX-512CD 18-53
Example 18-21. Improvement with VPERMB Implementation 18-55
Example 18-22. Improvement with VPERMI2B Implementation 18-57
Example 18-23. Improvement with VPMULTISHIFTQB Implementation 18-59
Example 18-24. 256-bit Code vs. 256-bit Code Mixed with 512-bit Code 18-63
Example 18-25. Identifying One or Two FMA Units in a Processor Based on Skylake Microarchitecture 18-64
Example 18-26. Gather to Shuffle in Strided Loads Example 18-68
Example 18-27. Gather to Shuffle in Strided Stores Example 18-69
Example 18-28. Gather to Shuffle in Adjacent Loads Example 18-71
Example 18-29. Data Alignment 18-72
Example 18-30. Vectorized 32-bit Float Division 18-78
Example 18-31. Reciprocal Square Root 18-79
Example 18-32. Square Root 18-80
Example 18-33. Dividing Packed Doubles 18-81
Example 18-34. Reciprocal Square Root of Doubles 18-82
Example 18-35. Square Root of Packed Doubles 18-83
Example 19-1. Function for Converting from a Complex-Valued Mask To a Real-Valued Mask by Duplicating Adjacent Bits
19-8
Example 19-2. Function for Converting from a Real-Valued Mask to a Complex-Valued Mask By AND-Combining Adjacent
Bits 19-9
Example 19-3. Function for Converting from a Real-Valued Mask To a Complex-Valued Mask By OR-Combining Adjacent Bits
19-9
Example 19-4. Function to Implement the 16-Bit Compress Operation on FP16 Vector Elements 19-17
Example 19-5. Function That Performs Fast Floating-Point Minimum Using Integer Instructions 19-19
Example 20-1. Pseudo-code for the Tilezero, TileLoad, and TileStore Instructions 20-6
Example 20-2. B Matrix Re-layout Procedure 20-6
Example 20-3. Common Defines 20-8
Example 20-4. Reference GEMM Implementation 20-9
Example 20-5. K-dimension Loop as Innermost Loop–A highly inefficient approach 20-10
Example 20-6. Innermost Loop Tile Pre-loading 20-11
Example 20-7. Switched Order of M_ACC and N_ACC Loops 20-11
Example 20-8. Optimized GEMM implementation 20-12
Example 20-9. Dimension of matrices, data types and tile sizes 20-13
Example 20-10. Optimized GEMM Assembly Language Implementation 20-14
Example 20-11. Activations Layout Procedure 20-15
Example 20-12. Weights Re-Layout Procedure 20-16
Example 20-13. Common Defines for Convolution 20-19
Example 20-14. Optimized direct convolution implementation 20-20
Example 20-15. Additional Defines for Convolution with Cache Blocking 20-21
Example 20-16. Optimized Convolution Implementation with Cache Blocking 20-22
Example 20-17. Optimized Convolution Implementation with Cache Blocking 20-30

CONTENTS

xxx

PAGE

Example 20-18. Example of a Short GEMM Fused and Pipelined with Quantization and ReLU 20-32
Example 20-19. The conversion code for two blocks of sixteen cache lines of 32-bit floats converted to a
single block of sixteen cache lines of 16-bit bfloats 20-36
Example 20-20. Using Unsigned Saturation 20-37
Example 20-21. Prefetching Rows to the DCU 20-40
Example 20-22. BF16 Matrix Transpose (32x8 to 8x32) 20-42
Example 20-23. BF16 VNNI to VNNI Transpose (8x8 to 2x32) 20-47
Example 20-24. BF16 Flat to VNNI Transpose (16x8 to 4x32) 20-50
Example 20-25. BF16 Flat-to-VNNI Re-Layout 20-52
Example 20-26. GEMM Parallelized with omp Parallel for with Collapse 20-56
Example 20-27. Byte Decompression code with Intel® AVX-512 Intrinsics 20-58
Example 20-28. The Parameter m, n, k Identifies the Shape of the Tile 20-60
Example 20-29. Intel® AMX Intrinsics header file 20-61
Example 20-30. Intel® AMX Intrinsics usage 20-64
Example 20-31. Compiler-generated assembly-level code out of example 20-30 Intrinsics code 20-65
Example 20-32. Compiler-generated assembly-level code where tile register save/restore is optimized away 20-66
Example 21-1. Legacy Intel® AES-NI vs. Vector AES 21-1
Example 21-2. SM4 GFNI Encryption Round Example 21-3
Example 23-1. Gather Comparison Between AVX-512F and AVX2 23-8
Example 23-2. Gather Comparison Between AVX-512F and Previous Generation Equivalent 23-8
Example 23-3. Using VRCP28SS for 32-bit Floating-Point Division 23-9
Example 23-4. Replace VCOMIS* with VCMPSS/KORTEST 23-11
Example 23-5. Using Software Sequence for Horizontal Reduction 23-12
Example 23-6. Optimized Inner Loop of DGEMM for Knights Landing Microarchitecture 23-13
Example 23-7. Ordering of Memory Instruction for MEC 23-18
Example F-1. Instruction Pairing and Alignment to Optimize Decode Throughput on Intel Atom® Microarchitecture F-4
Example F-2. Alternative to Prevent AGU and Execution Unit Dependency F-6
Example F-3. Pipeling Instruction Execution in Integer Computation F-7
Example F-4. Memory Copy of 64-byte F-11
Example F-5. Examples of Dependent Multiply and Add Computation F-12
Example F-6. Instruction Pointer Query Techniques F-13
Example F-7. Unrolled Loop Executes In-Order Due to Multiply-Store Port Conflict F-33
Example F-8. Grouping Store Instructions Eliminates Bubbles and Improves IPC F-33

xxxi

CONTENTS

PAGE

FIGURES

Figure 2-1. Processor Core Pipeline Functionality of the Golden Cove Microarchitecture 2-8
Figure 2-2. Processor Front End of the Golden Cove Microarchitecture. .2-9
Figure 2-3. Processor Core Pipeline Functionality of the Ice Lake Client Microarchitecture . 2-14
Figure 2-4. Processor Core Pipeline Functionality of the Skylake Server Microarchitecture . 2-22
Figure 2-5. Broadwell Microarchitecture and Skylake Server Microarchitecture

Cache Structures . 2-24
Figure 2-6. Mixed Workloads . 2-26
Figure 2-7. LINPACK Performance . 2-27
Figure 2-8. CPU Core Pipeline Functionality of the Skylake Client Microarchitecture. 2-28
Figure 2-9. Hyper-Threading Technology on an SMP . 2-35
Figure 2-10. Typical SIMD Operations . 2-37
Figure 2-11. SIMD Instruction Register Usage. 2-38
Figure 3-1. Generic Program Flow of Partially Vectorized Code . 3-35
Figure 3-2. Memcpy Performance Comparison for Lengths up to 2KB . 3-62
Figure 3-3. MariaDB - CHA % Cycles Fast Asserted. 3-73
Figure 3-4. Identifying >2GB Branches . 3-75
Figure 4-1. Processor Core Pipeline Functionality of the Gracemont Microarchitecture4-2
Figure 4-2. Front-End Pipeline Functionality of the Gracemont Microarchitecture4-3
Figure 4-3. Execution Pipeline Functionality of the Gracemont Microarchitecture4-6
Figure 4-4. Processor Core Pipeline Functionality of the Tremont Microarchitecture 4-11
Figure 5-1. General Procedural Flow of Application Detection of AVX .5-6
Figure 5-2. General Procedural Flow of Application Detection of Float-165-8
Figure 5-3. Converting to Streaming SIMD Extensions Chart . 5-11
Figure 5-4. Hand-Coded Assembly and High-Level Compiler Performance Trade-offs 5-13
Figure 5-5. Loop Blocking Access Pattern . 5-26
Figure 6-1. PACKSSDW mm, mm/mm64 Instruction .6-6
Figure 6-2. Interleaved Pack with Saturation .6-7
Figure 6-3. Result of Non-Interleaved Unpack Low in MM0 .6-8
Figure 6-4. Result of Non-Interleaved Unpack High in MM1. .6-8
Figure 6-5. PEXTRW Instruction .6-9
Figure 6-6. PINSRW Instruction . 6-10
Figure 6-7. PMOVSMKB Instruction . 6-12
Figure 6-8. Data Alignment of Loads and Stores in Reverse Memory Copy 6-31
Figure 6-9. A Technique to Avoid Cacheline Split Loads in Reverse Memory Copy Using

Two Aligned Loads. 6-32
Figure 7-1. Homogeneous Operation on Parallel Data Elements. .7-3
Figure 7-2. Horizontal Computation Model. .7-3
Figure 7-3. Dot Product Operation .7-4
Figure 7-4. Horizontal Add Using MOVHLPS/MOVLHPS .7-9
Figure 7-5. Asymmetric Arithmetic Operation of the SSE3 Instruction . 7-11
Figure 7-6. Horizontal Arithmetic Operation of the SSE3 Instruction HADDPD 7-11
Figure 8-1. Matrix Layout, Inputs and Outputs .8-7
Figure 8-2. Transformed Weights .8-8
Figure 8-3. Convolution Operation .8-8
Figure 8-4. Matrix Multiplications and Summations. .8-8
Figure 8-5. 3-Tier Flexible 2D Blocking .8-9
Figure 8-6. 3-Tier Flexible 2D Blocking Loops. 8-10
Figure 8-7. Standard vs Optimized vs. Low OFM Optimized Data Layouts. 8-13
Figure 8-8. Dynamic Batch Size . 8-24
Figure 8-9. Find Top 16 Values in Some Input . 8-24
Figure 9-1. CLFLUSHOPT versus CLFLUSH In SkyLake Microarchitecture 9-11
Figure 9-2. Effective Latency Reduction as a Function of Access Stride 9-14
Figure 9-3. Memory Access Latency and Execution Without Prefetch . 9-14
Figure 9-4. Memory Access Latency and Execution With Prefetch . 9-15
Figure 9-5. Prefetch and Loop Unrolling . 9-18
Figure 9-6. Memory Access Latency and Execution With Prefetch . 9-18
Figure 9-7. Spread Prefetch Instructions . 9-19

CONTENTS

xxxii

PAGE

Figure 9-8. Cache Blocking – Temporally Adjacent and Non-adjacent Passes. 9-20

Figure 9-9. Examples of Prefetch and Strip-mining for Temporally Adjacent and
Non-Adjacent Passes Loops . 9-21

Figure 9-10. Single-Pass Vs. Multi-Pass 3D Geometry Engines . 9-25
Figure 10-1. Example of SNC Configuration . 10-1
Figure 10-2. NUMA Disabled . 10-5
Figure 10-3. SNC Off . 10-6
Figure 10-4. SNC On. 10-7
Figure 10-5. Domain Example with One MPI Process Per Domain. 10-8
Figure 11-1. Amdahl’s Law and MP Speed-up . 11-2
Figure 11-2. Single-threaded Execution of Producer-consumer Threading Model. 11-5
Figure 11-3. Execution of Producer-consumer Threading Model

on a Multicore Processor . 11-5
Figure 11-4. Interlaced Variation of the Producer Consumer Model. 11-6
Figure 11-5. Batched Approach of Producer Consumer Model . 11-20
Figure 12-1. In App Direct Mode, Data on the Intel® Optane™ DC Persistent Memory

Module is Accessed Directly with Loads and Stores . 12-2
Figure 12-2. Decision Flow for Determining When to Use

Intel® Optane™ DC Persistent Memory Module vs. DRAM. 12-3
Figure 12-3. Loaded Latency Curves for One Intel® Optane™ DC Persistent Memory

Module DIMM:
Sequential Traffic (Left) and Random Traffic (Right) . 12-5

Figure 12-4. Number of Threads vs. Bandwidth . 12-6
Figure 12-5. Combining with Two Cores . 12-6
Figure 12-6. Combining with Four Cores . 12-7
Figure 12-7. Combining with Eight Cores . 12-8
Figure 12-8. PMDK vs. MSYNC Flushing Times. 12-9
Figure 12-9. Bandwidth vs. Power Consumption . 12-10
Figure 12-10. Read-Write Equivalence for Intel® Optane™ DC Persistent Memory Module

DIMMs within Different Power Budgets . 12-11
Figure 12-11. Bandwidth Available to Software when There is No Locality at

256B Granularity . 12-12
Figure 14-1. SSE4.2 String/Text Instruction Immediate Operand Control 14-2
Figure 14-2. Retrace Inefficiency of Byte-Granular, Brute-Force Search 14-12
Figure 14-3. SSE4.2 Speedup of SubString Searches . 14-18
Figure 14-4. Compute Four Remainders of Unsigned Short Integer in Parallel 14-37
Figure 15-1. AVX-SSE Transitions in the Broadwell, and Prior Generation

Microarchitectures . 15-8
Figure 15-2. AVX-SSE Transitions in the Skylake Microarchitecture . 15-8
Figure 15-3. 4x4 Image Block Transformation. 15-51
Figure 15-4. Throughput Comparison of Gather Instructions . 15-67
Figure 15-5. Comparison of HW GATHER Versus Software Sequence in

Skylake Microarchitecture . 15-68
Figure 17-1. Performance History and State Transitions . 17-2
Figure 17-2. Active Time Versus Halted Time of a Processor . 17-3
Figure 17-3. Application of C-states to Idle Time . 17-4
Figure 17-4. Profiles of Coarse Task Scheduling and Power Consumption 17-9
Figure 17-5. Thread Migration in a Multicore Processor. 17-11
Figure 17-6. Progression to Deeper Sleep . 17-11
Figure 17-7. Energy Saving due to Performance Optimization . 17-13
Figure 17-8. Energy Saving due to Vectorization. 17-13
Figure 17-9. Energy Saving Comparison of Synchronization Primitives . 17-16
Figure 17-10. Power Saving Comparison of Power-Source-Aware Frame Rate

Configurations . 17-17
Figure 18-1. Intel® AVX-512 Extensions Supported by Skylake Server Microarchitecture

and Knights Landing Microarchitecture. 18-1
Figure 18-2. Cartesian Rotation . 18-2
Figure 18-3. Data Forwarding Cases. 18-16

xxxiii

CONTENTS

PAGE

Figure 18-4. Data Compress Operation . 18-18
Figure 18-5. Data Expand Operation . 18-23
Figure 18-6. Ternary Logic Example 1 Truth Table . 18-25
Figure 18-7. Ternary Logic Example 2 Truth Table . 18-28
Figure 18-8. VPERMI2PS Instruction Operation . 18-29
Figure 18-9. VSCATTERDPD Instruction Operation . 18-35
Figure 18-10. VPCONFLICTD Instruction Execution . 18-48
Figure 18-11. VPCONFLICTD Merging Process. 18-49
Figure 18-12. VPCONFLICTD Permute Control. 18-49
Figure 18-13. VPCONFLICTD ZMM2 Result . 18-51
Figure 18-14. Sparse Vector Example . 18-51
Figure 18-15. VPERMB Instruction Operation . 18-54
Figure 18-16. VPERMI2B Instruction Operation . 18-55
Figure 18-17. VPERMT2B Instruction Operation. 18-56
Figure 18-18. VPMULTISHIFTQB Instruction Operation . 18-58
Figure 18-19. Fast Bypass When All Sources Come from FMA Unit . 18-61
Figure 18-20. Mixing Intel AVX Instructions or Intel AVX-512 Instructions with

Intel SSE Instructions . 18-62
Figure 19-1. Layout of a 128-Bit Register Representing Four Complex FP16 (CFP16)

Values . 19-4
Figure 19-2. Illustration of a Zero-Masked FP16 Add On Two 128-Bit Vectors. 19-6
Figure 19-3. Illustration of a Masked Complex Multiplication . 19-7
Figure 19-4. Illustration of Using a Real-Valued FP16 Vector Operation for Implementing

a Masked Complex Addition . 19-7
Figure 19-5. Comparison Operation Between Two Complex-Valued Vectors.

The mask bits are generated using a real-valued comparison, then
adjacent bits combined using AND . 19-8

Figure 19-6. Bit Layout of Three Types of Floating-Point Formats . 19-10
Figure 19-7. Landmark Numbers on the Real-Valued FP16 Axis. 19-11
Figure 19-8. Heat-map Showing Relative ULP Error for Different Combinations of

Divisor and Dividend Value Ranges . 19-16
Figure 20-1. Matrix Notation. 20-4
Figure 20-2. Intel® AMX Multiplication with Max-sized int8 Tiles. 20-5
Figure 20-3. Re-layout of 64x16 int8 B Matrix. 20-7
Figure 20-4. Re-layout of 32x16 bfloat16 B Matrix . 20-7
Figure 20-5. Activations layout . 20-16
Figure 20-6. Weights Re-Layout . 20-17
Figure 20-7. Convolution - Matrix Multiplication and Summation Equivalence 20-17
Figure 20-8. Matrix-Like Multiplications Part of a Convolution. 20-18
Figure 20-9. Batching Execution Using Six Layers with Four Instances Per Thread. 20-24
Figure 20-10. An Example of a Convolution

Elements interacting with weight element kh,kw=0,0 are highlighted. 20-27
Figure 20-11. An Example of a Convolution with Large Tiles.

Elements going into each tile are highlighted differently.. 20-28
Figure 20-12. Please provide Figure Description . 20-34
Figure 20-13. A Conversion Flow of 32-bit Integers to 8-bit Integers. 20-36
Figure 20-14. Trivial Deep Learning Topology with Naive Buffer Allocation 20-37
Figure 20-15. Minimal Memory Footprint Buffer Allocation Scheme for

the Trivial Deep Learning Topology . 20-38
Figure 20-16. Loading 32 Quarter-Cache Lines into 8 ZMM Registers. 20-45
Figure 20-17. The Implementation of loading eight quarter-cache lines int two

 ZMM registers . 20-48
Figure 20-18. Flat-to-VNNI transpose of WORDs is equivalent to Flat-to-Flat transpose

of DWORDs. 20-48
Figure 20-19. BF16 Flat-to-VNNI Transpose . 20-51
Figure 20-20. GEMM Data Partitioning Between Three Cores in a Layer Partitioned by

the M Dimension. 20-54
Figure 20-21. GEMM Data Partitioning Between Three Cores in a Layer Partitioned by

the N-Dimension . 20-54

CONTENTS

xxxiv

PAGE

Figure 20-22. GEMM Data Partitioning Between Three Cores in a Layer Partitioned by
the K Dimension . 20-55

Figure 20-23. A recommendation system multi-threading model . 20-57
Figure 20-24. Data Expand Operation . 20-59
Figure 23-1. Tile-Mesh Topology of the Knights Landing Microarchitecture 23-1
Figure 23-2. Processor Core Pipeline Functionality of the Knights Landing

Microarchitecture . 23-2
Figure B-1. General TMA Hierarchy for Out-of-Order Microarchitectures .B-2
Figure B-2. TMA’s Top Level Drill Down Flowchart .B-3
Figure B-3. TMA Hierarchy and Precise Events in Skylake .B-8
Figure B-4. System Topology Supported by Intel® Xeon® Processor 5500 Series B-15
Figure B-5. PMU Specific Event Logic Within the Pipeline . B-17
Figure B-6. LBR Records and Basic Blocks. B-28
Figure B-7. Using LBR Records to Rectify Skewed Sample Distribution B-28
Figure B-8. RdData Request after LLC Miss to Local Home (Clean Rsp). B-39
Figure B-9. RdData Request after LLC Miss to Remote Home (Clean Rsp) B-39
Figure B-11. RdData Request after LLC Miss to Local Home (Hitm Response) B-40
Figure B-10. RdData Request after LLC Miss to Remote Home (Hitm Response) B-40
Figure B-12. RdData Request after LLC Miss to Local Home (Hit Response) B-41
Figure B-13. RdInvOwn Request after LLC Miss to Remote Home (Clean Res) B-41
Figure B-15. RdInvOwn Request after LLC Miss to Local Home (Hit Res) B-42
Figure B-14. RdInvOwn Request after LLC Miss to Remote Home (Hitm Res) B-42
Figure B-16. Performance Events Drill-Down and Software Tuning Feedback Loop. B-61
Figure C-1. ITLB Miss Stalls in Language Runtimes on Intel® Xeon® 8180 ProcessorC-1
Figure C-2. ITLB and ITLB 4K MPKI Across Runtime Workloads. .C-4
Figure C-3. measure-perf-metric.sh Tool Usage for Process ID 69772 for 30 SecondsC-5
Figure C-4. Using measure-perf-metric.sh with -r to Determine Where TLB Misses

are Coming From .C-6
Figure C-5. Commands for Checking Linux* Distribution for THP .C-7
Figure C-6. API Calls Provided by the Intel Reference Implementation. .C-8
Figure C-7. perf Output Will Not Have the Proper Symbols After Large Page Mapping C-10
Figure C-8. Using Perf Record with -e frontend_retired.itlb_miss to Determine ITLB Misses

and Running Perf Script to Obtain Data for Importing into FlameScope. C-13
Figure C-9. Using FlameScope to Visualize the ITLB Misses Heatmap from the

WebTooling Workload . C-14
Figure C-10. Using FlameScope to Visualize the ITLB Misses Heatmap from the

WebTooling Workload when Run with Large Pages . C-14
Figure C-11. Visualizing ITLB Miss Trends for “Built-in” Functions from the

Ghost.js Workload. C-15
Figure C-12. Visualizing ITLB Miss Trends for “Built-in” Functions from the

Ghost.js Workload
When Run With Large Pages. C-15

Figure E-1. CPU Core Pipeline Functionality of the Haswell Microarchitecture E-1
Figure E-2. Four Core System Integration of the Haswell Microarchitecture.E-2
Figure E-3. An Example of the Haswell-E Microarchitecture Supporting

12 Processor Cores .E-7
Figure E-4. Sandy Bridge Microarchitecture Pipeline Functionality .E-9
Figure E-5. Intel Core Microarchitecture Pipeline Functionality. E-28
Figure E-6. Execution Core of Intel Core Microarchitecture . E-34
Figure E-7. Store-Forwarding Enhancements in Enhanced Intel Core Microarchitecture E-37
Figure E-8. Intel Advanced Smart Cache Architecture . E-38
Figure E-9. Nehalem Microarchitecture Pipeline Functionality . E-41
Figure E-10. Front End of Nehalem Microarchitecture. E-42
Figure E-11. Store-Forwarding Scenarios of 16-Byte Store Operations. E-47
Figure E-12. Store-Forwarding Enhancement in Nehalem Microarchitecture E-48
Figure F-1. Intel Atom® Microarchitecture Pipeline .F-2
Figure F-2. Silvermont Microarchitecture Pipeline. F-20
Figure F-3. CPU Core Pipeline Functionality of the Goldmont Microarchitecture F-24
Figure F-4. CPU Core Pipeline Functionality of the Goldmont Plus Microarchitecture F-27

xxxv

CONTENTS

PAGE

CONTENTS

xxxvi

PAGE

TABLES

Table 2-2. Golden Cove Microarchitecture Execution Units and Representative
Instructions . 2-10

Table 2-1. Dispatch Port and Execution Stacks of the Golden Cove Microarchitecture 2-10
Table 2-3. Bypass Delay Between Producer and Consumer Micro-ops . 2-11
Table 2-4. Dispatch Port and Execution Stacks of the Ice Lake Client Microarchitecture . . . 2-16
Table 2-5. Ice Lake Client Microarchitecture Execution Units and Representative

Instructions . 2-16
Table 2-6. Bypass Delay Between Producer and Consumer Micro-ops . 2-17
Table 2-7. Cache Parameters of the Ice Lake Client Microarchitecture . 2-18
Table 2-8. TLB Parameters of the Ice Lake Client Microarchitecture. 2-18
Table 2-9. Cache Comparison Between Skylake Microarchitecture and Broadwell

Microarchitecture . 2-23
Table 2-10. Maximum Intel® Turbo Boost Technology Core Frequency Levels 2-25
Table 2-11. Dispatch Port and Execution Stacks of the Skylake Client Microarchitecture. . . . 2-30
Table 2-12. Skylake Client Microarchitecture Execution Units and Representative

Instructions . 2-30
Table 2-13. Bypass Delay Between Producer and Consumer Micro-ops . 2-31
Table 2-14. Cache Parameters of the Skylake Client Microarchitecture . 2-32
Table 2-15. TLB Parameters of the Skylake Client Microarchitecture . 2-32
Table 3-1. Macro-Fusible Instructions in Sandy Bridge Microarchitecture 3-13
Table 3-2. Macro-Fusible Instructions in Haswell Microarchitecture . 3-13
Table 3-3. Recommended Multi-Byte Sequence of NOP Instruction. 3-27
Table 3-4. Store Forwarding Restrictions of Processors Based on Intel Core

Microarchitecture . 3-48
Table 3-5. Relative Performance of Memcpy() Using Enhanced REP MOVSB and STOSB

Vs. 128-bit AVX . 3-62
Table 3-6. Effect of Address Misalignment on Memcpy() Performance. 3-63
Table 3-7. Intel Processor CPU RP Device IDs for Processors Optimizing PCIe

Performance . 3-71
Table 3-8. Samples: 365K of events ‘anon group{cpu/mem-loads-aux/,cpu/mem-loads,

ldat=128/pp}’, Event count (a--r0x): 67900852 . 3-72
Table 3-9. Instruction Sequence Mixing VEX and Legacy on Sapphire Rapids and ICX. 3-74
Table 4-1. Paging Cache Parameters of the Gracemont Microarchitecture4-7
Table 4-2. Dispatch Port and Execution Stacks of the Tremont Microarchitecture. 4-12
Table 4-3. Cache Parameters of the Tremont Microarchitecture . 4-13
Table 6-1. PSHUF Encoding . 6-13
Table 7-1. SoA Form of Representing Vertices Data. .7-4
Table 9-1. Implementation Details of Prefetch Hint Instructions .9-4
Table 9-2. Software Prefetching Considerations into Strip-mining Code 9-23
Table 9-3. Deterministic Cache Parameters Leaf . 9-31
Table 11-1. Properties of Synchronization Objects . 11-11
Table 11-2. Design-Time Resource Management Choices . 11-22
Table 11-3. Microarchitectural Resources Comparisons of HT Implementations 11-25
Table 12-1. Latencies for Accessing Intel® Optane™ DC Persistent Memory Modules 12-4
Table 12-2. Bandwidths per DIMM for Intel® Optane™ DC Persistent Memory Modules

and DRAM . 12-4
Table 14-1. SSE4.2 String/Text Instructions Compare Operation on N-elements 14-2
Table 14-2. SSE4.2 String/Text Instructions Unary Transformation on IntRes1 14-3
Table 14-3. SSE4.2 String/Text Instructions Output Selection Imm[6] . 14-3
Table 14-4. SSE4.2 String/Text Instructions Element-Pair Comparison Definition. 14-3
Table 14-5. SSE4.2 String/Text Instructions Eflags Behavior. 14-3
Table 15-1. Features between 256-bit AVX, 128-bit AVX and Legacy SSE Extensions 15-2
Table 15-2. State Transitions of Mixing AVX and SSE Code . 15-9
Table 15-3. Approximate Magnitude of AVX-SSE Transition Penalties in Different

Microarchitectures . 15-9
Table 15-4. Effect of VZEROUPPER with Inter-Function Calls Between AVX and

SSE Code . 15-10

xxxvii

CONTENTS

PAGE

Table 15-5. Comparison of Numeric Alternatives of Selected Linear
 Algebra in Skylake Microarchitecture . 15-36

Table 15-6. Single-Precision Divide and Square Root Alternatives . 15-36
Table 15-7. Comparison of AOS to SOA with Strided Access Pattern . 15-69
Table 15-8. Comparison of Indexed AOS to SOA Transformation . 15-71
Table 16-1. RTM Abort Status Definition. 16-23
Table 17-1. ACPI C-State Type Mappings to Processor Specific C-State for Mobile

Processors Based on Nehalem Microarchitecture . 17-5
Table 17-2. ACPI C-State Type Mappings to Processor Specific C-State of

Sandy Bridge Microarchitecture . 17-5
Table 17-3. C-State Total Processor Exit Latency for Client Systems

(Core+ Package Exit Latency) with Slow VR . 17-18
Table 17-4. C-State Total Processor Exit Latency for Client Systems

(Core+ Package Exit Latency) with Fast VR . 17-18
Table 17-5. C-State Core-Only Exit Latency for Client Systems with Slow VR. 17-19
Table 17-6. POWER_CTL MSR in Processors Based on Sandy Bridge Microarchitecture 17-19
Table 18-1. Cache Comparison Between Skylake Server Microarchitecture and

Broadwell Microarchitecture. 18-14
Table 18-2. Static Rounding Mode Functions . 18-34
Table 18-3. Vector Quadword Extensions. 18-42
Table 18-4. Scalar Quadword Extensions . 18-42
Table 18-5. Vector Quadword Extensions. 18-43
Table 18-6. Scalar Quadword Extensions . 18-43
Table 18-7. FMA Unit Latency. 18-61
Table 18-8. Data Alignment Effects on SAXPY Performance vs. Speedup Value 18-72
Table 18-9. Skylake Microarchitecture Recommendations for DIV/SQRT

Based Operations (Single Precision) . 18-74
Table 18-10. Skylake Microarchitecture Recommendations for DIV/SQRT

Based Operations (Double Precision) . 18-74
Table 18-11. 256-bit Intel AVX2 Divide and Square Root Instruction Performance 18-75
Table 18-12. 512-bit Intel AVX-512 Divide and Square Root Instruction Performance 18-75
Table 18-13. Latency/Throughput of Different Methods of Computing Divide and

Square Root on Skylake Microarchitecture for Different Vector Widths, on
Single Precision. 18-76

Table 18-14. Latency/Throughput of Different Methods of Computing Divide and
Square Root on Skylake Microarchitecture for Different Vector Widths, on
Double Precision . 18-77

Table 19-1. Terminology. 19-1
Table 19-2. Supported FP16 Data Types . 19-3
Table 19-3. Example Intrinsic Names . 19-4
Table 19-4. Conjugation Instructions . 19-5
Table 19-5. Useful or Interesting FP16 Numbers . 19-11
Table 19-6. Conjugation Instructions . 19-13
Table 19-7. Conjugation Instructions . 19-18
Table 20-1. Related Links . 20-1
Table 20-2. Intel® AMX Instruction Throughput and Latency . 20-3
Table 20-3. Five loops in the Example 20-4 Code Listing. 20-25
Table 20-4. Accessed Data Sizes . 20-25
Table 20-5. Accessed Data Sizes . 20-26
Table 20-6. 20-26
Table 20-7. Simple partition of work between three threads . 20-56
Table 20-8. Optimized partition of work between three threads . 20-56
Table 23-1. Integer Pipeline Characteristics of the Knights Landing Microarchitecture. 23-4
Table 23-2. Vector Pipeline Characteristics of the Knights Landing Microarchitecture 23-5
Table 23-3. Characteristics of Caching Resources . 23-6
Table 23-4. Alternatives to MSROM Instructions . 23-10
Table 23-5. Cycle Cost Building Blocks for Vectorization Estimate for Knights Landing

Microarchitecture . 23-14
Table A-1. Recommended Processor Optimization Options. .A-2

CONTENTS

xxxviii

PAGE

Table B-1. Performance Monitoring Taxonomy .B-9
Table B-2. Cycle Accounting and Micro-ops Flow Recipe. B-16
Table B-3. CMask/Inv/Edge/Thread Granularity of Events for Micro-op Flow B-17
Table B-4. Cycle Accounting of Wasted Work Due to Misprediction . B-18
Table B-5. Cycle Accounting of Instruction Starvation. B-19
Table B-6. CMask/Inv/Edge/Thread Granularity of Events for Micro-op Flow B-20
Table B-7. Approximate Latency of L2 Misses of Intel Xeon Processor 5500. B-22
Table B-8. Load Latency Event Programming . B-25
Table B-9. Data Source Encoding for Load Latency PEBS Record . B-25
Table B-10. Core PMU Events to Drill Down L2 Misses . B-29
Table B-11. Core PMU Events for Super Queue Operation. B-30
Table B-12. Core PMU Event to Drill Down OFFCore Responses . B-30
Table B-13. OFFCORE_RSP_0 MSR Programming . B-30
Table B-14. Common Request and Response Types for OFFCORE_RSP_0 MSR B-31
Table B-15. Uncore PMU Events for Occupancy Cycles. B-36
Table B-16. Common QHL Opcode Matching Facility Programming . B-38
Table C-1. Core TLB Structure Size and Organization Across Multiple Intel Product

Generations .C-2
Table C-2. Calculating ITLB Miss Stall for Ghost.js .C-3
Table C-3. ITLB MPKI and Executable Sizes Across Various Workloads. .C-5
Table C-4. Key Metrics for Ghost.js With and Without Large Pages . C-11
Table C-5. Key Metrics for Web Tooling across Clear Linux and Ubuntu 18.04 C-12
Table C-6. Key Metrics for MediaWiki Workload on HHVM. C-12
Table C-7. Precise Front-end Events for ITLB Misses . C-13
Table C-8. System Details . C-16
Table C-9. Processor Information . C-16
Table C-10. Kernel Vulnerability Status . C-17
Table D-1. CPUID Signature Values of Of Recent Intel Microarchitectures.D-3
Table D-2. Instruction Extensions Introduction by Microarchitectures (CPUID Signature).D-4
Table D-3. BMI1, BMI2 and General Purpose Instructions .D-4
Table D-4. 256-bit AVX2 Instructions .D-5
Table D-5. Gather Timing Data from L1D* .D-6
Table D-6. BMI1, BMI2 and General Purpose Instructions .D-7
Table D-7. F16C,RDRAND Instructions .D-7
Table D-8. 256-bit AVX Instructions. .D-7
Table D-9. AESNI and PCLMULQDQ Instructions .D-9
Table D-10. SSE4.2 Instructions . D-10
Table D-11. SSE4.1 Instructions . D-10
Table D-12. Supplemental Streaming SIMD Extension 3 Instructions . D-11
Table D-13. Streaming SIMD Extension 3 SIMD Floating-point Instructions D-12
Table D-14. Streaming SIMD Extension 2 128-bit Integer Instructions . D-12
Table D-15. Streaming SIMD Extension 2 Double-precision Floating-point Instructions D-14
Table D-16. Streaming SIMD Extension Single-precision Floating-point Instructions. D-15
Table D-17. General Purpose Instructions . D-17
Table D-18. Pointer-Chasing Variability of Software Measurable Latency of L1

Data Cache Latency. D-20
Table E-1. Dispatch Port and Execution Stacks of the Haswell Microarchitecture E-3
Table E-2. Haswell Microarchitecture Execution Units and Representative InstructionsE-4
Table E-3. Bypass Delay Between Producer and Consumer Micro-ops (cycles) E-5
Table E-4. Cache Parameters of the Haswell Microarchitecture .E-5
Table E-5. TLB Parameters of the Haswell Microarchitecture .E-6
Table E-6. Components of the Front End .E-6
Table E-7. TLB Parameters of the Broadwell Microarchitecture .E-8
Table E-8. Components of the Front End of Sandy Bridge Microarchitecture E-10
Table E-9. ICache and ITLB of Sandy Bridge Microarchitecture . E-11
Table E-10. Dispatch Port and Execution Stacks. E-16
Table E-11. Execution Core Writeback Latency (cycles) . E-17
Table E-12. Cache Parameters . E-18
Table E-13. Lookup Order and Load Latency . E-18

xxxix

CONTENTS

PAGE

Table E-14. L1 Data Cache Components . E-19
Table E-15. Effect of Addressing Modes on Load Latency. E-20
Table E-16. DTLB and STLB Parameters . E-21
Table E-17. Store Forwarding Conditions (1 and 2 byte stores) . E-21
Table E-18. Store Forwarding Conditions (4-16 byte stores) . E-22
Table E-19. 32-byte Store Forwarding Conditions (0-15 byte alignment) E-22
Table E-20. 32-byte Store Forwarding Conditions (16-31 byte alignment) E-22
Table E-21. Components of the Front End . E-28
Table E-22. Issue Ports of Intel Core Microarchitecture and Enhanced Intel Core

Microarchitecture . E-33
Table E-23. Cache Parameters of Processors based on Intel Core Microarchitecture. E-38
Table E-24. Characteristics of Load and Store Operations in Intel Core Microarchitecture . . . E-39
Table E-25. Bypass Delay Between Producer and Consumer Micro-ops (cycles) E-44
Table E-26. Issue Ports of Nehalem Microarchitecture . E-44
Table E-27. Cache Parameters of Intel Core i7 Processors . E-45
Table E-28. Performance Impact of Address Alignments of MOVDQU from L1 E-46
Table F-1. Instruction Latency/Throughput Summary of Intel Atom® Microarchitecture F-7
Table F-2. Intel Atom® Microarchitecture Instructions Latency Data . F-14
Table F-3. Function Unit Mapping of the Silvermont Microarchitecture F-21
Table F-5. Comparison of Distributed Reservation Stations on Scheduling Uops F-25
Table F-6. Function Unit Mapping of the Goldmont Microarchitecture . F-25
Table F-4. Comparison of Front End Cluster Features . F-25
Table F-7. Comparison of MEC Resources. F-26
Table F-8. Comparison of Front End Cluster Features . F-27
Table F-9. Comparison of Distributed Reservation Stations on Scheduling Uops F-28
Table F-10. Function Unit Mapping of the Goldmont Plus Microarchitecture F-28
Table F-11. Alternatives to MSROM Instructions . F-29
Table F-12. Comparison of Decoder Capabilities . F-31
Table F-13. Integer Multiply Operation Latency . F-34
Table F-14. Floating-Point and SIMD Integer Latency . F-37
Table F-15. Unsigned Integer Division Operation Latency . F-38
Table 6-16. Signed Integer Division Operation Latency . F-39
Table F-17. Store Forwarding Conditions (1 and 2 Byte Stores) . F-40
Table F-18. Store Forwarding Conditions (4-16 Byte Stores). F-40
Table F-19. Instructions Latency and Throughput Recent Microarchitectures for

Intel Atom® Processors . F-42

CONTENTS

xl

PAGE

CHAPTER 1
INTRODUCTION

The Intel® 64 and IA-32 Architectures Optimization Reference Manual describes how to optimize soft-
ware to take advantage of the performance characteristics of IA-32 and Intel 64 architecture processors.

The target audience for this manual includes software programmers and compiler writers. This manual
assumes that the reader is familiar with the basics of the IA-32 architecture and has access to the Intel®
64 and IA-32 Architectures Software Developer’s Manual. A detailed understanding of Intel 64 and IA-32
processors is often required. In many cases, knowledge of the underlying microarchitectures is required.

The design guidelines discussed in this manual for developing high-performance software generally
apply to current and future IA-32 and Intel 64 processors. In most cases, coding rules apply to software
running in 64-bit mode of Intel 64 architecture, compatibility mode of Intel 64 architecture, and IA-32
modes (IA-32 modes are supported in IA-32 and Intel 64 architectures). Coding rules specific to 64-bit
modes are noted separately.

NOTE
A public repository is available with open source code samples from select chapters of
this manual. These code samples are released under a 0-Clause BSD license. Intel
provides additional code samples and updates to the repository as the samples are
created and verified.
Public repository: https://github.com/intel/optimization-manual.
Link to license: https://github.com/intel/optimization-manual/blob/master/COPYING.

1.1 TUNING YOUR APPLICATION
Tuning an application for high performance on any Intel 64 or IA-32 processor requires understanding
and basic skills in:
• Intel 64 and IA-32 architecture.
• C and Assembly language.
• Hot-spot regions in the application that impact performance.
• Optimization capabilities of the compiler.
• Techniques used to evaluate application performance.

The Intel® VTune™ Performance Analyzer can help you analyze and locate hot-spot regions in your
applications. On the Intel® Core™ i7, Intel® Core™2 Duo, Intel® Core™ Duo, Intel® Core™ Solo,
Pentium® 4, Intel® Xeon®, and Intel® Pentium® M processors, this tool can monitor an application
through a selection of performance monitoring events and analyze the performance event data that is
gathered during code execution.

This manual also describes data that can be gathered using the performance counters through the
processor’s performance monitoring events.

1.2 ABOUT THIS MANUAL
The Intel® Core™ i7 processor and Intel® Xeon® processor 3400, 5500, 7500 series are based on 45 nm
Nehalem microarchitecture. Westmere microarchitecture is a 32 nm version of the Nehalem microarchi-
tecture. Intel® Xeon® processor 5600 series, Intel Xeon processor E7 and various Intel Core i7, i5, i3
processors are based on the Westmere microarchitecture. These processors support Intel 64 architec-
ture.

https://github.com/intel/optimization-manual
https://github.com/intel/optimization-manual/blob/master/COPYING

INTRODUCTION

1-2

The Intel® Xeon® processor E5 family, Intel® Xeon® processor E3-1200 family, Intel® Xeon® processor
E7-8800/4800/2800 product families, Intel® Core™ i7-3930K processor, and 2nd generation Intel®
Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series are based on the Sandy
Bridge microarchitecture and support Intel 64 architecture.

The Intel® Xeon® processor E7-8800/4800/2800 v2 product families, Intel® Xeon® processor E3-1200
v2 product family and 3rd generation Intel® Core™ processors are based on the Ivy Bridge microarchi-
tecture and support Intel 64 architecture.

The Intel® Xeon® processor E5-4600/2600/1600 v2 product families, Intel® Xeon® processor E5-
2400/1400 v2 product families and Intel® Core™ i7-49xx Processor Extreme Edition are based on the
Ivy Bridge-E microarchitecture and support Intel 64 architecture.

The Intel® Xeon® processor E3-1200 v3 product family and 4th Generation Intel® Core™ processors are
based on the Haswell microarchitecture and support Intel 64 architecture.

The Intel® Xeon® processor E5-2600/1600 v3 product families and the Intel® Core™ i7-59xx Processor
Extreme Edition are based on the Haswell-E microarchitecture and support Intel 64 architecture.

The Intel Atom® processor Z8000 series is based on the Airmont microarchitecture.

The Intel Atom® processor Z3400 series and the Intel Atom® processor Z3500 series are based on the
Silvermont microarchitecture.

The Intel® Core™ M processor family, 5th generation Intel® Core™ processors, Intel® Xeon® processor
D-1500 product family and the Intel® Xeon® processor E5 v4 family are based on the Broadwell microar-
chitecture and support Intel 64 architecture.

The Intel® Xeon® Processor Scalable Family, Intel® Xeon® processor E3-1500m v5 product family and
6th generation Intel® Core™ processors are based on the Skylake microarchitecture and support Intel 64
architecture.

The 7th generation Intel® Core™ processors are based on the Kaby Lake microarchitecture and support
Intel 64 architecture.

The Intel Atom® processor C series, the Intel Atom® processor X series, the Intel® Pentium® processor
J series, the Intel® Celeron® processor J series, and the Intel® Celeron® processor N series are based on
the Goldmont microarchitecture.

The Intel® Xeon Phi™ Processor 3200, 5200, 7200 Series is based on the Knights Landing microarchitec-
ture and supports Intel 64 architecture.

The Intel® Pentium® Silver processor series, the Intel® Celeron® processor J series, and the Intel®
Celeron® processor N series are based on the Goldmont Plus microarchitecture.

The 8th generation Intel® Core™ processors, 9th generation Intel® Core™ processors, and Intel® Xeon®
E processors are based on the Coffee Lake microarchitecture and support Intel 64 architecture.

The Intel® Xeon Phi™ Processor 7215, 7285, 7295 Series is based on the Knights Mill microarchitecture
and supports Intel 64 architecture.

The 2nd generation Intel® Xeon® Processor Scalable Family is based on the Cascade Lake product and
supports Intel 64 architecture.

Some 10th generation Intel® Core™ processors are based on the Ice Lake microarchitecture, and some
are based on the Comet Lake microarchitecture; both support Intel 64 architecture.

Some 11th generation Intel® Core™ processors are based on the Tiger Lake microarchitecture, and
some are based on the Rocket Lake microarchitecture; both support Intel 64 architecture.

Some 3rd generation Intel® Xeon® Processor Scalable Family processors are based on the Cooper Lake
product, and some are based on the Ice Lake microarchitecture; both support Intel 64 architecture.
The 12th generation Intel® Core™ processors are based on the Alder Lake performance hybrid
architecture and support Intel 64 architecture.

The Intel® 4th generation Intel® Xeon® Scalable Processor Family is based on Sapphire Rapids microar-
chitecture and uses Golden Cove cores.

1-3

INTRODUCTION

The chapters in this manual are summarized below.
• Chapter 1: Introduction — Defines the purpose and outlines the contents of this manual.
• Chapter 2: Intel® 64 and IA-32 Processor Architectures — Describes the microarchitecture of

recent Intel 64 and IA-32 processor families, and other features relevant to software optimization.
• Chapter 3: General Optimization Guidelines — Describes general code development and optimi-

zation techniques that apply to all applications designed to take advantage of the common features
of current Intel processors.

• Chapter 4: Intel Atom® Processor Architecture — Describes the microarchitecture of recent
Intel Atom processor families, and other features relevant to software optimization.

• Chapter 5: Coding for SIMD Architectures — Describes techniques and concepts for using the
SIMD integer and SIMD floating-point instructions provided by the MMX™ technology, Streaming
SIMD Extensions, Streaming SIMD Extensions 2, Streaming SIMD Extensions 3, SSSE3, and SSE4.1.

• Chapter 6: Optimizing for SIMD Integer Applications — Provides optimization suggestions and
common building blocks for applications that use the 128-bit SIMD integer instructions.

• Chapter 7: Optimizing for SIMD Floating-point Applications — Provides optimization
suggestions and common building blocks for applications that use the single-precision and double-
precision SIMD floating-point instructions.

• Chapter 8: INT8 Deep Learning Inference — Describes INT8 as a data type for Deep learning
Inference on Intel technology. The document covers both AVX-512 implementations and implemen-
tations using the new Intel® DL Boost Instructions.

• Chapter 9: Optimizing Cache Usage — Describes how to use the PREFETCH instruction, cache
control management instructions to optimize cache usage, and the deterministic cache parameters.

• Chapter 10: Introducing Sub-NUMA Clustering — Describes Sub-NUMA Clustering (SNC), a
mode for improving average latency from last level cache (LLC) to local memory.

• Chapter 11: Multicore and Hyper-Threading Technology — Describes guidelines and
techniques for optimizing multithreaded applications to achieve optimal performance scaling. Use
these when targeting multicore processor, processors supporting Hyper-Threading Technology, or
multiprocessor (MP) systems.

• Chapter 12: Intel® Optane™ DC Persistent Memory — Provides optimization suggestions for
applications that use Intel® Optane™ DC Persistent Memory.

• Chapter 13: 64-Bit Mode Coding Guidelines — This chapter describes a set of additional coding
guidelines for application software written to run in 64-bit mode.

• Chapter 14: SSE4.2 and SIMD Programming for Text-Processing/Lexing/Parsing—
Describes SIMD techniques of using SSE4.2 along with other instruction extensions to improve
text/string processing and lexing/parsing applications.

• Chapter 15: Optimizations for Intel® AVX, FMA, and Intel® AVX2— Provides optimization
suggestions and common building blocks for applications that use Intel® Advanced Vector
Extensions, FMA, and Intel® Advanced Vector Extensions 2 (Intel® AVX2).

• Chapter 16: Intel Transactional Synchronization Extensions — Tuning recommendations to
use lock elision techniques with Intel Transactional Synchronization Extensions to optimize multi-
threaded software with contended locks.

• Chapter 17: Power Optimization for Mobile Usages — This chapter provides background on
power saving techniques in mobile processors and makes recommendations that developers can
leverage to provide longer battery life.

• Chapter 18: Software Optimization for Intel® AVX-512 Instructions— Provides optimization
suggestions and common building blocks for applications that use Intel® Advanced Vector Extensions
512.

• Chapter 19: Intel® Advanced Vector Extensions 512-FP16 Instruction Set for Intel® Xeon®
Processors — Describes the addition of the FP16 ISA for Intel AVX-512 to handle IEEE 754-2019
compliant half-precision floating-point operations.

INTRODUCTION

1-4

• Chapter 20: Intel® Advanced Matrix Extensions (Intel® AMX) — Describes best practices to
optimally code to the metal on Intel® Xeon® Processors based on Sapphire Rapids SP microarchi-
tecture. It extends the public documentation on Optimizing DL code with DL Boost instructions.

• Chapter 21: Cryptography & Finite Field Arithmetic Enhancements — Describes the new
instruction extensions designated for acceleration of cryptography flows and finite field arithmetic.

• Chapter 22: Intel QuickAssist Technology — Describes software development guidelines for the
QuickAssist Technology (QAT) API. This API supports both the Cryptographic and Data Compression
services.

• Chapter 23: Knights Landing Microarchitecture and Software Optimization — Describes the
microarchitecture of processor families based on the Knights Landing microarchitecture, and
software optimization techniques targeting Intel processors based on the Knights Landing microar-
chitecture.

• Appendix A: Application Performance Tools — Introduces tools for analyzing and enhancing
application performance without having to write assembly code.

• Appendix B: Using Performance Monitoring Events — Provides information on the Top-Down
Analysis Method and information on how to use performance events specific to the Intel Xeon
processor 5500 series, processors based on Sandy Bridge microarchitecture, and Intel Core Solo and
Intel Core Duo processors.

• Appendix C: Intel Architecture Optimization with Large Code Pages — Provides information
on how the performance of runtimes can be improved by using large code pages.

• Appendix D: IA-32 Instruction Latency and Throughput — Provides latency and throughput
data for the IA-32 instructions. Instruction timing data specific to recent processor families are
provided.

• Appendix E: Earlier Generations of Intel® 64 and IA-32 Processor Architectures —
Describes the microarchitecture of earlier generations of Intel 64 and IA-32 processor families, and
other features relevant to software optimization.

• Appendix F: Earlier Generations of Intel Atom® Microarchitecture and Software Optimi-
zation — Describes the microarchitecture of earlier generations of processor families based on Intel
Atom microarchitecture, and software optimization techniques targeting Intel Atom microarchi-
tecture.

1.3 RELATED INFORMATION
For more information on the Intel® architecture, techniques, and the processor architecture terminology,
the following are of particular interest:
• Intel® 64 and IA-32 Architectures Software Developer’s Manual
• Developing Multi-threaded Applications: A Platform Consistent Approach
• Intel® C++ Compiler documentation and online help
• Intel® Fortran Compiler documentation and online help
• Intel® VTune™ Amplifier documentation and online help
• Using Spin-Loops on Intel Pentium 4 Processor and Intel Xeon Processor MP

More relevant links are:
• Developer Zone:

https://software.intel.com/en-us/all-dev-areas
• Processor support general link:

https://www.intel.com/content/www/us/en/products/processors.html
• Intel Multi-Core Technology:

https://software.intel.com/en-us/articles/multi-core-introduction
• Hyper-Threading Technology (HT Technology):

https://software.intel.com/en-us/c-compilers/ipsxe-support
https://software.intel.com/en-us/fortran-compilers-support/
https://www.intel.com/content/www/us/en/products/processors.html
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/sites/default/files/article/147714/51534-developing-multithreaded-applications.pdf
https://software.intel.com/en-us/intel-vtune-amplifier-xe-support
https://software.intel.com/sites/default/files/22/30/25602
https://software.intel.com/en-us/all-dev-areas
https://software.intel.com/en-us/articles/multi-core-introduction

1-5

INTRODUCTION

http://www.intel.com/content/www/us/en/architecture-and-technology/hyper-threading/hyper-
threading-technology.html

• SSE4.1 Application Note: Motion Estimation with Intel® Streaming SIMD Extensions 4:
https://software.intel.com/en-us/articles/motion-estimation-with-intel-streaming-simd-extensions-
4-intel-sse4

• Intel® SSE4 Programming Reference:
https://software.intel.com/sites/default/files/m/8/b/8/D9156103.pdf

• Intel® 64 Architecture Processor Topology Enumeration:
https://software.intel.com/en-us/articles/intel-64-architecture-processor-topology-enumeration

• Multi-buffering techniques using SIMD extensions:
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/communications-
ia-multi-buffer-paper.pdf

• Parallel hashing using Multi-buffering techniques:
http://www.scirp.org/journal/PaperInformation.aspx?paperID=23995
http://eprint.iacr.org/2012/476.pdf

• PCMMULQDQ resources:
https://software.intel.com/en-us/articles/intel-carry-less-multiplication-instruction-and-its-usage-
for-computing-the-gcm-mode

• Modular exponentiation using redundant representation and AVX2:
http://rd.springer.com/chapter/10.1007%2F978-3-642-31662-3_9?LI=true

http://www.intel.com/content/www/us/en/architecture-and-technology/hyper-threading/hyper-threading-technology.html
https://software.intel.com/en-us/articles/motion-estimation-with-intel-streaming-simd-extensions-4-intel-sse4
https://software.intel.com/sites/default/files/m/8/b/8/D9156103.pdf
https://software.intel.com/en-us/articles/intel-64-architecture-processor-topology-enumeration
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/communications-ia-multi-buffer-paper.pdf
http://www.scirp.org/journal/PaperInformation.aspx?paperID=23995
http://eprint.iacr.org/2012/476.pdf
https://software.intel.com/en-us/articles/intel-carry-less-multiplication-instruction-and-its-usage-for-computing-the-gcm-mode
http://rd.springer.com/chapter/10.1007%2F978-3-642-31662-3_9?LI=true

INTRODUCTION

1-6

CHAPTER 2
INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

This chapter gives an overview of features relevant to software optimization for current generations of
Intel® 64 and IA-32 processors1. These features are:
• Microarchitectures that enable executing instructions with high throughput at high clock rates, a high

speed cache hierarchy, and high speed system bus.
• Hyper-Threading Technology2 (HT Technology) support.
• Intel 64 architecture on Intel 64 processors.
• SIMD instruction extensions: MMX technology, Streaming SIMD Extensions (SSE), Streaming SIMD

Extensions 2 (SSE2), Streaming SIMD Extensions 3 (SSE3), Supplemental Streaming SIMD
Extensions 3 (SSSE3), SSE4.1, and SSE4.2.

• Intel® Advanced Vector Extensions (Intel® AVX).
• Half-precision floating-point conversion and RDRAND.
• Fused Multiply Add Extensions.
• Intel® Advanced Vector Extensions 2 (Intel® AVX2).
• ADX and RDSEED.
• Intel® Advanced Vector Extensions 512 (Intel® AVX-512).
• Intel® Thread Director

2.1 SAPPHIRE RAPIDS ARCHITECTURE
Sapphire Rapids uses Intel® Golden Cove-based cores and features Intel® Advanced Vector Extensions
512 (Intel® AVX-512) (Chapter 19), Intel® Transactional Synchronization Extensions (Intel® TSX)
Suspend Load Address Tracking (TSXLDTRK), Advanced Matrix Extensions (AMX) (Chapter 20), Intel
Data Streaming Accelerator (DSA)3, and Intel In-Memory Analytics Accelerator (IAA)4.

2.1.1 Intel® 4th generation Intel® Xeon® Scalable Family of Processors
Intel's fourth generation Xeon Scalable Family of Processors (Sapphire Rapids) changes from a single-die
monolithic design to multi-die Tiles.

The server products are scalable from dual-socket to eight-socket configurations (Section 3.11).

Its I/O includes PCI Express 5.0, DDR5 memory, and Compute Express Link 1.1.

Packaging includes a multi-die chip with up to 4 tiles. Each tile is a 400mm2 SoC, providing both compute
cores and I/O.

Each tile contains 15 Golden Cove cores (see Section 2.3). Its memory controller provides two channels
of DDR5 with a maximum of eight channels across 4 tiles, and 28 PCIe 5.0 lanes for a maximum of 112
across 4 tiles.

1. For previous generations of Intel 64 and IA-32 processors, see Appendix E, “Earlier Generations of Intel® 64 and IA-32
Processor Architectures.” Intel Atom® processors are covered in Chapter 4, “Intel Atom® Processor Architectures.”

2. Hyper-Threading Technology requires a computer system with an Intel processor supporting HT Technology and an HT
Technology enabled chipset, BIOS and operating system. Performance varies depending on the hardware and software
used.

3. Please see the DSA Specification: https://cdrdv2.intel.com/v1/dl/getContent/671116 and User Guide:
https://cdrdv2.intel.com/v1/dl/getContent/759709

4. Please see the IAA Specification: https://cdrdv2.intel.com/v1/dl/getContent/721858

https://cdrdv2.intel.com/v1/dl/getContent/721858
https://cdrdv2.intel.com/v1/dl/getContent/671116
https://cdrdv2.intel.com/v1/dl/getContent/759709
https://cdrdv2.intel.com/v1/dl/getContent/759709
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/intel-tsx-asynchronous-abort.html

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2-2

2.2 ALDER LAKE PERFORMANCE HYBRID ARCHITECTURE
The Alder Lake performance hybrid architecture combines two Intel architectures, bringing together the
Golden Cove performant cores and the Gracemont efficient Atom cores onto a single SoC. For details on
the Golden Cove microarchitecture, see Section 2.3, “Golden Cove Microarchitecture.” For details on the
Gracemont microarchitecture, see Section 4.1, “Gracemont Microarchitecture.”

2.2.1 12th Generation Intel® Core™ Processors Supporting Performance Hybrid
Architecture

12th Generation Intel® Core™ processors supporting performance hybrid architecture consist of up to
eight Performance cores (P-cores) and eight Efficient cores (E-cores). These processors also include a
3MB Last Level Cache (LLC) per IDI module, where a module is one P-core or four E-cores. It has
symmetrical ISA and comes in variety of configurations.

P-cores provide single or limited thread performance, while E-cores help provide improved scaling and
multithreaded efficiency. P-cores on these processors can also have Intel® Hyper-Threading Technology
enabled. All cores can be active simultaneously when the operating system (OS) decides to schedule on
all processors.

A key OSV requirement for enabling hybrid is symmetric ISA across different core types in a performance
hybrid architecture. In 12th Generation Intel Core processors supporting performance hybrid architec-
ture, ISA is converged to a common baseline between the P-cores and E-cores. In order to maintain
symmetric ISA, the E-cores do not support the following features: Intel AVX-512, Intel AVX-512 FP-16,
and Intel® TSX. The E-cores do support Intel AVX2 and Intel AVX-VNNI.

2.2.2 Hybrid Scheduling

2.2.2.1 Intel® Thread Director
Intel® Thread Director continually monitors software in real-time giving hints to the operating system's
scheduler allowing it to make more intelligent and data-driven decisions on thread scheduling. With Intel
Thread Director, hardware provides runtime feedback to the OS per thread based on various IPC perfor-
mance characteristics, in the form of:
• Dynamic performance and energy efficiency capabilities of P-cores and E-cores based on

power/thermal limits.
• Idling hints when power and thermal are constrained.

Intel Thread Director is first introduced in desktop and mobile variants of the 12th generation Intel Core
processor based on Alder Lake performance hybrid architecture.

A processor containing both P-cores and E-cores with different performance characteristics creates a
challenge for the operating system’s scheduler. Additionally, different software threads see different
performance ratios between the P-cores and E-cores. For example, the performance ratio between the P-
cores and E-cores for highly vectorized floating-point code is higher than the performance ratio for scalar
integer code. So, when the operating system needs to make an optimal scheduling decision it needs to
be aware of the characteristics of the software threads that are candidates for scheduling. If not enough
P-cores are available and there is a mix of software threads with different characteristics, the operating
system should schedule those threads that benefit most from the P-cores onto those cores and schedule
the others on the E-cores.

Intel Thread Director provides the necessary hint to the operating system about the characteristics of the
software thread executing on each of the logical processors. The hint is dynamic and reflects the recent
characteristics of the thread, i.e., it may change over time based on the dynamic instruction mix of the
thread. The processor also considers microarchitecture factors to define the dynamic software thread
characteristics.

2-3

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Thread specific hardware support is enumerated via the CPUID instruction and enabled by the operating
system via writing to configuration MSRs. The Intel Thread Director implementation on processors based
on Alder Lake performance hybrid architecture defines four thread classes:

0. Non-vectorized integer or floating-point code.

1. Integer or floating-point vectorized code, excluding Intel® Deep Learning Boost (Intel® DL Boost)
code.

2. Intel DL Boost code.

3. Pause (spin-wait) dominated code.

The dynamic code does not have to be 100% of the class definition. It should be large enough to be
considered belonging to that class. Also, dynamic microarchitectural metrics such as consumed memory
bandwidth or cache bandwidth may move software threads between classes. Example pseudo-code
sequences for the Intel Thread Director classes available on processors based on Alder Lake performance
hybrid architecture are provided in the examples 2-1 through 2-4.

Intel Thread Director also provides a table in system memory, only accessible to the operating system,
that defines the P-core vs. E-core performance ratio per class. This allows the operating system to pick
and choose the right software thread for the right logical processor.

In addition to the performance ratio between P-cores and E-cores, Intel Thread Director provides the
energy efficiency ratio between those cores. The operating system can then use this information when it
prefers energy savings over maximum performance. For example, a background task such as indexing
can be scheduled on the most energy efficient core since its performance is less critical.

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2-4

Example 2-1. Class 0 Pseudo-code Snippet

while (1)
{

asm(“xor rax, rax;”
“add rax, 5;”
“inc rax;”

);
}

Example 2-2. Class 1 Pseudo-code Snippet

while (1)
{

asm(“vfmaddsub132ps %ymm0, %ymm1, %ymm2;”
“vfmaddsub213ps %ymm0, %ymm1, %ymm3;”
“vfmaddsub231ps %ymm0, %ymm1, %ymm4;”
“vfmaddsub132ps %ymm0, %ymm1, %ymm5;”
“vfmaddsub213ps %ymm0, %ymm1, %ymm6;”
“vfmaddsub231ps %ymm0, %ymm1, %ymm7;”
“vfmaddsub132ps %ymm0, %ymm1, %ymm8;”
“vfmaddsub213ps %ymm0, %ymm1, %ymm9;”
“vfmaddsub231ps %ymm0, %ymm1, %ymm10;”
“vfmaddsub132ps %ymm0, %ymm1, %ymm2;”
“vfmaddsub213ps %ymm0, %ymm1, %ymm3;”
“vfmaddsub231ps %ymm0, %ymm1, %ymm4;”
“vfmaddsub132ps %ymm0, %ymm1, %ymm5;”
“vfmaddsub213ps %ymm0, %ymm1, %ymm6;”
“vfmaddsub231ps %ymm0, %ymm1, %ymm7;”
“vfmaddsub132ps %ymm0, %ymm1, %ymm8;”
“vfmaddsub213ps %ymm0, %ymm1, %ymm9;”
“vfmaddsub231ps %ymm0, %ymm1, %ymm10;”
“vfmaddsub132ps %ymm0, %ymm1, %ymm2;”
“vfmaddsub213ps %ymm0, %ymm1, %ymm3;”
“vfmaddsub231ps %ymm0, %ymm1, %ymm4;”
“vfmaddsub132ps %ymm0, %ymm1, %ymm5;”
“vfmaddsub213ps %ymm0, %ymm1, %ymm6;”
“vfmaddsub231ps %ymm0, %ymm1, %ymm7;”
“vfmaddsub132ps %ymm0, %ymm1, %ymm8;”
“vfmaddsub213ps %ymm0, %ymm1, %ymm9;”
“vfmaddsub231ps %ymm0, %ymm1, %ymm10;”
“vfmaddsub132ps %ymm0, %ymm1, %ymm2;”
“vfmaddsub213ps %ymm0, %ymm1, %ymm3;”
“vfmaddsub231ps %ymm0, %ymm1, %ymm4;”
“vfmaddsub132ps %ymm0, %ymm1, %ymm5;”
“vfmaddsub213ps %ymm0, %ymm1, %ymm6;”
“vfmaddsub231ps %ymm0, %ymm1, %ymm7;”
“vfmaddsub132ps %ymm0, %ymm1, %ymm8;”

2-5

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

For more detailed information on this technology, refer to the Intel® 64 and IA-32 Architectures Software
Developer Manuals located here: www.intel.com/sdm.

“vfmaddsub213ps %ymm0, %ymm1, %ymm9;”
“vfmaddsub231ps %ymm0, %ymm1, %ymm10;”
“vfmaddsub132ps %ymm0, %ymm1, %ymm2;”

);
}

Example 2-3. Class 2 Pseudo-code Snippet

while (1)
{

__asm(
vpdpbusd ymm2, ymm0, ymm1
vpdpbusd ymm3, ymm0, ymm1
vpdpbusd ymm4, ymm0, ymm1
vpdpbusd ymm5, ymm0, ymm1
vpdpbusd ymm6, ymm0, ymm1
vpdpbusd ymm7, ymm0, ymm1
vpdpbusd ymm8, ymm0, ymm1
vpdpbusd ymm9, ymm0, ymm1
vpdpbusd ymm10, ymm0, ymm1
vpdpbusd ymm11, ymm0, ymm1
vpdpbusd ymm12, ymm0, ymm1
vpdpbusd ymm13, ymm0, ymm1

);
}

Example 2-4. Class 3 Pseudo-code Snippet

while (1)
{

asm(“PAUSE;”)
asm(“PAUSE;”)
asm(“PAUSE;”)
asm(“PAUSE;”)
asm(“PAUSE;”)
asm(“PAUSE;”)
asm(“PAUSE;”)
asm(“PAUSE;”)
asm(“PAUSE;”)
asm(“PAUSE;”)

);
}

Example 2-2. Class 1 Pseudo-code Snippet (Contd.)

www.intel.com/sdm
www.intel.com/sdm

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2-6

2.2.2.2 Scheduling with Intel Hyper-Threading Technology Enabled on Processors
Supporting x86 Hybrid Architecture

E-cores are designed to provide better performance than a logical P-core with both hardware sibling
hyper-threads busy.

2.2.2.3 Scheduling with a Multi-E-Core Module
E-cores within an idle module help provide better performance than E-cores in a busy module.

2.2.2.4 Scheduling Background Threads on x86 Hybrid Architecture
In most scenarios, background threads can leverage scalability and multithread efficiency of E-cores.

2.2.3 Recommendations for Application Developers
The following are recommendations when using processors supporting performance hybrid architecture:
• Stay up to date on updates on operating systems and optimized libraries.
• Software needs to avoid setting hard affinities on either threads or processes in order to allow the

operating system to provide the optimal core selection for Intel Hybrid.
• Software should replace active spin-waits with lightweight waits ideally using the new

UMWAIT/TPAUSE and older PAUSE instructions which will allow for better hints to the scheduler on
time spinning.

• Software can utilize the Windows Power Throttling information using process information and thread
information APIs, to give hints to the scheduler on the Quality of Service (QoS) required for a
particular thread or process to improve both performance and energy efficiency.

• Leverage Windows frameworks and media APIs for multimedia application development. Windows
Media Foundation framework is optimized for hybrid architecture and enables media applications to
run efficiently while preventing glitches.

• The Windows IrqPolicyMachineDefault policy enables Windows to optimally target interrupts to the
right core, and more so on hybrid architecture.

For additional recommendations and information on performance hybrid architecture, refer to the white
papers located here: https://www.intel.com/content/www/us/en/developer/articles/technical/hybrid-
architecture.html.

https://www.intel.com/content/www/us/en/developer/articles/technical/hybrid-architecture.html
https://www.intel.com/content/www/us/en/developer/articles/technical/hybrid-architecture.html

2-7

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2.3 GOLDEN COVE MICROARCHITECTURE
The Golden Cove microarchitecture is the successor of Ice Lake microarchitecture. The Golden Cove
microarchitecture introduces the following enhancements:
• Wider machine: 56 wide allocation, 1012 execution ports, and 48 wide retirement.
• Significant increases in the size of key structures enable deeper OOO execution and expose more

instruction level parallelism.
• Greater capabilities per execution port, e.g., 5th integer ALU execution ports with expanded

capability and a new fast floating-point adder.
• Intel® Advanced Matrix Extensions (Intel® AMX)1: Built-in integrated Tiled Matrix Multiplication /

Machine Learning Accelerator.
• Improved branch prediction.
• Improvements for large code footprint workloads, e.g., larger branch prediction structures, enhanced

code prefetcher, and larger instruction TLB.
• Wider fetch: legacy decode pipeline fetch bandwidth increase to 32B/cycles, 46 decoders,

increased micro-op cache size, and increased micro-op cache bandwidth.
• Maximum load bandwidth increased from 2 loads/cycle to 3 loads/cycle.
• Larger 4K Pages DTLB, increase in the number of outstanding Page Miss handlers.
• Increased number of outstanding misses (16 FB, 3248 Deeper MLC miss queues).
• Enhanced data prefetchers for increased memory parallelism.
• Mid-level cache size increased to 2MB on server parts; remains 1.25MB on client parts.

1. Intel® Advanced Matrix Extensions are not available on Client parts.

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2-8

2.3.1 Golden Cove Microarchitecture Overview
The basic pipeline functionality of the Golden Cove microarchitecture is depicted in Figure 2-1.

Figure 2-1. Processor Core Pipeline Functionality of the Golden Cove Microarchitecture

 INT

ITLB + 32KB Instruction Cache BPU

Decode µop CacheMSROM

µop Queue

Allocate/Rename/Move Elimination/Zero idiom

Scheduler / Reservation Station

P0 P1 P5 P6 P10 P4
STD

P9
STD

P2
AGU

P3
AGU

P11
AGU

P7
AGU

P8
AGU

48 KB DCU

1.25 MB Client / 2MB Server MLC

SOC

ALU

LEA

Shift

Jmp

ALU

LEA

MUL

IDIV

ALU

LEA

Shift

Jmp

ALU

LEA

MulHI

ALU

LEA

 VEC

FMA

ALU

Shift

fpDiv

FMA

ALU

Shift

Shuffle

FMA512

ALU

AMX

Shuffle

FastADDFastADD

LD DTLB STA DTLB

Load Buffer Store Buffer

2x256
1x512

3x256
2x512

3x256
2x512

2-9

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2.3.1.1 The Front End
The Golden Cove front end is depicted in Figure 2-2. The front end is built to feed the wider and deeper
out-of-order core:
• Legacy decode pipeline fetch bandwidth increased from 16 to 32 bytes/cycle.
• The number of decoders increased from four to six, allowing decode of up to 6 instructions per cycle.
• The micro-op cache size increased, and its bandwidth increased to deliver up to 8 micro-ops per

cycle.
• Improved branch prediction.

Improvements for large code footprint workloads:
• Double the size of the instruction TLB: 128256 entries for 4K pages, 1632 entries for 2M/4M

pages.
• Bigger branch prediction structures.
• Enhanced code prefetcher.
• Improved LSD coverage.
• The IDQ can hold 144 uops per logical processor in single thread mode, or 72 uops per thread when

SMT is active.

2.3.1.2 The Out-of-Order and Execution Engines
The Out-of-Order and execution engines changes in the Golden Cove microarchitecture include:
• Significant increase in size of key buffer structures to enable deeper OOO execution and expose more

instruction level parallelism.
• Wider machine:

— Wider allocation (56 uops per cycle) and retirement (48 uops per cycle) width.

— Increase in number of execution ports (1012).

— Greater capabilities per execution port.

Table 2-1 summarizes the OOO engine's capability to dispatch different types of operations to ports.

Figure 2-2. Processor Front End of the Golden Cove Microarchitecture

ITLB + 32KB Instruction Cache BPU

Decode µop CacheMSROM

µop Queue

4 uops 8 uops

64 bytes32 bytes

6 uops

6 uops

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2-10

Table 2-2 lists execution units and common representative instructions that rely on these units.

Throughput improvements across the SSE, Intel AVX, and general-purpose instruction sets are related to
the number of units for the respective operations, and the varieties of instructions that execute using a
particular unit.

Table 2-1. Dispatch Port and Execution Stacks of the Golden Cove Microarchitecture

Port 0 Port 11 Port 2 Port 3 Port 4 Port 52 Port 6 Ports 7, 8 Port 9 Port 10 Port 11

INT ALU

LEA

INT Shift

Jump1

INT ALU

LEA

INT Mul

INT Div

Load Load Store
Data

INT ALU

LEA

INT MUL
Hi

INT ALU

LEA

INT Shift

Jump2

Store
Address

Store
Data

INT ALU

LEA

Load

FMA

Vec ALU

Vec
Shift

FP Div

FMA*

Fast
Adder*

Vec
ALU*

Vec
Shift*

Shuffle*

FMA**

Fast
Adder

Vec ALU

Shuffle

NOTES:
1. “*” in this table indicates that these features are not available for 512-bit vectors.
2. “**” in this table indicates that these features are not available for 512-bit vectors in Client parts.

Table 2-2. Golden Cove Microarchitecture Execution Units and Representative Instructions1

Execution
Unit

of Unit Instructions

ALU 5 add, and, cmp, or, test, xor, movzx, movsx, mov, (v)movdqu, (v)movdqa, (v)movap*,
(v)movup*

SHFT 2 sal, shl, rol, adc, sarx, adcx, adox, etc.

Slow Int 1 mul, imul, bsr, rcl, shld, mulx, pdep, etc.

BM 2 andn, bextr, blsi, blsmsk, bzhi, etc.

Vec ALU
2x256-bit

1x512-bit

(v)add, (v)cmp. (v)max, (v)min, (v)sub, (v)cvtps2dq, (v)cvtdq2ps, (v)cvtsd2sl,
(v)cvtss2sl

3x256-bit

2x512-bit

(v)pand, (v)por, (v)pxor, (v)movq, (v)movq, (v)movap*, (v)movup*, (v)andp*, (v)orp*,
(v)paddb/w/d/q, (v)blendv*, (v)blendp*, (v)pblendd

Vec_Shft 2x256-bit

1x512-bit

(v)psllv*, (v)psrlv*, vector shift count in imm8

VEC Add (in
VEC FMA)

2x256-bit

1x512-bit

(v)add*, (v)cmp*, (v)max*, (v)min*, (v)sub*, (v)padds*, (v)paddus*, (v)psign, (v)pabs,
(v)pavgb, (v)pcmpeq*, (v)pmax, (v)cvtps2dq, (v)cvtdq2ps, (v)cvtsd2si, (v)cvtss2si

VEC Fast
Add

2x256-bit

1x512-bit

(v)add*, (v)addsub*, (v)sub*

2-11

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Table 2-3 describes bypass delay in cycles between producer and consumer operations.

The attributes that are relevant to the producer/consumer micro-ops for bypass are a triplet of
abbreviation/one or more port number/latency cycle of the uop. For example:
• “SIMD/0,1/1” applies to a 1-cycle vector SIMD uop dispatched to either port 0 or port 1.
• “SIMD/5/1,3” applies to either a 1-cycle or 3-cycle non-shuffle uop dispatched to port 5.
• “V2I/0/3” applies to a 3-cycle vector-to-integer uop dispatched to port 0.
• “I2V/5/1” applies to a 1-cycle integer-to-vector uop dispatched to port 5.
• “Fast Adder/1,5/3” applies to either a 3-cycle 256-bit uop dispatched to either port 1 or port 5, or a

512-bit uop dispatched to port 5. This operation supports two cycles back-to-back between a pair of
Fast Adder operations.

A new Fast Adder1 unit is added as 512-bit on port 5 in VEC stack, and as 256-bit on ports 1 and 5. The
Fast Adder performs floating-point ADD/SUB operations in 3 cycles.

Shuffle 2x256-bit

1x512-bit

(v)shufp*, vperm*, (v)pack*, (v)unpck*, (v)punpck*, (v)pshuf*, (v)pslldq, (v)alignr,
(v)pmovzx*, vbroadcast*, (v)pslldq, (v)psrldq, (v)pblendw (new cross lane shuffle on
both ports)

Vec
Mul/FMA

2x256-bit

(1 or 2)x512-bit

(v)mul*, (v)pmul*, (v)pmadd*

SIMD Misc 1 STTNI, (v)pclmulqdq, (v)psadw, vector shift count in xmm

FP Mov 1 (v)movsd/ss, (v)movd gpr

DIVIDE 1 divp*, divs*, vdiv*, sqrt*, vsqrt*, rcp*, vrcp*, rsqrt*, idiv

NOTES:
1. Execution unit mapping to MMX instructions are not covered in this table. See Section 15.16.5 on MMX instruction

throughput remedy.

Table 2-3. Bypass Delay Between Producer and Consumer Micro-ops

TO [EU/PORT/Latency]

FROM
[EU/Port/Latency]

SIMD/0,1/1 FMA/0,1/4 MUL/0,1/4 Fast
Adder/1,5/3

SIMD/5/1,3 SHUF/
1,5/1,

3

V2I/0/3

SIMD/0,1/1 0 1 1 1 0 0 0

FMA/0,1/4 1 0 1 0 0 0 0

MUL/0,1/4 1 0 1 0 0 0 0

Fast Adder/0,1/3 1 0 1 -1 0 0 0

SIMD/5/1,3 0 1 1 1 0 0 0

SHUF/1,5/1,3 0 0 1 0 0 0 0

V2I/0/3 0 0 1 0 0 0 0

I2V/5/1 0 1 1 0 0 0 0

Table 2-2. Golden Cove Microarchitecture Execution Units and Representative Instructions1 (Contd.)

Execution
Unit

of Unit Instructions

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2-12

Back-to-back ADD/SUB operations that are both executed on the Fast Adder unit perform the operations
in two cycles.
• In 128/256-bit, back-to-back ADD/SUB operations executed on the Fast Adder unit perform the

operations in two cycles.
• In 512-bit, back-to-back ADD/SUB operations are executed in two cycles if both operations use the

Fast Adder unit on port 5.

The following instructions are executed by the Fast Adder unit:
• (V)ADDSUBSS/SD/PS/PD
• (V)ADDSS/SD/PS/PD
• (V)SUBSS/SD/PS/PD

2.3.1.3 Cache Subsystem and Memory Subsystem
The cache subsystem and memory subsystem changes in the Golden Cove microarchitecture are:
• Maximum load bandwidth increased from 2 to 3 loads per cycle. Bandwidth of Intel AVX-512 loads,

Intel AMX loads, and MMX/x87 loads remain at a maximum of 2 loads per cycle.
• Simultaneous handling of more loads and stores enabled by enlarged buffers.
• Number of entries for 4K pages in the load DTLB increased from 64 to 96.
• Page Miss handler can handle up to four D-side page walks in parallel instead of two.
• Increased number of outstanding DCU and MLC misses.
• Enhanced data prefetchers for increased memory parallelism.
• Partial store forwarding allowing forwarding data from store to load also when only part of the load

was covered by the store (in case the load's offset matches the store's offset).

2.3.1.4 Avoiding Destination False Dependency
Some SIMD instructions incur false dependency on the destination operand. The following instructions
are affected:
• VFMULCSH, VFMULCPH
• VFCMULCSH, VFCMULCPH
• VPERMD, VPERMQ, VPERMPS, VPERMPD
• VRANGE[SS,PS,SD,PD]
• VGETMANTSH, VGETMANTSS, VGETMANTSD
• VGETMANTPS, VGETMANTPD (memory versions only)
• VPMULLQ

1. The Fast Adder unit is not available on 512-bit vectors in Client parts.

2-13

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Recommendation: Use dependency breaking zero idioms on the destination register before the
affected instructions to avoid potential slowdown from the false dependency.

Example 2-5. Breaking False Dependency through Zero Idiom

Code with False Dependency Impact Mitigation: Break False Dependency with Zero Idiom

vaddps zmm3, zmm4, zmm5
vmovaps [rsi], zmm3
vfmulcph zmm3, zmm2, zmm1 ;False dependency on
zmm3.

Will not execute out-of-order
until vaddps writes zmm3.

vaddps zmm3, zmm4, zmm5
vmovaps [rsi], zmm3
vpxord zmm3, zmm3, zmm3 ;Dependency-breaking

zero idiom.
vfmulcph zmm3, zmm2, zmm1 ;Execute out-of-order

without waiting for
vaddps result.

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2-14

2.4 ICE LAKE CLIENT MICROARCHITECTURE
The Ice Lake Client microarchitecture introduces the following new features that allow optimizations of
applications for performance and power consumption:
• Targeted vector acceleration.
• Crypto acceleration.
• Intel® Software Guard Extensions (Intel® SGX) enhancements.
• Cache line writeback instruction (CLWB).

2.4.1 Ice Lake Client Microarchitecture Overview
The Ice Lake Client microarchitecture builds on the successes of the Skylake Client microarchitecture.
The basic pipeline functionality of the Ice Lake Client microarchitecture is depicted in Figure 2-3.

The Ice Lake Client microarchitecture introduces the following new features:

Figure 2-3. Processor Core Pipeline Functionality of the Ice Lake Client Microarchitecture1

NOTES:
1. “*” in the figure above indicates these features are not available for 512-bit vectors.
2. “INT” represents GPR scalar instructions.
3. “VEC” represents floating-point and integer vector instructions.
4. “MulHi” produces the upper 64 bits of the result of an iMul operation that multiplies two 64-bit registers and places the

result into two 64-bits registers.
5. The “Shuffle” on port 1 is new, and supports only in-lane shuffles that operate within the same 128-bit sub-vector.
6. The “iDIV” unit on port 1 is new, and performs integer divide operations at a reduced latency.

2-15

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

• Significant increase in size of key structures enable deeper OOO execution.
• Wider machine: 4 5 wide allocation, 8 10 execution ports.
• Intel AVX-512 (new for client processors): 512-bit vector operations, 512-bit loads and stores to

memory, and 32 new 512-bit registers.
• Greater capabilities per execution port (e.g., SIMD shuffle, LEA), reduced latency Integer Divider.
• 2×BW for AES-NI peak throughput for existing binaries (microarchitectural).
• Rep move string acceleration.
• 50% increase in size of the L1 data cache.
• Reduced effective load latency.
• 2×L1 store bandwidth: 1 2 stores per cycle.
• Enhanced data prefetchers for increased memory parallelism.
• Larger 2nd level TLB.
• Larger uop cache.
• Improved branch predictor.
• Large page ITLB size in single thread mode doubled.
• Larger L2 cache.

The Ice Lake Client microarchitecture supports flexible integration of multiple processor cores with a
shared uncore sub-system consisting of a number of components including a ring interconnect to
multiple slices of L3, processor graphics, integrated memory controller, interconnect fabrics, and more.

2.4.1.1 The Front End
The front end changes in Ice Lake Client microarchitecture include:
• Improved branch predictor.
• Large page ITLB in single thread mode increased from 8 to 16 entries.
• Larger uop cache.
• The IDQ can hold 70 uops per logical processor vs. 64 uops per logical processor in previous

generations when two sibling logical processors in the same core are active (2×70 vs. 2×64 per
core). If only one logical processor is active in the core, the IDQ can hold 70 uops vs. 64 uops.

• The LSD in the IDQ can detect loops of up to 70 uops per logical processor irrespective single thread
or multi thread operation.

2.4.1.2 The Out of Order and Execution Engines
The Out of Order and execution engines changes in Ice Lake Client microarchitecture include:
• A significant increase in size of reorder buffer, load buffer, store buffer, and reservation stations

enable deeper OOO execution and higher cache bandwidth.
• Wider machine: 4 5 wide allocation, 8 10 execution ports.
• Greater capabilities per execution port (e.g., SIMD shuffle, LEA).
• Reduced latency Integer Divider.
• A new iDIV unit was added that significantly reduces the latency and improves the of throughput of

integer divide operations.

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2-16

Table 2-4 summarizes the OOO engine's capability to dispatch different types of operations to ports.

Table 2-5 lists execution units and common representative instructions that rely on these units.

Throughput improvements across the SSE, Intel AVX, and general-purpose instruction sets are related to
the number of units for the respective operations, and the varieties of instructions that execute using a
particular unit.

Table 2-4. Dispatch Port and Execution Stacks of the Ice Lake Client Microarchitecture

Port 0 Port 11

NOTES:
1. “*” in this table indicates these features are not available for 512-bit vectors.

Port 2 Port 3 Port 4 Port 5 Port 6 Port 7 Port 8 Port 9

INT ALU

LEA

INT Shift

Jump1

INT ALU

LEA

INT Mul

INT Div

Load Load Store
Data

INT ALU

LEA

INT MUL
Hi

INT ALU

LEA

INT Shift

Jump2

Store
Address

Store
Address

Store
Data

FMA

Vec ALU

Vec Shift

FP Div

FMA*

Vec ALU*

Vec
Shift*

Vec
Shuffle*

Vec ALU

Vec
Shuffle

Table 2-5. Ice Lake Client Microarchitecture Execution Units and Representative Instructions1

Execution
Unit

of
Unit

Instructions

ALU 4 add, and, cmp, or, test, xor, movzx, movsx, mov, (v)movdqu, (v)movdqa, (v)movap*, (v)movup*

SHFT 2 sal, shl, rol, adc, sarx, adcx, adox, etc.

Slow Int 1 mul, imul, bsr, rcl, shld, mulx, pdep, etc.

BM 2 andn, bextr, blsi, blsmsk, bzhi, etc.

Vec ALU 3 (v)pand, (v)por, (v)pxor, (v)movq, (v)movq, (v)movap*, (v)movup*, (v)andp*, (v)orp*,
(v)paddb/w/d/q, (v)blendv*, (v)blendp*, (v)pblendd

Vec_Shft 2 (v)psllv*, (v)psrlv*, vector shift count in imm8

Vec Add 2 (v)addp*, (v)cmpp*, (v)max*, (v)min*, (v)padds*, (v)paddus*, (v)psign, (v)pabs, (v)pavgb,

(v)pcmpeq*, (v)pmax, (v)cvtps2dq, (v)cvtdq2ps, (v)cvtsd2si, (v)cvtss2si

Shuffle 2 (v)shufp*, vperm*, (v)pack*, (v)unpck*, (v)punpck*, (v)pshuf*, (v)pslldq, (v)alignr, (v)pmovzx*,

vbroadcast*, (v)pslldq, (v)psrldq, (v)pblendw

Vec Mul 2 (v)mul*, (v)pmul*, (v)pmadd*

SIMD Misc 1 STTNI, (v)pclmulqdq, (v)psadw, vector shift count in xmm

FP Mov 1 (v)movsd/ss, (v)movd gpr

DIVIDE 1 divp*, divs*, vdiv*, sqrt*, vsqrt*, rcp*, vrcp*, rsqrt*, idiv

2-17

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Table 2-6 describes bypass delay in cycles between producer and consumer operations.

The attributes that are relevant to the producer/consumer micro-ops for bypass are a triplet of abbrevi-
ation/one or more port number/latency cycle of the uop. For example:
• “SIMD/0,1/1” applies to 1-cycle vector SIMD uop dispatched to either port 0 or port 1.
• “SIMD/5/1,3” applies to either a 1-cycle or 3-cycle non-shuffle uop dispatched to port 5.
• “V2I/0/3” applies to a 3-cycle vector-to-integer uop dispatched to port 0.
• “I2V/5/1” applies to a 1-cycle integer-to-vector uop to port 5.

2.4.1.3 Cache and Memory Subsystem
The cache hierarchy changes in Ice Lake Client microarchitecture include:
• 50% increase in size of the L1 data cache.
• 2×L1 store bandwidth: 3 4 AGUs, 1 2 store data.
• Simultaneous handling of more loads and stores enabled by enlarged buffers.
• Higher cache bandwidth compared to previous generations.
• Larger 2nd level TLB: 1.5K entries  2K entries.
• Enhanced data prefetchers for increased memory parallelism.
• L2 cache size increased from 256KB to 512KB.
• L2 cache associativity increased from 4 ways to 8 ways.
• Significant reduction in effective load latency.

NOTES:
1. Execution unit mapping to MMX instructions are not covered in this table. See Section 15.16.5 on MMX instruction

throughput remedy.

Table 2-6. Bypass Delay Between Producer and Consumer Micro-ops

TO [EU/PORT/Latency]

FROM
[EU/Port/Latency]

SIMD/0,1/1 FMA/0,1/4 VIMUL/0,1/4 SIMD/5/1,3 SHUF/5/1,
3

V2I/0/3 I2V/5/1

SIMD/0,1/1 0 1 1 0 0 0 NA

FMA/0,1/4 1 0 1 0 0 0 NA

VIMUL/0,1/4 1 0 1 0 0 0 NA

SIMD/5/1,3 0 1 1 0 0 0 NA

SHUF/5/1,3 0 0 1 0 0 0 NA

V2I/0/3 0 0 1 0 0 0 NA

I2V/5/1 0 1 1 0 0 0 NA

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2-18

The TLB hierarchy consists of dedicated level one TLB for instruction cache, TLB for L1D, shared L2 TLB
for 4K and 4MB pages and a dedicated L2 TLB for 1GB pages.

Paired Stores
Ice Lake Client microarchitecture includes two store pipelines in the core, with the following features:
• Two dedicated AGU for LDs on ports 2 and 3.
• Two dedicated AGU for STAs on ports 7 and 8.
• Two fully featured STA pipelines.
• Two 256-bit wide STD pipelines (AVX-512 store data takes two cycles to write).
• Second senior store pipeline to the DCU via store merging.

Ice Lake Client microarchitecture can write two senior stores to the cache in a single cycle if these two
stores can be paired together. That is:
• The stores must be to the same cache line.
• Both stores are of the same memory type, WB or USWC.

Table 2-7. Cache Parameters of the Ice Lake Client Microarchitecture

Level
Capacity /

Associativity
Line Size
(bytes)

Latency1
(cycles)

NOTES:
1. Software-visible latency/bandwidth will vary depending on access patterns and other factors.

Peak Bandwidth
(bytes/cycles)

Sustained Bandwidth
(bytes/cycles)

Update
Policy

First Level
(DCU)

48KB/8 64 5 2×64B loads + 1x64B
or 2x32B stores

Same as peak Writeback

Second
Level (MLC)

512KB/8 64 13 64 48 Writeback

Third Level
(LLC)

Up to 2MB per
core/up to 16 ways

64 xx2

2. This number depends on core count.

32 21 Writeback

Table 2-8. TLB Parameters of the Ice Lake Client Microarchitecture

Level Page Size Entries ST
Per-thread Entries
MT Latency Associativity

Instruction 4KB 128 64 8

Instruction 2MB/4MB 16 8 8

First Level Data (loads) 4KB 64 64 competitively
shared

4

First Level Data (loads) 2MB/4MB 32 32 competitively
shared

4

First Level Data (loads) 1GB 8 8 competitively shared 8

First Level Data (stores) Shared for all page
sizes

16 16 competitively
shared

16

Second Level Shared for all page
sizes

20481

NOTES:
1. 4K pages can use all 2048 entries. 2/4MB pages can use 1024 entries (in 8 ways), sharing them with 4K pages. 1GB

pages can use the other 1024 entries (in 8 ways), also sharing them with 4K pages.

2048 competitively
shared

16

2-19

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

• None of the stores cross cache line or page boundary.

In order to maximize performance from the second store port try to:
• Align store operations whenever possible.
• Place consecutive stores in the same cache line (not necessarily as adjacent instructions).

As seen in Example 2-6, it is important to take into consideration all stores, explicit or not.

In some cases it is possible to rearrange the code to achieve store pairing. See the example below for
details.

2.4.1.4 New Instructions
New instructions and architectural changes in Ice Lake Client microarchitecture are listed below. Actual
support may be product dependent.
• Crypto acceleration

— SHA NI for acceleration of SHA1 and SHA256 hash algorithms.

— Big-Number Arithmetic (IFMA): VPMADD52 - two new instructions for big number multiplication
for acceleration of RSA vectorized SW and other Crypto algorithms (Public key) performance.

Example 2-6. Considering Stores

Stores are Paired Across Loop Iterations Stores Not Paired Due to Stack Update in Between

Loop:
compute reg
…
store [X], reg
add X, 4
jmp Loop ; stores from different iterations of the

loop can be paired all together because
they usually would be same line

Loop:
call function to compute reg
…
store [X], reg
add X, 4
jmp Loop ; stores from different iterations of the

loop cannot be paired anymore because
of the call store to stack
; the call is disturbing pairing

Example 2-7. Rearranging Code to Achieve Store Pairing

Stores to Different Cache Lines - Not Paired Unrolling May Solve the Problem

Loop:
... compute ymm1 …
vmovaps [x], ymm1
... compute ymm2 …
vmovaps [y], ymm2
add x, 32
add y, 32
jmp Loop ; this loop cannot pair any store because

of alternating store to different cache
lines [x] and [y]

Loop:
... compute ymm1 …
vmovaps [x], ymm1
... compute new ymm1 …
vmovaps [x+32], ymm1
... compute ymm2 …
vmovaps [y], ymm2
... compute new ymm2 …
vmovaps [y+32], ymm2
add x, 64
add y, 64
jmp Loop ; the loop was unrolled 2 times and stores

re-arranged to make sure two stores to
the same cache line are placed one after
another. Now stores to addresses [x] and
[x+32] are to the same cache line and
could be paired together and executed in
same cycle

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2-20

— Galois Field New Instructions (GFNI) for acceleration of various encryption algorithms, error
correction algorithms, and bit matrix multiplications.

— Vector AES and Vector Carry-less Multiply (PCLMULQDQ) instructions to accelerate AES and AES-
GCM.

• Security Technologies

— Intel® SGX enhancements to improve usability and applicability: EDMM, multi-package server
support, support for VMM memory oversubscription, performance, larger secure memory.

• Sub Page protection for better performance of security VMMs.
• Targeted Acceleration

— Vector Bit Manipulation Instructions: VBMI1 (permutes, shifts) and VBMI2 (Expand, Compress,
Shifts)- used for columnar database access, dictionary based decompression, discrete mathe-
matics, and data-mining routines (bit permutation and bit-matrix-multiplication).

— VNNI with support for integer 8 and 16 bits data types- CNN/ML/DL acceleration.

— Bit Algebra (POPCNT, Bit Shuffle).

— Cache line writeback instruction (CLWB) enables fast cache-line update to memory, while
retaining clean copy in cache.

• Platform analysis features for more efficient performance software tuning and debug.

— AnyThread removal.

— 2x general counters (up to 8 per-thread).

— Fixed Counter 3 for issue slots.

— New performance metrics for built-in support for Level 1 Top-Down method (% of Issue slots that
are front-end bound, back-end bound, bad speculation, retiring) while leaving the 8 general
purpose counters free for software use.

2.4.1.5 Ice Lake Client Microarchitecture Power Management
Processors based on Ice Lake Client microarchitecture are the first client processors whose cores may
execute at a different frequency from one another. The frequency is selected based on the specific
instruction mix; the type, width and number of vector instructions of the program that executes on each
core, the ratio between active time and idle time of each core, and other considerations such as how
many cores share similar characteristics.

Most of the power management features of Skylake Server Microarchitecture (see Section 2.5) is appli-
cable to Ice Lake Client microarchitecture as well. The main differences are the following:
• The typical P0n max frequency difference between Intel® Advanced Vector Extensions (Intel® AVX-

512) and Intel® Advanced Vector Extensions 2 (Intel® AVX2) on Ice Lake Client microarchitecture is
much lower than on Skylake Server microarchitecture. Therefore, the negative impact on overall
application performance is much smaller.

• All processors based on Ice Lake Client microarchitecture contain a single 512-bit FMA unit, whereas
some of the processors based on Skylake Server microarchitecture contain two such units. Both
processors contain two 256-bit FMA units. The power consumed by Ice Lake Client FMA units is the
same, whereas on Skylake Server the 512-bit units consume twice as much.

Compute heavy workloads, especially those that span multiple Ice Lake client cores, execute at a lower
frequency than P0n, both under Intel AVX-512 and under Intel AVX2 instruction sets, due to power
limitations. In this scenario, Intel AVX-512 architecture, which requires less dynamic instructions to
complete the same task than Intel AVX2 architecture, consumes less power and thus may achieve higher
frequency. The net result may be higher performance due to the shorter path length and a bit higher
frequency.

There are still some cases where coding to the Intel AVX-512 instruction set yields lower performance
than when coding to the Intel AVX2 instruction set. Sometimes it is due to microarchitecture artifacts of

2-21

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

longer vectors, in other cases the natural vectors are just not long enough. Most compilers are still
maturing their Intel AVX-512 support, and it may take them a few more years to generate optimal code.

The general recommendation in the Skylake Server Power Management section (see Section 2.5.3) still
holds. Developers should code to the Intel AVX-512 instruction set and compare the performance to their
Intel AVX2 workload on Ice Lake Client microarchitecture, before making the decision to proceed with a
complete port.

2.5 SKYLAKE SERVER MICROARCHITECTURE
The Intel® Xeon® Processor Scalable Family is based on the Skylake Server microarchitecture. Proces-
sors based on the Skylake microarchitecture can be identified using CPUID’s DisplayFamily_DisplayModel
signature, which can be found in Table 2-1 of CHAPTER 2 of Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 4.

The Skylake Server microarchitecture introduces the following new features1 that allow you to optimize
your application for performance and power consumption.
• A new core based on the Skylake Server microarchitecture with process improvements based on the

Kaby Lake microarchitecture.
• Intel® Advanced Vector Extensions 512 (Intel® AVX-512) support.
• More cores per socket (max 28 vs. max 22).
• 6 memory channels per socket in Skylake microarchitecture vs. 4 in the Broadwell microarchitecture.
• Bigger L2 cache, smaller non inclusive L3 cache.
• Intel® Optane™ support.
• Intel® Omni-Path Architecture (Intel® OPA).
• Sub-NUMA Clustering (SNC) support.

The green stars in Figure 2-4 represent new features in Skylake Server microarchitecture compared to
Skylake microarchitecture for client; a 1MB L2 cache and an additional Intel AVX-512 FMA unit on port 5
which is available on some parts.

Since port 0 and port 1 are 256-bits wide, Intel AVX-512 operations that will be dispatched to port 0 will
execute on both port 0 and port 1; however, other operations such as lea can still execute on port 1 in
parallel. See the red block in Figure 2-8 for the fusion of ports 0 and 1.
Notice that, unlike Skylake microarchitecture for client, the Skylake Server microarchitecture has its
front end loop stream detector (LSD) disabled.

1. Some features may not be available on all products.

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2-22

2.5.1 Skylake Server Microarchitecture Cache
The Intel Xeon Processor Scalable Family based on Skylake Server microarchitecture has significant
changes in core and uncore architecture to improve performance and scalability of several components
compared with the previous generation of the Intel Xeon processor family based on Broadwell microar-
chitecture.

2.5.1.1 Larger Mid-Level Cache
Skylake Server microarchitecture implements a mid-level (L2) cache of 1 MB capacity with a minimum
load-to-use latency of 14 cycles. The mid-level cache capacity is four times larger than the capacity in
previous Intel Xeon processor family implementations. The line size of the mid-level cache is 64B and it
is 16-way associative. The mid-level cache is private to each core.

Software that has been optimized to place data in mid-level cache may have to be revised to take advan-
tage of the larger mid-level cache available in Skylake Server microarchitecture.

2.5.1.2 Non-Inclusive Last Level Cache
The last level cache (LLC) in Skylake is a non-inclusive, distributed, shared cache. The size of each of the
banks of last level cache has shrunk to 1.375 MB per bank. Because of the non-inclusive nature of the last
level cache, blocks that are present in the mid-level cache of one of the cores may not have a copy resi-

Figure 2-4. Processor Core Pipeline Functionality of the Skylake Server Microarchitecture

2-23

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

dent in a bank of last level cache. Based on the access pattern, size of the code and data accessed, and
sharing behavior between cores for a cache block, the last level cache may appear as a victim cache of
the mid-level cache and the aggregate cache capacity per core may appear to be a combination of the
private mid-level cache per core and a portion of the last level cache.

2.5.1.3 Skylake Server Microarchitecture Cache Recommendations
A high-level comparison between Skylake Server microarchitecture cache and the previous generation
Broadwell microarchitecture cache is available in the table below.

The figure below shows how Skylake Server microarchitecture shifts the memory balance from shared-
distributed with high latency, to private-local with low latency.

Table 2-9. Cache Comparison Between Skylake Microarchitecture and Broadwell Microarchitecture

Cache level Category Broadwell
Microarchitecture

Skylake Server
Microarchitecture

L1 Data Cache
Unit (DCU)

Size [KB] 32 32

Latency [cycles] 4-6 4-6

Max bandwidth [bytes/cycles] 96 192

Sustained bandwidth [bytes/cycles] 93 133

Associativity [ways] 8 8

L2 Mid-level Cache
(MLC)

Size [KB] 256 1024 (1MB)

Latency [cycles] 12 14

Max bandwidth [bytes/cycles] 32 64

Sustained bandwidth [bytes/cycles] 25 52

Associativity [ways] 8 16

L3 Last-level
Cache (LLC)

Size [MB] Up to 2.5 per core up to 1.3751 per core

NOTES:
1. Some Skylake Server parts have some cores disabled and hence have more than 1.375 MB per core of L3 cache.

Latency [cycles] 50-60 50-70

Max bandwidth [bytes/cycles] 16 32

Sustained bandwidth [bytes/cycles] 14 15

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2-24

The potential performance benefit from the cache changes is high, but software will need to adapt its
memory tiling strategy to be optimal for the new cache sizes.
Recommendation: Rebalance application shared and private data sizes to match the smaller, non-
inclusive L3 cache, and larger L2 cache.

Choice of cache blocking should be based on application bandwidth requirements and changes from one
application to another. Having four times the L2 cache size and twice the L2 cache bandwidth compared
to the previous generation Broadwell microarchitecture enables some applications to block to L2 instead
of L1 and thereby improves performance.

Recommendation: Consider blocking to L2 on Skylake Server microarchitecture if L2 can sustain the
application’s bandwidth requirements.

The change from inclusive last level cache to non-inclusive means that the capacity of mid-level and last
level cache can now be added together. Programs that determine cache capacity per core at run time
should now use a combination of mid-level cache size and last level cache size per core to estimate the
effective cache size per core. Using just the last level cache size per core may result in non-optimal use
of available on-chip cache; see Section 2.5.2 for details.

Recommendation: In case of no data sharing, applications should consider cache capacity per core as
L2 and L3 cache sizes and not only L3 cache size.

2.5.2 Non-Temporal Stores on Skylake Server Microarchitecture
Because of the change in the size of each bank of last level cache on Skylake Server microarchitecture, if
an application, library, or driver only considers the last level cache to determine the size of on-chip cache-
per-core, it may see a reduction with Skylake Server microarchitecture and may use non-temporal store
with smaller blocks of memory writes. Since non-temporal stores evict cache lines back to memory, this
may result in an increase in the number of subsequent cache misses and memory bandwidth demands
on Skylake Server microarchitecture, compared to the previous Intel Xeon processor family.

Also, because of a change in the handling of accesses resulting from non-temporal stores by Skylake
Server microarchitecture, the resources within each core remain busy for a longer duration compared to
similar accesses on the previous Intel Xeon processor family. As a result, if a series of such instructions
are executed, there is a potential that the processor may run out of resources and stall, thus limiting the
memory write bandwidth from each core.

Figure 2-5. Broadwell Microarchitecture and Skylake Server Microarchitecture Cache Structures

2-25

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

The increase in cache misses due to overuse of non-temporal stores and the limit on the memory write
bandwidth per core for non-temporal stores may result in reduced performance for some applications.

To avoid the performance condition described above with Skylake Server microarchitecture, include mid-
level cache capacity per core in addition to the last level cache per core for applications, libraries, or
drivers that determine the on-chip cache available with each core. Doing so optimizes the available on-
chip cache capacity on Skylake Server microarchitecture as intended, with its non-inclusive last level
cache implementation.

2.5.3 Skylake Server Power Management
This section describes the interaction of Skylake Server's Power Management and its Vector ISA.

Skylake Server microarchitecture dynamically selects the frequency at which each of its cores executes.
The selected frequency depends on the instruction mix; the type, width, and number of vector instruc-
tions that execute over a given period of time. The processor also takes into account the number of cores
that share similar characteristics.

Intel® Xeon® processors based on Broadwell microarchitecture work similarly, but to a lesser extent
since they only support 256-bit vector instructions. Skylake Server microarchitecture supports Intel®
AVX-512 instructions, which can potentially draw more current and more power than Intel® AVX2
instructions.

The processor dynamically adjusts its maximum frequency to higher or lower levels as necessary, there-
fore a program might be limited to different maximum frequencies during its execution.

Table 2-10 includes information about the maximum Intel® Turbo Boost technology core frequency for
each type of instruction executed. The maximum frequency (P0n) is an array of frequencies which
depend on the number of cores within the category. The more cores belonging to a category at any given
time, the lower the maximum frequency.

For per SKU max frequency details (reference figure 1-15), refer to the Intel® Xeon® Processor Scalable
Family Specification Update located here: https://www.intel.com/content/www/us/en/proces-
sors/xeon/scalable/xeon-scalable-spec-update.html.

Table 2-10. Maximum Intel® Turbo Boost Technology Core Frequency Levels

Level Category Frequency Level Max Frequency (P0n) Instruction Types

0 Intel® AVX2 light
instructions

Highest Max Scalar, AVX128, SSE, Intel® AVX2 w/o FP
or INT MUL/FMA

1 Intel® AVX2 heavy
instructions +
Intel® AVX-512
light instructions

Medium Max Intel® AVX2 Intel® AVX2 FP + INT MUL/FMA, Intel®
AVX-512 without FP or INT MUL/FMA

2 Intel® AVX-512
heavy instructions

Lowest Max Intel® AVX-512 Intel® AVX-512 FP + INT MUL/FMA

https://www.intel.com/content/www/us/en/processors/xeon/scalable/xeon-scalable-spec-update.html
https://www.intel.com/content/www/us/en/processors/xeon/scalable/xeon-scalable-spec-update.html

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2-26

Figure 2-6 is an example for core frequency range in a given system where each core frequency is deter-
mined independently based on the demand of the workload.

The following performance monitoring events can be used to determine how many cycles were spent in
each of the three frequency levels.
• CORE_POWER.LVL0_TURBO_LICENSE: Core cycles where the core was running in a manner where

the maximum frequency was P0n.
• CORE_POWER.LVL1_TURBO_LICENSE: Core cycles where the core was running in a manner where

the maximum frequency was P0n-AVX2.
• CORE_POWER.LVL2_TURBO_LICENSE: Core cycles where the core was running in a manner where

the maximum frequency was P0n-AVX-512.

When the core requests a higher license level than its current one, it takes the PCU up to 500 micro-
seconds to grant the new license. Until then the core operates at a lower peak capability. During this time
period the PCU evaluates how many cores are executing at the new license level and adjusts their
frequency as necessary, potentially lowering the frequency. Cores that execute at other license levels are
not affected.

A timer of approximately 2ms is applied before going back to a higher frequency level. Any condition that
would have requested a new license resets the timer.

NOTES
A license transition request may occur when executing instructions on a mis-speculated
path.

A large enough mix of Intel AVX-512 light instructions and Intel AVX2 heavy instructions
drives the core to request License 2, despite the fact that they usually map to License 1.
The same is true for Intel AVX2 light instructions and Intel SSE heavy instructions that
may drive the core to License 1 rather than License 0. For example, The Intel® Xeon®
Platinum 8180 processor moves from license 1 to license 2 when executing a mix of 110
Intel AVX-512 light instructions and 20 256-bit heavy instructions over a window of 65
cycles.

Figure 2-6. Mixed Workloads

SOM00060

Cores using Intel®AVX-512

Cores using Intel® AVX2

Cores not using Intel®AVX

AVX512

AVX2

Non-AVX

P0n

P0n-AVX2

P0n-AVX-512

P1

P1-AVX2

P1-AVX-512

Mixed Workloads

Cores

F
re

q
u

en
cy

A
V

X
2

A
V

X
5

12

N
o

n
-A

V
X

A
V

X
2

N
o

n
-A

V
X

...

2-27

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Some workloads do not cause the processor to reach its maximum frequency as these workloads are
bound by other factors. For example, the LINPACK benchmark is power limited and does not reach the
processor's maximum frequency. The following graph shows how frequency degrades as vector width
grows, but, despite the frequency drop, performance improves. The data for this graph was collected on
an Intel Xeon Platinum 8180 processor.

Workloads that execute Intel AVX-512 instructions as a large proportion of their whole instruction count
can gain performance compared to Intel AVX2 instructions, even though they may operate at a lower
frequency. For example, maximum frequency bound Deep Learning workloads that target Intel AVX-512
heavy instructions at a very high percentage can gain 1.3x-1.5x performance improvement vs. the same
workload built to target Intel AVX2 (both operating on Skylake Server microarchitecture).

It is not always easy to predict whether a program's performance will improve from building it to target
Intel AVX-512 instructions. Programs that enjoy high performance gains from the use of xmm or ymm
registers may expect performance improvement by moving to the use of zmm registers. However, some
programs that use zmm registers may not gain as much, or may even lose performance. It is recom-
mended to try multiple build options and measure the performance of the program.

Recommendation: To identify the optimal compiler options to use, build the application with each of the
following set of options and choose the set that provides the best performance.
• -xCORE-AVX2 -mtune=skylake-avx512 (Linux* and macOS*)

/QxCORE-AVX2 /tune=skylake-avx512 (Windows*)
• -xCORE-AVX512 -qopt-zmm-usage=low (Linux* and macOS*)

/QxCORE-AVX512 /Qopt-zmm-usage:low (Windows*)
• -xCORE-AVX512 -qopt-zmm-usage=high (Linux* and macOS*)

/QxCORE-AVX512 /Qopt-zmm-usage:high (Windows*)

See Section 18.26, “CLDEMOTE” for more information about these options.

Figure 2-7. LINPACK Performance

SOM00061

3500

3000

2500

2000

1500

1000

500

0

3.5

3.0

2.5

2.0

1.5

1.0
760

1178

2034

3259

669 768 791 767

2.1

SSE4.2 AVX AVX2 AVX512

C
or

e
F

re
qu

e
nc

y

G
F

LO
P

s,
 S

ys
te

m
 P

o
w

er

2.5

2.8

3.1

GFLOPs Power (W) Frequency (GHz)

LINPACK Performance

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2-28

The GCC Compiler has the option -mprefer-vector-width=none|128|256|512 to control vector width
preference. While -march=skylake-avx512 is designed to provide the best performance for the Skylake
Server microarchitecture some programs can benefit from different vector width preferences. To identify
the optimal compiler options to use, build the application with each of the following set of options and
choose the set that provides the best performance. -mprefer-vector-width=256 is the default for
skylake-avx512.
• -march=skylake -mtune=skylake-avx512

• -march=skylake-avx512

• -march=skylake-avx512 -mprefer-vector-width=512

Clang/LLVM is currently implementing the option -mprefer-vector-width=none|128|256|512, similar
to GCC. To identify the optimal compiler options to use, build the application with each of the following
set of options and choose the set that provides the best performance.
• -march=skylake -mtune=skylake-avx512

• -march=skylake-avx512 (plus -mprefer-vector-width=256, if available)

• -march=skylake-avx512 (plus -mprefer-vector-width=512, if available)

2.6 SKYLAKE CLIENT MICROARCHITECTURE
The Skylake Client microarchitecture builds on the successes of the Haswell and Broadwell microarchitec-
tures. The basic pipeline functionality of the Skylake Client microarchitecture is depicted in Figure 2-8.

Figure 2-8. CPU Core Pipeline Functionality of the Skylake Client Microarchitecture

32K L1 Instruction
Cache

MSROM Decoded Icache
(DSB)

Legacy Decode
Pipeline

Instruction Decode Queue (IDQ,, or micro‐op queue)

Allocate/Rename/Retire/MoveElimination/ZeroIdiom

32K L1 Data Cache

256K L2 Cache
(Unified)

Int ALU,
Vec FMA,
Vec MUL,
Vec Add,
Vec ALU,
Vec Shft,
Divide,
Branch2

Port 2
LD/STA

Scheduler

BPU

Port 0

Int ALU,
Fast LEA,
Vec FMA,
Vec MUL,
Vec Add,
Vec ALU,
Vec Shft,
Int MUL,
Slow LEA

Int ALU,
Fast LEA,
Vec SHUF,
Vec ALU,
CVT

Int ALU,
Int Shft,
Branch1,

Port 3
LD/STA

Port 4
STD

Port 7
STA

Port 1 Port 5 Port 6

5 uops/cycle4 uops/cycle
6 uops/cycle

2-29

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

The Skylake Client microarchitecture offers the following enhancements:
• Larger internal buffers to enable deeper OOO execution and higher cache bandwidth.
• Improved front end throughput.
• Improved branch predictor.
• Improved divider throughput and latency.
• Lower power consumption.
• Improved SMT performance with Hyper-Threading Technology.
• Balanced floating-point ADD, MUL, FMA throughput and latency.

The microarchitecture supports flexible integration of multiple processor cores with a shared uncore sub-
system consisting of a number of components including a ring interconnect to multiple slices of L3 (an
off-die L4 is optional), processor graphics, integrated memory controller, interconnect fabrics, etc. A
four-core configuration can be supported similar to the arrangement shown in Appendix E, “Earlier
Generations of Intel® 64 and IA-32 Processor Architectures,” Figure E-2.

2.6.1 The Front End
The front end in the Skylake Client microarchitecture provides the following improvements over previous
generation microarchitectures:
• Legacy Decode Pipeline delivery of 5 uops per cycle to the IDQ compared to 4 uops in previous gener-

ations.
• The DSB delivers 6 uops per cycle to the IDQ compared to 4 uops in previous generations.
• The IDQ can hold 64 uops per logical processor vs. 28 uops per logical processor in previous

generations when two sibling logical processors in the same core are active (2x64 vs. 2x28 per core).
If only one logical processor is active in the core, the IDQ can hold 64 uops (64 vs. 56 uops in ST
operation).

• The LSD in the IDQ can detect loops up to 64 uops per logical processor irrespective ST or SMT
operation.

• Improved Branch Predictor.

2.6.2 The Out-of-Order Execution Engine
The Out of Order and execution engine changes in Skylake Client microarchitecture include:
• Larger buffers enable deeper OOO execution compared to previous generations.
• Improved throughput and latency for divide/sqrt and approximate reciprocals.
• Identical latency and throughput for all operations running on FMA units.
• Longer pause latency enables better power efficiency and better SMT performance resource utili-

zation.

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2-30

Table 2-11 summarizes the OOO engine’s capability to dispatch different types of operations to various
ports.

Table 2-12 lists execution units and common representative instructions that rely on these units.
Throughput improvements across the SSE, AVX and general-purpose instruction sets are related to the
number of units for the respective operations, and the varieties of instructions that execute using a
particular unit.

Table 2-11. Dispatch Port and Execution Stacks of the Skylake Client Microarchitecture

Port 0 Port 1 Port 2, 3 Port 4 Port 5 Port 6 Port 7

ALU,

Vec ALU

ALU,

Fast LEA,

Vec ALU

LD

STA

STD ALU,

Fast LEA,

Vec ALU,

ALU,

Shft,

STA

Vec Shft,

Vec Add,

Vec Shft,

Vec Add,

Vec Shuffle, Branch1

Vec Mul,

FMA,

Vec Mul,

FMA

DIV, Slow Int

Branch2 Slow LEA

Table 2-12. Skylake Client Microarchitecture Execution Units and Representative Instructions1

NOTES:
1. Execution unit mapping to MMX instructions are not covered in this table. See Section 15.16.5 on MMX instruction

throughput remedy.

Execution
Unit

of
Unit

Instructions

ALU 4 add, and, cmp, or, test, xor, movzx, movsx, mov, (v)movdqu, (v)movdqa, (v)movap*, (v)movup*

SHFT 2 sal, shl, rol, adc, sarx, adcx, adox, etc.

Slow Int 1 mul, imul, bsr, rcl, shld, mulx, pdep, etc.

BM 2 andn, bextr, blsi, blsmsk, bzhi, etc

Vec ALU 3 (v)pand, (v)por, (v)pxor, (v)movq, (v)movq, (v)movap*, (v)movup*,

(v)andp*, (v)orp*, (v)paddb/w/d/q, (v)blendv*, (v)blendp*, (v)pblendd

Vec_Shft 2 (v)psllv*, (v)psrlv*, vector shift count in imm8

Vec Add 2 (v)addp*, (v)cmpp*, (v)max*, (v)min*, (v)padds*, (v)paddus*, (v)psign, (v)pabs, (v)pavgb,
(v)pcmpeq*, (v)pmax, (v)cvtps2dq, (v)cvtdq2ps, (v)cvtsd2si, (v)cvtss2si

Shuffle 1 (v)shufp*, vperm*, (v)pack*, (v)unpck*, (v)punpck*, (v)pshuf*, (v)pslldq, (v)alignr, (v)pmovzx*,
vbroadcast*, (v)pslldq, (v)psrldq, (v)pblendw

Vec Mul 2 (v)mul*, (v)pmul*, (v)pmadd*,

SIMD Misc 1 STTNI, (v)pclmulqdq, (v)psadw, vector shift count in xmm,

FP Mov 1 (v)movsd/ss, (v)movd gpr,

DIVIDE 1 divp*, divs*, vdiv*, sqrt*, vsqrt*, rcp*, vrcp*, rsqrt*, idiv

2-31

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

A significant portion of the SSE, AVX and general-purpose instructions also have latency improvements.
Appendix C lists the specific details. Software-visible latency exposure of an instruction sometimes may
include additional contributions that depend on the relationship between micro-ops flows of the producer
instruction and the micro-op flows of the ensuing consumer instruction. For example, a two-uop instruc-
tion like VPMULLD may experience two cumulative bypass delays of 1 cycle each from each of the two
micro-ops of VPMULLD.

Table 2-13 describes the bypass delay in cycles between a producer uop and the consumer uop. The left-
most column lists a variety of situations characteristic of the producer micro-op. The top row lists a
variety of situations characteristic of the consumer micro-op.

The attributes that are relevant to the producer/consumer micro-ops for bypass are a triplet of abbrevi-
ation/one or more port number/latency cycle of the uop. For example:
• “SIMD/0,1/1” applies to 1-cycle vector SIMD uop dispatched to either port 0 or port 1.
• “VIMUL/0,1/4” applies to 4-cycle vector integer multiply uop dispatched to either port 0 or port 1.
• “SIMD/5/1,3” applies to either 1-cycle or 3-cycle non-shuffle uop dispatched to port 5.

2.6.3 Cache and Memory Subsystem
The cache hierarchy of the Skylake Client microarchitecture has the following enhancements:
• Higher Cache bandwidth compared to previous generations.
• Simultaneous handling of more loads and stores enabled by enlarged buffers.
• Processor can do two page walks in parallel compared to one in Haswell microarchitecture and earlier

generations.
• Page split load penalty down from 100 cycles in previous generation to 5 cycles.
• L3 write bandwidth increased from 4 cycles per line in previous generation to 2 per line.
• Support for the CLFLUSHOPT instruction to flush cache lines and manage memory ordering of flushed

data using SFENCE.
• Reduced performance penalty for a software prefetch that specifies a NULL pointer.
• L2 associativity changed from 8 ways to 4 ways.

Table 2-13. Bypass Delay Between Producer and Consumer Micro-ops

SIMD/0,1/1 FMA/0,1/4 VIMUL/0,1/4 SIMD/5/1,3 SHUF/5/1,3 V2I/0/3 I2V/5/1

SIMD/0,1/1 0 1 1 0 0 0 NA

FMA/0,1/4 1 0 1 0 0 0 NA

VIMUL/0,1/4 1 0 1 0 0 0 NA

SIMD/5/1,3 0 1 1 0 0 0 NA

SHUF/5/1,3 0 0 1 0 0 0 NA

V2I/0/3 NA NA NA NA NA NA NA

I2V/5/1 0 0 1 0 0 0 NA

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2-32

The TLB hierarchy consists of dedicated level one TLB for instruction cache, TLB for L1D, plus unified TLB
for L2. The partition column of Table 2-15 indicates the resource sharing policy when Hyper-Threading
Technology is active.

2.6.4 Pause Latency in Skylake Client Microarchitecture
The PAUSE instruction is typically used with software threads executing on two logical processors located
in the same processor core, waiting for a lock to be released. Such short wait loops tend to last between
tens and a few hundreds of cycles, so performance-wise it is better to wait while occupying the CPU than
yielding to the OS. When the wait loop is expected to last for thousands of cycles or more, it is preferable
to yield to the operating system by calling an OS synchronization API function, such as WaitForSingleO-
bject on Windows* OS or futex on Linux.

The PAUSE instruction is intended to:
• Temporarily provide the sibling logical processor (ready to make forward progress exiting the spin

loop) with competitively shared hardware resources. The competitively-shared microarchitectural
resources that the sibling logical processor can utilize in the Skylake Client microarchitecture are
listed below.

— Front end slots in the Decode ICache, LSD and IDQ.

— Execution slots in the RS.
• Save power consumed by the processor core compared with executing equivalent spin loop

instruction sequence in the following configurations.

— One logical processor is inactive (e.g., entering a C-state).

— Both logical processors in the same core execute the PAUSE instruction.

Table 2-14. Cache Parameters of the Skylake Client Microarchitecture

Level
Capacity /
Associativity

Line Size
(bytes)

Fastest
Latency1

NOTES:
1. Software-visible latency will vary depending on access patterns and other factors.

Peak Bandwidth
(bytes/cyc)

Sustained Bandwidth
(bytes/cyc)

Update
Policy

First Level Data 32 KB/ 8 64 4 cycle 96 (2x32B Load +
1*32B Store)

~81 Writeback

Instruction 32 KB/8 64 N/A N/A N/A N/A

Second Level 256KB/4 64 12 cycle 64 ~29 Writeback

Third Level
(Shared L3)

Up to 2MB
per core/Up
to 16 ways

64 44 32 ~18 Writeback

Table 2-15. TLB Parameters of the Skylake Client Microarchitecture

Level Page Size Entries Associativity Partition

Instruction 4KB 128 8 ways dynamic

Instruction 2MB/4MB 8 per thread fixed

First Level Data 4KB 64 4 fixed

First Level Data 2MB/4MB 32 4 fixed

First Level Data 1GB 4 4 fixed

Second Level Shared by 4KB and 2/4MB pages 1536 12 fixed

Second Level 1GB 16 4 fixed

2-33

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

— HT is disabled (e.g. using BIOS options).

The latency of the PAUSE instruction in prior generation microarchitectures is about 10 cycles, whereas
in Skylake Client microarchitecture it has been extended to as many as 140 cycles.

The increased latency (allowing more effective utilization of competitively-shared microarchitectural
resources to the logical processor ready to make forward progress) has a small positive performance
impact of 1-2% on highly threaded applications. It is expected to have negligible impact on less threaded
applications if forward progress is not blocked executing a fixed number of looped PAUSE instructions.
There's also a small power benefit in 2-core and 4-core systems.

As the PAUSE latency has been increased significantly, workloads that are sensitive to PAUSE latency will
suffer some performance loss.

The following is an example of how to use the PAUSE instruction with a dynamic loop iteration count.

Notice that in the Skylake Client microarchitecture the RDTSC instruction counts at the machine's guar-
anteed P1 frequency independently of the current processor clock (see the INVARIANT TSC property),
and therefore, when running in Intel® Turbo-Boost-enabled mode, the delay will remain constant, but
the number of instructions that could have been executed will change.

Use Poll Delay function in your lock to wait a given amount of guaranteed P1 frequency cycles, specified
in the “clocks” variable.

For contended spinlocks of the form shown in the baseline example below, we recommend an exponen-
tial back off when the lock is found to be busy, as shown in the improved example, to avoid significant
performance degradation that can be caused by conflicts between threads in the machine. This is more
important as we increase the number of threads in the machine and make changes to the architecture
that might aggravate these conflict conditions. In multi-socket Intel server processors with shared
memory, conflicts across threads take much longer to resolve as the number of threads contending for
the same lock increases. The exponential back off is designed to avoid these conflicts between the
threads thus avoiding the potential performance degradation. Note that in the example below, the

Example 2-8. Dynamic Pause Loop Example
#include <x86intrin.h>
#include <stdint.h>

/* A useful predicate for dealing with timestamps that may wrap.
 Is a before b? Since the timestamps may wrap, this is asking whether it's
 shorter to go clockwise from a to b around the clock-face, or anti-clockwise.
 Times where going clockwise is less distance than going anti-clockwise
 are in the future, others are in the past. e.g. a = MAX-1, b = MAX+1 (=0),
 then a > b (true) does not mean a reached b; whereas signed(a) = -2,
 signed(b) = 0 captures the actual difference */

static inline bool before(uint64_t a, uint64_t b)
{
 return ((int64_t)b - (int64_t)a) > 0;
}

void pollDelay(uint32_t clocks)
{
 uint64_t endTime = _rdtsc()+ clocks;

 for (; before(_rdtsc(), endTime);)
 _mm_pause();
}

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2-34

number of PAUSE instructions are increased by a factor of 2 until some MAX_BACKOFF is reached which
is subject to tuning.

2.7 INTEL® HYPER-THREADING TECHNOLOGY
Intel® Hyper-Threading Technology (HT Technology) enables software to take advantage of task-level,
or thread-level parallelism by providing multiple logical processors within a physical processor package,
or within each processor core in a physical processor package. In its first implementation in the Intel
Xeon processor, Hyper-Threading Technology makes a single physical processor (or a processor core)
appear as two or more logical processors. Intel Xeon Phi processors based on the Knights Landing
microarchitecture support 4 logical processors in each processor core; see Chapter 23 for detailed infor-
mation of Hyper-Threading Technology that is implemented in the Knights Landing microarchitecture.

Most Intel Architecture processor families support Hyper-Threading Technology with two logical proces-
sors in each processor core, or in a physical processor in early implementations. The rest of this section
describes features of the early implementation of Hyper-Threading Technology. Most of the descriptions
also apply to later Hyper-Threading Technology implementations supporting two logical processors. The
microarchitecture sections in this chapter provide additional details to individual microarchitecture and
enhancements to Hyper-Threading Technology.

The two logical processors each have a complete set of architectural registers while sharing one single
physical processor's resources. By maintaining the architecture state of two processors, an HT Tech-

Example 2-9. Contended Locks with Increasing Back-off Example
/*******************/
/*Baseline Version */
/*******************/

// atomic {if (lock == free) then change lock state to busy}
while (cmpxchg(lock, free, busy) == fail)
{
 while (lock == busy)
 {
 __asm__ ("pause");
 }
}

/*******************/
/*Improved Version */
/*******************/

int mask = 1;
int const max = 64; //MAX_BACKOFF
while (cmpxchg(lock, free, busy) == fail)
{
 while (lock == busy)
 {
 for (int i=mask; i; --i){
 __asm__ ("pause");
 }

 mask = mask < max ? mask<<1 : max;
 }
}

2-35

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

nology capable processor looks like two processors to software, including operating system and applica-
tion code.

By sharing resources needed for peak demands between two logical processors, HT Technology is well
suited for multiprocessor systems to provide an additional performance boost in throughput when
compared to traditional MP systems.

Figure 2-9 shows a typical bus-based symmetric multiprocessor (SMP) based on processors supporting
HT Technology. Each logical processor can execute a software thread, allowing a maximum of two soft-
ware threads to execute simultaneously on one physical processor. The two software threads execute
simultaneously, meaning that in the same clock cycle an “add” operation from logical processor 0 and
another “add” operation and load from logical processor 1 can be executed simultaneously by the execu-
tion engine.

In the first implementation of HT Technology, the physical execution resources are shared and the archi-
tecture state is duplicated for each logical processor. This minimizes the die area cost of implementing HT
Technology while still achieving performance gains for multithreaded applications or multitasking work-
loads.

The performance potential due to HT Technology is due to:
• The fact that operating systems and user programs can schedule processes or threads to execute

simultaneously on the logical processors in each physical processor.
• The ability to use on-chip execution resources at a higher level than when only a single thread is

consuming the execution resources; higher level of resource utilization can lead to higher system
throughput.

2.7.1 Processor Resources and HT Technology
The majority of microarchitecture resources in a physical processor are shared between the logical
processors. Only a few small data structures were replicated for each logical processor. This section
describes how resources are shared, partitioned or replicated.

Figure 2-9. Hyper-Threading Technology on an SMP

OM15152

Bus Interface

Execution Engine

Architectural
State

Architectural
State

Local APIC Local APIC

System Bus

Execution Engine

Architectural
State

Architectural
State

Local APIC Local APIC

Bus Interface

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2-36

2.7.1.1 Replicated Resources
The architectural state is replicated for each logical processor. The architecture state consists of registers
that are used by the operating system and application code to control program behavior and store data
for computations. This state includes the eight general-purpose registers, the control registers, machine
state registers, debug registers, and others. There are a few exceptions, most notably the memory type
range registers (MTRRs) and the performance monitoring resources. For a complete list of the architec-
ture state and exceptions, see the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volumes 3A, 3B, 3C & 3D.

Other resources such as instruction pointers and register renaming tables were replicated to simultane-
ously track execution and state changes of the two logical processors. The return stack predictor is repli-
cated to improve branch prediction of return instructions.

In addition, a few buffers (for example, the 2-entry instruction streaming buffers) were replicated to
reduce complexity.

2.7.1.2 Partitioned Resources
Several buffers are shared by limiting the use of each logical processor to half the entries. These are
referred to as partitioned resources. Reasons for this partitioning include:
• Operational fairness.
• Permitting the ability to allow operations from one logical processor to bypass operations of the other

logical processor that may have stalled.

For example: a cache miss, a branch misprediction, or instruction dependencies may prevent a logical
processor from making forward progress for some number of cycles. The partitioning prevents the stalled
logical processor from blocking forward progress.

In general, the buffers for staging instructions between major pipe stages are partitioned. These buffers
include µop queues after the execution trace cache, the queues after the register rename stage, the
reorder buffer which stages instructions for retirement, and the load and store buffers.

In the case of load and store buffers, partitioning also provided an easier implementation to maintain
memory ordering for each logical processor and detect memory ordering violations.

2.7.1.3 Shared Resources
Most resources in a physical processor are fully shared to improve the dynamic utilization of the resource,
including caches and all the execution units. Some shared resources which are linearly addressed, like
the DTLB, include a logical processor ID bit to distinguish whether the entry belongs to one logical
processor or the other.

2.7.2 Microarchitecture Pipeline and HT Technology
This section describes the HT Technology microarchitecture and how instructions from the two logical
processors are handled between the front end and the back end of the pipeline.

Although instructions originating from two programs or two threads execute simultaneously and not
necessarily in program order in the execution core and memory hierarchy, the front end and back end
contain several selection points to select between instructions from the two logical processors. All selec-
tion points alternate between the two logical processors unless one logical processor cannot make use of
a pipeline stage. In this case, the other logical processor has full use of every cycle of the pipeline stage.
Reasons why a logical processor may not use a pipeline stage include cache misses, branch mispredic-
tions, and instruction dependencies.

2-37

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2.7.3 Execution Core
The core can dispatch up to six µops per cycle, provided the µops are ready to execute. Once the µops
are placed in the queues waiting for execution, there is no distinction between instructions from the two
logical processors. The execution core and memory hierarchy is also oblivious to which instructions
belong to which logical processor.

After execution, instructions are placed in the re-order buffer. The re-order buffer decouples the execu-
tion stage from the retirement stage. The re-order buffer is partitioned such that each uses half the
entries.

2.7.4 Retirement
The retirement logic tracks when instructions from the two logical processors are ready to be retired. It
retires the instruction in program order for each logical processor by alternating between the two logical
processors. If one logical processor is not ready to retire any instructions, then all retirement bandwidth
is dedicated to the other logical processor.

Once stores have retired, the processor needs to write the store data into the level-one data cache.
Selection logic alternates between the two logical processors to commit store data to the cache.

2.8 SIMD TECHNOLOGY
SIMD computations (see Figure 2-10) were introduced to the architecture with MMX technology. MMX
technology allows SIMD computations to be performed on packed byte, word, and doubleword integers.
The integers are contained in a set of eight 64-bit registers called MMX registers (see Figure 2-11).

The Pentium III processor extended the SIMD computation model with the introduction of the Streaming
SIMD Extensions (SSE). SSE allows SIMD computations to be performed on operands that contain four
packed single-precision floating-point data elements. The operands can be in memory or in a set of eight
128-bit XMM registers (see Figure 2-11). SSE also extended SIMD computational capability by adding
additional 64-bit MMX instructions.

Figure 2-10 shows a typical SIMD computation. Two sets of four packed data elements (X1, X2, X3, and
X4, and Y1, Y2, Y3, and Y4) are operated on in parallel, with the same operation being performed on each
corresponding pair of data elements (X1 and Y1, X2 and Y2, X3 and Y3, and X4 and Y4). The results of
the four parallel computations are sorted as a set of four packed data elements.

Figure 2-10. Typical SIMD Operations

X4 X3 X2 X1

Y4 Y3 Y2 Y1

X4 op Y4 X3 op Y3 X2 op Y2 X1 op Y1

OP OP OP OP

OM15148

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2-38

The Pentium 4 processor further extended the SIMD computation model with the introduction of
Streaming SIMD Extensions 2 (SSE2), Streaming SIMD Extensions 3 (SSE3), and Intel Xeon processor
5100 series introduced Supplemental Streaming SIMD Extensions 3 (SSSE3).

SSE2 works with operands in either memory or in the XMM registers. The technology extends SIMD
computations to process packed double-precision floating-point data elements and 128-bit packed inte-
gers. There are 144 instructions in SSE2 that operate on two packed double-precision floating-point data
elements or on 16 packed byte, 8 packed word, 4 doubleword, and 2 quadword integers.

SSE3 enhances x87, SSE and SSE2 by providing 13 instructions that can accelerate application perfor-
mance in specific areas. These include video processing, complex arithmetics, and thread synchroniza-
tion. SSE3 complements SSE and SSE2 with instructions that process SIMD data asymmetrically,
facilitate horizontal computation, and help avoid loading cache line splits. See Figure 2-11.

SSSE3 provides additional enhancement for SIMD computation with 32 instructions on digital video and
signal processing.

SSE4.1, SSE4.2 and AESNI are additional SIMD extensions that provide acceleration for applications in
media processing, text/lexical processing, and block encryption/decryption.

The SIMD extensions operates the same way in Intel 64 architecture as in IA-32 architecture, with the
following enhancements:
• 128-bit SIMD instructions referencing XMM register can access 16 XMM registers in 64-bit mode.
• Instructions that reference 32-bit general purpose registers can access 16 general purpose registers

in 64-bit mode.

SIMD improves the performance of 3D graphics, speech recognition, image processing, scientific applica-
tions and applications that have the following characteristics:
• Inherently parallel.
• Recurring memory access patterns.
• Localized recurring operations performed on the data.
• Data-independent control flow.

Figure 2-11. SIMD Instruction Register Usage

MM7

MM6

MM7

MM3

MM2

MM1

MM0

MM5

MM4

MM7

XMM6

XMM7

XMM3

XMM2

XMM1

XMM0

XMM5

XMM4

64-bit MMX Registers 128-bit XMM Registers

OM15149

2-39

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2.9 SUMMARY OF SIMD TECHNOLOGIES AND APPLICATION LEVEL
EXTENSIONS

SIMD floating-point instructions fully support the IEEE Standard 754 for Binary Floating-Point Arithmetic.
They are accessible from all IA-32 execution modes: protected mode, real address mode, and Virtual
8086 mode.

SSE, SSE2, and MMX technologies are architectural extensions. Existing software will continue to run
correctly, without modification on Intel microprocessors that incorporate these technologies. Existing
software will also run correctly in the presence of applications that incorporate SIMD technologies.

SSE and SSE2 instructions also introduced cacheability and memory ordering instructions that can
improve cache usage and application performance.

For more on SSE, SSE2, SSE3 and MMX technologies, see the following chapters in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 1:
• Chapter 9, “Programming with Intel® MMX™ Technology.”
• Chapter 10, “Programming with Streaming SIMD Extensions (SSE).”
• Chapter 11, “Programming with Streaming SIMD Extensions 2 (SSE2).”
• Chapter 12, “Programming with Intel® SSE3, SSSE3,Intel® SSE4 AND Intel® AESNI.”
• Chapter 14, “Programming with AVX, FMA and AVX2.”
• Chapter 15, “Programming with Intel® AVX-512.”
• Chapter 16, “Programming with Intel® Transactional Synchronization Extensions.”

2.9.1 MMX™ Technology
MMX Technology introduced:
• 64-bit MMX registers.
• Support for SIMD operations on packed byte, word, and doubleword integers.

Recommendation: Integer SIMD code written using MMX instructions should consider more efficient
implementations using SSE/Intel AVX instructions.

2.9.2 Streaming SIMD Extensions
Streaming SIMD extensions introduced:
• 128-bit XMM registers.
• 128-bit data type with four packed single-precision floating-point operands.
• Data prefetch instructions.
• Non-temporal store instructions and other cacheability and memory ordering instructions.
• Extra 64-bit SIMD integer support.

SSE instructions are useful for 3D geometry, 3D rendering, speech recognition, and video encoding and
decoding.

2.9.3 Streaming SIMD Extensions 2
Streaming SIMD extensions 2 add the following:
• 128-bit data type with two packed double-precision floating-point operands.
• 128-bit data types for SIMD integer operation on 16-byte, 8-word, 4-doubleword, or 2-quadword

integers.
• Support for SIMD arithmetic on 64-bit integer operands.

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2-40

• Instructions for converting between new and existing data types.
• Extended support for data shuffling.
• Extended support for cacheability and memory ordering operations.

SSE2 instructions are useful for 3D graphics, video decoding/encoding, and encryption.

2.9.4 Streaming SIMD Extensions 3
Streaming SIMD extensions 3 add the following:
• SIMD floating-point instructions for asymmetric and horizontal computation.
• A special-purpose 128-bit load instruction to avoid cache line splits.
• An x87 FPU instruction to convert to integer independent of the floating-point control word (FCW).
• Instructions to support thread synchronization.

SSE3 instructions are useful for scientific, video and multi-threaded applications.

2.9.5 Supplemental Streaming SIMD Extensions 3
The Supplemental Streaming SIMD Extensions 3 introduces 32 new instructions to accelerate eight
types of computations on packed integers. These include:
• 12 instructions that perform horizontal addition or subtraction operations.
• 6 instructions that evaluate the absolute values.
• 2 instructions that perform multiply and add operations and speed up the evaluation of dot products.
• 2 instructions that accelerate packed-integer multiply operations and produce integer values with

scaling.
• 2 instructions that perform a byte-wise, in-place shuffle according to the second shuffle control

operand.
• 6 instructions that negate packed integers in the destination operand if the signs of the corre-

sponding element in the source operand is less than zero.
• 2 instructions that align data from the composite of two operands.

2.9.6 SSE4.1
SSE4.1 introduces 47 new instructions to accelerate video, imaging and 3D applications. SSE4.1 also
improves compiler vectorization and significantly increase support for packed dword computation. These
include:
• Two instructions perform packed dword multiplies.
• Two instructions perform floating-point dot products with input/output selects.
• One instruction provides a streaming hint for WC loads.
• Six instructions simplify packed blending.
• Eight instructions expand support for packed integer MIN/MAX.
• Four instructions support floating-point round with selectable rounding mode and precision exception

override.
• Seven instructions improve data insertion and extractions from XMM registers
• Twelve instructions improve packed integer format conversions (sign and zero extensions).
• One instruction improves SAD (sum absolute difference) generation for small block sizes.
• One instruction aids horizontal searching operations of word integers.
• One instruction improves masked comparisons.

2-41

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

• One instruction adds qword packed equality comparisons.
• One instruction adds dword packing with unsigned saturation.

2.9.7 SSE4.2
SSE4.2 introduces 7 new instructions. These include:
• A 128-bit SIMD integer instruction for comparing 64-bit integer data elements.
• Four string/text processing instructions providing a rich set of primitives, these primitives can

accelerate:

— Basic and advanced string library functions from strlen, strcmp, to strcspn.

— Delimiter processing, token extraction for lexing of text streams.

— Parser, schema validation including XML processing.
• A general-purpose instruction for accelerating cyclic redundancy checksum signature calculations.
• A general-purpose instruction for calculating bit count population of integer numbers.

2.9.8 AESNI and PCLMULQDQ
AESNI introduces 7 new instructions, six of them are primitives for accelerating algorithms based on AES
encryption/decryption standard, referred to as AESNI.

The PCLMULQDQ instruction accelerates general-purpose block encryption, which can perform carry-less
multiplication for two binary numbers up to 64-bit wide.

Typically, algorithm based on AES standard involve transformation of block data over multiple iterations
via several primitives. The AES standard supports cipher key of sizes 128, 192, and 256 bits. The respec-
tive cipher key sizes correspond to 10, 12, and 14 rounds of iteration.

AES encryption involves processing 128-bit input data (plain text) through a finite number of iterative
operation, referred to as “AES round”, into a 128-bit encrypted block (ciphertext). Decryption follows the
reverse direction of iterative operation using the “equivalent inverse cipher” instead of the “inverse
cipher”.

The cryptographic processing at each round involves two input data, one is the “state”, the other is the
“round key”. Each round uses a different “round key”. The round keys are derived from the cipher key
using a “key schedule” algorithm. The “key schedule” algorithm is independent of the data processing of
encryption/decryption, and can be carried out independently from the encryption/decryption phase.

The AES extensions provide two primitives to accelerate AES rounds on encryption, two primitives for
AES rounds on decryption using the equivalent inverse cipher, and two instructions to support the AES
key expansion procedure.

2.9.9 Intel® Advanced Vector Extensions
Intel® Advanced Vector Extensions offers comprehensive architectural enhancements over previous
generations of Streaming SIMD Extensions. Intel AVX introduces the following architectural enhance-
ments:
• Support for 256-bit wide vectors and SIMD register set.
• 256-bit floating-point instruction set enhancement with up to 2X performance gain relative to 128-bit

Streaming SIMD extensions.
• Instruction syntax support for generalized three-operand syntax to improve instruction programming

flexibility and efficient encoding of new instruction extensions.
• Enhancement of legacy 128-bit SIMD instruction extensions to support three-operand syntax and to

simplify compiler vectorization of high-level language expressions.

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2-42

• Support flexible deployment of 256-bit AVX code, 128-bit AVX code, legacy 128-bit code and scalar
code.

Intel AVX instruction set and 256-bit register state management detail are described in Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B, 2C & 2D. Optimization techniques for
Intel AVX are discussed in Chapter 15, “Optimizations for Intel® AVX, FMA and AVX2.”

2.9.10 Half-Precision Floating-Point Conversion (F16C)
VCVTPH2PS and VCVTPS2PH are two instructions supporting half-precision floating-point data type
conversion to and from single-precision floating-point data types. These two instruction extends on the
same programming model as Intel AVX.

2.9.11 RDRAND
The RDRAND instruction retrieves a random number supplied by a cryptographically secure, determin-
istic random bit generator (DBRG). The DBRG is designed to meet NIST SP 800-90A standard.

2.9.12 Fused-Multiply-ADD (FMA) Extensions
FMA extensions enhances Intel AVX with high-throughput, arithmetic capabilities covering fused
multiply-add, fused multiply-subtract, fused multiply add/subtract interleave, signed-reversed multiply
on fused multiply-add and multiply-subtract operations. FMA extensions provide 36 256-bit floating-
point instructions to perform computation on 256-bit vectors and additional 128-bit and scalar FMA
instructions.

2.9.13 Intel AVX2
Intel AVX2 extends Intel AVX by promoting most of the 128-bit SIMD integer instructions with 256-bit
numeric processing capabilities. AVX2 instructions follow the same programming model as AVX instruc-
tions.
In addition, AVX2 provide enhanced functionalities for broadcast/permute operations on data elements,
vector shift instructions with variable-shift count per data element, and instructions to fetch non-contig-
uous data elements from memory.

2.9.14 General-Purpose Bit-Processing Instructions
The fourth generation Intel Core processor family introduces a collection of bit processing instructions
that operate on the general purpose registers. The majority of these instructions uses the VEX-prefix
encoding scheme to provide non-destructive source operand syntax.

There instructions are enumerated by three separate feature flags reported by CPUID. For details, see
Section 5.1 of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1 and chapters 3,
4 and 5 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B, 2C & 2D.

2.9.15 Intel® Transactional Synchronization Extensions
The fourth generation Intel Core processor family introduces Intel® Transactional Synchronization
Extensions (Intel TSX), which aim to improve the performance of lock-protected critical sections of multi-
threaded applications while maintaining the lock-based programming model.

For background and details, see Chapter 16, “Programming with Intel® Transactional Synchronization
Extensions” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1.

2-43

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Software tuning recommendations for using Intel TSX on lock-protected critical sections of multithreaded
applications are described in Chapter 16, “Intel® TSX Recommendations.”

2.9.16 RDSEED
The RDSEED instruction retrieves a random number supplied by a cryptographically secure, enhanced
deterministic random bit generator Enhanced NRBG). The NRBG is designed to meet the NIST SP 800-
90B and NIST SP 800-90C standards.

2.9.17 ADCX and ADOX Instructions
The ADCX and ADOX instructions, in conjunction with MULX instruction, enable software to speed up
calculations that require large integer numerics. Details can be found at
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/large-integer-
squaring-ia-paper.pdf.

http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/large-integer-squaring-ia-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/large-integer-squaring-ia-paper.pdf

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2-44

CHAPTER 3
GENERAL OPTIMIZATION GUIDELINES

This chapter discusses general optimization techniques that can improve the performance of applications
running on Intel® processors. These techniques take advantage of microarchitectural features described
in Chapter 2, “Intel® 64 and IA-32 Processor Architectures.” Optimization guidelines focusing on Intel
multi-core processors, Hyper-Threading Technology, and 64-bit mode applications are discussed in
Chapter 11, “Multicore and Hyper-Threading Technology,” and Chapter 13, “64-bit Mode Coding Guide-
lines.”

Practices that optimize performance focus on three areas:
• Tools and techniques for code generation.
• Analysis of the performance characteristics of the workload and its interaction with microarchitec-

tural sub-systems.
• Tuning code to the target microarchitecture (or families of microarchitecture) to improve perfor-

mance.

Some hints on using tools are summarized first to simplify the first two tasks. The rest of the chapter will
focus on recommendations for code generation or code tuning to the target microarchitectures.

This chapter explains optimization techniques for the Intel® C++ Compiler, the Intel® Fortran Compiler,
and other compilers.

3.1 PERFORMANCE TOOLS
Intel offers several tools to help optimize application performance, including compilers, performance
analysis, and multithreading tools.

3.1.1 Intel® C++ and Fortran Compilers
Intel compilers support multiple operating systems (Windows*, Linux*, Mac OS*, and embedded). The
Intel compilers optimize performance and give application developers access to advanced features,
including:
• Flexibility to target 32-bit or 64-bit Intel processors for optimization
• Compatibility with many integrated development environments or third-party compilers.
• Automatic optimization features to take advantage of the target processor’s architecture.
• Automatic compiler optimization reduces the need to write different code for different processors.
• Common compiler features that are supported across Windows, Linux, and Mac OS include:

— General optimization settings.

— Cache-management features.

— Interprocedural optimization (IPO) methods.

— Profile-guided optimization (PGO) methods.

— Multithreading support.

— Floating-point arithmetic precision and consistency support.

— Compiler optimization and vectorization reports.

GENERAL OPTIMIZATION GUIDELINES

3-2

3.1.2 General Compiler Recommendations
Generally speaking, a compiler tuned for a target microarchitecture can be expected to match or outper-
form hand-coding. However, if performance problems are noted with the compiled code, some compilers
(like Intel C++ and Fortran compilers) allow the coder to insert intrinsics or inline assembly to exert
control over generated code. If inline assembly is used, the user must verify that the code generated is
high quality and yields good performance.

Default compiler switches are targeted for common cases. An optimization may be made to the compiler
default if it benefits most programs. If the root cause of a performance problem is a poor choice on the
part of the compiler, using different switches or compiling the targeted module with a different compiler
may be the solution. See the “Quick Reference Guide to Optimization with Intel C++ and Fortran
Compilers” for additional suggestions on compiler Optimization Options, including processor-specific
ones.

3.1.3 VTune™ Performance Analyzer
VTune uses performance monitoring hardware to collect statistics and coding information about your
application and its interaction with the microarchitecture. This allows software engineers to measure
performance characteristics of the workload for a given microarchitecture. VTune supports all current
and past Intel processor families.

The VTune Performance Analyzer provides two kinds of feedback:
• Indication of a performance improvement gained by using a specific coding recommendation or

microarchitectural feature.
• Information on whether a change in the program has improved or degraded performance with

respect to a particular metric.

The VTune Performance Analyzer also provides measures for a number of workload characteristics,
including:
• Retirement throughput of instruction execution as an indication of the degree of extractable

instruction-level parallelism in the workload.
• Data traffic locality as an indication of the stress point of the cache and memory hierarchy.
• Data traffic parallelism as an indication of the degree of effectiveness of amortization of data access

latency.

NOTE
Improving performance in one part of the machine does not necessarily bring significant
gains to overall performance. It is possible to degrade overall performance by improving
performance for some particular metric.

Where appropriate, coding recommendations in this chapter include descriptions of the VTune Perfor-
mance Analyzer events that provide measurable data on the performance gain achieved by following the
recommendations. For more on using the VTune analyzer, refer to the application’s online help.

3.2 PROCESSOR PERSPECTIVES
Many coding recommendations work well across current microarchitectures. However, there are situa-
tions where a recommendation may benefit one microarchitecture more than another.

3.2.1 CPUID Dispatch Strategy and Compatible Code Strategy
When optimum performance on all processor generations is desired, applications can take advantage of
the CPUID instruction to identify the processor generation and integrate processor-specific instructions

3-3

GENERAL OPTIMIZATION GUIDELINES

into the source code. The Intel C++ Compiler supports the integration of different versions of the code
for different target processors. The selection of which code to execute at runtime is made based on the
CPU identifiers. Binary code targeted for different processor generations can be generated under the
control of the programmer or by the compiler. Refer to the Intel® C++ Compiler 19.0 Developer Guide
and reference cpu_dispatch and cpu_specific sections for more information on CPU dispatching (a.k.a
function multi-versioning).

For applications that target multiple generations of microarchitectures, and where minimum binary code
size and single code path is important, a compatible code strategy is the best. Optimizing applications
using techniques developed for the Intel Core microarchitecture combined with Nehalem microarchitec-
ture are likely to improve code efficiency and scalability when running on processors based on current
and future generations of Intel 64 and IA-32 processors.

3.2.2 Transparent Cache-Parameter Strategy
If the CPUID instruction supports function leaf 4, also known as deterministic cache parameter leaf, the
leaf reports cache parameters for each level of the cache hierarchy in a deterministic and forward-
compatible manner across Intel 64 and IA-32 processor families.

For coding techniques that rely on specific parameters of a cache level, using the deterministic cache
parameter allows software to implement techniques in a way that is forward-compatible with future
generations of Intel 64 and IA-32 processors, and cross-compatible with processors equipped with
different cache sizes.

3.2.3 Threading Strategy and Hardware Multithreading Support
Intel 64 and IA-32 processor families offer hardware multithreading support in two forms: multi-core
technology and HT Technology.

To fully harness the performance potential of hardware multithreading in current and future generations
of Intel 64 and IA-32 processors, software must embrace a threaded approach in application design. At
the same time, to address the widest range of installed machines, multithreaded software should be able
to run without failure on a single processor without hardware multithreading support and should achieve
performance on a single logical processor that is comparable to an unthreaded implementation (if such
comparison can be made). This generally requires architecting a multithreaded application to minimize
the overhead of thread synchronization. Additional guidelines on multithreading are discussed in Chapter
11, “Multicore and Hyper-Threading Technology.”

3.3 CODING RULES, SUGGESTIONS AND TUNING HINTS
This section includes rules, suggestions, and hints. They are targeted for engineers who are:
• Modifying source code to enhance performance (user/source rules).
• Writing assemblers or compilers (assembly/compiler rules).
• Doing detailed performance tuning (tuning suggestions).

Coding recommendations are ranked in importance using two measures:
• Local impact (high, medium, or low) refers to a recommendation’s affect on the performance of a

given instance of code.
• Generality (high, medium, or low) measures how often such instances occur across all application

domains. Generality may also be thought of as “frequency”.

These recommendations are approximate. They can vary depending on coding style, application domain,
and other factors.

The purpose of the high, medium, and low (H, M, and L) priorities is to suggest the relative level of
performance gain one can expect if a recommendation is implemented.

GENERAL OPTIMIZATION GUIDELINES

3-4

Because it is not possible to predict the frequency of a particular code instance in applications, priority
hints cannot be directly correlated to application-level performance gain. In cases in which application-
level performance gain has been observed, we have provided a quantitative characterization of the gain
(for information only). In cases in which the impact has been deemed inapplicable, no priority is
assigned.

3.4 OPTIMIZING THE FRONT END
Optimizing the front end covers two aspects:
• Maintaining steady supply of micro-ops to the execution engine — Mispredicted branches can disrupt

streams of micro-ops, or cause the execution engine to waste execution resources on executing
streams of micro-ops in the non-architected code path. Much of the tuning in this respect focuses on
working with the Branch Prediction Unit. Common techniques are covered in Section 3.4.1, “Branch
Prediction Optimization.”

• Supplying streams of micro-ops to utilize the execution bandwidth and retirement bandwidth as
much as possible — For Intel Core microarchitecture and Intel Core Duo processor family, this aspect
focuses maintaining high decode throughput. In Sandy Bridge microarchitecture, this aspect focuses
on keeping the hot code running from Decoded ICache. Techniques to maximize decode throughput
for Intel Core microarchitecture are covered in Section 3.4.2, “Fetch and Decode Optimization.”

3.4.1 Branch Prediction Optimization
Branch optimizations have a significant impact on performance. By understanding the flow of branches
and improving their predictability, you can increase the speed of code significantly.

Optimizations that help branch prediction are:
• Keep code and data on separate pages. This is very important; see Section 3.6, “Optimizing Memory

Accesses,” for more information.
• Eliminate branches whenever possible.
• Arrange code to be consistent with the static branch prediction algorithm.
• Use the PAUSE instruction in spin-wait loops.
• Inline functions and pair up calls and returns.
• Unroll as necessary so that repeatedly-executed loops have sixteen or fewer iterations (unless this

causes an excessive code size increase).
• Avoid putting multiple conditional branches in the same 8-byte aligned code block (i.e, have their last

bytes' addresses within the same 8-byte aligned code) if the lower 6 bits of their target IPs are the
same. This restriction has been removed in Ice Lake Client and later microarchitectures.

3.4.1.1 Eliminating Branches
Eliminating branches improves performance because:
• It reduces the possibility of mispredictions.
• It reduces the number of required branch target buffer (BTB) entries. Conditional branches that are

never taken do not consume BTB resources.

There are four principal ways of eliminating branches:
• Arrange code to make basic blocks contiguous.
• Unroll loops, as discussed in Section 3.4.1.6, “Loop Unrolling.”
• Use the CMOV instruction.
• Use the SETCC instruction.

The following rules apply to branch elimination:

3-5

GENERAL OPTIMIZATION GUIDELINES

Assembly/Compiler Coding Rule 1. (MH impact, M generality) Arrange code to make basic blocks
contiguous and eliminate unnecessary branches.
Assembly/Compiler Coding Rule 2. (M impact, ML generality) Use the SETCC and CMOV
instructions to eliminate unpredictable conditional branches where possible. Do not do this for
predictable branches. Do not use these instructions to eliminate all unpredictable conditional branches
(because using these instructions will incur execution overhead due to the requirement for executing
both paths of a conditional branch). In addition, converting a conditional branch to SETCC or CMOV
trades off control flow dependence for data dependence and restricts the capability of the out-of-order
engine. When tuning, note that all Intel 64 and IA-32 processors usually have very high branch
prediction rates. Consistently mispredicted branches are generally rare. Use these instructions only if
the increase in computation time is less than the expected cost of a mispredicted branch.

Consider a line of C code that has a condition dependent upon one of the constants:

X = (A < B)  CONST1 : CONST2;

This code conditionally compares two values, A and B. If the condition is true, X is set to CONST1; other-
wise it is set to CONST2. An assembly code sequence equivalent to the above C code can contain
branches that are not predictable if there are no correlation in the two values.

Example 3-1 shows the assembly code with unpredictable branches. The unpredictable branches can be
removed with the use of the SETCC instruction. Example 3-2 shows optimized code that has no
branches.

The optimized code in Example 3-2 sets EBX to zero, then compares A and B. If A is greater than or equal
to B, EBX is set to one. Then EBX is decreased and AND’d with the difference of the constant values. This
sets EBX to either zero or the difference of the values. By adding CONST2 back to EBX, the correct value
is written to EBX. When CONST2 is equal to zero, the last instruction can be deleted.

Another way to remove branches is to use the CMOV and FCMOV instructions. Example 3-3 shows how to
change a TEST and branch instruction sequence using CMOV to eliminate a branch. If the TEST sets the
equal flag, the value in EBX will be moved to EAX. This branch is data-dependent, and is representative
of an unpredictable branch.

Example 3-1. Assembly Code with an Unpredictable Branch

cmp a, b ; Condition
jbe L30 ; Conditional branch
mov ebx const1 ; ebx holds X
jmp L31 ; Unconditional branch

L30:
mov ebx, const2

L31:

Example 3-2. Code Optimization to Eliminate Branches

xor ebx, ebx ; Clear ebx (X in the C code)
cmp A, B
setge bl ; When ebx = 0 or 1

 ; OR the complement condition
sub ebx, 1 ; ebx=11...11 or 00...00
and ebx, CONST3; CONST3 = CONST1-CONST2
add ebx, CONST2; ebx=CONST1 or CONST2

GENERAL OPTIMIZATION GUIDELINES

3-6

An extension to this concept can be seen in the AVX-512 masked operations, as well as in some instruc-
tions such as VPCMP which can be used to eliminate data dependent branches; see Section 18.4.

3.4.1.2 Static Prediction
Branches that do not have a history in the BTB (see Section 3.4.1, “Branch Prediction Optimization”) are
predicted using a static prediction algorithm:
• Predict forward conditional branches to be NOT taken.
• Predict backward conditional branches to be taken.
• Predict indirect branches to be NOT taken.

The following rule applies to static prediction:
Assembly/Compiler Coding Rule 3. (M impact, H generality) Arrange code to be consistent with
the static branch prediction algorithm: make the fall-through code following a conditional branch be the
likely target for a branch with a forward target, and make the fall-through code following a conditional
branch be the unlikely target for a branch with a backward target.

Example 3-4 illustrates the static branch prediction algorithm. The body of an IF-THEN conditional is
predicted.

Example 3-5 and Example 3-6 provide basic rules for a static prediction algorithm. In Example 3-5, the
backward branch (JC BEGIN) is not in the BTB the first time through; therefore, the BTB does not issue

Example 3-3. Eliminating Branch with CMOV Instruction

test ecx, ecx
jne 1H
mov eax, ebx

1H:
; To optimize code, combine jne and mov into one cmovcc instruction that checks the equal flag

test ecx, ecx ; Test the flags
cmoveq eax, ebx ; If the equal flag is set, move

; ebx to eax- the 1H: tag no longer needed

Example 3-4. Static Branch Prediction Algorithm

//Forward condition branches not taken (fall through)
IF<condition> {....

}

IF<condition> {...

}

//Backward conditional branches are taken
LOOP {...
<condition>

//Unconditional branches taken
JMP
------

3-7

GENERAL OPTIMIZATION GUIDELINES

a prediction. The static predictor, however, will predict the branch to be taken, so a misprediction will not
occur.

The first branch instruction (JC BEGIN) in Example 3-6 is a conditional forward branch. It is not in the
BTB the first time through, but the static predictor will predict the branch to fall through. The static
prediction algorithm correctly predicts that the CALL CONVERT instruction will be taken, even before the
branch has any branch history in the BTB.

The Intel Core microarchitecture does not use the static prediction heuristic. However, to maintain
consistency across Intel 64 and IA-32 processors, software should maintain the static prediction heuristic
as the default.

3.4.1.3 Inlining, Calls and Returns
The return address stack mechanism augments the static and dynamic predictors to optimize specifically
for calls and returns. It holds 16 entries, which is large enough to cover the call depth of most programs.
If there is a chain of more than 16 nested calls and more than 16 returns in rapid succession, perfor-
mance may degrade.

To enable the use of the return stack mechanism, calls and returns must be matched in pairs. If this is
done, the likelihood of exceeding the stack depth in a manner that will impact performance is very low.

The following rules apply to inlining, calls, and returns:
Assembly/Compiler Coding Rule 4. (MH impact, MH generality) Near calls must be matched with
near returns, and far calls must be matched with far returns. Pushing the return address on the stack
and jumping to the routine to be called is not recommended since it creates a mismatch in calls and
returns.

Calls and returns are expensive; use inlining for the following reasons:
• Parameter passing overhead can be eliminated.
• In a compiler, inlining a function exposes more opportunity for optimization.
• If the inlined routine contains branches, the additional context of the caller may improve branch

prediction within the routine.
• A mispredicted branch can lead to performance penalties inside a small function that are larger than

those that would occur if that function is inlined.

Example 3-5. Static Taken Prediction

Begin: mov eax, mem32
and eax, ebx
imul eax, edx
shld eax, 7
jc Begin

Example 3-6. Static Not-Taken Prediction

mov eax, mem32
and eax, ebx
imul eax, edx
shld eax, 7
jc Begin
mov eax, 0

Begin: call Convert

GENERAL OPTIMIZATION GUIDELINES

3-8

Assembly/Compiler Coding Rule 5. (MH impact, MH generality) Selectively inline a function if
doing so decreases code size or if the function is small and the call site is frequently executed.
Assembly/Compiler Coding Rule 6. (ML impact, ML generality) If there are more than 16 nested
calls and returns in rapid succession; consider transforming the program with inline to reduce the call
depth.
Assembly/Compiler Coding Rule 7. (ML impact, ML generality) Favor inlining small functions that
contain branches with poor prediction rates. If a branch misprediction results in a RETURN being
prematurely predicted as taken, a performance penalty may be incurred.
Assembly/Compiler Coding Rule 8. (L impact, L generality) If the last statement in a function is
a call to another function, consider converting the call to a jump. This will save the call/return overhead
as well as an entry in the return stack buffer.
Assembly/Compiler Coding Rule 9. (M impact, L generality) Do not put more than four branches
in a 16-byte chunk.
Assembly/Compiler Coding Rule 10. (M impact, L generality) Do not put more than two end loop
branches in a 16-byte chunk.

3.4.1.4 Code Alignment
Careful arrangement of code can enhance cache and memory locality. Likely sequences of basic blocks
should be laid out contiguously in memory. This may involve removing unlikely code, such as code to
handle error conditions, from the sequence. See Section 3.7, “Prefetching,” on optimizing the instruction
prefetcher.
Assembly/Compiler Coding Rule 11. (M impact, H generality) When executing code from the
Decoded ICache, direct branches that are mostly taken should have all their instruction bytes in a 64B
cache line and nearer the end of that cache line. Their targets should be at or near the beginning of a
64B cache line.

When executing code from the legacy decode pipeline, direct branches that are mostly taken should have
all their instruction bytes in a 16B aligned chunk of memory and nearer the end of that 16B aligned
chunk. Their targets should be at or near the beginning of a 16B aligned chunk of memory.
Assembly/Compiler Coding Rule 12. (M impact, H generality) If the body of a conditional is not
likely to be executed, it should be placed in another part of the program. If it is highly unlikely to be
executed and code locality is an issue, it should be placed on a different code page.

3.4.1.5 Branch Type Selection
The default predicted target for indirect branches and calls is the fall-through path. Fall-through predic-
tion is overridden if and when a hardware prediction is available for that branch. The predicted branch
target from branch prediction hardware for an indirect branch is the previously executed branch target.

The default prediction to the fall-through path is only a significant issue if no branch prediction is avail-
able, due to poor code locality or pathological branch conflict problems. For indirect calls, predicting the
fall-through path is usually not an issue, since execution will likely return to the instruction after the
associated return.

Placing data immediately following an indirect branch can cause a performance problem. If the data
consists of all zeros, it looks like a long stream of ADDs to memory destinations and this can cause
resource conflicts and slow down branch recovery. Also, data immediately following indirect branches
may appear as branches to the branch predication hardware, which can branch off to execute other data
pages. This can lead to subsequent self-modifying code problems.
Assembly/Compiler Coding Rule 13. (M impact, L generality) When indirect branches are
present, try to put the most likely target of an indirect branch immediately following the indirect
branch. Alternatively, if indirect branches are common but they cannot be predicted by branch
prediction hardware, then follow the indirect branch with a UD2 instruction, which will stop the
processor from decoding down the fall-through path.

Indirect branches resulting from code constructs (such as switch statements, computed GOTOs or calls
through pointers) can jump to an arbitrary number of locations. If the code sequence is such that the

3-9

GENERAL OPTIMIZATION GUIDELINES

target destination of a branch goes to the same address most of the time, then the BTB will predict accu-
rately most of the time. Since only one taken (non-fall-through) target can be stored in the BTB, indirect
branches with multiple taken targets may have lower prediction rates.

The effective number of targets stored may be increased by introducing additional conditional branches.
Adding a conditional branch to a target is fruitful if:
• The branch direction is correlated with the branch history leading up to that branch; that is, not just

the last target, but how it got to this branch.
• The source/target pair is common enough to warrant using the extra branch prediction capacity. This

may increase the number of overall branch mispredictions, while improving the misprediction of
indirect branches. The profitability is lower if the number of mispredicting branches is very large.

User/Source Coding Rule 1. (M impact, L generality) If an indirect branch has two or more
common taken targets and at least one of those targets is correlated with branch history leading up to
the branch, then convert the indirect branch to a tree where one or more indirect branches are
preceded by conditional branches to those targets. Apply this “peeling” procedure to the common
target of an indirect branch that correlates to branch history.

The purpose of this rule is to reduce the total number of mispredictions by enhancing the predictability of
branches (even at the expense of adding more branches). The added branches must be predictable for
this to be worthwhile. One reason for such predictability is a strong correlation with preceding branch
history. That is, the directions taken on preceding branches are a good indicator of the direction of the
branch under consideration.

Example 3-7 shows a simple example of the correlation between a target of a preceding conditional
branch and a target of an indirect branch.

Correlation can be difficult to determine analytically, for a compiler and for an assembly language
programmer. It may be fruitful to evaluate performance with and without peeling to get the best perfor-
mance from a coding effort.

An example of peeling out the most favored target of an indirect branch with correlated branch history is
shown in Example 3-8.

Example 3-7. Indirect Branch With Two Favored Targets

function ()
{
int n = rand(); // random integer 0 to RAND_MAX

if (! (n & 0x01)) { // n will be 0 half the times
n = 0; // updates branch history to predict taken

}
// indirect branches with multiple taken targets
// may have lower prediction rates

 switch (n) {
case 0: handle_0(); break; // common target, correlated with

// branch history that is forward taken
 case 1: handle_1(); break; // uncommon

case 3: handle_3(); break; // uncommon
default: handle_other(); // common target

 }
}

GENERAL OPTIMIZATION GUIDELINES

3-10

3.4.1.6 Loop Unrolling
Benefits of unrolling loops are:
• Unrolling amortizes the branch overhead, since it eliminates branches and some of the code to

manage induction variables.
• Unrolling allows one to aggressively schedule (or pipeline) the loop to hide latencies. This is useful if

you have enough free registers to keep variables live as you stretch out the dependence chain to
expose the critical path.

• Unrolling exposes the code to various other optimizations, such as removal of redundant loads,
common subexpression elimination, and so on.

The potential costs of unrolling loops are:
• Unrolling loops whose bodies contain branches increases demand on BTB capacity. If the number of

iterations of the unrolled loop is 16 or fewer, the branch predictor should be able to correctly predict
branches in the loop body that alternate direction.

Example 3-8. A Peeling Technique to Reduce Indirect Branch Misprediction

function ()
{
 int n = rand(); // Random integer 0 to RAND_MAX

if(! (n & 0x01)) THEN
 n = 0; // n will be 0 half the times

if (!n) THEN
handle_0(); // Peel out the most common target

// with correlated branch history

 {
 switch (n) {

case 1: handle_1(); break; // Uncommon
case 3: handle_3(); break; // Uncommon

default: handle_other(); // Make the favored target in
// the fall-through path

}
 }
}

3-11

GENERAL OPTIMIZATION GUIDELINES

Assembly/Compiler Coding Rule 14. (H impact, M generality) Unroll small loops until the
overhead of the branch and induction variable accounts (generally) for less than 10% of the execution
time of the loop.
Assembly/Compiler Coding Rule 15. (M impact, M generality) Unroll loops that are frequently
executed and have a predictable number of iterations to reduce the number of iterations to 16 or fewer.
Do this unless it increases code size so that the working set no longer fits in the instruction cache. If the
loop body contains more than one conditional branch, then unroll so that the number of iterations is
16/(# conditional branches).

Example 3-9 shows how unrolling enables other optimizations.

In this example, the loop that executes 100 times assigns X to every even-numbered element and Y to
every odd-numbered element. By unrolling the loop you can make assignments more efficiently,
removing one branch in the loop body.

3.4.2 Fetch and Decode Optimization
Intel Core microarchitecture provides several mechanisms to increase front end throughput. Techniques
to take advantage of some of these features are discussed below.

3.4.2.1 Optimizing for Micro-fusion
An Instruction that operates on a register and a memory operand decodes into more micro-ops than its
corresponding register-register version. Replacing the equivalent work of the former instruction using
the register-register version usually require a sequence of two instructions. The latter sequence is likely
to result in reduced fetch bandwidth.
Assembly/Compiler Coding Rule 16. (ML impact, M generality) For improving fetch/decode
throughput, Give preference to memory flavor of an instruction over the register-only flavor of the
same instruction, if such instruction can benefit from micro-fusion.

The following examples are some of the types of micro-fusions that can be handled by all decoders:
• All stores to memory, including store immediate. Stores execute internally as two separate micro-

ops: store-address and store-data.
• All “read-modify” (load+op) instructions between register and memory, for example:

ADDPS XMM9, OWORD PTR [RSP+40]
FADD DOUBLE PTR [RDI+RSI*8]
XOR RAX, QWORD PTR [RBP+32]

• All instructions of the form “load and jump,” for example:
JMP [RDI+200]
RET

• CMP and TEST with immediate operand and memory.

An Intel 64 instruction with RIP relative addressing is not micro-fused in the following cases:

Example 3-9. Loop Unrolling

Before unrolling:

do i = 1, 100
if (i mod 2 == 0) then a(i) = x

else a(i) = y
enddo

After unrolling

do i = 1, 100, 2
a(i) = y
a(i+1) = x

enddo

GENERAL OPTIMIZATION GUIDELINES

3-12

• When an additional immediate is needed, for example:
CMP [RIP+400], 27
MOV [RIP+3000], 142

• When an RIP is needed for control flow purposes, for example:
JMP [RIP+5000000]

In these cases, Intel Core microarchitecture and Sandy Bridge microarchitecture provide a 2 micro-op
flow from decoder 0, resulting in a slight loss of decode bandwidth since 2 micro-op flow must be steered
to decoder 0 from the decoder with which it was aligned.

RIP addressing may be common in accessing global data. Since it will not benefit from micro-fusion,
compiler may consider accessing global data with other means of memory addressing.

3.4.2.2 Optimizing for Macrofusion
Macrofusion merges two instructions to a single micro-op. Intel Core microarchitecture performs this
hardware optimization under limited circumstances.

The first instruction of the macro-fused pair must be a CMP or TEST instruction. This instruction can be
REG-REG, REG-IMM, or a micro-fused REG-MEM comparison. The second instruction (adjacent in the
instruction stream) should be a conditional branch.

Since these pairs are common ingredient in basic iterative programming sequences, macrofusion
improves performance even on un-recompiled binaries. All of the decoders can decode one macro-fused
pair per cycle, with up to three other instructions, resulting in a peak decode bandwidth of 5 instructions
per cycle.

Each macro-fused instruction executes with a single dispatch. This process reduces latency, which in this
case shows up as a cycle removed from branch mispredict penalty. Software also gain all other fusion
benefits: increased rename and retire bandwidth, more storage for instructions in-flight, and power
savings from representing more work in fewer bits.

The following list details when you can use macrofusion:
• CMP or TEST can be fused when comparing:

REG-REG. For example: CMP EAX,ECX; JZ label
REG-IMM. For example: CMP EAX,0x80; JZ label
REG-MEM. For example: CMP EAX,[ECX]; JZ label
MEM-REG. For example: CMP [EAX],ECX; JZ label

• TEST can fused with all conditional jumps.
• CMP can be fused with only the following conditional jumps in Intel Core microarchitecture. These

conditional jumps check carry flag (CF) or zero flag (ZF). jump. The list of macrofusion-capable
conditional jumps are:

JA or JNBE
JAE or JNB or JNC
JE or JZ
JNA or JBE
JNAE or JC or JB
JNE or JNZ

CMP and TEST can not be fused when comparing MEM-IMM (e.g. CMP [EAX],0x80; JZ label). Macrofusion
is not supported in 64-bit mode for Intel Core microarchitecture.
• Nehalem microarchitecture supports the following enhancements in macrofusion:

— CMP can be fused with the following conditional jumps (that was not supported in Intel Core
microarchitecture):

• JL or JNGE

• JGE or JNL

3-13

GENERAL OPTIMIZATION GUIDELINES

• JLE or JNG

• JG or JNLE

— Macrofusion is supported in 64-bit mode.
• Enhanced macrofusion support in Sandy Bridge microarchitecture is summarized in Table 3-1 with

additional information in Section E.2.2.1 and Example 3-14:

• Enhanced macrofusion support in Haswell microarchitecture is summarized in Table 3-2. Macrofusion
is supported CMP/TEST/OP with reg-imm, reg-mem, and reg-reg addressing but not mem-imm
addressing.

Table 3-1. Macro-Fusible Instructions in Sandy Bridge Microarchitecture
Instructions TEST AND CMP ADD SUB INC DEC

JO/JNO Y Y N N N N N

JC/JB/JAE/JNB Y Y Y Y Y N N

JE/JZ/JNE/JNZ Y Y Y Y Y Y Y

JNA/JBE/JA/JNBE Y Y Y Y Y N N

JS/JNS/JP/JPE/JNP/JPO Y Y N N N N N

JL/JNGE/JGE/JNL/JLE/JNG/JG/JNLE Y Y Y Y Y Y Y

Table 3-2. Macro-Fusible Instructions in Haswell Microarchitecture
Opcode JCC ADD / SUB / CMP INC / DEC TEST / AND

70 0F 80 Jo N N Y

71 0F 81 Jno N N Y

72 0F 82 Jc / Jb Y N Y

73 0F 83 Jae / Jnb Y N Y

74 0F 84 Je / Jz Y Y Y

75 0F 85 Jne / Jnz Y Y Y

76 0F 86 Jna / Jbe Y N Y

77 0F 87 Ja / Jnbe Y N Y

78 0F 88 Js N N Y

79 0F 89 Jns N N Y

7A 0F 8A Jp / Jpe N N Y

7B 0F 8B Jnp / Jpo N N Y

7C 0F 8C Jl / Jnge Y Y Y

7D 0F 8D Jge / Jnl Y Y Y

7E 0F 8E Jle / Jng Y Y Y

7F 0F 8F Jg / Jnle Y Y Y

GENERAL OPTIMIZATION GUIDELINES

3-14

Assembly/Compiler Coding Rule 17. (M impact, ML generality) Employ macrofusion where
possible using instruction pairs that support macrofusion. Prefer TEST over CMP if possible. Use
unsigned variables and unsigned jumps when possible. Try to logically verify that a variable is non-
negative at the time of comparison. Avoid CMP or TEST of MEM-IMM flavor when possible. However, do
not add other instructions to avoid using the MEM-IMM flavor.

Example 3-10. Macrofusion, Unsigned Iteration Count
Without Macrofusion With Macrofusion

C code for (int1 i = 0; i < 1000; i++)
a++;

NOTES:
1. Signed iteration count inhibits macrofusion.

for (unsigned int2 i = 0; i < 1000; i++)
a++;

2. Unsigned iteration count is compatible with macrofusion.

Disassembly for (int i = 0; i < 1000; i++)
mov dword ptr [i], 0
jmp First
Loop:
mov eax, dword ptr [i]
add eax, 1
mov dword ptr [i], eax

for (unsigned int i = 0; i < 1000; i++)
xor eax, eax
mov dword ptr [i], eax
jmp First
Loop:
mov eax, dword ptr [i]
add eax, 1
mov dword ptr [i], eax

First:
cmp dword ptr [i], 3E8H3

jge End
a++;

mov eax, dword ptr [a]
addqq eax,1
mov dword ptr [a], eax
jmp Loop
End:

3. CMP MEM-IMM, JGE inhibit macrofusion.

First:
cmp eax, 3E8H 4

jae End
a++;

mov eax, dword ptr [a]
add eax, 1
mov dword ptr [a], eax
jmp Loop
End:

4. CMP REG-IMM, JAE permits macrofusion.

Example 3-11. Macrofusion, If Statement
Without Macrofusion With Macrofusion

C code int1 a = 7;
if (a < 77)

a++;
else

a--;

unsigned int2 a = 7;
if (a < 77)

a++;
else

a--;

Disassembly int a = 7;
mov dword ptr [a], 7
if (a < 77)
cmp dword ptr [a], 4DH 3

jge Dec

unsigned int a = 7;
mov dword ptr [a], 7
if (a < 77)
mov eax, dword ptr [a]
cmp eax, 4DH
jae Dec

3-15

GENERAL OPTIMIZATION GUIDELINES

Assembly/Compiler Coding Rule 18. (M impact, ML generality) Software can enable macro
fusion when it can be logically determined that a variable is non-negative at the time of comparison;
use TEST appropriately to enable macrofusion when comparing a variable with 0.

For either signed or unsigned variable ‘a’; “CMP a,0” and “TEST a,a” produce the same result as far as the
flags are concerned. Since TEST can be macro-fused more often, software can use “TEST a,a” to replace
“CMP a,0” for the purpose of enabling macrofusion.

Sandy Bridge microarchitecture enables more arithmetic and logic instructions to macro-fuse with condi-
tional branches. In loops where the ALU ports are already congested, performing one of these
macrofusions can relieve the pressure, as the macro-fused instruction consumes only port 5, instead of
an ALU port plus port 5.

In Example 3-14, the “add/cmp/jnz” loop contains two ALU instructions that can be dispatched via either
port 0, 1, 5. So there is higher probability of port 5 might bind to either ALU instruction causing JNZ to

a++;
mov eax, dword ptr [a]
add eax, 1
mov dword ptr [a], eax
else
jmp End

a--;
Dec:
mov eax, dword ptr [a]
sub eax, 1
mov dword ptr [a], eax
End::

a++;
add eax,1
mov dword ptr [a], eax
else
jmp End

a--;
Dec:
sub eax, 1
mov dword ptr [a], eax
End::

NOTES:
1. Signed iteration count inhibits macrofusion.
2. Unsigned iteration count is compatible with macrofusion.
3. CMP MEM-IMM, JGE inhibit macrofusion.

Example 3-12. Macrofusion, Signed Variable
Without Macrofusion With Macrofusion

test ecx, ecx
jle OutSideTheIF
cmp ecx, 64H
jge OutSideTheIF
<IF BLOCK CODE>
OutSideTheIF:

test ecx, ecx
jle OutSideTheIF
cmp ecx, 64H
jae OutSideTheIF
<IF BLOCK CODE>
OutSideTheIF:

Example 3-13. Macrofusion, Signed Comparison
C Code Without Macrofusion With Macrofusion

if (a == 0) cmp a, 0
jne lbl
...
lbl:

test a, a
jne lbl
...
lbl:

if (a >= 0) cmp a, 0
jl lbl;
...
lbl:

test a, a
jl lbl
...
lbl:

Example 3-11. Macrofusion, If Statement (Contd.)
Without Macrofusion With Macrofusion

GENERAL OPTIMIZATION GUIDELINES

3-16

wait a cycle. The “sub/jnz” loop, the likelihood of ADD/SUB/JNZ can be dispatched in the same cycle is
increased because only SUB is free to bind with either port 0, 1, 5.

3.4.2.3 Length-Changing Prefixes (LCP)
The length of an instruction can be up to 15 bytes in length. Some prefixes can dynamically change the
length of an instruction that the decoder must recognize. Typically, the pre-decode unit will estimate the
length of an instruction in the byte stream assuming the absence of LCP. When the predecoder encoun-
ters an LCP in the fetch line, it must use a slower length decoding algorithm. With the slower length
decoding algorithm, the predecoder decodes the fetch in 6 cycles, instead of the usual 1 cycle. Normal
queuing throughout of the machine pipeline generally cannot hide LCP penalties.

The prefixes that can dynamically change the length of a instruction include:
• Operand size prefix (0x66).
• Address size prefix (0x67).

The instruction MOV DX, 01234h is subject to LCP stalls in processors based on Intel Core microarchitec-
ture, and in Intel Core Duo and Intel Core Solo processors. Instructions that contain imm16 as part of
their fixed encoding but do not require LCP to change the immediate size are not subject to LCP stalls.
The REX prefix (4xh) in 64-bit mode can change the size of two classes of instruction, but does not cause
an LCP penalty.

If the LCP stall happens in a tight loop, it can cause significant performance degradation. When decoding
is not a bottleneck, as in floating-point heavy code, isolated LCP stalls usually do not cause performance
degradation.
Assembly/Compiler Coding Rule 19. (MH impact, MH generality) Favor generating code using
imm8 or imm32 values instead of imm16 values.

If imm16 is needed, load equivalent imm32 into a register and use the word value in the register instead.

Double LCP Stalls

Instructions that are subject to LCP stalls and cross a 16-byte fetch line boundary can cause the LCP stall
to trigger twice. The following alignment situations can cause LCP stalls to trigger twice:
• An instruction is encoded with a MODR/M and SIB byte, and the fetch line boundary crossing is

between the MODR/M and the SIB bytes.
• An instruction starts at offset 13 of a fetch line references a memory location using register and

immediate byte offset addressing mode.

The first stall is for the 1st fetch line, and the 2nd stall is for the 2nd fetch line. A double LCP stall causes
a decode penalty of 11 cycles.

Example 3-14. Additional Macrofusion Benefit in Sandy Bridge Microarchitecture
Add + cmp + jnz alternative Loop control with sub + jnz
lea rdx, buff
xor rcx, rcx
xor eax, eax
loop:
add eax, [rdx + 4 * rcx]
add rcx, 1
cmp rcx, LEN
jnz loop

lea rdx, buff - 4
xor rcx, LEN
xor eax, eax
loop:
add eax, [rdx + 4 * rcx]
sub rcx, 1
jnz loop

3-17

GENERAL OPTIMIZATION GUIDELINES

The following examples cause LCP stall once, regardless of their fetch-line location of the first byte of the
instruction:

ADD DX, 01234H
ADD word ptr [EDX], 01234H
ADD word ptr 012345678H[EDX], 01234H
ADD word ptr [012345678H], 01234H

The following instructions cause a double LCP stall when starting at offset 13 of a fetch line:
ADD word ptr [EDX+ESI], 01234H
ADD word ptr 012H[EDX], 01234H
ADD word ptr 012345678H[EDX+ESI], 01234H

To avoid double LCP stalls, do not use instructions subject to LCP stalls that use SIB byte encoding or
addressing mode with byte displacement.

False LCP Stalls

False LCP stalls have the same characteristics as LCP stalls, but occur on instructions that do not have
any imm16 value.

False LCP stalls occur when (a) instructions with LCP that are encoded using the F7 opcodes, and (b) are
located at offset 14 of a fetch line. These instructions are: not, neg, div, idiv, mul, and imul. False LCP
experiences delay because the instruction length decoder can not determine the length of the instruction
before the next fetch line, which holds the exact opcode of the instruction in its MODR/M byte.

The following techniques can help avoid false LCP stalls:
• Upcast all short operations from the F7 group of instructions to long, using the full 32 bit version.
• Ensure that the F7 opcode never starts at offset 14 of a fetch line.
Assembly/Compiler Coding Rule 20. (M impact, ML generality) Ensure instructions using 0xF7
opcode byte does not start at offset 14 of a fetch line; and avoid using these instruction to operate on
16-bit data, upcast short data to 32 bits.

3.4.2.4 Optimizing the Loop Stream Detector (LSD)
The LSD detects loops that have many iterations and fit into the µop-queue. The µop-queue streams the
loop until a branch miss-prediction inevitably ends it.

LSD improves fetch bandwidth. In single thread mode, it saves power by allowing the front-end to sleep.
In multi-thread mode, front-resource can better serve the other thread.

Loops qualify for LSD replay if all the following conditions are met:
• Loop body size up to 60 µops, with up to 15 taken branches, and up to 15 64-byte fetch lines.
• No CALL or RET.
• No mismatched stack operations (e.g., more PUSH than POP).
• More than ~20 iterations.

Many calculation-intensive loops, searches, and software string moves match these characteristics.
These loops exceed the BPU prediction capacity and always terminate in a branch misprediction.

Example 3-15. Avoiding False LCP Delays with 0xF7 Group Instructions
A Sequence Causing Delay in the Decoder Alternate Sequence to Avoid Delay

neg word ptr a movsx eax, word ptr a
neg eax
mov word ptr a, AX

GENERAL OPTIMIZATION GUIDELINES

3-18

Assembly/Compiler Coding Rule 21. (MH impact, MH generality) Break up a loop body with a
long sequence of instructions into loops of shorter instruction blocks of no more than the size of the
LSD.

Allocation bandwidth in Ice Lake Client microarchitecture increased from 4 µops per cycle to 5 µops per
cycle.

Assume a loop that qualifies for LSD has 23 µops in the loop body. The hardware unrolls the loop such
that it still fits into the µop-queue, in this case twice. The loop in the µop-queue thus takes 46 µops.

The loop is sent to allocation 5 µops per cycle. After 45 out of the 46 µops are sent, in the next cycle only
a single µop is sent, which means that in that cycle, 4 of the allocation slots are wasted. This pattern
repeats itself, until the loop is exited by a misprediction. Hardware loop unrolling minimizes the number
of wasted slots during LSD.

3.4.2.5 Optimization for Decoded ICache
The decoded ICache is a new feature in Sandy Bridge microarchitecture. Running the code from the
Decoded ICache has two advantages:
• Higher bandwidth of micro-ops feeding the out-of-order engine.
• The front end does not need to decode the code that is in the Decoded ICache; this saves power.

There is overhead in switching between the Decoded ICache and the legacy decode pipeline. If your code
switches frequently between the front end and the Decoded ICache, the penalty may be higher than
running only from the legacy pipeline.

To ensure “hot” code is feeding from the decoded ICache:
• Make sure each hot code block is less than about 750 instructions. Specifically, do not unroll to more

than 750 instructions in a loop. This should enable Decoded ICache residency even when hyper-
threading is enabled.

• For applications with very large blocks of calculations inside a loop, consider loop-fission: split the
loop into multiple loops that fit in the Decoded ICache, rather than a single loop that overflows.

• If an application can be sure to run with only one thread per core, it can increase hot code block size
to about 1500 instructions.

Dense Read-Modify-Write Code

The Decoded ICache can hold only up to 18 micro-ops per each 32 byte aligned memory chunk. There-
fore, code with a high concentration of instructions that are encoded in a small number of bytes, yet have
many micro-ops, may overflow the 18 micro-op limitation and not enter the Decoded ICache. Read-
modify-write (RMW) instructions are a good example of such instructions.

RMW instructions accept one memory source operand, one register source operand, and use the source
memory operand as the destination. The same functionality can be achieved by two or three instructions:
the first reads the memory source operand, the second performs the operation with the second register
source operand, and the last writes the result back to memory. These instructions usually result in the
same number of micro-ops but use more bytes to encode the same functionality.

One case where RMW instructions may be used extensively is when the compiler optimizes aggressively
for code size.

 Here are some possible solutions to fit the hot code in the Decoded ICache:
• Replace RMW instructions with two or three instructions that have the same functionality. For

example, “adc [rdi], rcx“ is only three bytes long; the equivalent sequence “adc rax, [rdi]“ + “mov
[rdi], rax“ has a footprint of six bytes.

• Align the code so that the dense part is broken down among two different 32-byte chunks. This
solution is useful when using a tool that aligns code automatically, and is indifferent to code changes.

• Spread the code by adding multiple byte NOPs in the loop. Note that this solution adds micro-ops for
execution.

3-19

GENERAL OPTIMIZATION GUIDELINES

Align Unconditional Branches for Decoded ICache

For code entering the Decoded ICache, each unconditional branch is the last micro-op occupying a
Decoded ICache Way. Therefore, only three unconditional branches per a 32 byte aligned chunk can
enter the Decoded ICache.

Unconditional branches are frequent in jump tables and switch declarations. Below are examples for
these constructs, and methods for writing them so that they fit in the Decoded ICache.

Compilers create jump tables for C++ virtual class methods or DLL dispatch tables. Each unconditional
branch consumes five bytes; therefore up to seven of them can be associated with a 32-byte chunk. Thus
jump tables may not fit in the Decoded ICache if the unconditional branches are too dense in each
32Byte-aligned chunk. This can cause performance degradation for code executing before and after the
branch table.

The solution is to add multi-byte NOP instructions among the branches in the branch table. This may
increases code size and should be used cautiously. However, these NOPs are not executed and therefore
have no penalty in later pipe stages.

Switch-Case constructs represents a similar situation. Each evaluation of a case condition results in an
unconditional branch. The same solution of using multi-byte NOP can apply for every three consecutive
unconditional branches that fits inside an aligned 32-byte chunk.

Two Branches in a Decoded ICache Way

The Decoded ICache can hold up to two branches in a way. Dense branches in a 32 byte aligned chunk,
or their ordering with other instructions may prohibit all the micro-ops of the instructions in the chunk
from entering the Decoded ICache. This does not happen often. When it does happen, you can space the
code with NOP instructions where appropriate. Make sure that these NOP instructions are not part of hot
code.
Assembly/Compiler Coding Rule 22. (M impact, M generality) Avoid putting explicit references to
ESP in a sequence of stack operations (POP, PUSH, CALL, RET).

3.4.2.6 Other Decoding Guidelines
Assembly/Compiler Coding Rule 23. (ML impact, L generality) Use simple instructions that are
less than eight bytes in length.
Assembly/Compiler Coding Rule 24. (M impact, MH generality) Avoid using prefixes to change
the size of immediate and displacement.

Long instructions (more than seven bytes) may limit the number of decoded instructions per cycle. Each
prefix adds one byte to the length of instruction, possibly limiting the decoder’s throughput. In addition,
multiple prefixes can only be decoded by the first decoder. These prefixes also incur a delay when
decoded. If multiple prefixes or a prefix that changes the size of an immediate or displacement cannot be
avoided, schedule them behind instructions that stall the pipe for some other reason.

3.5 OPTIMIZING THE EXECUTION CORE
The superscalar, out-of-order execution core(s) in recent generations of microarchitectures contain
multiple execution hardware resources that can execute multiple micro-ops in parallel. These resources
generally ensure that micro-ops execute efficiently and proceed with fixed latencies. General guidelines
to make use of the available parallelism are:
• Follow the rules (see Section 3.4) to maximize useful decode bandwidth and front end throughput.

These rules include favoring single micro-op instructions and taking advantage of micro-fusion, Stack
pointer tracker and macrofusion.

• Maximize rename bandwidth. Guidelines are discussed in this section and include properly dealing
with partial registers, ROB read ports and instructions which causes side-effects on flags.

• Scheduling recommendations on sequences of instructions so that multiple dependency chains are
alive in the reservation station (RS) simultaneously, thus ensuring that your code utilizes maximum
parallelism.

GENERAL OPTIMIZATION GUIDELINES

3-20

• Avoid hazards, minimize delays that may occur in the execution core, allowing the dispatched micro-
ops to make progress and be ready for retirement quickly.

3.5.1 Instruction Selection
Some execution units are not pipelined, this means that micro-ops cannot be dispatched in consecutive
cycles and the throughput is less than one per cycle.

It is generally a good starting point to select instructions by considering the number of micro-ops associ-
ated with each instruction, favoring in the order of: single micro-op instructions, simple instruction with
less than 4 micro-ops, and last instruction requiring microsequencer ROM (micro-ops which are executed
out of the microsequencer involve extra overhead).
Assembly/Compiler Coding Rule 25. (M impact, H generality) Favor single-micro-operation
instructions. Also favor instruction with shorter latencies.

A compiler may be already doing a good job on instruction selection. If so, user intervention usually is not
necessary.
Assembly/Compiler Coding Rule 26. (M impact, L generality) Avoid prefixes, especially multiple
non-0F-prefixed opcodes.
Assembly/Compiler Coding Rule 27. (M impact, L generality) Do not use many segment
registers.
Assembly/Compiler Coding Rule 28. (M impact, M generality) Avoid using complex instructions
(for example, enter, leave, or loop) that have more than four µops and require multiple cycles to
decode. Use sequences of simple instructions instead.
Assembly/Compiler Coding Rule 29. (MH impact, M generality) Use push/pop to manage stack
space and address adjustments between function calls/returns instead of enter/leave. Using enter
instruction with non-zero immediates can experience significant delays in the pipeline in addition to
misprediction.

Theoretically, arranging instructions sequence to match the 4-1-1-1 template applies to processors
based on Intel Core microarchitecture. However, with macrofusion and micro-fusion capabilities in the
front end, attempts to schedule instruction sequences using the 4-1-1-1 template will likely provide
diminishing returns.

Instead, software should follow these additional decoder guidelines:
• If you need to use multiple micro-op, non-microsequenced instructions, try to separate by a few

single micro-op instructions. The following instructions are examples of multiple micro-op instruction
not requiring micro-sequencer:

ADC/SBB
CMOVcc
Read-modify-write instructions

• If a series of multiple micro-op instructions cannot be separated, try breaking the series into a
different equivalent instruction sequence. For example, a series of read-modify-write instructions
may go faster if sequenced as a series of read-modify + store instructions. This strategy could
improve performance even if the new code sequence is larger than the original one.

3.5.1.1 Integer Divide
Typically, an integer divide is preceded by a CWD or CDQ instruction. Depending on the operand size,
divide instructions use DX:AX or EDX:EAX for the dividend. The CWD or CDQ instructions sign-extend AX
or EAX into DX or EDX, respectively. These instructions have denser encoding than a shift and move
would be, but they generate the same number of micro-ops. If AX or EAX is known to be positive, replace
these instructions with:

xor dx, dx

or
xor edx, edx

3-21

GENERAL OPTIMIZATION GUIDELINES

Modern compilers typically can transform high-level language expression involving integer division where
the divisor is a known integer constant at compile time into a faster sequence using IMUL instruction
instead. Thus programmers should minimize integer division expression with divisor whose value can not
be known at compile time.

Alternately, if certain known divisor value are favored over other unknown ranges, software may consider
isolating the few favored, known divisor value into constant-divisor expressions.

Section 13.2.4 describes more detail of using MUL/IMUL to replace integer divisions.

3.5.1.2 Using LEA
In Sandy Bridge microarchitecture, there are two significant changes to the performance characteristics
of LEA instruction:
• LEA can be dispatched via port 1 and 5 in most cases, doubling the throughput over prior genera-

tions. However this apply only to LEA instructions with one or two source operands.

• For LEA instructions with three source operands and some specific situations, instruction latency has
increased to 3 cycles, and must dispatch via port 1:

— LEA that has all three source operands: base, index, and offset.

— LEA that uses base and index registers where the base is EBP, RBP, or R13.

— LEA that uses RIP relative addressing mode.

— LEA that uses 16-bit addressing mode.

Example 3-16. Independent Two-Operand LEA Example

mov edx, N
mov eax, X
mov ecx, Y

loop:
lea ecx, [ecx + ecx] // ecx = ecx*2
lea eax, [eax + eax *4] // eax = eax*5
and ecx, 0xff

 and eax, 0xff
dec edx
jg loop

GENERAL OPTIMIZATION GUIDELINES

3-22

.

The LEA instruction or a sequence of LEA, ADD, SUB and SHIFT instructions can replace constant multiply
instructions. The LEA instruction can also be used as a multiple operand addition instruction, for
example:

LEA ECX, [EAX + EBX*4 + A]

Using LEA in this way may avoid register usage by not tying up registers for operands of arithmetic
instructions. This use may also save code space.

If the LEA instruction uses a shift by a constant amount then the latency of the sequence of µops is
shorter if adds are used instead of a shift, and the LEA instruction may be replaced with an appropriate
sequence of µops. This, however, increases the total number of µops, leading to a trade-off.
Assembly/Compiler Coding Rule 30. (ML impact, L generality) If an LEA instruction using the
scaled index is on the critical path, a sequence with ADDs may be better.

3.5.1.3 ADC and SBB in Sandy Bridge Microarchitecture
The throughput of ADC and SBB in Sandy Bridge microarchitecture is 1 cycle, compared to 1.5-2 cycles
in the prior generation. These two instructions are useful in numeric handling of integer data types that
are wider than the maximum width of native hardware.

Example 3-17. Alternative to Three-Operand LEA
 3 operand LEA is slower Two-operand LEA alternative Alternative 2

#define K 1
uint32 an = 0;
uint32 N= mi_N;
mov ecx, N
xor esi, esi;
xor edx, edx;
cmp ecx, 2;
jb finished;
dec ecx;

#define K 1
uint32 an = 0;
uint32 N= mi_N;
mov ecx, N
xor esi, esi;
xor edx, edx;
cmp ecx, 2;
jb finished;
dec ecx;

#define K 1
uint32 an = 0;
uint32 N= mi_N;
mov ecx, N
xor esi, esi;
mov edx, K;
cmp ecx, 2;
jb finished;
mov eax, 2
dec ecx;

loop1:
 mov edi, esi;
 lea esi, [K+esi+edx];
 and esi, 0xFF;
 mov edx, edi;
 dec ecx;
 jnz loop1;
finished:
 mov [an] ,esi;

loop1:
 mov edi, esi;
 lea esi, [K+edx];
lea esi, [esi+edx];
and esi, 0xFF;
 mov edx, edi;
 dec ecx;
 jnz loop1;
finished:
 mov [an] ,esi;

loop1:
 mov edi, esi;
 lea esi, [esi+edx];
 and esi, 0xFF;
 lea edx, [edi +K];
 dec ecx;
 jnz loop1;
finished:
 mov [an] ,esi;

3-23

GENERAL OPTIMIZATION GUIDELINES

3.5.1.4 Bitwise Rotation
Bitwise rotation can choose between rotate with count specified in the CL register, an immediate constant
and by 1 bit. Generally, The rotate by immediate and rotate by register instructions are slower than
rotate by 1 bit. The rotate by 1 instruction has the same latency as a shift.

Example 3-18. Examples of 512-bit Additions

//Add 64-bit to 512 Number
lea rsi, gLongCounter
lea rdi, gStepValue
mov rax, [rdi]
xor rcx, rcx

oop_start:
mov r10, [rsi+rcx]
add r10, rax
mov [rsi+rcx], r10

mov r10, [rsi+rcx+8]
adc r10, 0
mov [rsi+rcx+8], r10

// 512-bit Addition
loop1:

mov rax, [StepValue]
add rax, [LongCounter]
mov LongCounter, rax
mov rax, [StepValue+8]
adc rax, [LongCounter+8]
mov LongCounter+8, rax
mov rax, [StepValue+16]
adc rax, [LongCounter+16]

l mov r10, [rsi+rcx+16]
adc r10, 0
mov [rsi+rcx+16], r10
mov r10, [rsi+rcx+24]
adc r10, 0
mov [rsi+rcx+24], r10

mov r10, [rsi+rcx+32]
adc r10, 0
mov [rsi+rcx+32], r10

mov r10, [rsi+rcx+40]
adc r10, 0
mov [rsi+rcx+40], r10

mov LongCounter+16, rax
mov rax, [StepValue+24]
adc rax, [LongCounter+24]

mov LongCounter+24, rax
mov rax, [StepValue+32]
adc rax, [LongCounter+32]

mov LongCounter+32, rax
mov rax, [StepValue+40]
adc rax, [LongCounter+40]

mov LongCounter+40, rax
mov rax, [StepValue+48]
adc rax, [LongCounter+48]

 mov r10, [rsi+rcx+48]
 adc r10, 0
 mov [rsi+rcx+48], r10

 mov r10, [rsi+rcx+56]
 adc r10, 0
 mov [rsi+rcx+56], r10
 add rcx, 64
 cmp rcx, SIZE
 jnz loop_start

mov LongCounter+48, rax
mov rax, [StepValue+56]
adc rax, [LongCounter+56]

mov LongCounter+56, rax
dec rcx
jnz loop1

GENERAL OPTIMIZATION GUIDELINES

3-24

Assembly/Compiler Coding Rule 31. (ML impact, L generality) Avoid ROTATE by register or
ROTATE by immediate instructions. If possible, replace with a ROTATE by 1 instruction.

In Sandy Bridge microarchitecture, ROL/ROR by immediate has 1-cycle throughput, SHLD/SHRD using
the same register as source and destination by an immediate constant has 1-cycle latency with 0.5 cycle
throughput. The “ROL/ROR reg, imm8” instruction has two micro-ops with the latency of 1-cycle for the
rotate register result and 2-cycles for the flags, if used.

In Ivy Bridge microarchitecture, The “ROL/ROR reg, imm8” instruction with immediate greater than 1, is
one micro-op with one-cycle latency when the overflow flag result is used. When the immediate is one,
dependency on the overflow flag result of ROL/ROR by a subsequent instruction will see the ROL/ROR
instruction with two-cycle latency.

3.5.1.5 Variable Bit Count Rotation and Shift
In Sandy Bridge microarchitecture, The “ROL/ROR/SHL/SHR reg, cl” instruction has three micro-ops.
When the flag result is not needed, one of these micro-ops may be discarded, providing better perfor-
mance in many common usages. When these instructions update partial flag results that are subse-
quently used, the full three micro-ops flow must go through the execution and retirement pipeline,
experiencing slower performance. In Ivy Bridge microarchitecture, executing the full three micro-ops
flow to use the updated partial flag result has additional delay. Consider the looped sequence below:
loop:

shl eax, cl
add ebx, eax
dec edx ; DEC does not update carry, causing SHL to execute slower three micro-ops flow
jnz loop

The DEC instruction does not modify the carry flag. Consequently, the SHL EAX, CL instruction needs to
execute the three micro-ops flow in subsequent iterations. The SUB instruction will update all flags. So
replacing DEC with SUB will allow SHL EAX, CL to execute the two micro-ops flow.

3.5.1.6 Address Calculations
For computing addresses, use the addressing modes rather than general-purpose computations. Inter-
nally, memory reference instructions can have four operands:
• Relocatable load-time constant.
• Immediate constant.
• Base register.
• Scaled index register.

Note that the latency and throughput of LEA with more than two operands are slower (see Section
3.5.1.2) in Sandy Bridge microarchitecture. Addressing modes that uses both base and index registers
will consume more read port resource in the execution engine and may experience more stalls due to
availability of read port resources. Software should take care by selecting the speedy version of address
calculation.

In the segmented model, a segment register may constitute an additional operand in the linear address
calculation. In many cases, several integer instructions can be eliminated by fully using the operands of
memory references.

3-25

GENERAL OPTIMIZATION GUIDELINES

3.5.1.7 Clearing Registers and Dependency Breaking Idioms
Code sequences that modifies partial register can experience some delay in its dependency chain, but
can be avoided by using dependency breaking idioms.

In processors based on Intel Core microarchitecture, a number of instructions can help clear execution
dependency when software uses these instruction to clear register content to zero. The instructions
include:

XOR REG, REG
SUB REG, REG
XORPS/PD XMMREG, XMMREG
PXOR XMMREG, XMMREG
SUBPS/PD XMMREG, XMMREG
PSUBB/W/D/Q XMMREG, XMMREG

In processors based on Sandy Bridge microarchitecture, the instruction listed above plus equivalent AVX
counter parts are also zero idioms that can be used to break dependency chains. Furthermore, they do
not consume an issue port or an execution unit. So using zero idioms are preferable than moving 0’s into
the register. The AVX equivalent zero idioms are:

VXORPS/PD XMMREG, XMMREG
VXORPS/PD YMMREG, YMMREG
VPXOR XMMREG, XMMREG
VSUBPS/PD XMMREG, XMMREG
VSUBPS/PD YMMREG, YMMREG
VPSUBB/W/D/Q XMMREG, XMMREG

Microarchitectures that support Intel AVX-512 have the equivalent of zero idioms for the 512-bit regis-
ters using the unmasked versions of the instructions:

VXORPS/PD ZMMREG, ZMMREG
VPXOR ZMMREG, ZMMREG
VSUBPS/PD ZMMREG, ZMMREG
VPSUBB/W/D/Q ZMMREG, ZMMREG

The XOR and SUB instructions can be used to clear execution dependencies on the zero evaluation of the
destination register.
Assembly/Compiler Coding Rule 32. (M impact, ML generality) Use dependency-breaking-idiom
instructions to set a register to 0, or to break a false dependence chain resulting from re-use of
registers. In contexts where the condition codes must be preserved, move 0 into the register instead.
This requires more code space than using XOR and SUB, but avoids setting the condition codes.

Example 3-19 of using pxor to break dependency idiom on a XMM register when performing negation on
the elements of an array.

int a[4096], b[4096], c[4096];
For (int i = 0; i < 4096; i++)

C[i] = - (a[i] + b[i]);

GENERAL OPTIMIZATION GUIDELINES

3-26

Assembly/Compiler Coding Rule 33. (M impact, MH generality) Break dependences on portions
of registers between instructions by operating on 32-bit registers instead of partial registers. For
moves, this can be accomplished with 32-bit moves or by using MOVZX.

Sometimes sign-extended semantics can be maintained by zero-extending operands. For example, the C
code in the following statements does not need sign extension, nor does it need prefixes for operand size
overrides:

static short INT a, b;
IF (a == b) {
 . . .
}

Code for comparing these 16-bit operands might be:
MOVZW EAX, [a]
MOVZW EBX, [b]
CMP EAX, EBX

These circumstances tend to be common. However, the technique will not work if the compare is for
greater than, less than, greater than or equal, and so on, or if the values in eax or ebx are to be used in
another operation where sign extension is required.
Assembly/Compiler Coding Rule 34. (M impact, M generality) Try to use zero extension or
operate on 32-bit operands instead of using moves with sign extension.

The trace cache can be packed more tightly when instructions with operands that can only be repre-
sented as 32 bits are not adjacent.
Assembly/Compiler Coding Rule 35. (ML impact, L generality) Avoid placing instructions that
use 32-bit immediates which cannot be encoded as sign-extended 16-bit immediates near each other.
Try to schedule µops that have no immediate immediately before or after µops with 32-bit immediates.

3.5.1.8 Compares
Use TEST when comparing a value in a register with zero. TEST essentially ANDs operands together
without writing to a destination register. TEST is preferred over AND because AND produces an extra
result register. TEST is better than CMP ..., 0 because the instruction size is smaller.

Example 3-19. Clearing Register to Break Dependency While Negating Array Elements
Negation (-x = (x XOR (-1)) - (-1) without breaking
dependency

Negation (-x = 0 -x) using PXOR reg, reg breaks
dependency

Lea eax, a
lea ecx, b
lea edi, c
xor edx, edx
movdqa xmm7, allone
lp:

lea eax, a
lea ecx, b
lea edi, c
xor edx, edx
lp:

movdqa xmm0, [eax + edx]
paddd xmm0, [ecx + edx]
pxor xmm0, xmm7
psubd xmm0, xmm7
movdqa [edi + edx], xmm0
add edx, 16
cmp edx, 4096
jl lp

movdqa xmm0, [eax + edx]
paddd xmm0, [ecx + edx]
pxor xmm7, xmm7
psubd xmm7, xmm0
movdqa [edi + edx], xmm7
add edx,16
cmp edx, 4096
jl lp

3-27

GENERAL OPTIMIZATION GUIDELINES

Use TEST when comparing the result of a logical AND with an immediate constant for equality or
inequality if the register is EAX for cases such as:

IF (AVAR & 8) { }

The TEST instruction can also be used to detect rollover of modulo of a power of 2. For example, the C
code:

IF ((AVAR % 16) == 0) { }

can be implemented using:

TEST EAX, 0x0F
JNZ AfterIf

Using the TEST instruction between the instruction that may modify part of the flag register and the
instruction that uses the flag register can also help prevent partial flag register stall.
Assembly/Compiler Coding Rule 36. (ML impact, M generality) Use the TEST instruction instead
of AND when the result of the logical AND is not used. This saves µops in execution. Use a TEST of a
register with itself instead of a CMP of the register to zero, this saves the need to encode the zero and
saves encoding space. Avoid comparing a constant to a memory operand. It is preferable to load the
memory operand and compare the constant to a register.

Often a produced value must be compared with zero, and then used in a branch. Because most Intel
architecture instructions set the condition codes as part of their execution, the compare instruction may
be eliminated. Thus the operation can be tested directly by a JCC instruction. The notable exceptions are
MOV and LEA. In these cases, use TEST.
Assembly/Compiler Coding Rule 37. (ML impact, M generality) Eliminate unnecessary compare
with zero instructions by using the appropriate conditional jump instruction when the flags are already
set by a preceding arithmetic instruction. If necessary, use a TEST instruction instead of a compare. Be
certain that any code transformations made do not introduce problems with overflow.

3.5.1.9 Using NOPs
Code generators generate a no-operation (NOP) to align instructions. Examples of NOPs of different
lengths in 32-bit mode are shown in Table 3-3.

These are all true NOPs, having no effect on the state of the machine except to advance the EIP. Because
NOPs require hardware resources to decode and execute, use the fewest number to achieve the desired
padding.

The one byte NOP:[XCHG EAX,EAX] has special hardware support. Although it still consumes a µop and
its accompanying resources, the dependence upon the old value of EAX is removed. This µop can be
executed at the earliest possible opportunity, reducing the number of outstanding instructions, and is the
lowest cost NOP.

Table 3-3. Recommended Multi-Byte Sequence of NOP Instruction
Length Assembly Byte Sequence

2 bytes 66 NOP 66 90H
3 bytes NOP DWORD ptr [EAX] 0F 1F 00H
4 bytes NOP DWORD ptr [EAX + 00H] 0F 1F 40 00H
5 bytes NOP DWORD ptr [EAX + EAX*1 + 00H] 0F 1F 44 00 00H
6 bytes 66 NOP DWORD ptr [EAX + EAX*1 + 00H] 66 0F 1F 44 00 00H
7 bytes NOP DWORD ptr [EAX + 00000000H] 0F 1F 80 00 00 00 00H
8 bytes NOP DWORD ptr [EAX + EAX*1 + 00000000H] 0F 1F 84 00 00 00 00 00H
9 bytes 66 NOP DWORD ptr [EAX + EAX*1 + 00000000H] 66 0F 1F 84 00 00 00 00 00H

GENERAL OPTIMIZATION GUIDELINES

3-28

The other NOPs have no special hardware support. Their input and output registers are interpreted by the
hardware. Therefore, a code generator should arrange to use the register containing the oldest value as
input, so that the NOP will dispatch and release RS resources at the earliest possible opportunity.

Try to observe the following NOP generation priority:
• Select the smallest number of NOPs and pseudo-NOPs to provide the desired padding.
• Select NOPs that are least likely to execute on slower execution unit clusters.
• Select the register arguments of NOPs to reduce dependencies.

3.5.1.10 Mixing SIMD Data Types
Previous microarchitectures (before Intel Core microarchitecture) do not have explicit restrictions on
mixing integer and floating-point (FP) operations on XMM registers. For Intel Core microarchitecture,
mixing integer and floating-point operations on the content of an XMM register can degrade perfor-
mance. Software should avoid mixed-use of integer/FP operation on XMM registers. Specifically:
• Use SIMD integer operations to feed SIMD integer operations. Use PXOR for idiom.
• Use SIMD floating-point operations to feed SIMD floating-point operations. Use XORPS for idiom.
• When floating-point operations are bitwise equivalent, use PS data type instead of PD data type.

MOVAPS and MOVAPD do the same thing, but MOVAPS takes one less byte to encode the instruction.

3.5.1.11 Spill Scheduling
The spill scheduling algorithm used by a code generator will be impacted by the memory subsystem. A
spill scheduling algorithm is an algorithm that selects what values to spill to memory when there are too
many live values to fit in registers. Consider the code in Example 3-20, where it is necessary to spill
either A, B, or C.

For modern microarchitectures, using dependence depth information in spill scheduling is even more
important than in previous processors. The loop-carried dependence in A makes it especially important
that A not be spilled. Not only would a store/load be placed in the dependence chain, but there would also
be a data-not-ready stall of the load, costing further cycles.
Assembly/Compiler Coding Rule 38. (H impact, MH generality) For small loops, placing loop
invariants in memory is better than spilling loop-carried dependencies.

A possibly counter-intuitive result is that in such a situation it is better to put loop invariants in memory
than in registers, since loop invariants never have a load blocked by store data that is not ready.

3.5.1.12 Zero-Latency MOV Instructions
In processors based on Ivy Bridge microarchitecture, a subset of register-to-register move operations
are executed in the front end (similar to zero-idioms, see Section 3.5.1.7). This conserves sched-
uling/execution resources in the out-of-order engine. Most forms of register-to-register MOV instructions

Example 3-20. Spill Scheduling Code

LOOP
C := ...
B := ...
A := A + ...

3-29

GENERAL OPTIMIZATION GUIDELINES

can benefit from zero-latency MOV. Example 3-21 list the details of those forms that qualify and a small
set that do not.

Example 3-22 shows how to process 8-bit integers using MOVZX to take advantage of zero-latency MOV
enhancement. Consider

X = (X * 3^N) MOD 256;

Y = (Y * 3^N) MOD 256;

When “MOD 256” is implemented using the “AND 0xff” technique, its latency is exposed in the result-
dependency chain. Using a form of MOVZX on a truncated byte input, it can take advantage of zero-
latency MOV enhancement and gain about 45% in speed.

The effectiveness of coding a dense sequence of instructions to rely on a zero-latency MOV instruction
must also consider internal resource constraints in the microarchitecture.

Example 3-21. Zero-Latency MOV Instructions
MOV instructions latency that can be eliminated MOV instructions latency that cannot be eliminated

MOV reg32, reg32
MOV reg64, reg64
MOVUPD/MOVAPD xmm, xmm
MOVUPD/MOVAPD ymm, ymm
MOVUPS?MOVAPS xmm, xmm
MOVUPS/MOVAPS ymm, ymm
MOVDQA/MOVDQU xmm, xmm
MOVDQA/MOVDQU ymm, ymm
MOVDQA/MOVDQU zmm, zmm
MOVZX reg32, reg8 (if not AH/BH/CH/DH)
MOVZX reg64, reg8 (if not AH/BH/CH/DH)

MOV reg8, reg8
MOV reg16, reg16
MOVZX reg32, reg8 (if AH/BH/CH/DH)
MOVZX reg64, reg8 (if AH/BH/CH/DH)
MOVSX

Example 3-22. Byte-Granular Data Computation Technique
Use AND Reg32, 0xff Use MOVZX

mov rsi, N
mov rax, X
mov rcx, Y
loop:
lea rcx, [rcx+rcx*2]
lea rax, [rax+rax*4]
and rcx, 0xff
and rax, 0xff

mov rsi, N
mov rax, X
mov rcx, Y
loop:
lea rbx, [rcx+rcx*2]
movzx, rcx, bl
lea rbx, [rcx+rcx*2]
movzx, rcx, bl

lea rcx, [rcx+rcx*2]
lea rax, [rax+rax*4]
and rcx, 0xff
and rax, 0xff
sub rsi, 2
jg loop

lea rdx, [rax+rax*4]
movzx, rax, dl
llea rdx, [rax+rax*4]
movzx, rax, dl
sub rsi, 2
jg loop

GENERAL OPTIMIZATION GUIDELINES

3-30

In Example 3-23, RBX/RCX and RDX/RAX are pairs of registers that are shared and continuously over-
written. In the right-hand sequence, registers are overwritten with new results immediately, consuming
less internal resources provided by the underlying microarchitecture. As a result, it is about 8% faster
than the left-hand sequence where internal resources could only support 50% of the attempt to take
advantage of zero-latency MOV instructions.

3.5.2 Avoiding Stalls in Execution Core
Although the design of the execution core is optimized to make common cases executes quickly. A micro-
op may encounter various hazards, delays, or stalls while making forward progress from the front end to
the ROB and RS. The significant cases are:
• ROB Read Port Stalls.
• Partial Register Reference Stalls.
• Partial Updates to XMM Register Stalls.
• Partial Flag Register Reference Stalls.

3.5.2.1 Writeback Bus Conflicts
The writeback bus inside the execution engine is a common resource needed to facilitate out-of-order
execution of micro-ops in flight. When the writeback bus is needed at the same time by two micro-ops
executing in the same stack of execution units (see Table E-11 in Appendix E, “Earlier Generations of
Intel® 64 and IA-32 Processor Architectures”), the younger micro-op will have to wait for the writeback
bus to be available. This situation typically will be more likely for short-latency instructions experience a
delay when it might have been otherwise ready for dispatching into the execution engine.

Consider a repeating sequence of independent floating-point ADDs with a single-cycle MOV bound to the
same dispatch port. When the MOV finds the dispatch port available, the writeback bus can be occupied
by the ADD. This delays the MOV operation.

If this problem is detected, you can sometimes change the instruction selection to use a different
dispatch port and reduce the writeback contention.

Example 3-23. Re-ordering Sequence to Improve Effectiveness of Zero-Latency MOV Instructions
Needing more internal resource for zero-latency
MOVs Needing less internal resource for zero-latency MOVs

mov rsi, N
mov rax, X
mov rcx, Y

mov rsi, N
mov rax, X
mov rcx, Y

loop:
lea rbx, [rcx+rcx*2]
movzx, rcx, bl
lea rdx, [rax+rax*4]
movzx, rax, dl
lea rbx, [rcx+rcx*2]
movzx, rcx, bl
llea rdx, [rax+rax*4]
movzx, rax, dl
sub rsi, 2
jg loop

loop:
lea rbx, [rcx+rcx*2]
movzx, rcx, bl
lea rbx, [rcx+rcx*2]
movzx, rcx, bl
lea rdx, [rax+rax*4]
movzx, rax, dl
llea rdx, [rax+rax*4]
movzx, rax, dl
sub rsi, 2
jg loop

3-31

GENERAL OPTIMIZATION GUIDELINES

3.5.2.2 Bypass between Execution Domains
Floating-point (FP) loads have an extra cycle of latency. Moves between FP and SIMD stacks have
another additional cycle of latency.

Example:
ADDPS XMM0, XMM1
PAND XMM0, XMM3
ADDPS XMM2, XMM0

The overall latency for the above calculation is 9 cycles:
• 3 cycles for each ADDPS instruction.
• 1 cycle for the PAND instruction.
• 1 cycle to bypass between the ADDPS floating-point domain to the PAND integer domain.
• 1 cycle to move the data from the PAND integer to the second floating-point ADDPS domain.

To avoid this penalty, organize code to minimize domain changes. Sometimes bypasses cannot be
avoided.

Account for bypass cycles when counting the overall latency of your code. If your calculation is latency-
bound, you can execute more instructions in parallel or break dependency chains to reduce total latency.

Code that has many bypass domains and is completely latency-bound may run slower on the Intel Core
microarchitecture than it did on previous microarchitectures.

3.5.2.3 Partial Register Stalls
General purpose registers can be accessed in granularities of bytes, words, doublewords; 64-bit mode
also supports quadword granularity. Referencing a portion of a register is referred to as a partial register
reference.

A partial register stall happens when an instruction refers to a register, portions of which were previously
modified by other instructions. For example, partial register stalls occurs with a read to AX while previous
instructions stored AL and AH, or a read to EAX while previous instruction modified AX.

The delay of a partial register stall is small in processors based on Intel Core microarchitecture, and in
Pentium M processor (with CPUID signature family 6, model 13), Intel Core Solo, and Intel Core Duo
processors. Pentium M processors (CPUID signature with family 6, model 9) and the P6 family incur a
large penalty.

Note that in Intel 64 architecture, an update to the lower 32 bits of a 64 bit integer register is architec-
turally defined to zero extend the upper 32 bits. While this action may be logically viewed as a 32 bit
update, it is really a 64 bit update (and therefore does not cause a partial stall).

Referencing partial registers frequently produces code sequences with either false or real dependencies.
Example 3-16 demonstrates a series of false and real dependencies caused by referencing partial regis-
ters.

If instructions 4 and 6 (in Example 3-16) are changed to use a movzx instruction instead of a mov, then
the dependences of instruction 4 on 2 (and transitively 1 before it), and instruction 6 on 5 are broken.
This creates two independent chains of computation instead of one serial one.

GENERAL OPTIMIZATION GUIDELINES

3-32

Example 3-24 illustrates the use of MOVZX to avoid a partial register stall when packing three byte
values into a register.

Beginning with Sandy Bridge microarchitecture and all subsequent generations of Intel Core microarchi-
tecture, partial register access is handled in hardware by inserting a micro-op that merges the partial
register with the full register in the following cases:
• After a write to one of the registers AH, BH, CH or DH and before a following read of the 2-, 4- or 8-

byte form of the same register. In these cases a merge micro-op is inserted. The insertion consumes
a full allocation cycle in which other micro-ops cannot be allocated.

• After a micro-op with a destination register of 1 or 2 bytes, which is not a source of the instruction (or
the register's bigger form), and before a following read of a 2-,4- or 8-byte form of the same register.
In these cases the merge micro-op is part of the flow. For example:

• MOV AX, [BX]

When you want to load from memory to a partial register, consider using MOVZX or MOVSX to
avoid the additional merge micro-op penalty.

• LEA AX, [BX+CX]

For optimal performance, use of zero idioms, before the use of the register, eliminates the need for
partial register merge micro-ops.

3.5.2.4 Partial XMM Register Stalls
Partial register stalls can also apply to XMM registers. The following SSE and SSE2 instructions update
only part of the destination register:

MOVL/HPD XMM, MEM64
MOVL/HPS XMM, MEM32
MOVSS/SD between registers

Using these instructions creates a dependency chain between the unmodified part of the register and the
modified part of the register. This dependency chain can cause performance loss.
Example 3-25 illustrates the use of MOVZX to avoid a partial register stall when packing three byte
values into a register.

Follow these recommendations to avoid stalls from partial updates to XMM registers:
• Avoid using instructions which update only part of the XMM register.
• If a 64-bit load is needed, use the MOVSD or MOVQ instruction.
• If 2 64-bit loads are required to the same register from non continuous locations, use

MOVSD/MOVHPD instead of MOVLPD/MOVHPD.
• When copying the XMM register, use the following instructions for full register copy, even if you only

want to copy some of the source register data:

MOVAPS
MOVAPD
MOVDQA

Example 3-24. Avoiding Partial Register Stalls in Integer Code
A Sequence Causing Partial Register Stall Alternate Sequence Using MOVZX to Avoid Delay

mov al, byte ptr a[2]
shl eax,16
mov ax, word ptr a
movd mm0, eax
ret

movzx eax, byte ptr a[2]
shl eax, 16
movzx ecx, word ptr a
or eax,ecx
movd mm0, eax
ret

3-33

GENERAL OPTIMIZATION GUIDELINES

3.5.2.5 Partial Flag Register Stalls
A “partial flag register stall” occurs when an instruction modifies a part of the flag register and the
following instruction is dependent on the outcome of the flags. This happens most often with shift
instructions (SAR, SAL, SHR, SHL). The flags are not modified in the case of a zero shift count, but the
shift count is usually known only at execution time. The front end stalls until the instruction is retired.

Other instructions that can modify some part of the flag register include CMPXCHG8B, various rotate
instructions, STC, and STD. An example of assembly with a partial flag register stall and alternative code
without the stall is shown in Example 3-26.

In processors based on Intel Core microarchitecture, shift immediate by 1 is handled by special hardware
such that it does not experience partial flag stall.

In Sandy Bridge microarchitecture, the cost of partial flag access is replaced by the insertion of a micro-
op instead of a stall. However, it is still recommended to use less of instructions that write only to some
of the flags (such as INC, DEC, SET CL) before instructions that can write flags conditionally (such as
SHIFT CL).

Example 3-27 compares two techniques to implement the addition of very large integers (e.g., 1024
bits). The alternative sequence on the right side of Example 3-27 will be faster than the left side on
Sandy Bridge microarchitecture, but it will experience partial flag stalls on prior microarchitectures.

Example 3-25. Avoiding Partial Register Stalls in SIMD Code
Using movlpd for memory transactions and movsd
between register copies Causing Partial Register Stall

Using movsd for memory and movapd between
register copies Avoid Delay

mov edx, x
mov ecx, count
movlpd xmm3,_1_
movlpd xmm2,_1pt5_
align 16

mov edx, x
mov ecx, count
movsd xmm3,_1_
movsd xmm2, _1pt5_
align 16

lp:
movlpd xmm0, [edx]
addsd xmm0, xmm3
movsd xmm1, xmm2
subsd xmm1, [edx]
mulsd xmm0, xmm1
movsd [edx], xmm0
add edx, 8
dec ecx
jnz lp

lp:
movsd xmm0, [edx]
addsd xmm0, xmm3
movapd xmm1, xmm2
subsd xmm1, [edx]
mulsd xmm0, xmm1
movsd [edx], xmm0
add edx, 8
dec ecx
jnz lp

Example 3-26. Avoiding Partial Flag Register Stalls
Partial Flag Register Stall Avoiding Partial Flag Register Stall

xor eax, eax
mov ecx, a
sar ecx, 2
setz al ;SAR can update carry causing a stall

or eax, eax
mov ecx, a
sar ecx, 2
test ecx, ecx ; test always updates all flags
setz al ;No partial reg or flag stall,

GENERAL OPTIMIZATION GUIDELINES

3-34

3.5.2.6 Floating-Point/SIMD Operands
Moves that write a portion of a register can introduce unwanted dependences. The MOVSD REG, REG
instruction writes only the bottom 64 bits of a register, not all 128 bits. This introduces a dependence on
the preceding instruction that produces the upper 64 bits (even if those bits are not longer wanted). The
dependence inhibits register renaming, and thereby reduces parallelism.

Use MOVAPD as an alternative; it writes all 128 bits. Even though this instruction has a longer latency,
the ops for MOVAPD use a different execution port and this port is more likely to be free. The change can
impact performance. There may be exceptional cases where the latency matters more than the depen-
dence or the execution port.
Assembly/Compiler Coding Rule 39. (M impact, ML generality) Avoid introducing dependences
with partial floating-point register writes, e.g. from the MOVSD XMMREG1, XMMREG2 instruction. Use
the MOVAPD XMMREG1, XMMREG2 instruction instead.

The MOVSD XMMREG, MEM instruction writes all 128 bits and breaks a dependence.

3.5.3 Vectorization
This section provides a brief summary of optimization issues related to vectorization. There is more detail
in the chapters that follow.

Vectorization is a program transformation that allows special hardware to perform the same operation on
multiple data elements at the same time. Successive processor generations have provided vector
support through the MMX technology, Streaming SIMD Extensions (SSE), Streaming SIMD Extensions 2
(SSE2), Streaming SIMD Extensions 3 (SSE3) and Supplemental Streaming SIMD Extensions 3 (SSSE3).

Vectorization is a special case of SIMD, a term defined in Flynn’s architecture taxonomy to denote a
single instruction stream capable of operating on multiple data elements in parallel. The number of
elements which can be operated on in parallel range from four single-precision floating-point data
elements in Streaming SIMD Extensions and two double-precision floating-point data elements in
Streaming SIMD Extensions 2 to sixteen byte operations in a 128-bit register in Streaming SIMD Exten-
sions 2. Thus, vector length ranges from 2 to 16, depending on the instruction extensions used and on
the data type.

The Intel C++ Compiler supports vectorization in three ways:
• The compiler may be able to generate SIMD code without intervention from the user.

Example 3-27. Partial Flag Register Accesses in Sandy Bridge Microarchitecture
Save partial flag register to avoid stall Simplified code sequence

lea rsi, [A]
lea rdi, [B]
xor rax, rax
mov rcx, 16 ; 16*64 =1024 bit

lea rsi, [A]
lea rdi, [B]
xor rax, rax
mov rcx, 16

lp_64bit:
add rax, [rsi]
adc rax, [rdi]
mov [rdi], rax
setc al ;save carry for next iteration
movzx rax, al
add rsi, 8
add rdi, 8
dec rcx
jnz lp_64bit

lp_64bit:
add rax, [rsi]
adc rax, [rdi]
mov [rdi], rax
lea rsi, [rsi+8]
lea rdi, [rdi+8]
dec rcx
jnz lp_64bit

3-35

GENERAL OPTIMIZATION GUIDELINES

• The can user insert pragmas to help the compiler realize that it can vectorize the code.
• The user can write SIMD code explicitly using intrinsics and C++ classes.

To help enable the compiler to generate SIMD code, avoid global pointers and global variables. These
issues may be less troublesome if all modules are compiled simultaneously, and whole-program optimi-
zation is used.
User/Source Coding Rule 2. (H impact, M generality) Use the smallest possible floating-point or
SIMD data type, to enable more parallelism with the use of a (longer) SIMD vector. For example, use
single precision instead of double precision where possible.
User/Source Coding Rule 3. (M impact, ML generality) Arrange the nesting of loops so that the
innermost nesting level is free of inter-iteration dependencies. Especially avoid the case where the
store of data in an earlier iteration happens lexically after the load of that data in a future iteration,
something which is called a lexically backward dependence.

The integer part of the SIMD instruction set extensions cover 8-bit,16-bit and 32-bit operands. Not all
SIMD operations are supported for 32 bits, meaning that some source code will not be able to be vector-
ized at all unless smaller operands are used.
User/Source Coding Rule 4. (M impact, ML generality) Avoid the use of conditional branches
inside loops and consider using SSE instructions to eliminate branches.
User/Source Coding Rule 5. (M impact, ML generality) Keep induction (loop) variable expressions
simple.

3.5.4 Optimization of Partially Vectorizable Code
Frequently, a program contains a mixture of vectorizable code and some routines that are non-vectoriz-
able. A common situation of partially vectorizable code involves a loop structure which include mixtures
of vectorized code and unvectorizable code. This situation is depicted in Figure 3-1.

It generally consists of five stages within the loop:
• Prolog.
• Unpacking vectorized data structure into individual elements.
• Calling a non-vectorizable routine to process each element serially.
• Packing individual result into vectorized data structure.
• Epilog.

Figure 3-1. Generic Program Flow of Partially Vectorized Code

Serial Routine

Packed SIMD Instruction

 Unpacking

 Packing

 Unvectorizable Code

Packed SIMD Instruction

GENERAL OPTIMIZATION GUIDELINES

3-36

This section discusses techniques that can reduce the cost and bottleneck associated with the
packing/unpacking stages in these partially vectorize code.

Example 3-28 shows a reference code template that is representative of partially vectorizable coding
situations that also experience performance issues. The unvectorizable portion of code is represented
generically by a sequence of calling a serial function named “foo” multiple times. This generic example is
referred to as “shuffle with store forwarding”, because the problem generally involves an unpacking
stage that shuffles data elements between register and memory, followed by a packing stage that can
experience store forwarding issue.

There are more than one useful techniques that can reduce the store-forwarding bottleneck between the
serialized portion and the packing stage. The following sub-sections presents alternate techniques to
deal with the packing, unpacking, and parameter passing to serialized function calls.

Example 3-28. Reference Code Template for Partially Vectorizable Program

// Prolog ///////////////////////////////
push ebp
mov ebp, esp

// Unpacking ////////////////////////////
sub ebp, 32
and ebp, 0xfffffff0
movaps [ebp], xmm0

// Serial operations on components ///////
sub ebp, 4

mov eax, [ebp+4]
mov [ebp], eax
call foo
mov [ebp+16+4], eax

mov eax, [ebp+8]
mov [ebp], eax
call foo
mov [ebp+16+4+4], eax

mov eax, [ebp+12]
mov [ebp], eax
call foo
mov [ebp+16+8+4], eax

mov eax, [ebp+12+4]
mov [ebp], eax
call foo
mov [ebp+16+12+4], eax

// Packing ///////////////////////////////
movaps xmm0, [ebp+16+4]

// Epilog ////////////////////////////////
pop ebp
ret

3-37

GENERAL OPTIMIZATION GUIDELINES

3.5.4.1 Alternate Packing Techniques
The packing method implemented in the reference code of Example 3-28 will experience delay as it
assembles 4 doubleword result from memory into an XMM register due to store-forwarding restrictions.

Three alternate techniques for packing, using different SIMD instruction to assemble contents in XMM
registers are shown in Example 3-29. All three techniques avoid store-forwarding delay by satisfying the
restrictions on data sizes between a preceding store and subsequent load operations.

3.5.4.2 Simplifying Result Passing
In Example 3-28, individual results were passed to the packing stage by storing to contiguous memory
locations. Instead of using memory spills to pass four results, result passing may be accomplished by
using either one or more registers. Using registers to simplify result passing and reduce memory spills
can improve performance by varying degrees depending on the register pressure at runtime.

Example 3-30 shows the coding sequence that uses four extra XMM registers to reduce all memory spills
of passing results back to the parent routine. However, software must observe the following conditions
when using this technique:
• There is no register shortage.
• If the loop does not have many stores or loads but has many computations, this technique does not

help performance. This technique adds work to the computational units, while the store and loads
ports are idle.

Example 3-29. Three Alternate Packing Methods for Avoiding Store Forwarding Difficulty
Packing Method 1 Packing Method 2 Packing Method 3

movd xmm0, [ebp+16+4]
movd xmm1, [ebp+16+8]
movd xmm2, [ebp+16+12]
movd xmm3, [ebp+12+16+4]
punpckldq xmm0, xmm1
punpckldq xmm2, xmm3
punpckldq xmm0, xmm2

movd xmm0, [ebp+16+4]
movd xmm1, [ebp+16+8]
movd xmm2, [ebp+16+12]
movd xmm3, [ebp+12+16+4]
psllq xmm3, 32
orps xmm2, xmm3
psllq xmm1, 32
orps xmm0, xmm1movlhps xmm0, xmm2

movd xmm0, [ebp+16+4]
movd xmm1, [ebp+16+8]
movd xmm2, [ebp+16+12]
movd xmm3, [ebp+12+16+4]
movlhps xmm1,xmm3
psllq xmm1, 32
movlhps xmm0, xmm2
orps xmm0, xmm1

Example 3-30. Using Four Registers to Reduce Memory Spills and Simplify Result Passing

mov eax, [ebp+4]
mov [ebp], eax
call foo
movd xmm0, eax

mov eax, [ebp+8]
mov [ebp], eax
call foo
movd xmm1, eax

GENERAL OPTIMIZATION GUIDELINES

3-38

3.5.4.3 Stack Optimization
In Example 3-28, an input parameter was copied in turn onto the stack and passed to the non-vectoriz-
able routine for processing. The parameter passing from consecutive memory locations can be simplified
by a technique shown in Example 3-31.

Stack Optimization can only be used when:
• The serial operations are function calls. The function “foo” is declared as: INT FOO(INT A). The

parameter is passed on the stack.
• The order of operation on the components is from last to first.

Note the call to FOO and the advance of EDP when passing the vector elements to FOO one by one from
last to first.

3.5.4.4 Tuning Considerations
Tuning considerations for situations represented by looping of Example 3-28 include:
• Applying one of more of the following combinations:

— Choose an alternate packing technique.

— Consider a technique to simply result-passing.

— Consider the stack optimization technique to simplify parameter passing.
• Minimizing the average number of cycles to execute one iteration of the loop.
• Minimizing the per-iteration cost of the unpacking and packing operations.

mov eax, [ebp+12]
mov [ebp], eax
call foo
movd xmm2, eax

mov eax, [ebp+12+4]
mov [ebp], eax
call foo
movd xmm3, eax

Example 3-31. Stack Optimization Technique to Simplify Parameter Passing

call foo
mov [ebp+16], eax

add ebp, 4
call foo
mov [ebp+16], eax

add ebp, 4
call foo
mov [ebp+16], eax

add ebp, 4
call foo

Example 3-30. Using Four Registers to Reduce Memory Spills and Simplify Result Passing (Contd.)

3-39

GENERAL OPTIMIZATION GUIDELINES

The speed improvement by using the techniques discussed in this section will vary, depending on the
choice of combinations implemented and characteristics of the non-vectorizable routine. For example, if
the routine “foo” is short (representative of tight, short loops), the per-iteration cost of
unpacking/packing tend to be smaller than situations where the non-vectorizable code contain longer
operation or many dependencies. This is because many iterations of short, tight loop can be in flight in
the execution core, so the per-iteration cost of packing and unpacking is only partially exposed and
appear to cause very little performance degradation.

Evaluation of the per-iteration cost of packing/unpacking should be carried out in a methodical manner
over a selected number of test cases, where each case may implement some combination of the tech-
niques discussed in this section. The per-iteration cost can be estimated by:
• Evaluating the average cycles to execute one iteration of the test case.
• Evaluating the average cycles to execute one iteration of a base line loop sequence of non-vector-

izable code.

Example 3-32 shows the base line code sequence that can be used to estimate the average cost of a loop
that executes non-vectorizable routines.

The average per-iteration cost of packing/unpacking can be derived from measuring the execution times
of a large number of iterations by:

((Cycles to run TestCase) - (Cycles to run equivalent baseline sequence)) / (Iteration count).

For example, using a simple function that returns an input parameter (representative of tight, short
loops), the per-iteration cost of packing/unpacking may range from slightly more than 7 cycles (the
shuffle with store forwarding case, Example 3-28) to ~0.9 cycles (accomplished by several test cases).
Across 27 test cases (consisting of one of the alternate packing methods, no result-simplification/simpli-
fication of either 1 or 4 results, no stack optimization or with stack optimization), the average per-itera-
tion cost of packing/unpacking is about 1.7 cycles.

Generally speaking, packing method 2 and 3 (see Example 3-29) tend to be more robust than packing
method 1; the optimal choice of simplifying 1 or 4 results will be affected by register pressure of the
runtime and other relevant microarchitectural conditions.

Example 3-32. Base Line Code Sequence to Estimate Loop Overhead

push ebp
mov ebp, esp
sub ebp, 4

mov [ebp], edi
call foo

mov [ebp], edi
call foo

mov [ebp], edi
call foo

mov [ebp], edi
call foo

add ebp, 4
pop ebp
ret

GENERAL OPTIMIZATION GUIDELINES

3-40

Note that the numeric discussion of per-iteration cost of packing/packing is illustrative only. It will vary
with test cases using a different base line code sequence and will generally increase if the non-vectoriz-
able routine requires longer time to execute because the number of loop iterations that can reside in
flight in the execution core decreases.

3.6 OPTIMIZING MEMORY ACCESSES
This section discusses guidelines for optimizing code and data memory accesses. The most important
recommendations are:
• Execute load and store operations within available execution bandwidth.
• Enable forward progress of speculative execution.
• Enable store forwarding to proceed.
• Align data, paying attention to data layout and stack alignment.
• Place code and data on separate pages.
• Enhance data locality.
• Use prefetching and cacheability control instructions.
• Enhance code locality and align branch targets.
• Take advantage of write combining.

3.6.1 Load and Store Execution Bandwidth
Typically, loads and stores are the most frequent operations in a workload, up to 40% of the instructions
in a workload carrying load or store intent are not uncommon. Each generation of microarchitecture
provides multiple buffers to support executing load and store operations while there are instructions in
flight. These buffers were comprised of 128-bit wide entries for the Sandy Bridge and Ivy Bridge microar-
chitectures. The size was increased to 256-bit in Haswell, Broadwell and Skylake Client microarchitec-
tures; and to 512-bit in Skylake Server, Cascade Lake, Cascade Lake Advanced Performance, and Ice
Lake Client microarchitectures. To maximize performance, it is best to use the largest width available in
the platform.

3.6.1.1 Making Use of Load Bandwidth in Sandy Bridge Microarchitecture
While prior microarchitecture has one load port (port 2), Sandy Bridge microarchitecture can load from
port 2 and port 3. Thus two load operations can be performed every cycle and doubling the load
throughput of the code. This improves code that reads a lot of data and does not need to write out results
to memory very often (Port 3 also handles store-address operation). To exploit this bandwidth, the data
has to stay in the L1 data cache or it should be accessed sequentially, enabling the hardware prefetchers
to bring the data to the L1 data cache in time.

Consider the following C code example of adding all the elements of an array:

int buff[BUFF_SIZE];

int sum = 0;

for (i=0;i<BUFF_SIZE;i++){

 sum+=buff[i];

}

Alternative 1 is the assembly code generated by the Intel compiler for this C code, using the optimization
flag for Nehalem microarchitecture. The compiler vectorizes execution using Intel SSE instructions. In
this code, each ADD operation uses the result of the previous ADD operation. This limits the throughput
to one load and ADD operation per cycle. Alternative 2 is optimized for Sandy Bridge microarchitecture

3-41

GENERAL OPTIMIZATION GUIDELINES

by enabling it to use the additional load bandwidth. The code removes the dependency among ADD oper-
ations, by using two registers to sum the array values. Two load and two ADD operations can be executed
every cycle.

3.6.1.2 L1D Cache Latency in Sandy Bridge Microarchitecture
Load latency from L1D cache may vary (see Table E-15 in Appendix E). The best case if 4 cycles, which
apply to load operations to general purpose registers using one of the following:
• One register.
• A base register plus an offset that is smaller than 2048.

Consider the pointer-chasing code example in Example 3-34.

Example 3-33. Optimizing for Load Port Bandwidth in Sandy Bridge Microarchitecture
Register dependency inhibits PADD execution Reduce register dependency allow two load port to supply

PADD execution

xor eax, eax
pxor xmm0, xmm0
lea rsi, buff

xor eax, eax
pxor xmm0, xmm0
pxor xmm1, xmm1
lea rsi, buff

loop_start:
paddd xmm0, [rsi+4*rax]
paddd xmm0, [rsi+4*rax+16]
paddd xmm0, [rsi+4*rax+32]
paddd xmm0, [rsi+4*rax+48]
paddd xmm0, [rsi+4*rax+64]
paddd xmm0, [rsi+4*rax+80]
paddd xmm0, [rsi+4*rax+96]
paddd xmm0, [rsi+4*rax+112]
add eax, 32
cmp eax, BUFF_SIZE
jl loop_start

sum_partials:
movdqa xmm1, xmm0
psrldq xmm1, 8
paddd xmm0, xmm1
movdqa xmm2, xmm0
psrldq xmm2, 4
paddd xmm0, xmm2
movd [sum], xmm0

loop_start:
paddd xmm0, [rsi+4*rax]
paddd xmm1, [rsi+4*rax+16]
paddd xmm0, [rsi+4*rax+32]
paddd xmm1, [rsi+4*rax+48]
paddd xmm0, [rsi+4*rax+64]
paddd xmm1, [rsi+4*rax+80]
paddd xmm0, [rsi+4*rax+96]
paddd xmm1, [rsi+4*rax+112]
add eax, 32
cmp eax, BUFF_SIZE
jl loop_start

sum_partials:
paddd xmm0, xmm1
movdqa xmm1, xmm0
psrldq xmm1, 8
paddd xmm0, xmm1
movdqa xmm2, xmm0
psrldq xmm2, 4
paddd xmm0, xmm2
movd [sum], xmm0

GENERAL OPTIMIZATION GUIDELINES

3-42

The left side implements pointer chasing via traversing an index. Compiler then generates the code
shown below addressing memory using base+index with an offset. The right side shows compiler gener-
ated code from pointer de-referencing code and uses only a base register.

The code on the right side is faster than the left side across Sandy Bridge microarchitecture and prior
microarchitecture. However the code that traverses index will be slower on Sandy Bridge microarchitec-
ture relative to prior microarchitecture.

3.6.1.3 Handling L1D Cache Bank Conflict
In Sandy Bridge microarchitecture, the internal organization of the L1D cache may manifest a situation
when two load micro-ops whose addresses have a bank conflict. When a bank conflict is present between
two load operations, the more recent one will be delayed until the conflict is resolved. A bank conflict
happens when two simultaneous load operations have the same bit 2-5 of their linear address but they
are not from the same set in the cache (bits 6 - 12).

Bank conflicts should be handled only if the code is bound by load bandwidth. Some bank conflicts do not
cause any performance degradation since they are hidden by other performance limiters. Eliminating
such bank conflicts does not improve performance.

The following example demonstrates bank conflict and how to modify the code and avoid them. It uses
two source arrays with a size that is a multiple of cache line size. When loading an element from A and
the counterpart element from B the elements have the same offset in their cache lines and therefore a
bank conflict may happen.

The L1D Cache bank conflict issue does not apply to Haswell microarchitecture.

Example 3-34. Index versus Pointers in Pointer-Chasing Code
Traversing through indexes Traversing through pointers

// C code example
index = buffer.m_buff[index].next_index;
// ASM example
loop:

shl rbx, 6
 mov rbx, 0x20(rbx+rcx)

dec rax
 cmp rax, -1
jne loop

// C code example
node = node->pNext;

// ASM example
loop:

mov rdx, [rdx]
 dec rax

cmp rax, -1
 jne loop

3-43

GENERAL OPTIMIZATION GUIDELINES

.

3.6.2 Minimize Register Spills
When a piece of code has more live variables than the processor can keep in general purpose registers,
a common method is to hold some of the variables in memory. This method is called register spill. The
effect of L1D cache latency can negatively affect the performance of this code. The effect can be more
pronounced if the address of register spills uses the slower addressing modes.

One option is to spill general purpose registers to XMM registers. This method is likely to improve perfor-
mance also on previous processor generations. The following example shows how to spill a register to an
XMM register rather than to memory.

Example 3-35. Example of Bank Conflicts in L1D Cache and Remedy

int A[128];
int B[128];
int C[128];
for (i=0;i<128;i+=4){

C[i]=A[i]+B[i]; the loads from A[i] and B[i] collide
C[i+1]=A[i+1]+B[i+1];
C[i+2]=A[i+2]+B[i+2];
C[i+3]=A[i+3]+B[i+3];

}

// Code with Bank Conflicts
xor rcx, rcx
lea r11, A
lea r12, B
lea r13, C

loop:
lea esi, [rcx*4]
movsxd rsi, esi
mov edi, [r11+rsi*4]
add edi, [r12+rsi*4]
mov r8d, [r11+rsi*4+4]
add r8d, [r12+rsi*4+4]
mov r9d, [r11+rsi*4+8]
add r9d, [r12+rsi*4+8]
mov r10d, [r11+rsi*4+12]
add r10d, [r12+rsi*4+12]

// Code without Bank Conflicts
xor rcx, rcx
lea r11, A
lea r12, B
lea r13, C

loop:
lea esi, [rcx*4]
movsxd rsi, esi
mov edi, [r11+rsi*4]
mov r8d, [r11+rsi*4+4]
add edi, [r12+rsi*4]
add r8d, [r12+rsi*4+4]
mov r9d, [r11+rsi*4+8]
mov r10d, [r11+rsi*4+12]
add r9d, [r12+rsi*4+8]
add r10d, [r12+rsi*4+12]

mov [r13+rsi*4], edi
inc ecx
mov [r13+rsi*4+4], r8d
mov [r13+rsi*4+8], r9d
mov [r13+rsi*4+12], r10d
cmp ecx, LEN
jb loop

inc ecx
mov [r13+rsi*4], edi
mov [r13+rsi*4+4], r8d
mov [r13+rsi*4+8], r9d
mov [r13+rsi*4+12], r10d
cmp ecx, LEN
jb loop

GENERAL OPTIMIZATION GUIDELINES

3-44

3.6.3 Enhance Speculative Execution and Memory Disambiguation
Prior to Intel Core microarchitecture, when code contains both stores and loads, the loads cannot be
issued before the address of the older stores is known. This rule ensures correct handling of load depen-
dencies on preceding stores.
The Intel Core microarchitecture contains a mechanism that allows some loads to be executed specula-
tively in the presence of older unknown stores. The processor later checks if the load address overlapped
with an older store whose address was unknown at the time the load executed. If the addresses do
overlap, then the processor re-executes the load and all succeeding instructions.

Example 3-37 illustrates a situation that the compiler cannot be sure that “Ptr->Array” does not change
during the loop. Therefore, the compiler cannot keep “Ptr->Array” in a register as an invariant and must
read it again in every iteration. Although this situation can be fixed in software by a rewriting the code to
require the address of the pointer is invariant, memory disambiguation improves performance without
rewriting the code.

Example 3-36. Using XMM Register in Lieu of Memory for Register Spills
Register spills into memory Register spills into XMM

loop:
mov rdx, [rsp+0x18]
movdqa xmm0, [rdx]
movdqa xmm1, [rsp+0x20]
pcmpeqd xmm1, xmm0
pmovmskb eax, xmm1
test eax, eax
jne end_loop
movzx rcx, [rbx+0x60]

 movq xmm4, [rsp+0x18]
mov rcx, 0x10
movq xmm5, rcx

loop:
movq rdx, xmm4
movdqa xmm0, [rdx]
movdqa xmm1, [rsp+0x20]
pcmpeqd xmm1, xmm0
pmovmskb eax, xmm1
test eax, eax
jne end_loop
movzx rcx, [rbx+0x60]

add qword ptr[rsp+0x18], 0x10
add rdi, 0x4
movzx rdx, di
sub rcx, 0x4
add rsi, 0x1d0
cmp rdx, rcx
jle loop

padd xmm4, xmm5
add rdi, 0x4
movzx rdx, di
sub rcx, 0x4
add rsi, 0x1d0
cmp rdx, rcx
jle loop

3-45

GENERAL OPTIMIZATION GUIDELINES

It is possible to disable speculative store bypass with the IA32_SPEC_CTRL.SSBD MSR. Additional infor-
mation on this topic can be found here: https://software.intel.com/security-software-guidance/insights.

3.6.4 Store Forwarding
The processor’s memory system only sends stores to memory (including cache) after store retirement.
However, store data can be forwarded from a store to a subsequent load from the same address to give
a much shorter store-load latency.

There are two kinds of requirements for store forwarding. If these requirements are violated, store
forwarding cannot occur and the load must get its data from the cache (so the store must write its data
back to the cache first). This incurs a penalty that is largely related to pipeline depth of the underlying
micro-architecture.

The first requirement pertains to the size and alignment of the store-forwarding data. This restriction is
likely to have high impact on overall application performance. Typically, a performance penalty due to
violating this restriction can be prevented. The store-to-load forwarding restrictions vary from one
microarchitecture to another. Several examples of coding pitfalls that cause store-forwarding stalls and
solutions to these pitfalls are discussed in detail in Section 3.6.4.1, “Store-to-Load-Forwarding Restric-
tion on Size and Alignment.” The second requirement is the availability of data, discussed in Section
3.6.4.2, “Store-forwarding Restriction on Data Availability.” A good practice is to eliminate redundant
load operations.

It may be possible to keep a temporary scalar variable in a register and never write it to memory. Gener-
ally, such a variable must not be accessible using indirect pointers. Moving a variable to a register elimi-
nates all loads and stores of that variable and eliminates potential problems associated with store
forwarding. However, it also increases register pressure.

Load instructions tend to start chains of computation. Since the out-of-order engine is based on data
dependence, load instructions play a significant role in the engine’s ability to execute at a high rate. Elim-
inating loads should be given a high priority.

If a variable does not change between the time when it is stored and the time when it is used again, the
register that was stored can be copied or used directly. If register pressure is too high, or an unseen func-
tion is called before the store and the second load, it may not be possible to eliminate the second load.
Assembly/Compiler Coding Rule 40. (H impact, M generality) Pass parameters in registers
instead of on the stack where possible. Passing arguments on the stack requires a store followed by a
reload. While this sequence is optimized in hardware by providing the value to the load directly from

Example 3-37. Loads Blocked by Stores of Unknown Address
C code Assembly sequence

struct AA {
AA ** array;
};
void nullify_array (AA *Ptr, DWORD Index, AA *ThisPtr
)
{
while (Ptr->Array[--Index] != ThisPtr)

{
Ptr->Array[Index] = NULL ;
} ;

} ;

nullify_loop:
mov dword ptr [eax], 0
mov edx, dword ptr [edi]
sub ecx, 4
cmp dword ptr [ecx+edx], esi
lea eax, [ecx+edx]
jne nullify_loop

https://software.intel.com/security-software-guidance/insights

GENERAL OPTIMIZATION GUIDELINES

3-46

the memory order buffer without the need to access the data cache if permitted by store-forwarding
restrictions, floating-point values incur a significant latency in forwarding. Passing floating-point
arguments in (preferably XMM) registers should save this long latency operation.

Parameter passing conventions may limit the choice of which parameters are passed in registers which
are passed on the stack. However, these limitations may be overcome if the compiler has control of the
compilation of the whole binary (using whole-program optimization).

3.6.4.1 Store-to-Load-Forwarding Restriction on Size and Alignment
Data size and alignment restrictions for store-forwarding apply to processors based on Intel Core
microarchitecture, Intel Core 2 Duo, Intel Core Solo and Pentium M processors. The performance penalty
for violating store-forwarding restrictions is less for shorter-pipelined machines.

Store-forwarding restrictions vary with each microarchitecture. The following rules help satisfy size and
alignment restrictions for store forwarding:
Assembly/Compiler Coding Rule 41. (H impact, M generality) A load that forwards from a store
must have the same address start point and therefore the same alignment as the store data.
Assembly/Compiler Coding Rule 42. (H impact, M generality) The data of a load which is
forwarded from a store must be completely contained within the store data.

A load that forwards from a store must wait for the store’s data to be written to the store buffer before
proceeding, but other, unrelated loads need not wait.
Assembly/Compiler Coding Rule 43. (H impact, ML generality) If it is necessary to extract a non-
aligned portion of stored data, read out the smallest aligned portion that completely contains the data
and shift/mask the data as necessary. This is better than incurring the penalties of a failed store-
forward.
Assembly/Compiler Coding Rule 44. (MH impact, ML generality) Avoid several small loads after
large stores to the same area of memory by using a single large read and register copies as needed.

Example 3-38 depicts several store-forwarding situations in which small loads follow large stores. The
first three load operations illustrate the situations described in Rule 44. However, the last load operation
gets data from store-forwarding without problem.

Example 3-39 illustrates a store-forwarding situation in which a large load follows several small stores.
The data needed by the load operation cannot be forwarded because all of the data that needs to be
forwarded is not contained in the store buffer. Avoid large loads after small stores to the same area of
memory.

Example 3-38. Situations Showing Small Loads After Large Store

mov [EBP],‘abcd’
mov AL, [EBP] ; Not blocked - same alignment
mov BL, [EBP + 1] ; Blocked
mov CL, [EBP + 2] ; Blocked
mov DL, [EBP + 3] ; Blocked
mov AL, [EBP] ; Not blocked - same alignment

; n.b. passes older blocked loads

Example 3-39. Non-forwarding Example of Large Load After Small Store

mov [EBP], ‘a’
mov [EBP + 1], ‘b’
mov [EBP + 2], ‘c’
mov [EBP + 3], ‘d’
mov EAX, [EBP] ; Blocked

; The first 4 small store can be consolidated into
; a single DWORD store to prevent this non-forwarding
; situation.

3-47

GENERAL OPTIMIZATION GUIDELINES

Example 3-40 illustrates a stalled store-forwarding situation that may appear in compiler generated
code. Sometimes a compiler generates code similar to that shown in Example 3-40 to handle a spilled
byte to the stack and convert the byte to an integer value.

Example 3-41 offers two alternatives to avoid the non-forwarding situation shown in Example 3-40.

When moving data that is smaller than 64 bits between memory locations, 64-bit or 128-bit SIMD
register moves are more efficient (if aligned) and can be used to avoid unaligned loads. Although
floating-point registers allow the movement of 64 bits at a time, floating-point instructions should not be
used for this purpose, as data may be inadvertently modified.

As an additional example, consider the cases in Example 3-42.

In the first case (A), there is a large load after a series of small stores to the same area of memory
(beginning at memory address MEM). The large load will stall.

The FLD must wait for the stores to write to memory before it can access all the data it requires. This stall
can also occur with other data types (for example, when bytes or words are stored and then words or
doublewords are read from the same area of memory).

In the second case (B), there is a series of small loads after a large store to the same area of memory
(beginning at memory address MEM). The small loads will stall.

The word loads must wait for the quadword store to write to memory before they can access the data
they require. This stall can also occur with other data types (for example, when doublewords or words
are stored and then words or bytes are read from the same area of memory). This can be avoided by
moving the store as far from the loads as possible.

Example 3-40. A Non-forwarding Situation in Compiler Generated Code

mov DWORD PTR [esp+10h], 00000000h
mov BYTE PTR [esp+10h], bl
mov eax, DWORD PTR [esp+10h] ; Stall
and eax, 0xff ; Converting back to byte value

Example 3-41. Two Ways to Avoid Non-forwarding Situation in Example 3-40

; A. Use MOVZ instruction to avoid large load after small
; store, when spills are ignored.

movz eax, bl ; Replaces the last three instructions

; B. Use MOVZ instruction and handle spills to the stack

mov DWORD PTR [esp+10h], 00000000h

mov BYTE PTR [esp+10h], bl

movz eax, BYTE PTR [esp+10h] ; Not blocked

Example 3-42. Large and Small Load Stalls

; A. Large load stall

mov mem, eax ; Store dword to address “MEM"
mov mem + 4, ebx ; Store dword to address “MEM + 4"
fld mem ; Load qword at address “MEM", stalls

; B. Small Load stall

fstp mem ; Store qword to address “MEM"
mov bx, mem+2 ; Load word at address “MEM + 2", stalls
mov cx, mem+4 ; Load word at address “MEM + 4", stalls

GENERAL OPTIMIZATION GUIDELINES

3-48

Store forwarding restrictions for processors based on Intel Core microarchitecture is listed in Table 3-4.

3.6.4.2 Store-forwarding Restriction on Data Availability
The value to be stored must be available before the load operation can be completed. If this restriction is
violated, the execution of the load will be delayed until the data is available. This delay causes some
execution resources to be used unnecessarily, and that can lead to sizable but non-deterministic delays.
However, the overall impact of this problem is much smaller than that from violating size and alignment
requirements.

In modern microarchitectures, hardware predicts when loads are dependent on and get their data
forwarded from preceding stores. These predictions can significantly improve performance. However, if a
load is scheduled too soon after the store it depends on or if the generation of the data to be stored is
delayed, there can be a significant penalty.

There are several cases in which data is passed through memory, and the store may need to be sepa-
rated from the load:
• Spills, save and restore registers in a stack frame.
• Parameter passing.
• Global and volatile variables.

Table 3-4. Store Forwarding Restrictions of Processors Based on Intel Core Microarchitecture
Store Alignment Width of

Store (bits)
Load Alignment (byte) Width of Load (bits) Store Forwarding

Restriction

To Natural size 16 word aligned 8, 16 not stalled

To Natural size 16 not word aligned 8 stalled

To Natural size 32 dword aligned 8, 32 not stalled

To Natural size 32 not dword aligned 8 stalled

To Natural size 32 word aligned 16 not stalled

To Natural size 32 not word aligned 16 stalled

To Natural size 64 qword aligned 8, 16, 64 not stalled

To Natural size 64 not qword aligned 8, 16 stalled

To Natural size 64 dword aligned 32 not stalled

To Natural size 64 not dword aligned 32 stalled

To Natural size 128 dqword aligned 8, 16, 128 not stalled

To Natural size 128 not dqword aligned 8, 16 stalled

To Natural size 128 dword aligned 32 not stalled

To Natural size 128 not dword aligned 32 stalled

To Natural size 128 qword aligned 64 not stalled

To Natural size 128 not qword aligned 64 stalled

Unaligned, start byte 1 32 byte 0 of store 8, 16, 32 not stalled

Unaligned, start byte 1 32 not byte 0 of store 8, 16 stalled

Unaligned, start byte 1 64 byte 0 of store 8, 16, 32 not stalled

Unaligned, start byte 1 64 not byte 0 of store 8, 16, 32 stalled

Unaligned, start byte 1 64 byte 0 of store 64 stalled

Unaligned, start byte 7 32 byte 0 of store 8 not stalled

Unaligned, start byte 7 32 not byte 0 of store 8 not stalled

Unaligned, start byte 7 32 don’t care 16, 32 stalled

Unaligned, start byte 7 64 don’t care 16, 32, 64 stalled

3-49

GENERAL OPTIMIZATION GUIDELINES

• Type conversion between integer and floating-point.
• When compilers do not analyze code that is inlined, forcing variables that are involved in the interface

with inlined code to be in memory, creating more memory variables and preventing the elimination of
redundant loads.

Assembly/Compiler Coding Rule 45. (H impact, MH generality) Where it is possible to do so
without incurring other penalties, prioritize the allocation of variables to registers, as in register
allocation and for parameter passing, to minimize the likelihood and impact of store-forwarding
problems. Try not to store-forward data generated from a long latency instruction - for example, MUL
or DIV. Avoid store-forwarding data for variables with the shortest store-load distance. Avoid store-
forwarding data for variables with many and/or long dependence chains, and especially avoid including
a store forward on a loop-carried dependence chain.

Example 3-43 shows an example of a loop-carried dependence chain.

Assembly/Compiler Coding Rule 46. (M impact, MH generality) Calculate store addresses as
early as possible to avoid having stores block loads.

3.6.5 Data Layout Optimizations
User/Source Coding Rule 6. (H impact, M generality) Pad data structures defined in the source
code so that every data element is aligned to a natural operand size address boundary.

If the operands are packed in a SIMD instruction, align to the packed element size (64-bit or 128-bit).

Align data by providing padding inside structures and arrays. Programmers can reorganize structures and
arrays to minimize the amount of memory wasted by padding. However, compilers might not have this
freedom. The C programming language, for example, specifies the order in which structure elements are
allocated in memory. For more information, see Section 5.4, “Stack and Data Alignment.”

Example 3-44 shows how a data structure could be rearranged to reduce its size.

Cache line size of 64 bytes can impact streaming applications (for example, multimedia). These refer-
ence and use data only once before discarding it. Data accesses which sparsely utilize the data within a

Example 3-43. Loop-carried Dependence Chain

for (i = 0; i < MAX; i++) {
a[i] = b[i] * foo;
foo = a[i] / 3;

} // foo is a loop-carried dependence.

Example 3-44. Rearranging a Data Structure

struct unpacked { /* Fits in 20 bytes due to padding */
int a;
char b;
int c;
char d;
int e;

};

struct packed { /* Fits in 16 bytes */
int a;
int c;
int e;
char b;
char d;

}

GENERAL OPTIMIZATION GUIDELINES

3-50

cache line can result in less efficient utilization of system memory bandwidth. For example, arrays of
structures can be decomposed into several arrays to achieve better packing, as shown in Example 3-45.

The efficiency of such optimizations depends on usage patterns. If the elements of the structure are all
accessed together but the access pattern of the array is random, then ARRAY_OF_STRUCT avoids unnec-
essary prefetch even though it wastes memory.

However, if the access pattern of the array exhibits locality (for example, if the array index is being swept
through) then processors with hardware prefetchers will prefetch data from STRUCT_OF_ARRAY, even if
the elements of the structure are accessed together.

When the elements of the structure are not accessed with equal frequency, such as when element A is
accessed ten times more often than the other entries, then STRUCT_OF_ARRAY not only saves memory,
but it also prevents fetching unnecessary data items B, C, D, and E.

Using STRUCT_OF_ARRAY also enables the use of the SIMD data types by the programmer and the
compiler.

Note that STRUCT_OF_ARRAY can have the disadvantage of requiring more independent memory stream
references. This can require the use of more prefetches and additional address generation calculations.
It can also have an impact on DRAM page access efficiency. An alternative, HYBRID_STRUCT_OF_ARRAY
blends the two approaches. In this case, only 2 separate address streams are generated and referenced:
1 for HYBRID_STRUCT_OF_ARRAY_ACE and 1 for HYBRID_STRUCT_OF_ARRAY_BD. The second alter-
ative also prevents fetching unnecessary data — assuming that (1) the variables A, C and E are always
used together, and (2) the variables B and D are always used together, but not at the same time as A, C
and E.

The hybrid approach ensures:
• Simpler/fewer address generations than STRUCT_OF_ARRAY.
• Fewer streams, which reduces DRAM page misses.
• Fewer prefetches due to fewer streams.
• Efficient cache line packing of data elements that are used concurrently.

Example 3-45. Decomposing an Array

struct { /* 1600 bytes */
int a, c, e;
char b, d;

} array_of_struct [100];

struct { /* 1400 bytes */
int a[100], c[100], e[100];
char b[100], d[100];

} struct_of_array;

struct { /* 1200 bytes */
int a, c, e;

} hybrid_struct_of_array_ace[100];

struct { /* 200 bytes */
char b, d;

} hybrid_struct_of_array_bd[100];

3-51

GENERAL OPTIMIZATION GUIDELINES

Assembly/Compiler Coding Rule 47. (H impact, M generality) Try to arrange data structures
such that they permit sequential access.

If the data is arranged into a set of streams, the automatic hardware prefetcher can prefetch data that
will be needed by the application, reducing the effective memory latency. If the data is accessed in a non-
sequential manner, the automatic hardware prefetcher cannot prefetch the data. The prefetcher can
recognize up to eight concurrent streams. See Chapter 9, “Optimizing Cache Usage,” for more informa-
tion on the hardware prefetcher.
User/Source Coding Rule 7. (M impact, L generality) Beware of false sharing within a cache line
(64 bytes).

3.6.6 Stack Alignment
Performance penalty of unaligned access to the stack happens when a memory reference splits a cache
line. This means that one out of eight spatially consecutive unaligned quadword accesses is always
penalized, similarly for one out of 4 consecutive, non-aligned double-quadword accesses, etc.

Aligning the stack may be beneficial any time there are data objects that exceed the default stack align-
ment of the system. For example, on 32/64bit Linux, and 64bit Windows, the default stack alignment is
16 bytes, while 32bit Windows is 4 bytes.
Assembly/Compiler Coding Rule 48. (H impact, M generality) Make sure that the stack is aligned
at the largest multi-byte granular data type boundary matching the register width.

Aligning the stack typically requires the use of an additional register to track across a padded area of
unknown amount. There is a trade-off between causing unaligned memory references that spanned
across a cache line and causing extra general purpose register spills.

The assembly level technique to implement dynamic stack alignment may depend on compilers, and
specific OS environment. The reader may wish to study the assembly output from a compiler of interest.

If for some reason it is not possible to align the stack for 64-bits, the routine should access the parameter
and save it into a register or known aligned storage, thus incurring the penalty only once.

Example 3-46. Examples of Dynamical Stack Alignment

// 32-bit environment
push ebp ; save ebp
mov ebp, esp ; ebp now points to incoming parameters
andl esp, $-<N> ;align esp to N byte boundary
sub esp, $<stack_size>; reserve space for new stack frame
. ; parameters must be referenced off of ebp
mov esp, ebp ; restore esp
pop ebp ; restore ebp

// 64-bit environment
sub esp, $<stack_size +N>
mov r13, $<offset_of_aligned_section_in_stack>
andl r13, $-<N> ; r13 point to aligned section in stack
. ;use r13 as base for aligned data

GENERAL OPTIMIZATION GUIDELINES

3-52

3.6.7 Capacity Limits and Aliasing in Caches
There are cases in which addresses with a given stride will compete for some resource in the memory
hierarchy.

Typically, caches are implemented to have multiple ways of set associativity, with each way consisting of
multiple sets of cache lines (or sectors in some cases). Multiple memory references that compete for the
same set of each way in a cache can cause a capacity issue. There are aliasing conditions that apply to
specific microarchitectures. Note that first-level cache lines are 64 bytes. Thus, the least significant 6 bits
are not considered in alias comparisons.

3.6.8 Mixing Code and Data
The aggressive prefetching and pre-decoding of instructions by Intel processors have two related effects:
• Self-modifying code works correctly, according to the Intel architecture processor requirements, but

incurs a significant performance penalty. Avoid self-modifying code if possible.
• Placing writable data in the code segment might be impossible to distinguish from self-modifying

code. Writable data in the code segment might suffer the same performance penalty as self-
modifying code.

Assembly/Compiler Coding Rule 49. (M impact, L generality) If (hopefully read-only) data must
occur on the same page as code, avoid placing it immediately after an indirect jump. For example,
follow an indirect jump with its mostly likely target, and place the data after an unconditional branch.
Tuning Suggestion 1. In rare cases, a performance problem may be caused by executing data on a
code page as instructions. This is very likely to happen when execution is following an indirect branch
that is not resident in the trace cache. If this is clearly causing a performance problem, try moving the
data elsewhere, or inserting an illegal opcode or a PAUSE instruction immediately after the indirect
branch. Note that the latter two alternatives may degrade performance in some circumstances.
Assembly/Compiler Coding Rule 50. (H impact, L generality) Always put code and data on
separate pages. Avoid self-modifying code wherever possible. If code is to be modified, try to do it all at
once and make sure the code that performs the modifications and the code being modified are on
separate 4-KByte pages or on separate aligned 1-KByte subpages.

3.6.8.1 Self-modifying Code
Self-modifying code (SMC) that ran correctly on Pentium III processors and prior implementations will run
correctly on subsequent implementations. SMC and cross-modifying code (when multiple processors in a
multiprocessor system are writing to a code page) should be avoided when high performance is desired.

Software should avoid writing to a code page in the same 1-KByte subpage that is being executed or
fetching code in the same 2-KByte subpage of that is being written. In addition, sharing a page
containing directly or speculatively executed code with another processor as a data page can trigger an
SMC condition that causes the entire pipeline of the machine and the trace cache to be cleared. This is
due to the self-modifying code condition.

Dynamic code need not cause the SMC condition if the code written fills up a data page before that page
is accessed as code. Dynamically-modified code (for example, from target fix-ups) is likely to suffer from
the SMC condition and should be avoided where possible. Avoid the condition by introducing indirect
branches and using data tables on data pages (not code pages) using register-indirect calls.

3-53

GENERAL OPTIMIZATION GUIDELINES

3.6.8.2 Position Independent Code
Position independent code often needs to obtain the value of the instruction pointer. Example 3-47a
shows one technique to put the value of IP into the ECX register by issuing a CALL without a matching
RET. Example 3-47b shows an alternative technique to put the value of IP into the ECX register using a
matched pair of CALL/RET.

3.6.9 Write Combining
Write combining (WC) improves performance in two ways:
• On a write miss to the first-level cache, it allows multiple stores to the same cache line to occur before

that cache line is read for ownership (RFO) from further out in the cache/memory hierarchy. Then the
rest of line is read, and the bytes that have not been written are combined with the unmodified bytes
in the returned line.

• Write combining allows multiple writes to be assembled and written further out in the cache hierarchy
as a unit. This saves port and bus traffic. Saving traffic is particularly important for avoiding partial
writes to uncached memory.

Processors based on Intel Core microarchitecture have eight write-combining buffers in each core. Begin-
ning with Nehalem microarchitecture, there are 10 buffers available for write-combining. Beginning with
Ice Lake Client microarchitecture, there are 12 buffers available for write-combining.
Assembly/Compiler Coding Rule 51. (H impact, L generality) If an inner loop writes to more than
four arrays (four distinct cache lines), apply loop fission to break up the body of the loop such that only
four arrays are being written to in each iteration of each of the resulting loops.

Write combining buffers are used for stores of all memory types. They are particularly important for
writes to uncached memory: writes to different parts of the same cache line can be grouped into a single,
full-cache-line bus transaction instead of going across the bus (since they are not cached) as several
partial writes. Avoiding partial writes can have a significant impact on bus bandwidth-bound graphics
applications, where graphics buffers are in uncached memory. Separating writes to uncached memory
and writes to writeback memory into separate phases can assure that the write combining buffers can fill
before getting evicted by other write traffic. Eliminating partial write transactions has been found to have
performance impact on the order of 20% for some applications. Because the cache lines are 64 bytes, a
write to the bus for 63 bytes will result in partial bus transactions.

When coding functions that execute simultaneously on two threads, reducing the number of writes that
are allowed in an inner loop will help take full advantage of write-combining store buffers. For write-
combining buffer recommendations for Hyper-Threading Technology, see Chapter 11, “Multicore and
Hyper-Threading Technology.”

Example 3-47. Instruction Pointer Query Techniques

a) Using call without return to obtain IP does not corrupt the RSB
call _label; return address pushed is the IP of next instruction

_label:
pop ECX; IP of this instruction is now put into ECX

b) Using matched call/ret pair

call _lblcx;
... ; ECX now contains IP of this instruction
...

_lblcx
mov ecx, [esp];
ret

GENERAL OPTIMIZATION GUIDELINES

3-54

Store ordering and visibility are also important issues for write combining. When a write to a write-
combining buffer for a previously-unwritten cache line occurs, there will be a read-for-ownership (RFO).
If a subsequent write happens to another write-combining buffer, a separate RFO may be caused for that
cache line. Subsequent writes to the first cache line and write-combining buffer will be delayed until the
second RFO has been serviced to guarantee properly ordered visibility of the writes. If the memory type
for the writes is write-combining, there will be no RFO since the line is not cached, and there is no such
delay. For details on write-combining, see Chapter 9, “Optimizing Cache Usage.”

3.6.10 Locality Enhancement
Locality enhancement can reduce data traffic originating from an outer-level sub-system in the
cache/memory hierarchy. This is to address the fact that the access-cost in terms of cycle-count from an
outer level will be more expensive than from an inner level. Typically, the cycle-cost of accessing a given
cache level (or memory system) varies across different microarchitectures, processor implementations,
and platform components. It may be sufficient to recognize the relative data access cost trend by locality
rather than to follow a large table of numeric values of cycle-costs, listed per locality, per processor/plat-
form implementations, etc. The general trend is typically that access cost from an outer sub-system may
be approximately 3-10X more expensive than accessing data from the immediate inner level in the
cache/memory hierarchy, assuming similar degrees of data access parallelism.

Thus locality enhancement should start with characterizing the dominant data traffic locality. Section A,
“Application Performance Tools,” describes some techniques that can be used to determine the dominant
data traffic locality for any workload.

Even if cache miss rates of the last level cache may be low relative to the number of cache references,
processors typically spend a sizable portion of their execution time waiting for cache misses to be
serviced. Reducing cache misses by enhancing a program’s locality is a key optimization. This can take
several forms:
• Blocking to iterate over a portion of an array that will fit in the cache (with the purpose that

subsequent references to the data-block [or tile] will be cache hit references).
• Loop interchange to avoid crossing cache lines or page boundaries.
• Loop skewing to make accesses contiguous.

Locality enhancement to the last level cache can be accomplished with sequencing the data access
pattern to take advantage of hardware prefetching. This can also take several forms:
• Transformation of a sparsely populated multi-dimensional array into a one-dimension array such that

memory references occur in a sequential, small-stride pattern that is friendly to the hardware
prefetch (see Section E.2.5.4, “Data Prefetching” in Appendix E).

• Optimal tile size and shape selection can further improve temporal data locality by increasing hit
rates into the last level cache and reduce memory traffic resulting from the actions of hardware
prefetching (see Section 9.5.11, “Hardware Prefetching and Cache Blocking Techniques”).

It is important to avoid operations that work against locality-enhancing techniques. Using the lock prefix
heavily can incur large delays when accessing memory, regardless of whether the data is in the cache or
in system memory.
User/Source Coding Rule 8. (H impact, H generality) Optimization techniques such as blocking,
loop interchange, loop skewing, and packing are best done by the compiler. Optimize data structures
either to fit in one-half of the first-level cache or in the second-level cache; turn on loop optimizations
in the compiler to enhance locality for nested loops.

3-55

GENERAL OPTIMIZATION GUIDELINES

Optimizing for one-half of the first-level cache will bring the greatest performance benefit in terms of
cycle-cost per data access. If one-half of the first-level cache is too small to be practical, optimize for the
second-level cache. Optimizing for a point in between (for example, for the entire first-level cache) will
likely not bring a substantial improvement over optimizing for the second-level cache.

3.6.11 Non-Temporal Store Bus Traffic
Peak system bus bandwidth is shared by several types of bus activities, including reads (from memory),
reads for ownership (of a cache line), and writes. The data transfer rate for bus write transactions is
higher if 64 bytes are written out to the bus at a time.

Typically, bus writes to Writeback (WB) memory must share the system bus bandwidth with read-for-
ownership (RFO) traffic. Non-temporal stores do not require RFO traffic; they do require care in
managing the access patterns in order to ensure 64 bytes are evicted at once (rather than evicting
several chunks).

Although the data bandwidth of full 64-byte bus writes due to non-temporal stores is twice that of bus
writes to WB memory, transferring several chunks wastes bus request bandwidth and delivers signifi-
cantly lower data bandwidth. This difference is depicted in Examples 3-48 and 3-49.

Example 3-48. Using Non-temporal Stores and 64-byte Bus Write Transactions

#define STRIDESIZE 256
lea ecx, p64byte_Aligned
mov edx, ARRAY_LEN
xor eax, eax
slloop:
movntps XMMWORD ptr [ecx + eax], xmm0
movntps XMMWORD ptr [ecx + eax+16], xmm0
movntps XMMWORD ptr [ecx + eax+32], xmm0
movntps XMMWORD ptr [ecx + eax+48], xmm0
; 64 bytes is written in one bus transaction
add eax, STRIDESIZE
cmp eax, edx
jl slloop

Example 3-49. On-temporal Stores and Partial Bus Write Transactions

#define STRIDESIZE 256
Lea ecx, p64byte_Aligned
Mov edx, ARRAY_LEN
Xor eax, eax
slloop:
movntps XMMWORD ptr [ecx + eax], xmm0
movntps XMMWORD ptr [ecx + eax+16], xmm0
movntps XMMWORD ptr [ecx + eax+32], xmm0

; Storing 48 bytes results in several bus partial transactions
add eax, STRIDESIZE
cmp eax, edx
jl slloop

GENERAL OPTIMIZATION GUIDELINES

3-56

3.7 PREFETCHING
Recent Intel processor families employ several prefetching mechanisms to accelerate the movement of
data or code and improve performance:
• Hardware instruction prefetcher.
• Software prefetch for data.
• Hardware prefetch for cache lines of data or instructions.

3.7.1 Hardware Instruction Fetching and Software Prefetching
Software prefetching requires a programmer to use PREFETCH hint instructions and anticipate some suit-
able timing and location of cache misses.

Software PREFETCH operations work the same way as do load from memory operations, with the
following exceptions:
• Software PREFETCH instructions retire after virtual to physical address translation is completed.
• If an exception, such as page fault, is required to prefetch the data, then the software prefetch

instruction retires without prefetching data.
• Avoid specifying a NULL address for software prefetches.

3.7.2 Hardware Prefetching for First-Level Data Cache
The hardware prefetching mechanism for L1 in Intel Core microarchitecture is discussed in Section
E.3.4.2 in Appendix E.

Example 3-50 depicts a technique to trigger hardware prefetch. The code demonstrates traversing a
linked list and performing some computational work on 2 members of each element that reside in 2
different cache lines. Each element is of size 192 bytes. The total size of all elements is larger than can
be fitted in the L2 cache.

Example 3-50. Using DCU Hardware Prefetch
Original code Modified sequence benefit from prefetch

mov ebx, DWORD PTR [First]
xor eax, eax
scan_list:
mov eax, [ebx+4]
mov ecx, 60

mov ebx, DWORD PTR [First]
xor eax, eax
scan_list:
mov eax, [ebx+4]
mov eax, [ebx+4]
mov eax, [ebx+4]
mov ecx, 60

do_some_work_1:
add eax, eax
and eax, 6
sub ecx, 1
jnz do_some_work_1
mov eax, [ebx+64]
mov ecx, 30
do_some_work_2:
add eax, eax
and eax, 6
sub ecx, 1
jnz do_some_work_2

do_some_work_1:
add eax, eax
and eax, 6
sub ecx, 1
jnz do_some_work_1
mov eax, [ebx+64]
mov ecx, 30
do_some_work_2:
add eax, eax
and eax, 6
sub ecx, 1
jnz do_some_work_2

3-57

GENERAL OPTIMIZATION GUIDELINES

The additional instructions to load data from one member in the modified sequence can trigger the DCU
hardware prefetch mechanisms to prefetch data in the next cache line, enabling the work on the second
member to complete sooner.

Software can gain from the first-level data cache prefetchers in two cases:
• If data is not in the second-level cache, the first-level data cache prefetcher enables early trigger of

the second-level cache prefetcher.
• If data is in the second-level cache and not in the first-level data cache, then the first-level data cache

prefetcher triggers earlier data bring-up of sequential cache line to the first-level data cache.

There are situations that software should pay attention to a potential side effect of triggering unneces-
sary DCU hardware prefetches. If a large data structure with many members spanning many cache lines
is accessed in ways that only a few of its members are actually referenced, but there are multiple pair
accesses to the same cache line. The DCU hardware prefetcher can trigger fetching of cache lines that
are not needed. In Example 3-51, references to the “Pts” array and “AltPts” will trigger DCU prefetch to
fetch additional cache lines that won’t be needed. If significant negative performance impact is detected
due to DCU hardware prefetch on a portion of the code, software can try to reduce the size of that
contemporaneous working set to be less than half of the L2 cache.

mov ebx, [ebx]
test ebx, ebx
jnz scan_list

mov ebx, [ebx]
test ebx, ebx
jnz scan_list

Example 3-51. Avoid Causing DCU Hardware Prefetch to Fetch Un-needed Lines

while (CurrBond != NULL)
{
MyATOM *a1 = CurrBond->At1 ;
MyATOM *a2 = CurrBond->At2 ;

if (a1->CurrStep <= a1->LastStep &&
 a2->CurrStep <= a2->LastStep
)

{
a1->CurrStep++ ;
a2->CurrStep++ ;

double ux = a1->Pts[0].x - a2->Pts[0].x ;
double uy = a1->Pts[0].y - a2->Pts[0].y ;
double uz = a1->Pts[0].z - a2->Pts[0].z ;
a1->AuxPts[0].x += ux ;
a1->AuxPts[0].y += uy ;
a1->AuxPts[0].z += uz ;

Example 3-50. Using DCU Hardware Prefetch (Contd.)
Original code Modified sequence benefit from prefetch

GENERAL OPTIMIZATION GUIDELINES

3-58

To fully benefit from these prefetchers, organize and access the data using one of the following methods:

Method 1:
• Organize the data so consecutive accesses can usually be found in the same 4-KByte page.
• Access the data in constant strides forward or backward IP Prefetcher.

Method 2:
• Organize the data in consecutive lines.
• Access the data in increasing addresses, in sequential cache lines.

Example 3-52 demonstrates accesses to sequential cache lines that can benefit from the first-level cache
prefetcher.

By elevating the load operations from memory to the beginning of each iteration, it is likely that a signif-
icant part of the latency of the pair cache line transfer from memory to the second-level cache will be in
parallel with the transfer of the first cache line.

The IP prefetcher uses only the lower 8 bits of the address to distinguish a specific address. If the code
size of a loop is bigger than 256 bytes, two loads may appear similar in the lowest 8 bits and the IP
prefetcher will be restricted. Therefore, if you have a loop bigger than 256 bytes, make sure that no two
loads have the same lowest 8 bits in order to use the IP prefetcher.

3.7.3 Hardware Prefetching for Second-Level Cache
The Intel Core microarchitecture contains two second-level cache prefetchers:
• Streamer — Loads data or instructions from memory to the second-level cache. To use the

streamer, organize the data or instructions in blocks of 128 bytes, aligned on 128 bytes. The first
access to one of the two cache lines in this block while it is in memory triggers the streamer to
prefetch the pair line. To software, the L2 streamer’s functionality is similar to the adjacent cache line
prefetch mechanism found in processors based on Intel NetBurst microarchitecture.

• Data prefetch logic (DPL) — DPL and L2 Streamer are triggered only by writeback memory type.
They prefetch only inside page boundary (4 KBytes). Both L2 prefetchers can be triggered by
software prefetch instructions and by prefetch request from DCU prefetchers. DPL can also be
triggered by read for ownership (RFO) operations. The L2 Streamer can also be triggered by DPL
requests for L2 cache misses.

a2->AuxPts[0].x += ux ;
a2->AuxPts[0].y += uy ;
a2->AuxPts[0].z += uz ;
} ;

CurrBond = CurrBond->Next ;
} ;

Example 3-52. Technique For Using L1 Hardware Prefetch

unsigned int *p1, j, a, b;
for (j = 0; j < num; j += 16)
{
a = p1[j];
b = p1[j+1];
// Use these two values
}

Example 3-51. Avoid Causing DCU Hardware Prefetch to Fetch Un-needed Lines (Contd.)

3-59

GENERAL OPTIMIZATION GUIDELINES

Software can gain from organizing data both according to the instruction pointer and according to line
strides. For example, for matrix calculations, columns can be prefetched by IP-based prefetches, and
rows can be prefetched by DPL and the L2 streamer.

3.7.4 Cacheability Instructions
SSE2 provides additional cacheability instructions that extend those provided in SSE. The new cache-
ability instructions include:
• New streaming store instructions.
• New cache line flush instruction.
• New memory fencing instructions.

For more information, see Chapter 9, “Optimizing Cache Usage.”

3.7.5 REP Prefix and Data Movement
The REP prefix is commonly used with string move instructions for memory related library functions such
as MEMCPY (using REP MOVSD) or MEMSET (using REP STOS). These STRING/MOV instructions with the
REP prefixes are implemented in MS-ROM and have several implementation variants with different
performance levels.

The specific variant of the implementation is chosen at execution time based on data layout, alignment
and the counter (ECX) value. For example, MOVSB/STOSB with the REP prefix should be used with
counter value less than or equal to three for best performance.

String MOVE/STORE instructions have multiple data granularities. For efficient data movement, larger data
granularities are preferable. This means better efficiency can be achieved by decomposing an arbitrary
counter value into a number of doublewords plus single byte moves with a count value less than or equal
to 3.

Because software can use SIMD data movement instructions to move 16 bytes at a time, the following
paragraphs discuss general guidelines for designing and implementing high-performance library func-
tions such as MEMCPY(), MEMSET(), and MEMMOVE(). Four factors are to be considered:
• Throughput per iteration — If two pieces of code have approximately identical path lengths,

efficiency favors choosing the instruction that moves larger pieces of data per iteration. Also, smaller
code size per iteration will in general reduce overhead and improve throughput. Sometimes, this may
involve a comparison of the relative overhead of an iterative loop structure versus using REP prefix
for iteration.

• Address alignment — Data movement instructions with highest throughput usually have alignment
restrictions, or they operate more efficiently if the destination address is aligned to its natural data
size. Specifically, 16-byte moves need to ensure the destination address is aligned to 16-byte
boundaries, and 8-bytes moves perform better if the destination address is aligned to 8-byte
boundaries. Frequently, moving at doubleword granularity performs better with addresses that are 8-
byte aligned.

• REP string move vs. SIMD move — Implementing general-purpose memory functions using SIMD
extensions usually requires adding some prolog code to ensure the availability of SIMD instructions,
preamble code to facilitate aligned data movement requirements at runtime. Throughput comparison
must also take into consideration the overhead of the prolog when considering a REP string imple-
mentation versus a SIMD approach.

• Cache eviction — If the amount of data to be processed by a memory routine approaches half the
size of the last level on-die cache, temporal locality of the cache may suffer. Using streaming store
instructions (for example: MOVNTQ, MOVNTDQ) can minimize the effect of flushing the cache. The
threshold to start using a streaming store depends on the size of the last level cache. Determine the
size using the deterministic cache parameter leaf of CPUID.
Techniques for using streaming stores for implementing a MEMSET()-type library must also
consider that the application can benefit from this technique only if it has no immediate need to

GENERAL OPTIMIZATION GUIDELINES

3-60

reference the target addresses. This assumption is easily upheld when testing a streaming-store
implementation on a micro-benchmark configuration, but violated in a full-scale application
situation.

When applying general heuristics to the design of general-purpose, high-performance library routines,
the following guidelines can are useful when optimizing an arbitrary counter value N and address align-
ment. Different techniques may be necessary for optimal performance, depending on the magnitude of
N:
• When N is less than some small count (where the small count threshold will vary between microarchi-

tectures -- empirically, 8 may be a good value when optimizing for Intel NetBurst microarchitecture),
each case can be coded directly without the overhead of a looping structure. For example, 11 bytes
can be processed using two MOVSD instructions explicitly and a MOVSB with REP counter equaling 3.

• When N is not small but still less than some threshold value (which may vary for different micro-
architectures, but can be determined empirically), an SIMD implementation using run-time CPUID
and alignment prolog will likely deliver less throughput due to the overhead of the prolog. A REP
string implementation should favor using a REP string of doublewords. To improve address
alignment, a small piece of prolog code using MOVSB/STOSB with a count less than 4 can be used to
peel off the non-aligned data moves before starting to use MOVSD/STOSD.

• When N is less than half the size of last level cache, throughput consideration may favor either:

— An approach using a REP string with the largest data granularity because a REP string has little
overhead for loop iteration, and the branch misprediction overhead in the prolog/epilogue code to
handle address alignment is amortized over many iterations.

— An iterative approach using the instruction with largest data granularity, where the overhead for
SIMD feature detection, iteration overhead, and prolog/epilogue for alignment control can be
minimized. The trade-off between these approaches may depend on the microarchitecture.

An example of MEMSET() implemented using stosd for arbitrary counter value with the destination
address aligned to doubleword boundary in 32-bit mode is shown in Example 3-53.

• When N is larger than half the size of the last level cache, using 16-byte granularity streaming stores
with prolog/epilog for address alignment will likely be more efficient, if the destination addresses will
not be referenced immediately afterwards.

Example 3-53. REP STOSD with Arbitrary Count Size and 4-Byte-Aligned Destination
A ‘C’ example of Memset() Equivalent Implementation Using REP STOSD
void memset(void *dst,int c,size_t size)
{
char *d = (char *)dst;
size_t i;
for (i=0;i<size;i++)

*d++ = (char)c;
}

push edi
movzx eax, byte ptr [esp+12]
mov ecx, eax
shl ecx, 8
or ecx, eax
mov ecx, eax
shl ecx, 16
or eax, ecx

mov edi, [esp+8] ; 4-byte aligned
mov ecx, [esp+16] ; byte count
shr ecx, 2 ; do dword
cmp ecx, 127
jle _main
test edi, 4
jz _main
stosd ;peel off one dword
dec ecx

3-61

GENERAL OPTIMIZATION GUIDELINES

Memory routines in the runtime library generated by Intel compilers are optimized across a wide range
of address alignments, counter values, and microarchitectures. In most cases, applications should take
advantage of the default memory routines provided by Intel compilers.

In some situations, the byte count of the data is known by the context (as opposed to being known by a
parameter passed from a call), and one can take a simpler approach than those required for a general-
purpose library routine. For example, if the byte count is also small, using REP MOVSB/STOSB with a
count less than four can ensure good address alignment and loop-unrolling to finish the remaining data;
using MOVSD/STOSD can reduce the overhead associated with iteration.

Using a REP prefix with string move instructions can provide high performance in the situations described
above. However, using a REP prefix with string scan instructions (SCASB, SCASW, SCASD, SCASQ) or
compare instructions (CMPSB, CMPSW, SMPSD, SMPSQ) is not recommended for high performance.
Consider using SIMD instructions instead.

3.7.6 Enhanced REP MOVSB and STOSB Operation
Beginning with processors based on Ivy Bridge microarchitecture, REP string operation using MOVSB and
STOSB can provide both flexible and high-performance REP string operations for software in common
situations like memory copy and set operations. Processors that provide enhanced MOVSB/STOSB oper-
ations are enumerated by the CPUID feature flag: CPUID:(EAX=7H, ECX=0H):EBX.[bit 9] = 1.

3.7.6.1 Fast Short REP MOVSB
Beginning with processors based on Ice Lake Client microarchitecture, REP MOVSB performance of short
operations is enhanced. The enhancement applies to string lengths between 1 and 128 bytes long.
Support for fast-short REP MOVSB is enumerated by the CPUID feature flag: CPUID [EAX=7H,
ECX=0H).EDX.FAST_SHORT_REP_MOVSB[bit 4] = 1. There is no change in the REP STOS performance.

3.7.6.2 Memcpy Considerations
The interface for the standard library function memcpy introduces several factors (e.g. length, alignment
of the source buffer and destination) that interact with microarchitecture to determine the performance
characteristics of the implementation of the library function. Two of the common approaches to imple-
ment memcpy are driven from small code size vs. maximum throughput. The former generally uses REP
MOVSD+B (see Section 3.7.5), while the latter uses SIMD instruction sets and has to deal with additional
data alignment restrictions.

For processors supporting enhanced REP MOVSB/STOSB, implementing memcpy with REP MOVSB will
provide even more compact benefits in code size and better throughput than using the combination of
REP MOVSD+B. For processors based on Ivy Bridge microarchitecture, implementing memcpy using
Enhanced REP MOVSB and STOSB might not reach the same level of throughput as using 256-bit or 128-
bit AVX alternatives, depending on length and alignment factors.

_main: ; 8-byte aligned
rep stosd
mov ecx, [esp + 16]
and ecx, 3 ; do count <= 3
rep stosb ; optimal with <= 3
pop edi
ret

Example 3-53. REP STOSD with Arbitrary Count Size and 4-Byte-Aligned Destination (Contd.)
A ‘C’ example of Memset() Equivalent Implementation Using REP STOSD

GENERAL OPTIMIZATION GUIDELINES

3-62

Figure 3-2 depicts the relative performance of memcpy implementation on a third-generation Intel Core
processor using Enhanced REP MOVSB and STOSB versus REP MOVSD+B, for alignment conditions when
both the source and destination addresses are aligned to a 16-Byte boundary and the source region does
not overlap with the destination region. Using Enhanced REP MOVSB and STOSB always delivers better
performance than using REP MOVSD+B. If the length is a multiple of 64, it can produce even higher
performance. For example, copying 65-128 bytes takes 40 cycles, while copying 128 bytes needs only 35
cycles.

If an application wishes to bypass standard memcpy library implementation with its own custom imple-
mentation and have freedom to manage the buffer length allocation for both source and destination, it
may be worthwhile to manipulate the lengths of its memory copy operation to be multiples of 64 to take
advantage the code size and performance benefit of Enhanced REP MOVSB and STOSB.

The performance characteristic of implementing a general-purpose memcpy library function using a
SIMD register is significantly more colorful than an equivalent implementation using a general-purpose
register, depending on length, instruction set selection between SSE2, 128-bit AVX, 256-bit AVX, relative
alignment of source/destination, and memory address alignment granularities/boundaries, etc.

Hence comparing performance characteristics between a memcpy using Enhanced REP MOVSB and
STOSB versus a SIMD implementation is highly dependent on the particular SIMD implementation. The
remainder of this section discusses the relative performance of memcpy using Enhanced REP MOVSB and
STOSB versus unpublished, optimized 128-bit AVX implementation of memcpy to illustrate the hardware
capability of Ivy Bridge microarchitecture.

Figure 3-2. Memcpy Performance Comparison for Lengths up to 2KB

Table 3-5. Relative Performance of Memcpy() Using Enhanced REP MOVSB and STOSB Vs. 128-bit AVX
Range of Lengths (bytes) <128 128 to 2048 2048 to 4096

Memcpy_ERMSB/Memcpy_AVX128 0x7X 1X 1.02X

0

20

40

60

80

100

120

140

160

0 32 64 96 12
8
16
0

19
2
22
4
25
6
28
8
32
0
35
2

38
4
41
6
44
8
48
0
51
2

54
4
57
6
60
8
64
0
67
2
70
4

73
6
76
8
80
0
83
2
86
4

89
6
92
8
96
0
99
2

10
24

REP MOVSB
REP MOVSD+B

length in bytes

cy
cl
es

3-63

GENERAL OPTIMIZATION GUIDELINES

Table 3-5 shows the relative performance of the Memcpy function implemented using enhanced REP
MOVSB versus 128-bit AVX for several ranges of memcpy lengths, when both the source and destination
addresses are 16-byte aligned and the source region and destination region do not overlap. For memcpy
length less than 128 bytes, using Enhanced REP MOVSB and STOSB is slower than what’s possible using
128-bit AVX, due to internal start-up overhead in the REP string.

For situations with address misalignment, memcpy performance will generally be reduced relative to the
16-byte alignment scenario (see Table 3-6).

Memcpy() implemented with Enhanced REP MOVSB and STOSB can benefit further from the 256-bit
SIMD integer data-path in Haswell microarchitecture. See Section 15.16.3.

3.7.6.3 Memmove Considerations
When there is an overlap between the source and destination regions, software may need to use
memmove instead of memcpy to ensure correctness. It is possible to use REP MOVSB in conjunction with
the direction flag (DF) in a memmove() implementation to handle situations where the latter part of the
source region overlaps with the beginning of the destination region. However, setting the DF to force REP
MOVSB to copy bytes from high towards low addresses will experience significant performance degrada-
tion.

When using Enhanced REP MOVSB and STOSB to implement memmove function, one can detect the
above situation and handle first the rear chunks in the source region that will be written to as part of the
destination region, using REP MOVSB with the DF=0, to the non-overlapping region of the destination.
After the overlapping chunks in the rear section are copied, the rest of the source region can be
processed normally, also with DF=0.

3.7.6.4 Memset Considerations
The consideration of code size and throughput also applies for memset() implementations. For proces-
sors supporting Enhanced REP MOVSB and STOSB, using REP STOSB will again deliver more compact
code size and significantly better performance than the combination of STOSD+B technique described in
Section 3.7.5.

When the destination buffer is 16-byte aligned, memset() using Enhanced REP MOVSB and STOSB can
perform better than SIMD approaches. When the destination buffer is misaligned, memset() perfor-
mance using Enhanced REP MOVSB and STOSB can degrade about 20% relative to aligned case, for
processors based on Ivy Bridge microarchitecture. In contrast, SIMD implementation of memset() will
experience smaller degradation when the destination is misaligned.

Memset() implemented with Enhanced REP MOVSB and STOSB can benefit further from the 256-bit data
path in Haswell microarchitecture. see Section 15.16.3.3.

3.8 REP STRING OPERATIONS
Several REP string performance enhancements are available beginning with processors based on Golden
Cove microarchitecture.

Table 3-6. Effect of Address Misalignment on Memcpy() Performance
Address Misalignment Performance Impact

Source Buffer The impact on Enhanced REP MOVSB and STOSB implementation versus 128-
bit AVX is similar.

Destination Buffer The impact on Enhanced REP MOVSB and STOSB implementation can be 25%
degradation, while 128-bit AVX implementation of memcpy may degrade only
5%, relative to 16-byte aligned scenario.

GENERAL OPTIMIZATION GUIDELINES

3-64

3.8.1 Fast Zero Length REP MOVSB
REP MOVSB performance of zero length operations is enhanced. The latency of a zero length REP MOVSB
is now the same as the latency of lengths 1 to 128 bytes. When both Fast Short REP MOVSB and Fast
Zero Length REP MOVSB features are enabled, REP MOVSB performance is flat 9 cycles per operation, for
all strings 0-128 byte long whose source and destination operands reside in the processor first level
cache.

Support for fast zero-length REP MOVSB is enumerated by the CPUID feature flag:

CPUID.07H.01H:EAX.FAST_ZERO_LENGTH_REP_MOVSB[bit 10] = 1.

3.8.2 Fast Short REP STOSB
REP STOSB performance of short operations is enhanced. The enhancement applies to string lengths
between 0 and 128 bytes long. When Fast Short REP STOSB feature is enabled, REP STOSB performance
is flat 12 cycles per operation, for all strings 0-128 byte long whose destination operand resides in the
processor first level cache.

Support for fast-short REP STOSB is enumerated by the CPUID feature flag:

CPUID.07H.01H:EAX.FAST_SHORT_REP_STOSB[bit 11] = 1.

3.8.3 Fast Short REP CMPSB and SCASB
REP CMPSB and SCASB performance is enhanced. The enhancement applies to string lengths between 1
and 128 bytes long. When the Fast Short REP CMPSB and SCASB feature is enabled, REP CMPSB and REP
SCASB performance is flat 15 cycles per operation, for all strings 1-128 byte long whose two source oper-
ands reside in the processor first level cache.

Support for fast short REP CMPSB and SCASB is enumerated by the CPUID feature flag:

CPUID.07H.01H:EAX.FAST_SHORT_REP_CMPSB_SCASB[bit 12] = 1.

3.9 FLOATING-POINT CONSIDERATIONS
When programming floating-point applications, it is best to start with a high-level programming language
such as C, C++, or Fortran. Many compilers perform floating-point scheduling and optimization when it
is possible. However in order to produce optimal code, the compiler may need some assistance.

3.9.1 Guidelines for Optimizing Floating-point Code
User/Source Coding Rule 9. (M impact, M generality) Enable the compiler’s use of SSE, SSE2,
AVX, AVX2, and possibly more advanced SIMD instruction sets (AVX-512) with appropriate switches.
Favor scalar SIMD code generation to replace x87 code generation.

Follow this procedure to investigate the performance of your floating-point application:
• Understand how the compiler handles floating-point code.
• Look at the assembly dump and see what transforms are already performed on the program.
• Study the loop nests in the application that dominate the execution time.
• Determine why the compiler is not creating the fastest code.
• See if there is a dependence that can be resolved.
• Determine the problem area: bus bandwidth, cache locality, trace cache bandwidth, or instruction

latency. Focus on optimizing the problem area. For example, adding PREFETCH instructions will not
help if the bus is already saturated. If trace cache bandwidth is the problem, added prefetch µops
may degrade performance.

3-65

GENERAL OPTIMIZATION GUIDELINES

Also, in general, follow the general coding recommendations discussed in this chapter, including:
• Blocking the cache.
• Using prefetch.
• Enabling vectorization.
• Unrolling loops.

User/Source Coding Rule 10. (H impact, ML generality) Make sure your application stays in range
to avoid denormal values, underflows.

Out-of-range numbers cause very high overhead.

When converting floating-point values to 16-bit, 32-bit, or 64-bit integers using truncation, the instruc-
tions CVTTSS2SI and CVTTSD2SI are recommended over instructions that access x87 FPU stack. This
avoids changing the rounding mode.

User/Source Coding Rule 11. (M impact, ML generality) Usually, math libraries take advantage of
the transcendental instructions (for example, FSIN) when evaluating elementary functions. If there is
no critical need to evaluate the transcendental functions using the extended precision of 80 bits,
applications should consider an alternate, software-based approach, such as a look-up-table-based
algorithm using interpolation techniques. It is possible to improve transcendental performance with
these techniques by choosing the desired numeric precision and the size of the look-up table, and by
taking advantage of the parallelism of the SSE and the SSE2 instructions.

3.9.2 Floating-point Modes and Exceptions
When working with floating-point numbers, high-speed microprocessors frequently must deal with situ-
ations that need special handling in hardware or code.

3.9.2.1 Floating-point Exceptions
The most frequent cause of performance degradation is the use of masked floating-point exception
conditions such as:
• Arithmetic overflow.
• Arithmetic underflow.
• Denormalized operand.

Refer to Chapter 4 of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1 for definitions of over-
flow, underflow and denormal exceptions.

Denormalized floating-point numbers impact performance in two ways:
• Directly when are used as operands.
• Indirectly when are produced as a result of an underflow situation.

If a floating-point application never underflows, the denormals can only come from floating-point
constants.
User/Source Coding Rule 12. (H impact, ML generality) Denormalized floating-point constants
should be avoided as much as possible.

Denormal and arithmetic underflow exceptions can occur during the execution of x87 instructions or
SSE/SSE2/SSE3 instructions. Processors based on Intel NetBurst microarchitecture handle these excep-
tions more efficiently when executing SSE/SSE2/SSE3 instructions and when speed is more important
than complying with the IEEE standard. The following paragraphs give recommendations on how to opti-
mize your code to reduce performance degradations related to floating-point exceptions.

GENERAL OPTIMIZATION GUIDELINES

3-66

3.9.2.2 Dealing with floating-point exceptions in x87 FPU code
Every special situation listed in Section 3.9.2.1, “Floating-point Exceptions,” is costly in terms of perfor-
mance. For that reason, x87 FPU code should be written to avoid these situations.

There are basically three ways to reduce the impact of overflow/underflow situations with x87 FPU code:
• Choose floating-point data types that are large enough to accommodate results without generating

arithmetic overflow and underflow exceptions.
• Scale the range of operands/results to reduce as much as possible the number of arithmetic

overflow/underflow situations.
• Keep intermediate results on the x87 FPU register stack until the final results have been computed

and stored in memory. Overflow or underflow is less likely to happen when intermediate results are
kept in the x87 FPU stack (this is because data on the stack is stored in double extended-precision
format and overflow/underflow conditions are detected accordingly).

• Denormalized floating-point constants (which are read-only, and hence never change) should be
avoided and replaced, if possible, with zeros of the same sign.

3.9.2.3 Floating-point Exceptions in SSE/SSE2/SSE3 Code
Most special situations that involve masked floating-point exceptions are handled efficiently in hardware.
When a masked overflow exception occurs while executing SSE/SSE2/SSE3/AVX/AVX2/AVX-512 code,
processor hardware can handles it without performance penalty.

Underflow exceptions and denormalized source operands are usually treated according to the IEEE 754
specification, but this can incur significant performance delay. If a programmer is willing to trade pure
IEEE 754 compliance for speed, two non-IEEE 754 compliant modes are provided to speed situations
where underflows and input are frequent: FTZ mode and DAZ mode.

When the FTZ mode is enabled, an underflow result is automatically converted to a zero with the correct
sign. Although this behavior is not compliant with IEEE 754, it is provided for use in applications where
performance is more important than IEEE 754 compliance. Since denormal results are not produced
when the FTZ mode is enabled, the only denormal floating-point numbers that can be encountered in FTZ
mode are the ones specified as constants (read only).

The DAZ mode is provided to handle denormal source operands efficiently when running a SIMD floating-
point application. When the DAZ mode is enabled, input denormals are treated as zeros with the same
sign. Enabling the DAZ mode is the way to deal with denormal floating-point constants when perfor-
mance is the objective.

If departing from the IEEE 754 specification is acceptable and performance is critical, run
SSE/SSE2/SSE3/AVX/AVX2/AVX-512 applications with FTZ and DAZ modes enabled.

NOTE
The DAZ mode is available with both the SSE and SSE2 extensions, although the speed
improvement expected from this mode is fully realized only in SSE code and later.

3.9.3 Floating-point Modes
For x87 code, using the FLDCW instruction to change floating modes can be an expensive operation in
many cases.

Recent processor generations provide hardware optimization for FLDCW that allows programmers to
alternate between two constant values efficiently. For the FLDCW optimization to be effective, the two
constant FCW values are only allowed to differ on the following 5 bits in the FCW:

FCW[8-9] ; Precision control
FCW[10-11] ; Rounding control
FCW[12] ; Infinity control

3-67

GENERAL OPTIMIZATION GUIDELINES

If programmers need to modify other bits (for example: mask bits) in the FCW, the FLDCW instruction is
still an expensive operation.

In situations where an application cycles between three (or more) constant values, FLDCW optimization
does not apply, and the performance degradation occurs for each FLDCW instruction.

One solution to this problem is to choose two constant FCW values, take advantage of the optimization of
the FLDCW instruction to alternate between only these two constant FCW values, and devise some
means to accomplish the task that requires the 3rd FCW value without actually changing the FCW to a
third constant value. An alternative solution is to structure the code so that, for periods of time, the appli-
cation alternates between only two constant FCW values. When the application later alternates between
a pair of different FCW values, the performance degradation occurs only during the transition.

It is expected that SIMD applications are unlikely to alternate between FTZ and DAZ mode values.
Consequently, the SIMD control word does not have the short latencies that the floating-point control
register does. A read of the MXCSR register has a fairly long latency, and a write to the register is a seri-
alizing instruction.

There is no separate control word for single and double precision; both use the same modes. Notably,
this applies to both FTZ and DAZ modes.
Assembly/Compiler Coding Rule 52. (H impact, M generality) Minimize changes to bits 8-12 of
the floating-point control word. Changes for more than two values (each value being a combination of
the following bits: precision, rounding and infinity control, and the rest of bits in FCW) leads to delays
that are on the order of the pipeline depth.

3.9.3.1 Rounding Mode
Many libraries provide float-to-integer library routines that convert floating-point values to integer. Many
of these libraries conform to ANSI C coding standards which state that the rounding mode should be
truncation. With the Pentium 4 processor, one can use the CVTTSD2SI and CVTTSS2SI instructions to
convert operands with truncation without ever needing to change rounding modes. The cost savings of
using these instructions over the methods below is enough to justify using SSE and SSE2 wherever
possible when truncation is involved.

For x87 floating-point, the FIST instruction uses the rounding mode represented in the floating-point
control word (FCW). The rounding mode is generally “round to nearest”, so many compiler writers imple-
ment a change in the rounding mode in the processor in order to conform to the C and FORTRAN stan-
dards. This implementation requires changing the control word on the processor using the FLDCW
instruction. For a change in the rounding, precision, and infinity bits, use the FSTCW instruction to store
the floating-point control word. Then use the FLDCW instruction to change the rounding mode to trunca-
tion.

In a typical code sequence that changes the rounding mode in the FCW, a FSTCW instruction is usually
followed by a load operation. The load operation from memory should be a 16-bit operand to prevent
store-forwarding problem. If the load operation on the previously-stored FCW word involves either an 8-
bit or a 32-bit operand, this will cause a store-forwarding problem due to mismatch of the size of the data
between the store operation and the load operation.

To avoid store-forwarding problems, make sure that the write and read to the FCW are both 16-bit oper-
ations.

If there is more than one change to the rounding, precision, and infinity bits, and the rounding mode is
not important to the result, use the algorithm in Example 3-54 to avoid synchronization issues, the over-
head of the FLDCW instruction, and having to change the rounding mode. Note that the example suffers

GENERAL OPTIMIZATION GUIDELINES

3-68

from a store-forwarding problem which will lead to a performance penalty. However, its performance is
still better than changing the rounding, precision, and infinity bits among more than two values.

Assembly/Compiler Coding Rule 53. (H impact, L generality) Minimize the number of changes to
the rounding mode. Do not use changes in the rounding mode to implement the floor and ceiling
functions if this involves a total of more than two values of the set of rounding, precision, and infinity
bits.

3.9.3.2 Precision
If single precision is adequate, use it instead of double precision. This is true because:
• Single precision operations allow the use of longer SIMD vectors, since more single precision data

elements can fit in a register.
• If the precision control (PC) field in the x87 FPU control word is set to single precision, the floating-

point divider can complete a single-precision computation much faster than either a double-precision

Example 3-54. Algorithm to Avoid Changing Rounding Mode

_fto132proc
lea ecx, [esp-8]
sub esp, 16 ; Allocate frame
and ecx, -8 ; Align pointer on boundary of 8
fld st(0) ; Duplicate FPU stack top

fistp qword ptr[ecx]
fild qword ptr[ecx]
mov edx, [ecx+4] ; High DWORD of integer
mov eax, [ecx] ; Low DWIRD of integer
test eax, eax
je integer_QnaN_or_zero

arg_is_not_integer_QnaN:
fsubp st(1), st ; TOS=d-round(d), { st(1) = st(1)-st & pop ST}
test edx, edx ; What’s sign of integer
jns positive ; Number is negative
fstp dword ptr[ecx] ; Result of subtraction
mov ecx, [ecx] ; DWORD of diff(single-precision)
add esp, 16
xor ecx, 80000000h
add ecx,7fffffffh ; If diff<0 then decrement integer
adc eax,0 ; INC EAX (add CARRY flag)
ret

positive:

positive:
fstp dword ptr[ecx] ; 17-18 result of subtraction
mov ecx, [ecx] ; DWORD of diff(single precision)
add esp, 16
add ecx, 7fffffffh ; If diff<0 then decrement integer
sbb eax, 0 ; DEC EAX (subtract CARRY flag)
ret

integer_QnaN_or_zero:
test edx, 7fffffffh
jnz arg_is_not_integer_QnaN
add esp, 16
ret

3-69

GENERAL OPTIMIZATION GUIDELINES

computation or an extended double-precision computation. If the PC field is set to double precision,
this will enable those x87 FPU operations on double-precision data to complete faster than extended
double-precision computation. These characteristics affect computations including floating-point
divide and square root.

Assembly/Compiler Coding Rule 54. (H impact, L generality) Minimize the number of changes to
the precision mode.

3.9.4 x87 vs. Scalar SIMD Floating-point Trade-offs
There are a number of differences between x87 floating-point code and scalar floating-point code (using
SSE and SSE2). The following differences should drive decisions about which registers and instructions to
use:
• When an input operand for a SIMD floating-point instruction contains values that are less than the

representable range of the data type, a denormal exception occurs. This causes a significant
performance penalty. An SIMD floating-point operation has a flush-to-zero mode in which the results
will not underflow. Therefore subsequent computation will not face the performance penalty of
handling denormal input operands. For example, in the case of 3D applications with low lighting
levels, using flush-to-zero mode can improve performance by as much as 50% for applications with
large numbers of underflows.

• Scalar floating-point SIMD instructions have lower latencies than equivalent x87 instructions. Scalar
SIMD floating-point multiply instruction may be pipelined, while x87 multiply instruction is not.

• Although x87 supports transcendental instructions, software library implementation of transcen-
dental function can be faster in many cases.

• x87 supports 80-bit precision, double extended floating-point. SSE support a maximum of 32-bit
precision. SSE2 supports a maximum of 64-bit precision.

• Scalar floating-point registers may be accessed directly, avoiding FXCH and top-of-stack restrictions.
• The cost of converting from floating-point to integer with truncation is significantly lower with

Streaming SIMD Extensions 2 and Streaming SIMD Extensions in the processors based on Intel
NetBurst microarchitecture than with either changes to the rounding mode or the sequence
prescribed in the Example 3-54.

Assembly/Compiler Coding Rule 55. (M impact, M generality) Use Streaming SIMD Extensions 2
or Streaming SIMD Extensions unless you need an x87 feature. Most SSE2 arithmetic operations have
shorter latency then their X87 counterpart and they eliminate the overhead associated with the
management of the X87 register stack.

3.9.4.1 Scalar SSE/SSE2
In code sequences that have conversions from floating-point to integer, divide single-precision instruc-
tions, or any precision change, x87 code generation from a compiler typically writes data to memory in
single-precision and reads it again in order to reduce precision. Using SSE/SSE2 scalar code instead of
x87 code can generate a large performance benefit using Intel NetBurst microarchitecture and a modest
benefit on Intel Core Solo and Intel Core Duo processors.

Recommendation: Use the compiler switch to generate scalar floating-point code using XMM rather
than x87 code.

When working with scalar SSE/SSE2 code, pay attention to the need for clearing the content of unused
slots in an XMM register and the associated performance impact. For example, loading data from
memory with MOVSS or MOVSD causes an extra micro-op for zeroing the upper part of the XMM register.

3.9.4.2 Transcendental Functions
If an application needs to emulate math functions in software for performance or other reasons (see
Section 3.9.1, “Guidelines for Optimizing Floating-point Code”), it may be worthwhile to inline math

GENERAL OPTIMIZATION GUIDELINES

3-70

library calls because the CALL and the prologue/epilogue involved with such calls can significantly affect
the latency of operations.

3.10 MAXIMIZING PCIE PERFORMANCE
PCIe performance can be dramatically impacted by the size and alignment of upstream reads and writes
(read and write transactions issued from a PCIe agent to the host’s memory). As a general rule, the best
performance, in terms of both bandwidth and latency, is obtained by aligning the start addresses of
upstream reads and writes on 64-byte boundaries and ensuring that the request size is a multiple of 64-
bytes, with modest further increases in bandwidth when larger multiples (128, 192, 256 bytes) are
employed. In particular, a partial write will cause a delay for the following request (read or write).

A second rule is to avoid multiple concurrently outstanding accesses to a single cache line. This can result
in a conflict which in turn can cause serialization of accesses that would otherwise be pipelined, resulting
in higher latency and/or lower bandwidth. Patterns that violate this rule include sequential accesses
(reads or writes) that are not a multiple of 64-bytes, as well as explicit accesses to the same cache line
address. Overlapping requests—those with different start addresses but with request lengths that result
in overlap of the requests—can have the same effect. For example, a 96-byte read of address
0x00000200 followed by a 64-byte read of address 0x00000240 will cause a conflict—and a likely delay—
for the second read.

Upstream writes that are a multiple of 64-byte but are non-aligned will have the performance of a series
of partial and full sequential writes. For example, a write of length 128-byte to address 0x00000070 will
perform similarly to 3 sequential writes of lengths 16, 64, and 48 to addresses 0x00000070,
0x00000080, and 0x00000100, respectively.

For PCIe cards implementing multi-function devices, such as dual or quad port network interface cards
(NICs) or dual-GPU graphics cards, it is important to note that non-optimal behavior by one of those
devices can impact the bandwidth and/or latency observed by the other devices on that card. With
respect to the behavior described in this section, all traffic on a given PCIe port is treated as if it origi-
nated from a single device and function.

For the best PCIe bandwidth:
1. Align start addresses of upstream reads and writes on 64-byte boundaries.
2. Use read and write requests that are a multiple of 64-bytes.
3. Eliminate or avoid sequential and random partial line upstream writes.
4. Eliminate or avoid conflicting upstream reads, including sequential partial line reads.

Techniques for avoiding performance pitfalls include cache line aligning all descriptors and data buffers,
padding descriptors that are written upstream to 64-byte alignment, buffering incoming data to achieve
larger upstream write payloads, allocating data structures intended for sequential reading by the PCIe
device in such a way as to enable use of (multiple of) 64-byte reads. The negative impact of unoptimized
reads and writes depends on the specific workload and the microarchitecture on which the product is
based.

3.10.1 Optimizing PCIe Performance for Accesses Toward Coherent Memory and
Toward MMIO Regions (P2P)

In order to maximize performance for PCIe devices in the processors listed in Table 3-7 below, the soft-
ware should determine whether the accesses are toward coherent memory (system memory) or toward
MMIO regions (P2P access to other devices). If the access is toward MMIO region, then software can
command HW to set the RO bit in the TLP header, as this would allow hardware to achieve maximum
throughput for these types of accesses. For accesses toward coherent memory, software can command

3-71

GENERAL OPTIMIZATION GUIDELINES

HW to clear the RO bit in the TLP header (no RO), as this would allow hardware to achieve maximum
throughput for these types of accesses.

3.11 SCALABILITY WITH CONTENDED LINE ACCESS IN INTEL® 4TH
GENERATION INTEL® XEON® SCALABLE PROCESSORS

A two-socket Sapphire Rapids system can have up to 224 (2 sockets x 56 cores/socket x 2
threads/core) hardware threads. Scalability and performance bottlenecks may happen when all of these
hardware threads compete for the same address.

3.11.1 Why it Happens

When multiple hardware threads go after the same address (say AA), this address is queued in the
Ingress Queue, with one entry for each hardware thread. Due to the resource limitation of the Ingress
Queue, the CPU core is throttled to slow the rate of requests when this queue overflows. This usually
occurs with contention for a lock.

3.11.2 How to Detect it

When multiple cores are contending on the same lock, several outstanding requests are mapped to that
same address. The Phys_addr_match event can count as such an event. This CHA event increments by
one every other cycle when there is more than one outstanding request to the same address.

Here are the PMU event id and Umask for the 2 CHA events that are very useful for detecting contention

1. Phys_addr_match event: Event id: 0x19, Umask: 0x80

2. CHA_clockticks event: Event id: 0x01, Umask: 0x01

These events have to be measured on a per-CHA basis, and if the ratio of the counts between phys_ad-
dr_match to CHA_clockticks is more than 0.15 on any CHA that indicates > 30% of the CHA cycles (2x
the ratio as this event can count only once every two cycles) are spent with multiple requests outstanding
to the same address.

Here is the recipe to measure these events with Linux Perf:

$ sudo perf stat -a -e 'uncore_cha/event=0x19,umask=0x80/,uncore_cha/event=0x1,umask=0x1/' --per-socket --no-
merge -- sleep 30

Once it is confirmed that the ratio of phys_addr_match events to the CHA clockticks is more than 0.15,
the next step would be to figure out where this may be happening in the codeg. Intel CPUs provide a PMU
mechanism wherein a load operation is randomly selected and tracked through completion and the actual
latency is recorded if it is over a given threshold. The threshold value is specified in cycles and must be in
the power of 2. In the “perf mem record” command below, we are defining a command to sample all
loads that take more than 128 cycles to complete.

$ sudo perf mem record -a --ldlat 128 sleep 1

Table 3-7. Intel Processor CPU RP Device IDs for Processors Optimizing PCIe Performance
Processor CPU RP Device IDs

Intel Xeon processors based on Broadwell microarchitecture 6F01H-6F0EH

Intel Xeon processors based on Haswell microarchitecture 2F01H-2F0EH

https://github.com/aayasin/perf-tools
https://github.com/aayasin/perf-tools
https://v8.dev/blog/short-builtin-calls
https://v8.dev/blog/short-builtin-calls

GENERAL OPTIMIZATION GUIDELINES

3-72

Once the above data is collected, execute the following command to process the data collected

$ sudo perf mem report.

Information similar to the table below will be generated. This has details on hot loads along with data
linear address and the actual latency that the load experienced. This can be used to identify the neces-
sary fixes to the code.

3.11.3 How to Fix it

The following is a list of suggested solutions:
1. Run multiple instances of the workload with a scale-out approach instead of a single instance

with scale-up so that the contention for per instance hot variables (including locks) is reduced.

2. Guard the cmpxchg by checking that the destination memory is expected with a load, test, and
branch beforehand

3. Implement a backoff mechanism so that the cmpxchg is issued less. For example, in locks,
exponential backoff is a common and effective method to prevent all cores from being in
lockstep. In the case of contention for a lock, checking to see if it is accessible by a load before
trying to write to it through a cmpxchg will help. Below is an example pseudo-code:

Example 3-55. Locking Algorithm for Sapphire Rapids

Table 3-8. Samples: 365K of events ‘anon group{cpu/mem-loads-aux/,cpu/mem-loads,ldat=128/pp}’, Event count (a--r0x):
67900852

Overhe
ad

Sam
ples

Local
weight

Mem.
acces

s
Symbol

Shared
Object

Data
Symb

ol

Dat
a

Obj
ect

Snoop
TLB

Acces
s

Lock
ed

Blocke
d

Local
INSTR
Latenc

y

0.22%
0.07%

1
1

38060
L3 or
L3 hit

[.]asm_m
utex

lockcon-
tention

[.]0x0
00055
6db14
282a0

[he
ap]

HitM
L1 or
L2 hit

Yes N/A 47251

0.18%
0.06%

1
1

31338
L3 or
L3 hit

[.]asm_m
utex

lockcon-
tention

[.]0x0
00055
6db14
282a0

[he
ap]

HitM
L1 or
L2 hit

Yes N/A 40411

0.17%
0.06%

1
1

29572
L3 or
L3 hit

[.]asm_m
utex

lockcon-
tention

[.]0x0
00055
6db14
282a0

[he
ap]

HitM
L1 or
L2 hit

Yes N/A 36652

lock_loop:

while (lock is not free) // just a load operation

 execute pause;

// now the lock is free. So, try to acquire it.

Exponential Backoff spin // so all the cores don’t come back at the same time

Execute cmpxchg on the lock

if the lock is not successfully acquired, goto lock_loop

3-73

GENERAL OPTIMIZATION GUIDELINES

Additionally, as the core counts continue to increase, exploring other algorithmic fixes that dissolve or
reduce contention on memory variables (including locks) is essential. For example, instead of frequently
updating a hot statistical variable from all threads, consider updating a copy of it per thread (without
contention) and later aggregate the updated per-thread copies on a less frequent basis or use some
existing atomic-free concurrency methods such as rseq1. As another example, restructure locking algo-
rithms to use hierarchical locking when excessive contention is detected on a global lock.

3.11.4 Case Study: SysBench/MariaDB Metric CHA % Cycles Fast Asserted

With SysBench/MariaDB 10.3.34, the workload’s throughput drops as the number of threads increases.
Another metric we can use is the CHA% Cycles Fast Asserted. It is a signal to slow down the cores
when the Ingress Queue fills up. This is another way to identify scalability issues. The graph below plots
the number of active client threads representing the work intensity on the horizontal axis. The percentage of Fast
Asserts is plotted on the vertical axis.

The baseline case (blue line) had a sharp throughput with increased thread count, as all cores reduced their throughput as they
suffered from the increasing percent of Fast Asserts. With the same work distributed instances (red line), Fast asserts dropped. Simi-
larly, with a software fix (gray line), again, the Fast Asserts dropped even though only one instance was in execution.

Figure 3-3. MariaDB - CHA % Cycles Fast Asserted

1. https://git.kernel.org/pub/scm/libs/librseq/librseq.git/tree/doc/man/rseq.2

GENERAL OPTIMIZATION GUIDELINES

3-74

3.11.5 Instruction Sequence Slowdowns
The Golden Cove CPU microarchitecture upon which Sapphire Rapids is based has increased the cost of
mixing Legacy SSE and VEX without clearing the state of upper registers for power efficiency reasons.

3.11.5.1 Why it Happens

The Golden Cove CPU microarchitecture eliminated some hardware speed paths for power efficiency and
replaced them with microcode. The following instruction sequence mixes VEX and Legacy SSE, for
example, has higher Core Cycles than on the previous generation Sunny Cove CPU microarchitecture for
the Ice Lake version of Xeon 3 (ICX). It is due to more micro-ops being executed.

3.11.5.2 How to Detect it

The event ASSISTS.SSE_AVX_MIX can be used to determine if there are VEX to legacy SSE transitions.
The following Linux perf command-line can be used while the workload is running:

$ sudo perf stat -e 'assists.sse_avx_mix’1 <workload>

With the Intel TMA (Topdown Methodology) (there is a metric called Mixing_Vectors which gives the
percentage of injected blend uops out of all the uops issued. Usually, a Mixing_Vectors metric over 5% is
worth investigating. You can find more details in Appendix B1 of the Optimizations Guide.

3.11.5.3 How to Fix it

The following is a list of suggested solutions:

1. When possible, use VEX-encoded instructions for all the SIMD instructions when possible.

2. Insert a VZEROUPPER to tell the hardware that the state of the higher registers is clean
between the VEX and the legacy SSE instructions. Often the best way to do this is to insert a
VZEROUPPER before returning from any function that uses VEX (that does not produce a VEX
register) and before any call to an unknown function.

Table 3-9. Instruction Sequence Mixing VEX and Legacy on Sapphire Rapids and ICX
Ice lake (Sunny Cove) Sapphire Rapids (Golden

Cove)

Intel Syntax for Assembly Code
Inst Retired Core Cycles Inst Retired Core Cycles

VPXOR XMM3, XMM3, XMM3;
VEXTRACTI128 XMM3, YMM3, 1;
PXOR XMM3, XMM3

3.00 1 3.00 388.04

1. Using upstream perf. If OS doesn’t have support for the event use
cpu/event=0xc1,umask=0x10,name=assists_sse_avx_mix/

3-75

GENERAL OPTIMIZATION GUIDELINES

VZEROUPPER was inserted in the code sequence below and there are no SSE_AVX_MIX assists. With
this change, the Core Cycles do not have a performance inversion relative to the previous generation.

3.11.6 Misprediction for Branches >2GB

The Golden Cove CPU is a wider machine and might exhibit a higher Top-down Microarchitecture Anal-
ysis (TMA) Bad Speculation percentage. Please see B.1.1 for additional information about TMA. Some
sources of Bad Speculation are branch prediction misses. In this case, however, Bad Speculation is due
to the wider machine and less efficient branch prediction for certain indirect branches.

3.11.6.1 Why it Happens
For a near absolute indirect JMP/CALL branch instruction (opcodes FF /4 and FF /2), the branch distance
(ADDR_TARGET - ADDR_BRANCH) affects the performance of the branch predictor as follows. The
branch predictor uses fewer resources to predict the branch if its distance can be specified with a 32-bit
signed displacement (JMP/CALL imm32). If the distance is larger (>2GB), the predictor uses more
resources to predict the branch, and performance may suffer.

3.11.6.2 How to Detect it
You can use the Intel LBR to identify jumps greater than 2GB. The collection of performance analysis
tools based on perf on Linux supports this. The following is an example output from the tool. It shows
that 21% of the call/jumps of >2GB offset are mispredicted. The histogram of one of the indirect
branches at address 0x555555603664 shows that it is to one target and in a library. The profile mask is
to use LBR, and the duration is 10 seconds. It does a system-level profile.

Figure 3-4. Identifying >2GB Branches

Example 3-56. Fixed Instruction Sequence with Improved Performance on Sapphire Rapids
Ice Lake (Sunny Cove) Sapphire Rapids

(Golden Cove)

Intel Syntax for Assembly Code
Inst Retired Core Cycles

Inst
Retired

Core
Cycles

ASSISTS.SSE
_AVX_MIX

VPXOR XMM3, XMM3, XMM3;
VEXTRACTI128 XMM3, YMM3, 1;
VZEROUPPER;
PXOR XMM3, XMM3

4.00 2.00 4.00 1.00 0

% ./do.py profile --profile-mask=0x100 -s 10

count of indirect call/jump of >2GB offset: 93200

count of mispredicted indirect call/jump of >2GB offset: 19943

misprediction ratio for indirect branch at address 0x7ffff577eca4: 4.23%

misprediction ratio for indirect branch at address 0x5555556030c4: 32.23%

misprediction ratio for indirect branch at address 0x555555603664: 22.30%

misprediction ratio for indirect branch at address 0x555555603c24: 13.84%

…

indirect_0x555555603664 histogram:

0x7ffff7af2670: 50501 100.0%

https://github.com/aayasin/perf-tools
https://github.com/aayasin/perf-tools

GENERAL OPTIMIZATION GUIDELINES

3-76

3.11.6.3 How to Fix it

Arrange the code so the jumps don’t span the >2GB range. This can be done through a variety of
approaches:
1. If possible, statically link all the libraries into the executable.

2. For .text to library code, use the Glibc environment variable LD_PREFER_MAP_32BIT_EXEC=1 to
restrict the addresses into the 4GB range.

3. For dynamically compiled code, keep it close to the .text address or copy the frequently called entries
into the dynamically compiled code address region. See the Google v8 Blog.

In a case study with WordPress/PHP running eight containers with and without the 2GB fix, the CPI and
performance scores improve by 6%.

Example 3-57. WordPress/PHP Case Study: with and without 2GB Fix for Branch Misprediction
 WP4.2 / PHP7.4.29

- NO FIX
 WP4.2 / PHP7.4.29 -

2G FIX in Glibc
 2G FIX/
NO FIX

Workers 8c x 42 8c x 42

Config

Cores Per socket 56 56 1.00

Sockets 2 2 1.00

Total Cores 112 112 1.00

Total Thread Count 224 224 1.00

Performance
Throughput 1.0 1.06 1.06

CPI 1.12 1.05 0.96

Path Length Instructions per Unit of Work 33,789,862.68 33,730,155.10 1.00

Cycles per
Transaction

Cycles per Unit of Work 37,803,310.48 35,359,628.33 0.94

https://v8.dev/blog/short-builtin-calls

3-77

GENERAL OPTIMIZATION GUIDELINES

3.12 OPTIMIZING COMMUNICATION WITH PCI DEVICES ON INTEL® 4TH
GENERATION INTEL® XEON® SCALABLE PROCESSORS

The Sapphire Rapids microarchitecture introduced a new set of instructions designed to optimize
communication between SW running on IA cores and PCI devices on the platform.

3.12.1 Signaling Devices with Direct Move
Most software-to-device interaction follows a producer-to-consumer relationship where the software
creates work for the device and then signals it to inform the device that work is available. Descriptor rings
are the ubiquitous pattern here and once descriptors are added to the ring, the signal (or “doorbell”)
consists of an update to the tail pointer register on the device. This is a write to an MMIO-mapped BAR
register.

Such writes tend to be relatively expensive operations –the latency to complete the write to the device is
high relative to the CPU operating speed. Since writes are ordered by default, this creates a bubble
during which subsequent writes cannot be drained from store buffers. Signaling can therefore affect
performance via store backpressure.

As a result, some software libraries avoid frequent signaling by batching relatively large quantities of
work descriptors with each doorbell update. However, this is not always possible, and it introduces
latency.

The Sapphire Rapids microarchitecture introduces “Direct Store” instructions to optimize signaling; there
are two instructions in the family:
• MOVDIRI: 4/8B direct store
• MOVDIR64B: 64B atomic direct copy

Direct Stores are weakly ordered (like non-temporal or USWC-mapped memory writes) regardless of the
underlying memory type (which is usually UC for MMIO-mapped locations). Since they do not order
subsequent writes the performance issue described above does not occur.

Since they are intended for signaling, direct stores will never combine with other stores to the same
address, such as can happen with non-temporal or USWC writes. Each write is guaranteed to occur as
issued. In the case of MOVDIR64B, the full 64B will be delivered as a single write to the device. This is the
only ISA that carries an architectural guarantee of >8B atomicity.

These instructions derive benefit from the fact that signaling use cases typically do not care if subsequent
writes are observed before the doorbell itself – the ordering is relaxed. However, since typically the door-
bell must not be observable before earlier writes (such writes are creating the work descriptors), SW
should insert a store fence immediately before the direct store.

Having a fence before the direct store does not normally limit performance– except when many direct
stores are issued. If there is an SFENCE before each, the fence on direct store N+1 imposes an order on
direct store N, which can remove some of the benefits. If possible, the guideline is to avoid this where
possible. One technique that may work if multiple doorbells to different addresses are being issued (such
as for a NIC driver that is handling multiple descriptor rings) is to group the direct stores to different loca-
tions together and insert a single SFENCE before the group.

Finally, it is worth noting that the device write latency can vary widely with the address being written.
This is especially true on large CPUs implemented as multiple tiles. So if SW has the luxury of choosing
between multiple addresses, it is possible to envisage adaptive schemes that “match” an address to a SW
thread (especially if that thread is pinned to a single core) by selecting the best performing such address
during an initialization stage.

3.12.1.1 MOVDIR64B – Additional considerations
As noted above MOVDIR64B is a copy operation; it moves data from one 64B-aligned address to another.
Typical usage is that the source address is a memory location, and the destination is MMIO mapped to a
device, whereupon it confers the benefits described above. However, since the source data is usually
written immediately before the MOVDIR64B, there are additional considerations:

GENERAL OPTIMIZATION GUIDELINES

3-78

• Since the source data is written to the same address that the MOVDIR64B reads, it is not necessary
to fence to ensure the source data is written before the MOVDIR64B. This can mean in some
scenarios, that no store fence is needed in conjunction with MOVDIR64B (if there is no other data
written to memory the correct operation of the system depends on being observed before the
MOVDIR64B).

• For best performance it is important to allow store forwarding of the source data.
• This means the source data should be 64B aligned and written at the same granularity that the

MOVDIR64B reads. For Sapphire Rapids, this is 64B, meaning the source data should be written using
64B AVX512 instructions for best performance.

3.12.1.2 Streaming Data
Because it is weakly ordered, MOVDIR64B can also be used to stream data to a device by copying a block
of memory. This is similar in behavior to mapping the destination memory locations as USWC, except:
• The destination address can remain mapped UC.
• The writes are guaranteed to arrive at the device as 64B writes, which is not guaranteed with any

other method.

3.13 SYNCHRONIZATION

3.13.1 User-Level Monitor, User-Level MWAIT, and TPAUSE
New instructions for user-level monitor and MWAIT act like legacy monitor and MWAIT instructions with
additional functionality identified as the timeout and ring-3 (aka user space) application support. TPAUSE
is similar to legacy pause instruction but is designed to accept time interval and sleep state parameters.
User-level MWAIT and TPAUSE support the same C0.1 light sleep and C0.2 deeper sleep states. These
instructions are helpful in user space applications that support a busy poll, synchronization, or asynchro-
nous IO, such as waiting for an event. A minor code modification yields power benefits along with low
latency wake-up.

3.13.1.1 Checking for User-Level Monitor, MWAIT, and TPAUSE support
This section describes how to check whether a processor supports user-level monitor, user-level MWAIT,
or TPAUSE; if user-level monitor, user-level MWAIT, or TPAUSE instruction is supported, then CPUID.
(EAX=07H, ECX=0): ECX [bit 5] is enumerated as 1.

3.13.1.2 User-Level Monitor, User-Level MWAIT, and TPAUSE Operations
User-level monitor initializes the monitor hardware in such a way that, after execution of the user-level
MWAIT, a store to a monitored address acts as a wakeup event. So, the User level monitor and the user-

Example 3-58. Identification of WAITPKG with CPUID
…identify the existence of cpuid instruction

… ;

… ;

Identify signature is genuine Intel …;

mov eax, 7; Request for feature flags

mov ecx, 0; Request for feature flags

cpuid; 0FH, A2H CPUID instruction

test ecx, 00000020h;

Is waitpkg bit (bit 5) in feature flags equal to 1 jnz Found

3-79

GENERAL OPTIMIZATION GUIDELINES

level MWAIT work together to obtain a sleep state. TPAUSE is a single instruction request to enter one of
the same two sleep states for a defined time

There are possibilities of a “false wake-up” because of other events, notably interrupts or timeouts. The
application may re-execute user-level MWAIT/TPAUSE if it has been falsely woken. If the application
needs to determine the source of the predefined OS sleep wakeup, RFLAGS.CF is set Otherwise it is
assumed that the application can detect changes at the monitored address (MWAIT) or poll for activity
(TPAUSE).

3.13.1.3 Recommended usage
A frequent paradigm in packet processing applications is to have dedicated HW threads polling a NIC
receive descriptor ring for ingress traffic. This kind of “busy polling” arrangement wastes energy when
the traffic rates are low. Changing the polling loop to perform user-level Monitor/ MWAIT on the next
descriptor to be written can save substantial power in periods of low traffic. The same scheme could be
used with any “work distributor,” which assigns work by writing to selected memory locations.

Accelerators frequently offload tasks from SW in an asynchronous manner. For example, the Data
Streaming Accelerator (DSA) performs copy operations and can return the status of the completed oper-
ation by writing to memory. If an application uses the user-level monitor/MWAIT, at a memory location
where the status field will be written, it can be woken when the task is complete.

Instead of monitoring, the device may issue an interrupt that can act as a wake-up event.

Alternatively, applications may decide to choose TPAUSE as a wait event. This has the advantage of being
independent of the number of event sources.

In all cases, a small change in the user space application is needed to convert a busy poll application to
something more energy efficient with low latency wake-up.

Synchronous application: when two hardware threads from the same core use User level monitor and
user-level MWAIT, it can progress effectively as some of the hardware resources are available to the
other thread when a hyperthread issues the user-level MWAITs.

To achieve the best performance using user-level monitor and user-level MWAIT:
• The entire contents of monitored locations must be verified after user-level MWAIT to avoid false

wake-up.
• It is the developer’s responsibility to check the contents of monitored locations

— before issuing monitor

— before issuing user-level MWAIT

— after user-level MWAIT. See Example 3-59 below.
• If an application expects a store to a monitored location, the timeout value should be as high as it is

supported.

GENERAL OPTIMIZATION GUIDELINES

3-80

Since user-level MWAIT and TPAUSE are a hint to a processor, a user should selectively identify locations
in the application.

Example 3-59. Code Snippet in an Asynchronous Example
void * m_address; // it is expected device will update m_address to 1

unsigned char ret;

while (1) {

if (*m_address != 0) // if device already finished operation, no need to user monitor/user mwait

break;

if (*m_address == 0) { // check monitored location before issuing umonitor instruction

_umonitor (m_address);

if (*m_address == 0) { // check monitored location before issuing umwait instruction

ret = _umwait(0, 0x186A0); // some high value in timeout

}

}

}

CHAPTER 4
INTEL ATOM® PROCESSOR ARCHITECTURES

This chapter gives an overview of features relevant to software optimization for current generations of
Intel Atom® processors1.

4.1 GRACEMONT MICROARCHITECTURE
The Gracemont microarchitecture builds on the success of the Tremont microarchitecture. Listed below
are some of the many enhancements provided by the Gracemont microarchitecture.
• Enhanced branch prediction unit.
• Larger 64KB Instruction Cache with dual 32B reads (32B read per fetch cluster).
• Replaced shared second level predecode cache with an On-Demand Instruction Length Decoder per

fetch cluster.
• Dynamic Load Balancing between the two fetch clusters.
• Wider allocation and retirement width.
• Larger load and store buffers.
• Dual load and dual store execution pipes.
• Four integer ALU execution ports with expanded capabilities.
• Two jump execution ports.
• Dual integer multiply and integer divide units.
• Improved Intel® SHA-NI and AES latency for enhanced cryptographic performance.
• 256-bit advanced vector extension (Intel® AVX and Intel® AVX2).
• BMI1, BMI2, ADX, LZCNT ISA extensions.
• VEX-based VNNI ISA extension.
• Control-flow enforcement technology (CET) for enhanced protection against malware.

4.1.1 Gracemont Microarchitecture Overview
The basic pipeline functionality of the Gracemont microarchitecture is depicted Figure 4-1.

1. For previous generations of Intel Atom® processors, see Appendix F, “Earlier Generations of Intel Atom® Microarchitec-
ture and Software Optimization.”

INTEL ATOM® PROCESSOR ARCHITECTURES

4-2

The Gracemont microarchitecture supports flexible integration of multiple processor cores with a shared
uncore subsystem consisting of a number of components including a ring interconnect to multiple slices
of L3, processor graphics, integrated memory controller, interconnect fabrics, and more.

4.1.2 Predict and Fetch
The Gracemont microarchitecture features a front end with 32-byte prediction. The first predictor is the
next-line predictor (NLP) which can predict a taken branch every cycle and fetch it without bubbles. The
NLP is backed by the second predictor that includes a 5K entry target array combined with path-based
information to make predictions and verify target addresses in three cycles. Finally, instruction decode
can also redirect the front end when it decodes a branch that was not present in any of the predictors.
The front-end pipeline functionality of the Gracemont microarchitecture is shown in Figure 4-2.

Figure 4-1. Processor Core Pipeline Functionality of the Gracemont Microarchitecture

4-3

INTEL ATOM® PROCESSOR ARCHITECTURES

Each cycle, the predicted IP is sent down the instruction fetch pipeline. These predictions can look up the
Instruction TLB (ITLB) and the instruction cache tag to determine the physical address and instruction
cache hit or miss. Upon successful translation, and depending on resource availability, these accesses are
then stored into the instruction pointer (IP) queues. This enables the decoupling instruction cache
hit/miss from delivering raw instruction bytes to the rest of the front end. In the case of an instruction
cache miss, the IP queue holds the address but signals that the data cannot be read until it is returned
from the memory subsystem. The stream of IPs generated at fetch can handle up to 8 concurrent
instruction cache misses. There are two independent IP queues, each with their own instruction data
buffers. These, combined with their associated decoders, are referred to as clusters. For each taken
branch or inserted toggle point, prediction will toggle back and forth between each of the IP queues and
therefore each cluster. This toggling enables out-of-order decode, which is the key feature that enables
this microarchitecture to fetch and decode up to 6 variable length x86 instructions per cycle.

Performance debug of prediction or fetch can be done utilizing the front-end bound events in the top-
down category of performance monitoring events found at https://perfmon-events.intel.com. Front-end
bound events count slots at allocation only when there are slots available but no uops present. If bubbles
caused by the three-cycle predictor percolate all the way to allocation, for example, these will be repre-
sented by TOPDOWN_FE_BOUND.BRANCH_RESTEER. You can precisely tag the instruction following
such a bubble via FRONTEND_RETIRED.BRANCH_RESTEER. If the predictor failed to cache a branch
target and redirection occurred during decode, those slots are counted by
TOPDOWN_FE_BOUND.BRANCH_DETECT. If uops are not delivered due to misses in the Instruction
Cache or Instruction TLB, these appear as TOPDOWN_FE_BOUND.ICACHE and
TOPDOWN_FE_BOUND.ITLB, respectively. Similar to BRANCH_RESTEER, all front-end bound slot-based
accounting can be tracked precisely via the corresponding FRONTEND_RETIRED set of events. The
instruction code can often be rearranged to optimize such a bottleneck away. Multiple event classes can
be tracked simultaneously (e.g., mark both ICACHE and ITLB events) on the same general purpose
performance counter or with different events across multiple performance counters.

Sometimes a loop of code is simply too short and/or poorly aligned within the cache to enable the
machine to decode sufficiently fast. In this situation you could be fetching every cycle and never inserting
bubbles, but still unable to keep the back-end fed. When this happens, the event class that detects this
is TOPDOWN_FE_BOUND.OTHER. The “other” event class catches front-end bound behavior that cannot
be pinpointed to any of the other specific sources.

Figure 4-2. Front-End Pipeline Functionality of the Gracemont Microarchitecture

https://perfmon-events.intel.com
https://perfmon-events.intel.com

INTEL ATOM® PROCESSOR ARCHITECTURES

4-4

4.1.3 Dynamic Load Balancing
One unique performance issue for a microarchitecture of clustered decoders can occur when very long
basic blocks are executed. Compilers will sometimes unroll loops of code and generate blocks that can be
hundreds of instructions long, trying to provide additional parallelism and reduce the overhead of loops.
This is very common for some compilers for floating point and vector processing. Since the method of
clustering relies on toggle points, inserting unconditional JMP instructions to the next sequential instruc-
tion pointer could have been employed by handwritten assembly using the Tremont microarchitecture.
Such insertions should no longer be necessary on Gracemont microarchitecture and beyond. Gracemont
microarchitecture addresses this bottleneck by introducing a hardware load-balancer. When the hard-
ware detects long basic blocks, additional toggle points can be created based on internal heuristics.
These toggle points are added to the predictors, thus guiding the machine to toggle within the basic
block.

In Intel microarchitecture, nearly all basic compute instructions are a single uop. Even complex instruc-
tions like CET enabled CALLs are still decoded into a single uop. The high-level algorithm of the load
balancer is based on the number of uops present in a sequential stream of instruction bytes. If there are
no natural toggle points (i.e., taken branches) within 32 uops, the hardware will insert a toggle point on
the instruction after or corresponding to the 24th uop of the stream. As inserted toggle points consume
resources in the predictor, it typically doesn't insert immediately but rather marks the location of the
instruction in a table of addresses. If the same inserted toggle point is marked a second time, it allocates
this location into the predictor.

Sometimes the number of sequential uops leading up to a single toggle point is dynamic. A conditional
branch that is not taken can later change to be always taken, for example. In situations such as this, if
the location of an inserted toggle point is no longer located at the end of a long uop sequence, it is typi-
cally removed. Also, since this algorithm is uop based, instructions that are implemented as long micro-
coded sequences of many uops often trigger the insertion of toggle points. This is advantageous as it
ensures that decode behavior continues underneath this activity.

4.1.4 Decode and the On-Demand Instruction Length Decoder
The Gracemont microarchitecture stores a single bit for each byte in the instruction cache that marks an
instruction boundary, often referred to as a predecode bit. This bit is used to steer instruction bytes into
decoder lanes. For native variable length encoding, finding each additional instruction can be considered
as having to decode one instruction, feed that information into the decode of the next instruction, and so
on. As this function gets wider, the cost of this rapidly increases. With the use of predecode bits, the
decoding of the instructions is removed from this path. With the clustered decode approach, when imple-
mented with three wide decoders, the hardware never has to look beyond finding the end of a third serial
instruction. This results in instruction muxing and decoding that can be implemented in a very small area
and with very low power.

One potential weakness can be determining the predecode bits and using those to mark the instruction
boundaries. An additional change from the Tremont microarchitecture is the removal of the large
(128KB) shared second level predecode cache. This cache helped seed the first level predecode cache
whenever there were misses in the first level instruction cache. While this handled the majority of perfor-
mant cases, loops of critical code with a footprint exceeding 1MB+ could still suffer additional front-end
bottlenecks due to low decode bandwidth from incorrect predecode bits. This could be seen via the event
TOPDOWN_FE_BOUND.PREDECODE.

Instead of a second level predecode cache, the Gracemont microarchitecture introduces an “on-demand”
instruction length decoder (OD-ILD). This block is typically only active when new instruction bytes are
brought into the instruction cache from a miss. When this happens, two extra cycles are added to the
fetch pipeline in order to generate predecode bits on the fly. These are done across 16 bytes per cycle.
With clustering, this means the Gracemont microarchitecture is capable of 32 bytes per cycle across the
two independent OD-ILDs. While many workloads will not notice a difference in behavior between the
Gracemont and Tremont microarchitectures, large code footprint workloads may see large benefits. This
overall approach to x86 instruction decoding provides a clear path forward to very wide designs without
needing to cache post-decoded instructions.

4-5

INTEL ATOM® PROCESSOR ARCHITECTURES

Each instruction decoder generates a single uop yet can generate the majority of all x86 code as
measured by dynamic instruction count. Load-op-stores, complicated addressing forms, Control Enforce-
ment Technology (CET) instructions, and many more types are generated in a single internal uop format.
Each decoder is also capable of detecting a microcode entry point. The most common short microcode
flows can be executed out of order between the clusters, enabling additional performance. All uops are
written into two parallel uop queues, which are designed to allow the front end and the back end of the
core to execute independently. The allocation and rename pipeline reads both uop queues in parallel and
puts the instruction stream back in-order for register renaming and resource allocation.

The low-level characteristics of the microarchitecture within each decode cluster remain the same as in
the Tremont microarchitecture. For example, instructions should avoid more than 4 bytes of prefixes and
escapes. Refer to the previous generation documentation in Appendix F, “Earlier Generations of Intel
Atom® Microarchitecture and Software Optimization” for further details.

During performance debug if load balancing or other decode restrictions may be an issue, this will often
be indicated by TOPDOWN_FE_BOUND.DECODE. If the decoder was struggling due to not having the
correct predecode bits or there were too many prefixes or escapes on the instructions, this will be repre-
sented by TOPDOWN_FE_BOUND.PREDECODE. If the machine is stuck waiting on lengthy microcode
sequences, this will be represented by TOPDOWN_FE_BOUND.CISC. As with all other allocation slot-
based FE_BOUND events, there are corresponding FRONTEND_RETIRED events that mark an instruction
after the designated event class has occurred. However, there is a difference in how this is reported for
CISC events. As slot-based bottlenecks due to executing long microcoded instructions are typically seen
“within” an instruction, FRONTEND_RETIRED.CISC will often tag the CISC instruction itself and not the
instruction that follows. When microcode is invoked to handle external interrupts, faults, traps, or other
types of assists, FRONTEND_RETIRED.CISC will mark the next instruction that follows.

4.1.5 Allocation and Retirement
The Gracemont microarchitecture is capable of allocating up to five uops per cycle. Allocation reads the
uop queues of all front-end clusters simultaneously and generates an in-order stream splicing across
clustering boundaries within the same cycle as necessary. For some cases, there can be an expansion
between the format inside the uop queue and the format that is allocated into the machine. For example,
for a 256-bit Intel AVX instruction, the front-end decodes the instruction as a single uop that is subdi-
vided into 128-bit operations at allocation time. In this case, two allocation lanes are used in order to
allocate the two 128-bit halves of the instruction. The most common uops that use this method besides
the 256-bit Intel AVX uops are integer uops that require multiple logical register destinations, like integer
multiplies and divides. Another example is PUSH memory, which loads a value from memory from one
address, stores the value into memory at the location of the stack pointer, and updates the stack pointer.
If an operation needs two allocation lanes, and it appears on the last (5th) allocation lane, then the hard-
ware will allocate the first piece in the first cycle, and then allocate the second piece in the next cycle,
along with up to 4 additional uops. Move elimination, NOP detection and idiom detection (e.g., XOR a
register by itself, producing all zeros), and memory renaming are performed at allocation time. This can
reduce dependency chains and, in some situations, eliminate uops from execution.

Retirement can be up to eight instructions per cycle for the 256-entry retirement buffer. Retirement is
wider than allocation to improve performance for things like store deallocation along with other less
common flushing conditions. This is a feature that leads to better energy efficiency. The cost of widening
retirement is relatively small. In turn, the core is able to have smaller, shallower structures because the
lifetime of the operation ends up being reduced.

4.1.6 The Out-of-Order and Execution Engines
The Out-of-Order and execution engines changes in the Gracemont microarchitecture include:
• A significant increase in size of the reorder buffer, load buffer, store buffer, and reservation stations,

which enable deeper OOO execution and higher cache bandwidth.
• Wider machine: 1017 execution ports.
• Greater capabilities per execution port.
The execution pipeline functionality of the Gracemont microarchitecture is shown in Figure 4-3.

INTEL ATOM® PROCESSOR ARCHITECTURES

4-6

Allocation delivers uops to three types of structures. For pure integer operations, each uop is written into
one or more of five reservation stations. These hold instructions, track their dependencies, and schedule
them for execution. Four are for ALU operations, labeled ports 00 to 03. These execution units are mostly
symmetric for single cycle operations. Two of the four ports (01 and 02) can execute longer latency oper-
ations like multiplies and divides. The fifth integer reservation station holds jumps and store data opera-
tions. This structure is banked and can schedule two uops of each type every cycle; two store data on
ports 08 and 09, and two jumps on ports 30 and 31. Complex instructions like an ADD where one source
and the destination are in memory, are decoded by the front-end and allocated as a single uop. The Grac-
emont microarchitecture can allocate five instructions like these per cycle. However, such uops break up
into multiple pieces as they enter the back end. In this example, this single complex uop generates a
load, an add, a store address operation, and a store data operation. These pieces execute independently
in the out-of-order machine and require four different dispatch ports.

Load Effective Address operations (LEAs) are special and deserve extra attention. The ALU ports are opti-
mized to execute standard two source arithmetic/logical operations while the AGUs are optimized to
handle the complexities of x86 memory addressing. LEAs are ALU operations that can have the same
complex characteristics as AGU operations. LEAs without a scaled index and with only two sources
among base, index, and displacement execute as a normal ALU operation on any port (00 through 03).
LEAs with three sources fracture into two operations and take an additional cycle of latency. LEAs with a
scaled index but without a displacement execute as a single operation but are statically bound to port 02.

Allocation can also write into a memory queue. This is a FIFO queue that enables deeper buffering of the
microarchitecture at a very low implementation cost. The memory queue can then write into a unified
reservation station that holds load and store address generation operations. This reservation station can
generate two load (ports 10 and 11) and two store address (ports 12 and 13) calculations per cycle. The
memory queue also writes the load and store uops into the memory subsystem to perform translation as
well as data cache access.

Finally, allocation can write the vector queue. This is where all vector SIMD and floating-point ALU oper-
ations go. This FIFO queue can then write into either a unified reservation with three scheduling pipelines
(ports 20, 21, and 22), or a store data reservation station capable of dispatching two store data per cycle
(ports 28 and 29). The vector unit can execute any combination of two floating-point multiplies, adds, or
multiply-add operations. In total, this enables a peak of 16 single precision or 8 double precision FLOPS

Figure 4-3. Execution Pipeline Functionality of the Gracemont Microarchitecture

4-7

INTEL ATOM® PROCESSOR ARCHITECTURES

per cycle. It can also execute up to three SIMD integer ALU or shuffle operations along with dedicated
AES and SHA units.

4.1.7 Cache and Memory Subsystem
The cache hierarchy changes in the Gracemont microarchitecture include:
• 2x total peak load and store bandwidth.

— Two dedicated load ports.

— Two dedicated store ports.
• Simultaneous handling of more loads and stores enabled by enlarged buffers.
• 4-cycle load-to-use latency.
• Pipelined Page Miss Handler capable of handling 4 concurrent page walks.
• Increased support for large page translations throughout the paging hierarchy.
• Larger 2nd level TLB.
• L2 cache size support from 2MB to 4MB depending on product design choice:

— The L2 cache size on processors based on the Alder Lake performance hybrid architecture is 2MB.

The Gracemont microarchitecture memory subsystem is designed to handle two 16 byte loads and two
16-byte stores per cycle, providing simultaneous 32 bytes of read bandwidth and 32 bytes of write band-
width per cycle. The load to use latency for loads is typically four cycles. When performing a pointer
chasing operation where the address being computed is the result of a single prior load and a positive
displacement of no more than +1023, the load to use latency observed can be reduced to 3 cycles. The
L1 data cache is dual ported to eliminate potential bank conflicts.

Memory disambiguation is supported, which allows loads to execute while older stores have unresolved
addresses. Loads that forward from stores can do so in the same load to use latency as cache hits for
cases where the store's address is known, and the store data is available. Precise blocking and scheduling
are done for cases where the store address or data is not immediately available, and the hardware has
determined that these are likely to be related addresses.

Address translations are performed through the first level DTLB, which is fully associative. On Gracemont
microarchitecture, 2MB translations are natively cached within the first level DTLB. The DTLB is backed
by two second level TLB (STLB) structures shared between code and data requests. The main STLB is
2048 entries 4-way set associative and caches 4KB and 2MB translations. Additionally, Gracemont
microarchitecture has an 8-entry fully associative structure for GB translations. STLB misses are sent to
the page miss handler (PMH) which is pipelined such that it can perform up to four walks in parallel.

There are three independent L1 prefetchers. One does a simple next-line fetch on DL1 load misses. The
second is an instruction pointer based prefetcher capable of detecting striding access patterns of various
sizes. This prefetcher works in the linear address space so it is capable of crossing page boundaries and
starting translations for TLB misses. The final prefetcher is a next-page prefetcher that detects accesses
that are likely to cross a page boundary and starts the access early. L1 data misses generated by these
prefetchers communicate additional information to the L2 prefetchers, which help them work together.

The L2 cache delivers 64 bytes of data per cycle at a latency of 17 cycles, and that bandwidth is shared
among four cores. The L2 cache subsystem contains multiple prefetchers as well, including a streaming

Table 4-1. Paging Cache Parameters of the Gracemont Microarchitecture

Level Entries Associativity Architectural Page Size Cached Translation Size

ITLB 64 Fully associative All 4KB, 256KB

DTLB 32 Fully associative All 4KB, 2MB

STLB 2048 4-way 4K/2M/4M 4KB, 2MB

STLB 8 Fully associative 1GB 1GB

INTEL ATOM® PROCESSOR ARCHITECTURES

4-8

prefetcher that detects striding access patterns. An additional L2 prefetcher attempts to detect more
complicated access patterns. These prefetches can also be generated such that they only fill the LLC but
do not fill into the L2 to help reduce DRAM latency.

The L2 cache subsystem of a single 4-core module can have 64 requests and 16 L2 data evictions
outstanding on the fabric. These are competitively shared among the cores with per-core reservations to
ensure fairness.

4.1.8 Intel® AVX and Intel® AVX2 Instruction Support
The Gracemont microarchitecture supports Intel AVX and Intel AVX2 instructions. The majority of all
256-bit Intel AVX and Intel AVX2 instructions are decoded as a single instruction and stored as a single
uop in the front-end pipeline. To execute 256-bit instructions on native 128-bit vector execution and load
data paths, most 256-bit uops are further subdivided into two independent 128-bit uops at allocation
before insertion into the MEC and FPC reservation stations. These two independent uops are usually
assigned to different execution ports such that both may execute in parallel. In general, 256-bit uops
consume twice the allocation, execution, and retirement resources compared to 128-bit uops.

While most 256-bit Intel AVX2 instructions can be decomposed into two independent 128-bit micro-oper-
ations, a subset of Intel AVX2 instructions, known as cross-lane operations, can only compute the result
for an element by utilizing one or more sources belonging to other elements. For example, when some or
all of the upper 128-bit result [255:128] is dependent on one or all of a lower element segment [127:0].
These 256-bit cross-lane instructions execute with longer latency and/or reduced throughput compared
to their 256-bit non-cross-lane counter-parts.

4.1.8.1 256-bit Permute Operations
The instructions listed below use more operand sources than can be natively supported by a single reser-
vation station within the Gracemont microarchitecture. They are decomposed into two uops where the
first uop resolves a subset of operand dependences across 2 cycles. The dependent second uop executes
the 256-bit operation by using a single 128-bit execution port for two consecutive cycles with a 5-cycle
latency for a total latency of 7 cycles.
• VPERM2I128 ymm1, ymm2, ymm3/m256, imm8
• VPERM2F128 ymm1, ymm2, ymm3/m256, imm8
• VPERMPD ymm1, ymm2/m256, imm8
• VPERMPS ymm1, ymm2, ymm3/m256
• VPERMD ymm1, ymm2, ymm3/m256
• VPERMQ ymm1, ymm2/m256, imm8

4.1.8.2 256-bit Broadcast with 128-bit Memory Operand
The memory versions of the broadcast instructions listed below have a single 128-bit or less memory
source operand. They have a single SIMD ALU uop in addition to load operand. The register version of the
same instructions is decomposed into two SIMD ALU uops.

Operation portion latency is 1 cycle in addition to load operation latency.
• VBROADCASTSD ymm1, m64
• VBROADCASTSS ymm1, m32

4.1.8.3 256-bit Insertion, Up-Conversion Instructions with 128-bit Memory Operand
The memory versions of the instructions listed below have a single 128-bit or less memory source
operand. They are decomposed into two uops. However, the second micro-operation has a dependence
on the first micro-operation for the memory version. The second micro-operation of the register version

4-9

INTEL ATOM® PROCESSOR ARCHITECTURES

of the same instruction does not have dependence on the first micro-operation. The register version of
the same instructions can execute the upper and lower 128-bit segments in parallel.

Operation portion latency is 2 cycles in addition to load operation latency for the 256-bit insert, packed
move with zero and sign extension instructions listed below.
• VPMOVZX ymm1, m128/64/32
• VPMOVSX ymm1, m128/64/32
• VINSERTI128 ymm1, ymm2, m128, imm8
• VINSERTF128 ymm1, ymm2, m128, imm8

Operation portion latency is 6 cycles in addition to load operation latency for the up-convert instructions
listed below.
• VCVTPS2PD ymm1, m128
• VCVTDQ2PD ymm1, m128
• VCVTPH2PS ymm1, m128

4.1.8.4 256-bit Variable Blend Instructions
The VBLENDVPD and VBLENDVPS instructions listed below are implemented as micro-coded flow.
Throughput is 1 every 4 cycles, and latency is 3 cycles.
• VBLENDVPD ymm1, ymm2, ymm3/m256, ymm4
• VBLENDVPS ymm1, ymm2, ymm3/m256, ymm4

4.1.8.5 256-bit Vector TEST Instructions
The 256-bit vector TEST instructions listed below are decomposed into two uops with dependence
between them. Operation result is written in the GPR arithmetic flags. Throughput is one per cycle, and
latency is 7 cycles.
• VTESTPS ymm1, ymm2/m256
• VTESTPD ymm1, ymm2/m256
• VPTEST ymm1, ymm2/m256

4.1.8.6 GATHER Instructions
The VGATHER instructions are implemented as micro-coded flow. Latency is ~50 cycles.

4.1.8.7 Masked Load and Store Instructions
Throughput of 256-bit VMASKMOV load and store is one every two cycles. Throughput of 128-bit
VMASKMOV load and store is one per cycle. A masked load or store with masked element may encounter
performance degradation if the masked element memory access causes an exception or a fault.

4.1.8.8 ADX Instructions
ADX instructions are supported. ADCX and ADOX are partial arithmetic flag updating instructions. Intel
Core microarchitecture renames and tracks arithmetic flags differently than Intel Atom. The carry flag
(CF), overflow flag (OF), and other flags (ZF, AF, PF, SF) are renamed as if independent registers on Core
while they remain as a single register on Atom. Unless there is a non-flag consuming full flag updating
instruction in between ADCX/ADOX instructions, on Gracemont microarchitecture there is an operand
dependency between the ADCX and ADOX instructions as the arithmetic flag register is a source operand
of both. As this dependence between ADCX and ADOX instructions does not exist in the Intel Core

INTEL ATOM® PROCESSOR ARCHITECTURES

4-10

microarchitecture, hand tuned binaries exploiting this parallelism exist. While the Gracemont microarchi-
tecture supports the ISA, the parallelism will be lower on the Gracemont microarchitecture.

4.1.8.9 BMI1, BMI2, and LZCNT Instructions
The bit manipulation instructions BMI1 and BMI2, and the LZCNT instruction are supported.

4.2 TREMONT MICROARCHITECTURE
The Tremont microarchitecture builds on the success of the Goldmont Plus microarchitecture and
provides the following enhancements:
• Enhanced branch prediction unit.

— Increased capacity with improved path-based conditional and indirect prediction.

— New committed Return Stack Buffer.
• Novel clustered 6-wide out-of-order front-end fetch and decode pipeline.

— Banked ICache with dual 16B reads.

— Two 3-wide decode clusters enabling up to 6 instructions per cycle.
• Deeper back-end out-of-order windows.
• 32KB data cache.
• Larger load and store buffers.
• Dual generic load and store execution pipes capable of 2 loads, 2 stores, or 1 load and 1 store per

cycle.
• Dedicated integer and vector integer/floating point store data ports.
• New and improved cryptography.

— New Galois-field instructions (GFNI).

— Dual AES units.

— Enhanced SHA-NI implementation.

— Faster PCLMULQDQ.
• Support for user level low-power and low-latency spin-loop instructions UMWAIT/UMONITOR and

TPAUSE.

4.2.1 Tremont Microarchitecture Overview
The basic pipeline functionality of the Tremont microarchitecture is depicted in Figure 4-4.

4-11

INTEL ATOM® PROCESSOR ARCHITECTURES

The Tremont microarchitecture supports flexible integration of multiple processor cores with a shared
uncore sub-system consisting of a number of components including a ring interconnect to multiple slices
of L3, processor graphics, integrated memory controller, interconnect fabrics, and more.

4.2.2 The Front End
Tremont microarchitecture introduces parallel out-of-order instruction decode. Instruction pointers
access the ITLB, check the ICache tag array, and access the branch predictor. When the branch predictor
produces a taken branch target, the new block of code advances the decode cluster assignment. Tremont
microarchitecture has a 32B predict pipeline that feeds dual 3-wide decode clusters capable of 6 instruc-
tion decode per cycle. Each cluster can access a banked 32KB instruction cache at 16B/cycle for a
maximum of 32B/cycle. Due to differences in the number of instructions per block and other decode
latency differences, younger blocks of code can decode before older blocks. At the end of each decode

Figure 4-4. Processor Core Pipeline Functionality of the Tremont Microarchitecture

SOM00030

Up to 4.5MB L2 Cache

Memory

Vector/Float Registers

Allocation / Rename (4-wide)

Vector/Float

Port
02

Port
09

Port
08

Port
01

Port
00

Ports
10 & 11

Port
29

Ports
20 & 21

Integer Registers

ALU

SHIFT

ALU

DIV

ALU

MUL

FADD

ALU

AES

JMP AGUAGU STD

TLB

32KB DCache

LLB SDB

L2 Queue

STD

SHA

ALU

AES

FDIV

IMUL

FMUL

Predict

Fetch

ROM

op Queue

Instruction Data

Decode (3-wide) Decode (3-wide)

Instruction Data

op Queue

32KB ICache

IP Queue IP Queue

INTEL ATOM® PROCESSOR ARCHITECTURES

4-12

cluster is a queue of decoded instructions (µop queue). The allocation and rename pipeline reads both
µop queues in parallel and puts the instruction stream back in-order for register renaming and resource
allocation. Whereas increasing decode width in a traditional fashion for x86 requires exponential
resources and triggers efficiency loss, clustering allows for x86 decode to be built with linear resources
and little efficiency loss.

As the clustering algorithm is dependent on the ability to predict taken branches within the branch
predictor, very long assembly sequences that lack taken branches (long unrolled code utilizing the
floating point unit, for example) can be bottlenecked due to being unable to utilize both decode clusters
simultaneously. Inserting unconditional JMP instructions to the next sequential instruction pointer at
intervals between 16 to 32 instructions may relieve this bottleneck if encountered. While Tremont
microarchitecture did not build a dynamic mechanism to load balance the decode clusters, future gener-
ations of Intel Atom processors will include hardware to recognize and mitigate these cases without the
need for explicit insertions of taken branches into the assembly code.

In addition to the novel clustered decode scheme, Tremont microarchitecture enhanced the branch
predictor and doubled the size of the L2 Predecode cache from 64KB on Goldmont Plus microarchitecture
to 128KB.

The low level characteristics of the microarchitecture within each decode cluster remain the same as in
the Goldmont Plus microarchitecture. For example, instructions should avoid more than 4 Bytes of
prefixes and escapes. Refer to previous generation documentation in Appendix F, “Earlier Generations of
Intel Atom® Microarchitecture and Software Optimization” for further details.

4.2.3 The Out of Order and Execution Engines
The Out of Order and execution engines changes in the Tremont microarchitecture include:
• A significant increase in size of reorder buffer, load buffer, store buffer, and reservation stations which

enable deeper OOO execution and higher cache bandwidth.
• Wider machine: 8  10 execution ports.
• Greater capabilities per execution port.

Table 4-2 summarizes the OOO engine's capability to dispatch different types of operations to ports.

Table 4-2. Dispatch Port and Execution Stacks of the Tremont Microarchitecture

Port 00
INT

Port 01
INT

Port 02
INT

Port 08
INT

Port 09
INT

Port 10 Port 11 Port 20
FP/VEC

Port 21
FP/VEC

Port 29
FP/VEC

ALU

LEA1

Shift

NOTES:
1. LEAs without a scaled index and only two sources (among base, index, and displacement inputs) execute as one opera-

tion on any ALU port (00, 01, or 02).

ALU

LEA2

Bit Ops

IMUL

IDIV

POPCNT

CRC32

2. LEAs with three sources fracture into two operations and take an additional cycle of latency. Index consuming portion,
regardless of scale value, will bind to port 02 while second operation binds to either port 00 or 01.

ALU

LEA3

3. LEAs with a scaled index but without a displacement execute as one operation on port 02.

JUMP Store
Data

Load

Store
Address

Load

Store
Address

ALU

AES

SHA-RND
FMUL

FDIV

Shuffle

Shift

SIMUL

GFNI

Converts

ALU

AES

SHA-MSG

FADD
Shuffle

Store
Data

4-13

INTEL ATOM® PROCESSOR ARCHITECTURES

4.2.4 Cache and Memory Subsystem
The cache hierarchy changes in Tremont microarchitecture include:
• 33% increase in size of the L1 data cache from 24KB to 32KB.
• 2×L1 load bandwidth: 1 dedicated load port 2 generic AGUs, shared between loads and stores.
• 2×L1 store bandwidth: 1 dedicated store port 2 generic AGUs, shared between loads and stores.
• Simultaneous handling of more loads and stores enabled by enlarged buffers.
• Maintains a 3-cycle load-to-use latency.
• Larger 2nd level TLB:

— 512 4K entries  1K 4K entries

— 32 2M/4M entries  64 2M/4M entries
• L2 cache size from 1MB to 4.5MB depending on SoC design choice:

— The L2 size on Snow Ridge products is 4.5MB whereas the L2 size on Lakefield products is 1.5MB.

The TLB hierarchy consists of dedicated level one TLB for instruction cache and data cache with a shared
second-level TLB for all page translations.

4.2.5 New Instructions
New instructions and architectural changes in Tremont microarchitecture are listed below. Actual support
may be product dependent.
• Galois Field New Instructions (GFNI) for acceleration of various encryption algorithms, error

correction algorithms, and bit matrix multiplications.
• UMWAIT/UMONITOR/TPAUSE instructions enable power savings in user level spin loops.
• Cache line writeback instruction (CLWB) enables fast cache-line update to memory, while retaining

clean copy in cache.
• Performance debugging benefits can be realized from the Tremont microarchitecture skidless PEBS

implementation on both PMC0 as well as the fixed instruction counter. This enables a precise distri-
bution via sampling on instructions and/or any of the precise general purpose events. As PEBS is
triggered on the event after the overflow is signaled, counters should be programmed to large
numbers that are (PRIME-1).

Table 4-3. Cache Parameters of the Tremont Microarchitecture

Level Page Size Entries Associativity

Instruction 4KB/2M/4M1

NOTES:
1. The first level instruction TLB (ITLB) caches small and large page translations but large pages are cached as 256KB

regions per ITLB entry.

48 Fully associative

First Level Data (loads and stores) 4KB/2M/4M2

2. The first level data TLB (uTLB) caches small and large page translations but large pages are fully fractured into 4KB
regions per uTLB entry.

32 Fully associative

Second Level 4KB 1024 4

Second Level 2M/4M 64 4

INTEL ATOM® PROCESSOR ARCHITECTURES

4-14

4.2.6 Tremont Microarchitecture Power Management
Tremont microarchitecture supports many of the same features as those found on the Ice Lake Client
microarchitecture. Processors based on Tremont microarchitecture are the first Intel Atom processors
with support for Intel® Speed Shift Technology. Power management features sometimes differ
depending on the needs of the SoC.

CHAPTER 5
CODING FOR SIMD ARCHITECTURES

Processors based on Intel Core microarchitecture support MMX, SSE, SSE2, SSE3, and SSSE3. Proces-
sors based on Enhanced Intel Core microarchitecture support MMX, SSE, SSE2, SSE3, SSSE3 and
SSE4.1. Processors based on Nehalem microarchitecture support MMX, SSE, SSE2, SSE3, SSSE3,
SSE4.1 and SSE4.2. Processors based Westmere microarchitecture support MMX, SSE, SSE2, SSE3,
SSSE3, SSE4.1, SSE4.2 and AESNI. Processors based on Sandy Bridge microarchitecture support MMX,
SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, AESNI, PCLMULQDQ and Intel AVX.

Intel Pentium 4, Intel Xeon and Pentium M processors include support for SSE2, SSE, and MMX tech-
nology. SSE3 were introduced with the Pentium 4 processor supporting Hyper-Threading Technology at
90 nm technology. Intel Core Solo and Intel Core Duo processors support SSE3/SSE2/SSE, and MMX.

Single-instruction, multiple-data (SIMD) technologies enable the development of advanced multimedia,
signal processing, and modeling applications.

Single-instruction, multiple-data techniques can be applied to text/string processing, lexing and parser
applications. This is covered in Chapter 14, “SSE4.2 and SIMD Programming For Text-
Processing/Lexing/Parsing.” Techniques for optimizing AESNI are discussed in Section 6.10.

To take advantage of the performance opportunities presented by these capabilities, do the following:
• Ensure that the processor supports MMX technology, SSE, SSE2, SSE3, SSSE3 and SSE4.1.
• Ensure that the operating system supports MMX technology and SSE (OS support for SSE2, SSE3

and SSSE3 is the same as OS support for SSE).
• Employ the optimization and scheduling strategies described in this book.
• Use stack and data alignment techniques to keep data properly aligned for efficient memory use.
• Utilize the cacheability instructions offered by SSE and SSE2, where appropriate.

5.1 CHECKING FOR PROCESSOR SUPPORT OF SIMD TECHNOLOGIES
This section shows how to check whether a processor supports MMX technology, SSE, SSE2, SSE3,
SSSE3, and SSE4.1.

SIMD technology can be included in your application in three ways:

1. Check for the SIMD technology during installation. If the desired SIMD technology is available, the
appropriate DLLs can be installed.

2. Check for the SIMD technology during program execution and install the proper DLLs at runtime. This
is effective for programs that may be executed on different machines.

3. Create a “fat” binary that includes multiple versions of routines; versions that use SIMD technology
and versions that do not. Check for SIMD technology during program execution and run the
appropriate versions of the routines. This is especially effective for programs that may be executed
on different machines.

CODING FOR SIMD ARCHITECTURES

5-2

5.1.1 Checking for MMX Technology Support
If MMX technology is available, then CPUID.01H:EDX[BIT 23] = 1. Use the code segment in Example 5-1
to test for MMX technology.

For more information on CPUID see, Intel® Processor Identification with CPUID Instruction, order
number 241618.

5.1.2 Checking for Streaming SIMD Extensions Support
Checking for processor support of Streaming SIMD Extensions (SSE) on your processor is similar to
checking for MMX technology. However, operating system (OS) must provide support for SSE states save
and restore on context switches to ensure consistent application behavior when using SSE instructions.

To check whether your system supports SSE, follow these steps:

1. Check that your processor supports the CPUID instruction.

2. Check the feature bits of CPUID for SSE existence.

Example 5-2 shows how to find the SSE feature bit (bit 25) in CPUID feature flags.

5.1.3 Checking for Streaming SIMD Extensions 2 Support
Checking for support of SSE2 is like checking for SSE support. The OS requirements for SSE2 Support are
the same as the OS requirements for SSE.

To check whether your system supports SSE2, follow these steps:

1. Check that your processor has the CPUID instruction.

2. Check the feature bits of CPUID for SSE2 technology existence.

Example 5-1. Identification of MMX Technology with CPUID

…identify existence of cpuid instruction
… ;
… ; Identify signature is genuine Intel
… ;
mov eax, 1 ; Request for feature flags
cpuid ; 0FH, 0A2H CPUID instruction
test edx, 00800000h ; Is MMX technology bit (bit 23) in feature flags equal to 1
jnz Found

Example 5-2. Identification of SSE with CPUID

…Identify existence of cpuid instruction
; Identify signature is genuine intel

mov eax, 1 ; Request for feature flags
cpuid ; 0FH, 0A2H cpuid instruction
test EDX, 002000000h ; Bit 25 in feature flags equal to 1
jnz Found

5-3

CODING FOR SIMD ARCHITECTURES

Example 5-3 shows how to find the SSE2 feature bit (bit 26) in the CPUID feature flags.

5.1.4 Checking for Streaming SIMD Extensions 3 Support
SSE3 includes 13 instructions, 11 of those are suited for SIMD or x87 style programming. Checking for
support of SSE3 instructions is similar to checking for SSE support. The OS requirements for SSE3
Support are the same as the requirements for SSE.

To check whether your system supports the x87 and SIMD instructions of SSE3, follow these steps:

1. Check that your processor has the CPUID instruction.

2. Check the ECX feature bit 0 of CPUID for SSE3 technology existence.

Example 5-4 shows how to find the SSE3 feature bit (bit 0 of ECX) in the CPUID feature flags.

Software must check for support of MONITOR and MWAIT before attempting to use MONITOR and
MWAIT.Detecting the availability of MONITOR and MWAIT can be done using a code sequence similar to
Example 5-4. The availability of MONITOR and MWAIT is indicated by bit 3 of the returned value in ECX.

5.1.5 Checking for Supplemental Streaming SIMD Extensions 3 Support
Checking for support of SSSE3 is similar to checking for SSE support. The OS requirements for SSSE3
support are the same as the requirements for SSE.

To check whether your system supports SSSE3, follow these steps:

1. Check that your processor has the CPUID instruction.

2. Check the feature bits of CPUID for SSSE3 technology existence.

Example 5-5 shows how to find the SSSE3 feature bit in the CPUID feature flags.

Example 5-3. Identification of SSE2 with cpuid

…identify existence of cpuid instruction
… ; Identify signature is genuine intel

mov eax, 1 ; Request for feature flags
cpuid ; 0FH, 0A2H CPUID instruction
test EDX, 004000000h ; Bit 26 in feature flags equal to 1
jnz Found

Example 5-4. Identification of SSE3 with CPUID

…identify existence of cpuid instruction
… ; Identify signature is genuine intel

mov eax, 1 ; Request for feature flags
cpuid ; 0FH, 0A2H CPUID instruction
test ECX, 000000001h ; Bit 0 in feature flags equal to 1
jnz Found

Example 5-5. Identification of SSSE3 with cpuid

…Identify existence of CPUID instruction
… ; Identify signature is genuine intel

mov eax, 1 ; Request for feature flags
cpuid ; 0FH, 0A2H CPUID instruction
test ECX, 000000200h ; ECX bit 9
jnz Found

CODING FOR SIMD ARCHITECTURES

5-4

5.1.6 Checking for SSE4.1 Support
Checking for support of SSE4.1 is similar to checking for SSE support. The OS requirements for SSE4.1
support are the same as the requirements for SSE.

To check whether your system supports SSE4.1, follow these steps:

1. Check that your processor has the CPUID instruction.

2. Check the feature bit of CPUID for SSE4.1.

Example 5-6 shows how to find the SSE4.1 feature bit in the CPUID feature flags.

5.1.7 Checking for SSE4.2 Support
Checking for support of SSE4.2 is similar to checking for SSE support. The OS requirements for SSE4.2
support are the same as the requirements for SSE.

To check whether your system supports SSE4.2, follow these steps:

1. Check that your processor has the CPUID instruction.

2. Check the feature bit of CPUID for SSE4.2.

Example 5-7 shows how to find the SSE4.2 feature bit in the CPUID feature flags.

5.1.8 DetectiON of PCLMULQDQ and AESNI Instructions
Before an application attempts to use the following AESNI instructions: AESDEC/AESDE-
CLAST/AESENC/AESENCLAST/AESIMC/AESKEYGENASSIST, it must check that the processor supports
the AESNI extensions. AESNI extensions is supported if CPUID.01H:ECX.AESNI[bit 25] = 1.
Prior to using PCLMULQDQ instruction, application must check if CPUID.01H:ECX.PCLMULQDQ[bit 1] = 1.

Example 5-6. Identification of SSE4.1 with cpuid

…Identify existence of CPUID instruction
… ; Identify signature is genuine intel

mov eax, 1 ; Request for feature flags
cpuid ; 0FH, 0A2H CPUID instruction
test ECX, 000080000h ; ECX bit 19
jnz Found

Example 5-7. Identification of SSE4.2 with cpuid

…Identify existence of CPUID instruction
… ; Identify signature is genuine intel

mov eax, 1 ; Request for feature flags
cpuid ; 0FH, 0A2H CPUID instruction
test ECX, 000100000h ; ECX bit 20
jnz Found

5-5

CODING FOR SIMD ARCHITECTURES

Operating systems that support handling SSE state will also support applications that use AESNI exten-
sions and PCLMULQDQ instruction. This is the same requirement for SSE2, SSE3, SSSE3, and SSE4.

5.1.9 Detection of AVX Instructions
Intel AVX operates on the 256-bit YMM register state. Application detection of new instruction extensions
operating on the YMM state follows the general procedural flow in Figure 5-1.
Prior to using AVX, the application must identify that the operating system supports the XGETBV instruc-
tion, the YMM register state, in addition to processor’s support for YMM state management using
XSAVE/XRSTOR and AVX instructions. The following simplified sequence accomplishes both and is
strongly recommended.
1) Detect CPUID.1:ECX.OSXSAVE[bit 27] = 1 (XGETBV enabled for application use1)
2) Issue XGETBV and verify that XFEATURE_ENABLED_MASK[2:1] = ‘11b’ (XMM state and YMM state are
enabled by OS).
3) Detect CPUID.1:ECX.AVX[bit 28] = 1 (AVX instructions supported).
Note: Step 3 can be done in any order relative to 1 and 2.

Example 5-8. Detection of AESNI Instructions

…Identify existence of CPUID instruction
… ; Identify signature is genuine intel

mov eax, 1 ; Request for feature flags
cpuid ; 0FH, 0A2H CPUID instruction
test ECX, 002000000h ; ECX bit 25
jnz Found

Example 5-9. Detection of PCLMULQDQ Instruction

…Identify existence of CPUID instruction
… ; Identify signature is genuine intel

mov eax, 1 ; Request for feature flags
cpuid ; 0FH, 0A2H CPUID instruction
test ECX, 000000002h ; ECX bit 1
jnz Found

1. If CPUID.01H:ECX.OSXSAVE reports 1, it also indirectly implies the processor supports XSAVE, XRSTOR, XGETBV, pro-
cessor extended state bit vector XFEATURE_ENALBED_MASK register. Thus an application may streamline the checking
of CPUID feature flags for XSAVE and OSXSAVE. XSETBV is a privileged instruction.

CODING FOR SIMD ARCHITECTURES

5-6

The following pseudocode illustrates this recommended application AVX detection process:

Note: It is unwise for an application to rely exclusively on CPUID.1:ECX.AVX[bit 28] or at all on
CPUID.1:ECX.XSAVE[bit 26]: These indicate hardware support but not operating system support. If YMM
state management is not enabled by an operating systems, AVX instructions will #UD regardless of
CPUID.1:ECX.AVX[bit 28]. “CPUID.1:ECX.XSAVE[bit 26] = 1” does not guarantee the OS actually uses
the XSAVE process for state management.

Figure 5-1. General Procedural Flow of Application Detection of AVX

Example 5-10. Detection of AVX Instruction

INT supports_AVX()
{ mov eax, 1

cpuid
and ecx, 018000000H
cmp ecx, 018000000H; check both OSXSAVE and AVX feature flags
 jne not_supported
; processor supports AVX instructions and XGETBV is enabled by OS
mov ecx, 0; specify 0 for XFEATURE_ENABLED_MASK register
XGETBV ; result in EDX:EAX
and eax, 06H
cmp eax, 06H; check OS has enabled both XMM and YMM state support
jne not_supported
mov eax, 1
jmp done

NOT_SUPPORTED:
mov eax, 0

done:

Implied HW support for

Check enabled state in

XCR0 via XGETBV
Check feature flag

for Instruction set

Check feature flag

CPUID.1H:ECX.OXSAVE = 1?

OS provides processor
extended state management

State ok to use

XSAVE, XRSTOR, XGETBV, XFEATURE_ENABLED_MASK

enabled Instructions

Yes

5-7

CODING FOR SIMD ARCHITECTURES

5.1.10 Detection of VEX-Encoded AES and VPCLMULQDQ
VAESDEC/VAESDECLAST/VAESENC/VAESENCLAST/VAESIMC/VAESKEYGENASSIST instructions operate
on YMM states. The detection sequence must combine checking for CPUID.1:ECX.AES[bit 25] = 1 and
the sequence for detection application support for AVX.

Similarly, the detection sequence for VPCLMULQDQ must combine checking for
CPUID.1:ECX.PCLMULQDQ[bit 1] = 1 and the sequence for detection application support for AVX.
This is shown in the pseudocode:

5.1.11 Detection of F16C Instructions
Application using float 16 instruction must follow a detection sequence similar to AVX to ensure:
• The OS has enabled YMM state management support.

Example 5-11. Detection of VEX-Encoded AESNI Instructions

INT supports_VAESNI()
{ mov eax, 1

cpuid
and ecx, 01A000000H
cmp ecx, 01A000000H; check OSXSAVE AVX and AESNI feature flags
 jne not_supported
; processor supports AVX and VEX-encoded AESNI and XGETBV is enabled by OS
mov ecx, 0; specify 0 for XFEATURE_ENABLED_MASK register
XGETBV ; result in EDX:EAX
and eax, 06H
cmp eax, 06H; check OS has enabled both XMM and YMM state support
jne not_supported
mov eax, 1
jmp done

NOT_SUPPORTED:
mov eax, 0

done:

Example 5-12. Detection of VEX-Encoded AESNI Instructions

INT supports_VPCLMULQDQ)
{ mov eax, 1

cpuid

and ecx, 018000002H
cmp ecx, 018000002H; check OSXSAVE AVX and PCLMULQDQ feature flags
 jne not_supported
; processor supports AVX and VEX-encoded PCLMULQDQ and XGETBV is enabled by OS
mov ecx, 0; specify 0 for XFEATURE_ENABLED_MASK register
XGETBV ; result in EDX:EAX
and eax, 06H
cmp eax, 06H; check OS has enabled both XMM and YMM state support
jne not_supported
mov eax, 1
jmp done

NOT_SUPPORTED:
mov eax, 0

done:

CODING FOR SIMD ARCHITECTURES

5-8

• The processor support AVX as indicated by the CPUID feature flag, i.e. CPUID.01H:ECX.AVX[bit 28]
= 1.

• The processor support 16-bit floating-point conversion instructions via a CPUID feature flag
(CPUID.01H:ECX.F16C[bit 29] = 1).

Application detection of Float-16 conversion instructions follow the general procedural flow in Figure 5-2.

--
INT supports_f16c()
{ ; result in eax

mov eax, 1
cpuid
and ecx, 038000000H
cmp ecx, 038000000H; check OSXSAVE, AVX, F16C feature flags
 jne not_supported
; processor supports AVX,F16C instructions and XGETBV is enabled by OS
mov ecx, 0; specify 0 for XFEATURE_ENABLED_MASK register
XGETBV; result in EDX:EAX
and eax, 06H
cmp eax, 06H; check OS has enabled both XMM and YMM state support
jne not_supported
mov eax, 1
jmp done
NOT_SUPPORTED:
mov eax, 0
done:

}

5.1.12 Detection of FMA
Hardware support for FMA is indicated by CPUID.1:ECX.FMA[bit 12]=1.

Figure 5-2. General Procedural Flow of Application Detection of Float-16

Implied HW support for

Check enabled YMM state in
XCR0 via XGETBV

Check feature flags
for AVX and F16C

Check feature flag

CPUID.1H:ECX.OXSAVE = 1?

OS provides processor
extended state management

State ok to use

XSAVE, XRSTOR, XGETBV, XFEATURE_ENABLED_MASK

enabled Instructions

Yes

5-9

CODING FOR SIMD ARCHITECTURES

Application Software must identify that hardware supports AVX, after that it must also detect support for
FMA by CPUID.1:ECX.FMA[bit 12]. The recommended pseudocode sequence for detection of FMA is:
--
INT supports_fma()
{ ; result in eax

mov eax, 1
cpuid
and ecx, 018001000H
cmp ecx, 018001000H; check OSXSAVE, AVX, FMA feature flags
 jne not_supported
; processor supports AVX,FMA instructions and XGETBV is enabled by OS
mov ecx, 0; specify 0 for XFEATURE_ENABLED_MASK register
XGETBV; result in EDX:EAX
and eax, 06H
cmp eax, 06H; check OS has enabled both XMM and YMM state support
jne not_supported
mov eax, 1
jmp done
NOT_SUPPORTED:
mov eax, 0
done:

}

5.1.13 Detection of AVX2
Hardware support for AVX2 is indicated by CPUID.(EAX=07H, ECX=0H):EBX.AVX2[bit 5]=1.
Application Software must identify that hardware supports AVX, after that it must also detect support for
AVX2 by checking CPUID.(EAX=07H, ECX=0H):EBX.AVX2[bit 5]. The recommended pseudocode
sequence for detection of AVX2 is:
--
INT supports_avx2()
{ ; result in eax

mov eax, 1
cpuid
and ecx, 018000000H
cmp ecx, 018000000H; check both OSXSAVE and AVX feature flags
 jne not_supported
; processor supports AVX instructions and XGETBV is enabled by OS
mov eax, 7
mov ecx, 0
cpuid
and ebx, 20H
cmp ebx, 20H; check AVX2 feature flags
 jne not_supported

CODING FOR SIMD ARCHITECTURES

5-10

mov ecx, 0; specify 0 for XFEATURE_ENABLED_MASK register
XGETBV; result in EDX:EAX
and eax, 06H
cmp eax, 06H; check OS has enabled both XMM and YMM state support
jne not_supported
mov eax, 1
jmp done
NOT_SUPPORTED:
mov eax, 0
done:

}

5.2 CONSIDERATIONS FOR CODE CONVERSION TO SIMD
PROGRAMMING

The VTune Performance Enhancement Environment CD provides tools to aid in the evaluation and tuning.
Before implementing them, you need answers to the following questions:

1. Will the current code benefit by using MMX technology, Streaming SIMD Extensions, Streaming
SIMD Extensions 2, Streaming SIMD Extensions 3, or Supplemental Streaming SIMD Extensions 3?

2. Is this code integer or floating-point?

3. What integer word size or floating-point precision is needed?

4. What coding techniques should I use?

5. What guidelines do I need to follow?

6. How should I arrange and align the datatypes?

Figure 5-3 provides a flowchart for the process of converting code to MMX technology, SSE, SSE2, SSE3,
or SSSE3.

5-11

CODING FOR SIMD ARCHITECTURES

To use any of the SIMD technologies optimally, you must evaluate the following situations in your code:
• Fragments that are computationally intensive.
• Fragments that are executed often enough to have an impact on performance.
• Fragments that with little data-dependent control flow.
• Fragments that require floating-point computations.
• Fragments that can benefit from moving data 16 bytes at a time.
• Fragments of computation that can coded using fewer instructions.
• Fragments that require help in using the cache hierarchy efficiently.

Figure 5-3. Converting to Streaming SIMD Extensions Chart

OM15156

Code benefits
from SIMD

STOP

Identify Hot Spots in Code

Integer or
floating-point?

Yes

Floating Point

W hy FP?

Can convert
to Integer?

Range or
Precision

If possible, re-arrange data
for SIMD efficiency

Integer

Change to use
SIMD Integer

Yes

Change to use
Single Precision

Can convert to
Single-precision?

Yes

No

No

Align data structures

Convert to code to use
SIMD Technologies

Follow general coding
guidelines and SIMD

coding guidelines

Use memory optimizations
and prefetch if appropriate

Schedule instructions to
optimize performance

No

Performance

CODING FOR SIMD ARCHITECTURES

5-12

5.2.1 Identifying Hot Spots
To optimize performance, use the VTune Performance Analyzer to find sections of code that occupy most
of the computation time. Such sections are called the hotspots. See Appendix A, “Application Perfor-
mance Tools.”

The VTune analyzer provides a hotspots view of a specific module to help you identify sections in your
code that take the most CPU time and that have potential performance problems. The hotspots view
helps you identify sections in your code that take the most CPU time and that have potential performance
problems.

The VTune analyzer enables you to change the view to show hotspots by memory location, functions,
classes, or source files. You can double-click on a hotspot and open the source or assembly view for the
hotspot and see more detailed information about the performance of each instruction in the hotspot.

The VTune analyzer offers focused analysis and performance data at all levels of your source code and
can also provide advice at the assembly language level. The code coach analyzes and identifies opportu-
nities for better performance of C/C++, Fortran and Java* programs, and suggests specific optimiza-
tions. Where appropriate, the coach displays pseudo-code to suggest the use of highly optimized
intrinsics and functions in the Intel® Performance Library Suite. Because VTune analyzer is designed
specifically for Intel architecture (IA)-based processors, including the Pentium 4 processor, it can offer
detailed approaches to working with IA. See Appendix A.1.1, “Recommended Optimization Settings for
Intel® 64 and IA-32 Processors,” for details.

5.2.2 Determine If Code Benefits by Conversion to SIMD Execution
Identifying code that benefits by using SIMD technologies can be time-consuming and difficult. Likely
candidates for conversion are applications that are highly computation intensive, such as the following:
• Speech compression algorithms and filters.
• Speech recognition algorithms.
• Video display and capture routines.
• Rendering routines.
• 3D graphics (geometry).
• Image and video processing algorithms.
• Spatial (3D) audio.
• Physical modeling (graphics, CAD).
• Workstation applications.
• Encryption algorithms.
• Complex arithmetics.

Generally, good candidate code is code that contains small-sized repetitive loops that operate on sequen-
tial arrays of integers of 8, 16 or 32 bits, single-precision 32-bit floating-point data, double precision 64-
bit floating-point data (integer and floating-point data items should be sequential in memory). The repet-
itiveness of these loops incurs costly application processing time. However, these routines have potential
for increased performance when you convert them to use one of the SIMD technologies.

Once you identify your opportunities for using a SIMD technology, you must evaluate what should be
done to determine whether the current algorithm or a modified one will ensure the best performance.

5.3 CODING TECHNIQUES
The SIMD features of SSE3, SSE2, SSE, and MMX technology require new methods of coding algorithms.
One of them is vectorization. Vectorization is the process of transforming sequentially-executing, or
scalar, code into code that can execute in parallel, taking advantage of the SIMD architecture parallelism.

5-13

CODING FOR SIMD ARCHITECTURES

This section discusses the coding techniques available for an application to make use of the SIMD archi-
tecture.

To vectorize your code and thus take advantage of the SIMD architecture, do the following:
• Determine if the memory accesses have dependencies that would prevent parallel execution.
• “Strip-mine” the inner loop to reduce the iteration count by the length of the SIMD operations (for

example, four for single-precision floating-point SIMD, eight for 16-bit integer SIMD on the XMM
registers).

• Re-code the loop with the SIMD instructions.

Each of these actions is discussed in detail in the subsequent sections of this chapter. These sections also
discuss enabling automatic vectorization using the Intel C++ Compiler.

5.3.1 Coding Methodologies
Software developers need to compare the performance improvement that can be obtained from
assembly code versus the cost of those improvements. Programming directly in assembly language for a
target platform may produce the required performance gain, however, assembly code is not portable
between processor architectures and is expensive to write and maintain.

Performance objectives can be met by taking advantage of the different SIMD technologies using high-
level languages as well as assembly. The new C/C++ language extensions designed specifically for
SSSE3, SSE3, SSE2, SSE, and MMX technology help make this possible.

Figure 5-4 illustrates the trade-offs involved in the performance of hand-coded assembly versus the ease
of programming and portability.

The examples that follow illustrate the use of coding adjustments to enable the algorithm to benefit from
the SSE. The same techniques may be used for single-precision floating-point, double-precision floating-
point, and integer data under SSSE3, SSE3, SSE2, SSE, and MMX technology.

Figure 5-4. Hand-Coded Assembly and High-Level Compiler Performance Trade-offs

P
er

fo
rm

an
c

e

Ease of Programming/Portability

InstrinsicsAssembly

C/C++/Fortran

Automatic
Vectorization

CODING FOR SIMD ARCHITECTURES

5-14

As a basis for the usage model discussed in this section, consider a simple loop shown in Example 5-13.

Note that the loop runs for only four iterations. This allows a simple replacement of the code with
Streaming SIMD Extensions.

For the optimal use of the Streaming SIMD Extensions that need data alignment on the 16-byte
boundary, all examples in this chapter assume that the arrays passed to the routine, A, B, C, are aligned
to 16-byte boundaries by a calling routine. For the methods to ensure this alignment, please refer to the
application notes for the Pentium 4 processor.

The sections that follow provide details on the coding methodologies: inlined assembly, intrinsics, C++
vector classes, and automatic vectorization.

5.3.1.1 Assembly
Key loops can be coded directly in assembly language using an assembler or by using inlined assembly
(C-asm) in C/C++ code. The Intel compiler or assembler recognize the new instructions and registers,
then directly generate the corresponding code. This model offers the opportunity for attaining greatest
performance, but this performance is not portable across the different processor architectures.

Example 5-14 shows the Streaming SIMD Extensions inlined assembly encoding.

5.3.1.2 Intrinsics
Intrinsics provide the access to the ISA functionality using C/C++ style coding instead of assembly
language. Intel has defined three sets of intrinsic functions that are implemented in the Intel C++
Compiler to support the MMX technology, Streaming SIMD Extensions and Streaming SIMD Extensions 2.
Four new C data types, representing 64-bit and 128-bit objects are used as the operands of these
intrinsic functions. __M64 is used for MMX integer SIMD, __M128 is used for single-precision floating-
point SIMD, __M128I is used for Streaming SIMD Extensions 2 integer SIMD, and __M128D is used for
double precision floating-point SIMD. These types enable the programmer to choose the implementation
of an algorithm directly, while allowing the compiler to perform register allocation and instruction sched-

Example 5-13. Simple Four-Iteration Loop

void add(float *a, float *b, float *c)

{

int i;

for (i = 0; i < 4; i++) {

 c[i] = a[i] + b[i];

 }

}

Example 5-14. Streaming SIMD Extensions Using Inlined Assembly Encoding

void add(float *a, float *b, float *c)
{
 __asm {
 mov eax, a
 mov edx, b
 mov ecx, c
 movaps xmm0, XMMWORD PTR [eax]
 addps xmm0, XMMWORD PTR [edx]
 movaps XMMWORD PTR [ecx], xmm0
 }
}

5-15

CODING FOR SIMD ARCHITECTURES

uling where possible. The intrinsics are portable among all Intel architecture-based processors supported
by a compiler.

The use of intrinsics allows you to obtain performance close to the levels achievable with assembly. The
cost of writing and maintaining programs with intrinsics is considerably less. For a detailed description of
the intrinsics and their use, refer to the Intel C++ Compiler documentation.

Example 5-15 shows the loop from Example 5-13 using intrinsics.

The intrinsics map one-to-one with actual Streaming SIMD Extensions assembly code. The
XMMINTRIN.H header file in which the prototypes for the intrinsics are defined is part of the Intel C++
Compiler included with the VTune Performance Enhancement Environment CD.

Intrinsics are also defined for the MMX technology ISA. These are based on the __m64 data type to
represent the contents of an mm register. You can specify values in bytes, short integers, 32-bit values,
or as a 64-bit object.

The intrinsic data types, however, are not a basic ANSI C data type, and therefore you must observe the
following usage restrictions:
• Use intrinsic data types only on the left-hand side of an assignment as a return value or as a

parameter. You cannot use it with other arithmetic expressions (for example, “+”, “>>”).
• Use intrinsic data type objects in aggregates, such as unions to access the byte elements and

structures; the address of an __M64 object may be also used.
• Use intrinsic data type data only with the MMX technology intrinsics described in this guide.
For complete details of the hardware instructions, see the Intel Architecture MMX Technology
Programmer’s Reference Manual. For a description of data types, see the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual.

5.3.1.3 Classes
A set of C++ classes has been defined and available in Intel C++ Compiler to provide both a higher-level
abstraction and more flexibility for programming with MMX technology, Streaming SIMD Extensions and
Streaming SIMD Extensions 2. These classes provide an easy-to-use and flexible interface to the intrinsic
functions, allowing developers to write more natural C++ code without worrying about which intrinsic or
assembly language instruction to use for a given operation. Since the intrinsic functions underlie the
implementation of these C++ classes, the performance of applications using this methodology can
approach that of one using the intrinsics. Further details on the use of these classes can be found in the
Intel C++ Class Libraries for SIMD Operations User’s Guide, order number 693500.

Example 5-15. Simple Four-Iteration Loop Coded with Intrinsics

#include <xmmintrin.h>
void add(float *a, float *b, float *c)
{

__m128 t0, t1;
 t0 = _mm_load_ps(a);
 t1 = _mm_load_ps(b);
 t0 = _mm_add_ps(t0, t1);
 _mm_store_ps(c, t0);
}

CODING FOR SIMD ARCHITECTURES

5-16

Example 5-16 shows the C++ code using a vector class library. The example assumes the arrays passed
to the routine are already aligned to 16-byte boundaries.

Here, fvec.h is the class definition file and F32vec4 is the class representing an array of four floats. The
“+” and “=” operators are overloaded so that the actual Streaming SIMD Extensions implementation in
the previous example is abstracted out, or hidden, from the developer. Note how much more this resem-
bles the original code, allowing for simpler and faster programming.

Again, the example is assuming the arrays, passed to the routine, are already aligned to 16-byte
boundary.

5.3.1.4 Automatic Vectorization
The Intel C++ Compiler provides an optimization mechanism by which loops, such as in Example 5-13
can be automatically vectorized, or converted into Streaming SIMD Extensions code. The compiler uses
similar techniques to those used by a programmer to identify whether a loop is suitable for conversion to
SIMD. This involves determining whether the following might prevent vectorization:
• The layout of the loop and the data structures used.
• Dependencies amongst the data accesses in each iteration and across iterations.

Once the compiler has made such a determination, it can generate vectorized code for the loop, allowing
the application to use the SIMD instructions.

The caveat to this is that only certain types of loops can be automatically vectorized, and in most cases
user interaction with the compiler is needed to fully enable this.

Example 5-17 shows the code for automatic vectorization for the simple four-iteration loop (from
Example 5-13).

Compile this code using the -QAX and -QRESTRICT switches of the Intel C++ Compiler, version 4.0 or
later.

The RESTRICT qualifier in the argument list is necessary to let the compiler know that there are no other
aliases to the memory to which the pointers point. In other words, the pointer for which it is used,

Example 5-16. C++ Code Using the Vector Classes

#include <fvec.h>
void add(float *a, float *b, float *c)
{

F32vec4 *av=(F32vec4 *) a;

F32vec4 *bv=(F32vec4 *) b;

F32vec4 *cv=(F32vec4 *) c;

*cv=*av + *bv;

}

Example 5-17. Automatic Vectorization for a Simple Loop

void add (float *restrict a,
float *restrict b,
float *restrict c)

{

int i;

for (i = 0; i < 4; i++) {

c[i] = a[i] + b[i];

}

}

5-17

CODING FOR SIMD ARCHITECTURES

provides the only means of accessing the memory in question in the scope in which the pointers live.
Without the restrict qualifier, the compiler will still vectorize this loop using runtime data dependence
testing, where the generated code dynamically selects between sequential or vector execution of the
loop, based on overlap of the parameters (See documentation for the Intel C++ Compiler). The restrict
keyword avoids the associated overhead altogether.

See Intel C++ Compiler documentation for details.

5.4 STACK AND DATA ALIGNMENT
To get the most performance out of code written for SIMD technologies data should be formatted in
memory according to the guidelines described in this section. Assembly code with an unaligned accesses
is a lot slower than an aligned access.

5.4.1 Alignment and Contiguity of Data Access Patterns
The 64-bit packed data types defined by MMX technology, and the 128-bit packed data types for
Streaming SIMD Extensions and Streaming SIMD Extensions 2 create more potential for misaligned data
accesses. The data access patterns of many algorithms are inherently misaligned when using MMX tech-
nology and Streaming SIMD Extensions. Several techniques for improving data access, such as padding,
organizing data elements into arrays, etc. are described below. SSE3 provides a special-purpose instruc-
tion LDDQU that can avoid cache line splits is discussed in Section 6.7.2, “Increasing Bandwidth of
Memory Fills and Video Fills.”

5.4.1.1 Using Padding to Align Data
However, when accessing SIMD data using SIMD operations, access to data can be improved simply by a
change in the declaration. For example, consider a declaration of a structure, which represents a point in
space plus an attribute.

typedef struct {short x,y,z; char a} Point;
Point pt[N];

Assume we will be performing a number of computations on X, Y, Z in three of the four elements of a
SIMD word; see Section 5.5.1, “Data Structure Layout,” for an example. Even if the first element in array
PT is aligned, the second element will start 7 bytes later and not be aligned (3 shorts at two bytes each
plus a single byte = 7 bytes).

By adding the padding variable PAD, the structure is now 8 bytes, and if the first element is aligned to 8
bytes (64 bits), all following elements will also be aligned. The sample declaration follows:

typedef struct {short x,y,z; char a; char pad;} Point;
Point pt[N];

5.4.1.2 Using Arrays to Make Data Contiguous
In the following code,

for (i=0; i<N; i++) pt[i].y *= scale;

the second dimension Y needs to be multiplied by a scaling value. Here, the FOR loop accesses each Y
dimension in the array PT thus disallowing the access to contiguous data. This can degrade the perfor-
mance of the application by increasing cache misses, by poor utilization of each cache line that is fetched,
and by increasing the chance for accesses which span multiple cache lines.

The following declaration allows you to vectorize the scaling operation and further improve the alignment
of the data access patterns:

short ptx[N], pty[N], ptz[N];
for (i=0; i<N; i++) pty[i] *= scale;

CODING FOR SIMD ARCHITECTURES

5-18

With the SIMD technology, choice of data organization becomes more important and should be made
carefully based on the operations that will be performed on the data. In some applications, traditional
data arrangements may not lead to the maximum performance.

A simple example of this is an FIR filter. An FIR filter is effectively a vector dot product in the length of the
number of coefficient taps.

Consider the following code:
(data [j] *coeff [0] + data [j+1]*coeff [1]+...+data [j+num of taps-1]*coeff [num of taps-1]),

If in the code above the filter operation of data element I is the vector dot product that begins at data
element J, then the filter operation of data element I+1 begins at data element J+1.

Assuming you have a 64-bit aligned data vector and a 64-bit aligned coefficients vector, the filter opera-
tion on the first data element will be fully aligned. For the second data element, however, access to the
data vector will be misaligned. For an example of how to avoid the misalignment problem in the FIR filter,
refer to Intel application notes on Streaming SIMD Extensions and filters.

Duplication and padding of data structures can be used to avoid the problem of data accesses in algo-
rithms which are inherently misaligned. Section 5.5.1, “Data Structure Layout,” discusses trade-offs for
organizing data structures.

NOTE
The duplication and padding technique overcomes the misalignment problem, thus
avoiding the expensive penalty for misaligned data access, at the cost of increasing the
data size. When developing your code, you should consider this tradeoff and use the
option which gives the best performance.

5.4.2 Stack Alignment For 128-bit SIMD Technologies
For best performance, the Streaming SIMD Extensions and Streaming SIMD Extensions 2 require their
memory operands to be aligned to 16-byte boundaries. Unaligned data can cause significant perfor-
mance penalties compared to aligned data. However, the existing software conventions for IA-32
(STDCALL, CDECL, FASTCALL) as implemented in most compilers, do not provide any mechanism for
ensuring that certain local data and certain parameters are 16-byte aligned. Therefore, Intel has defined
a new set of IA-32 software conventions for alignment to support the new __M128* datatypes (__M128,
__M128D, and __M218I). These meet the following conditions:
• Functions that use Streaming SIMD Extensions or Streaming SIMD Extensions 2 data need to provide

a 16-byte aligned stack frame.
• __M128* parameters need to be aligned to 16-byte boundaries, possibly creating “holes” (due to

padding) in the argument block.

The new conventions presented in this section as implemented by the Intel C++ Compiler can be used as
a guideline for an assembly language code as well. In many cases, this section assumes the use of the
__M128* data types, as defined by the Intel C++ Compiler, which represents an array of four 32-bit floats.

5.4.3 Data Alignment for MMX Technology
Many compilers enable alignment of variables using controls. This aligns variable bit lengths to the
appropriate boundaries. If some of the variables are not appropriately aligned as specified, you can align
them using the C algorithm in Example 5-18.

Example 5-18. C Algorithm for 64-bit Data Alignment

/* Make newp a pointer to a 64-bit aligned array of NUM_ELEMENTS 64-bit elements. */
double *p, *newp;
p = (double*)malloc (sizeof(double)*(NUM_ELEMENTS+1));
newp = (p+7) & (~0x7);

5-19

CODING FOR SIMD ARCHITECTURES

The algorithm in Example 5-18 aligns an array of 64-bit elements on a 64-bit boundary. The constant of
7 is derived from one less than the number of bytes in a 64-bit element, or 8-1. Aligning data in this
manner avoids the significant performance penalties that can occur when an access crosses a cache line
boundary.

Another way to improve data alignment is to copy the data into locations that are aligned on 64-bit
boundaries. When the data is accessed frequently, this can provide a significant performance improve-
ment.

5.4.4 Data Alignment for 128-bit data
Data must be 16-byte aligned when loading to and storing from the 128-bit XMM registers used by
SSE/SSE2/SSE3/SSSE3. This must be done to avoid severe performance penalties and, at worst, execu-
tion faults.

There are MOVE instructions (and intrinsics) that allow unaligned data to be copied to and out of XMM
registers when not using aligned data, but such operations are much slower than aligned accesses. If
data is not 16-byte-aligned and the programmer or the compiler does not detect this and uses the
aligned instructions, a fault occurs. So keep data 16-byte-aligned. Such alignment also works for MMX
technology code, even though MMX technology only requires 8-byte alignment.

The following describes alignment techniques for Pentium 4 processor as implemented with the Intel
C++ Compiler.

5.4.4.1 Compiler-Supported Alignment
The Intel C++ Compiler provides the following methods to ensure that the data is aligned.

Alignment by F32vec4 or __m128 Data Types

When the compiler detects F32VEC4 or __M128 data declarations or parameters, it forces alignment of
the object to a 16-byte boundary for both global and local data, as well as parameters. If the declaration
is within a function, the compiler also aligns the function's stack frame to ensure that local data and
parameters are 16-byte-aligned. For details on the stack frame layout that the compiler generates for
both debug and optimized (“release”-mode) compilations, refer to Intel’s compiler documentation.

__declspec(align(16)) specifications

These can be placed before data declarations to force 16-byte alignment. This is useful for local or global
data declarations that are assigned to 128-bit data types. The syntax for it is

__declspec(align(integer-constant))

where the INTEGER-CONSTANT is an integral power of two but no greater than 32. For example, the
following increases the alignment to 16-bytes:

__declspec(align(16)) float buffer[400];

The variable BUFFER could then be used as if it contained 100 objects of type __M128 or F32VEC4. In the
code below, the construction of the F32VEC4 object, X, will occur with aligned data.

void foo() {
F32vec4 x = *(__m128 *) buffer;
...

}

Without the declaration of __DECLSPEC(ALIGN(16)), a fault may occur.

Alignment by Using a UNION Structure

When feasible, a UNION can be used with 128-bit data types to allow the compiler to align the data struc-
ture by default. This is preferred to forcing alignment with __DECLSPEC(ALIGN(16)) because it exposes
the true program intent to the compiler in that __M128 data is being used. For example:

CODING FOR SIMD ARCHITECTURES

5-20

union {
 float f[400];
 __m128 m[100];

} buffer;

Now, 16-byte alignment is used by default due to the __M128 type in the UNION; it is not necessary to
use __DECLSPEC(ALIGN(16)) to force the result.

In C++ (but not in C) it is also possible to force the alignment of a CLASS/STRUCT/UNION type, as in the
code that follows:

struct __declspec(align(16)) my_m128
{

 float f[4];
};

If the data in such a CLASS is going to be used with the Streaming SIMD Extensions or Streaming SIMD
Extensions 2, it is preferable to use a UNION to make this explicit. In C++, an anonymous UNION can be
used to make this more convenient:

class my_m128 {
 union {
 __m128 m;
 float f[4];
 };

};

Because the UNION is anonymous, the names, M and F, can be used as immediate member names of
MY__M128. Note that __DECLSPEC(ALIGN) has no effect when applied to a CLASS, STRUCT, or UNION
member in either C or C++.

Alignment by Using __m64 or DOUBLE Data

In some cases, the compiler aligns routines with __M64 or DOUBLE data to 16-bytes by default. The
command-line switch, -QSFALIGN16, limits the compiler so that it only performs this alignment on
routines that contain 128-bit data. The default behavior is to use -QSFALIGN8. This switch instructs the
complier to align routines with 8- or 16-byte data types to 16 bytes.

For more, see the Intel C++ Compiler documentation.

5.5 IMPROVING MEMORY UTILIZATION
Memory performance can be improved by rearranging data and algorithms for SSE, SSE2, and MMX tech-
nology intrinsics. Methods for improving memory performance involve working with the following:
• Data structure layout.
• Strip-mining for vectorization and memory utilization.
• Loop-blocking.

Using the cacheability instructions, prefetch and streaming store, also greatly enhance memory utiliza-
tion. See also: Chapter 9, “Optimizing Cache Usage.”

5.5.1 Data Structure Layout
For certain algorithms, like 3D transformations and lighting, there are two basic ways to arrange vertex
data. The traditional method is the array of structures (AoS) arrangement, with a structure for each

5-21

CODING FOR SIMD ARCHITECTURES

vertex (Example 5-19). However this method does not take full advantage of SIMD technology capabili-
ties.

The best processing method for code using SIMD technology is to arrange the data in an array for each
coordinate (Example 5-20). This data arrangement is called structure of arrays (SoA).

There are two options for computing data in AoS format: perform operation on the data as it stands in
AoS format, or re-arrange it (swizzle it) into SoA format dynamically. See Example 5-21 for code samples
of each option based on a dot-product computation.

Example 5-19. AoS Data Structure

typedef struct{
float x,y,z;
int a,b,c;
. . .

} Vertex;
Vertex Vertices[NumOfVertices];

Example 5-20. SoA Data Structure

typedef struct{
float x[NumOfVertices];
float y[NumOfVertices];
float z[NumOfVertices];
int a[NumOfVertices];
int b[NumOfVertices];
int c[NumOfVertices];
. . .

} VerticesList;
VerticesList Vertices;

Example 5-21. AoS and SoA Code Samples

; The dot product of an array of vectors (Array) and a fixed vector (Fixed) is a
; common operation in 3D lighting operations, where Array = (x0,y0,z0),(x1,y1,z1),...
; and Fixed = (xF,yF,zF)
; A dot product is defined as the scalar quantity d0 = x0*xF + y0*yF + z0*zF.

;
; AoS code
; All values marked DC are “don’t-care.”

; In the AOS model, the vertices are stored in the xyz format
movaps xmm0, Array ; xmm0 = DC, x0, y0, z0
movaps xmm1, Fixed ; xmm1 = DC, xF, yF, zF
mulps xmm0, xmm1 ; xmm0 = DC, x0*xF, y0*yF, z0*zF
movhlps xmm, xmm0 ; xmm = DC, DC, DC, x0*xF

addps xmm1, xmm0 ; xmm0 = DC, DC, DC,
 ; x0*xF+z0*zFmovaps xmm2, xmm1
shufps xmm2, xmm2,55h ; xmm2 = DC, DC, DC, y0*yF
addps xmm2, xmm1 ; xmm1 = DC, DC, DC,

; x0*xF+y0*yF+z0*zF

CODING FOR SIMD ARCHITECTURES

5-22

Performing SIMD operations on the original AoS format can require more calculations and some opera-
tions do not take advantage of all SIMD elements available. Therefore, this option is generally less effi-
cient.

The recommended way for computing data in AoS format is to swizzle each set of elements to SoA format
before processing it using SIMD technologies. Swizzling can either be done dynamically during program
execution or statically when the data structures are generated. See Chapter 6 and Chapter 7 for exam-
ples. Performing the swizzle dynamically is usually better than using AoS, but can be somewhat ineffi-
cient because there are extra instructions during computation. Performing the swizzle statically, when
data structures are being laid out, is best as there is no runtime overhead.

As mentioned earlier, the SoA arrangement allows more efficient use of the parallelism of SIMD technol-
ogies because the data is ready for computation in a more optimal vertical manner: multiplying compo-
nents X0,X1,X2,X3 by XF,XF,XF,XF using 4 SIMD execution slots to produce 4 unique results. In contrast,
computing directly on AoS data can lead to horizontal operations that consume SIMD execution slots but
produce only a single scalar result (as shown by the many “don’t-care” (DC) slots in Example 5-21).

Use of the SoA format for data structures can lead to more efficient use of caches and bandwidth. When
the elements of the structure are not accessed with equal frequency, such as when element x, y, z are
accessed ten times more often than the other entries, then SoA saves memory and prevents fetching
unnecessary data items a, b, and c.

; SoA code
; X = x0,x1,x2,x3
; Y = y0,y1,y2,y3
; Z = z0,z1,z2,z3
; A = xF,xF,xF,xF
; B = yF,yF,yF,yF
; C = zF,zF,zF,zF

movaps xmm0, X ; xmm0 = x0,x1,x2,x3
movaps xmm1, Y ; xmm0 = y0,y1,y2,y3
movaps xmm2, Z ; xmm0 = z0,z1,z2,z3
mulps xmm0, A ; xmm0 = x0*xF, x1*xF, x2*xF, x3*xF
mulps xmm1, B ; xmm1 = y0*yF, y1*yF, y2*yF, y3*xF
mulps xmm2, C ; xmm2 = z0*zF, z1*zF, z2*zF, z3*zF
addps xmm0, xmm1
addps xmm0, xmm2 ; xmm0 = (x0*xF+y0*yF+z0*zF), ...

Example 5-22. Hybrid SoA Data Structure

NumOfGroups = NumOfVertices/SIMDwidth
typedef struct{

float x[SIMDwidth];
float y[SIMDwidth];
float z[SIMDwidth];

} VerticesCoordList;
typedef struct{

int a[SIMDwidth];
int b[SIMDwidth];
int c[SIMDwidth];
. . .

} VerticesColorList;
VerticesCoordList VerticesCoord[NumOfGroups];
VerticesColorList VerticesColor[NumOfGroups];

Example 5-21. AoS and SoA Code Samples (Contd.)

5-23

CODING FOR SIMD ARCHITECTURES

Note that SoA can have the disadvantage of requiring more independent memory stream references. A
computation that uses arrays X, Y, and Z (see Example 5-20) would require three separate data streams.
This can require the use of more prefetches, additional address generation calculations, as well as having
a greater impact on DRAM page access efficiency.

There is an alternative: a hybrid SoA approach blends the two alternatives (see Example 5-22). In this
case, only 2 separate address streams are generated and referenced: one contains XXXX, YYYY,ZZZZ,
ZZZZ,... and the other AAAA, BBBB, CCCC, AAAA, DDDD,... . The approach prevents fetching unneces-
sary data, assuming the variables X, Y, Z are always used together; whereas the variables A, B, C would
also be used together, but not at the same time as X, Y, Z.

The hybrid SoA approach ensures:
• Data is organized to enable more efficient vertical SIMD computation.
• Simpler/less address generation than AoS.
• Fewer streams, which reduces DRAM page misses.
• Use of fewer prefetches, due to fewer streams.
• Efficient cache line packing of data elements that are used concurrently.

With the advent of the SIMD technologies, the choice of data organization becomes more important and
should be carefully based on the operations to be performed on the data. This will become increasingly
important in the Pentium 4 processor and future processors. In some applications, traditional data
arrangements may not lead to the maximum performance. Application developers are encouraged to
explore different data arrangements and data segmentation policies for efficient computation. This may
mean using a combination of AoS, SoA, and Hybrid SoA in a given application.

5.5.2 Strip-Mining
Strip-mining, also known as loop sectioning, is a loop transformation technique for enabling SIMD-
encodings of loops, as well as providing a means of improving memory performance. First introduced for
vectorizers, this technique consists of the generation of code when each vector operation is done for a
size less than or equal to the maximum vector length on a given vector machine. By fragmenting a large
loop into smaller segments or strips, this technique transforms the loop structure by:
• Increasing the temporal and spatial locality in the data cache if the data are reusable in different

passes of an algorithm.
• Reducing the number of iterations of the loop by a factor of the length of each “vector,” or number of

operations being performed per SIMD operation. In the case of Streaming SIMD Extensions, this
vector or strip-length is reduced by 4 times: four floating-point data items per single Streaming SIMD
Extensions single-precision floating-point SIMD operation are processed. Consider Example 5-23.

Example 5-23. Pseudo-code Before Strip Mining

typedef struct _VERTEX {
float x, y, z, nx, ny, nz, u, v;

 } Vertex_rec;

main()
 {

Vertex_rec v[Num];
....
for (i=0; i<Num; i++) {
 Transform(v[i]);
}

CODING FOR SIMD ARCHITECTURES

5-24

The main loop consists of two functions: transformation and lighting. For each object, the main loop calls
a transformation routine to update some data, then calls the lighting routine to further work on the data.
If the size of array V[NUM] is larger than the cache, then the coordinates for V[I] that were cached during
TRANSFORM(V[I]) will be evicted from the cache by the time we do LIGHTING(V[I]). This means that
V[I] will have to be fetched from main memory a second time, reducing performance.

In Example 5-24, the computation has been strip-mined to a size STRIP_SIZE. The value STRIP_SIZE is
chosen such that STRIP_SIZE elements of array V[NUM] fit into the cache hierarchy. By doing this, a
given element V[I] brought into the cache by TRANSFORM(V[I]) will still be in the cache when we
perform LIGHTING(V[I]), and thus improve performance over the non-strip-mined code.

5.5.3 Loop Blocking
Loop blocking is another useful technique for memory performance optimization. The main purpose of
loop blocking is also to eliminate as many cache misses as possible. This technique transforms the
memory domain of a given problem into smaller chunks rather than sequentially traversing through the
entire memory domain. Each chunk should be small enough to fit all the data for a given computation
into the cache, thereby maximizing data reuse. In fact, one can treat loop blocking as strip mining in two
or more dimensions. Consider the code in Example 5-23 and access pattern in Figure 5-5. The two-
dimensional array A is referenced in the J (column) direction and then referenced in the I (row) direction
(column-major order); whereas array B is referenced in the opposite manner (row-major order). Assume
the memory layout is in column-major order; therefore, the access strides of array A and B for the code
in Example 5-25 would be 1 and MAX, respectively.

for (i=0; i<Num; i++) {
 Lighting(v[i]);
}
....

 }

Example 5-24. Strip Mined Code

MAIN()
{

Vertex_rec v[Num];
....
for (i=0; i < Num; i+=strip_size) {
 FOR (J=I; J < MIN(NUM, I+STRIP_SIZE); J++) {

 TRANSFORM(V[J]);
 }
 FOR (J=I; J < MIN(NUM, I+STRIP_SIZE); J++) {

 LIGHTING(V[J]);
 }
}

}

Example 5-25. Loop Blocking

A. Original Loop
float A[MAX, MAX], B[MAX, MAX]
for (i=0; i< MAX; i++) {

for (j=0; j< MAX; j++) {
A[i,j] = A[i,j] + B[j, i];

}
}

Example 5-23. Pseudo-code Before Strip Mining (Contd.)

5-25

CODING FOR SIMD ARCHITECTURES

For the first iteration of the inner loop, each access to array B will generate a cache miss. If the size of
one row of array A, that is, A[2, 0:MAX-1], is large enough, by the time the second iteration starts, each
access to array B will always generate a cache miss. For instance, on the first iteration, the cache line
containing B[0, 0:7] will be brought in when B[0,0] is referenced because the float type variable is four
bytes and each cache line is 32 bytes. Due to the limitation of cache capacity, this line will be evicted due
to conflict misses before the inner loop reaches the end. For the next iteration of the outer loop, another
cache miss will be generated while referencing B[0, 1]. In this manner, a cache miss occurs when each
element of array B is referenced, that is, there is no data reuse in the cache at all for array B.

This situation can be avoided if the loop is blocked with respect to the cache size. In Figure 5-5, a
BLOCK_SIZE is selected as the loop blocking factor. Suppose that BLOCK_SIZE is 8, then the blocked
chunk of each array will be eight cache lines (32 bytes each). In the first iteration of the inner loop, A[0,
0:7] and B[0, 0:7] will be brought into the cache. B[0, 0:7] will be completely consumed by the first iter-
ation of the outer loop. Consequently, B[0, 0:7] will only experience one cache miss after applying loop
blocking optimization in lieu of eight misses for the original algorithm. As illustrated in Figure 5-5, arrays
A and B are blocked into smaller rectangular chunks so that the total size of two blocked A and B chunks
is smaller than the cache size. This allows maximum data reuse.

B. Transformed Loop after Blocking
float A[MAX, MAX], B[MAX, MAX];
for (i=0; i< MAX; i+=block_size) {

for (j=0; j< MAX; j+=block_size) {
for (ii=i; ii<i+block_size; ii++) {

for (jj=j; jj<j+block_size; jj++) {
A[ii,jj] = A[ii,jj] + B[jj, ii];

}
}

}
}

Example 5-25. Loop Blocking (Contd.)

CODING FOR SIMD ARCHITECTURES

5-26

As one can see, all the redundant cache misses can be eliminated by applying this loop blocking tech-
nique. If MAX is huge, loop blocking can also help reduce the penalty from DTLB (data translation look-
aside buffer) misses. In addition to improving the cache/memory performance, this optimization tech-
nique also saves external bus bandwidth.

5.6 INSTRUCTION SELECTION
The following section gives some guidelines for choosing instructions to complete a task.

One barrier to SIMD computation can be the existence of data-dependent branches. Conditional moves
can be used to eliminate data-dependent branches. Conditional moves can be emulated in SIMD compu-
tation by using masked compares and logicals, as shown in Example 5-26. SSE4.1 provides packed blend
instruction that can vectorize data-dependent branches in a loop.

Figure 5-5. Loop Blocking Access Pattern

Example 5-26. Emulation of Conditional Moves

High-level code:
__declspec(align(16)) short A[MAX_ELEMENT], B[MAX_ELEMENT], C[MAX_ELEMENT], D[MAX_ELEMENT],
E[MAX_ELEMENT];

for (i=0; i<MAX_ELEMENT; i++) {
if (A[i] > B[i]) {

C[i] = D[i];
} else {

C[i] = E[i];
}

OM15158

A (i, j) access pattern
j

i

A(i, j) access pattern
after blocking

B(i, j) access pattern
after blocking

+

< cache size

Blocking

5-27

CODING FOR SIMD ARCHITECTURES

If there are multiple consumers of an instance of a register, group the consumers together as closely as
possible. However, the consumers should not be scheduled near the producer.

5.7 TUNING THE FINAL APPLICATION
The best way to tune your application once it is functioning correctly is to use a profiler that measures the
application while it is running on a system. Intel VTune Amplifier XE can help you determine where to
make changes in your application to improve performance. Using Intel VTune Amplifier XE can help you
with various phases required for optimized performance. See Appendix A.3.1, “Intel® VTune™ Amplifier
XE,” for details. After every effort to optimize, you should check the performance gains to see where you
are making your major optimization gains.

}
MMX assembly code processes 4 short values per iteration:

xor eax, eax

top_of_loop:
movq mm0, [A + eax]
pcmpgtwxmm0, [B + eax]; Create compare mask
movq mm1, [D + eax]
pand mm1, mm0; Drop elements where A<B
pandn mm0, [E + eax] ; Drop elements where A>B

por mm0, mm1; Crete single word
movq [C + eax], mm0
add eax, 8
cmp eax, MAX_ELEMENT*2
jle top_of_loop

SSE4.1 assembly processes 8 short values per iteration:
xor eax, eax

top_of_loop:
movdqq xmm0, [A + eax]
pcmpgtwxmm0, [B + eax]; Create compare mask
movdqa xmm1, [E + eax]
pblendv xmm1, [D + eax], xmm0;
movdqa [C + eax], xmm1;
add eax, 16
cmp eax, MAX_ELEMENT*2
jle top_of_loop

Example 5-26. Emulation of Conditional Moves (Contd.)

CODING FOR SIMD ARCHITECTURES

5-28

CHAPTER 6
OPTIMIZING FOR SIMD INTEGER APPLICATIONS

SIMD integer instructions provide performance improvements in applications that are integer-intensive
and can take advantage of SIMD architecture.

Guidelines in this chapter for using SIMD integer instructions (in addition to those described in Chapter
3) may be used to develop fast and efficient code that scales across processor generations.

The collection of 64-bit and 128-bit SIMD integer instructions supported by MMX technology, SSE, SSE2,
SSE3, SSSE3, SSE4.1, and PCMPEQQ in SSE4.2 are referred to as SIMD integer instructions.

Code sequences in this chapter demonstrates the use of basic 64-bit SIMD integer instructions and more
efficient 128-bit SIMD integer instructions.

Processors based on Intel Core microarchitecture support MMX, SSE, SSE2, SSE3, and SSSE3. Proces-
sors based on Enhanced Intel Core microarchitecture support SSE4.1 and all previous generations of
SIMD integer instructions. Processors based on Nehalem microarchitecture support MMX, SSE, SSE2,
SSE3, SSSE3, SSE4.1 and SSE4.2.

Single-instruction, multiple-data techniques can be applied to text/string processing, lexing and parser
applications. SIMD programming in string/text processing and lexing applications often require sophisti-
cated techniques beyond those commonly used in SIMD integer programming. This is covered in Chapter
14, “SSE4.2 and SIMD Programming For Text-Processing/Lexing/Parsing.”

Execution of 128-bit SIMD integer instructions in Intel Core microarchitecture and Enhanced Intel Core
microarchitecture are substantially more efficient than on previous microarchitectures. Thus newer SIMD
capabilities introduced in SSE4.1 operate on 128-bit operands and do not introduce equivalent 64-bit
SIMD capabilities. Conversion from 64-bit SIMD integer code to 128-bit SIMD integer code is highly
recommended.

This chapter contains examples that will help you to get started with coding your application. The goal is
to provide simple, low-level operations that are frequently used. The examples use a minimum number
of instructions necessary to achieve best performance on the current generation of Intel 64 and IA-32
processors.

Each example includes a short description, sample code, and notes if necessary. These examples do not
address scheduling as it is assumed the examples will be incorporated in longer code sequences.

For planning considerations of using the SIMD integer instructions, refer to Section 5.1.3.

6.1 GENERAL RULES ON SIMD INTEGER CODE
General rules and suggestions are:
• Do not intermix 64-bit SIMD integer instructions with x87 floating-point instructions. See Section

6.2, “Using SIMD Integer with x87 Floating-point.” Note that all SIMD integer instructions can be
intermixed without penalty.

• Favor 128-bit SIMD integer code over 64-bit SIMD integer code. On microarchitectures prior to Intel
Core microarchitecture, most 128-bit SIMD instructions have two-cycle throughput restrictions due
to the underlying 64-bit data path in the execution engine. Intel Core microarchitecture executes
most SIMD instructions (except shuffle, pack, unpack operations) with one-cycle throughput and
provides three ports to execute multiple SIMD instructions in parallel. Enhanced Intel Core microar-
chitecture speeds up 128-bit shuffle, pack, unpack operations with 1 cycle throughput.

• When writing SIMD code that works for both integer and floating-point data, use the subset of SIMD
convert instructions or load/store instructions to ensure that the input operands in XMM registers
contain data types that are properly defined to match the instruction.

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

6-2

Code sequences containing cross-typed usage produce the same result across different implementa-
tions but incur a significant performance penalty. Using SSE/SSE2/SSE3/SSSE3/SSE44.1 instruc-
tions to operate on type-mismatched SIMD data in the XMM register is strongly discouraged.

• Use the optimization rules and guidelines described in Chapter 3 and Chapter 5.
• Take advantage of hardware prefetcher where possible. Use the PREFETCH instruction only when

data access patterns are irregular and prefetch distance can be pre-determined. See Chapter 9,
“Optimizing Cache Usage.”

• Emulate conditional moves by using blend, masked compares and logicals instead of using
conditional branches.

6.2 USING SIMD INTEGER WITH X87 FLOATING-POINT
All 64-bit SIMD integer instructions use MMX registers, which share register state with the x87 floating-
point stack. Because of this sharing, certain rules and considerations apply. Instructions using MMX
registers cannot be freely intermixed with x87 floating-point registers. Take care when switching
between 64-bit SIMD integer instructions and x87 floating-point instructions to ensure functional
correctness. See Section 6.2.1.

Both Section 6.2.1 and Section 6.2.2 apply only to software that employs MMX instructions. As noted
before, 128-bit SIMD integer instructions should be favored to replace MMX code and achieve higher
performance. That also obviates the need to use EMMS, and the performance penalty of using EMMS
when intermixing MMX and X87 instructions.

For performance considerations, there is no penalty of intermixing SIMD floating-point operations and
128-bit SIMD integer operations and x87 floating-point operations.

6.2.1 Using the EMMS Instruction
When generating 64-bit SIMD integer code, keep in mind that the eight MMX registers are aliased to x87
floating-point registers. Switching from MMX instructions to x87 floating-point instructions incurs a finite
delay, so it is the best to minimize switching between these instruction types. But when switching, the
EMMS instruction provides an efficient means to clear the x87 stack so that subsequent x87 code can
operate properly.

As soon as an instruction makes reference to an MMX register, all valid bits in the x87 floating-point tag
word are set, which implies that all x87 registers contain valid values. In order for software to operate
correctly, the x87 floating-point stack should be emptied when starting a series of x87 floating-point
calculations after operating on the MMX registers.

Using EMMS clears all valid bits, effectively emptying the x87 floating-point stack and making it ready for
new x87 floating-point operations. The EMMS instruction ensures a clean transition between using oper-
ations on the MMX registers and using operations on the x87 floating-point stack. On the Pentium 4
processor, there is a finite overhead for using the EMMS instruction.

Failure to use the EMMS instruction (or the _MM_EMPTY() intrinsic) between operations on the MMX
registers and x87 floating-point registers may lead to unexpected results.

NOTE
Failure to reset the tag word for FP instructions after using an MMX instruction can result
in faulty execution or poor performance.

6.2.2 Guidelines for Using EMMS Instruction
When developing code with both x87 floating-point and 64-bit SIMD integer instructions, follow these
steps:

6-3

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

1. Always call the EMMS instruction at the end of 64-bit SIMD integer code when the code transitions to
x87 floating-point code.

2. Insert the EMMS instruction at the end of all 64-bit SIMD integer code segments to avoid an x87
floating-point stack overflow exception when an x87 floating-point instruction is executed.

When writing an application that uses both floating-point and 64-bit SIMD integer instructions, use the
following guidelines to help you determine when to use EMMS:
• If next instruction is x87 FP — Use _MM_EMPTY() after a 64-bit SIMD integer instruction if the

next instruction is an X87 FP instruction; for example, before doing calculations on floats, doubles or
long doubles.

• Don’t empty when already empty — If the next instruction uses an MMX register, _MM_EMPTY()
incurs a cost with no benefit.

• Group Instructions — Try to partition regions that use X87 FP instructions from those that use 64-
bit SIMD integer instructions. This eliminates the need for an EMMS instruction within the body of a
critical loop.

• Runtime initialization — Use _MM_EMPTY() during runtime initialization of __M64 and X87 FP data
types. This ensures resetting the register between data type transitions. See Example 6-1 for coding
usage.

You must be aware that your code generates an MMX instruction, which uses MMX registers with the Intel
C++ Compiler, in the following situations:
• when using a 64-bit SIMD integer intrinsic from MMX technology, SSE/SSE2/SSSE3
• when using a 64-bit SIMD integer instruction from MMX technology, SSE/SSE2/SSSE3 through inline

assembly
• when referencing the __M64 data type variable

Additional information on the x87 floating-point programming model can be found in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 1. For more on EMMS, visit http://devel-
oper.intel.com.

6.3 DATA ALIGNMENT
Make sure that 64-bit SIMD integer data is 8-byte aligned and that 128-bit SIMD integer data is 16-byte
aligned. Referencing unaligned 64-bit SIMD integer data can incur a performance penalty due to
accesses that span 2 cache lines. Referencing unaligned 128-bit SIMD integer data results in an excep-
tion unless the MOVDQU (move double-quadword unaligned) instruction is used. Using the MOVDQU
instruction on unaligned data can result in lower performance than using 16-byte aligned references.
Refer to Section 5.4, “Stack and Data Alignment,” for more information.

Loading 16 bytes of SIMD data efficiently requires data alignment on 16-byte boundaries. SSSE3
provides the PALIGNR instruction. It reduces overhead in situations that requires software to processing
data elements from non-aligned address. The PALIGNR instruction is most valuable when loading or
storing unaligned data with the address shifts by a few bytes. You can replace a set of unaligned loads
with aligned loads followed by using PALIGNR instructions and simple register to register copies.

Example 6-1. Resetting Register Between __m64 and FP Data Types Code

Incorrect Usage Correct Usage

__m64 x = _m_paddd(y, z); __m64 x = _m_paddd(y, z);
float f = init(); float f = (_mm_empty(), init());

http://developer.intel.com
http://developer.intel.com

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

6-4

Using PALIGNRs to replace unaligned loads improves performance by eliminating cache line splits and
other penalties. In routines like MEMCPY(), PALIGNR can boost the performance of misaligned cases.
Example 6-2 shows a situation that benefits by using PALIGNR.

Example 6-3 compares an optimal SSE2 sequence of the FIR loop and an equivalent SSSE3 implementa-
tion. Both implementations unroll 4 iteration of the FIR inner loop to enable SIMD coding techniques. The
SSE2 code can not avoid experiencing cache line split once every four iterations. PALGNR allows the
SSSE3 code to avoid the delays associated with cache line splits.

Example 6-2. FIR Processing Example in C language Code

void FIR(float *in, float *out, float *coeff, int count)
{int i,j;

for (i=0; i<count - TAP; i++)
{ float sum = 0;

for (j=0; j<TAP; j++)
{ sum += in[j]*coeff[j]; }
*out++ = sum;
in++;

}
}

Example 6-3. SSE2 and SSSE3 Implementation of FIR Processing Code
Optimized for SSE2 Optimized for SSSE3

pxor xmm0, xmm0
xor ecx, ecx
mov eax, dword ptr[input]
mov ebx, dword ptr[coeff4]

inner_loop:
movaps xmm1, xmmword ptr[eax+ecx]
mulps xmm1, xmmword ptr[ebx+4*ecx]
addps xmm0, xmm1

pxor xmm0, xmm0
xor ecx, ecx
mov eax, dword ptr[input]
mov ebx, dword ptr[coeff4]

inner_loop:
movaps xmm1, xmmword ptr[eax+ecx]
movaps xmm3, xmm1
mulps xmm1, xmmword ptr[ebx+4*ecx]
addps xmm0, xmm1

movups xmm1, xmmword ptr[eax+ecx+4]
mulps xmm1, xmmword ptr[ebx+4*ecx+16]
addps xmm0, xmm1

movaps xmm2, xmmword ptr[eax+ecx+16]
movaps xmm1, xmm2
palignr xmm2, xmm3, 4
mulps xmm2, xmmword ptr[ebx+4*ecx+16]
addps xmm0, xmm2

movups xmm1, xmmword ptr[eax+ecx+8]
mulps xmm1, xmmword ptr[ebx+4*ecx+32]
addps xmm0, xmm1

movaps xmm2, xmm1
palignr xmm2, xmm3, 8
mulps xmm2, xmmword ptr[ebx+4*ecx+32]
addps xmm0, xmm2

movups xmm1, xmmword ptr[eax+ecx+12]
mulps xmm1, xmmword ptr[ebx+4*ecx+48]
addps xmm0, xmm1

add ecx, 16
cmp ecx, 4*TAP
jl inner_loop

mov eax, dword ptr[output]
movaps xmmword ptr[eax], xmm0

movaps xmm2, xmm1
palignr xmm2, xmm3, 12
mulps xmm2, xmmword ptr[ebx+4*ecx+48]
addps xmm0, xmm2

add ecx, 16
cmp ecx, 4*TAP
jl inner_loop

mov eax, dword ptr[output]
movaps xmmword ptr[eax], xmm0

6-5

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

6.4 DATA MOVEMENT CODING TECHNIQUES
In general, better performance can be achieved if data is pre-arranged for SIMD computation (see
Section 5.5, “Improving Memory Utilization”). This may not always be possible.

This section covers techniques for gathering and arranging data for more efficient SIMD computation.

6.4.1 Unsigned Unpack
MMX technology provides several instructions that are used to pack and unpack data in the MMX regis-
ters. SSE2 extends these instructions so that they operate on 128-bit source and destinations.

The unpack instructions can be used to zero-extend an unsigned number. Example 6-4 assumes the
source is a packed-word (16-bit) data type.

6.4.2 Signed Unpack
Signed numbers should be sign-extended when unpacking values. This is similar to the zero-extend
shown above, except that the PSRAD instruction (packed shift right arithmetic) is used to sign extend the
values.

Example 6-5 assumes the source is a packed-word (16-bit) data type.

Example 6-4. Zero Extend 16-bit Values into 32 Bits Using Unsigned Unpack Instructions Code

; Input:
; XMM0 8 16-bit values in source
; XMM7 0 a local variable can be used
; instead of the register XMM7 if
; desired.

; Output:
; XMM0 four zero-extended 32-bit
; doublewords from four low-end
; words
; XMM1 four zero-extended 32-bit
; doublewords from four high-end
; words

movdqa xmm1, xmm0 ; copy source
punpcklwd xmm0, xmm7 ; unpack the 4 low-end words

; into 4 32-bit doubleword
punpckhwd xmm1, xmm7 ; unpack the 4 high-end words

; into 4 32-bit doublewords

Example 6-5. Signed Unpack Code

 Input:
; XMM0 source value
; Output:
; XMM0 four sign-extended 32-bit doublewords
; from four low-end words
; XMM1 four sign-extended 32-bit doublewords
; from four high-end words
;

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

6-6

6.4.3 Interleaved Pack with Saturation
Pack instructions pack two values into a destination register in a predetermined order. PACKSSDW satu-
rates two signed doublewords from a source operand and two signed doublewords from a destination
operand into four signed words; and it packs the four signed words into a destination register. See
Figure 6-1.

SSE2 extends PACKSSDW so that it saturates four signed doublewords from a source operand and four
signed doublewords from a destination operand into eight signed words; the eight signed words are
packed into the destination.

Figure 6-2 illustrates where two pairs of values are interleaved in a destination register; Example 6-6
shows MMX code that accomplishes the operation.

Two signed doublewords are used as source operands and the result is interleaved signed words. The
sequence in Example 6-6 can be extended in SSE2 to interleave eight signed words using XMM registers.

movdqa xmm1, xmm0 ; copy source
punpcklwd xmm0, xmm0 ; unpack four low end words of the source

; into the upper 16 bits of each doubleword
; in the destination

punpckhwd xmm1, xmm1 ; unpack 4 high-end words of the source
; into the upper 16 bits of each doubleword
; in the destination

psrad xmm0, 16 ; sign-extend the 4 low-end words of the source
; into four 32-bit signed doublewords

psrad xmm1, 16 ; sign-extend the 4 high-end words of the
; source into four 32-bit signed doublewords

Figure 6-1. PACKSSDW mm, mm/mm64 Instruction

Example 6-5. Signed Unpack Code (Contd.)

OM15159

D C B A

D1 C1 B1 A1

mm/m64 mm

mm

6-7

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

Pack instructions always assume that source operands are signed numbers. The result in the destination
register is always defined by the pack instruction that performs the operation. For example, PACKSSDW
packs each of two signed 32-bit values of two sources into four saturated 16-bit signed values in a desti-
nation register. PACKUSWB, on the other hand, packs the four signed 16-bit values of two sources into
eight saturated eight-bit unsigned values in the destination.

6.4.4 Interleaved Pack without Saturation
Example 6-7 is similar to Example 6-6 except that the resulting words are not saturated. In addition, in
order to protect against overflow, only the low order 16 bits of each doubleword are used. Again,
Example 6-7 can be extended in SSE2 to accomplish interleaving eight words without saturation.

Figure 6-2. Interleaved Pack with Saturation

Example 6-6. Interleaved Pack with Saturation Code

; Input:
MM0 signed source1 value

; MM1 signed source2 value
; Output:

MM0 the first and third words contain the
; signed-saturated doublewords from MM0,
; the second and fourth words contain
; signed-saturated doublewords from MM1
;
packssdw mm0, mm0 ; pack and sign saturate
packssdw mm1, mm1 ; pack and sign saturate
punpcklwd mm0, mm1 ; interleave the low-end 16-bit

; values of the operands

Example 6-7. Interleaved Pack without Saturation Code

; Input:
; MM0 signed source value
; MM1 signed source value

; Output:
; MM0 the first and third words contain the
; low 16-bits of the doublewords in MM0,
; the second and fourth words contain the
; low 16-bits of the doublewords in MM1

O M15160

D C B A

D 1 B 1 C 1 A 1

M M /M 64 m m

m m

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

6-8

6.4.5 Non-Interleaved Unpack
Unpack instructions perform an interleave merge of the data elements of the destination and source
operands into the destination register.

The following example merges the two operands into destination registers without interleaving. For
example, take two adjacent elements of a packed-word data type in SOURCE1 and place this value in the
low 32 bits of the results. Then take two adjacent elements of a packed-word data type in SOURCE2 and
place this value in the high 32 bits of the results. One of the destination registers will have the combina-
tion illustrated in Figure 6-3.

The other destination register will contain the opposite combination illustrated in Figure 6-4.

pslld mm1, 16 ; shift the 16 LSB from each of the
; doubleword values to the 16 MSB
; position

pand mm0, {0,ffff,0,ffff}
; mask to zero the 16 MSB
; of each doubleword value

por mm0, mm1 ; merge the two operands

Figure 6-3. Result of Non-Interleaved Unpack Low in MM0

Figure 6-4. Result of Non-Interleaved Unpack High in MM1

Example 6-7. Interleaved Pack without Saturation Code (Contd.)

21 20 11 10

mm/m64 mm

mm

23 22 21 20 13 12 11 10

2 3 2 2 1 3 1 2

m m /m 64 m m

m m

2 3 2 2 2 1 2 0 1 3 1 2 1 1 1 0

6-9

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

Code in the Example 6-8 unpacks two packed-word sources in a non-interleaved way. The goal is to use
the instruction which unpacks doublewords to a quadword, instead of using the instruction which
unpacks words to doublewords.

6.4.6 Extract Data Element
The PEXTRW instruction in SSE takes the word in the designated MMX register selected by the two least
significant bits of the immediate value and moves it to the lower half of a 32-bit integer register. See
Figure 6-5 and Example 6-9.

With SSE2, PEXTRW can extract a word from an XMM register to the lower 16 bits of an integer register.
SSE4.1 provides extraction of a byte, word, dword and qword from an XMM register into either a memory
location or integer register.

Example 6-8. Unpacking Two Packed-word Sources in Non-interleaved Way Code

; Input:
; MM0 packed-word source value
; MM1 packed-word source value
; Output:
; MM0 contains the two low-end words of the
; original sources, non-interleaved
; MM2 contains the two high end words of the
; original sources, non-interleaved.

movq mm2, mm0 ; copy source1
punpckldq mm0, mm1 ; replace the two high-end words of MMO with

; two low-end words of MM1;
; leave the two low-end words of MM0 in place

punpckhdq mm2, mm1 ; move two high-end words of MM2 to the two low-end
; words of MM2; place the two high-end words of
; MM1 in two high-end words of MM2

Figure 6-5. PEXTRW Instruction

OM15163

0 ..0 X1

MM

R32
31 0

31 063

X4 X3 X2 X1

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

6-10

6.4.7 Insert Data Element
The PINSRW instruction in SSE loads a word from the lower half of a 32-bit integer register or from
memory and inserts it in an MMX technology destination register at a position defined by the two least
significant bits of the immediate constant. Insertion is done in such a way that three other words from
the destination register are left untouched. See Figure 6-6 and Example 6-10.

With SSE2, PINSRW can insert a word from the lower 16 bits of an integer register or memory into an
XMM register. SSE4.1 provides insertion of a byte, dword and qword from either a memory location or
integer register into an XMM register.

Example 6-9. PEXTRW Instruction Code

; Input:
; eax source value
; immediate value: “0”
; Output:
; edx 32-bit integer register containing the extracted word in the
; low-order bits & the high-order bits zero-extended
movq mm0, [eax]
pextrw edx, mm0, 0

Figure 6-6. PINSRW Instruction

Example 6-10. PINSRW Instruction Code

; Input:
; edx pointer to source value
; Output:
; mm0 register with new 16-bit value inserted
;
mov eax, [edx]
pinsrw mm0, eax, 1

OM15164

Y2

MM

R32
31 0

31 063

X4 X3 Y1 X1

Y1

6-11

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

If all of the operands in a register are being replaced by a series of PINSRW instructions, it can be useful
to clear the content and break the dependence chain by either using the PXOR instruction or loading the
register. See Example 6-11 and Section 3.5.1.7, “Clearing Registers and Dependency Breaking Idioms.”

6.4.8 Non-Unit Stride Data Movement
SSE4.1 provides instructions to insert a data element from memory into an XMM register, and to extract
a data element from an XMM register into memory directly. Separate instructions are provided to handle
floating-point data and integer byte, word, or dword. These instructions are suited for vectorizing code
that loads/stores non-unit stride data from memory, see Example 6-12.

Example 6-13 provides two examples: using INSERTPS and PEXTRD to perform gather operations on
floating-point data; using EXTRACTPS and PEXTRD to perform scatter operations on floating-point data.

Example 6-11. Repeated PINSRW Instruction Code

; Input:
; edx pointer to structure containing source
; values at offsets: of +0, +10, +13, and +24
; immediate value: “1”
; Output:
; MMX register with new 16-bit value inserted
;

pxor mm0, mm0 ; Breaks dependency on previous value of mm0
mov eax, [edx]
pinsrw mm0, eax, 0
mov eax, [edx+10]
pinsrw mm0, eax, 1
mov eax, [edx+13]
pinsrw mm0, eax, 2
mov eax, [edx+24]
pinsrw mm0, eax, 3

Example 6-12. Non-Unit Stride Load/Store Using SSE4.1 Instructions

/* Goal: Non-Unit Stride Load Dwords*/

movd xmm0, [addr]
pinsrd xmm0, [addr + stride], 1
pinsrd xmm0, [addr + 2*stride], 2
pinsrd xmm0, [addr + 3*stride], 3

/* Goal: Non-Unit Stride Store Dwords*/

movd [addr], xmm0
pextrd [addr + stride], xmm0, 1
pextrd [addr + 2*stride], xmm0, 2
pextrd [addr + 3*stride], xmm0, 3

Example 6-13. Scatter and Gather Operations Using SSE4.1 Instructions

/* Goal: Gather Operation*/

movd eax, xmm0
movss xmm1, [addr + 4*eax]
pextrd eax, xmm0, 1
insertps xmm1, [addr + 4*eax], 1
pextrd eax, xmm0, 2
insertps xmm1, [addr + 4*eax], 2
pextrd eax, xmm0, 3
insertps xmm1, [addr + 4*eax], 3

/* Goal: Scatter Operation*/

movd eax, xmm0
movss [addr + 4*eax], xmm1
pextrd eax, xmm0, 1
extractps [addr + 4*eax], xmm1, 1
pextrd eax, xmm0, 2
extractps [addr + 4*eax], xmm1, 2
pextrd eax, xmm0, 3
extractps [addr + 4*eax], xmm1, 3

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

6-12

6.4.9 Move Byte Mask to Integer
The PMOVMSKB instruction returns a bit mask formed from the most significant bits of each byte of its
source operand. When used with 64-bit MMX registers, this produces an 8-bit mask, zeroing out the
upper 24 bits in the destination register. When used with 128-bit XMM registers, it produces a 16-bit
mask, zeroing out the upper 16 bits in the destination register.

The 64-bit version of this instruction is shown in Figure 6-7 and Example 6-14.

6.4.10 Packed Shuffle Word for 64-bit Registers
The PSHUFW instruction uses the immediate (IMM8) operand to select between the four words in either
two MMX registers or one MMX register and a 64-bit memory location. SSE2 provides PSHUFLW to shuffle
the lower four words into an XMM register. In addition to the equivalent to the PSHUFW, SSE2 also
provides PSHUFHW to shuffle the higher four words. Furthermore, SSE2 offers PSHUFD to shuffle four
dwords into an XMM register. All of these four PSHUF instructions use an immediate byte to encode the
data path of individual words within the corresponding 8 bytes from source to destination, shown in Table
6-1.

Figure 6-7. PMOVSMKB Instruction

Example 6-14. PMOVMSKB Instruction Code

; Input:
; source value
; Output:
; 32-bit register containing the byte mask in the lower eight bits
;
movq mm0, [edi]
pmovmskb eax, mm0

OM15165

MM

R32

31 063

0..0

31

0..0

7 0

55 47 39 23 15 7

6-13

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

6.4.11 Packed Shuffle Word for 128-bit Registers
The PSHUFLW/PSHUFHW instruction performs a full shuffle of any source word field within the low/high
64 bits to any result word field in the low/high 64 bits, using an 8-bit immediate operand; other high/low
64 bits are passed through from the source operand.

PSHUFD performs a full shuffle of any double-word field within the 128-bit source to any double-word
field in the 128-bit result, using an 8-bit immediate operand.

No more than 3 instructions, using PSHUFLW/PSHUFHW/PSHUFD, are required to implement many
common data shuffling operations. Broadcast, Swap, and Reverse are illustrated in Example 6-15 and
Example 6-16.

6.4.12 Shuffle Bytes
SSSE3 provides PSHUFB; this instruction carries out byte manipulation within a 16 byte range. PSHUFB
can replace up to 12 other instructions: including SHIFT, OR, AND and MOV.

Use PSHUFB if the alternative uses 5 or more instructions.

Table 6-1. PSHUF Encoding
Bits Words

1 - 0 0

3 - 2 1

5 - 4 2

7 - 6 3

Example 6-15. Broadcast a Word Across XMM, Using 2 SSE2 Instructions

/* Goal: Broadcast the value from word 5 to all words */
/* Instruction Result */

 | 7| 6| 5| 4| 3| 2| 1| 0|

PSHUFHW (3,2,1,1)| 7| 6| 5| 5| 3| 2| 1| 0|

PSHUFD (2,2,2,2) | 5| 5| 5| 5| 5| 5| 5| 5|

Example 6-16. Swap/Reverse words in an XMM, Using 3 SSE2 Instructions

/* Goal: Swap the values in word 6 and word 1 */
/* Instruction Result */

| 7| 6| 5| 4| 3| 2| 1| 0|

PSHUFD (3,0,1,2) | 7| 6| 1| 0| 3| 2| 5| 4|

PSHUFHW (3,1,2,0)| 7| 1| 6| 0| 3| 2| 5| 4|

PSHUFD (3,0,1,2) | 7| 1| 5| 4| 3| 2| 6| 0|

/* Goal: Reverse the order of the words */
/* Instruction Result */

| 7| 6| 5| 4| 3| 2| 1| 0|

PSHUFLW (0,1,2,3)| 7| 6| 5| 4| 0| 1| 2| 3|

PSHUFHW (0,1,2,3)| 4| 5| 6| 7| 0| 1| 2| 3|

PSHUFD (1,0,3,2) | 0| 1| 2| 3| 4| 5| 6| 7|

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

6-14

6.4.13 Conditional Data Movement
SSE4.1 provides two packed blend instructions on byte and word data elements in 128-bit operands.
Packed blend instructions conditionally copies data elements from selected positions in the source to the
corresponding data element using a mask specified by an immediate control byte or an implied XMM
register (XMM0). The mask can be generated by a packed compare instruction for example. Thus packed
blend instructions are most useful for vectorizing conditional flows within a loop and can be more efficient
than inserting single element one at a time for some situations.

6.4.14 Unpacking/interleaving 64-bit Data in 128-bit Registers
The PUNPCKLQDQ/PUNPCHQDQ instructions interleave the low/high-order 64-bits of the source operand
and the low/high-order 64-bits of the destination operand. It then writes the results to the destination
register.

The high/low-order 64-bits of the source operands are ignored.

6.4.15 Data Movement
There are two additional instructions to enable data movement from 64-bit SIMD integer registers to
128-bit SIMD registers.

The MOVQ2DQ instruction moves the 64-bit integer data from an MMX register (source) to a 128-bit
destination register. The high-order 64 bits of the destination register are zeroed-out.

The MOVDQ2Q instruction moves the low-order 64-bits of integer data from a 128-bit source register to
an MMX register (destination).

6.4.16 Conversion Instructions
SSE provides Instructions to support 4-wide conversion of single-precision data to/from double-word
integer data. Conversions between double-precision data to double-word integer data have been added
in SSE2.

SSE4.1 provides 4 rounding instructions to convert floating-point values to integer values with rounding
control specified in a more flexible manner and independent of the rounding control in MXCSR. The
integer values produced by ROUNDxx instructions are maintained as floating-point data.

SSE4.1 also provides instructions to convert integer data from:
• Packed bytes to packed word/dword/qword format using either sign extension or zero extension.
• Packed words to packed dword/qword format using either sign extension or zero extension.
• Packed dword to packed qword format using either sign extension or zero extension.

6.5 GENERATING CONSTANTS
SIMD integer instruction sets do not have instructions that will load immediate constants to the SIMD
registers.

The following code segments generate frequently used constants in the SIMD register. These examples
can also be extended in SSE2 by substituting MMX with XMM registers. See Example 6-17.

6-15

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

NOTE
Because SIMD integer instruction sets do not support shift instructions for bytes, 2n–1
and -2n are relevant only for packed words and packed doublewords.

6.6 BUILDING BLOCKS
This section describes instructions and algorithms which implement common code building blocks.

6.6.1 Absolute Difference of Unsigned Numbers
Example 6-18 computes the absolute difference of two unsigned numbers. It assumes an unsigned
packed-byte data type.

Here, we make use of the subtract instruction with unsigned saturation. This instruction receives
UNSIGNED operands and subtracts them with UNSIGNED saturation. This support exists only for packed
bytes and packed words, not for packed doublewords.

Example 6-17. Generating Constants

pxor mm0, mm0 ; generate a zero register in MM0
pcmpeq mm1, mm1 ; Generate all 1's in register MM1,

; which is -1 in each of the packed
; data type fields

pxor mm0, mm0
pcmpeq mm1, mm1
psubb mm0, mm1 [psubw mm0, mm1] (psubd mm0, mm1)

; three instructions above generate
; the constant 1 in every
; packed-byte [or packed-word]
; (or packed-dword) field

pcmpeq mm1, mm1
psrlw mm1, 16-n(psrld mm1, 32-n)

; two instructions above generate
; the signed constant 2n–1 in every
; packed-word (or packed-dword) field

pcmpeq mm1, mm1
psllw mm1, n (pslld mm1, n)

; two instructions above generate
; the signed constant -2n in every
; packed-word (or packed-dword) field

Example 6-18. Absolute Difference of Two Unsigned Numbers

; Input:
; MM0 source operand
; MM1 source operand
; Output:
; MM0 absolute difference of the unsigned operands

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

6-16

This example will not work if the operands are signed. Note that PSADBW may also be used in some situ-
ations. See Section 6.6.9 for details.

6.6.2 Absolute Difference of Signed Numbers
Example 6-19 computes the absolute difference of two signed numbers using SSSE3 instruction PABSW.
This sequence is more efficient than using previous generation of SIMD instruction extensions.

6.6.3 Absolute Value
Example 6-20 show an MMX code sequence to compute |X|, where X is signed. This example assumes
signed words to be the operands.

With SSSE3, this sequence of three instructions can be replaced by the PABSW instruction. Additionally,
SSSE3 provides a 128-bit version using XMM registers and supports byte, word and doubleword granu-
larity.

NOTE
The absolute value of the most negative number (that is, 8000H for 16-bit) cannot be
represented using positive numbers. This algorithm will return the original value for the
absolute value (8000H).

movq mm2, mm0 ; make a copy of mm0
psubusbmm0, mm1 ; compute difference one way
psubusbmm1, mm2 ; compute difference the other way
por mm0, mm1 ; OR them together

Example 6-19. Absolute Difference of Signed Numbers

;Input:
; XMM0 signed source operand
; XMM1 signed source operand

;Output:
; XMM1absolute difference of the unsigned operands

psubw xmm0, xmm1 ; subtract words
pabsw xmm1, xmm0 ; results in XMM1

Example 6-20. Computing Absolute Value

; Input:
; MM0 signed source operand
; Output:
; MM1 ABS(MMO)
pxor mm1, mm1 ; set mm1 to all zeros
psubw mm1, mm0 ; make each mm1 word contain the

 ; negative of each mm0 word
pmaxswmm1, mm0 ; mm1 will contain only the positive

 ; (larger) values - the absolute value

Example 6-18. Absolute Difference of Two Unsigned Numbers (Contd.)

6-17

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

6.6.4 Pixel Format Conversion
SSSE3 provides the PSHUFB instruction to carry out byte manipulation within a 16-byte range. PSHUFB
can replace a set of up to 12 other instruction, including SHIFT, OR, AND and MOV.

Use PSHUFB if the alternative code uses 5 or more instructions. Example 6-21 shows the basic form of
conversion of color pixel formats.

Example 6-22 and Example 6-23 show SSE2 code and SSSE3 code for pixel format conversion. In the
SSSE3 example, PSHUFB replaces six SSE2 instructions.

Example 6-21. Basic C Implementation of RGBA to BGRA Conversion

Standard C Code:
struct RGBA{BYTE r,g,b,a;};
struct BGRA{BYTE b,g,r,a;};

void BGRA_RGBA_Convert(BGRA *source, RGBA *dest, int num_pixels)
{

for(int i = 0; i < num_pixels; i++){
dest[i].r = source[i].r;
dest[i].g = source[i].g;
dest[i].b = source[i].b;
dest[i].a = source[i].a;

}
}

Example 6-22. Color Pixel Format Conversion Using SSE2

; Optimized for SSE2

mov esi, src
mov edi, dest
mov ecx, iterations
movdqa xmm0, ag_mask //{0,ff,0,ff,0,ff,0,ff,0,ff,0,ff,0,ff,0,ff}
movdqa xmm5, rb_mask //{ff,0,ff,0,ff,0,ff,0,ff,0,ff,0,ff,0,ff,0}
mov eax, remainder

convert16Pixs: // 16 pixels, 64 byte per iteration
movdqa xmm1, [esi] // xmm1 = [r3g3b3a3,r2g2b2a2,r1g1b1a1,r0g0b0a0]
movdqa xmm2, xmm1
movdqa xmm7, xmm1 //xmm7 abgr
psrld xmm2, 16 //xmm2 00ab
pslld xmm1, 16 //xmm1 gr00

por xmm1, xmm2 //xmm1 grab
pand xmm7, xmm0 //xmm7 a0g0
pand xmm1, xmm5 //xmm1 0r0b
por xmm1, xmm7 //xmm1 argb
movdqa [edi], xmm1

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

6-18

6.6.5 Endian Conversion
The PSHUFB instruction can also be used to reverse byte ordering within a doubleword. It is more effi-
cient than traditional techniques, such as BSWAP.

Example 6-24 (a) shows the traditional technique using four BSWAP instructions to reverse the bytes
within a DWORD. Each BSWAP requires executing two micro-ops. In addition, the code requires 4 loads
and 4 stores for processing 4 DWORDs of data.

Example 6-24 (b) shows an SSSE3 implementation of endian conversion using PSHUFB. The reversing of
four DWORDs requires one load, one store, and PSHUFB.

On Intel Core microarchitecture, reversing 4 DWORDs using PSHUFB can be approximately twice as fast
as using BSWAP.

//repeats for another 3*16 bytes
…

add esi, 64
add edi, 64
sub ecx, 1
jnz convert16Pixs

Example 6-23. Color Pixel Format Conversion Using SSSE3

; Optimized for SSSE3

mov esi, src
mov edi, dest
mov ecx, iterations
movdqa xmm0, _shufb

// xmm0 = [15,12,13,14,11,8,9,10,7,4,5,6,3,0,1,2]
mov eax, remainder

convert16Pixs: // 16 pixels, 64 byte per iteration
movdqa xmm1, [esi]

// xmm1 = [r3g3b3a3,r2g2b2a2,r1g1b1a1,r0g0b0a0]
movdqa xmm2, [esi+16]
pshufb xmm1, xmm0

// xmm1 = [b3g3r3a3,b2g2r2a2,b1g1r1a1,b0g0r0a0]
movdqa [edi], xmm1

//repeats for another 3*16 bytes

…

add esi, 64
add edi, 64
sub ecx, 1
jnz convert16Pixs

Example 6-22. Color Pixel Format Conversion Using SSE2 (Contd.)

6-19

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

6.6.6 Clipping to an Arbitrary Range [High, Low]
This section explains how to clip a values to a range [HIGH, LOW]. Specifically, if the value is less than
LOW or greater than HIGH, then clip to LOW or HIGH, respectively. This technique uses the packed-add
and packed-subtract instructions with saturation (signed or unsigned), which means that this technique
can only be used on packed-byte and packed-word data types.

The examples in this section use the constants PACKED_MAX and PACKED_MIN and show operations on
word values. For simplicity, we use the following constants (corresponding constants are used in case the
operation is done on byte values):

PACKED_MAX equals 0X7FFF7FFF7FFF7FFF
PACKED_MIN equals 0X8000800080008000
PACKED_LOW contains the value LOW in all four words of the packed-words data type
PACKED_HIGH contains the value HIGH in all four words of the packed-words data type
PACKED_USMAX all values equal 1
HIGH_US adds the HIGH value to all data elements (4 words) of PACKED_MIN
LOW_US adds the LOW value to all data elements (4 words) of PACKED_MIN

6.6.6.1 Highly Efficient Clipping
For clipping signed words to an arbitrary range, the PMAXSW and PMINSW instructions may be used. For
clipping unsigned bytes to an arbitrary range, the PMAXUB and PMINUB instructions may be used.

Example 6-24. Big-Endian to Little-Endian Conversion

;;(a) Using BSWAP
lea eax, src

lea ecx, dst
mov edx, elCount

start:
mov edi, [eax]
mov esi, [eax+4]
bswap edi
mov ebx, [eax+8]

;; (b) Using PSHUFB
__declspec(align(16)) BYTE bswapMASK[16] =
{3,2,1,0, 7,6,5,4, 11,10,9,8, 15,14,13,12};

lea eax, src
lea ecx, dst
mov edx, elCount
movaps xmm7, bswapMASK

start:
movdqa xmm0, [eax]

bswap esi
mov ebp, [eax+12]
mov [ecx], edi
mov [ecx+4], esi
bswap ebx
mov [ecx+8], ebx
bswap ebp
mov [ecx+12], ebp

pshufb xmm0, xmm7
movdqa [ecx], xmm0
add eax, 16
add ecx, 16
sub edx, 4
jnz start

add eax, 16
add ecx, 16
sub edx, 4
jnz start

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

6-20

Example 6-25 shows how to clip signed words to an arbitrary range; the code for clipping unsigned bytes
is similar.

With SSE4.1, Example 6-25 can be easily extended to clip signed bytes, unsigned words, signed and
unsigned dwords.

The code above converts values to unsigned numbers first and then clips them to an unsigned range. The
last instruction converts the data back to signed data and places the data within the signed range.

Conversion to unsigned data is required for correct results when (High - Low) < 0X8000. If (High - Low)
>= 0X8000, simplify the algorithm as in Example 6-27.

This algorithm saves a cycle when it is known that (High - Low) >= 0x8000. The three-instruction algo-
rithm does not work when (High - Low) < 0x8000 because 0xffff minus any number < 0x8000 will yield
a number greater in magnitude than 0x8000 (which is a negative number).

When the second instruction, psubssw MM0, (0xffff - High + Low) in the three-step algorithm
(Example 6-27) is executed, a negative number is subtracted. The result of this subtraction causes the
values in MM0 to be increased instead of decreased, as should be the case, and an incorrect answer is
generated.

Example 6-25. Clipping to a Signed Range of Words [High, Low]

; Input:
; MM0 signed source operands
; Output:
; MM0 signed words clipped to the signed
; range [high, low]
pminsw mm0, packed_high
pmaxswmm0, packed_low

Example 6-26. Clipping to an Arbitrary Signed Range [High, Low]

; Input:
; MM0 signed source operands
; Output:
; MM1 signed operands clipped to the unsigned
; range [high, low]

paddw mm0, packed_min ; add with no saturation
; 0x8000 to convert to unsigned

padduswmm0, (packed_usmax - high_us)
; in effect this clips to high

psubuswmm0, (packed_usmax - high_us + low_us)
; in effect this clips to low

paddw mm0, packed_low ; undo the previous two offsets

Example 6-27. Simplified Clipping to an Arbitrary Signed Range

; Input: MM0 signed source operands
; Output: MM1 signed operands clipped to the unsigned
; range [high, low]
paddssw mm0, (packed_max - packed_high)

; in effect this clips to high
psubssw mm0, (packed_usmax - packed_high + packed_low)

; clips to low
paddw mm0, low ; undo the previous two offsets

6-21

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

6.6.6.2 Clipping to an Arbitrary Unsigned Range [High, Low]
Example 6-28 clips an unsigned value to the unsigned range [High, Low]. If the value is less than low or
greater than high, then clip to low or high, respectively. This technique uses the packed-add and packed-
subtract instructions with unsigned saturation, thus the technique can only be used on packed-bytes and
packed-words data types.

Figure 6-28 illustrates operation on word values.

6.6.7 Packed Max/Min of Byte, Word and Dword
The PMAXSW instruction returns the maximum between four signed words in either of two SIMD regis-
ters, or one SIMD register and a memory location.

The PMINSW instruction returns the minimum between the four signed words in either of two SIMD regis-
ters, or one SIMD register and a memory location.

The PMAXUB instruction returns the maximum between the eight unsigned bytes in either of two SIMD
registers, or one SIMD register and a memory location.

The PMINUB instruction returns the minimum between the eight unsigned bytes in either of two SIMD
registers, or one SIMD register and a memory location.

SSE2 extended PMAXSW/PMAXUB/PMINSW/PMINUB to 128-bit operations. SSE4.1 adds 128-bit opera-
tions for signed bytes, unsigned word, signed and unsigned dword.

6.6.8 Packed Multiply Integers
The PMULHUW/PMULHW instruction multiplies the unsigned/signed words in the destination operand
with the unsigned/signed words in the source operand. The high-order 16 bits of the 32-bit intermediate
results are written to the destination operand. The PMULLW instruction multiplies the signed words in the
destination operand with the signed words in the source operand. The low-order 16 bits of the 32-bit
intermediate results are written to the destination operand.

SSE2 extended PMULHUW/PMULHW/PMULLW to 128-bit operations and adds PMULUDQ.

The PMULUDQ instruction performs an unsigned multiply on the lower pair of double-word operands
within 64-bit chunks from the two sources; the full 64-bit result from each multiplication is returned to
the destination register.

This instruction is added in both a 64-bit and 128-bit version; the latter performs 2 independent opera-
tions, on the low and high halves of a 128-bit register.

SSE4.1 adds 128-bit operations of PMULDQ and PMULLD. The PMULLD instruction multiplies the signed
dwords in the destination operand with the signed dwords in the source operand. The low-order 32 bits
of the 64-bit intermediate results are written to the destination operand. The PMULDQ instruction multi-
plies the two low-order, signed dwords in the destination operand with the two low-order, signed dwords
in the source operand and stores two 64-bit results in the destination operand.

Example 6-28. Clipping to an Arbitrary Unsigned Range [High, Low]

; Input:
; MM0 unsigned source operands
; Output:
; MM1 unsigned operands clipped to the unsigned
; range [HIGH, LOW]
paddusw mm0, 0xffff - high

; in effect this clips to high
psubusw mm0, (0xffff - high + low)

; in effect this clips to low
paddw mm0, low

; undo the previous two offsets

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

6-22

6.6.9 Packed Sum of Absolute Differences
The PSADBW instruction computes the absolute value of the difference of unsigned bytes for either two
SIMD registers, or one SIMD register and a memory location. The differences of 8 pairs of unsigned bytes
are then summed to produce a word result in the lower 16-bit field, and the upper three words are set to
zero. With SSE2, PSADBW is extended to compute two word results.

The subtraction operation presented above is an absolute difference. That is, T = ABS(X-Y). Byte values
are stored in temporary space, all values are summed together, and the result is written to the lower
word of the destination register.

Motion estimation involves searching reference frames for best matches. Sum absolute difference (SAD)
on two blocks of pixels is a common ingredient in video processing algorithms to locate matching blocks
of pixels. PSADBW can be used as building blocks for finding best matches by way of calculating SAD
results on 4x4, 8x4, 8x8 blocks of pixels.

6.6.10 MPSADBW and PHMINPOSUW
The MPSADBW instruction in SSE4.1 performs eight SAD operations. Each SAD operation produces a
word result from 4 pairs of unsigned bytes. With 8 SAD result in an XMM register, PHMINPOSUM can help
search for the best match between eight 4x4 pixel blocks.

For motion estimation algorithms, MPSADBW is likely to improve over PSADBW in several ways:
• Simplified data movement to construct packed data format for SAD computation on pixel blocks.
• Higher throughput in terms of SAD results per iteration (less iteration required per frame).
• MPSADBW results are amenable to efficient search using PHMINPOSUW.

Examples of MPSADBW vs. PSADBW for 4x4 and 8x8 block search can be found in the white paper listed
in the reference section of Chapter 1.

6.6.11 Packed Average (Byte/Word)
The PAVGB and PAVGW instructions add the unsigned data elements of the source operand to the
unsigned data elements of the destination register, along with a carry-in. The results of the addition are
then independently shifted to the right by one bit position. The high order bits of each element are filled
with the carry bits of the corresponding sum.

The destination operand is an SIMD register. The source operand can either be an SIMD register or a
memory operand.

The PAVGB instruction operates on packed unsigned bytes and the PAVGW instruction operates on
packed unsigned words.

6.6.12 Complex Multiply by a Constant
Complex multiplication is an operation which requires four multiplications and two additions. This is
exactly how the PMADDWD instruction operates. In order to use this instruction, you need to format the
data into multiple 16-bit values. The real and imaginary components should be 16-bits each. Consider
Example 6-29, which assumes that the 64-bit MMX registers are being used:
• Let the input data be DR and DI, where DR is real component of the data and DI is imaginary

component of the data.
• Format the constant complex coefficients in memory as four 16-bit values [CR -CI CI CR]. Remember

to load the values into the MMX register using MOVQ.
• The real component of the complex product is PR = DR*CR - DI*CI and the imaginary component of

the complex product is PI = DR*CI + DI*CR.

6-23

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

• The output is a packed doubleword. If needed, a pack instruction can be used to convert the result to
16-bit (thereby matching the format of the input).

6.6.13 Packed 64-bit Add/Subtract
The PADDQ/PSUBQ instructions add/subtract quad-word operands within each 64-bit chunk from the two
sources; the 64-bit result from each computation is written to the destination register. Like the integer
ADD/SUB instruction, PADDQ/PSUBQ can operate on either unsigned or signed (two’s complement nota-
tion) integer operands.

When an individual result is too large to be represented in 64-bits, the lower 64-bits of the result are
written to the destination operand and therefore the result wraps around. These instructions are added
in both a 64-bit and 128-bit version; the latter performs 2 independent operations, on the low and high
halves of a 128-bit register.

6.6.14 128-bit Shifts
The PSLLDQ/PSRLDQ instructions shift the first operand to the left/right by the number of bytes specified
by the immediate operand. The empty low/high-order bytes are cleared (set to zero).

If the value specified by the immediate operand is greater than 15, then the destination is set to all zeros.

6.6.15 PTEST and Conditional Branch
SSE4.1 offers PTEST instruction that can be used in vectorizing loops with conditional branches. PTEST is
an 128-bit version of the general-purpose instruction TEST. The ZF or CF field of the EFLAGS register are
modified as a result of PTEST.

Example 6-30(a) depicts a loop that requires a conditional branch to handle the special case of divide-by-
zero. In order to vectorize such loop, any iteration that may encounter divide-by-zero must be treated
outside the vectorizable iterations.

Example 6-29. Complex Multiply by a Constant

; Input:
; MM0 complex value, Dr, Di
; MM1 constant complex coefficient in the form
; [Cr -Ci Ci Cr]
; Output:
; MM0 two 32-bit dwords containing [Pr Pi]
;
punpckldq mm0, mm0 ; makes [dr di dr di]
pmaddwd mm0, mm1 ; done, the result is

 ; [(Dr*Cr-Di*Ci)(Dr*Ci+Di*Cr)]

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

6-24

Example 6-30(b) shows an assembly sequence that uses PTEST to cause an early-out branch whenever
any one of the four floating-point values in xmm0 is zero. The fall-through path enables the rest of the
floating-point calculations to be vectorized because none of the four values are zero.

6.6.16 Vectorization of Heterogeneous Computations across Loop Iterations
Vectorization techniques on unrolled loops generally rely on repetitive, homogeneous operations
between each loop iteration. Using variable blend instructions, vectorization of heterogeneous operations
across loop iterations may be possible.

Example 6-31(a) depicts a simple heterogeneous loop. The heterogeneous operation and conditional
branch makes simple loop-unrolling techniques infeasible for vectorization.

Example 6-30. Using PTEST to Separate Vectorizable and non-Vectorizable Loop Iterations

(a) /* Loops requiring infrequent exception
handling*/
float a[CNT];
unsigned int i;

for (i=0;i<CNT;i++)
{

if (a[i] != 0.0)
{ a[i] = 1.0f/a[i];
}
else
{ call DivException();
}

}

(b) /* PTEST enables early out to handle infrequent, non-vectorizable
portion*/

xor eax,eax
movaps xmm7, [all_ones]
xorps xmm6, xmm6

lp:
movaps xmm0, a[eax]
cmpeqps xmm6, xmm0 ; convert each non-zero to ones
ptest xmm6, xmm7
jnc zero_present; carry will be set if all 4 were non-zero
movaps xmm1,[_1_0f_]
divps xmm1, xmm0
movaps a[eax], xmm1
add eax, 16
cmp eax, CNT
jnz lp
jmp end

zero_present:
// execute one by one, call
// exception when value is zero

Example 6-31. Using Variable BLEND to Vectorize Heterogeneous Loops

(a) /* Loops with heterogeneous operation
across iterations*/
float a[CNT];
unsigned int i;

for (i=0;i<CNT;i++)
{

if (a[i] > b[i])
{ a[i] += b[i]; }
else
{ a[i] -= b[i]; }

}

(b) /* Vectorize Condition Flow with BLENDVPS*/
xor eax,eax

lp:
movaps xmm0, a[eax]
movaps xmm1, b[eax]
movaps xmm2, xmm0
// compare a and b values
cmpgtps xmm0, xmm1
// xmm3 - will hold -b
movaps xmm3, [SIGN_BIT_MASK]
xorps xmm3, xmm1

6-25

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

Example 6-31(b) depicts an assembly sequence that uses BLENDVPS to vectorize the handling of hetero-
geneous computations occurring across four consecutive loop iterations.

6.6.17 Vectorization of Control Flows in Nested Loops
The PTEST and BLENDVPx instructions can be used as building blocks to vectorize more complex control-
flow statements, where each control flow statement is creating a “working” mask used as a predicate of
which the conditional code under the mask will operate.

The Mandelbrot-set map evaluation is useful to illustrate a situation with more complex control flows in
nested loops. The Mandelbrot-set is a set of height values mapped to a 2-D grid. The height value is the
number of Mandelbrot iterations (defined over the complex number space as In = In-1

2 + I0) needed to
get |In| > 2. It is common to limit the map generation by setting some maximum threshold value of the
height, all other points are assigned with a height equal to the threshold. Example 6-32 shows an
example of Mandelbrot map evaluation implemented in C.

// select values for the add operation,
// true condition produce a+b, false will become a+(-b)

// blend mask is xmm0
blendvps xmm1,xmm3, xmm0
addps xmm2, xmm1
movaps a[eax], xmm2
add eax, 16
cmp eax, CNT
jnz lp

Example 6-32. Baseline C Code for Mandelbrot Set Map Evaluation

#define DIMX (64)
#define DIMY (64)
#define X_STEP (0.5f/DIMX)
#define Y_STEP (0.4f/(DIMY/2))
int map[DIMX][DIMY];

void mandelbrot_C()
{ int i,j;

float x,y;
for (i=0,x=-1.8f;i<DIMX;i++,x+=X_STEP)
{

for (j=0,y=-0.2f;j<DIMY/2;j++,y+=Y_STEP)
{float sx,sy;

int iter = 0;
sx = x;
sy = y;

Example 6-31. Using Variable BLEND to Vectorize Heterogeneous Loops (Contd.)

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

6-26

Example 6-33 shows a vectorized implementation of Mandelbrot map evaluation. Vectorization is not
done on the inner most loop, because the presence of the break statement implies the iteration count will
vary from one pixel to the next. The vectorized version take into account the parallel nature of 2-D,
vectorize over four iterations of Y values of 4 consecutive pixels, and conditionally handles three
scenarios:
• In the inner most iteration, when all 4 pixels do not reach break condition, vectorize 4 pixels.
• When one or more pixels reached break condition, use blend intrinsics to accumulate the complex

height vector for the remaining pixels not reaching the break condition and continue the inner
iteration of the complex height vector.

• When all four pixels reached break condition, exit the inner loop.

while (iter < 256)
{ if (sx*sx + sy*sy >= 4.0f) break;

float old_sx = sx;
sx = x + sx*sx - sy*sy;
sy = y + 2*old_sx*sy;
iter++;

}
map[i][j] = iter;

}
}

}

Example 6-33. Vectorized Mandelbrot Set Map Evaluation Using SSE4.1 Intrinsics

__declspec(align(16)) float _INIT_Y_4[4] = {0,Y_STEP,2*Y_STEP,3*Y_STEP};
F32vec4 _F_STEP_Y(4*Y_STEP);
I32vec4 _I_ONE_ = _mm_set1_epi32(1);
F32vec4 _F_FOUR_(4.0f);
F32vec4 _F_TWO_(2.0f);;

void mandelbrot_C()
{ int i,j;

F32vec4 x,y;

for (i = 0, x = F32vec4(-1.8f); i < DIMX; i ++, x += F32vec4(X_STEP))
{

for (j = DIMY/2, y = F32vec4(-0.2f) +
(F32vec4)_INIT_Y_4; j < DIMY; j += 4, y += _F_STEP_Y)

{ F32vec4 sx,sy;
I32vec4 iter = _mm_setzero_si128();
int scalar_iter = 0;
sx = x;
sy = y;

Example 6-32. Baseline C Code for Mandelbrot Set Map Evaluation (Contd.)

6-27

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

6.7 MEMORY OPTIMIZATIONS
You can improve memory access using the following techniques:
• Avoiding partial memory accesses.
• Increasing the bandwidth of memory fills and video fills.
• Prefetching data with Streaming SIMD Extensions. See Chapter 9, “Optimizing Cache Usage.”

MMX registers and XMM registers allow you to move large quantities of data without stalling the
processor. Instead of loading single array values that are 8, 16, or 32 bits long, consider loading the
values in a single quadword or double quadword and then incrementing the structure or array pointer
accordingly.

Any data that will be manipulated by SIMD integer instructions should be loaded using either:
• An SIMD integer instruction that loads a 64-bit or 128-bit operand (for example: MOVQ MM0, M64).
• The register-memory form of any SIMD integer instruction that operates on a quadword or double

quadword memory operand (for example, PMADDW MM0, M64).

All SIMD data should be stored using an SIMD integer instruction that stores a 64-bit or 128-bit operand
(for example: MOVQ M64, MM0).

while (scalar_iter < 256)
{ int mask = 0;

F32vec4 old_sx = sx;
__m128 vmask = _mm_cmpnlt_ps(sx*sx + sy*sy,_F_FOUR_);
// if all data points in our vector are hitting the “exit” condition,
// the vectorized loop can exit
if (_mm_test_all_ones(_mm_castps_si128(vmask)))

break;
(continue)

// if non of the data points are out, we don’t need the extra code which blends the results
if (_mm_test_all_zeros(_mm_castps_si128(vmask),

_mm_castps_si128(vmask)))
{ sx = x + sx*sx - sy*sy;

sy = y + _F_TWO_*old_sx*sy;
iter += _I_ONE_;

}
else
{

// Blended flavour of the code, this code blends values from previous iteration with the values
// from current iteration. Only values which did not hit the “exit” condition are being stored;
// values which are already “out” are maintaining their value

sx = _mm_blendv_ps(x + sx*sx - sy*sy,sx,vmask);
sy = _mm_blendv_ps(y + _F_TWO_*old_sx*sy,sy,vmask);
iter = I32vec4(_mm_blendv_epi8(iter + _I_ONE_,

iter,_mm_castps_si128(vmask)));
}
scalar_iter++;

}
_mm_storeu_si128((__m128i*)&map[i][j],iter);

}
}

}

Example 6-33. Vectorized Mandelbrot Set Map Evaluation Using SSE4.1 Intrinsics (Contd.)

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

6-28

The goal of the above recommendations is twofold. First, the loading and storing of SIMD data is more
efficient using the larger block sizes. Second, following the above recommendations helps to avoid
mixing of 8-, 16-, or 32-bit load and store operations with SIMD integer technology load and store oper-
ations to the same SIMD data.

This prevents situations in which small loads follow large stores to the same area of memory, or large
loads follow small stores to the same area of memory. The Pentium II, Pentium III, and Pentium 4 proces-
sors may stall in such situations. See Chapter 3 for details.

6.7.1 Partial Memory Accesses
Consider a case with a large load after a series of small stores to the same area of memory (beginning at
memory address MEM). The large load stalls in the case shown in Example 6-34.

MOVQ must wait for the stores to write memory before it can access all data it requires. This stall can also
occur with other data types (for example, when bytes or words are stored and then words or double-
words are read from the same area of memory). When you change the code sequence as shown in
Example 6-35, the processor can access the data without delay.

Consider a case with a series of small loads after a large store to the same area of memory (beginning at
memory address MEM), as shown in Example 6-36. Most of the small loads stall because they are not
aligned with the store. See Section 3.6.4, “Store Forwarding,” for details.

The word loads must wait for the quadword store to write to memory before they can access the data
they require. This stall can also occur with other data types (for example: when doublewords or words
are stored and then words or bytes are read from the same area of memory).

Example 6-34. A Large Load after a Series of Small Stores (Penalty)

mov mem, eax ; store dword to address “mem"
mov mem + 4, ebx ; store dword to address “mem + 4"
 :
 :
movq mm0, mem ; load qword at address “mem", stalls

Example 6-35. Accessing Data Without Delay

movd mm1, ebx ; build data into a qword first
; before storing it to memory

movd mm2, eax
psllq mm1, 32

por mm1, mm2
movq mem, mm1 ; store SIMD variable to “mem" as

; a qword
 :
 :
movq mm0, mem ; load qword SIMD “mem", no stall

Example 6-36. A Series of Small Loads After a Large Store

movq mem, mm0 ; store qword to address “mem"
 :
 :
mov bx, mem + 2 ; load word at “mem + 2" stalls
mov cx, mem + 4 ; load word at “mem + 4" stalls

6-29

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

When you change the code sequence as shown in Example 6-37, the processor can access the data
without delay.

These transformations, in general, increase the number of instructions required to perform the desired
operation. For Pentium II, Pentium III, and Pentium 4 processors, the benefit of avoiding forwarding prob-
lems outweighs the performance penalty due to the increased number of instructions.

6.7.2 Increasing Bandwidth of Memory Fills and Video Fills
It is beneficial to understand how memory is accessed and filled. A memory-to-memory fill (for example
a memory-to-video fill) is defined as a 64-byte (cache line) load from memory which is immediately
stored back to memory (such as a video frame buffer).

The following are guidelines for obtaining higher bandwidth and shorter latencies for sequential memory
fills (video fills). These recommendations are relevant for all Intel architecture processors with MMX tech-
nology and refer to cases in which the loads and stores do not hit in the first- or second-level cache.

6.7.2.1 Increasing Memory Bandwidth Using the MOVDQ Instruction
Loading any size data operand will cause an entire cache line to be loaded into the cache hierarchy. Thus,
any size load looks more or less the same from a memory bandwidth perspective. However, using many
smaller loads consumes more microarchitectural resources than fewer larger stores. Consuming too
many resources can cause the processor to stall and reduce the bandwidth that the processor can
request of the memory subsystem.

Using MOVDQ to store the data back to UC memory (or WC memory in some cases) instead of using 32-
bit stores (for example, MOVD) will reduce by three-quarters the number of stores per memory fill cycle.
As a result, using the MOVDQ in memory fill cycles can achieve significantly higher effective bandwidth
than using MOVD.

6.7.2.2 Increasing Memory Bandwidth by Loading and Storing to and from the Same DRAM
Page

DRAM is divided into pages, which are not the same as operating system (OS) pages. The size of a DRAM
page is a function of the total size of the DRAM and the organization of the DRAM. Page sizes of several
Kilobytes are common. Like OS pages, DRAM pages are constructed of sequential addresses. Sequential
memory accesses to the same DRAM page have shorter latencies than sequential accesses to different
DRAM pages.

In many systems the latency for a page miss (that is, an access to a different page instead of the page
previously accessed) can be twice as large as the latency of a memory page hit (access to the same page

Example 6-37. Eliminating Delay for a Series of Small Loads after a Large Store

movq mem, mm0 ; store qword to address “mem"
 :
 :

movq mm1, mem ; load qword at address “mem"
movd eax, mm1 ; transfer “mem + 2" to eax from

; MMX register, not memory

psrlq mm1, 32
shr eax, 16
movd ebx, mm1 ; transfer “mem + 4" to bx from

; MMX register, not memory
and ebx, 0ffffh

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

6-30

as the previous access). Therefore, if the loads and stores of the memory fill cycle are to the same DRAM
page, a significant increase in the bandwidth of the memory fill cycles can be achieved.

6.7.2.3 Increasing UC and WC Store Bandwidth by Using Aligned Stores
Using aligned stores to fill UC or WC memory will yield higher bandwidth than using unaligned stores. If
a UC store or some WC stores cross a cache line boundary, a single store will result in two transaction on
the bus, reducing the efficiency of the bus transactions. By aligning the stores to the size of the stores,
you eliminate the possibility of crossing a cache line boundary, and the stores will not be split into sepa-
rate transactions.

6.7.3 Reverse Memory Copy
Copying blocks of memory from a source location to a destination location in reverse order presents a
challenge for software to make the most out of the machines capabilities while avoiding microarchitec-
tural hazards. The basic, un-optimized C code is shown in Example 6-38.

The simple C code in Example 6-38 is sub-optimal, because it loads and stores one byte at a time (even
in situations that hardware prefetcher might have brought data in from system memory to cache).

Example 6-38. Un-optimized Reverse Memory Copy in C

unsigned char* src;
unsigned char* dst;
while (len > 0)
{
*dst-- = *src++;
--len;
}

6-31

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

Using MOVDQA or MOVDQU, software can load and store up to 16 bytes at a time but must either ensure
16 byte alignment requirement (if using MOVDQA) or minimize the delays MOVDQU may encounter if
data span across cache line boundary.

Given the general problem of arbitrary byte count to copy, arbitrary offsets of leading source byte and
destination bytes, address alignment relative to 16 byte and cache line boundaries, these alignment situ-
ations can be a bit complicated. Figure 6-8 (a) and (b) depict the alignment situations of reverse memory
copy of N bytes.

The general guidelines for dealing with unaligned loads and stores are (in order of importance):
• Avoid stores that span cache line boundaries.
• Minimize the number of loads that span cacheline boundaries.
• Favor 16-byte aligned loads and stores over unaligned versions.

In Figure 6-8 (a), the guidelines above can be applied to the reverse memory copy problem as follows:

1. Peel off several leading destination bytes until it aligns on 16 Byte boundary, then the ensuing
destination bytes can be written to using MOVAPS until the remaining byte count falls below 16 bytes.

2. After the leading source bytes have been peeled (corresponding to step 1 above), the source
alignment in Figure 6-8 (a) allows loading 16 bytes at a time using MOVAPS until the remaining byte
count falls below 16 bytes.

Switching the byte ordering of each 16 bytes of data can be accomplished by a 16-byte mask with
PSHUFB. The pertinent code sequence is shown in Example 6-39.

Figure 6-8. Data Alignment of Loads and Stores in Reverse Memory Copy

C
ach

e Line bo
u

ndary

1
6 B

yte A
ligne

d

Source Bytes

Destination Bytes

N0 1 2 3 4 5 6 ...

Source

Destination

0 1 2 3 4 5 6 ... N

(a)

(b)

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

6-32

In Figure 6-8 (b), we also start with peeling the destination bytes:

1. Peel off several leading destination bytes until it aligns on 16 Byte boundary, then the ensuing
destination bytes can be written to using MOVAPS until the remaining byte count falls below 16 bytes.
However, the remaining source bytes are not aligned on 16 byte boundaries, replacing MOVDQA with
MOVDQU for loads will inevitably run into cache line splits.

2. To achieve higher data throughput than loading unaligned bytes with MOVDQU, the 16 bytes of data
targeted to each of 16 bytes of aligned destination addresses can be assembled using two aligned
loads. This technique is illustrated in Figure 6-9.

Example 6-39. Using PSHUFB to Reverse Byte Ordering 16 Bytes at a Time

__declspec(align(16)) static const unsigned char BswapMask[16] = {15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0};
mov esi, src
mov edi, dst
mov ecx, len
movaps xmm7, BswapMask

start:
movdqa xmm0, [esi]
pshufb xmm0, xmm7
movdqa [edi-16], xmm0

sub edi, 16
add esi, 16
sub ecx, 16
cmp ecx, 32
jae start
//handle left-overs

Figure 6-9. A Technique to Avoid Cacheline Split Loads in Reverse Memory Copy Using Two Aligned
Loads

C
ache

 Line bo
un

dary

16
 B

yte A
ligned

Source Bytes

Destination Bytes

N0 1 2 3 4 5 6 ... Step 1:Pell off
leading bytes

Step1: Pell off
leading bytes

Step2 : Load 2
aligned 16-Byte

Blocks

Reverse byte order In register, Store aligned 16 bytes

POR

POR

6-33

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

6.8 CONVERTING FROM 64-BIT TO 128-BIT SIMD INTEGERS
SSE2 defines a superset of 128-bit integer instructions currently available in MMX technology; the oper-
ation of the extended instructions remains. The superset simply operates on data that is twice as wide.
This simplifies porting of 64-bit integer applications. However, there are few considerations:
• Computation instructions which use a memory operand that may not be aligned to a 16-byte

boundary must be replaced with an unaligned 128-bit load (MOVDQU) followed by the same
computation operation that uses instead register operands.
Use of 128-bit integer computation instructions with memory operands that are not 16-byte aligned
will result in a #GP. Unaligned 128-bit loads and stores are not as efficient as corresponding aligned
versions; this fact can reduce the performance gains when using the 128-bit SIMD integer
extensions.

• General guidelines on the alignment of memory operands are:

— The greatest performance gains can be achieved when all memory streams are 16-byte aligned.

— Reasonable performance gains are possible if roughly half of all memory streams are 16-byte
aligned and the other half are not.

— Little or no performance gain may result if all memory streams are not aligned to 16-bytes. In
this case, use of the 64-bit SIMD integer instructions may be preferable.

• Loop counters need to be updated because each 128-bit integer instruction operates on twice the
amount of data as its 64-bit integer counterpart.

• Extension of the PSHUFW instruction (shuffle word across 64-bit integer operand) across a full 128-
bit operand is emulated by a combination of the following instructions: PSHUFHW, PSHUFLW, and
PSHUFD.

• Use of the 64-bit shift by bit instructions (PSRLQ, PSLLQ) are extended to 128 bits by:

— Use of PSRLQ and PSLLQ, along with masking logic operations.

— A Code sequence rewritten to use the PSRLDQ and PSLLDQ instructions (shift double quad-word
operand by bytes).

6.8.1 SIMD Optimizations and Microarchitectures
Pentium M, Intel Core Solo and Intel Core Duo processors have a different microarchitecture than Intel
NetBurst microarchitecture. The following sections discuss optimizing SIMD code that targets Intel Core
Solo and Intel Core Duo processors.

On Intel Core Solo and Intel Core Duo processors, LDDQU behaves identically to movdqu by loading 16
bytes of data irrespective of address alignment.

6.8.1.1 Packed SSE2 Integer versus MMX Instructions
In general, 128-bit SIMD integer instructions should be favored over 64-bit MMX instructions on Intel
Core Solo and Intel Core Duo processors. This is because:
• Improved decoder bandwidth and more efficient micro-op flows relative to the Pentium M processor.
• Wider width of the XMM registers can benefit code that is limited by either decoder bandwidth or

execution latency. XMM registers can provide twice the space to store data for in-flight execution.
Wider XMM registers can facilitate loop-unrolling or in reducing loop overhead by halving the number
of loop iterations.

In microarchitectures prior to Intel Core microarchitecture, execution throughput of 128-bit SIMD inte-
gration operations is basically the same as 64-bit MMX operations. Some shuffle/unpack/shift operations
do not benefit from the front end improvements. The net impact of using 128-bit SIMD integer instruc-
tion on Intel Core Solo and Intel Core Duo processors is likely to be slightly positive overall, but there
may be a few situations where their use will generate an unfavorable performance impact.

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

6-34

Intel Core microarchitecture generally executes 128-bit SIMD instructions more efficiently than previous
microarchitectures in terms of latency and throughput, many of the limitations specific to Intel Core Duo,
Intel Core Solo processors do not apply. The same is true of Intel Core microarchitecture relative to Intel
NetBurst microarchitectures.

Enhanced Intel Core microarchitecture provides even more powerful 128-bit SIMD execution capabilities
and more comprehensive sets of SIMD instruction extensions than Intel Core microarchitecture. The
integer SIMD instructions offered by SSE4.1 operates on 128-bit XMM register only. All of these highly
encourages software to favor 128-bit vectorizable code to take advantage of processors based on
Enhanced Intel Core microarchitecture and Intel Core microarchitecture.

6.8.1.2 Work-around for False Dependency Issue
In processor based on Nehalem microarchitecture, using the PMOVSX and PMOVZX instructions to
combine data type conversion and data movement in the same instruction will create a false-dependency
due to hardware causes. A simple workaround to avoid the false dependency issue is to use the PMOVSX
and PMOVZX instructions solely for data type conversion and issue a separate instruction to move data
to destination or from origin.

6.9 TUNING PARTIALLY VECTORIZABLE CODE

Some loop structured code are more difficult to vectorize than others. Example 6-41 depicts a loop
carrying out table look-up operation and some arithmetic computation.

Although some of the arithmetic computations and input/output to data array in each iteration can be
easily vectorizable, but the table look-up via an index array is not. This creates different approaches to

Example 6-40. PMOVSX/PMOVZX Work-around to Avoid False Dependency

#issuing the instruction below will create a false dependency on xmm0

pmovzxbd xmm0, dword ptr [eax]

// the above instruction may be blocked if xmm0 are updated by other instructions in flight

..

#Alternate solution to avoid false dependency

movd xmm0, dword ptr [eax] ; OOO hardware can hoist loads to hide latency

pmovsxbd xmm0, xmm0

Example 6-41. Table Look-up Operations in C Code

// pIn1 integer input arrays.
// pOut integer output array.
// count size of array.
// LookUpTable integer values.
TABLE_SIZE size of the look-up table.
for (unsigned i=0; i < count; i++)
{ pOut[i] =

((LookUpTable[pIn1[i] % TABLE_SIZE] + pIn1[i] + 17) | 17
) % 256;

}

6-35

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

tuning. A compiler can take a scalar approach to execute each iteration sequentially. Hand-tuning of such
loops may use a couple of different techniques to handle the non-vectorizable table look-up operation.
One vectorization technique is to load the input data for four iteration at once, then use SSE2 instruction
to shift out individual index out of an XMM register to carry out table look-up sequentially. The shift tech-
nique is depicted by Example 6-42. Another technique is to use PEXTRD in SSE4.1 to extract the index
from an XMM directly and then carry out table look-up sequentially. The PEXTRD technique is depicted by
Example 6-43.

Example 6-42. Shift Techniques on Non-Vectorizable Table Look-up

int modulo[4] = {256-1, 256-1, 256-1, 256-1};
int c[4] = {17, 17, 17, 17};

mov esi, pIn1
mov ebx, pOut
mov ecx, count
mov edx, pLookUpTablePTR
movaps xmm6, modulo
movaps xmm5, c

lloop:
// vectorizable multiple consecutive data accesses

movaps xmm4, [esi] // read 4 indices from pIn1
movaps xmm7, xmm4
pand xmm7, tableSize

//Table look-up is not vectorizable, shift out one data element to look up table one by one
movd eax, xmm7 // get first index
movd xmm0, word ptr[edx + eax*4]
psrldq xmm7, 4
movd eax, xmm7 // get 2nd index
movd xmm1, word ptr[edx + eax*4]
psrldq xmm7, 4
movd eax, xmm7 // get 3rdindex
movd xmm2, word ptr[edx + eax*4]
psrldq xmm7, 4
movd eax, xmm7 // get fourth index
movd xmm3, word ptr[edx + eax*4]

//end of scalar part
//packing

movlhps xmm1,xmm3
psllq xmm1,32
movlhps xmm0,xmm2
orps xmm0,xmm1

//end of packing
(continue)

//Vectorizable computation operations
paddd xmm0, xmm4 //+pIn1
paddd xmm0, xmm5 // +17
por xmm0, xmm5
andps xmm0, xmm6 //mod
movaps [ebx], xmm0

//end of vectorizable operation

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

6-36

add ebx, 16
add esi, 16
add edi, 16
sub ecx, 1
test ecx, ecx
jne lloop

Example 6-43. PEXTRD Techniques on Non-Vectorizable Table Look-up

int modulo[4] = {256-1, 256-1, 256-1, 256-1};
int c[4] = {17, 17, 17, 17};

mov esi, pIn1
mov ebx, pOut
mov ecx, count
mov edx, pLookUpTablePTR
movaps xmm6, modulo
movaps xmm5, c

lloop:
// vectorizable multiple consecutive data accesses

movaps xmm4, [esi] // read 4 indices from pIn1
movaps xmm7, xmm4
pand xmm7, tableSize

//Table look-up is not vectorizable, extract one data element to look up table one by one
movd eax, xmm7 // get first index
mov eax, [edx + eax*4]
movd xmm0, eax

pextrd eax, xmm7, 1 // extract 2nd index
mov eax, [edx + eax*4]
pinsrd xmm0, eax, 1
pextrd eax, xmm7, 2 // extract 2nd index
mov eax, [edx + eax*4]
pinsrd xmm0, eax, 2
pextrd eax, xmm7, 3 // extract 2nd index
mov eax, [edx + eax*4]
pinsrd xmm0, eax, 2

//end of scalar part
//packing not needed
//Vectorizable operations

paddd xmm0, xmm4 //+pIn1
paddd xmm0, xmm5 // +17
por xmm0, xmm5
andps xmm0, xmm6 //mod
movaps [ebx], xmm0
add ebx, 16
add esi, 16
add edi, 16
sub ecx, 1
test ecx, ecx
jne lloop

Example 6-42. Shift Techniques on Non-Vectorizable Table Look-up (Contd.)

6-37

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

The effectiveness of these two hand-tuning techniques on partially vectorizable code depends on the
relative cost of transforming data layout format using various forms of pack and unpack instructions.

The shift technique requires additional instructions to pack scalar table values into an XMM to transition
into vectorized arithmetic computations. The net performance gain or loss of this technique will vary with
the characteristics of different microarchitectures. The alternate PEXTRD technique uses less instruction
to extract each index, does not require extraneous packing of scalar data into packed SIMD data format
to begin vectorized arithmetic computation.

6.10 PARALLEL MODE AES ENCRYPTION AND DECRYPTION
To deliver optimal encryption and decryption throughput using AESNI, software can optimize by re-
ordering the computations and working on multiple blocks in parallel. This can speed up encryption (and
decryption) in parallel modes of operation such as ECB, CTR, and CBC-Decrypt (comparing to CBC-
Encrypt which is serial mode of operation). See details in Recommendation for Block Cipher Modes of
Operation?. The Related Documentation section provides a pointer to this document.

In Sandy Bridge microarchitecture, the AES round instructions (AESENC / AESECNLAST / AESDEC /
AESDECLAST) have a throughput of one cycle and latency of eight cycles. This allows independent AES
instructions for multiple blocks to be dispatched every cycle, if data can be provided sufficiently fast.
Compared to the prior Westmere microarchitecture, where these instructions have throughput of two
cycles and a latency of six cycles, the AES encryption/decryption throughput can be significantly
increased for parallel modes of operation.

To achieve optimal parallel operation with multiple blocks, write the AES software sequences in a way
that it computes one AES round on multiple blocks, using one Round Key, and then it continues to
compute the subsequent round for multiple blocks, using another Round Key.

For such software optimization, you need to define the number of blocks that are processed in parallel.
In Sandy Bridge microarchitecture, the optimal parallelization parameter is eight blocks, compared to
four blocks on prior microarchitecture.

6.10.1 AES Counter Mode of Operation
Example 6-44 is an example of a function that implements the Counter Mode (CTR mode) of operations
while operating on eight blocks in parallel. The following pseudo-code encrypts n data blocks of 16 byte
each (PT[i]):

Example 6-45 in the following pages show the assembly implementation of the above code, optimized for
Sandy Bridge microarchitecture.

Example 6-44. Pseudo-Code Flow of AES Counter Mode Operation

CTRBLK := NONCE || IV || ONE
FOR i := 1 to n-1 DO

CT[i] := PT[i] XOR AES(CTRBLK)
CTRBLK := CTRBLK + 1) % 256;

END
CT[n] := PT[n] XOR TRUNC(AES(CTRBLK)) CTRBLK := NONCE || IV || ONE
FOR i := 1 to n-1 DO

CT[i] := PT[i] XOR AES(CTRBLK)// CT [i] is the i-th ciphetext block
CTRBLK := CTRBLK + 1

END
CT[n]:= PT[n] XOR TRUNC(AES(CTRBLK))

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

6-38

Example 6-45. AES128-CTR Implementation with Eight Block in Parallel

/***/
/* This function encrypts an input buffer using AES in CTR mode */
/* The parameters: */
/* const unsigned char *in - pointer to the palintext for encryption or */
/* ciphertextfor decryption */
/* unsigned char *out - pointer to the buffer where the encrypted/decrypted*/
/* data will be stored */
/* const unsigned char ivec[8] - 8 bytes of the initialization vector */
/* const unsigned char nonce[4] - 4 bytes of the nonce */
/* const unsigned long length - the length of the input in bytes */
/* int number_of_rounds - number of AES round. 10 = AES128, 12 = AES192, 14 = AES256 */
/* unsigned char *key_schedule - pointer to the AES key schedule */
/***/
//void AES_128_CTR_encrypt_parallelize_8_blocks_unrolled (
// const unsigned char *in,
// unsigned char *out,
// const unsigned char ivec[8],
// const unsigned char nonce[4],
// const unsigned long length,
// unsigned char *key_schedule)
.align 16,0x90
.align 16
ONE: .quad 0x00000000,0x00000001
.align 16
FOUR: .quad 0x00000004,0x00000004
.align 16
EIGHT: .quad 0x00000008,0x00000008

(continue)

.align 16
TWO_N_ONE: .quad 0x00000002,0x00000001
.align 16
TWO_N_TWO: .quad 0x00000002,0x00000002
.align 16
LOAD_HIGH_BROADCAST_AND_BSWAP: .byte 15,14,13,12,11,10,9,8

.byte 15,14,13,12,11,10,9,8
align 16
BSWAP_EPI_64: .byte 7,6,5,4,3,2,1,0

.byte 15,14,13,12,11,10,9,8

6-39

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

.globl AES_CTR_encrypt

AES_CTR_encrypt:
parameter 1: %rdi # parameter 2: %rsi
parameter 3: %rdx # parameter 4: %rcx
parameter 5: %r8 # parameter 6: %r9
parameter 7: 8 + %rsp
movq %r8, %r10
 movl 8(%rsp), %r12d
 shrq $4, %r8
 shlq $60, %r10
 je NO_PARTS
 addq $1, %r8
NO_PARTS:
 movq %r8, %r10
 shlq $61, %r10
 shrq $61, %r10

 pinsrq $1, (%rdx), %xmm0
 pinsrd $1, (%rcx), %xmm0
 psrldq $4, %xmm0
 movdqa %xmm0, %xmm4
 pshufb (LOAD_HIGH_BROADCAST_AND_BSWAP), %xmm4
 paddq (TWO_N_ONE), %xmm4
 movdqa %xmm4, %xmm1
 paddq (TWO_N_TWO), %xmm4
 movdqa %xmm4, %xmm2
 paddq (TWO_N_TWO), %xmm4
 movdqa %xmm4, %xmm3
 paddq (TWO_N_TWO), %xmm4
 pshufb (BSWAP_EPI_64), %xmm1
 pshufb (BSWAP_EPI_64), %xmm2
 pshufb (BSWAP_EPI_64), %xmm3
 pshufb (BSWAP_EPI_64), %xmm4

shrq $3, %r8
 je REMAINDER
 subq $128, %rsi
 subq $128, %rdi

(continue)

Example 6-45. AES128-CTR Implementation with Eight Block in Parallel (Contd.)

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

6-40

LOOP:
 addq $128, %rsi
 addq $128, %rdi

 movdqa %xmm0, %xmm7
 movdqa %xmm0, %xmm8
 movdqa %xmm0, %xmm9
 movdqa %xmm0, %xmm10
 movdqa %xmm0, %xmm11
 movdqa %xmm0, %xmm12
 movdqa %xmm0, %xmm13
 movdqa %xmm0, %xmm14

 shufpd $2, %xmm1, %xmm7
 shufpd $0, %xmm1, %xmm8
 shufpd $2, %xmm2, %xmm9
 shufpd $0, %xmm2, %xmm10
 shufpd $2, %xmm3, %xmm11
 shufpd $0, %xmm3, %xmm12
 shufpd $2, %xmm4, %xmm13
 shufpd $0, %xmm4, %xmm14

 pshufb (BSWAP_EPI_64), %xmm1
 pshufb (BSWAP_EPI_64), %xmm2
 pshufb (BSWAP_EPI_64), %xmm3
 pshufb (BSWAP_EPI_64), %xmm4

 movdqa (%r9), %xmm5
 movdqa 16(%r9), %xmm6

 paddq (EIGHT), %xmm1
 paddq (EIGHT), %xmm2
 paddq (EIGHT), %xmm3
 paddq (EIGHT), %xmm4

 pxor %xmm5, %xmm7
 pxor %xmm5, %xmm8
 pxor %xmm5, %xmm9
 pxor %xmm5, %xmm10

 pxor %xmm5, %xmm11
 pxor %xmm5, %xmm12
 pxor %xmm5, %xmm13
 pxor %xmm5, %xmm14

 pshufb (BSWAP_EPI_64), %xmm1
 pshufb (BSWAP_EPI_64), %xmm2
 pshufb (BSWAP_EPI_64), %xmm3
 pshufb (BSWAP_EPI_64), %xmm4

(continue)

Example 6-45. AES128-CTR Implementation with Eight Block in Parallel (Contd.)

6-41

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

 aesenc %xmm6, %xmm7
 aesenc %xmm6, %xmm8
 aesenc %xmm6, %xmm9
 aesenc %xmm6, %xmm10
 aesenc %xmm6, %xmm11
 aesenc %xmm6, %xmm12
 aesenc %xmm6, %xmm13
 aesenc %xmm6, %xmm14

 movdqa 32(%r9), %xmm5
 movdqa 48(%r9), %xmm6

 aesenc %xmm5, %xmm7
 aesenc %xmm5, %xmm8
 aesenc %xmm5, %xmm9
 aesenc %xmm5, %xmm10
 aesenc %xmm5, %xmm11
 aesenc %xmm5, %xmm12
 aesenc %xmm5, %xmm13
 aesenc %xmm5, %xmm14

 aesenc %xmm6, %xmm7
 aesenc %xmm6, %xmm8
 aesenc %xmm6, %xmm9
 aesenc %xmm6, %xmm10
 aesenc %xmm6, %xmm11
 aesenc %xmm6, %xmm12
 aesenc %xmm6, %xmm13
 aesenc %xmm6, %xmm14

 movdqa 64(%r9), %xmm5
 movdqa 80(%r9), %xmm6

 aesenc %xmm5, %xmm7
 aesenc %xmm5, %xmm8
 aesenc %xmm5, %xmm9
 aesenc %xmm5, %xmm10
 aesenc %xmm5, %xmm11
 aesenc %xmm5, %xmm12
 aesenc %xmm5, %xmm13
 aesenc %xmm5, %xmm14

 aesenc %xmm6, %xmm7
 aesenc %xmm6, %xmm8
 aesenc %xmm6, %xmm9
 aesenc %xmm6, %xmm10
 aesenc %xmm6, %xmm11
 aesenc %xmm6, %xmm12
 aesenc %xmm6, %xmm13
 aesenc %xmm6, %xmm14

(continue)

Example 6-45. AES128-CTR Implementation with Eight Block in Parallel (Contd.)

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

6-42

 movdqa 96(%r9), %xmm5
 movdqa 112(%r9), %xmm6

 aesenc %xmm5, %xmm7
 aesenc %xmm5, %xmm8
 aesenc %xmm5, %xmm9
 aesenc %xmm5, %xmm10
 aesenc %xmm5, %xmm11
 aesenc %xmm5, %xmm12
 aesenc %xmm5, %xmm13
 aesenc %xmm5, %xmm14

 aesenc %xmm6, %xmm7
 aesenc %xmm6, %xmm8
 aesenc %xmm6, %xmm9
 aesenc %xmm6, %xmm10
 aesenc %xmm6, %xmm11
 aesenc %xmm6, %xmm12
 aesenc %xmm6, %xmm13
 aesenc %xmm6, %xmm14

 movdqa 128(%r9), %xmm5
 movdqa 144(%r9), %xmm6
 movdqa 160(%r9), %xmm15
 cmp $12, %r12d

 aesenc %xmm5, %xmm7
 aesenc %xmm5, %xmm8
 aesenc %xmm5, %xmm9
 aesenc %xmm5, %xmm10
 aesenc %xmm5, %xmm11
 aesenc %xmm5, %xmm12
 aesenc %xmm5, %xmm13
 aesenc %xmm5, %xmm14

 aesenc %xmm6, %xmm7
 aesenc %xmm6, %xmm8
 aesenc %xmm6, %xmm9
 aesenc %xmm6, %xmm10
 aesenc %xmm6, %xmm11
 aesenc %xmm6, %xmm12
 aesenc %xmm6, %xmm13
 aesenc %xmm6, %xmm14

 jb LAST

(continue)

Example 6-45. AES128-CTR Implementation with Eight Block in Parallel (Contd.)

6-43

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

 movdqa 160(%r9), %xmm5
 movdqa 176(%r9), %xmm6
 movdqa 192(%r9), %xmm15
 cmp $14, %r12d

 aesenc %xmm5, %xmm7
 aesenc %xmm5, %xmm8
 aesenc %xmm5, %xmm9
 aesenc %xmm5, %xmm10
 aesenc %xmm5, %xmm11
 aesenc %xmm5, %xmm12
 aesenc %xmm5, %xmm13
 aesenc %xmm5, %xmm14

 aesenc %xmm6, %xmm7
 aesenc %xmm6, %xmm8
 aesenc %xmm6, %xmm9
 aesenc %xmm6, %xmm10
 aesenc %xmm6, %xmm11
 aesenc %xmm6, %xmm12
 aesenc %xmm6, %xmm13
 aesenc %xmm6, %xmm14

 jb LAST

 movdqa 192(%r9), %xmm5
 movdqa 208(%r9), %xmm6
 movdqa 224(%r9), %xmm15

 aesenc %xmm5, %xmm7
 aesenc %xmm5, %xmm8
 aesenc %xmm5, %xmm9
 aesenc %xmm5, %xmm10
 aesenc %xmm5, %xmm11
 aesenc %xmm5, %xmm12
 aesenc %xmm5, %xmm13
 aesenc %xmm5, %xmm14

 aesenc %xmm6, %xmm7
 aesenc %xmm6, %xmm8
 aesenc %xmm6, %xmm9
 aesenc %xmm6, %xmm10
 aesenc %xmm6, %xmm11
 aesenc %xmm6, %xmm12
 aesenc %xmm6, %xmm13
 aesenc %xmm6, %xmm14
LAST:

(continue)

Example 6-45. AES128-CTR Implementation with Eight Block in Parallel (Contd.)

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

6-44

 aesenclast %xmm15, %xmm7
 aesenclast %xmm15, %xmm8
 aesenclast %xmm15, %xmm9
 aesenclast %xmm15, %xmm10
 aesenclast %xmm15, %xmm11
 aesenclast %xmm15, %xmm12

 aesenclast %xmm15, %xmm13
 aesenclast %xmm15, %xmm14

 pxor (%rdi), %xmm7
 pxor 16(%rdi), %xmm8
 pxor 32(%rdi), %xmm9
 pxor 48(%rdi), %xmm10
 pxor 64(%rdi), %xmm11
 pxor 80(%rdi), %xmm12
 pxor 96(%rdi), %xmm13
 pxor 112(%rdi), %xmm14

 dec %r8

 movdqu %xmm7, (%rsi)
 movdqu %xmm8, 16(%rsi)
 movdqu %xmm9, 32(%rsi)
 movdqu %xmm10, 48(%rsi)
 movdqu %xmm11, 64(%rsi)
 movdqu %xmm12, 80(%rsi)
 movdqu %xmm13, 96(%rsi)
 movdqu %xmm14, 112(%rsi)
 jne LOOP

 addq $128,%rsi
 addq $128,%rdi

REMAINDER:
 cmp $0, %r10
 je END
 shufpd $2, %xmm1, %xmm0
IN_LOOP:
 movdqa %xmm0, %xmm11
 pshufb (BSWAP_EPI_64), %xmm0
 pxor (%r9), %xmm11
 paddq (ONE), %xmm0
 aesenc 16(%r9), %xmm11
 aesenc 32(%r9), %xmm11
 pshufb (BSWAP_EPI_64), %xmm0

(continue)

Example 6-45. AES128-CTR Implementation with Eight Block in Parallel (Contd.)

6-45

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

6.10.2 AES Key Expansion Alternative
In Sandy Bridge microarchitecture, the throughput of AESKEYGENASSIST is two cycles with higher
latency than the AESENC/AESDEC instructions. Software may consider implementing the AES key
expansion by using the AESENCLAST instruction with the second operand (i.e., the round key) being the
RCON value, duplicated four times in the register. The AESENCLAST instruction performs the SubBytes
step and the xor-with-RCON step, while the ROTWORD step can be done using a PSHUFB instruction.
Following are code examples of AES128 key expansion using either method.

 aesenc 48(%r9), %xmm11
 aesenc 64(%r9), %xmm11
 aesenc 80(%r9), %xmm11
 aesenc 96(%r9), %xmm11
 aesenc 112(%r9), %xmm11
 aesenc 128(%r9), %xmm11
 aesenc 144(%r9), %xmm11
 movdqa 160(%r9), %xmm2
 cmp $12, %r12d
 jb IN_LAST
 aesenc 160(%r9), %xmm11
 aesenc 176(%r9), %xmm11
 movdqa 192(%r9), %xmm2
 cmp $14, %r12d
 jb IN_LAST
 aesenc 192(%r9), %xmm11
 aesenc 208(%r9), %xmm11
 movdqa 224(%r9), %xmm2
IN_LAST:
 aesenclast %xmm2, %xmm11
 pxor (%rdi) ,%xmm11
 movdqu %xmm11, (%rsi)
 addq $16,%rdi
 addq $16,%rsi
 dec %r10
 jne IN_LOOP
END:
 ret

Example 6-46. AES128 Key Expansion

// Use AESKENYGENASSIST
.align 16,0x90
.globl AES_128_Key_Expansion
AES_128_Key_Expansion:
parameter 1: %rdi
parameter 2: %rsi
 movl $10, 240(%rsi)
 movdqu (%rdi), %xmm1
 movdqa %xmm1, (%rsi)

(continue)

// Use AESENCLAST
mask:
.long 0x0c0f0e0d,0x0c0f0e0d,0x0c0f0e0d,0x0c0f0e0d
con1:
.long 1,1,1,1
con2:
.long 0x1b,0x1b,0x1b,0x1b
.align 16,0x90
.globl AES_128_Key_Expansion

(continue)

Example 6-45. AES128-CTR Implementation with Eight Block in Parallel (Contd.)

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

6-46

 aeskeygenassist $1, %xmm1, %xmm2
 call PREPARE_ROUNDKEY_128
 movdqa %xmm1, 16(%rsi)
 aeskeygenassist $2, %xmm1, %xmm2
 call PREPARE_ROUNDKEY_128
 movdqa %xmm1, 32(%rsi)
 aeskeygenassist $4, %xmm1, %xmm2

ASSISTS:
call PREPARE_ROUNDKEY_128

 movdqa %xmm1, 48(%rsi)
 aeskeygenassist $8, %xmm1, %xmm2

call PREPARE_ROUNDKEY_128
 movdqa %xmm1, 64(%rsi)
 aeskeygenassist $16, %xmm1, %xmm2
 call PREPARE_ROUNDKEY_128
 movdqa %xmm1, 80(%rsi)
 aeskeygenassist $32, %xmm1, %xmm2
 call PREPARE_ROUNDKEY_128
 movdqa %xmm1, 96(%rsi)
 aeskeygenassist $64, %xmm1, %xmm2
 call PREPARE_ROUNDKEY_128
 movdqa %xmm1, 112(%rsi)
 aeskeygenassist $0x80, %xmm1, %xmm2
 call PREPARE_ROUNDKEY_128
 movdqa %xmm1, 128(%rsi)
 aeskeygenassist $0x1b, %xmm1, %xmm2
 call PREPARE_ROUNDKEY_128

movdqa %xmm1, 144(%rsi)
 aeskeygenassist $0x36, %xmm1, %xmm2
 call PREPARE_ROUNDKEY_128
 movdqa %xmm1, 160(%rsi)
 ret

PREPARE_ROUNDKEY_128:
 pshufd $255, %xmm2, %xmm2
 movdqa %xmm1, %xmm3
 pslldq $4, %xmm3
 pxor %xmm3, %xmm1
 pslldq $4, %xmm3
 pxor %xmm3, %xmm1
 pslldq $4, %xmm3
 pxor %xmm3, %xmm1
 pxor %xmm2, %xmm1
 ret

AES_128_Key_Expansion:
parameter 1: %rdi
parameter 2: %rsi
 movdqu (%rdi), %xmm1
 movdqa %xmm1, (%rsi)
 movdqa %xmm1, %xmm2
 movdqa (con1), %xmm0
 movdqa (mask), %xmm15
 mov $8, %ax
LOOP1:
 add $16, %rsi
 dec %ax
 pshufb %xmm15,%xmm2
 aesenclast %xmm0, %xmm2
 pslld $1, %xmm0
 movdqa %xmm1, %xmm3
 pslldq $4, %xmm3
 pxor %xmm3, %xmm1
 pslldq $4, %xmm3
 pxor %xmm3, %xmm1
 pslldq $4, %xmm3
 pxor %xmm3, %xmm1
 pxor %xmm2, %xmm1

 movdqa %xmm1, (%rsi)
 movdqa %xmm1, %xmm2
 jne LOOP1

movdqa (con2), %xmm0
 pshufb %xmm15,%xmm2
 aesenclast %xmm0, %xmm2
 pslld $1, %xmm0
 movdqa %xmm1, %xmm3
 pslldq $4, %xmm3
 pxor %xmm3, %xmm1
 pslldq $4, %xmm3

pxor %xmm3, %xmm1
 pslldq $4, %xmm3
 pxor %xmm3, %xmm1
 pxor %xmm2, %xmm1
 movdqa %xmm1, 16(%rsi)
 movdqa %xmm1, %xmm2
 pshufb %xmm15,%xmm2
 aesenclast %xmm0, %xmm2
 movdqa %xmm1, %xmm3

pslldq $4, %xmm3
 pxor %xmm3, %xmm1
 pslldq $4, %xmm3
 pxor %xmm3, %xmm1

(continue)

Example 6-46. AES128 Key Expansion (Contd.)

6-47

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

6.10.3 Enhancement in Haswell Microarchitecture

6.10.3.1 AES and Multi-Buffer Cryptographic Throughput
The AESINC/AESINCLAST, AESDEC/AESDECLAST instructions in Haswell microarchitecture have slightly
improved latency, and are one micro-op. These improvements are expected to benefit AES algorithms
operating in parallel modes (e.g., CBC decryption) and multiple-buffer implementations of AES algo-
rithms. See the following link for additional details on AESNI:
• http://software.intel.com/en-us/articles/intel-advanced-encryption-standard-aes-instructions-set.

6.10.3.2 PCLMULQDQ Improvement
The latency of PCLMULQDQ in Haswell microarchitecture is reduced from 14 to 7 cycles, and throughput
improved from once every 8 cycles to every other cycle, when compared to prior generations. This will
speed up CRC calculations for generic polynomials. Details and examples can be found at:
• http://www.intel.com/Assets/PDF/manual/323640.pdf.

AES-GCM implemented using PCLMULQDQ can be found in OpenSSL project at:
• http://www.intel.com/content/dam/www/public/us/en/documents/software-support/enabling-high-

performance-gcm.pdf.

6.11 LIGHT-WEIGHT DECOMPRESSION AND DATABASE PROCESSING
Traditionally, database storage requires high-compression ratio means to preserve the finite disk I/O
bandwidth limitations. In row-optimized database architecture, the primary limitation on database
processing performance often correlates to the hardware constraints of the storage I/O bandwidth, the
locality issues of data records from rows in large tables that must be decompressed from its storage
format. Many recent database innovations are centered around columnar database architecture, where
storage format is optimized for query operations to fetch data in a sequential manner.

Some of the recent advances in columnar database (also known as in-memory database) are light-
weight compression/decompression techniques and vectorized query operation primitives using SSE4.2
and other SIMD instructions. When a database engine combines those processing techniques with a
column-optimized storage system using solid state drives, query performance increase of several fold
has been reported1. This section discusses the usage of SIMD instructions for light-weight compres-
sion/decompression in columnar databases.

The optimal objective for light-weight compression/decompression is to deliver high throughput at
reasonably low CPU utilization, such that the finite total compute bandwidth can be divided more favor-
ably between query processing and decompression to achieve maximal query throughput. SSE4.2 can
raise the compute bandwidth for some query operations to a significantly higher level (see Section
14.3.3), compared to query primitives implemented using general-purpose-register instructions. This
also places higher demand on the streaming data feed of decompressed columnar data.

 pslldq $4, %xmm3
 pxor %xmm3, %xmm1
 pxor %xmm2, %xmm1
 movdqa %xmm1, 32(%rsi)
 movdqa %xmm1, %xmm2
 ret

1. See published TPC-H non-clustered performance results at www.tpc.org

Example 6-46. AES128 Key Expansion (Contd.)

http://software.intel.com/en-us/articles/intel-advanced-encryption-standard-aes-instructions-set
http://software.intel.com/en-us/articles/download-the-intel-aesni-sample-library/
http://www.intel.com/Assets/PDF/manual/323640.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/software-support/enabling-high-performance-gcm.pdf

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

6-48

6.11.1 Reduced Dynamic Range Datasets
One of the more successful approaches to compress/decompress columnar data in high-speed is based
on the idea that an ensemble of integral values in a sequential data stream of fixed-size storage width
can be represented more compactly if the dynamic range of that ensemble is reduced by way of parti-
tioning, offset from a common reference value, and additional techniques1,2.

For example, a column that stores 5-digit ZIPCODE as 32-bit integers only requires a dynamic range of
17 bits. The unique primary keys in a 2 billion row table can be reduced through partitioning of sequential
blocks of 2^N entries to store the offset in the block header and reducing the storage size of each 32-bit
integer as N bits.

6.11.2 Compression and Decompression Using SIMD Instructions
To illustrate the usage of SIMD instructions for reduced-dynamic-range compression/decompression,
and compressed data elements are not byte-aligned, we consider an array of 32-bit integers whose
dynamic range only requires 5 bits per value.

To pack a stream of 32-bit integer values into consecutive 5-bit buckets, the SIMD technique illustrated
in Example 6-47 consists of the following phases:
• Dword-to-byte packing and byte-array sequencing: The stream of dword elements is reduced to byte

streams with each iteration handling 32 elements. The two resulting 16-byte vectors are sequenced
to enable 4-way bit-stitching using PSLLD and PSRLD instructions.

1. “SIMD-scan: ultra fast in-memory table scan using on-chip vector processing units”, T. Willhalm, et. al., Proceedings of the
VLDB Endowment, Vol. 2, #1, August 2009.

2. "Super-Scalar RAM-CPU Cache Compression," M. Zukowski, et, al, Data Engineering, International Conference, vol. 0, no. 0,
pp. 59, 2006.

Example 6-47. Compress 32-bit Integers into 5-bit Buckets

;
static __declspec(align(16)) short mask_dw_5b[16] = // 5-bit mask for 4 way bit-packing via dword
{0x1f, 0x0, 0x1f, 0x0, 0x1f, 0x0, 0x1f, 0x0}; // packed shift
static __declspec(align(16)) short sprdb_0_5_10_15[8] = // shuffle control to re-arrange
{ 0xff00, 0xffff, 0x04ff, 0xffff, 0xffff, 0xff08, 0xffff, 0x0cff}; // bytes 0, 4, 8, 12 to gap positions at 0, 5, 10, 15

void RDRpack32x4_sse(int *src, int cnt, char * out)

int i, j;
__m128i a0, a1, a2, a3, c0, c1, b0, b1, b2, b3, bb;
__m128i msk4 ;
__m128i sprd4 = _mm_loadu_si128((__m128i*) &sprdb_0_5_10_15[0]);

switch(bucket_width) {
case 5:j= 0;

(continue)

6-49

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

• Four-way bit stitching: In each way (dword) of the destination, 5 bits are packed consecutively from
the corresponding byte element that contains 5 non-zero bit patterns. Since each dword destination
will be completely filled up by the contents of 7 consecutive elements, the remaining three bits of the
7th element and the 8th element are done separately in a similar 4-way stitching operation but
require the assistance of shuffle operations.

Example 6-48 shows the reverse operation of decompressing consecutively packed 5-bit buckets into
32-bit data elements.

 msk4 = _mm_loadu_si128((__m128i*) &mask_dw_5b[0]);
// process 32 elements in each iteration
 for (i = 0; i < cnt; i+= 32) {

b0 = _mm_packus_epi32(_mm_loadu_si128((__m128i*) &src[i]), _mm_loadu_si128((__m128i*) &src[i+4]));
b1 = _mm_packus_epi32(_mm_loadu_si128((__m128i*) &src[i+8]), _mm_loadu_si128((__m128i*) &src[i+12]));
b2 = _mm_packus_epi32(_mm_loadu_si128((__m128i*) &src[i+16]), _mm_loadu_si128((__m128i*)

&src[i+20]));
b3 = _mm_packus_epi32(_mm_loadu_si128((__m128i*) &src[i+24]), _mm_loadu_si128((__m128i*)

&src[i+28]));
c0 = _mm_packus_epi16(_mm_unpacklo_epi64(b0, b1), _mm_unpacklo_epi64(b2, b3));
// c0 contains bytes: 0-3, 8-11, 16-19, 24-27 elements
c1 = _mm_packus_epi16(_mm_unpackhi_epi64(b0, b1), _mm_unpackhi_epi64(b2, b3));
// c1 contains bytes: 4-7, 12-15, 20-23, 28-31

b0 = _mm_and_si128(c0, msk4); // keep lowest 5 bits in each way/dword
b1 = _mm_and_si128(_mm_srli_epi32(c0, 3), _mm_slli_epi32(msk4, 5));
b0 = _mm_or_si128(b0, b1); // add next 5 bits to each way/dword
b1 = _mm_and_si128(_mm_srli_epi32(c0, 6), _mm_slli_epi32(msk4, 10));
b0 = _mm_or_si128(b0, b1);
b1 = _mm_and_si128(_mm_srli_epi32(c0, 9), _mm_slli_epi32(msk4, 15));
b0 = _mm_or_si128(b0, b1);
b1 = _mm_and_si128(_mm_slli_epi32(c1, 20), _mm_slli_epi32(msk4, 20));
b0 = _mm_or_si128(b0, b1);
b1 = _mm_and_si128(_mm_slli_epi32(c1, 17), _mm_slli_epi32(msk4, 25));
b0 = _mm_or_si128(b0, b1);
b1 = _mm_and_si128(_mm_slli_epi32(c1, 14), _mm_slli_epi32(msk4, 30));
b0 = _mm_or_si128(b0, b1); // add next 2 bits from each dword channel, xmm full
(int)&out[j] = _mm_cvtsi128_si32(b0);// the first dword is compressed and ready
// re-distribute the remaining 3 dword and add gap bytes to store remained bits
b0 = _mm_shuffle_epi8(b0, gap4x3);
b1 = _mm_and_si128(_mm_srli_epi32(c1, 18), _mm_srli_epi32(msk4, 2)); // do 4-way packing of the next 3 bits
b2 = _mm_and_si128(_mm_srli_epi32(c1, 21), _mm_slli_epi32(msk4, 3));
b1 = _mm_or_si128(b1, b2); //5th byte compressed at bytes 0, 4, 8, 12
// shuffle the fifth byte result to byte offsets of 0, 5, 10, 15
b0 = _mm_or_si128(b0, _mm_shuffle_epi8(b1, sprd4));
_mm_storeu_si128((__m128i *) &out[j+4] , b0);
j += bucket_width*4;

 }
 // handle remainder if cnt is not multiples of 32
 break;
}

}

Example 6-47. Compress 32-bit Integers into 5-bit Buckets (Contd.)

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

6-50

Example 6-48. Decompression of a Stream of 5-bit Integers into 32-bit Elements

;
static __declspec(align(16)) short mask_dw_5b[16] = // 5-bit mask for 4 way bit-packing via dword
{0x1f, 0x0, 0x1f, 0x0, 0x1f, 0x0, 0x1f, 0x0}; // packed shift
static __declspec(align(16)) short pack_dw_4x3[8] = // pack 3 dwords 1-4, 6-9, 11-14
{ 0xffff, 0xffff, 0x0201, 0x0403, 0x0706, 0x0908, 0xc0b, 0x0e0d}; // to vacate bytes 0-3
static __declspec(align(16)) short packb_0_5_10_15[8] = // shuffle control to re-arrange bytes
{ 0xffff, 0x0ff, 0xffff, 0x5ff, 0xffff, 0xaff, 0xffff, 0x0fff}; // 0, 5, 10, 15 to gap positions at 3, 7, 11, 15

void RDRunpack32x4_sse(char *src, int cnt, int * out)
{int i, j;
__m128i a0, a1, a2, a3, c0, c1, b0, b1, b2, b3, bb, d0, d1, d2, d3;
__m128i msk4 ;
__m128i pck4 = _mm_loadu_si128((__m128i*) &packb_0_5_10_15[0]);
__m128i pckdw3 = _mm_loadu_si128((__m128i*) &pack_dw_4x3[0]);

switch(bucket_width) {
case 5:j= 0;
 msk4 = _mm_loadu_si128((__m128i*) &mask_dw_5b[0]);
 for (i = 0; i < cnt; i+= 32) {

 a1 = _mm_loadu_si128((__m128i*) &src[j +4]);
// pick up bytes 4, 9, 14, 19 and shuffle into offset 3, 7, 11, 15
 c0 = _mm_shuffle_epi8(a1, pck4);
 b1 = _mm_and_si128(_mm_srli_epi32(c0, 3), _mm_slli_epi32(msk4, 24));
// put 3 unaligned dword 1-4, 6-9, 11-14 to vacate bytes 0-3
 a1 = _mm_shuffle_epi8(a1, pckdw3);
 b0 = _mm_and_si128(_mm_srli_epi32(c0, 6), _mm_slli_epi32(msk4, 16));
 a0 = _mm_cvtsi32_si128(*(int *)&src[j]);
 b1 = _mm_or_si128(b0, b1); // finished decompress source bytes 4, 9, 14, 19
 a0 = _mm_or_si128(a0, a1); // bytes 0-16 contain compressed bits
 b0 = _mm_and_si128(_mm_srli_epi32(a0, 14), _mm_slli_epi32(msk4, 16));
 b1 = _mm_or_si128(b0, b1);
 b0 = _mm_and_si128(_mm_srli_epi32(a0, 17), _mm_slli_epi32(msk4, 8));
 b1 = _mm_or_si128(b0, b1);
 b0 = _mm_and_si128(_mm_srli_epi32(a0, 20), msk4);
 b1 = _mm_or_si128(b0, b1);// b1 now full with decompressed 4-7,12-15,20-23,28-31
 _mm_storeu_si128((__m128i *) &out[i+4] , _mm_cvtepu8_epi32(b1));
 b0 = _mm_and_si128(_mm_slli_epi32(a0, 9), _mm_slli_epi32(msk4, 24));
 c0 = _mm_and_si128(_mm_slli_epi32(a0, 6), _mm_slli_epi32(msk4, 16));
 b0 = _mm_or_si128(b0, c0);
 _mm_storeu_si128((__m128i *) &out[i+12] , _mm_cvtepu8_epi32(_mm_srli_si128(b1, 4)));
 c0 = _mm_and_si128(_mm_slli_epi32(a0, 3), _mm_slli_epi32(msk4, 8));
 _mm_storeu_si128((__m128i *) &out[i+20] , _mm_cvtepu8_epi32(_mm_srli_si128(b1, 8)));
 b0 = _mm_or_si128(b0, c0);
 _mm_storeu_si128((__m128i *) &out[i+28] , _mm_cvtepu8_epi32(_mm_srli_si128(b1, 12)));
 c0 = _mm_and_si128(a0, msk4);
 b0 = _mm_or_si128(b0, c0);// b0 now full with decompressed 0-3,8-11,16-19,24-27

6-51

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

Compression/decompression of integers for dynamic range that are non-power-of-2 can generally use
similar mask/packed shift/stitch technique with additional adaptation of the horizontal rearrangement of
partially stitched vectors. The increase in throughput relative to using general-purpose scalar instruc-
tions will depend on implementation and bucket width.

When compiled with the “/O2” option on an Intel Compiler, the compression throughput can reach 6
Bytes/cycle on Sandy Bridge microarchitecture, and the throughput varies little for working set sizes due
to the streaming data access pattern and the effectiveness of hardware prefetchers. The decompression
throughput of the above example is more than 5 Bytes/cycle at full utilization, allowing a database query
engine to partition CPU utilization effectively to allocate a small fraction for on-the-fly decompression to
feed vectorized query computation.

The decompression throughput increase using a SIMD light-weight compression technique offers data-
base architects new degrees of freedom to relocate critical performance bottlenecks from a lower-
throughput technology (disk I/O, DRAM) to a faster pipeline.

 _mm_storeu_si128((__m128i *) &out[i] , _mm_cvtepu8_epi32(b0));
 _mm_storeu_si128((__m128i *) &out[i+8] , _mm_cvtepu8_epi32(_mm_srli_si128(b0, 4)));
 _mm_storeu_si128((__m128i *) &out[i+16] , _mm_cvtepu8_epi32(_mm_srli_si128(b0, 8)));
 _mm_storeu_si128((__m128i *) &out[i+24] , _mm_cvtepu8_epi32(_mm_srli_si128(b0, 12)));
j += g_bwidth*4;

 }
 break;
}

}

Example 6-48. Decompression of a Stream of 5-bit Integers into 32-bit Elements (Contd.)

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

6-52

CHAPTER 7
OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS

This chapter discusses rules for optimizing the single-instruction, multiple-data (SIMD) floating-point
instructions available in SSE, SSE2 SSE3, and SSE4.1. The chapter also provides examples illustrating
the optimization techniques for single-precision and double-precision SIMD floating-point applications.

7.1 GENERAL RULES FOR SIMD FLOATING-POINT CODE
The rules and suggestions in this section help optimize floating-point code containing SIMD floating-point
instructions. Generally, it is essential to understand and balance port utilization to create efficient SIMD
floating-point code. Basic rules and suggestions include the following:
• Follow all guidelines in Chapter 3 and Chapter 5.
• Mask exceptions to achieve higher performance. When exceptions are unmasked, software

performance is slower.
• Utilize the flush-to-zero and denormals-are-zero modes for higher performance to avoid the penalty

of dealing with denormals and underflows.
• Use the reciprocal instructions followed by iteration for increased accuracy. These instructions yield

reduced accuracy but execute much faster. Note the following:

— If reduced accuracy is acceptable, use them with no iteration.

— If near full accuracy is needed, use a Newton-Raphson iteration.

— If full accuracy is needed, then use divide and square root, which provide more accuracy, but slow
down performance.

7.2 PLANNING CONSIDERATIONS
Whether adapting an existing application or creating a new one, using SIMD floating-point instructions to
achieve optimum performance gain requires programmers to consider several issues. When choosing
candidates for optimization, look for code segments that are computationally intensive and floating-point
intensive. Also, consider efficient use of the cache architecture.

The sections that follow answer the questions that should be raised before implementation:
• Can data layout be arranged to increase parallelism or cache utilization?
• Which part of the code benefits from SIMD floating-point instructions?
• Is the current algorithm the most appropriate for SIMD floating-point instructions?
• Is the code floating-point intensive?
• Do single-precision floating-point or double-precision floating-point computations provide enough

range and precision?
• Does the result of computation affected by enabling flush-to-zero or denormals-to-zero modes?
• Is the data arranged for efficient utilization of the SIMD floating-point registers?
• Is this application targeted for processors without SIMD floating-point instructions?

See Section 5.2, “Considerations for Code Conversion to SIMD Programming.”

OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS

7-2

7.3 USING SIMD FLOATING-POINT WITH X87 FLOATING-POINT
Because the XMM registers used for SIMD floating-point computations are separate registers and are not
mapped to the existing x87 floating-point stack, SIMD floating-point code can be mixed with x87
floating-point or 64-bit SIMD integer code.

With Intel Core microarchitecture, 128-bit SIMD integer instructions provide substantially higher effi-
ciency than 64-bit SIMD integer instructions. Software should favor using SIMD floating-point and
integer SIMD instructions with XMM registers where possible.

7.4 SCALAR FLOATING-POINT CODE
SIMD floating-point instructions operate only on the lowest order element in the SIMD register. These
instructions are known as scalar instructions. They allow the XMM registers to be used for general-
purpose floating-point computations.

In terms of performance, scalar floating-point code can be equivalent to or exceed x87 floating-point
code and has the following advantages:
• SIMD floating-point code uses a flat register model, whereas x87 floating-point code uses a stack

model. Using scalar floating-point code eliminates the need to use FXCH instructions. These have
performance limits on the Intel Pentium 4 processor.

• Mixing with MMX technology code without penalty.
• Flush-to-zero mode.
• Shorter latencies than x87 floating-point.

When using scalar floating-point instructions, it is unnecessary to ensure that the data appears in vector
form. However, the optimizations for alignment, scheduling, instruction selection, and other optimiza-
tions covered in Chapter 3 and Chapter 5 should be observed.

7.5 DATA ALIGNMENT
SIMD floating-point data is 16-byte aligned. Referencing unaligned 128-bit SIMD floating-point data will
result in an exception unless MOVUPS or MOVUPD (move unaligned packed single or unaligned packed
double) is used. The unaligned instructions used on aligned or unaligned data will also suffer a perfor-
mance penalty relative to aligned accesses.

See also: Section 5.4, “Stack and Data Alignment.”

7.5.1 Data Arrangement
Because SSE and SSE2 incorporate SIMD architecture, arranging data to use the SIMD registers fully
produces optimum performance. This implies contiguous data for processing, which leads to fewer cache
misses. Correct data arrangement can quadruple data throughput using SSE, or double throughput when
using SSE2. Performance gains can occur because four data elements can be loaded with 128-bit load
instructions into XMM registers using SSE (MOVAPS). Similarly, two data elements can be loaded with
128-bit load instructions into XMM registers using SSE2 (MOVAPD).

Refer to Section 5.4, “Stack and Data Alignment,” for data arrangement recommendations. Duplicating
and padding techniques overcome misalignment problems that in some data structures and arrange-
ments. This increases the data space but avoids penalties for misaligned data access.

For some applications (3D geometry, for example), traditional data arrangement requires some changes
to use the SIMD registers and parallel techniques fully. Traditionally, the data layout has been an array of
structures (AoS). A new data layout has been proposed to fully use the SIMD registers in such applica-
tions: a structure of arrays (SoA) resulting in more optimized performance.

7-3

OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS

7.5.1.1 Vertical versus Horizontal Computation
Most floating-point arithmetic instructions in SSE/SSE2 provide a more significant performance gain on
vertical data processing for parallel data elements. This means that each element of the destination
results from an arithmetic operation performed from the source elements in the same vertical position
(Figure 7-1).

To supplement these homogeneous arithmetic operations on parallel data elements, SSE and SSE2
provide data movement instructions (e.g., SHUFPS, UNPCKLPS, UNPCKHPS, MOVLHPS, MOVHLPS, etc.)
that facilitate moving data elements horizontally.

The organization of structured data significantly impacts SIMD programming efficiency and performance.
This can be illustrated using two common type of data structure organizations:
• Array of Structure (AoS): This refers to arranging an array of data structures. Within the data

structure, each member is a scalar. This is shown in Figure 7-2. Typically, a repetitive computation
sequence is applied to each element of an array, i.e., a data structure. The computational sequence
for the scalar members of the structure is likely to be non-homogeneous within each iteration. AoS is
generally associated with a horizontal computation model.

• Structure of Array (SoA): Here, each member of the data structure is an array. Each element of the
array is a scalar. This is shown in Table 7-1. The repetitive computational sequence is applied to
scalar elements and homogeneous operation can be easily achieved across consecutive iterations
within the same structural member. Consequently, SoA is generally amenable to the vertical
computation model.

Figure 7-1. Homogeneous Operation on Parallel Data Elements

Figure 7-2. Horizontal Computation Model

X3 X2 X1 X0

Y3 Y2 Y1 Y0

X3 OP Y3 X2 OP Y2 X 1OP Y1 X0 OP Y0

OPOPOPOP

X Y Z W

OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS

7-4

SIMD instructions with vertical computation on the SoA arrangement can achieve higher efficiency and
performance than AoS and horizontal computation. This can be seen with dot-product operation on
vectors. The dot product operation on the SoA arrangement is shown in Figure 7-3.

Example 7-1 shows how one result would be computed for seven instructions if the data were organized
as AoS and using SSE alone: four results would require 28 instructions.

Table 7-1. SoA Form of Representing Vertices Data

Vx array X1 X2 X3 X4 Xn

Vy array Y1 Y2 Y3 Y4 Yn

Vz array Z1 Z2 Z3 Y4 Zn

Vw array W1 W2 W3 W4 Wn

Figure 7-3. Dot Product Operation

Example 7-1. Pseudocode for Horizontal (xyz, AoS) Computation

mulps ; x*x', y*y', z*z'
movaps ; reg->reg move, since next steps overwrite
shufps ; get b,a,d,c from a,b,c,d
addps ; get a+b,a+b,c+d,c+d
movaps ; reg->reg move
shufps ; get c+d,c+d,a+b,a+b from prior addps
addps ; get a+b+c+d,a+b+c+d,a+b+c+d,a+b+c+d

OM15168

X

+

X

+

X

+

X

=

X1 X2 X3 X4

Fx Fx Fx Fx

Y1 Y2 Y3 Y4

Fy Fy Fy Fy

Z1 Z2 Z3 Z4

Fz Fz Fz Fz

W 1 W 2 W 3 W 4

Fw Fw Fw Fw

R1 R2 R3 R4

7-5

OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS

Now consider the case when the data is organized as SoA. Example 7-2 demonstrates how four results
are computed for five instructions.

For the most efficient use of the four component-wide registers, reorganizing the data into the SoA
format yields increased throughput and hence much better performance for the instructions used.

This simple example shows that vertical computation can yield 100% use of the available SIMD registers
to produce four results. Note that results may vary for other situations. Suppose the data structures are
represented in a format that is not “friendly” to vertical computation. In that case, it can be rearranged
“on the fly” to facilitate better utilization of the SIMD registers. This operation is referred to as a “swiz-
zling” operation. The reverse operation is referred to as “deswizzling.”

7.5.1.2 Data Swizzling
Swizzling data from SoA to AoS format can apply to multiple application domains, including 3D geometry,
video and imaging. Two different swizzling techniques can be adapted to handle floating-point and
integer data. Example 7-3 illustrates a swizzle function that uses SHUFPS, MOVLHPS, and MOVHLPS
instructions.

Example 7-2. Pseudocode for Vertical (xxxx, yyyy, zzzz, SoA) Computation

mulps ; x*x' for all 4 x-components of 4 vertices
mulps ; y*y' for all 4 y-components of 4 vertices
mulps ; z*z' for all 4 z-components of 4 vertices
addps ; x*x' + y*y'
addps ; x*x'+y*y'+z*z'

Example 7-3. Swizzling Data Using SHUFPS, MOVLHPS, MOVHLPS

typedef struct _VERTEX_AOS {
float x, y, z, color;

} Vertex_aos; // AoS structure declaration
typedef struct _VERTEX_SOA {

float x[4], float y[4], float z[4];
float color[4];

} Vertex_soa; // SoA structure declaration
void swizzle_asm (Vertex_aos *in, Vertex_soa *out)
{
// in mem: x1y1z1w1-x2y2z2w2-x3y3z3w3-x4y4z4w4-
// SWIZZLE XYZW --> XXXX
asm {

mov rbx, in // get structure addresses
mov rdx, out

movaps xmm1, [rbx] // w0 z0 y0 x0
movaps xmm2, [rbx + 16] // w1 z1 y1 x1
movaps xmm3, [rbx + 32] // w2 z2 y2 x2
movaps xmm4, [rbx + 48] // w3 z3 y2 x3
movaps xmm7, xmm4 // xmm7= w3 z3 y3 x3
movhlps xmm7, xmm3 // xmm7= w3 z3 w2 z2
movaps xmm6, xmm2 // xmm6= w1 z1 y1 x1
movlhps xmm3, xmm4 // xmm3= y3 x3 y1 x1
movhlps xmm2, xmm1 // xmm2= w1 z1 w0 z0
movlhps xmm1, xmm6 // xmm1= y1 x1 y0 x0

OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS

7-6

Example 7-4 shows a similar data-swizzling algorithm using SIMD instructions in the integer domain.

The technique in Example 7-3 (loading 16 bytes, using SHUFPS and copying halves of XMM registers) is
preferable over an alternate approach of loading halves of each vector using MOVLPS/MOVHPS on newer
microarchitectures. This is because loading 8 bytes using MOVLPS/MOVHPS can create code dependency
and reduce the throughput of the execution engine.

movaps xmm6, xmm2 // xmm6= w1 z1 w0 z0
movaps xmm5, xmm1 // xmm5= y1 x1 y0 x0
shufps xmm2, xmm7, 0xDDh // xmm2= w3 w2 w1 w0 => W
shufps xmm1, xmm3, 0x88h // xmm1= x3 x2 x1 x0 => X
shufps xmm5, xmm3, 0xDDh // xmm5= y3 y2 y1 y0 => Y
shufps xmm6, xmm7, 0x88h // xmm6= z3 z2 z1 z0 => Z

movaps [rdx], xmm1 // store X
movaps [rdx+16], xmm5 // store Y
movaps [rdx+32], xmm6 // store Z
movaps [rdx+48], xmm2 // store W

}
}

Example 7-4. Swizzling Data Using UNPCKxxx Instructions

void swizzle_asm (Vertex_aos *in, Vertex_soa *out)
{
// in mem: x1y1z1w1-x2y2z2w2-x3y3z3w3-x4y4z4w4-
// SWIZZLE XYZW --> XXXX
asm {

mov rbx, in // get structure addresses
mov rdx, out

movdqa xmm1, [rbx + 0*16] //w0 z0 y0 x0
movdqa xmm2, [rbx + 1*16] //w1 z1 y1 x1
movdqa xmm3, [rbx + 2*16] //w2 z2 y2 x2
movdqa xmm4, [rbx + 3*16] //w3 z3 y3 x3
movdqa xmm5, xmm1
punpckldq xmm1, xmm2 // y1 y0 x1 x0
punpckhdq xmm5, xmm2 // w1 w0 z1 z0
movdqa xmm2, xmm3
punpckldq xmm3, xmm4 // y3 y2 x3 x2
punpckhdq xmm2, xmm4 // w3 w2 z3 z2
movdqa xmm4, xmm1
punpcklqdq xmm1, xmm3 // x3 x2 x1 x0
punpckhqdq xmm4, xmm3 // y3 y2 y1 y0
movdqa xmm3, xmm5
punpcklqdq xmm5, xmm2 // z3 z2 z1 z0
punpckhqdq xmm3, xmm2 // w3 w2 w1 w0

 movdqa [rdx+0*16], xmm1 //x3 x2 x1 x0
movdqa [rdx+1*16], xmm4 //y3 y2 y1 y0
movdqa [rdx+2*16], xmm5 //z3 z2 z1 z0
movdqa [rdx+3*16], xmm3 //w3 w2 w1 w0

}

Example 7-3. Swizzling Data (Contd.)Using SHUFPS, MOVLHPS, MOVHLPS (Contd.)

7-7

OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS

The performance considerations of Example 7-3, and Example 7-4 often depend on each microarchitec-
ture’s characteristics. For example, in Intel Core microarchitecture, executing a SHUFPS tend to be
slower than a PUNPCKxxx instruction. In Enhanced Intel Core microarchitecture, SHUFPS and PUNP-
CKxxx instruction execute with one cycle throughput due to the 128-bit shuffle execution unit. The next
important consideration is that only one port can execute PUNPCKxxx rather than MOVLHPS/MOVHLPS
executing on multiple ports. The performance of both techniques improves on Intel Core microarchitec-
ture over previous microarchitectures due to 3 ports for executing SIMD instructions. Both techniques
further improve the Enhanced Intel Core microarchitecture due to the 128-bit shuffle unit.

7.5.1.3 Data Deswizzling
In the deswizzle operation, we want to arrange the SoA format back into AoS format so the XXXX, YYYY,
and ZZZZ are rearranged and stored in memory as XYZ. Example 7-5 illustrates one deswizzle function
for floating-point data.

Example 7-6 shows a similar deswizzle function using SIMD integer instructions. Both techniques
demonstrate loading 16 bytes and performing horizontal data movement in registers. This approach is
likely more efficient than alternative techniques of storing 8-byte halves of XMM registers using MOVLPS
and MOVHPS.

Example 7-5. Deswizzling Single-Precision SIMD Data

void deswizzle_asm(Vertex_soa *in, Vertex_aos *out)
{
 __asm {

mov rbx, in // load structure addresses
mov rdx, out
movaps xmm0, [rcx] //x3 x2 x1 x0
movaps xmm1, [rcx + 16] //y3 y2 y1 y0
movaps xmm2, [rcx + 32] //z3 z2 z1 z0
movaps xmm3, [rcx + 48] //w3 w2 w1 w0

movaps xmm5, xmm0
movaps xmm7, xmm2
unpcklps xmm0, xmm1 // y1 x1 y0 x0
unpcklps xmm2, xmm3 // w1 z1 w0 z0
movdqa xmm4, xmm0
movlhps xmm0, xmm2 // w0 z0 y0 x0
movhlps xmm4, xmm2 // w1 z1 y1 x1

unpckhps xmm5, xmm1 // y3 x3 y2 x2
unpckhps xmm7, xmm3 // w3 z3 w2 z2
movdqa xmm6, xmm5
movlhps xmm5, xmm7 // w2 z2 y2 x2
movhlps xmm6, xmm7 // w3 z3 y3 x3
movaps [rdx+0*16], xmm0 //w0 z0 y0 x0
movaps [rdx+1*16], xmm4 //w1 z1 y1 x1
movaps [rdx+2*16], xmm5 //w2 z2 y2 x2
movaps [rdx+3*16], xmm6 //w3 z3 y3 x3

 }
}

OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS

7-8

7.5.1.4 Horizontal ADD Using SSE
Although vertical computations generally use SIMD performance better than horizontal computations,
code must use a horizontal operation in some cases.

MOVLHPS/MOVHLPS and shuffle can be used to sum data horizontally. For example, starting with four
128-bit registers, to sum up each register horizontally while having the final results in one register, use
the MOVLHPS/MOVHLPS to align the upper and lower parts of each register. This allows you to use a
vertical add. With the resulting partial horizontal summation, full summation follows easily.

Figure 7-4 presents a horizontal add using MOVHLPS/MOVLHPS. Example 7-7 and Example 7-8 provide
the code for this operation.

Example 7-6. Deswizzling Data Using SIMD Integer Instructions

void deswizzle_rgb(Vertex_soa *in, Vertex_aos *out)
{
//---deswizzle rgb---
// assume: xmm1=rrrr, xmm2=gggg, xmm3=bbbb, xmm4=aaaa
__asm {

mov rcx, in // load structure addresses
mov rdx, out
movdqa xmm0, [rcx] // load r4 r3 r2 r1 => xmm1
movdqa xmm1, [rcx+16] // load g4 g3 g2 g1 => xmm2

movdqa xmm2, [rcx+32] // load b4 b3 b2 b1 => xmm3
movdqa xmm3, [rcx+48] // load a4 a3 a2 a1 => xmm4

// Start deswizzling here
movdqa xmm5, xmm0
movdqa xmm7, xmm2
punpckldq xmm0, xmm1 // g2 r2 g1 r1
punpckldq xmm2, xmm3 // a2 b2 a1 b1
movdqa xmm4, xmm0
punpcklqdq xmm0, xmm2 // a1 b1 g1 r1 => v1
punpckhqdq xmm4, xmm2 // a2 b2 g2 r2 => v2
punpckhdq xmm5, xmm // g4 r4 g3 r3
punpckhdq xmm7, xmm3 // a4 b4 a3 b3
movdqa xmm6, xmm5
punpcklqdq xmm5, xmm7 // a3 b3 g3 r3 => v3
punpckhqdq xmm6, xmm7 // a4 b4 g4 r4 => v4

movdqa [rdx], xmm0 // v1

movdqa [rdx+16], xmm4 // v2
movdqa [rdx+32], xmm5 // v3
movdqa [edx+48], xmm6 // v4

// DESWIZZLING ENDS HERE
 }
}

7-9

OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS

Figure 7-4. Horizontal Add Using MOVHLPS/MOVLHPS

Example 7-7. Horizontal Add Using MOVHLPS/MOVLHPS

void horiz_add(Vertex_soa *in, float *out) {
 __asm {

mov rcx, in // load structure addresses
mov rdx, out
movaps xmm0, [rcx] // load A1 A2 A3 A4 => xmm0
movaps xmm1, [rcx+16] // load B1 B2 B3 B4 => xmm1
movaps xmm2, [rcx+32] // load C1 C2 C3 C4 => xmm2
movaps xmm3, [rcx+48] // load D1 D2 D3 D4 => xmm3

 // START HORIZONTAL ADD
movaps xmm5, xmm0 // xmm5= A1,A2,A3,A4
movlhps xmm5, xmm1 // xmm5= A1,A2,B1,B2
movhlps xmm1, xmm0 // xmm1= A3,A4,B3,B4
addps xmm5, xmm1 // xmm5= A1+A3,A2+A4,B1+B3,B2+B4

movaps xmm4, xmm2
movlhps xmm2, xmm3 // xmm2= C1,C2,D1,D2
movhlps xmm3, xmm4 // xmm3= C3,C4,D3,D4
addps xmm3, xmm2 // xmm3= C1+C3,C2+C4,D1+D3,D2+D4
movaps xmm6, xmm3 // xmm6= C1+C3,C2+C4,D1+D3,D2+D4
shufps xmm3, xmm5, 0xDD //xmm6=A1+A3,B1+B3,C1+C3,D1+D3

shufps xmm5, xmm6, 0x88 // xmm5= A2+A4,B2+B4,C2+C4,D2+D4
addps xmm6, xmm5 // xmm6= D,C,B,A

OM15169

A1+A2+A3+A4 B1+B2+B3+B4 C1+C2+C3+C4 D1+D2+D3+D4

A1+A3 B1+B3 C1+C3 D1+D3 A2+A4 B2+B4 C2+C4 D2+D4

A1+A3 A2+A4 B1+B3 B2+B4 C1+C3 C2+C4 D1+D3 D2+D4

A1 A2 A3 A4 B1 B2 B3 B4 C1 C2 C3 C4 D1 D2 D3 D4

A1 A2 B1 B2 A3 A4 B3 B4 C1 C2 D1 D2 C3 C4 D3 D4

ADDPS

SHUFPS SHUFPS

ADDPS ADDPS

MOVLHPS MOVLHPS

xmm0 xmm2

MOVHLPS MOVHLPS

xmm1 xmm3

OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS

7-10

7.5.2 Use of CVTTPS2PI/CVTTSS2SI Instructions
The CVTTPS2PI and CVTTSS2SI instructions implicitly encode the truncate/chop rounding mode in the
instruction. They take precedence over the rounding mode specified in the MXCSR register. This behavior
can eliminate the need to change the rounding mode from round-nearest, to truncate/chop, then return
to round-nearest to resume computation.

Avoid frequent changes to the MXCSR register since a penalty associated with writing this register. Typi-
cally, when using CVTTPS2P/CVTTSS2SI, rounding control in MXCSR can always be set to round-nearest.

7.5.3 Flush-to-Zero and Denormals-are-Zero Modes
The flush-to-zero (FTZ) and denormals-are-zero (DAZ) modes are incompatible with IEEE Standard 754.
They are provided to improve performance for applications where underflow is common and generating
a denormalized result is unnecessary.

See Section 3.9.2, “Floating-point Modes and Exceptions.”

 // END HORIZONTAL ADD
 movaps [rdx], xmm6
 }
}

Example 7-8. Horizontal Add Using Intrinsics with MOVHLPS/MOVLHPS

void horiz_add_intrin(Vertex_soa *in, float *out)
{
 __m128 v, v2, v3, v4;
 __m128 tmm0,tmm1,tmm2,tmm3,tmm4,tmm5,tmm6;

 // Temporary variables
tmm0 = _mm_load_ps(in->x); // tmm0 = A1 A2 A3 A4

tmm1 = _mm_load_ps(in->y); // tmm1 = B1 B2 B3 B4
tmm2 = _mm_load_ps(in->z); // tmm2 = C1 C2 C3 C4
tmm3 = _mm_load_ps(in->w); // tmm3 = D1 D2 D3 D4
tmm5 = tmm0; // tmm0 = A1 A2 A3 A4
tmm5 = _mm_movelh_ps(tmm5, tmm1); // tmm5 = A1 A2 B1 B2
tmm1 = _mm_movehl_ps(tmm1, tmm0); // tmm1 = A3 A4 B3 B4
tmm5 = _mm_add_ps(tmm5, tmm1); // tmm5 = A1+A3 A2+A4 B1+B3 B2+B4
tmm4 = tmm2;

tmm2 = _mm_movelh_ps(tmm2, tmm3); // tmm2 = C1 C2 D1 D2
tmm3 = _mm_movehl_ps(tmm3, tmm4); // tmm3 = C3 C4 D3 D4
tmm3 = _mm_add_ps(tmm3, tmm2); // tmm3 = C1+C3 C2+C4 D1+D3 D2+D4
tmm6 = tmm3; // tmm6 = C1+C3 C2+C4 D1+D3 D2+D4
tmm6 = _mm_shuffle_ps(tmm3, tmm5, 0xDD); // tmm6 = A1+A3 B1+B3 C1+C3 D1+D3

tmm5 = _mm_shuffle_ps(tmm5, tmm6, 0x88); // tmm5 = A2+A4 B2+B4 C2+C4 D2+D4
tmm6 = _mm_add_ps(tmm6, tmm5); // tmm6 = A1+A2+A3+A4 B1+B2+B3+B4

// C1+C2+C3+C4 D1+D2+D3+D4
 _mm_store_ps(out, tmm6);
}

Example 7-7. Horizontal Add Using MOVHLPS/MOVLHPS (Contd.)

7-11

OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS

7.6 SIMD OPTIMIZATIONS AND MICROARCHITECTURES
Pentium M, Intel Core Solo, and Intel Core Duo processors have a different microarchitecture than the
Intel NetBurst microarchitecture. Intel Core microarchitecture offers significantly more efficient SIMD
floating-point capability than previous microarchitectures. In addition, instruction latency and
throughput of SSE3 instructions are improved considerably in Intel Core microarchitectures over
previous microarchitectures.

7.6.1 SIMD Floating-point Programming Using SSE3
SSE3 enhances SSE and SSE2 with nine instructions targeted for SIMD floating-point programming. In
contrast to many SSE/SSE2 instructions offering homogeneous arithmetic operations on parallel data
elements and favoring the vertical computation model, SSE3 offers instructions that perform asymmetric
arithmetic and arithmetic operations on horizontal data elements.

ADDSUBPS and ADDSUBPD are two instructions with asymmetric arithmetic processing capability (see
Figure 7-5). HADDPS, HADDPD, HSUBPS, and HSUBPD offer horizontal arithmetic processing capability
(see Figure 7-6). In addition: MOVSLDUP, MOVSHDUP, and MOVDDUP load data from memory (or XMM
register) and replicate data elements simultaneously.

Figure 7-5. Asymmetric Arithmetic Operation of the SSE3 Instruction

Figure 7-6. Horizontal Arithmetic Operation of the SSE3 Instruction HADDPD

X1 X0

 X1 + Y1 X0 -Y0

SUB

Y1 Y0

ADD

X1 X0

 Y0 + Y1 X0 + X1

ADD

Y1 Y0

ADD

OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS

7-12

7.6.1.1 SSE3 and Complex Arithmetics
The flexibility of SSE3 in dealing with AOS-type data structures can be demonstrated by the example of
multiplication and division of complex numbers. For example, a complex number can be stored in a struc-
ture consisting of its real and imaginary parts. This naturally leads to the use of an array of structure.
Example 7-9 demonstrates using SSE3 instructions to multiply single-precision complex numbers.
Example 7-10 shows using SSE3 instructions to divide complex numbers.

Example 7-9. Multiplication of Two Pairs of Single-Precision Complex Number

// Multiplication of (ak + i bk) * (ck + i dk)
// a + i b can be stored as a data structure
movsldup xmm0, Src1; load real parts into the destination,
 ; a1, a1, a0, a0

movaps xmm1, src2; load the 2nd pair of complex values,
 ; i.e. d1, c1, d0, c0
mulps xmm0, xmm1; temporary results, a1d1, a1c1, a0d0,
 ; a0c0

shufps xmm1, xmm1, b1; reorder the real and imaginary
 ; parts, c1, d1, c0, d0
movshdup xmm2, Src1; load the imaginary parts into the
 ; destination, b1, b1, b0, b0

mulps xmm2, xmm1; temporary results, b1c1, b1d1, b0c0,
 ; b0d0
addsubps xmm0, xmm2; b1c1+a1d1, a1c1 -b1d1, b0c0+a0d0,
 ; a0c0-b0d0

Example 7-10. Division of Two Pairs of Single-Precision Complex Numbers

// Division of (ak + i bk) / (ck + i dk)
movshdup xmm0, Src1; load imaginary parts into the

; destination, b1, b1, b0, b0
movaps xmm1, src2; load the 2nd pair of complex values,

; i.e. d1, c1, d0, c0
mulps xmm0, xmm1; temporary results, b1d1, b1c1, b0d0,

; b0c0

shufps xmm1, xmm1, b1; reorder the real and imaginary
; parts, c1, d1, c0, d0

movsldup xmm2, Src1; load the real parts into the
; destination, a1, a1, a0, a0

mulps xmm2, xmm1; temp results, a1c1, a1d1, a0c0, a0d0
addsubps xmm0, xmm2; a1c1+b1d1, b1c1-a1d1, a0c0+b0d0,

; b0c0-a0d0

mulps xmm1, xmm1; c1c1, d1d1, c0c0, d0d0
movps xmm2, xmm1;c1c1, d1d1, c0c0, d0d0
shufps xmm2, xmm2, b1; d1d1, c1c1, d0d0, c0c0
addps xmm2, xmm1; c1c1+d1d1, c1c1+d1d1, c0c0+d0d0,

; c0c0+d0d0

7-13

OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS

In both examples, the complex numbers are stored in arrays of structures. MOVSLDUP, MOVSHDUP, and
the asymmetric ADDSUBPS allow performing complex arithmetic on two pairs of single-precision
complex numbers simultaneously, without unnecessary swizzling between data elements.

Due to microarchitectural differences, software should implement the multiplication of complex double-
precision numbers using SSE3 instructions on processors based on Intel Core microarchitecture. In Intel
Core Duo and Intel Core Solo processors, software should use scalar SSE2 instructions to implement
double-precision complex multiplication. This is because the data path between SIMD execution units is
128 bits in the Intel Core microarchitecture and 64 in previous microarchitectures. Processors based on
the Enhanced Intel Core microarchitecture generally execute SSE3 instruction more efficiently than
previous microarchitectures. They also have a 128-bit shuffle unit that will benefit complex arithmetic
operations further than the Intel Core microarchitecture.

Example 7-11 shows two equivalent implementations of double-precision complex multiplication of two
pairs of complex numbers using vector SSE2 versus SSE3 instructions. Example 7-12 shows the equiva-
lent scalar SSE2 implementation.

divps xmm0, xmm2
shufps xmm0, xmm0, b1 ; (b1c1-a1d1)/(c1c1+d1d1),

; (a1c1+b1d1)/(c1c1+d1d1),
; (b0c0-a0d0)/(c0c0+d0d0),
; (a0c0+b0d0)/(c0c0+d0d0)

Example 7-11. Double-Precision Complex Multiplication of Two Pairs
SSE2 Vector Implementation SSE3 Vector Implementation
movapd xmm0, [rax] ;y x
movapd xmm1, [rax+16] ;w z
unpcklpd xmm1, xmm1 ;z z
movapd xmm2, [rax+16] ;w z
unpckhpd xmm2, xmm2 ;w w
mulpd xmm1, xmm0 ;z*y z*x
mulpd xmm2, xmm0 ;w*y w*x
xorpd xmm2, xmm7 ;-w*y +w*x
shufpd xmm2, xmm2,1 ;w*x -w*y
addpd xmm2, xmm1 ;z*y+w*x z*x-w*y
movapd [rcx], xmm2

movapd xmm0, [rax] ;y x
movapd xmm1, [rax+16] ;z z
movapd xmm2, xmm1
unpcklpd xmm1, xmm1
unpckhpd xmm2, xmm2
mulpd xmm1, xmm0 ;z*y z*x
mulpd xmm2, xmm0 ;w*y w*x
shufpd xmm2, xmm2, 1 ;w*x w*y
addsubpd xmm1, xmm2 ;w*x+z*y z*x-w*y
movapd [rcx], xmm1

Example 7-12. Double-Precision Complex Multiplication Using Scalar SSE2

movsd xmm0, [rax] ;x
movsd xmm5, [rax+8] ;y
movsd xmm1, [rax+16] ;z
movsd xmm2, [rax+24] ;w

movsd xmm3, xmm1 ;z
movsd xmm4, xmm2 ;w
mulsd xmm1, xmm0 ;z*x
mulsd xmm2, xmm0 ;w*x
mulsd xmm3, xmm5 ;z*y

Example 7-10. Division of Two Pairs of Single-Precision Complex Numbers (Contd.)

OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS

7-14

7.6.1.2 Packed Floating-Point Performance in Intel Core Duo Processor
Most of the packed SIMD floating-point code will speed up on Intel Core Solo processors relative to
Pentium M processors. This is due to an improvement in decoding packed SIMD instructions.

The improved packed floating-point performance on the Intel Core Solo processor over the Pentium M
processor depends on several factors. Generally, decoder-bound code with a mixture of integer and
packed floating-point instructions can expect significant gain. Code that is limited by execution latency
and has a “cycles per instructions” ratio greater than one will not benefit from decoder improvement.

When targeting complex arithmetics on Intel Core Solo and Intel Core Duo processors, single-precision
SSE3 instructions can deliver higher performance than alternatives. On the other hand, tasks requiring
double-precision complex arithmetic may perform better using scalar SSE2 instructions on Intel Core
Solo and Intel Core Duo processors. This is because scalar SSE2 instructions can be dispatched through
two ports and executed using two separate floating-point units.

Packed horizontal SSE3 instructions (HADDPS and HSUBPS) can simplify the code sequence for some
tasks. However, these instructions consist of more than five micro-ops on Intel Core Solo and Intel Core
Duo processors. Care must be taken to ensure the latency and decoding penalty of the horizontal instruc-
tion does not offset any algorithmic benefits.

7.6.2 Dot Product and Horizontal SIMD Instructions
Sometimes the AOS-type of data organization is more natural in many algebraic formulae. One typical
example is the dot product operation. The dot product operation can be implemented using SSE/SSE2
instruction sets. SSE3 added a few horizontal add/subtract instructions for applications that rely on the
horizontal computation model. SSE4.1 provides additional enhancement with instructions capable of
directly evaluating dot product operations of vectors of 2, 3 or 4 components.

mulsd xmm4, xmm5 ;w*y
subsd xmm1, xmm4 ;z*x - w*y
addsd xmm3, xmm2 ;z*y + w*x
movsd [rcx], xmm1
movsd [rcx+8], xmm3

Example 7-13. Dot Product of Vector Length 4 Using SSE/SSE2
Using SSE/SSE2 to compute one dot product

movaps xmm0, [rax] // a4, a3, a2, a1
mulps xmm0, [rax+16] // a4*b4, a3*b3, a2*b2, a1*b1
movhlps xmm1, xmm0 // X, X, a4*b4, a3*b3, upper half not needed
addps xmm0, xmm1 // X, X, a2*b2+a4*b4, a1*b1+a3*b3,
pshufd xmm1, xmm0, 1 // X, X, X, a2*b2+a4*b4
addss xmm0, xmm1 // a1*b1+a3*b3+a2*b2+a4*b4
movss [rcx], xmm0

Example 7-12. Double-Precision Complex Multiplication Using Scalar SSE2 (Contd.)

7-15

OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS

Example 7-13, Example 7-14, and Example 7-15 compare the basic code sequence to compute one dot-
product result for a pair of vectors.

The selection of an optimal sequence in conjunction with an application’s memory access patterns may
favor different approaches. For example, if each dot product result is immediately consumed by addi-
tional computational sequences, it may be more optimal to compare the relative speed of these different
approaches. If dot products can be computed for an array of vectors and kept in the cache for subsequent
computations, then more optimal choice may depend on the relative throughput of the sequence of
instructions.

In Intel Core microarchitecture, Example 7-14 has higher throughput than Example 7-13. Due to the
relatively longer latency of HADDPS, the speed of Example 7-14 is slightly slower than Example 7-13.

In Enhanced Intel Core microarchitecture, Example 7-15 is faster in both speed and throughput than
Example 7-13 and Example 7-14. Although the latency of DPPS is also relatively long, it is compensated
by the reduction of number of instructions in Example 7-15 to do the same amount of work.

Unrolling can further improve the throughput of each of three dot product implementations.
Example 7-16 shows two unrolled versions using the basic SSE2 and SSE3 sequences. The SSE4.1
version can also be unrolled and using INSERTPS to pack 4 dot-product results.

Example 7-14. Dot Product of Vector Length 4 Using SSE3
Using SSE3 to compute one dot product

movaps xmm0, [rax]
mulps xmm0, [rax+16] // a4*b4, a3*b3, a2*b2, a1*b1
haddps xmm0, xmm0 // a4*b4+a3*b3, a2*b2+a1*b1, a4*b4+a3*b3, a2*b2+a1*b1
movaps xmm1, xmm0 // a4*b4+a3*b3, a2*b2+a1*b1, a4*b4+a3*b3, a2*b2+a1*b1
psrlq xmm0, 32 // 0, a4*b4+a3*b3, 0, a4*b4+a3*b3
addss xmm0, xmm1 // -, -, -, a1*b1+a3*b3+a2*b2+a4*b4
movss [rax], xmm0

Example 7-15. Dot Product of Vector Length 4 Using SSE4.1
Using SSE4.1 to compute one dot product

movaps xmm0, [rax]
dpps xmm0, [rax+16], 0xf1 // 0, 0, 0, a1*b1+a3*b3+a2*b2+a4*b4
movss [rax], xmm0

Example 7-16. Unrolled Implementation of Four Dot Products
SSE2 Implementation SSE3 Implementation

movaps xmm0, [rax]
mulps xmm0, [rax+16] ;w0*w1 z0*z1 y0*y1 x0*x1
movaps xmm2, [rax+32]
mulps xmm2, [rax+16+32] ;w2*w3 z2*z3 y2*y3 x2*x3
movaps xmm3, [rax+64]
mulps xmm3, [rax+16+64] ;w4*w5 z4*z5 y4*y5 x4*x5
movaps xmm4, [rax+96]
mulps xmm4, [rax+16+96] ;w6*w7 z6*z7 y6*y7 x6*x7

movaps xmm0, [rax]
mulps xmm0, [rax+16]
movaps xmm1, [rax+32]
mulps xmm1, [rax+16+32]
movaps xmm2, [rax+64]
mulps xmm2, [rax+16+64]
movaps xmm3, [rax+96]
mulps xmm3, [rax+16+96]
haddps xmm0, xmm1
haddps xmm2, xmm3
haddps xmm0, xmm2
movaps [rcx], xmm0

OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS

7-16

7.6.3 Vector Normalization
Normalizing vectors is a common operation in many floating-point applications. Example 7-17 shows an
example in C of normalizing an array of (x, y, z) vectors.

Example 7-18 shows an assembly sequence that normalizes the x, y, z components of a vector.

movaps xmm1, xmm0
unpcklps xmm0, xmm2 ; y2*y3 y0*y1 x2*x3 x0*x1
unpckhps xmm1, xmm2 ; w2*w3 w0*w1 z2*z3 z0*z1
movaps xmm5, xmm3
unpcklps xmm3, xmm4 ; y6*y7 y4*y5 x6*x7 x4*x5
unpckhps xmm5, xmm4 ; w6*w7 w4*w5 z6*z7 z4*z5

addps xmm0, xmm1
addps xmm5, xmm3
movaps xmm1, xmm5
movhlps xmm1, xmm0
movlhps xmm0, xmm5
addps xmm0, xmm1
movaps [rcx], xmm0

Example 7-17. Normalization of an Array of Vectors
for (i=0;i<CNT;i++)
{ float size = nodes[i].vec.dot();

if (size != 0.0)
{ size = 1.0f/sqrtf(size); }
else
{ size = 0.0; }
nodes[i].vec.x *= size;
nodes[i].vec.y *= size;
nodes[i].vec.z *= size;

}

Example 7-16. Unrolled Implementation of Four Dot Products (Contd.)
SSE2 Implementation SSE3 Implementation

7-17

OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS

Example 7-19 shows an assembly sequence using SSE4.1 to normalizes the x, y, z components of a
vector.

Example 7-18. Normalize (x, y, z) Components of an Array of Vectors Using SSE2

Vec3 *p = &nodes[i].vec;
__asm
{ mov rax, p

xorps xmm2, xmm2
movups xmm1, [rax] // loads the (x, y, z) of input vector plus x of next vector
movaps xmm7, xmm1 // save a copy of data from memory (to restore the unnormalized value)
movaps xmm5, _mask // mask to select (x, y, z) values from an xmm register to normalize
andps xmm1, xmm5 // mask 1st 3 elements
movaps xmm6, xmm1 // save a copy of (x, y, z) to compute normalized vector later
mulps xmm1,xmm1 // 0, z*z, y*y, x*x
pshufd xmm3, xmm1, 0x1b // x*x, y*y, z*z, 0
addps xmm1, xmm3 // x*x, z*z+y*y, z*z+y*y, x*x
pshufd xmm3, xmm1, 0x41 // z*z+y*y, x*x, x*x, z*z+y*y
addps xmm1, xmm3 // x*x+y*y+z*z, x*x+y*y+z*z, x*x+y*y+z*z, x*x+y*y+z*z
comisd xmm1, xmm2 // compare size to 0
jz zero
movaps xmm3, xmm4 // preloaded unitary vector (1.0, 1.0, 1.0, 1.0)
sqrtps xmm1, xmm1
divps xmm3, xmm1
jmp store

zero:
movaps xmm3, xmm2

store:

mulps xmm3, xmm6 //normalize the vector in the lower 3 elements
andnps xmm5, xmm7 // mask off the lower 3 elements to keep the un-normalized value
orps xmm3, xmm5 // order the un-normalized component after the normalized vector
movaps [rax], xmm3 // writes normalized x, y, z; followed by unmodified value

OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS

7-18

In Example 7-18 and Example 7-19, the throughput of these instruction sequences are basically limited
by the long-latency instructions of DIVPS and SQRTPS. In Example 7-19, the use of DPPS replaces eight
SSE2 instructions to evaluate and broadcast the dot-product result to four elements of an XMM register.
This could result in improvement of the relative speed of Example 7-19 over Example 7-18.

7.6.4 Using Horizontal SIMD Instruction Sets and Data Layout
SSE and SSE2 provide packed add/subtract, multiply/divide instructions that are ideal for situations that
can take advantage of vertical computation model, such as SOA data layout. SSE3 and SSE4.1 added
horizontal SIMD instructions including horizontal add/subtract, dot-product operations. These more
recent SIMD extensions provide tools to solve problems involving data layouts or operations that do not
conform to the vertical SIMD computation model.

In this section, we consider a vector-matrix multiplication problem and discuss the relevant factors for
choosing various horizontal SIMD instructions.

Example 7-20 shows the vector-matrix data layout in AOS, where the input and out vectors are stored as
an array of structure.

Example 7-19. Normalize (x, y, z) Components of an Array of Vectors Using SSE4.1
Vec3 *p = &nodes[i].vec;
__asm
{ mov rax, p

xorps xmm2, xmm2
movups xmm1, [rax] // loads the (x, y, z) of input vector plus x of next vector
movaps xmm7, xmm1 // save a copy of data from memory
dpps xmm1, xmm1, 0x7f // x*x+y*y+z*z, x*x+y*y+z*z, x*x+y*y+z*z, x*x+y*y+z*z
comisd xmm1, xmm2 // compare size to 0
jz zero
movaps xmm3, xmm4 // preloaded unitary vector (1.0, 1.0, 1.0, 1.0)
sqrtps xmm1, xmm1
divps xmm3, xmm1
jmp store

zero:
movaps xmm3, xmm2

store:
mulps xmm3, xmm6 //normalize the vector in the lower 3 elements
blendps xmm3, xmm7, 0x8 // copy the un-normalized component next to the normalized vector
movaps [rax], xmm3

7-19

OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS

Example 7-21 shows an example using HADDPS and MULPS to perform vector-matrix multiplication with
data layout in AOS. After three HADDPS completing the summations of each output vector component,
the output components are arranged in AOS.

Example 7-22 shows an example using DPPS to perform vector-matrix multiplication in AOS.

Example 7-20. Data Organization in Memory for AOS Vector-Matrix Multiplication
Matrix M4x4 (pMat): M00 M01 M02 M03

M10 M11 M12 M13
M20 M21 M22 M23
M30 M31 M32 M33

4 input vertices V4x1 (pVert): V0x V0y V0z V0w
V1x V1y V1z V1w
V2x V2y V2z V2w
V3x V3y V3z V3w

Output vertices O4x1 (pOutVert): O0x O0y O0z O0w
O1x O1y O1z O1w
O2x O2y O2z O2w
O3x O3y O3z O3w

Example 7-21. AOS Vector-Matrix Multiplication with HADDPS

mov rax, pMat
mov rbx, pVert
mov rcx, pOutVert
xor rdx, rdx
movaps xmm5,[rax+16] // load row M1?
movaps xmm6,[rax+2*16] // load row M2?
movaps xmm7,[rax+3*16] // load row M3?

lloop:
movaps xmm4, [rbx + rdx] // load input vector
movaps xmm0, xmm4
mulps xmm0, [rax] // m03*vw, m02*vz, m01*vy, m00*vx,
movaps xmm1, xmm4
mulps xmm1, xmm5 // m13*vw, m12*vz, m11*vy, m10*vx,

movaps xmm2, xmm4
mulps xmm2, xmm6 // m23*vw, m22*vz, m21*vy, m20*vx
movaps xmm3, xmm4
mulps xmm3, xmm7 // m33*vw, m32*vz, m31*vy, m30*vx,
haddps xmm0, xmm1
haddps xmm2, xmm3
haddps xmm0, xmm2
movaps [rcx + rdx], xmm0 // store a vector of length 4
add rdx, 16
cmp rdx, top
jb lloop

OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS

7-20

Example 7-21 and Example 7-22 both work with AOS data layout using different horizontal processing
techniques provided by SSE3 and SSE4.1. The effectiveness of either techniques will vary, depending on
the degree of exposures of long-latency instruction in the inner loop, the overhead/efficiency of data
movement, and the latency of HADDPS vs. DPPS.

On processors that support both HADDPS and DPPS, the choice between either technique may depend on
application-specific considerations. If the output vectors are written back to memory directly in a batch
situation, Example 7-21 may be preferable over Example 7-22, because the latency of DPPS is long and
storing each output vector component individually is less than ideal for storing an array of vectors.

There may be partially-vectorizable situations that the individual output vector component is consumed
immediately by other non-vectorizable computations. Then, using DPPS producing individual component
may be more suitable than dispersing the packed output vector produced by three HADDPS as in
Example 7-21.

7.6.4.1 SOA and Vector Matrix Multiplication
If the native data layout of a problem conforms to SOA, then vector-matrix multiply can be coded using
MULPS, ADDPS without using the longer-latency horizontal arithmetic instructions, or packing scalar
components into packed format (Example 7-22). To achieve higher throughput with SOA data layout,
there are either prerequisite data preparation or swizzling/deswizzling on-the-fly that must be compre-
hended. For example, an SOA data layout for vector-matrix multiplication is shown in Example 7-23.

Example 7-22. AOS Vector-Matrix Multiplication with DPPS

mov rax, pMat
mov rbx, pVert
mov rcx, pOutVert
xor rdx, rdx
movaps xmm5,[rax+16] // load row M1?
movaps xmm6,[rax+2*16] // load row M2?
movaps xmm7,[rax+3*16] // load row M3?

lloop:
movaps xmm4, [rbx + rdx] // load input vector
movaps xmm0, xmm4
dpps xmm0, [rax], 0xf1 // calculate dot product of length 4, store to lowest dword
movaps xmm1, xmm4
dpps xmm1, xmm5, 0xf1
movaps xmm2, xmm4
dpps xmm2, xmm6, 0xf1
movaps xmm3, xmm4
dpps xmm3, xmm7, 0xf1
movss [rcx + rdx + 0*4], xmm0 // store one element of vector length 4
movss [rcx + rdx + 1*4], xmm1
movss [rcx + rdx + 2*4], xmm2
movss [rcx + rdx + 3*4], xmm3
add rdx, 16
cmp rdx, top
jb lloop

7-21

OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS

Each matrix element is replicated four times to minimize data movement overhead for producing packed
results.

The corresponding vector-matrix multiply example in SOA (unrolled for four iteration of vectors) is shown
in Example 7-24.

Example 7-23. Data Organization in Memory for SOA Vector-Matrix Multiplication
Matrix M16x4 (pMat):

M00 M00 M00 M00 M01 M01 M01 M01 M02 M02 M02 M02 M03 M03 M03 M03
M10 M10 M10 M10 M11 M11 M11 M11 M12 M12 M12 M12 M13 M13 M13 M13
M20 M20 M20 M20 M21 M21 M21 M21 M22 M22 M22 M22 M23 M23 M23 M23
M30 M30 M30 M30 M31 M31 M31 M31 M32 M32 M32 M32 M33 M33 M33 M33

4 input vertices V4x1 (pVert): V0x V1x V2x V3x
V0y V1y V2y V3y
V0z V1z V2z V3z
V0w V1w V2w V3w

Ouput vertices O4x1 (pOutVert): O0x O1x O2x O3x
O0y O1y O2y O3y
O0z O1z O2z O3z
O0w O1w O2w O3w

OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS

7-22

Example 7-24. Vector-Matrix Multiplication with Native SOA Data Layout

mov rbx, pVert
mov rcx, pOutVert
xor rdx, rdx
movaps xmm5,[rax + 16] // load row M1?
movaps xmm6,[rax + 2*16] // load row M2?
movaps xmm7,[rax + 3*16] // load row M3?

lloop_vert:
mov rax, pMat
xor edi, edi
movaps xmm0, [rbx] // load V3x, V2x, V1x, V0x
movaps xmm1, [rbx] // load V3y, V2y, V1y, V0y
movaps xmm2, [rbx] // load V3z, V2z, V1z, V0z
movaps xmm3, [rbx] // load V3w, V2w, V1w, V0w

loop_mat:
movaps xmm4, [rax] // m00, m00, m00, m00,
mulps xmm4, xmm0 // m00*V3x, m00*V2x, m00*V1x, m00*V0x,
movaps xmm4, [rax + 16] // m01, m01, m01, m01,
mulps xmm5, xmm1 // m01*V3y, m01*V2y, m01*V1y, m01*V0y,
addps xmm4, xmm5
movaps xmm5, [rax + 32] // m02, m02, m02, m02,
mulps xmm5, xmm2 // m02*V3z, m02*V2z, m02*V1z, m02*V0z,
addps xmm4, xmm5
movaps xmm5, [rax+ 48] // m03, m03, m03, m03,
mulps xmm5, xmm3 // m03*V3w, m03*V2w, m03*V1w, m03*V0w,
addps xmm4, xmm5
movaps [rcx + rdx], xmm4
add rax, 64
add rdx, 16
add edi, 1
cmp edi, 4
jb lloop_mat
add rbx, 64
cmp rdx, top
jb lloop_vert

CHAPTER 8
INT8 DEEP LEARNING INFERENCE

This chapter describes INT8 as a data type for Deep learning Inference on Intel technology. The docu-
ment covers both AVX-512 implementations and implementations using the new Intel® DL Boost
Instructions.

The chapter is divided into several parts. The first part introduces INT8, and more specifically the Intel
DL Boost instructions as the core data type and instructions for use in ML workloads. The second part
discusses general methodologies and guidelines for efficient inference computation. The third part
discusses optimizations specific to CNNs and the final part discusses optimizations specific to
LSTM/RNNs.

When relevant, examples are provided with and without the new Intel DL Boost instruction set. In many
cases (quantization, memory layout) there are steps that can be taken offline and steps that must be
taken in runtime; we try to clearly state when each step is taken.

8.1 INTRODUCING INT8 AS DATA TYPE FOR DEEP LEARNING
INFERENCE

Traditionally, deep learning is done with Single Precision Floating Point (F32) data type (see
https://itpeernetwork.intel.com/myth-busted-general-purpose-cpus-cant-tackle-deep-neural-network-
training/#gs.rGp9lgWH). Lately, INT8 has been used successfully for deep learning inference with a
significant boost to performance and little loss of accuracy. The 4x narrower data type and the 3x more
Intel® AVX-512 instructions required for INT8 MAC operation (vs. a single F32 FMA instruction) provide
a net 1.33x nominal gain. Our experience with ResNet-50, Inception-Resnet v2, SRGAN and NMT on the
Intel® Xeon® Processor Scalable Family based on Skylake microarchitecture shows >1.5x speedup due
to the INT8 smaller memory footprint. Section 8.2 describes Intel Deep Learning Boost instructions
introduced in processors based on the Cascade Lake product, which further increase DL Inference perfor-
mance.

We consider two use cases for DL Inference Workloads. The first usage is the Throughput Model, where
elements (images, sentences) are processed regardless of how long it takes to process a single element.
This usage model is usually appropriate for servers that process a bulk of images for classification or
offline preparation of recommendations tailored to specific users. The second usage model is the
Throughput at Latency Model where there is an upper limit for the time it is acceptable to compute a
single element. This usage model is usually appropriate for online computation (language translation,
real-time object detection, etc.).

8.2 INTRODUCING INTEL® DL BOOST
Intel® DL Boost instructions are a set of Intel AVX-512 instructions that are designed to speed up neural
network workloads. These instructions are supported if CPUID.07H.0H:ECX.AVX512_VNNI[bit 11] = 1.

The following sections describe these new instructions and show a simple comparison to previous Intel
AVX-512 code. Refer to the Intel® Architecture Instruction Set Extensions Programming Reference or
the Intel® 64 and IA-32 Architectures Software Developer’s Manual for complete instruction definitions (instructions
with prefix VPDP).

https://itpeernetwork.intel.com/myth-busted-general-purpose-cpus-cant-tackle-deep-neural-network-training/#gs.rGp9lgWH
https://itpeernetwork.intel.com/myth-busted-general-purpose-cpus-cant-tackle-deep-neural-network-training/#gs.rGp9lgWH

INT8 DEEP LEARNING INFERENCE

8-2

8.2.1 Multiply and Add Unsigned and Signed Bytes (VPDPBUSD Instruction)
VPDPBUSD is an 8-bit integer multiply-accumulate vector operation into a vector of 32-bit integer accu-
mulators. It accepts two source vector operands and one source/destination vector operand. The two
source operands contain 8-bit integer data elements. The source/destination operand contains 32-bit
data elements.

As an example, take 512-bit vector operands where each of the source operands contains 64 x 8-bit
elements and the source/destination operand contains 16 x 32-bit elements.

The instruction splits the 64 elements in each source operand into 16 quadruples and multiplies vertically
the four members of each quadruple, one from each source operand to create four 32-bit intermediate
results. It then performs a 5-way addition of the four 32-bit intermediate results and the vertically corre-
sponding 32-bit integer element in its 3rd vector operand (serving here as a source operand) and places
the result of the 5-way addition in the same place of the 32-bit data element in the 3rd vector operand
(now serving as a destination operand). VPDPBUSD replaces an Intel AVX-512 three instruction
sequence that accomplishes the same functionality with higher accuracy since Intel AVX-512 saturates
the 16-bit intermediate results: VPMADDUBSW + VPMADDWD + VPADDD. See Figure below.

Example 8-1 uses the VPDPBUSD instruction to perform faster matrix multiplication of two byte matrices,
SIGNAL and WEIGHT. Assuming the source matrices have dimensions MxK and KxN, respectively, and
are given in row-major order, the source matrices in the example have the layouts defined below.
• Matrix signal[K/64][M][64], built out of matrix SIGNAL[M][K] by the following procedure:

FOR m = 0 … M-1
 FOR k = 0 … K-1
 signal[k/64][m][k%64] = SIGNAL[m][k]

• Matrix weight[K/4][N][4], built out of matrix WEIGHT[K][N] by the following procedure:
FOR k = 0 … K-1
 FOR n = 0 … N-1
 weight[k/4][n][k%4] = WEIGHT[k][n]

VPMADDUBSW + VPMADDWD + VPADDD Fused into VPDPBUSD
(3x Peak Ops on Server Architectures, 2x Peak Ops on Client Architectures)

8-3

INT8 DEEP LEARNING INFERENCE

Example 8-1. VPDPBUSD Implementation

Vector Implementation with pre-Intel® DL Boost
(Intel® AVX-512)

Intel® DL Boost VPDPBUSD Implementation

// inner loop of unrolled matrix multiply
vpbroadcastd zmm31, dword ptr [onew]
vpbroadcastd zmm24, [signal]
vmovups zmm25, [weight]
vmovups zmm26, [weight + 64]
vmovups zmm27, [weight + 128]
vmovups zmm28, [weight + 192]
vpmaddubsw zmm29, zmm24, zmm25
vpmaddwd zmm29, zmm29, zmm31
vpaddd zmm0 , zmm0 , zmm29
vpmaddubsw zmm30, zmm24, zmm26
vpmaddwd zmm30, zmm30, zmm31
vpaddd zmm6 , zmm6 , zmm30
vpmaddubsw zmm29, zmm24, zmm27
vpmaddwd zmm29, zmm29, zmm31
vpaddd zmm12, zmm12, zmm29
vpmaddubsw zmm30, zmm24, zmm28
vpmaddwd zmm30, zmm30, zmm31
vpaddd zmm18, zmm18, zmm30
vpbroadcastd zmm24, [signal + 64]
vpmaddubsw zmm29, zmm24, zmm25
vpmaddwd zmm29, zmm29, zmm31
vpaddd zmm1 , zmm1 , zmm29
vpmaddubsw zmm30, zmm24, zmm26
vpmaddwd zmm30, zmm30, zmm31
vpaddd zmm7 , zmm7 , zmm30
vpmaddubsw zmm29, zmm24, zmm27
vpmaddwd zmm29, zmm29, zmm31
vpaddd zmm13, zmm13, zmm29
vpmaddubsw zmm30, zmm24, zmm28
vpmaddwd zmm30, zmm30, zmm31
vpaddd zmm19, zmm19, zmm30
vpbroadcastd zmm24, [signal + 128]
vpmaddubsw zmm29, zmm24, zmm25
vpmaddwd zmm29, zmm29, zmm31
vpaddd zmm2 , zmm2 , zmm29
vpmaddubsw zmm30, zmm24, zmm26
vpmaddwd zmm30, zmm30, zmm31
vpaddd zmm8 , zmm8 , zmm30
vpmaddubsw zmm29, zmm24, zmm27
vpmaddwd zmm29, zmm29, zmm31
vpaddd zmm14, zmm14, zmm29
vpmaddubsw zmm30, zmm24, zmm28
vpmaddwd zmm30, zmm30, zmm31
vpaddd zmm20, zmm20, zmm30
vpbroadcastd zmm24, [signal + 192]
vpmaddubsw zmm29, zmm24, zmm25

// inner loop of unrolled matrix multiply
vpbroadcastd zmm24, [signal]
vpbroadcastd zmm25, [signal + 64]
vpbroadcastd zmm26, [signal + 128]
vpbroadcastd zmm27, [signal + 192]
vmovups zmm28, [weight]
vmovups zmm29, [weight + 64]
vmovups zmm30, [weight + 128]
vmovups zmm31, [weight + 192]
vpdpbusd zmm0 , zmm24, zmm28
vpdpbusd zmm6 , zmm24, zmm29
vpdpbusd zmm12, zmm24, zmm30
vpdpbusd zmm18, zmm24, zmm31
vpdpbusd zmm1 , zmm25, zmm28
vpdpbusd zmm7 , zmm25, zmm29
vpdpbusd zmm13, zmm25, zmm30
vpdpbusd zmm19, zmm25, zmm31
vpdpbusd zmm2 , zmm26, zmm28
vpdpbusd zmm8 , zmm26, zmm29
vpdpbusd zmm14, zmm26, zmm30
vpdpbusd zmm20, zmm26, zmm31
vpdpbusd zmm3 , zmm27, zmm28
vpdpbusd zmm9 , zmm27, zmm29
vpdpbusd zmm15, zmm27, zmm30
vpdpbusd zmm21, zmm27, zmm31

INT8 DEEP LEARNING INFERENCE

8-4

8.2.2 Multiply and Add Signed Word Integers (VPDPWSSD Instruction)
VPDPWSSD is a 16-bit integer multiply-accumulate vector operation into a vector of 32-bit integer accu-
mulators. It accepts two source vector operands and one source/destination vector operand. The two
source operands contain 16-bit integer data elements. The source/destination operand contains 32-bit
data elements.

If the use of the 8-bit VPDPBUSD instruction introduces an unacceptable loss in inference accuracy, the
16-bit VPDPWSSD instruction can be used instead. Still, it is recommended to revert to FP32 operations
in such scenarios until the new BFLOAT16 data type and its associated operations are supported by Intel
processors.

No performance gain is expected from the VPDPWSSD instruction on client architectures such as the Ice
Lake Client microarchitecture.

8.3 GENERAL OPTIMIZATIONS

8.3.1 Memory Layout
Assume the NHWC memory layout is as described in the TensorFlow performance guide (for additional
details, see the data formats section of this document). If the inputs are given in native format (either
row or column major) the data is converted to an optimized layout at the beginning of the computation
with scalar code; see the Intel AI Academy for additional details.

8.3.2 Quantization
Quantization is the process of reducing the size of the data type for activations and weights, typically
from floats to int8/uint8, and is thoroughly discussed in various resources such as the MKL-DNN docu-
mentation and the Intel AI Academy.

vpmaddwd zmm29, zmm29, zmm31
vpaddd zmm3 , zmm3 , zmm29
vpmaddubsw zmm30, zmm24, zmm26
vpmaddwd zmm30, zmm30, zmm31
vpaddd zmm9 , zmm9 , zmm30
vpmaddubsw zmm29, zmm24, zmm27
vpmaddwd zmm29, zmm29, zmm31
vpaddd zmm15, zmm15, zmm29
vpmaddubsw zmm30, zmm24, zmm28
vpmaddwd zmm30, zmm30, zmm31
vpaddd zmm21, zmm21, zmm30

Baseline Speedup: 2.75x1

NOTES:
1. Client architectures based on processors that support Intel® DL Boost, such as processors based on Ice Lake microarchitec-

ture will only see a 2x speedup. This is because VPADDD can exploit the vector SIMD unit on port 5 so the baseline takes
2 cycles per 64 MACs (peak) vs. 1 cycle with Intel® DL Boost.

Example 8-1. VPDPBUSD Implementation (Contd.)

http://intel.github.io/mkl-dnn/ex_int8_simplenet.html
http://intel.github.io/mkl-dnn/ex_int8_simplenet.html
https://software.intel.com/en-us/articles/lower-numerical-precision-deep-learning-inference-and-training
https://software.intel.com/en-us/articles/lower-numerical-precision-deep-learning-inference-and-training
https://software.intel.com/en-us/articles/lower-numerical-precision-deep-learning-inference-and-training
https://www.tensorflow.org/performance/performance_guide#data_formats
https://www.tensorflow.org/performance/performance_guide#data_formats
https://software.intel.com/en-us/articles/lower-numerical-precision-deep-learning-inference-and-training

8-5

INT8 DEEP LEARNING INFERENCE

8.3.2.1 Quantization of Weights
Weights are quantized using the quantization factor 127/max_range. This can be done per OFM for
increased accuracy. Since weights are known up-front the process can be done offline.

8.3.2.2 Quantization of Activations
The following code snippet shows how to quantize data in scalar or vector fashion, given a quantization
factor.

Example 8-2. Quantization of Activations

Quantization of Inputs with a Given Factor (Scalar)

 void quantize_activations(const float* data, u8* quantized_data, int count, Dtype factor, int bits, int offset = 0)
 {
 int quant_min = 0;
 int quant_max = (1 << bits) - 1;
 #pragma unroll (4)
 for (int i = 0; i < count; i++) {
 int int32_val = offset + (int)round(data[i] * factor);
 int32_val = std::max(std::min(int32_val, quant_max), quant_min);
 u8 quant_val = (u8)int32_val;
 quantized_data[i] = quant_val;
 }
}

Quantization of Inputs with a Given Factor (Vectorized)

 void quantize_activations(const float* data, u8* quantized_data, int count, Dtype factor, int bits, int offset = 0)
 {
 int quant_min = 0;
 int quant_max = (1 << bits) - 1;
 int count_aligned = ALIGN(count, INTR_VECTOR_LENGTH_32_bit);
 __m512i offset_broadcast = _mm512_set1_epi32(offset);
 __m512 factor_broadcast = _mm512_set1_ps(factor);
 __m512i quant_min_broadcast = _mm512_set1_epi32(quant_min);
 __m512i quant_max_broadcast = _mm512_set1_epi32(quant_max);

 #pragma unroll (4)
 for (int i = 0; i < count_aligned; i += INTR_VECTOR_LENGTH_32_bit) {
 __m512 data_m512 = _mm512_load_ps(&data[i]);
 data_m512 = _mm512_mul_ps(data_m512, factor_broadcast);
 __m512i data_i32 = _mm512_cvt_roundps_epi32 (data_m512 ,_MM_FROUND_TO_NEAR-
EST_INT|_MM_FROUND_NO_EXC);
 data_i32 = _mm512_add_epi32(data_i32, offset_broadcast);
 data_i32 = _mm512_max_epi32(data_i32, quant_min_broadcast);
 data_i32 = _mm512_min_epi32(data_i32, quant_max_broadcast);
 __m128i q = _mm512_cvtusepi32_epi8(data_i32);
 _mm_store_si128((__m128i*)(&quantized_data[i]), q);
 }
}

INT8 DEEP LEARNING INFERENCE

8-6

8.3.2.3 Quantizing Negative Activations
VPMADDUBSW and VPDPBUSD only support the combination of an unsigned value in the first parameter
and a signed value in the second parameter. This means that signed weights (in the second parameter)
can be easily supported, but signed activations (in the first parameter) require some manipulations.
When there is a possibility of negative activations, e.g., when there is no ReLU before the current layer,
we first quantize to the values of -128, 127 and then add 128 to the result to achieve non-negative acti-
vations. We compensate for this offset by subtracting 128*(sum of all the weights of the OFM filter) from
the OFM bias; see the Intel AI Academy for the full details.

8.3.3 Multicore Considerations

8.3.3.1 Large Batch (Throughput Workload)
Computation of large batches can benefit significantly from multicore processing by dividing the work
among multiple cores but, due to cache locality, it is best to fully process the same object (image,
sentence, etc.) on the same physical core. Furthermore, while the activations are unique per object, the
weights can usually be shared. A multithreaded model allows for easy sharing of weights between the
cores. Guidelines for processing large batch of input in a multicore system are listed below.

1. Use a thread model to share the weights between the multiple cores. That said, for multi-socket
machines there should be a dedicated process per socket/NUMA domain.

2. Define thread affinity and object affinity to fully process a single object in the same physical core,
thus keeping the activations in core caches (unless larger than the caches size).

3. Batch objects to a whole multiple of the core count so that the work will be evenly loaded between the
cores.

4. Ensure that the sibling thread (logical processor) of every physical core is idle.

5. Consider running a per core mini-batch in BFS mode where, for example, the same layer is executed
for all the images assigned to the core before moving to the next layer. This improves weight reuse at
the cost of polluting the core caches with multiple activations and (sometimes) improves perfor-
mance. Mini-batching is quite useful when the sizes of the matrices (tensors) are otherwise very
skinny, causing under-utilization of the multiply-accumulate units.

8.3.3.2 Small Batch (Throughput at Latency Workload)
Small batch processing usually has some latency requirements which are not always possible to fulfill
with a single core. In such cases it is necessary to split the processing of a single object across multiple
cores.

Increasing the number of cores that process a single object often has diminishing returns, so it is best to
find the knee point. Sometimes it is possible to slightly increase the batch count and still hit the required
latency (e.g., from one to two or three). Once the optimal thread count of a single batch instance is
found, multiple instances can be run to fully utilize the system.

8.3.3.3 NUMA
The Cascade Lake Advanced Performance 2-Socket server contains two Cascade Lake Advanced Perfor-
mance packages where each of the packages is made of two processor dies connected via one Intel®
Ultra Path Interconnect (Intel® UPI) link, creating a total of four NUMA domains. In such a setup it is
crucial to maintain a separate DL process per NUMA domain/die. This is also the case for previous 2-
socket setups of the previous generation product lines with multiple NUMA domains.

https://software.intel.com/en-us/articles/lower-numerical-precision-deep-learning-inference-and-training
https://software.intel.com/en-us/articles/lower-numerical-precision-deep-learning-inference-and-training

8-7

INT8 DEEP LEARNING INFERENCE

8.4 CNNS

8.4.1 Convolutional Layers

8.4.1.1 Direct Convolution
In order to utilize Intel® DL Boost vector operations we strive to reduce the direct convolution operation
into a series of matrix additions and multiplications. In the following discussion we denote the matrices
replacing the inputs, weights and outputs as A, B and C respectively.

Memory Layout
In order to present the inputs in matrix form we flatten the spatial dimension to be the rows of A (hence-
forth called the M dimension), and the channel (IFM) dimension to be the columns of A (henceforth called
the K dimension). Similarly the spatial dimension of the outputs becomes the rows of C, and the channel
(OFM) dimension becomes the columns of C (henceforth called the N dimension). In Figure 8-1 there are
six channels of size 5x5 in the inputs which are transformed by the convolutional layer to four channels
of size 3x3.

Standard 2D convolution uses #OFMs different 3D kernels of size KH x KW x #IFMs, for each target OFM,
where KH, KW, #IFMs and #OFMs are the height and width of the convolutional kernel, number of input
channels and number of output channels respectively.

The weights are transformed into KH x KW matrices of size #IFMs x #OFMs (see Figure 8-2).

Figure 8-1. Matrix Layout, Inputs and Outputs

INT8 DEEP LEARNING INFERENCE

8-8

As a result, the convolution operation (see Figure 8-3),

becomes a series of matrix multiplications and summations (see Figure 8-4).

Figure 8-2. Transformed Weights

Figure 8-3. Convolution Operation

Figure 8-4. Matrix Multiplications and Summations

8-9

INT8 DEEP LEARNING INFERENCE

Matrix Multiplication
Matrix multiplication is performed in a standard manner (see Chapter 18, “Software Optimization for
Intel® AVX-512 Instructions”).

Blocking
Since the matrices in question are generally large, one needs to traverse the matrices iteratively, while
accumulating the results of the multiplication. Hence, one needs to allocate several registers (accumula-
tors) to accumulate the results, and optionally have several registers for temporary caching of the A and
B matrices, in order to enable reuse.

The order in which the matrices are traversed can have a monumental effect on the overall performance.
In general, it is preferable to traverse the entire K dimension before moving on to the next element in the
M or N dimension. When the K dimension is exhausted, the results in the accumulators are final (see
discussion below about partial results). They can be fed to the post-convolution stage (See Post Convo-
lution) and stored to the output location. If, however, the K dimension is not exhausted, before a move in
the M or N dimension is initiated, the results in the accumulators are partial, i.e., they are the result of
multiplication of some columns of A by some rows of B. These results have to be saved in an auxiliary
buffer in order to free the accumulators for the new chunk of data. When we return to these M, N coordi-
nates, these results have to be loaded from the buffer. Thus we perform additional store(s) and load(s)
when compared to the exhaustive-K scenario. Furthermore, it is generally advisable to limit the advance-
ment in the M or N dimension. Generally speaking, best results were obtained when the Accumulator K
cache level of matrix B (see Figure 8-5) was in the DCU, and when the accumulative size of the cache
blocks (see Figure 8-6) was as large as possible while still in MLC. However, there are cases where the
best results are achieved when the accumulative size is much larger (even up to 3x of the MLC). These
hyper-parameters are usually found by experimentation.

The “exhaustive-K” guideline does not yield optimal results in all cases, and the optimal extent of M,N
locality should be determined on a case-by-case basis. We outline a simple yet effective way of struc-
turing the control flow of the convolution process in order to accommodate the variety of scenarios abun-
dant in modern CNNs.

Figure 8-5. 3-Tier Flexible 2D Blocking

INT8 DEEP LEARNING INFERENCE

8-10

Direct Convolution Example
Consider a direct convolution with the following parameters:

IFM size = 34x34, KH = KW = 3, Convolution stride = 1, #IFMs = 32, #OFMs = 32, and the IFM is not
padded. The size of the OFM is therefore 32x32.

The chosen blocking is M_ACCUMS = 4, N_ACCUMS = 2, M_CACHE = 1024, N_CACHE = 2, K_CACHE =
8. These blocking parameters ensure that the K dimension is traversed entirely and no temporary results
need to be stored. Then, in order to compute 32 output channels for pixels (0,0), (0,1), (0,2) and (0,3)
of the OFM, the following code can be employed.

Figure 8-6. 3-Tier Flexible 2D Blocking Loops

Example 8-3. Direct Convolution

Direct Convolution

vpxord zmm0 , zmm0 , zmm0 // Zero accumulator tile [m,n] = [0,0]
vpxord zmm1 , zmm1 , zmm1 // Zero accumulator tile [m,n] = [1,0]
vpxord zmm2 , zmm2 , zmm2 // Zero accumulator tile [m,n] = [2,0]
vpxord zmm3 , zmm3 , zmm3 // Zero accumulator tile [m,n] = [3,0]
vpxord zmm4 , zmm4 , zmm4 // Zero accumulator tile [m,n] = [0,1]
vpxord zmm5 , zmm5 , zmm5 // Zero accumulator tile [m,n] = [1,1]
vpxord zmm6 , zmm6 , zmm6 // Zero accumulator tile [m,n] = [2,1]
vpxord zmm7 , zmm7 , zmm7 // Zero accumulator tile [m,n] = [3,1]

for (int k = 0; k < 32 / 4; ++k) {
 vmovups zmm12, zmmword ptr [WEIGHT_ADDR(kh=0,kw=0,k,n=0)] // Load weights [kh,kw,n] = [0,0,+0]
 vmovups zmm13, zmmword ptr [WEIGHT_ADDR(kh=0,kw=0,k,n=1)] // Load weights [kh,kw,n] = [0,0,+1]
 vpbroadcastd zmm8 , dword ptr [IFM_ADDR(0)] // Load IFM pixel +0
 vpbroadcastd zmm9 , dword ptr [IFM_ADDR(1)] // Load IFM pixel +1
 vpbroadcastd zmm10, dword ptr [IFM_ADDR(2)] // Load IFM pixel +2
 vpbroadcastd zmm11, dword ptr [IFM_ADDR(3)] // Load IFM pixel +3

8-11

INT8 DEEP LEARNING INFERENCE

vpdpbusd zmm0 , zmm8 , zmm12
 vpdpbusd zmm1 , zmm9 , zmm12
 vpdpbusd zmm2 , zmm10, zmm12
 vpdpbusd zmm3 , zmm11, zmm12
 vmovups zmm12, zmmword ptr [WEIGHT_ADDR(kh=0,kw=1,k,n=0)] // Load weights [kh,kw,n] = [0,1,+0]
 vpdpbusd zmm4 , zmm8 , zmm13

vpbroadcastd zmm8 , dword ptr [IFM_ADDR(4)] // Load IFM pixel +4
 vpdpbusd zmm5 , zmm9 , zmm13
 vpdpbusd zmm6 , zmm10, zmm13
 vpdpbusd zmm7 , zmm11, zmm13
 vmovups zmm13, zmmword ptr [WEIGHT_ADDR(kh=0,kw=1,k,n=1)] // Load weights [kh,kw,n] = [0,1,+1]
 vpdpbusd zmm0 , zmm9 , zmm12
 vpdpbusd zmm1 , zmm10, zmm12
 vpdpbusd zmm2 , zmm11, zmm12
 vpdpbusd zmm3 , zmm8 , zmm12
 vmovups zmm12, zmmword ptr [WEIGHT_ADDR(kh=0,kw=2,k,n=0)] // Load weights [kh,kw,n] = [0,2,+0]
 vpdpbusd zmm4 , zmm9 , zmm13
 vpbroadcastd zmm9 , dword ptr [IFM_ADDR(5)] // Load IFM pixel +5
 vpdpbusd zmm5 , zmm10, zmm13
 vpdpbusd zmm6 , zmm11, zmm13
 vpdpbusd zmm7 , zmm8 , zmm13

vmovups zmm13, zmmword ptr [WEIGHT_ADDR(kh=0,kw=2,k,n=1)] // Load weights [kh,kw,n] = [0,2,+1]
 vpdpbusd zmm0 , zmm10, zmm12
 vpdpbusd zmm1 , zmm11, zmm12
 vpdpbusd zmm2 , zmm8 , zmm12
 vpdpbusd zmm3 , zmm9 , zmm12
 vmovups zmm12, zmmword ptr [WEIGHT_ADDR(kh=1,kw=0,k,n=0)] // Load weights [kh,kw,n] = [1,0,+0]
 vpdpbusd zmm4 , zmm10, zmm13
 vpbroadcastd zmm10, dword ptr [IFM_ADDR(34)] // Load IFM pixel +34
 vpdpbusd zmm5 , zmm11, zmm13
 vpbroadcastd zmm11, dword ptr [IFM_ADDR(35)] // Load IFM pixel +35
 vpdpbusd zmm6 , zmm8 , zmm13
 vpbroadcastd zmm8 , dword ptr [IFM_ADDR(36)] // Load IFM pixel +36
 vpdpbusd zmm7 , zmm9 , zmm13
 vmovups zmm13, zmmword ptr [WEIGHT_ADDR(kh=1,kw=0,k,n=1)] // Load weights [kh,kw,n] = [1,0,+1]
 vpbroadcastd zmm9 , dword ptr [IFM_ADDR(37)] // Load IFM pixel +37
 vpdpbusd zmm0 , zmm10, zmm12
 vpdpbusd zmm1 , zmm11, zmm12
 vpdpbusd zmm2 , zmm8 , zmm12
 vpdpbusd zmm3 , zmm9 , zmm12
 vmovups zmm12, zmmword ptr [WEIGHT_ADDR(kh=1,kw=1,k,n=0)] // Load weights [kh,kw,n] = [1,1,+0]
 vpdpbusd zmm4 , zmm10, zmm13
 vpbroadcastd zmm10, dword ptr [IFM_ADDR(38)] // Load IFM pixel +38

vpdpbusd zmm5 , zmm11, zmm13
 vpdpbusd zmm6 , zmm8 , zmm13
 vpdpbusd zmm7 , zmm9 , zmm13
 vmovups zmm13, zmmword ptr [WEIGHT_ADDR(kh=1,kw=1,k,n=1)] // Load weights [kh,kw,n] = [1,1,+1]

vpdpbusd zmm0 , zmm11, zmm12
 vpdpbusd zmm1 , zmm8 , zmm12
 vpdpbusd zmm2 , zmm9 , zmm12
 vpdpbusd zmm3 , zmm10, zmm12

Example 8-3. Direct Convolution (Contd.)

INT8 DEEP LEARNING INFERENCE

8-12

 vmovups zmm12, zmmword ptr [WEIGHT_ADDR(kh=1,kw=2,k,n=0)] // Load weights [kh,kw,n] = [1,2,+0]
 vpdpbusd zmm4 , zmm11, zmm13
 vpbroadcastd zmm11, dword ptr [IFM_ADDR(39)] // Load IFM pixel +39
 vpdpbusd zmm5 , zmm8 , zmm13
 vpdpbusd zmm6 , zmm9 , zmm13
 vpdpbusd zmm7 , zmm10, zmm13
 vmovups zmm13, zmmword ptr [WEIGHT_ADDR(kh=1,kw=2,k,n=1)] // Load weights [kh,kw,n] = [1,2,+1]
 vpdpbusd zmm0 , zmm8 , zmm12
 vpdpbusd zmm1 , zmm9 , zmm12
 vpdpbusd zmm2 , zmm10, zmm12
 vpdpbusd zmm3 , zmm11, zmm12
 vmovups zmm12, zmmword ptr [WEIGHT_ADDR(kh=2,kw=0,k,n=0)] // Load weights [kh,kw,n] = [2,0,+0]
 vpdpbusd zmm4 , zmm8 , zmm13
 vpbroadcastd zmm8 , dword ptr [IFM_ADDR(68)] // Load IFM pixel +68
 vpdpbusd zmm5 , zmm9 , zmm13
 vpbroadcastd zmm9 , dword ptr [IFM_ADDR(69)] // Load IFM pixel +69
 vpdpbusd zmm6 , zmm10, zmm13
 vpbroadcastd zmm10, dword ptr [IFM_ADDR(70)] // Load IFM pixel +70
 vpdpbusd zmm7 , zmm11, zmm13
 vmovups zmm13, zmmword ptr [WEIGHT_ADDR(kh=2,kw=0,k,n=1)] // Load weights [kh,kw,n] = [2,0,+1]
 vpbroadcastd zmm11, dword ptr [IFM_ADDR(71)] // Load IFM pixel +71
 vpdpbusd zmm0 , zmm8 , zmm12

vpdpbusd zmm1 , zmm9 , zmm12
vpdpbusd zmm2 , zmm10, zmm12

 vpdpbusd zmm3 , zmm11, zmm12
 vmovups zmm12, zmmword ptr [WEIGHT_ADDR(kh=2,kw=1,k,n=0)] // Load weights [kh,kw,n] = [2,1,+0]
 vpdpbusd zmm4 , zmm8 , zmm13
 vpbroadcastd zmm8 , dword ptr [IFM_ADDR(72)] // Load IFM pixel +72
 vpdpbusd zmm5 , zmm9 , zmm13
 vpdpbusd zmm6 , zmm10, zmm13
 vpdpbusd zmm7 , zmm11, zmm13
 vmovups zmm13, zmmword ptr [WEIGHT_ADDR(kh=2,kw=1,k,n=1)] // Load weights [kh,kw,n] = [2,1,+1]
 vpdpbusd zmm0 , zmm9 , zmm12
 vpdpbusd zmm1 , zmm10, zmm12
 vpdpbusd zmm2 , zmm11, zmm12
 vpdpbusd zmm3 , zmm8 , zmm12
 vmovups zmm12, zmmword ptr [WEIGHT_ADDR(kh=2,kw=2,k,n=0)] // Load weights [kh,kw,n] = [2,2,+0]
 vpdpbusd zmm4 , zmm9 , zmm13
 vpbroadcastd zmm9 , dword ptr [IFM_ADDR(73)] // Load IFM pixel +73
 vpdpbusd zmm5 , zmm10, zmm13
 vpdpbusd zmm6 , zmm11, zmm13
 vpdpbusd zmm7 , zmm8 , zmm13

vmovups zmm13, zmmword ptr [WEIGHT_ADDR(kh=2,kw=2,k,n=1)] // Load weights [kh,kw,n] = [2,2,+1]
vpdpbusd zmm0 , zmm10, zmm12

 vpdpbusd zmm1 , zmm11, zmm12
 vpdpbusd zmm2 , zmm8 , zmm12

vpdpbusd zmm3 , zmm9 , zmm12
vpdpbusd zmm4 , zmm10, zmm13

Example 8-3. Direct Convolution (Contd.)

8-13

INT8 DEEP LEARNING INFERENCE

In this code we allocate M_ACCUM (4) zmm registers zmm8-zmm11 for IFM values, and N_ACCUM (2)
zmm registers zmm12-zm13 for weights.

In the beginning the accumulators must be zeroed out. Then the entire K dimension (#IFMs=32) must
be traversed, each iteration operating on 4 consecutive IFMs. The convolution consists from a series of 4-
byte broadcasts of IFM data, 64-byte loads of weights data, and multiplication and accumulation opera-
tions. Due to the large IFM data overlap between different kh,kw values, the IFM data can be efficiently
reused, and the number of data loads significantly lowered.

8.4.1.2 Convolutional Layers with Low OFM Count
Vectorization along the channel dimension works well when there are enough channels (both input and
output) to fill up the vector registers, which is usually the case with classification topologies. However, in
some cases such as Generative Adversarial Networks (GANs) the end result is an image which means
that last convolutional layer has only three channels. In this layer it makes more sense to vectorize along
the spatial dimension, which requires a different layout of data. To avoid a large intermediate buffer we
re-layout the computation on the fly for one 4x16 block, perform a partial convolution, and throw the
block away (this mechanism is limited for 1x1 kernels and assumes the weights have been reordered to
match the new layout).

 vpdpbusd zmm5 , zmm11, zmm13
vpdpbusd zmm6 , zmm8 , zmm13
vpdpbusd zmm7 , zmm9 , zmm13
}

// Do post-processing operations with results in zmm0-zmm7

Figure 8-7. Standard vs Optimized vs. Low OFM Optimized Data Layouts1

NOTES:
1. The 4x16 blocks of the Low OFM optimization are created on the fly and used only once.

Example 8-3. Direct Convolution (Contd.)

INT8 DEEP LEARNING INFERENCE

8-14

Example 8-4. Convolution for Layers with Low OFM Count

Convolution for Layers with Low OFM Count

IFM_W % 16 == 0
NUM_OFMS = 3
NUM_IFMS = 64
dqfs - array of dequantization factors for the down convert

int src_ifm_size = IFM_H * IFM_W * IFMBlock;
int ofm_size = IFM_W * IFM_H;

__m512i gather_indices = _mm512_setr_epi32(0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60);

 __m512 dqf_broadcast[NUM_OFMS];

 #pragma unroll(NUM_OFMS)
 for (int ofm = 0 ; ofm < NUM_OFMS ; ofm++) {
 dqf_broadcast[ofm] = _mm512_set1_ps(dqfs[ofm]);
 }

 for (int h = 0 ; h < IFM_H ; h++) {
 int src_line_offset = h * IFM_W * IFMBlock;
 int w = 0;
 int src_w_offset = src_line_offset;
 for (; w < IFM_W ; w += 16) {
 __m512i res_i32[NUM_OFMS] = { 0 };

 // Convolve 4x16 OFMs by reorganizing on the fly.
 for (int ifm = 0 ; ifm < NUM_IFMS ; ifm += 4) {
 int src_block_offset = ifm & 0xf;
 int src_ifm_index = ifm >> 4;
 size_t src_ifm_offset = src_w_offset + src_ifm_index * src_ifm_size + src_block_offset;
 __m512i ivec = _mm512_i32gather_epi32(gather_indices, input + src_ifm_offset, 4);
 #pragma unroll(NUM_OFMS)
 for (int ofm = 0 ; ofm < NUM_OFMS ; ofm++) {
 int weight_offset = (ofm * NUM_IFMS + ifm) * 16;

__m512i wvec = _mm512_load_si512(weights_reorged + weight_offset);
 res_i32[ofm] = _mm512_dpbusd_epi32(res_i32[ofm], ivec, wvec);
 }
 }

 // Down convert and store results in native layout.
 #pragma unroll(NUM_OFMS)
 for (int ofm = 0 ; ofm < NUM_OFMS ; ofm++) {
 __m512 res_f32 = _mm512_cvtepi32_ps(res_i32[ofm]);
 res_f32 = _mm512_mul_ps(res_f32, dqf_broadcast[ofm]);
 size_t output_offset = ofm * ofm_size + h * IFM_W + w;
 _mm512_store_ps(output + output_offset, res_f32);
 }
 src_w_offset += 16 * IFMBlock;
 }
 }
}

8-15

INT8 DEEP LEARNING INFERENCE

8.4.2 Post Convolution
Numerous transformations may be operated on the layer data once the convolution is done. These may
include classical post convolution operations such as ReLU, operations that are usually considered a
separate layer such as pooling or EltWise, and quantization/dequantization operations. To reduce
memory hierarchy thrashing, try to do these steps during the convolution (i.e., fused into the convolution
computation). Fusing the quantization step is especially attractive because it gains 4x compute band-
width and reduces memory bandwidth 4x.

8.4.2.1 Fused Quantization/Dequantization
Section 8.3.2.1 describes how to do offline quantization. Typically however, the dequantization of the
current layer and the quantization for the next layer can be fused to the convolution step. The following
code describes the basic operation of the post-convolution step which is initiated once the convolution of
a block of OFMs was finished. As before, the procedure operates on 16 int8 OFMs belonging to the same
pixel. In this example we assume that the dequantization factors (and bias if any) were prepared so that
a single factor represents the dequantization of the current layer and then the requantization to the next
layer. Generally speaking we try to reduce the number of online computations by representing several
multiplication factors, e.g., dequantization, layer constant multiplication value, and quantization, to the
next layer as a single factor. In addition, if the original OFMs could have been negative (no ReLu) we
follow the procedure of Section 8.3.2.1 and add 127 to all the values.

INT8 DEEP LEARNING INFERENCE

8-16

8.4.2.2 ReLu
ReLu is implemented as a max with a zero register with negligible overhead as it fused with the convolu-
tion.

Example 8-5. Basic PostConv

Basic PostConv

//dest points to a vector of 16 OFMSs belonging to the same pixel.
uint8_t* dest = (uint8_t*) (outputFeatureMaps) + offset;

// in are the 16 accumulators in int32 that we need to operate on.
__m512 resf =_mm512_cvtepi32_ps(in); // Convert to float

// add bias if there is one and then dequantize + requantize in a single step
if (bias) {
 resf = _mm512_fmadd_ps(resf,
 _mm512_load_ps(dqfs + OFMChannelOffset),
 _mm512_load_ps((__m512*) (bias + OFMChannelOffset)));

} else {
 resf = _mm512_mul_ps(resf,
 _mm512_load_ps(dqfs + OFMChannelOffset));
}

#if RELU
 resf = _mm512_max_ps(resf, broadcast_zero);
#endif

// at this point we are in the uint8 range.
__m512i res = _mm512_cvt_roundps_epi32(resf, _MM_FROUND_TO_NEAREST_INT|_MM_FROUND_NO_EXC);
__m128i res8;

#if ELTWISE
 /* fused Eltwise ops */
#else
if !RELU

res = _mm512_add_epi32(res, _mm512_set1_epi32(128));
endif
 res8 = _mm512_cvtusepi32_epi8(res);
#endif // ELTWISE

#if POOLING
 /* fused pooling ops */
#endif

_mm_store_si128((__m128i*) dest, res8);

8-17

INT8 DEEP LEARNING INFERENCE

8.4.2.3 EltWise
Element wise operations are usually easier to fuse into the convolution step because they operate directly
on the accumulators just before the final result is saved. Note, however, that the quantization factors of
the different input layers are usually not the same so the inputs must first be dequantaized to f32, oper-
ated on and then quantized again (we show an optimization for this step in the vectorized code).

The following example of the eltwise operation required given the data type of the inputs and outputs. In
all the examples it is assumed that the data from the convolutional operation is the INT32 data returned
from the VPDPBUSD operation, and that the quantized output must be uint8, even though in some cases
the unquantized output could be negative. See Section 8.3.2, “Quantization” on how quantization to
uint8 works with negative values.

The following optimized code shows eltwise implementations for several eltwise use cases assuming that
“dest” points to a vector of 16 OFMs belonging to the same pixel in the output. In principle we need to
dequantize the eltwise data and the convolution data, do the addition and then dequantize, as in the
following equation.

However, we can pre-process the factors offline (operations in square brackets) so that we have only two
multiplications online.

8.4.2.4 Pooling
Pooling layers may not be simple to fuse to the convolution step but in some cases the fusion is easy. The
average pooling of the last convolutional layer of Inception ResNet 50 for example amounts to averaging

Example 8-6. Uint8 Residual Input

Uint8 Residual Input

__m128i eltwise_u8 = _mm_load_si128((const __m128i*) (eltwise_data + ew_offset));
__m512i eltwise_i32 = _mm512_cvtepu8_epi32(eltwise_u8);
if (signed_residual) {
 eltwise_i32 = _mm512_sub_epi32(eltwise_i32, broadcast_128);
}
__m512 eltwise_f32 = _mm512_cvtepi32_ps(eltwise_i32);
resf = _mm512_add_ps(eltwise_f32,resf); /* add with conv results */

/* dequantization and then requantization to next layer in one op */
resf = _mm512_mul_ps(resf, broadcast_fused_eltwise_out_qfactor);
if (relu)
 resf = _mm512_max_ps(resf, broadcast_zero);
__m512i data_i32 = _mm512_cvt_roundps_epi32(resf,
 (_MM_FROUND_TO_NEAREST_INT|
 _MM_FROUND_NO_EXC));
res8 = _mm512_cvtusepi32_epi8(data_i32);

if (!relu) {
 res8 = _mm_add_epi8(res8, _mm_set1_epi8(-128)); //hack to add 128
}

INT8 DEEP LEARNING INFERENCE

8-18

all the 8x8 pixels of every OFM channel into a single value, thus emitting a single value per OFM. Such an
operation is easy to fuse because it behaves the same for every pixel.

The following unfused vectorized code can be used to do max and average pooling. In the example below
the pooling step can also adjust the input quantization range to the output quantization range. This is
usually necessary before a concat layer, which is implemented as a No-Op, which means that the output
quantization range of all the concatenated layers must be the same.

Example 8-7. 8x8 Average Pooling with Stride 1 of 8x8 Layers

8x8 Average Pooling with Stride 1 of 8x8 Layers

__m512 pool_factor = _mm512_set1_ps((float)1.0/64);

// resf is the 16 float values as computed in Basic PostConv code sample

resf = _mm512_mul_ps(resf, pool_factor); // divide by 64

// The pool offset depends only on the current OFM (OFMItr).
int pool_offset = (BlockOffsetOFM + OFMItr);
float *pool_dest = (float *) (outputFeatureMaps) + pool_offset;
__m512 prev_val = _mm512_load_ps((const __m512 *) (pool_dest));
__m512 res_tmp_ps = _mm512_add_ps(resf, prev_val);
_mm512_store_ps((__m512 *) pool_dest, res_tmp_ps);

Example 8-8. Unfused Vectorized Pooling

Unfused Vectorized Pooling

// We concurrency pool 16 IFMs before moving to the next set of IFMs
for (int ifm = 0; ifm < no_ifm; ifm+=16) {
 // Find the location of the block in the input and in the output that we are pooling
 int block_idx = (ifm >> 4) ;
 size_t block_offset = (spatial_size_in * block_idx) << 4;
 size_t block_offset_out = (spatial_size_out * block_idx) << 4;

 for (int y = -pad_h_; y < top_y + pad_h_; y++) {
 int y_offset_out = (top_x * 16 * (y + pad_h_));
 for (int x = -pad_w_; x < top_x + pad_w_; x++) {
 __m256i res_pixel = _mm256_set1_epi16(0); //should be u_int but 0 is 0
 for (int i = 0; i < kernel_w; i++) {
 int y_offset_in = (bottom_x * (i + (y * stride)))<<4;
for (int j = 0; j < kernel_h; j++) {
 int x_offset = (j + (x * stride)) << 4;

 // skip pixels that are inside the pad
 if (pad && ((j + (x * stride)) < 0 || (i + (y * stride)) < 0))
 continue;

 //load pixel data

8-19

INT8 DEEP LEARNING INFERENCE

8.4.2.5 Pixel Shuffler
The SRGAN topology includes a layer that reshapes the inputs as follows.

1. The width and height of the features maps are doubled.

2. The number of output feature maps is divided by four.

 __m128i data_px = _mm_load_si128((const __m128i *) (bottom_data+ ifm_image_offset + block_offset +
y_ofset_in + x_ofsset));

 // convert to u16 for average.
 __m256i data_px_u16 = _mm256_cvtepu8_epi16(data_px);
 if (MAX) {
 res_pixel = _mm256_max_epu16(res_pixel,data_px_u16);
 } else if (AVERAGE) {
 res_pixel = _mm256_adds_epu16(res_pixel,data_px_u16);
 }
 } // kernel_h
 } // kernl_w

 // done with the input data but there may be some adjustments necessary.
 int x_offset_out = (x + pad_w_) << 4;
 if (SHOOUL_ADJUST_QUANTIZATION_RANGE) { // typically before a no-op concat
 float factor = layer_param().quantization_param().bottom_range()
 / this->layer_param().quantization_param().top_range();

 __m512 broadcast_factor = _mm512_set1_ps(factor);

 __m512i res_pixel_i32 = _mm512_cvtepu16_epi32(res_pixel);
 __m512 res_pixel_f32 = _mm512_cvtepi32_ps(res_pixel_i32);
 res_pixel_f32 = _mm512_mul_ps(res_pixel_f32,broadcast_factor);

 __m512i data_i32 = _mm512_cvt_roundps_epi32 (res_pixel_f32 ,_MM_FROUND_TO_NEAR-
EST_INT|_MM_FROUND_NO_EXC);
 res_pixel= _mm512_cvtusepi32_epi16(data_i32);

 }
 if (AVERAGE) {
 uint8_t kernel_size_u8 = kernel_h_ * kernel_w_;
 __m256i broadcast_kernel_size = _mm256_set1_epi16(kernel_size_u8);

 res_pixel=_mm256_div_epu16(res_pixel,broadcast_kernel_size);
 }
 // compute final offset and save
 uint8_t * total_offset =
 top_data + output_image_offset + layer_offset + block_offset_out +
 y_ofsset_out + x_ofsset_out ;//+ vect_idx;
 _mm_store_si128((__m128i*) total_offset, _mm256_cvtusepi16_epi8(res_pixel));

 }
 }
}

Example 8-8. Unfused Vectorized Pooling (Contd.)

INT8 DEEP LEARNING INFERENCE

8-20

Every 2x2 quad in the output feature map is populated by four pixels from the same spatial dimensions
in the input which satisfy the condition that (c mod K/4) is the same where c is the input channel and K
is the number of input feature maps (reference paper SRGAN).

Because of the memory layout of the vectorized directConv, it is easy to fuse the pixel shuffler layer to
the convolution. The only change that is required is to save the result of the convolution in the correct
place in the output.

Example 8-9. Caffe Scalar Code for Pixel Shuffler

Caffe Scalar Code for Pixel Shuffler

void pixel_shuffler(const vector<int>& bottom_shape, const vector<int>& top_shape, const pstype* bottom_data,
 pstype* top_data)
{
const int N = bottom_shape[0];
assert(N == top_shape[0]);
const int bc = bottom_shape[1];
const int bh = bottom_shape[2];
const int bw = bottom_shape[3];
const int tc = top_shape[1];
const int th = top_shape[2];
const int tw = top_shape[3];
const int r = th / bh;
int bottom_ch_size = bw * bh;
int top_ch_size = tw * th;
pstype* cur_channel = NULL;
for(int n = 0; n < N; n++){

const pstype* src = bottom_data + n * bc * bottom_ch_size;
pstype* dst = top_data + n * tc * top_ch_size;
for(int c = 0; c < tc; c++){

cur_channel = dst + c * top_ch_size;
for(int h = 0; h < bh; h++){

for(int w = 0; w < bw; w++){
int bottom_offset = h * bw + w;
int bottom_index = c * bottom_ch_size + bottom_offset;
int top_index = h * r * tw + w * r;
cur_channel[top_index] = src[bottom_index]; // top left
bottom_index = (c + tc) * bottom_ch_size + bottom_offset;
top_index = h * r * tw + w * r + 1;
cur_channel[top_index] = src[bottom_index]; // top right
bottom_index = (c + 2 * tc) * bottom_ch_size + bottom_offset;
top_index = (h * r + 1) * tw + w * r;
cur_channel[top_index] = src[bottom_index]; // bottom left
bottom_index = (c + 3 * tc) * bottom_ch_size + bottom_offset;
top_index = (h *r + 1) * tw + w * r + 1;
cur_channel[top_index] = src[bottom_index]; // bottom right

}
}

}
}
}

8-21

INT8 DEEP LEARNING INFERENCE

8.5 LSTM NETWORKS
Long short-term memory (LSTM) units are used to create Recurrent Neural Networks (RNNs) for tasks
such as speech and text translation. The fundamental computation of an LSTM cell is matrix multiplica-
tion (GEMM), not direct convolution, as in CNNs.

8.5.1 Fused LSTM Embedding
The LSTM cell starts by multiplying the input data by the input kernel where the input data (a.k.a embed-
ding) are 512 elements for every dictionary word and the input kernel is known offline and never
changes. Finally, each embedding vector is multiplied by the same matrix. It has been suggested1 to
multiply each vector by the kernel offline and save the result, and at runtime lookup the GEMM result by
the word index and copy into the accumulator area of the cell. This optimization may give an approximate
20% performance boost.

8.5.2 Fused post GEMM
Many variants of existing LSTM cells contain transcendental operations such as sigmoid and hyperbolic
tangent as activation functions.

Implementing the activation part as full precision scalar or SMVL-based vectorized code may be slow. The
alternative is to use approximations which provide good performance. One of the approaches for approx-
imating transcendental functions is to use piece-wise polynomial approximations.

Example 8-10. Computing Output Offset for Fused Pixel Shuffler

Computing Output Offset for Fused Pixel Shuffler

// base_ofm - output target location (base_ofm % 16 == 0)
// SubTileX - X location in quad (0 or 1)
// SubTileY - Y location in quad (0 or 1)
// ConvOutputX - X position in the output of the convolution
// ConvOutputY - Y position in the output of the convolution

int PostPSNoOutMs =(NoOutFMs / 4);
int PostPSOptOfmIndex = (base_ofm % PostPSNoOutMs) / 16;
int QuarterIndex = base_ofm / PostPSNoOutMs;
int SubTileX = QuarterIndex & 0x1;
int SubTileY = (QuarterIndex & 0x2) >> 1;
int PostPSX = ConvOutputX * 2 + SubTileX;
int PostPSY = ConvOutputY * 2 + SubTileY;
size_t offset = (OFM_H * OFM_W * PostPSOptOfmIndex + PostPSY * OFM_W + PostPSX) * 16;

1. Jacob Devlin, Rabih Zbib, Zhongqiang Huang, Thomas Lamar, Richard M Schwartz, and John Makhoul. 2014. Fast and
robust neural network joint models for statistical machine translation. In ACL (1). Citeseer, pages 1370-1380.

INT8 DEEP LEARNING INFERENCE

8-22

Example 8-11. Sigmoid Approximation with Minimax Polynomials

Sigmoid Approximation with Minimax Polynomials

// clang-format off

//coefficients of second order minimax polynomial for sigmoid approximation
__declspec(align(64)) const float sigmoid_poly2_coeffs[3][16] = {
{

0.559464f, 0.702775f, 0.869169f, 0.968227f, 0.996341f, 0.999999f, 0.499999f, 0.499973f,
0.499924f, 0.499791f, 0.499419f, 0.498471f, 0.496119f, 0.491507f, 0.486298f, 0.495135f,

 },
 {

0.22038f, 0.123901f, 0.042184f, 0.00779019f, 0.000651011f, 1.12481e-7f, 0.250103f, 0.250739f,
0.251492f, 0.252905f, 0.255751f, 0.260808f, 0.269823f, 0.282225f, 0.292552f, 0.281425f,

 },
 {

-0.0298035f, -0.0135297f, -0.00347128f, -0.000483042f, -0.0000289636f, -2.57464e-9f, -0.00292674f,
-0.00680854f, -0.00968539f, -0.0134544f, -0.0188995f, -0.0256562f, -0.0343136f, -0.0426696f, -0.0478004f,
-0.0443023f,

 },
};

// clang-format on

inline void sigmoid_poly_2(const __m512& arg, __m512& func)
{
 // Load polynomial coefficients into registers (one time operation)
 const __m512 sigmoid_coeff0 = _mm512_load_ps(sigmoid_poly2_coeffs[0]);
 const __m512 sigmoid_coeff1 = _mm512_load_ps(sigmoid_poly2_coeffs[1]);
 const __m512 sigmoid_coeff2 = _mm512_load_ps(sigmoid_poly2_coeffs[2]);

 // Extract signs of args
 const __m512 ps_sign_filter = _mm512_castsi512_ps(_mm512_set1_epi32(0x7FFFFFFF));

 __mmask16 signs = _mm512_movepi32_mask(_mm512_castps_si512(arg));
 __m512 abs_arg = _mm512_and_ps(arg, ps_sign_filter);

 // Compute approximation intervals out of args' exponent and MSB and
 // restrict number of intervals to 16
 const __m512i lut_low = _mm512_set1_epi32(246);
 const __m512i lut_high = _mm512_set1_epi32(261);

 __m512i indices = _mm512_srli_epi32(_mm512_castps_si512(abs_arg), 22);
 indices = _mm512_max_epi32(indices, lut_low);
 indices = _mm512_min_epi32(indices, lut_high);

 /*
 * Approximate
 */
 __m512 func_p0 = _mm512_permutexvar_ps(indices, sigmoid_coeff0);
 __m512 func_p1 = _mm512_permutexvar_ps(indices, sigmoid_coeff1);
 __m512 func_p2 = _mm512_permutexvar_ps(indices, sigmoid_coeff2);

8-23

INT8 DEEP LEARNING INFERENCE

While the minimax polynomial approximation may show the best accuracy on a layer-by-layer basis, the
end-to-end accuracy may suffer in some topologies (NMT notably). In such cases a different approach
might be better. The following approximation uses the fact that

Where

2n is computed by the scalef instruction

2y can be approximated sufficiently well by a Taylor Polynomial of degree 2.

 func = _mm512_fmadd_ps(abs_arg, func_p2, func_p1);
 func = _mm512_fmadd_ps(abs_arg, func, func_p0);

 // Account for args' sign
const __m512 ps_ones = _mm512_set1_ps(1.0);

 func = _mm512_mask_sub_ps(func, signs, ps_ones, func);
}

Example 8-12. Sigmoid Approximation with scalef

Sigmoid Approximation with scalef

const __m512 ps_ones = _mm512_set1_ps(1.0);
const __m512 half = _mm512_set1_ps(0.5f);
const __m512 minus_log2_e = _mm512_set1_ps(-1.442695f);
const __m512 ln2sq_over_2 = _mm512_set1_ps(0.240226507f);
const __m512 ln2__ln2sq_over_2 = _mm512_set1_ps(0.452920674f);
const __m512 one__ln2sq_over_8 = _mm512_set1_ps(0.713483036f);

inline void sigmoid_scalef(const __m512& arg, __m512& func)
{
 __m512 x = _mm512_fmadd_ps(arg, minus_log2_e, half);
 __m512 y = _mm512_reduce_ps(x, 1);
 __m512 _2y = _mm512_fmadd_ps(_mm512_fmadd_ps(y, ln2sq_over_2, ln2__ln2sq_over_2), y, one__ln2sq_over_8);
 __m512 exp = _mm512_scalef_ps(_2y, x);
 func = _mm512_rcp14_ps(_mm512_add_ps(exp, ps_ones));
}

Example 8-11. Sigmoid Approximation with Minimax Polynomials (Contd.)

INT8 DEEP LEARNING INFERENCE

8-24

8.5.3 Dynamic Batch Size

Different RNN objects, e.g., sentences, can require very different computation effort, e.g., short
sentence vs long sentence. When batching multiple objects together, it is important take this fact into
consideration to avoid unnecessary computations. In NMT for example (see Figure 8-8), if we ensure
sentences are ordered by length it is easy to adapt each iteration to the actual number of active
sentences.

8.5.4 NMT Example: Beam Search Decoder Get Top K

Figure 8-8. Dynamic Batch Size1

NOTES:
1. NMT can gain significantly by adapting the computation in each iteration to the number of sentences

that are still active.

Figure 8-9. Find Top 16 Values in Some Input

8-25

INT8 DEEP LEARNING INFERENCE

In Neural Machine Translation, as presented in https://papers.nips.cc/paper/5346-sequence-to-
sequence-learning-with-neural-networks.pdf and https://github.com/tensorflow/nmt, a significant
amount of time is spent searching for the current top BEAM_WIDTH attention scores out of
BEAM_WIDTH*VOCAB_SIZE values, which could be very large. We suggest using the following algorithm
to optimize this step. The crux of the process is that a new value can be concurrently compared against
all the current top values in one op (see Figure 8-9, line 4). Note that we keep the top scores sorted so
the mask returned by the op must consist of a sequence of ones followed by a sequence zeros (1*0*).

Example 8-13. Pseudocode for Finding Top K

Pseudocode for Finding Top K

// ZMM0 - best scores, initialized to -MAX_FLOAT
// ZMM1 - indices of best scores
// ZMM4 - index the current score

index = 0
pxor ZMM4
while index < MAX_DATA
 vbroadcastss ZMM2, array[index]
 VPCMPPS K1,ZMM0,ZMM2, _CMP_LT_OQ
 KTESTW K1,K1
 JZ … // K1 == 0 so we can just put new score first
 //if K1!=0
 VPERMPS ZMM0(k1),ZMM0
 VPERMPS ZMM1(k1),ZMM0
 KSHIFT k2,k1,1
 KXOR k3,k2,k1
 VPBLENDMPS k3, ZMM0,ZMM2

VPBLENDMD k3, ZMM1,ZMM4
 VPADD ZMM4, 1
 add index, 1

https://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
https://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
https://github.com/tensorflow/nmt

INT8 DEEP LEARNING INFERENCE

8-26

CHAPTER 9
OPTIMIZING CACHE USAGE

Over the past decade, processor speed has increased. Memory access speed has increased at a slower
pace. The resulting disparity has made it important to tune applications in one of two ways: either (a) a
majority of data accesses are fulfilled from processor caches, or (b) effectively masking memory latency
to utilize peak memory bandwidth as much as possible.

Hardware prefetching mechanisms are enhancements in microarchitecture to facilitate the latter aspect,
and will be most effective when combined with software tuning. The performance of most applications
can be considerably improved if the data required can be fetched from the processor caches or if memory
traffic can take advantage of hardware prefetching effectively.

Standard techniques to bring data into the processor before it is needed involve additional programming
which can be difficult to implement and may require special steps to prevent performance degradation.
Streaming SIMD Extensions addressed this issue by providing various prefetch instructions.

Streaming SIMD Extensions introduced the various non-temporal store instructions. SSE2 extends this
support to new data types and also introduce non-temporal store support for the 32-bit integer registers.

This chapter focuses on:
• Hardware Prefetch Mechanism, Software Prefetch and Cacheability Instructions — Discusses

microarchitectural feature and instructions that allow you to affect data caching in an application.
• Memory Optimization Using Hardware Prefetching, Software Prefetch and Cacheability Instructions

— Discusses techniques for implementing memory optimizations using the above instructions.
• Using deterministic cache parameters to manage cache hierarchy.

9.1 GENERAL PREFETCH CODING GUIDELINES
The following guidelines will help you to reduce memory traffic and utilize peak memory system band-
width more effectively when large amounts of data movement must originate from the memory system:
• Take advantage of the hardware prefetcher’s ability to prefetch data that are accessed in linear

patterns, in either a forward or backward direction.
• Take advantage of the hardware prefetcher’s ability to prefetch data that are accessed in a regular

pattern with access strides that are substantially smaller than half of the trigger distance of the
hardware prefetch.

• Facilitate compiler optimization by:

— Minimize use of global variables and pointers.

— Minimize use of complex control flow.

— Use the const modifier, avoid register modifier.

— Choose data types carefully (see below) and avoid type casting.
• Use cache blocking techniques (for example, strip mining) as follows:

— Improve cache hit rate by using cache blocking techniques such as strip-mining (one dimensional
arrays) or loop blocking (two dimensional arrays).

— Explore using hardware prefetching mechanism if your data access pattern has sufficient
regularity to allow alternate sequencing of data accesses (for example: tiling) for improved
spatial locality. Otherwise use PREFETCHNTA.

• Balance single-pass versus multi-pass execution:

— Single-pass, or unlayered execution passes a single data element through an entire computation
pipeline.

OPTIMIZING CACHE USAGE

9-2

— Multi-pass, or layered execution performs a single stage of the pipeline on a batch of data
elements before passing the entire batch on to the next stage.

— If your algorithm is single-pass use PREFETCHNTA. If your algorithm is multi-pass use
PREFETCHT0.

• Resolve memory bank conflict issues. Minimize memory bank conflicts by applying array grouping to
group contiguously used data together or by allocating data within 4-KByte memory pages.

• Resolve cache management issues. Minimize the disturbance of temporal data held within
processor’s caches by using streaming store instructions.

• Optimize software prefetch scheduling distance:

— Far ahead enough to allow interim computations to overlap memory access time.

— Near enough that prefetched data is not replaced from the data cache.
• Use software prefetch concatenation. Arrange prefetches to avoid unnecessary prefetches at the end

of an inner loop and to prefetch the first few iterations of the inner loop inside the next outer loop.
• Minimize the number of software prefetches. Prefetch instructions are not completely free in terms of

bus cycles, machine cycles and resources; excessive usage of prefetches can adversely impact
application performance.

• Interleave prefetches with computation instructions. For best performance, software prefetch
instructions must be interspersed with computational instructions in the instruction sequence (rather
than clustered together).

9.2 PREFETCH AND CACHEABILITY INSTRUCTIONS
The PREFETCH instruction, inserted by the programmers or compilers, accesses a cache line prior to the
data actually being needed. This hides the latency for data access in the time required to process data
already resident in the cache.

Many algorithms can provide information in advance about the data that is to be required. In cases where
memory accesses are in long, regular data patterns; the automatic hardware prefetcher should be
favored over software prefetches.

The cacheability control instructions allow you to control data caching strategy in order to increase cache
efficiency and minimize cache pollution.

Data reference patterns can be classified as follows:
• Temporal — Data will be used again soon.
• Spatial — Data will be used in adjacent locations (for example, on the same cache line).
• Non-temporal — Data which is referenced once and not reused in the immediate future (for example,

for some multimedia data types, as the vertex buffer in a 3D graphics application).

These data characteristics are used in the discussions that follow.

9.3 PREFETCH
This section discusses the mechanics of the software PREFETCH instructions. In general, software
prefetch instructions should be used to supplement the practice of tuning an access pattern to suit the
automatic hardware prefetch mechanism.

9.3.1 Software Data Prefetch
The PREFETCH instruction can hide the latency of data access in performance-critical sections of applica-
tion code by allowing data to be fetched in advance of actual usage. PREFETCH instructions do not

9-3

OPTIMIZING CACHE USAGE

change the user-visible semantics of a program, although they may impact program performance.
PREFETCH merely provides a hint to the hardware and generally does not generate exceptions or faults.

PREFETCH loads either non-temporal data or temporal data in the specified cache level. This data access
type and the cache level are specified as a hint. Depending on the implementation, the instruction
fetches 32 or more aligned bytes (including the specified address byte) into the instruction-specified
cache levels.

PREFETCH is implementation-specific; applications need to be tuned to each implementation to maxi-
mize performance.

NOTE
Using the PREFETCH instruction is recommended only if data does not fit in cache. Use of
software prefetch should be limited to memory addresses that are managed or owned
within the application context. Prefetching to addresses that are not mapped to physical
pages can experience non-deterministic performance penalty. For example specifying a
NULL pointer (0L) as address for a prefetch can cause long delays.

PREFETCH provides a hint to the hardware; it does not generate exceptions or faults except for a few
special cases (see Section 9.3.3, “Prefetch and Load Instructions”). However, excessive use of PREFETCH
instructions may waste memory bandwidth and result in a performance penalty due to resource
constraints.

Nevertheless, PREFETCH can lessen the overhead of memory transactions by preventing cache pollution
and by using caches and memory efficiently. This is particularly important for applications that share crit-
ical system resources, such as the memory bus. See an example in Section 9.6.2.1, “Video Encoder.”

PREFETCH is mainly designed to improve application performance by hiding memory latency in the back-
ground. If segments of an application access data in a predictable manner (for example, using arrays
with known strides), they are good candidates for using PREFETCH to improve performance.

Use the PREFETCH instructions in:
• Predictable memory access patterns.
• Time-consuming innermost loops.
• Locations where the execution pipeline may stall if data is not available.

9.3.2 Prefetch Instructions
Streaming SIMD Extensions include four PREFETCH instruction variants; one non-temporal and three
temporal. They correspond to two types of operations, temporal and non-temporal.

Additionally, the PREFETCHW instruction is a hint to fetch data closer to the processor and invalidates any
other cached copy in anticipation of a write.

Software prefetch instructions will fetch a 64 byte line of data from memory that contains the byte spec-
ified with the source operand. Software prefetch instructions always fetch 64 bytes of data, and because
the instructions operate on bytes, can never be split across cache-lines. Thus, a single software prefetch
cannot be used to fetch 128 bytes of data.

NOTE
At the time of PREFETCH, if data is already found in a cache level that is closer to the
processor than the cache level specified by the instruction, no data movement occurs.

OPTIMIZING CACHE USAGE

9-4

The implementation details of the prefetch hint instructions vary across different microarchitectures. A
summary is given in the table below.

9.3.3 Prefetch and Load Instructions
Most of the recent generations of microarchitectures have decoupled execution and memory pipelines.
This allows instructions to be executed independently with memory accesses if there are no data and
resource dependencies. Programs or compilers can use dummy load instructions to imitate PREFETCH
functionality, but preloading is not completely equivalent to using PREFETCH instructions. PREFETCH
provides greater performance than preloading.

Table 9-1. Implementation Details of Prefetch Hint Instructions

Intel Core Duo processors, Intel Core 2 processors, Intel Atom processors

Instruction

Fill Cache?

L1 L2

PrefetchT0 Yes Yes

PrefetchT1 No Yes

PrefetchT2 No Yes

PrefetchNTA Yes No

PrefetchW1

NOTES:
1. PrefetchW is only available on Intel Atom processors; not Intel Core duo or Intel Core 2 processors.

Yes Yes

Processors based on Nehalem/Westmere/Sandy Bridge/Ivy Bridge/Haswell/Broadwell/Skylake microarchitecture

Instruction

Fill Cache?

L1 L2 L3

PrefetchT0 Yes Yes Yes

PrefetchT12

2. There is no implementation difference between PrefetchT1/T2 on any microarchitecture.

No Yes Yes

PrefetchT22 No Yes Yes

PrefetchNTA Yes No Yes3

3. For PrefetchNTA, the fill into the L3 cache or Snoop Filter may not be placed into the Most Recently Used positioned and
may be chosen for replacement faster than a regular cache fill.

PrefetchW4

4. PrefetchW is only available on processors based on Broadwell/Skylake microarchitecture; it is not available on processors
based on Haswell microarchitecture or earlier microarchitectures.

Yes Yes Yes

Intel Xeon Scalable Family (non-inclusive L3)

Instruction

Fill Cache?

Fill Snoop Filter?L1 L2 L3

PrefetchT0 Yes Yes No Yes

PrefetchT1 No Yes No Yes

PrefetchT2 No Yes No Yes

PrefetchNTA Yes No No Yes3

PrefetchW4 Yes Yes No Yes

9-5

OPTIMIZING CACHE USAGE

PREFETCH can provide greater performance than preloading because:
• Has no destination register, it only updates cache lines.
• Does not stall the normal instruction retirement.
• Does not affect the functional behavior of the program.
• Has no cache line split accesses.
• Does not cause exceptions except when the LOCK prefix is used. The LOCK prefix is not a valid prefix

for use with PREFETCH.
• Does not complete its own execution if that would cause a fault.

The advantages of PREFETCH over preloading instructions are processor specific. This may change in the
future.

There are cases where a PREFETCH will not perform the data prefetch. These include:
• In older microarchitectures, PREFETCH causing a Data Translation Lookaside Buffer (DTLB) miss

would be dropped. In processors based on Nehalem, Westmere, Sandy Bridge, and newer microar-
chitectures, Intel Core 2 processors, and Intel Atom processors, PREFETCH causing a DTLB miss can
be fetched across a page boundary.

• An access to the specified address that causes a fault/exception.
• If the memory subsystem runs out of request buffers between the first-level cache and the second-level

cache.
• PREFETCH targets an uncacheable memory region (for example, USWC and UC).
• The LOCK prefix is used. This causes an invalid opcode exception.

9.4 CACHEABILITY CONTROL
This section covers the mechanics of cacheability control instructions.

9.4.1 The Non-temporal Store Instructions
This section describes the behavior of streaming stores and reiterates some of the information presented
in the previous section.

In Streaming SIMD Extensions, the MOVNTPS, MOVNTPD, MOVNTQ, MOVNTDQ, MOVNTI, MASKMOVQ
and MASKMOVDQU instructions are streaming, non-temporal stores. With regard to memory character-
istics and ordering, they are similar to the Write-Combining (WC) memory type:
• Write combining — Successive writes to the same cache line are combined.
• Write collapsing — Successive writes to the same byte(s) result in only the last write being visible.
• Weakly ordered — No ordering is preserved between WC stores or between WC stores and other

loads or stores.
• Uncacheable and not write-allocating — Stored data is written around the cache and will not generate

a read-for-ownership bus request for the corresponding cache line.

9.4.1.1 Fencing
Because streaming stores are weakly ordered, a fencing operation is required to ensure that the stored
data is flushed from the processor to memory. Failure to use an appropriate fence may result in data
being “trapped” within the processor and will prevent visibility of this data by other processors or system
agents.

WC stores require software to ensure coherence of data by performing the fencing operation. See Section
9.4.5, “FENCE Instructions.”

OPTIMIZING CACHE USAGE

9-6

9.4.1.2 Streaming Non-temporal Stores
Streaming stores can improve performance by:
• Increasing store bandwidth if the 64 bytes that fit within a cache line are written consecutively (since

they do not require read-for-ownership bus requests and 64 bytes are combined into a single bus
write transaction).

• Reducing disturbance of frequently used cached (temporal) data (since they write around the
processor caches).

Streaming stores allow cross-aliasing of memory types for a given memory region. For instance, a region
may be mapped as write-back (WB) using page attribute tables (PAT) or memory type range registers
(MTRRs) and yet is written using a streaming store.

9.4.1.3 Memory Type and Non-temporal Stores
Memory type can take precedence over a non-temporal hint, leading to the following considerations:
• If the programmer specifies a non-temporal store to strongly-ordered uncacheable memory (for

example, Uncacheable (UC) or Write-Protect (WP) memory types), then the store behaves like an
uncacheable store. The non-temporal hint is ignored and the memory type for the region is retained.

• If the programmer specifies the weakly-ordered uncacheable memory type of Write-Combining
(WC), then the non-temporal store and the region have the same semantics and there is no conflict.

• If the programmer specifies a non-temporal store to cacheable memory (for example, Write-Back
(WB) or Write-Through (WT) memory types), two cases may result:

— CASE 1 — If the data is present in the cache hierarchy, the instruction will ensure consistency. A
particular processor may choose different ways to implement this. The following approaches are
probable: (a) updating data in-place in the cache hierarchy while preserving the memory type
semantics assigned to that region or (b) evicting the data from the caches and writing the new
non-temporal data to memory (with WC semantics).

The approaches (separate or combined) can be different for different processors.

If the streaming store hits a line that is present in the first-level cache, the store data is combined
in place within the first-level cache. If the streaming store hits a line present in the second-level,
the line and stored data is flushed from the second-level to system memory.

— CASE 2 — If the data is not present in the cache hierarchy and the destination region is mapped
as WB or WT; the transaction will be weakly ordered and is subject to all WC memory semantics.
This non-temporal store will not write-allocate. Different implementations may choose to collapse
and combine such stores.

9.4.1.4 Write-Combining
Generally, WC semantics require software to ensure coherence with respect to other processors and
other system agents (such as graphics cards). Appropriate use of synchronization and a fencing opera-
tion must be performed for producer-consumer usage models (see Section 9.4.5, “FENCE Instructions”).
Fencing ensures that all system agents have global visibility of the stored data. For instance, failure to
fence may result in a written cache line staying within a processor, and the line would not be visible to
other agents.

For processors which implement non-temporal stores by updating data in-place that already resides in
the cache hierarchy, the destination region should also be mapped as WC. Otherwise, if mapped as WB
or WT, there is a potential for speculative processor reads to bring the data into the caches. In such a
case, non-temporal stores would then update in place and data would not be flushed from the processor
by a subsequent fencing operation.

The memory type visible on the bus in the presence of memory type aliasing is implementation-specific.
As one example, the memory type written to the bus may reflect the memory type for the first store to

9-7

OPTIMIZING CACHE USAGE

the line, as seen in program order. Other alternatives are possible. This behavior should be considered
reserved and dependence on the behavior of any particular implementation risks future incompatibility.

9.4.2 Streaming Store Usage Models
The two primary usage domains for streaming store are coherent requests and non-coherent requests.

9.4.2.1 Coherent Requests
Coherent requests are normal loads and stores to system memory, which may also hit cache lines
present in another processor in a multiprocessor environment. With coherent requests, a streaming store
can be used in the same way as a regular store that has been mapped with a WC memory type (PAT or
MTRR). An SFENCE instruction must be used within a producer-consumer usage model in order to ensure
coherency and visibility of data between processors.

Within a single-processor system, the CPU can also re-read the same memory location and be assured of
coherence (that is, a single, consistent view of this memory location). The same is true for a multipro-
cessor (MP) system, assuming an accepted MP software producer-consumer synchronization policy is
employed.

9.4.2.2 Non-coherent requests
Non-coherent requests arise from an I/O device, such as an AGP graphics card, that reads or writes
system memory using non-coherent requests, which are not reflected on the processor bus and thus will
not query the processor’s caches. An SFENCE instruction must be used within a producer-consumer
usage model in order to ensure coherency and visibility of data between processors. In this case, if the
processor is writing data to the I/O device, a streaming store can be used with a processor with any
behavior of Case 1 (Section 9.4.1.3) only if the region has also been mapped with a WC memory type
(PAT, MTRR).

NOTE
Failure to map the region as WC may allow the line to be speculatively read into the
processor caches (via the wrong path of a mispredicted branch).

In case the region is not mapped as WC, the streaming might update in-place in the cache and a subse-
quent SFENCE would not result in the data being written to system memory. Explicitly mapping the
region as WC in this case ensures that any data read from this region will not be placed in the processor’s
caches. A read of this memory location by a non-coherent I/O device would return incorrect/out-of-date
results.

For a processor which solely implements Case 2 (Section 9.4.1.3), a streaming store can be used in this
non-coherent domain without requiring the memory region to also be mapped as WB, since any cached
data will be flushed to memory by the streaming store.

9.4.3 Streaming Store Instruction Descriptions
MOVNTQ/MOVNTDQ (non-temporal store of packed integer in an MMX technology or Streaming SIMD
Extensions register) store data from a register to memory. They are implicitly weakly-ordered, do no
write-allocate, and so minimize cache pollution.

MOVNTPS (non-temporal store of packed single precision floating-point) is similar to MOVNTQ. It stores
data from a Streaming SIMD Extensions register to memory in 16-byte granularity. Unlike MOVNTQ, the
memory address must be aligned to a 16-byte boundary or a general protection exception will occur. The
instruction is implicitly weakly-ordered, does not write-allocate, and thus minimizes cache pollution.

MASKMOVQ/MASKMOVDQU (non-temporal byte mask store of packed integer in an MMX technology or
Streaming SIMD Extensions register) store data from a register to the location specified by the EDI
register. The most significant bit in each byte of the second mask register is used to selectively write the

OPTIMIZING CACHE USAGE

9-8

data of the first register on a per-byte basis. The instructions are implicitly weakly-ordered (that is,
successive stores may not write memory in original program-order), do not write-allocate, and thus mini-
mize cache pollution.

9.4.4 The Streaming Load Instruction
SSE4.1 introduces the MOVNTDQA instruction. MOVNTDQA loads 16 bytes from memory using a non-
temporal hint if the memory source is WC type. For WC memory type, the non-temporal hint may be
implemented by loading into a temporary internal buffer with the equivalent of an aligned cache line
without filling this data to the cache. Subsequent MOVNTDQA reads to unread portions of the buffered
WC data will cause 16 bytes of data transferred from the temporary internal buffer to an XMM register if
data is available.

If used appropriately, MOVNTDQA can help software achieve significantly higher throughput when
loading data in WC memory region into the processor than other means.

Chapter 1 provides a reference to an application note on using MOVNTDQA. Additional information and
requirements to use MOVNTDQA appropriately can be found in Chapter 12, “Programming with Intel®
SSE3, SSSE3,Intel® SSE4 AND Intel® AESNI” of Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1, and the instruction reference pages of MOVNTDQA in Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 2A.

9.4.5 FENCE Instructions
The following fence instructions are available: SFENCE, lFENCE, and MFENCE.

9.4.5.1 SFENCE Instruction
The SFENCE (STORE FENCE) instruction makes it possible for every STORE instruction that precedes an
SFENCE in program order to be globally visible before any STORE that follows the SFENCE. SFENCE
provides an efficient way of ensuring ordering between routines that produce weakly-ordered results.

The use of weakly-ordered memory types can be important under certain data sharing relationships
(such as a producer-consumer relationship). Using weakly-ordered memory can make assembling the
data more efficient, but care must be taken to ensure that the consumer obtains the data that the
producer intended to see.

Some common usage models may be affected by weakly-ordered stores. Examples are:
• Library functions, which use weakly-ordered memory to write results.
• Compiler-generated code, which also benefits from writing weakly-ordered results.
• Hand-crafted code.

The degree to which a consumer of data knows that the data is weakly-ordered can vary for different
cases. As a result, SFENCE should be used to ensure ordering between routines that produce weakly-
ordered data and routines that consume this data.

9.4.5.2 LFENCE Instruction
The LFENCE (LOAD FENCE) instruction makes it possible for every LOAD instruction that precedes the
LFENCE instruction in program order to be globally visible before any LOAD instruction that follows the
LFENCE.

The LFENCE instruction provides a means of segregating LOAD instructions from other LOADs.

9-9

OPTIMIZING CACHE USAGE

9.4.5.3 MFENCE Instruction
The MFENCE (MEMORY FENCE) instruction makes it possible for every LOAD/STORE instruction
preceding MFENCE in program order to be globally visible before any LOAD/STORE following MFENCE.
MFENCE provides a means of segregating certain memory instructions from other memory references.

The use of a LFENCE and SFENCE is not equivalent to the use of a MFENCE since the load and store fences
are not ordered with respect to each other. In other words, the load fence can be executed before prior
stores and the store fence can be executed before prior loads.

MFENCE should be used whenever the cache line flush instruction (CLFLUSH) is used to ensure that
speculative memory references generated by the processor do not interfere with the flush. See Section
9.4.6, “CLFLUSH Instruction.”

9.4.6 CLFLUSH Instruction
The CLFLUSH instruction invalidates the cache line associated with the linear address that contain the
byte address of the memory location, from all levels of the processor cache hierarchy (data and instruc-
tion). This invalidation is broadcast throughout the coherence domain. If, at any level of the cache hier-
archy, a line is inconsistent with memory (dirty), it is written to memory before invalidation. Other
characteristics include:
• The data size affected is the cache coherency size, which is enumerated by the CPUID instruction. It

is typically 64 bytes.
• The memory attribute of the page containing the affected line has no effect on the behavior of this

instruction.
• The CLFLUSH instruction can be used at all privilege levels and is subject to all permission checking

and faults associated with a byte load.

Executions of the CLFLUSH instruction are ordered with respect to each other and with respect to writes,
locked read-modify-write instructions, fence instructions, and executions of CLFLUSHOPT to the same
cache line1. They are not ordered with respect to executions of CLFLUSHOPT to different cache lines. For
updated memory order details of CLFLUSH and other memory traffic, please refer to the CLFLUSH refer-
ence pages in Chapter 3 of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A, and the
“Memory Ordering” section in Chapter 9 of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
3A.

As an example, consider a video usage model where a video capture device is using non-coherent
accesses to write a capture stream directly to system memory. Since these non-coherent writes are not
broadcast on the processor bus, they will not flush copies of the same locations that reside in the
processor caches. As a result, before the processor re-reads the capture buffer, it should use CLFLUSH to
ensure that stale, cached copies of the capture buffer are flushed from the processor caches.

Example 9-1 provides pseudo-code for CLFLUSH usage.

1. Memory order recommendation of CLFLUSH in previous manuals had required software to add MFENCE after CLFLUSH.
MFENCE is not required following CLFLUSH as all processors implementing the CLFLUSH instruction also order it relative
to the other operations enumerated above.

Example 9-1. Pseudo-code Using CLFLUSH

while (!buffer_ready} {}
sfence

for(i=0;i<num_cachelines;i+=cacheline_size) {
clflush (char *)((unsigned int)buffer + i)

}
prefnta buffer[0];
VAR = buffer[0];

OPTIMIZING CACHE USAGE

9-10

The throughput characteristics of using CLFLUSH to flush cache lines can vary significantly depending on
several factors. In general using CLFLUSH back-to-back to flush a large number of cache lines will expe-
rience larger cost per cache line than flushing a moderately-sized buffer (e.g. less than 4KB); the reduc-
tion of CLFLUSH throughput can be an order of magnitude. Flushing cache lines in modified state are
more costly than flushing cache lines in non-modified states.

9.4.7 CLFLUSHOPT Instruction
The CLFLUSHOPT instruction is first introduced in the 6th Generation Intel Core Processors. Similar to
CLFLUSH, CLFLUSHOPT invalidates the cache line associated with the linear address that contain the byte
address of the memory location, in all levels of the processor cache hierarchy (data and instruction).

Executions of the CLFLUSHOPT instruction are ordered with respect to locked read-modify-write instruc-
tions, fence instructions, and writes to the cache line being invalidated. (They are also ordered with
respect to executions of CLFLUSH and CLFLUSHOPT to the same cache line.) They are not ordered with
respect to writes to cache lines other than the one being invalidated. (They are also not ordered with
respect to executions of CLFLUSH and CLFLUSHOPT to different cache lines.) Software can insert an
SFENCE instruction between CFLUSHOPT and a store to another cache line with which the CLFLUSHOPT
should be ordered.

In general, CLFLUSHOPT throughput is higher than that of CLFLUSH, because CLFLUSHOPT orders itself
with respect to a smaller set of memory traffic as described above and in Section 9.4.6. The throughput
of CLFLUSHOPT will also vary. When using CLFLUSHOPT, flushing modified cache lines will experience a
higher cost than flushing cache lines in non-modified states. CLFLUSHOPT will provide a performance
benefit over CLFLUSH for cache lines in any coherence states. CLFLUSHOPT is more suitable to flush
large buffers (e.g. greater than many KBytes), compared to CLFLUSH. In single-threaded applications,
flushing buffers using CLFLUSHOPT may be up to 9X better than using CLFLUSH with Skylake microarchi-
tecture.

Figure 9-1 shows the comparison of the performance characteristics of executing CLFLUSHOPT versus
CLFLUSH for buffers of various sizes.

9-11

OPTIMIZING CACHE USAGE

User/Source Coding Rule 13. If CLFLUSHOPT is available, use CLFLUSHOPT over CLFLUSH and use
SFENCE to guard CLFLUSHOPT to ensure write order is globally observed. If CLUSHOPT is not available,
consider flushing large buffers with CLFLUSH in smaller chunks of less than 4KB.

Example 9-2 gives equivalent assembly sequences of flushing cache lines using CLFLUSH or
CLFLUSHOPT. The corresponding sequence in C are:

CLFLUSH:

For (i = 0; i < iSizeOfBufferToFlush; i += CACHE_LINE_SIZE) _mm_clflush(&pBufferToFlush[i]);

CLFLUSHOPT:

_mm_sfence();

For (i = 0; i < iSizeOfBufferToFlush; i += CACHE_LINE_SIZE) _mm_clflushopt(&pBufferToFlush[i]);

_mm_sfence();

Figure 9-1. CLFLUSHOPT versus CLFLUSH In SkyLake Microarchitecture

OPTIMIZING CACHE USAGE

9-12

9.5 MEMORY OPTIMIZATION USING PREFETCH
Recent generations of Intel processors have two mechanisms for data prefetch: software-controlled
prefetch and an automatic hardware prefetch.

9.5.1 Software-Controlled Prefetch
The software-controlled prefetch is enabled using the four PREFETCH instructions introduced with
Streaming SIMD Extensions instructions. These instructions are hints to bring a cache line of data in to
various levels and modes in the cache hierarchy. The software-controlled prefetch is not intended for
prefetching code. Using it can incur significant penalties on a multiprocessor system when code is
shared.

Software prefetching has the following characteristics:
• Can handle irregular access patterns which do not trigger the hardware prefetcher.
• Can use less bus bandwidth than hardware prefetching; see below.
• Software prefetches must be added to new code, and do not benefit existing applications.

9.5.2 Hardware Prefetch
Automatic hardware prefetch can bring cache lines into the unified last-level cache based on prior data
misses. It will attempt to prefetch two cache lines ahead of the prefetch stream. Characteristics of the
hardware prefetcher are:
• It requires some regularity in the data access patterns.

— If a data access pattern has constant stride, hardware prefetching is effective if the access stride
is less than half of the trigger distance of hardware prefetcher.

— If the access stride is not constant, the automatic hardware prefetcher can mask memory latency
if the strides of two successive cache misses are less than the trigger threshold distance (small-
stride memory traffic).

— The automatic hardware prefetcher is most effective if the strides of two successive cache misses
remain less than the trigger threshold distance and close to 64 bytes.

Example 9-2. Flushing Cache Lines Using CLFLUSH or CLFLUSHOPT

CLFLUSH no longer requires mfence CLFLUSHOPT w/ SFENCE

xor rcx, rcx
mov r9, pBufferToFlush
mov rsi, iSizeOfBufferToFlush
;; mfence - obsolete
loop:
clflush [r9+rcx]
add rcx, 0x40
cmp rcx, rsi
jl loop
;; mfence - obsolete

xor rcx, rcx
mov r9, pBufferToFlush
mov rsi, iSizeOfBufferToFlush
sfence
loop:
clflushopt [r9+rcx]
add rcx, 0x40
cmp rcx, rsi
jl loop
sfence

* If imposing memory ordering rules is important for the application then executing CLFLUSHOPT instructions should be
guarded with SFENCE instructions to guarantee order of memory writes. As per the figure above, such solution still
performs better than using the CLFLUSH instruction, and its performance is identical to CLFLUSHOPT from 2048 byte
buffers and bigger.

9-13

OPTIMIZING CACHE USAGE

• There is a start-up penalty before the prefetcher triggers and there may be fetches an array finishes.
For short arrays, overhead can reduce effectiveness.

— The hardware prefetcher requires a couple misses before it starts operating.

— Hardware prefetching generates a request for data beyond the end of an array, which is not be
utilized. This behavior wastes bus bandwidth. In addition this behavior results in a start-up
penalty when fetching the beginning of the next array. Software prefetching may recognize and
handle these cases.

• It will not prefetch across a 4-KByte page boundary. A program has to initiate demand loads for the
new page before the hardware prefetcher starts prefetching from the new page.

• The hardware prefetcher may consume extra system bandwidth if the application’s memory traffic
has significant portions with strides of cache misses greater than the trigger distance threshold of
hardware prefetch (large-stride memory traffic).

• The effectiveness with existing applications depends on the proportions of small-stride versus large-
stride accesses in the application’s memory traffic. An application with a preponderance of small-
stride memory traffic with good temporal locality will benefit greatly from the automatic hardware
prefetcher.

• In some situations, memory traffic consisting of a preponderance of large-stride cache misses can be
transformed by re-arrangement of data access sequences to alter the concentration of small-stride
cache misses at the expense of large-stride cache misses to take advantage of the automatic
hardware prefetcher.

9.5.3 Example of Effective Latency Reduction with Hardware Prefetch
Consider the situation that an array is populated with data corresponding to a constant-access-stride,
circular pointer chasing sequence (see Example 9-3). The potential of employing the automatic hardware
prefetching mechanism to reduce the effective latency of fetching a cache line from memory can be illus-
trated by varying the access stride between 64 bytes and the trigger threshold distance of hardware
prefetch when populating the array for circular pointer chasing.

The effective latency reduction for several microarchitecture implementations is shown in Figure 9-2. For
a constant-stride access pattern, the benefit of the automatic hardware prefetcher begins at half the
trigger threshold distance and reaches maximum benefit when the cache-miss stride is 64 bytes.

Example 9-3. Populating an Array for Circular Pointer Chasing with Constant Stride

register char ** p;
char *next; // Populating pArray for circular pointer

// chasing with constant access stride
// p = (char **) *p; loads a value pointing to next load

p = (char **)&pArray;

for (i = 0; i < aperture; i += stride) {
p = (char **)&pArray[i];
if (i + stride >= g_array_aperture) {

next = &pArray[0];
}

else {
next = &pArray[i + stride];
}

 *p = next; // populate the address of the next node
}

OPTIMIZING CACHE USAGE

9-14

9.5.4 Example of Latency Hiding with S/W Prefetch Instruction
Achieving the highest level of memory optimization using PREFETCH instructions requires an under-
standing of the architecture of a given machine. This section translates the key architectural implications
into several simple guidelines for programmers to use.

Figure 9-3 and Figure 9-4 show two scenarios of a simplified 3D geometry pipeline as an example. A 3D-
geometry pipeline typically fetches one vertex record at a time and then performs transformation and
lighting functions on it. Both figures show two separate pipelines, an execution pipeline, and a memory
pipeline (front-side bus).

Since the processor completely decouples the functionality of execution and memory access, the two
pipelines can function concurrently. Figure 9-3 shows “bubbles” in both the execution and memory pipe-
lines. When loads are issued for accessing vertex data, the execution units sit idle and wait until data is
returned. On the other hand, the memory bus sits idle while the execution units are processing vertices.
This scenario severely decreases the advantage of having a decoupled architecture.

Figure 9-2. Effective Latency Reduction as a Function of Access Stride

Figure 9-3. Memory Access Latency and Execution Without Prefetch

U p p e r b o u n d o f P o in t e r - C h a s in g L a te n c y R e d u c t io n

0 %

2 0 %

4 0 %

6 0 %

8 0 %

1 0 0 %

1 2 0 %

64 80 96
11 2

128
14 4

160
17 6

19 2
208

22 4
240

S tr i d e (B y t e s)

E
ff

ec
ti

ve
 L

at
en

cy
 R

ed
u

ct
io

n

F a m . 1 5 ; M o d e l 3 , 4

F a m . 1 5 ; M o d e l 0 , 1 , 2

F a m . 6 ; M o d e l 1 3

F a m . 6 ; M o d e l 1 4

F a m . 1 5 ; M o d e l 6

OM15170

Execution units idle

Mem latency

Issue loads

Time

Vertex n+1

Execution units idleExecution
pipeline

Mem latency

Issue loads
(vertex data)

Vertex n

Front-Side
Bus

FSB idle

9-15

OPTIMIZING CACHE USAGE

The performance loss caused by poor utilization of resources can be completely eliminated by correctly
scheduling the PREFETCH instructions. As shown in Figure 9-4, prefetch instructions are issued two
vertex iterations ahead. This assumes that only one vertex gets processed in one iteration and a new
data cache line is needed for each iteration. As a result, when iteration n, vertex Vn, is being processed;
the requested data is already brought into cache. In the meantime, the front-side bus is transferring the
data needed for iteration n+1, vertex Vn+1. Because there is no dependence between Vn+1 data and the
execution of Vn, the latency for data access of Vn+1 can be entirely hidden behind the execution of Vn.
Under such circumstances, no “bubbles” are present in the pipelines and thus the best possible perfor-
mance can be achieved.

Prefetching is useful for inner loops that have heavy computations, or are close to the boundary between
being compute-bound and memory-bandwidth-bound. It is probably not very useful for loops which are
predominately memory bandwidth-bound.

When data is already located in the first level cache, prefetching can be useless and could even slow
down the performance because the extra µops either back up waiting for outstanding memory accesses
or may be dropped altogether. This behavior is platform-specific and may change in the future.

9.5.5 Software Prefetching Usage Checklist
The following checklist covers issues that need to be addressed and/or resolved to use the software
PREFETCH instruction properly:
• Determine software prefetch scheduling distance.
• Use software prefetch concatenation.
• Minimize the number of software prefetches.
• Mix software prefetch with computation instructions.
• Use cache blocking techniques (for example, strip mining).
• Balance single-pass versus multi-pass execution.
• Resolve memory bank conflict issues.
• Resolve cache management issues.

Subsequent sections discuss the above items.

Figure 9-4. Memory Access Latency and Execution With Prefetch

OM15171

Time

Vertex n-2
Execution

pipeline

Mem latency for V
n

issue prefetch
for vertex n

Front-Side
Bus

Vertex n-1 Vertex n Vertex n+1

Mem latency for Vn+1

Mem latency for Vn+2

prefetch
V

n+1

prefetch
V

n+2

OPTIMIZING CACHE USAGE

9-16

9.5.6 Software Prefetch Scheduling Distance
Determining the ideal prefetch placement in the code depends on many architectural parameters,
including: the amount of memory to be prefetched, cache lookup latency, system memory latency, and
estimate of computation cycle. The ideal distance for prefetching data is processor- and platform-depen-
dent. If the distance is too short, the prefetch will not hide the latency of the fetch behind computation.
If the prefetch is too far ahead, prefetched data may be flushed out of the cache by the time it is
required.

Since prefetch distance is not a well-defined metric, for this discussion, we define a new term, prefetch
scheduling distance (PSD), which is represented by the number of iterations. For large loops, prefetch
scheduling distance can be set to 1 (that is, schedule prefetch instructions one iteration ahead). For small
loop bodies (that is, loop iterations with little computation), the prefetch scheduling distance must be
more than one iteration.

A simplified equation to compute PSD is deduced from the mathematical model.

Example 9-4 illustrates the use of a prefetch within the loop body. The prefetch scheduling distance is set
to 3, ESI is effectively the pointer to a line, EDX is the address of the data being referenced and XMM1-
XMM4 are the data used in computation. Example 9-5 uses two independent cache lines of data per iter-
ation. The PSD would need to be increased/decreased if more/less than two cache lines are used per iter-
ation.

9.5.7 Software Prefetch Concatenation
Maximum performance can be achieved when the execution pipeline is at maximum throughput, without
incurring any memory latency penalties. This can be achieved by prefetching data to be used in succes-
sive iterations in a loop. De-pipelining memory generates bubbles in the execution pipeline.

To explain this performance issue, a 3D geometry pipeline that processes 3D vertices in strip format is
used as an example. A strip contains a list of vertices whose predefined vertex order forms contiguous
triangles. It can be easily observed that the memory pipe is de-pipelined on the strip boundary due to
ineffective prefetch arrangement. The execution pipeline is stalled for the first two iterations for each
strip. As a result, the average latency for completing an iteration will be 165 (FIX) clocks.

This memory de-pipelining creates inefficiency in both the memory pipeline and execution pipeline. This
de-pipelining effect can be removed by applying a technique called prefetch concatenation. With this
technique, the memory access and execution can be fully pipelined and fully utilized.

For nested loops, memory de-pipelining could occur during the interval between the last iteration of an
inner loop and the next iteration of its associated outer loop. Without paying special attention to prefetch
insertion, loads from the first iteration of an inner loop can miss the cache and stall the execution pipeline
waiting for data returned, thus degrading the performance.

Example 9-4. Prefetch Scheduling Distance

top_loop:
prefetchnta [edx + esi + 128*3]
prefetchnta [edx*4 + esi + 128*3]
.

movaps xmm1, [edx + esi]
movaps xmm2, [edx*4 + esi]
movaps xmm3, [edx + esi + 16]
movaps xmm4, [edx*4 + esi + 16]
.
.

add esi, 128
cmp esi, ecx
jl top_loop

9-17

OPTIMIZING CACHE USAGE

In Example 9-5, the cache line containing A[II][0] is not prefetched at all and always misses the cache.
This assumes that no array A[][] footprint resides in the cache. The penalty of memory de-pipelining
stalls can be amortized across the inner loop iterations. However, it may become very harmful when the
inner loop is short. In addition, the last prefetch in the last PSD iterations are wasted and consume
machine resources. Prefetch concatenation is introduced here in order to eliminate the performance
issue of memory de-pipelining.

Prefetch concatenation can bridge the execution pipeline bubbles between the boundary of an inner loop
and its associated outer loop. Simply by unrolling the last iteration out of the inner loop and specifying
the effective prefetch address for data used in the following iteration, the performance loss of memory
de-pipelining can be completely removed. Example 9-6 gives the rewritten code.

This code segment for data prefetching is improved and only the first iteration of the outer loop suffers
any memory access latency penalty, assuming the computation time is larger than the memory latency.
Inserting a prefetch of the first data element needed prior to entering the nested loop computation would
eliminate or reduce the start-up penalty for the very first iteration of the outer loop. This uncomplicated
high-level code optimization can improve memory performance significantly.

9.5.8 Minimize Number of Software Prefetches
Prefetch instructions are not completely free in terms of bus cycles, machine cycles and resources, even
though they require minimal clock and memory bandwidth.

Excessive prefetching may lead to performance penalties because of issue penalties in the front end of
the machine and/or resource contention in the memory sub-system. This effect may be severe in cases
where the target loops are small and/or cases where the target loop is issue-bound.
One approach to solve the excessive prefetching issue is to unroll and/or software-pipeline loops to
reduce the number of prefetches required. Figure 9-5 presents a code example which implements
prefetch and unrolls the loop to remove the redundant prefetch instructions whose prefetch addresses hit
the previously issued prefetch instructions. In this particular example, unrolling the original loop once
saves six prefetch instructions and nine instructions for conditional jumps in every other iteration.

Example 9-5. Using Prefetch Concatenation

for (ii = 0; ii < 100; ii++) {
 for (jj = 0; jj < 32; jj+=8) {
 prefetch a[ii][jj+8]
 computation a[ii][jj]
 }
}

Example 9-6. Concatenation and Unrolling the Last Iteration of Inner Loop

for (ii = 0; ii < 100; ii++) {
 for (jj = 0; jj < 24; jj+=8) { /* N-1 iterations */
 prefetch a[ii][jj+8]
 computation a[ii][jj]
 }
 prefetch a[ii+1][0]
 computation a[ii][jj]/* Last iteration */
}

OPTIMIZING CACHE USAGE

9-18

Figure 9-6 demonstrates the effectiveness of software prefetches in latency hiding.

The X axis in Figure 9-6 indicates the number of computation clocks per loop (each iteration is indepen-
dent). The Y axis indicates the execution time measured in clocks per loop. The secondary Y axis indi-
cates the percentage of bus bandwidth utilization. The tests vary by the following parameters:
• Number of load/store streams — Each load and store stream accesses one 128-byte cache line each

per iteration.
• Amount of computation per loop — This is varied by increasing the number of dependent arithmetic

operations executed.
• Number of the software prefetches per loop — For example, one every 16 bytes, 32 bytes, 64 bytes,

128 bytes.

Figure 9-5. Prefetch and Loop Unrolling

Figure 9-6. Memory Access Latency and Execution With Prefetch

OM15172

top_loop:
prefetchnta [edx+esi+32]
prefetchnta [edx*4+esi+32]
.
movaps xmm1, [edx+esi]
movaps xmm2, [edx*4+esi]
.
add esi, 16
cmp esi, ecx
jl top_loop

top_loop:
prefetchnta [edx+esi+128]
prefetchnta [edx*4+esi+128]
.
movaps xmm1, [edx+esi]
movaps xmm2, [edx*4+esi]
.
movaps xmm1, [edx+esi+16]
movaps xmm2, [edx*4+esi+16]
.
movaps xmm1, [edx+esi+96]
movaps xmm2, [edx*4+esi+96]
.
.
add esi, 128
cmp esi, ecx
jl top_loop

unrolled
iteration

OM15171

Time

Vertex n-2
Execution

pipeline

Mem latency for V
n

issue prefetch
for vertex n

Front-Side
Bus

Vertex n-1 Vertex n Vertex n+1

Mem latency for V
n+1

Mem latency for V
n+2

prefetch
V

n+1

prefetch
V

n+2

9-19

OPTIMIZING CACHE USAGE

As expected, the leftmost portion of each of the graphs in Figure 9-6 shows that when there is not
enough computation to overlap the latency of memory access, prefetch does not help and that the
execution is essentially memory-bound. The graphs also illustrate that redundant prefetches do not
increase performance.

9.5.9 Mix Software Prefetch with Computation Instructions
It may seem convenient to cluster all of PREFETCH instructions at the beginning of a loop body or before
a loop, but this can lead to severe performance degradation. In order to achieve the best possible perfor-
mance, PREFETCH instructions must be interspersed with other computational instructions in the instruc-
tion sequence rather than clustered together. If possible, they should also be placed apart from loads.
This improves the instruction level parallelism and reduces the potential instruction resource stalls. In
addition, this mixing reduces the pressure on the memory access resources and in turn reduces the
possibility of the prefetch retiring without fetching data.

Figure 9-7 illustrates distributing PREFETCH instructions. Rearranging PREFETCH instructions could yield
a noticeable speedup for the code which stresses the cache resource.

NOTE
To avoid instruction execution stalls due to the over-utilization of the resource, PREFETCH
instructions must be interspersed with computational instructions. The spreading of
PREFETCH instructions may need to be retuned for new processors.

9.5.10 Software Prefetch and Cache Blocking Techniques
Cache blocking techniques (such as strip-mining) are used to improve temporal locality and the cache hit
rate. Strip-mining is one-dimensional temporal locality optimization for memory. When higher-dimen-
sional arrays are used in programs, loop blocking technique (similar to strip-mining but in two dimen-
sions) can be applied for a better memory performance.

Figure 9-7. Spread Prefetch Instructions

top_loop:
 prefetchnta [ebx+128]
 prefetchnta [ebx+1128]
 prefetchnta [ebx+2128]
 prefetchnta [ebx+3128]

 prefetchnta [ebx+17128]
 prefetchnta [ebx+18128]
 prefetchnta [ebx+19128]
 prefetchnta [ebx+20128]
 movps xmm1, [ebx]
 addps xmm2, [ebx+3000]
 mulps xmm3, [ebx+4000]
 addps xmm1, [ebx+1000]
 addps xmm2, [ebx+3016]
 mulps xmm1, [ebx+2000]
 mulps xmm1, xmm2

 add ebx, 128
 cmp ebx, ecx
 jl top_loop

top_loop:
 prefetchnta [ebx+128]
 movps xmm1, [ebx]
 addps xmm2, [ebx+3000]
 mulps xmm3, [ebx+4000]
 prefetchnta [ebx+1128]
 addps xmm1, [ebx+1000]
 addps xmm2, [ebx+3016]
 prefetchnta [ebx+2128]
 mulps xmm1, [ebx+2000]
 mulps xmm1, xmm2
 prefetchnta [ebx+3128]

 . . .
 prefetchnta [ebx+18128]

 prefetchnta [ebx+19128]

 prefetchnta [ebx+20128]
 add ebx, 128
 cmp ebx, ecx
 jl top_loop

spread pref
etc

hes

OPTIMIZING CACHE USAGE

9-20

If an application uses a large data set that can be reused across multiple passes of a loop, it will benefit
from strip mining. Data sets larger than the cache will be processed in groups small enough to fit into
cache. This allows temporal data to reside in the cache longer, reducing bus traffic.

Data set size and temporal locality (data characteristics) fundamentally affect how PREFETCH instruc-
tions are applied to strip-mined code. Figure 9-8 shows two simplified scenarios for temporally-adjacent
data and temporally-non-adjacent data.

In the temporally-adjacent scenario, subsequent passes use the same data and find it already in second-
level cache. Prefetch issues aside, this is the preferred situation. In the temporally non-adjacent
scenario, data used in pass m is displaced by pass (m+1), requiring data re-fetch into the first level cache
and perhaps the second level cache if a later pass reuses the data. If both data sets fit into the second-
level cache, load operations in passes 3 and 4 become less expensive.

Figure 9-9 shows how prefetch instructions and strip-mining can be applied to increase performance in
both of these scenarios.

Figure 9-8. Cache Blocking – Temporally Adjacent and Non-adjacent Passes

Dataset A

Dataset B

Dataset B

Dataset A

Dataset A

Dataset A

Dataset B

Dataset B

Pass 1

Pass 2

Pass 3

Pass 4

Temporally
adjacent passes

Temporally
non-adjacent

passes

9-21

OPTIMIZING CACHE USAGE

The left scenario shows a graphical implementation of using PREFETCHNTA to prefetch data into L1, mini-
mizing second-level cache pollution. Use PREFETCHNTA if the data is only touched once during the entire
execution pass in order to minimize cache pollution in the higher level caches. This provides instant avail-
ability, assuming the prefetch was issued far ahead enough, when the read access is issued.

In the scenario to the right (see Figure 9-9), the workload footprint is too large for the L1 cache. There-
fore, use PREFETCHT0 to prefetch the data. This amortizes the latency of the memory references in
passes 1 and 2, and keeps a copy of the data in second-level cache, which reduces memory traffic and
latencies for passes 3 and 4. To further reduce the latency, it might be worth considering extra
PREFETCHNTA instructions prior to the memory references in passes 3 and 4.

In Example 9-7, consider the data access patterns of a 3D geometry engine first without strip-mining
and then incorporating strip-mining.

Without strip-mining, all the x,y,z coordinates for the four vertices must be re-fetched from memory in
the second pass, that is, the lighting loop. This causes under-utilization of cache lines fetched during
transformation loop as well as bandwidth wasted in the lighting loop.

Figure 9-9. Examples of Prefetch and Strip-mining for Temporally Adjacent and Non-Adjacent Passes
Loops

Temporally
non-adjacent passes

Temporally
adjacent passes

Prefetchnta
Dataset A

Reuse
Dataset A

Reuse
Dataset B

Prefetchnta
Dataset B

SM1

SM1

Prefetcht0
Dataset A

Prefetcht0
Dataset B

Reuse
Dataset B

Reuse
Dataset A

SM2

OPTIMIZING CACHE USAGE

9-22

Now consider the code in Example 9-8 where strip-mining has been incorporated into the loops.

With strip-mining, all vertex data can be kept in the cache (for example, one way of second-level cache)
during the strip-mined transformation loop and reused in the lighting loop. Keeping data in the cache
reduces both bus traffic and the number of prefetches used.

Table 9-2 summarizes the steps of the basic usage model that incorporates only software prefetch with
strip-mining. The steps are:
• Do strip-mining: partition loops so that the dataset fits into second-level cache.
• Use PREFETCHNTA if the data is only used once or the dataset fits into 32 KBytes (one way of second-

level cache). Use PREFETCHT0 if the dataset exceeds 32 KBytes.

Example 9-7. Data Access of a 3D Geometry Engine without Strip-mining

while (nvtx < MAX_NUM_VTX) {
prefetchnta vertexi data // v =[x,y,z,nx,ny,nz,tu,tv]

 prefetchnta vertexi+1 data
 prefetchnta vertexi+2 data
 prefetchnta vertexi+3 data
TRANSFORMATION code // use only x,y,z,tu,tv of a vertex
 nvtx+=4

}
while (nvtx < MAX_NUM_VTX) {

prefetchnta vertexi data // v =[x,y,z,nx,ny,nz,tu,tv]
 // x,y,z fetched again

 prefetchnta vertexi+1 data
 prefetchnta vertexi+2 data
 prefetchnta vertexi+3 data
 compute the light vectors // use only x,y,z
 LOCAL LIGHTING code // use only nx,ny,nz

nvtx+=4
}

Example 9-8. Data Access of a 3D Geometry Engine with Strip-mining

while (nstrip < NUM_STRIP) {
/* Strip-mine the loop to fit data into one way of the second-level
 cache */
 while (nvtx < MAX_NUM_VTX_PER_STRIP) {

prefetchnta vertexi data // v=[x,y,z,nx,ny,nz,tu,tv]
 prefetchnta vertexi+1 data
 prefetchnta vertexi+2 data
 prefetchnta vertexi+3 data
 TRANSFORMATION code
 nvtx+=4

}
while (nvtx < MAX_NUM_VTX_PER_STRIP) {
 /* x y z coordinates are in the second-level cache, no prefetch is

 required */

compute the light vectors
POINT LIGHTING code
 nvtx+=4
 }
}

9-23

OPTIMIZING CACHE USAGE

The above steps are platform-specific and provide an implementation example. The variables
NUM_STRIP and MAX_NUM_VX_PER_STRIP can be heuristically determined for peak performance for
specific application on a specific platform.

9.5.11 Hardware Prefetching and Cache Blocking Techniques
Tuning data access patterns for the automatic hardware prefetch mechanism can minimize the memory
access costs of the first-pass of the read-multiple-times and some of the read-once memory references.
An example of the situations of read-once memory references can be illustrated with a matrix or image
transpose, reading from a column-first orientation and writing to a row-first orientation, or vice versa.

Example 9-9 shows a nested loop of data movement that represents a typical matrix/image transpose
problem. If the dimension of the array are large, not only the footprint of the dataset will exceed the last
level cache but cache misses will occur at large strides. If the dimensions happen to be powers of 2,
aliasing condition due to finite number of way-associativity (see “Capacity Limits and Aliasing in Caches”
in Chapter) will exacerbate the likelihood of cache evictions.

Example 9-9 (b) shows applying the techniques of tiling with optimal selection of tile size and tile width
to take advantage of hardware prefetch. With tiling, one can choose the size of two tiles to fit in the last
level cache. Maximizing the width of each tile for memory read references enables the hardware
prefetcher to initiate bus requests to read some cache lines before the code actually reference the linear
addresses.

Table 9-2. Software Prefetching Considerations into Strip-mining Code

Read-Once Array References

Read-Multiple-Times Array References

Adjacent Passes Non-Adjacent Passes

Prefetchnta Prefetch0, SM1 Prefetch0, SM1
(2nd Level Pollution)

Evict one way; Minimize pollution Pay memory access cost for the first
pass of each array; Amortize the first
pass with subsequent passes

Pay memory access cost for the first
pass of every strip; Amortize the first
pass with subsequent passes

Example 9-9. Using HW Prefetch to Improve Read-Once Memory Traffic

a) Un-optimized image transpose
// dest and src represent two-dimensional arrays
for(i = 0;i < NUMCOLS; i ++) {

// inner loop reads single column
for(j = 0; j < NUMROWS ; j ++) {

// Each read reference causes large-stride cache miss
dest[i*NUMROWS +j] = src[j*NUMROWS + i];

}

}
b)
// tilewidth = L2SizeInBytes/2/TileHeight/Sizeof(element)
for(i = 0; i < NUMCOLS; i += tilewidth) {

 for(j = 0; j < NUMROWS ; j ++) {
// access multiple elements in the same row in the inner loop
// access pattern friendly to hw prefetch and improves hit rate
for(k = 0; k < tilewidth; k ++)
dest[j+ (i+k)* NUMROWS] = src[i+k+ j* NUMROWS];

 }
}

OPTIMIZING CACHE USAGE

9-24

9.5.12 Single-pass versus Multi-pass Execution
An algorithm can use single- or multi-pass execution defined as follows:
• Single-pass, or unlayered execution passes a single data element through an entire computation

pipeline.
• Multi-pass, or layered execution performs a single stage of the pipeline on a batch of data elements,

before passing the batch on to the next stage.

A characteristic feature of both single-pass and multi-pass execution is that a specific trade-off exists
depending on an algorithm’s implementation and use of a single-pass or multiple-pass execution. See
Figure 9-10.

Multi-pass execution is often easier to use when implementing a general purpose API, where the choice
of code paths that can be taken depends on the specific combination of features selected by the applica-
tion (for example, for 3D graphics, this might include the type of vertex primitives used and the number
and type of light sources).

With such a broad range of permutations possible, a single-pass approach would be complicated, in
terms of code size and validation. In such cases, each possible permutation would require a separate
code sequence. For example, an object with features A, B, C, D can have a subset of features enabled,
say, A, B, D. This stage would use one code path; another combination of enabled features would have a
different code path. It makes more sense to perform each pipeline stage as a separate pass, with condi-
tional clauses to select different features that are implemented within each stage. By using strip-mining,
the number of vertices processed by each stage (for example, the batch size) can be selected to ensure
that the batch stays within the processor caches through all passes. An intermediate cached buffer is
used to pass the batch of vertices from one stage or pass to the next one.

Single-pass execution can be better suited to applications which limit the number of features that may be
used at a given time. A single-pass approach can reduce the amount of data copying that can occur with
a multi-pass engine. See Figure 9-10.

9-25

OPTIMIZING CACHE USAGE

The choice of single-pass or multi-pass can have a number of performance implications. For instance, in
a multi-pass pipeline, stages that are limited by bandwidth (either input or output) will reflect more of
this performance limitation in overall execution time. In contrast, for a single-pass approach, bandwidth-
limitations can be distributed/amortized across other computation-intensive stages. Also, the choice of
which prefetch hints to use are also impacted by whether a single-pass or multi-pass approach is used.

9.6 MEMORY OPTIMIZATION USING NON-TEMPORAL STORES
Non-temporal stores can also be used to manage data retention in the cache. Uses for non-temporal
stores include:
• To combine many writes without disturbing the cache hierarchy.
• To manage which data structures remain in the cache and which are transient.

Detailed implementations of these usage models are covered in the following sections.

9.6.1 Non-temporal Stores and Software Write-Combining
Use non-temporal stores in the cases when the data to be stored is:
• Write-once (non-temporal).
• Too large and thus cause cache thrashing.

Figure 9-10. Single-Pass Vs. Multi-Pass 3D Geometry Engines

Transform

Lighting

Single-Pass

Culling

Lighting

Multi-Pass

Culling

40 vis

40 vis

60 invis
80 vis

80 vis

Vertex
processing
(inner loop)

Outer loop is
processing
strips

Transform

strip list

OPTIMIZING CACHE USAGE

9-26

Non-temporal stores do not invoke a cache line allocation, which means they are not write-allocate. As a
result, caches are not polluted and no dirty writeback is generated to compete with useful data band-
width. Without using non-temporal stores, bus bandwidth will suffer when caches start to be thrashed
because of dirty writebacks.

In Streaming SIMD Extensions implementation, when non-temporal stores are written into writeback or
write-combining memory regions, these stores are weakly-ordered and will be combined internally inside
the processor’s write-combining buffer and be written out to memory as a line burst transaction. To
achieve the best possible performance, it is recommended to align data along the cache line boundary
and write them consecutively in a cache line size while using non-temporal stores. If the consecutive
writes are prohibitive due to programming constraints, then software write-combining (SWWC) buffers
can be used to enable line burst transaction.

You can declare small SWWC buffers (a cache line for each buffer) in your application to enable explicit
write-combining operations. Instead of writing to non-temporal memory space immediately, the program
writes data into SWWC buffers and combines them inside these buffers. The program only writes a
SWWC buffer out using non-temporal stores when the buffer is filled up, that is, a cache line. Although
the SWWC method requires explicit instructions for performing temporary writes and reads, this ensures
that the transaction on the front-side bus causes line transaction rather than several partial transactions.
Application performance gains considerably from implementing this technique. These SWWC buffers can
be maintained in the second-level and re-used throughout the program.

9.6.2 Cache Management
Streaming instructions (PREFETCH and STORE) can be used to manage data and minimize disturbance of
temporal data held within the processor’s caches.

In addition, the processor takes advantage of Intel C ++ Compiler support for C ++ language-level
features for the Streaming SIMD Extensions. Streaming SIMD Extensions and MMX technology instruc-
tions provide intrinsics that allow you to optimize cache utilization. Examples of such Intel compiler
intrinsics are _MM_PREFETCH, _MM_STREAM, _MM_LOAD, _MM_SFENCE. For detail, refer to the Intel C
++ Compiler User’s Guide documentation.

The following examples of using prefetching instructions in the operation of video encoder and decoder
as well as in simple 8-byte memory copy, illustrate performance gain from using the prefetching instruc-
tions for efficient cache management.

9.6.2.1 Video Encoder
In a video encoder, some of the data used during the encoding process is kept in the processor’s second-
level cache. This is done to minimize the number of reference streams that must be re-read from system
memory. To ensure that other writes do not disturb the data in the second-level cache, streaming stores
(MOVNTQ) are used to write around all processor caches.

The prefetching cache management implemented for the video encoder reduces the memory traffic. The
second-level cache pollution reduction is ensured by preventing single-use video frame data from
entering the second-level cache. Using a non-temporal PREFETCH (PREFETCHNTA) instruction brings
data into the first-level cache, thus reducing pollution of the second-level cache.

If the data brought directly to second-level cache is not re-used, then there is a performance gain from
the non-temporal prefetch over a temporal prefetch. The encoder uses non-temporal prefetches to avoid
pollution of the second-level cache, increasing the number of second-level cache hits and decreasing the
number of polluting write-backs to memory. The performance gain results from the more efficient use of
the second-level cache, not only from the prefetch itself.

9.6.2.2 Video Decoder
In the video decoder example, completed frame data is written to local memory of the graphics card,
which is mapped to WC (Write-combining) memory type. A copy of reference data is stored to the WB
memory at a later time by the processor in order to generate future data. The assumption is that the size

9-27

OPTIMIZING CACHE USAGE

of the reference data is too large to fit in the processor’s caches. A streaming store is used to write the
data around the cache, to avoid displaying other temporal data held in the caches. Later, the processor
re-reads the data using PREFETCHNTA, which ensures maximum bandwidth, yet minimizes disturbance
of other cached temporal data by using the non-temporal (NTA) version of prefetch.

9.6.2.3 Conclusions from Video Encoder and Decoder Implementation
These two examples indicate that by using an appropriate combination of non-temporal prefetches and
non-temporal stores, an application can be designed to lessen the overhead of memory transactions by
preventing second-level cache pollution, keeping useful data in the second-level cache and reducing
costly write-back transactions. Even if an application does not gain performance significantly from having
data ready from prefetches, it can improve from more efficient use of the second-level cache and
memory. Such design reduces the encoder’s demand for such critical resource as the memory bus. This
makes the system more balanced, resulting in higher performance.

9.6.2.4 Optimizing Memory Copy Routines
Creating memory copy routines for large amounts of data is a common task in software optimization.
Example 9-10 presents a basic algorithm for a simple memory copy.

This task can be optimized using various coding techniques. One technique uses software prefetch and
streaming store instructions. It is discussed in the following paragraph and a code example shown in
Example 9-11.

The memory copy algorithm can be optimized using the Streaming SIMD Extensions with these consid-
erations:
• Alignment of data.
• Proper layout of pages in memory.
• Cache size.
• Interaction of the transaction lookaside buffer (TLB) with memory accesses.
• Combining prefetch and streaming-store instructions.

Example 9-10. Basic Algorithm of a Simple Memory Copy

#define N 512000
double a[N], b[N];
for (i = 0; i < N; i++) {

b[i] = a[i];
}

OPTIMIZING CACHE USAGE

9-28

9.6.2.5 Using the 8-byte Streaming Stores and Software Prefetch
Example 9-11 presents the copy algorithm that uses second level cache. The algorithm performs the
following steps:

1. Uses blocking technique to transfer 8-byte data from memory into second-level cache using the
_MM_PREFETCH intrinsic, 128 bytes at a time to fill a block. The size of a block should be less than
one half of the size of the second-level cache, but large enough to amortize the cost of the loop.

2. Loads the data into an XMM register using the _MM_LOAD_PS intrinsic.

3. Transfers the 8-byte data to a different memory location via the _MM_STREAM intrinsics, bypassing
the cache.

In Example 9-11, eight _MM_LOAD_PS and _MM_STREAM_PS intrinsics are used so that all of the data
prefetched (a 128-byte cache line) is written back. The prefetch and streaming-stores are executed in
separate loops to minimize the number of transitions between reading and writing data. This significantly
improves the bandwidth of the memory accesses.

Example 9-11. A Memory Copy Routine Using Software Prefetch

#define PAGESIZE 4096;
#define NUMPERPAGE 512 // # of elements to fit a page

double a[N], b[N], temp;
for (kk=0; kk<N; kk+=NUMPERPAGE) {

temp = a[kk+NUMPERPAGE]; // TLB priming for older archs
// use block size = page size,

// prefetch entire block, one cache line per loop
for (j=kk+16; j<kk+NUMPERPAGE; j+=16) {
 _mm_prefetch((char*)&a[j], _MM_HINT_NTA);

 }

// copy 128 byte per loop

for (j=kk; j<kk+NUMPERPAGE; j+=16) {

 _mm_stream_ps((float*)&b[j],

 _mm_load_ps((float*)&a[j]));

_mm_stream_ps((float*)&b[j+2],

 _mm_load_ps((float*)&a[j+2]));

_mm_stream_ps((float*)&b[j+4],

 _mm_load_ps((float*)&a[j+4]));

_mm_stream_ps((float*)&b[j+6],

 _mm_load_ps((float*)&a[j+6]));

_mm_stream_ps((float*)&b[j+8],

 _mm_load_ps((float*)&a[j+8]));

_mm_stream_ps((float*)&b[j+10],

 _mm_load_ps((float*)&a[j+10]));

_mm_stream_ps((float*)&b[j+12],

 _mm_load_ps((float*)&a[j+12]));

_mm_stream_ps((float*)&b[j+14],

 _mm_load_ps((float*)&a[j+14]));

} // finished copying one block

} // finished copying N elements

_mm_sfence();

9-29

OPTIMIZING CACHE USAGE

The TEMP = A[KK+CACHESIZE] instruction is used to ensure the page table entry for array in older archi-
tectures, and A is entered in the TLB prior to prefetching. This is essentially a prefetch itself, as a cache
line is filled from that memory location with this instruction. Hence, the prefetching starts from KK+4 in
this loop.

This example assumes that the destination of the copy is not temporally adjacent to the code. If the
copied data is destined to be reused in the near future, then the streaming store instructions should be
replaced with regular 128 bit stores (_MM_STORE_PS).

9.6.2.6 Using 16-byte Streaming Stores and Hardware Prefetch
An alternate technique for optimizing a large region memory copy is to take advantage of hardware
prefetcher, 16-byte streaming stores, and apply a segmented approach to separate bus read and write
transactions. See Section 3.6.11, “Non-Temporal Store Bus Traffic.”

The technique employs two stages. In the first stage, a block of data is read from memory to the cache
sub-system. In the second stage, cached data are written to their destination using streaming stores.

Example 9-12. Memory Copy Using Hardware Prefetch and Bus Segmentation

void block_prefetch(void *dst,void *src)
{ _asm {

mov edi,dst
mov esi,src
mov edx,SIZE
align 16

main_loop:
xor ecx,ecx
align 16

}

prefetch_loop:
movaps xmm0, [esi+ecx]
movaps xmm0, [esi+ecx+64]
add ecx,128
cmp ecx,BLOCK_SIZE
jne prefetch_loop
xor ecx,ecx
align 16
cpy_loop:

movdqa xmm0,[esi+ecx]
movdqa xmm1,[esi+ecx+16]
movdqa xmm2,[esi+ecx+32]
movdqa xmm3,[esi+ecx+48]
movdqa xmm4,[esi+ecx+64]
movdqa xmm5,[esi+ecx+16+64]
movdqa xmm6,[esi+ecx+32+64]
movdqa xmm7,[esi+ecx+48+64]
movntdq [edi+ecx],xmm0
movntdq [edi+ecx+16],xmm1
movntdq [edi+ecx+32],xmm2

OPTIMIZING CACHE USAGE

9-30

9.6.2.7 Performance Comparisons of Memory Copy Routines
The throughput of a large-region, memory copy routine depends on several factors:
• Coding techniques that implements the memory copy task.
• Characteristics of the system bus (speed, peak bandwidth, overhead in read/write transaction

protocols).
• Microarchitecture of the processor.

The baseline for performance comparison is the throughput (bytes/sec) of 8-MByte region memory copy
on a first-generation Pentium M processor (CPUID signature 0x69n) with a 400-MHz system bus using
byte-sequential technique similar to that shown in Example 9-10. The degree of improvement relative to
the performance baseline for some recent processors and platforms with higher system bus speed using
different coding techniques are compared.

The second coding technique moves data at 4-Byte granularity using REP string instruction. The third
column compares the performance of the coding technique listed in Example 9-11. The fourth column of
performance compares the throughput of fetching 4-KBytes of data at a time (using hardware prefetch
to aggregate bus read transactions) and writing to memory via 16-Byte streaming stores.

Increases in bus speed is the primary contributor to throughput improvements. The technique shown in
Example 9-12 will likely take advantage of the faster bus speed in the platform more efficiently. Addition-
ally, increasing the block size to multiples of 4-KBytes while keeping the total working set within the
second-level cache can improve the throughput slightly.

The relative performance figure shown in Table 9-3 is representative of clean microarchitectural condi-
tions within a processor (e.g. looping s simple sequence of code many times). The net benefit of inte-
grating a specific memory copy routine into an application (full-featured applications tend to create many
complicated micro-architectural conditions) will vary for each application.

9.6.3 Deterministic Cache Parameters
If CPUID supports the deterministic parameter leaf, software can use the leaf to query each level of the
cache hierarchy. Enumeration of each cache level is by specifying an index value (starting form 0) in the
ECX register (see “CPUID-CPU Identification” in Chapter 3 of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2A).

The list of parameters is shown in Table 9-3.

movntdq [edi+ecx+48],xmm3
movntdq [edi+ecx+64],xmm4
movntdq [edi+ecx+80],xmm5
movntdq [edi+ecx+96],xmm6
movntdq [edi+ecx+112],xmm7
add ecx,128
cmp ecx,BLOCK_SIZE
jne cpy_loop

add esi,ecx
add edi,ecx
sub edx,ecx
jnz main_loop
sfence

}
}

Example 9-12. Memory Copy Using Hardware Prefetch and Bus Segmentation (Contd.)

9-31

OPTIMIZING CACHE USAGE

The deterministic cache parameter leaf provides a means to implement software with a degree of forward
compatibility with respect to enumerating cache parameters. Deterministic cache parameters can be
used in several situations, including:
• Determine the size of a cache level.
• Adapt cache blocking parameters to different sharing topology of a cache-level across Hyper-

Threading Technology, multicore and single-core processors.
• Determine multithreading resource topology in an MP system (See Chapter 9, “Multiple-Processor

Management,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A).
• Determine cache hierarchy topology in a platform using multicore processors (See topology

enumeration white paper and reference code listed at the end of CHAPTER 1).
• Manage threads and processor affinities.
• Determine prefetch stride.

The size of a given level of cache is given by:
(# of Ways) * (Partitions) * (Line_size) * (Sets) = (EBX[31:22] + 1) * (EBX[21:12] + 1) *
(EBX[11:0] + 1) * (ECX + 1)

9.6.3.1 Cache Sharing Using Deterministic Cache Parameters
Improving cache locality is an important part of software optimization. For example, a cache blocking
algorithm can be designed to optimize block size at runtime for single-processor implementations and a
variety of multiprocessor execution environments (including processors supporting HT Technology, or
multicore processors).

The basic technique is to place an upper limit of the blocksize to be less than the size of the target cache
level divided by the number of logical processors serviced by the target level of cache. This technique is
applicable to multithreaded application programming. The technique can also benefit single-threaded
applications that are part of a multi-tasking workloads.

Table 9-3. Deterministic Cache Parameters Leaf

Bit Location Name Meaning

EAX[4:0] Cache Type 0 = Null - No more caches
1 = Data Cache
2 = Instruction Cache
3 = Unified Cache
4-31 = Reserved

EAX[7:5] Cache Level Starts at 1

EAX[8] Self Initializing cache level 1: does not need SW initialization

EAX[9] Fully Associative cache 1: Yes

EAX[13:10] Reserved

EAX[25:14] Maximum number of logical processors sharing this
cache

Plus 1 encoding

EAX[31:26] Maximum number of cores in a package Plus 1 encoding

EBX[11:0] System Coherency Line Size (L) Plus 1 encoding (Bytes)

EBX[21:12] Physical Line partitions (P) Plus 1 encoding

EBX[31:22] Ways of associativity (W) Plus 1 encoding

ECX[31:0] Number of Sets (S) Plus 1 encoding

EDX Reserved

CPUID leaves > 3 < 80000000 are only visible when IA32_CR_MISC_ENABLES.BOOT_NT4 (bit 22) is clear (Default).

OPTIMIZING CACHE USAGE

9-32

9.6.3.2 Cache Sharing in Single-Core or Multicore
Deterministic cache parameters are useful for managing shared cache hierarchy in multithreaded appli-
cations for more sophisticated situations. A given cache level may be shared by logical processors in a
processor or it may be implemented to be shared by logical processors in a physical processor package.

Using the deterministic cache parameter leaf and initial APIC_ID associated with each logical processor
in the platform, software can extract information on the number and the topological relationship of
logical processors sharing a cache level.

9.6.3.3 Determine Prefetch Stride
The prefetch stride (see description of CPUID.01H.EBX) provides the length of the region that the
processor will prefetch with the PREFETCHh instructions (PREFETCHT0, PREFETCHT1, PREFETCHT2 and
PREFETCHNTA). Software will use the length as the stride when prefetching into a particular level of the
cache hierarchy as identified by the instruction used. The prefetch size is relevant for cache types of Data
Cache (1) and Unified Cache (3); it should be ignored for other cache types. Software should not assume
that the coherency line size is the prefetch stride.

If the prefetch stride field is zero, then software should assume a default size of 64 bytes is the prefetch
stride. Software should use the following algorithm to determine what prefetch size to use depending on
whether the deterministic cache parameter mechanism is supported or the legacy mechanism:
• If a processor supports the deterministic cache parameters and provides a non-zero prefetch size,

then that prefetch size is used.
• If a processor supports the deterministic cache parameters and does not provides a prefetch size

then default size for each level of the cache hierarchy is 64 bytes.
• If a processor does not support the deterministic cache parameters but provides a legacy prefetch

size descriptor (0xF0 - 64 byte, 0xF1 - 128 byte) will be the prefetch size for all levels of the cache
hierarchy.

• If a processor does not support the deterministic cache parameters and does not provide a legacy
prefetch size descriptor, then 32-bytes is the default size for all levels of the cache hierarchy.

CHAPTER 10
SUB-NUMA CLUSTERING

Sub-NUMA Clustering (SNC) is a mode for improving average latency from last level cache (LLC) to local
memory. It replaces the Cluster-on-Die (COD) implementation which was used in the previous genera-
tion of the Intel® Xeon® processor E5 family.

10.1 SUB-NUMA CLUSTERING
SNC can improve the average LLC/memory latency by splitting the LLC into disjoint clusters based on
address range, with each cluster bound to a subset of memory controllers in the system.

Figure 10-1. Example of SNC Configuration

10.2 COMPARISON WITH CLUSTER-ON-DIE
SNC provides similar localization benefits to those of COD, but without some of COD’s disadvantages.
Unlike COD, SNC has the following properties.

SUB-NUMA CLUSTERING

10-2

• Only one Ultra Path Interconnect (UPI) caching agent is required.

• Memory access latency in remote clusters is smaller, as no UPI flow is needed.

• It uses LLC capacity more efficiently as there is no duplication of lines in the LLC.

A disadvantage of SNC is listed below.

• Remote cluster addresses are never cached in local cluster LLC, resulting in larger latency
compared to Cluster-on-Die (COD) in some cases.

10.3 SNC USAGE
This section describes the following modes and their BIOS names in brackets (the exact BIOS parameter
names may vary depending on the BIOS vendor and version).

• NUMA disabled (NUMA Optimized: Disabled)

• SNC off (Integrated Memory Controller (IMC) Interleaving: auto, NUMA Optimized: Enabled,
Sub_NUMA Cluster: Disabled)

• SNC on (IMC Interleaving: 1-way Interleave, NUMA Optimized: Enabled, Sub_NUMA Cluster:
Enabled)

The commands that follow were executed on a 2-socket Intel® Xeon® system, 28 cores per a socket,
Intel® Hyper-Threading Technology enabled.

10.3.1 How to Check NUMA Configuration
There are additional NUMA nodes in a system with SNC enabled; to get benefits from the SNC feature, a
developer should be aware of the NUMA configuration.

This chapter describes different ways to check NUMA system configuration.

libnuma

An application can check NUMA configuration with libnuma.

As an example this code uses the libnuma library to find the maximum number of NUMA nodes.

#include <stdio.h>
#include <stdlib.h>
#include <numa.h>

int main(int argc, char *argv[])
{
 int max_node;

/* Check the system for NUMA support */
 max_node = numa_max_node();
 printf("%d\n", max_node);

 return 0;
}

https://software.intel.com/en-us/articles/intelr-memory-latency-checker

10-3

SUB-NUMA CLUSTERING

numactl

In Linux* you can check the NUMA configuration with the numactl utility (the numactl-libs, and
numactl-devel packages might also be required).

$ numactl --hardware

NUMA disabled:

available: 1 nodes (0)
node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
node 0 size: 196045 MB
node 0 free: 190581 MB
node distances:
node 0
 0: 10

SNC off:

available: 2 nodes (0-1)
node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
23 24 25 26 27 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
75 76 77 78 79 80 81 82 83
node 0 size: 96973 MB
node 0 free: 94089 MB
node 1 cpus: 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
48 49 50 51 52 53 54 55 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
100 101 102 103 104 105 106 107 108 109 110 111
node 1 size: 98304 MB
node 1 free: 95694 MB
node distances:
node 0 1
 0: 10 21
 1: 21 10

https://software.intel.com/en-us/intel-mpi-library/documentation
https://software.intel.com/en-us/intel-mpi-library/documentation
https://software.intel.com/en-us/articles/disclosure-of-hw-prefetcher-control-on-someintel-processors

SUB-NUMA CLUSTERING

10-4

SNC on:

available: 4 nodes (0-3)
node 0 cpus: 0 1 2 3 7 8 9 14 15 16 17 21 22 23 56 57 58 59 63 64 65 70
71 72 73 77 78 79
node 0 size: 47821 MB
node 0 free: 45759 MB
node 1 cpus: 4 5 6 10 11 12 13 18 19 20 24 25 26 27 60 61 62 66 67 68 69
74 75 76 80 81 82 83
node 1 size: 49152 MB
node 1 free: 47097 MB
node 2 cpus: 28 29 30 31 35 36 37 42 43 44 45 49 50 51 84 85 86 87 91 92
93 98 99 100 101 105 106 107
node 2 size: 49152 MB
node 2 free: 47617 MB
node 3 cpus: 32 33 34 38 39 40 41 46 47 48 52 53 54 55 88 89 90 94 95 96
97 102 103 104 108 109 110 111
node 3 size: 49152 MB
node 3 free: 47231 MB
node distances:
node 0 1 2 3
 0: 10 11 21 21
 1: 11 10 21 21
 2: 21 21 10 11
 3: 21 21 11 10

hwloc

In Linux* you can also check the NUMA configuration with the lstopo utility (the hwloc package is
required). For example:

$ lstopo -p --of png --no-io --no-caches > numa_topology.png

10-5

SUB-NUMA CLUSTERING

Figure 10-2. NUMA Disabled

SUB-NUMA CLUSTERING

10-6

Figure 10-3. SNC Off

10-7

SUB-NUMA CLUSTERING

10.3.2 MPI Optimizations for SNC
Software needs to be NUMA optimized to benefit from SNC. Running one MPI rank per NUMA region
trivially ensures locality-of-access without requiring changes to the code to ensure that it behaves in a
NUMA friendly manner. This is a simple way to improve performance through the use of SNC.

The Intel® MPI Library includes some NUMA-related optimizations. The out-of-the-box behavior of the
Intel MPI Library should cover most cases, but there are some environment variables available to
control NUMA-related features that can improve performance in specific cases.

The relevant environment variables mainly relate to MPI process placement, that is, process
pinning/binding – such as the I_MPI_PIN_DOMAIN variable. For more information, see the Intel® MPI
Library Developer Reference. This environment variable defines a number of non-overlapping subsets
(domains) of logical processors on a node, and a set of rules for how MPI processes are bound to these
domains: one MPI process per domain, as illustrated below.

Figure 10-4. SNC On

SUB-NUMA CLUSTERING

10-8

Each MPI process can create a number of child threads to run within the corresponding domain. The
process’ threads can freely migrate from one logical processor to another within the particular domain.

For example, I_MPI_PIN_DOMAIN=numa may be a reasonable option for hybrid MPI/OpenMP* appli-
cations with SNC mode enabled. In this case, each domain consists of logical processors that share a
particular NUMA node. The number of domains on a machine is equal to the number of NUMA nodes on
the machine.

Refer to Intel MPI Library documentation for detailed information: https://software.intel.com/en-
us/intel-mpi-library/documentation.

10.3.3 SNC Performance Comparison
This section contains performance data collected with Intel® Memory Latency Checker (Intel® MLC) to
demonstrate the variations in performance (latency) between NUMA nodes in different modes.

An important factor in determining application performance is the time required for the application to
fetch data from the processor’s cache hierarchy and from the memory subsystem. Local memory and
cross-socket memory latencies vary significantly in a NUMA-enabled multi-socket system. Bandwidth
also plays an important role in determining performance. So measuring these latencies and bandwidths
is important when establishing a baseline for the system being tested, and performing performance anal-
ysis.

Intel MLC is a tool used to measure memory latencies and bandwidth, and how they change as the load
on the system increases. It also provides several options for more fine-grained investigation where band-
width and latencies from a specific set of cores to caches or memory can be measured as well.

See https://software.intel.com/en-us/articles/intelr-memory-latency-checker for details about Intel®
MLC.

The following command was used to collect the performance data:

% mlc_avx512 --latency_matrix

This command measures idle memory latency from each socket in the system to every other socket and
reports the results in a matrix. The default invocation reports latencies to all of the NUMA nodes in the
system. NUMA-level reporting works only on Linux. On Windows, only socket level reporting is supported.

Figure 10-5. Domain Example with One MPI Process Per Domain

10-9

SUB-NUMA CLUSTERING

NOTE
It is challenging to measure memory latencies on modern Intel processors accurately as
they have sophisticated HW prefetchers. Intel MLC automatically disables these
prefetchers while measuring the latencies and restores them to their previous state on
completion. The prefetcher control is exposed through an MSR (see
https://software.intel.com/en-us/articles/disclosure-of-hw-prefetcher-control-on-some-
intel-processors for details) and MSR access requires root level permission. So, Intel MLC
needs to be run as ‘root’ on Linux.

The software configuration used for these measurements is Intel MLC v3.3-Beta2, Red Hat* Linux* 7.2.

NUMA disabled:

Using buffer size of 2000.000MB

Measuring idle latencies (in ns)...

 Memory node

Socket 0 1

 0 126.5 129.4

 1 123.1 122.6

SNC off:

Using buffer size of 2000.000MB

Measuring idle latencies (in ns)...

 Numa node

Numa node 0 1

 0 81.9 153.1

 1 153.7 82.0

SNC on:

Using buffer size of 2000.000MB

Measuring idle latencies (in ns)...

 Numa node

Numa node 0 1 2 3

 0 81.6 89.4 140.4 153.6

 1 86.5 78.5 144.3 162.8

 2 142.3 153.0 81.6 89.3

 3 144.5 162.8 85.5 77.4

SUB-NUMA CLUSTERING

10-10

CHAPTER 11
MULTICORE AND HYPER-THREADING TECHNOLOGY

This chapter describes software optimization techniques for multithreaded applications running in an
environment using either multiprocessor (MP) systems or processors with hardware-based multi-
threading support. Multiprocessor systems are systems with two or more sockets, each mated with a
physical processor package. Intel 64 and IA-32 processors that provide hardware multithreading support
include dual-core processors, quad-core processors and processors supporting HT Technology1.

Computational throughput in a multithreading environment can increase as more hardware resources
are added to take advantage of thread-level or task-level parallelism. Hardware resources can be added
in the form of more than one physical-processor, processor-core-per-package, and/or logical-processor-
per-core. Therefore, there are some aspects of multithreading optimization that apply across MP, multi-
core, and HT Technology. There are also some specific microarchitectural resources that may be imple-
mented differently in different hardware multithreading configurations (for example: execution
resources are not shared across different cores but shared by two logical processors in the same core if
HT Technology is enabled). This chapter covers guidelines that apply to these situations.

This chapter covers:
• Performance characteristics and usage models.
• Programming models for multithreaded applications.
• Software optimization techniques in five specific areas.

11.1 PERFORMANCE AND USAGE MODELS
The performance gains of using multiple processors, multicore processors or HT Technology are greatly
affected by the usage model and the amount of parallelism in the control flow of the workload. Two
common usage models are:
• Multithreaded applications.
• Multitasking using single-threaded applications.

11.1.1 Multithreading
When an application employs multithreading to exploit task-level parallelism in a workload, the control
flow of the multi-threaded software can be divided into two parts: parallel tasks and sequential tasks.

Amdahl’s law describes an application’s performance gain as it relates to the degree of parallelism in the
control flow. It is a useful guide for selecting the code modules, functions, or instruction sequences that
are most likely to realize the most gains from transforming sequential tasks and control flows into
parallel code to take advantage multithreading hardware support.

Figure 11-1 illustrates how performance gains can be realized for any workload according to Amdahl’s
law. The bar in Figure 11-1 represents an individual task unit or the collective workload of an entire
application.

1. The presence of hardware multithreading support in Intel 64 and IA-32 processors can be detected by checking the fea-
ture flag CPUID .01H:EDX[28]. A return value of in bit 28 indicates that at least one form of hardware multithreading is
present in the physical processor package. The number of logical processors present in each package can also be
obtained from CPUID. The application must check how many logical processors are enabled and made available to appli-
cation at runtime by making the appropriate operating system calls. See the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2A for information.

MULTICORE AND HYPER-THREADING TECHNOLOGY

11-2

In general, the speed-up of running multiple threads on an MP systems with N physical processors, over
single-threaded execution, can be expressed as:

where P is the fraction of workload that can be parallelized, and O represents the overhead of multi-
threading and may vary between different operating systems. In this case, performance gain is the
inverse of the relative response.

When optimizing application performance in a multithreaded environment, control flow parallelism is
likely to have the largest impact on performance scaling with respect to the number of physical proces-
sors and to the number of logical processors per physical processor.

If the control flow of a multi-threaded application contains a workload in which only 50% can be executed
in parallel, the maximum performance gain using two physical processors is only 33%, compared to using
a single processor. Using four processors can deliver no more than a 60% speed-up over a single
processor. Thus, it is critical to maximize the portion of control flow that can take advantage of parallelism.
Improper implementation of thread synchronization can significantly increase the proportion of serial
control flow and further reduce the application’s performance scaling.

In addition to maximizing the parallelism of control flows, interaction between threads in the form of
thread synchronization and imbalance of task scheduling can also impact overall processor scaling
significantly.

Excessive cache misses are one cause of poor performance scaling. In a multithreaded execution envi-
ronment, they can occur from:
• Aliased stack accesses by different threads in the same process.
• Thread contentions resulting in cache line evictions.
• False-sharing of cache lines between different processors.

Techniques that address each of these situations (and many other areas) are described in sections in this
chapter.

11.1.2 Multitasking Environment
Hardware multithreading capabilities in Intel 64 and IA-32 processors can exploit task-level parallelism
when a workload consists of several single-threaded applications and these applications are scheduled to
run concurrently under an MP-aware operating system. In this environment, hardware multithreading
capabilities can deliver higher throughput for the workload, although the relative performance of a single

Figure 11-1. Amdahl’s Law and MP Speed-up

RelativeResponse Tsequential
Tparallel

--------------------------------= 1 P– P
N
---- O+ + 

 =

1-P P

Tsequential

1-P
P/2

Tparallel

P/2

Single Thread

Multi-Thread on MP

O
verhead

11-3

MULTICORE AND HYPER-THREADING TECHNOLOGY

task (in terms of time of completion relative to the same task when in a single-threaded environment)
will vary, depending on how much shared execution resources and memory are utilized.

For development purposes, several popular operating systems (for example Microsoft Windows* XP
Professional and Home, Linux* distributions using kernel 2.4.19 or later1) include OS kernel code that
can manage the task scheduling and the balancing of shared execution resources within each physical
processor to maximize the throughput.

Because applications run independently under a multitasking environment, thread synchronization
issues are less likely to limit the scaling of throughput. This is because the control flow of the workload is
likely to be 100% parallel2 (if no inter-processor communication is taking place and if there are no
system bus constraints).

With a multitasking workload, however, bus activities and cache access patterns are likely to affect the
scaling of the throughput. Running two copies of the same application or same suite of applications in a
lock-step can expose an artifact in performance measuring methodology. This is because an access
pattern to the first level data cache can lead to excessive cache misses and produce skewed performance
results. Fix this problem by:
• Including a per-instance offset at the start-up of an application.
• Introducing heterogeneity in the workload by using different datasets with each instance of the appli-

cation.
• Randomizing the sequence of start-up of applications when running multiple copies of the same suite.

When two applications are employed as part of a multitasking workload, there is little synchronization
overhead between these two processes. It is also important to ensure each application has minimal
synchronization overhead within itself.

An application that uses lengthy spin loops for intra-process synchronization is less likely to benefit from
HT Technology in a multitasking workload. This is because critical resources will be consumed by the long
spin loops.

11.2 PROGRAMMING MODELS AND MULTITHREADING
Parallelism is the most important concept in designing a multithreaded application and realizing optimal
performance scaling with multiple processors. An optimized multithreaded application is characterized by
large degrees of parallelism or minimal dependencies in the following areas:
• Workload.
• Thread interaction.
• Hardware utilization.

The key to maximizing workload parallelism is to identify multiple tasks that have minimal inter-depen-
dencies within an application and to create separate threads for parallel execution of those tasks.

Concurrent execution of independent threads is the essence of deploying a multithreaded application on
a multiprocessing system. Managing the interaction between threads to minimize the cost of thread
synchronization is also critical to achieving optimal performance scaling with multiple processors.

Efficient use of hardware resources between concurrent threads requires optimization techniques in
specific areas to prevent contentions of hardware resources. Coding techniques for optimizing thread
synchronization and managing other hardware resources are discussed in subsequent sections.

Parallel programming models are discussed next.

1. This code is included in Red Hat* Linux Enterprise AS 2.1.

2. A software tool that attempts to measure the throughput of a multitasking workload is likely to introduce control flows
that are not parallel. Thread synchronization issues must be considered as an integral part of its performance measuring
methodology.

MULTICORE AND HYPER-THREADING TECHNOLOGY

11-4

11.2.1 Parallel Programming Models
Two common programming models for transforming independent task requirements into application
threads are:
• Domain decomposition.
• Functional decomposition.

11.2.1.1 Domain Decomposition
Usually large compute-intensive tasks use data sets that can be divided into a number of small subsets,
each having a large degree of computational independence. Examples include:
• Computation of a discrete cosine transformation (DCT) on two-dimensional data by dividing the two-

dimensional data into several subsets and creating threads to compute the transform on each subset.
• Matrix multiplication; here, threads can be created to handle the multiplication of half of matrix with

the multiplier matrix.

Domain Decomposition is a programming model based on creating identical or similar threads to process
smaller pieces of data independently. This model can take advantage of duplicated execution resources
present in a traditional multiprocessor system. It can also take advantage of shared execution resources
between two logical processors in HT Technology. This is because a data domain thread typically
consumes only a fraction of the available on-chip execution resources.

Section 11.3.4, “Key Practices of Execution Resource Optimization,” discusses additional guidelines that
can help data domain threads use shared execution resources cooperatively and avoid the pitfalls
creating contentions of hardware resources between two threads.

11.2.2 Functional Decomposition
Applications usually process a wide variety of tasks with diverse functions and many unrelated data sets.
For example, a video codec needs several different processing functions. These include DCT, motion esti-
mation and color conversion. Using a functional threading model, applications can program separate
threads to do motion estimation, color conversion, and other functional tasks.

Functional decomposition will achieve more flexible thread-level parallelism if it is less dependent on the
duplication of hardware resources. For example, a thread executing a sorting algorithm and a thread
executing a matrix multiplication routine are not likely to require the same execution unit at the same
time. A design recognizing this could advantage of traditional multiprocessor systems as well as multi-
processor systems using processors supporting HT Technology.

11.2.3 Specialized Programming Models
Intel Core Duo processor and processors based on Intel Core microarchitecture offer a second-level
cache shared by two processor cores in the same physical package. This provides opportunities for two
application threads to access some application data while minimizing the overhead of bus traffic.

Multi-threaded applications may need to employ specialized programming models to take advantage of
this type of hardware feature. One such scenario is referred to as producer-consumer. In this scenario,
one thread writes data into some destination (hopefully in the second-level cache) and another thread
executing on the other core in the same physical package subsequently reads data produced by the first
thread.

The basic approach for implementing a producer-consumer model is to create two threads; one thread is
the producer and the other is the consumer. Typically, the producer and consumer take turns to work on
a buffer and inform each other when they are ready to exchange buffers. In a producer-consumer model,
there is some thread synchronization overhead when buffers are exchanged between the producer and
consumer. To achieve optimal scaling with the number of cores, the synchronization overhead must be
kept low. This can be done by ensuring the producer and consumer threads have comparable time
constants for completing each incremental task prior to exchanging buffers.

11-5

MULTICORE AND HYPER-THREADING TECHNOLOGY

Example 11-1 illustrates the coding structure of single-threaded execution of a sequence of task units,
where each task unit (either the producer or consumer) executes serially (shown in Figure 11-2). In the
equivalent scenario under multi-threaded execution, each producer-consumer pair is wrapped as a
thread function and two threads can be scheduled on available processor resources simultaneously.

11.2.3.1 Producer-Consumer Threading Models
Figure 11-3 illustrates the basic scheme of interaction between a pair of producer and consumer threads.
The horizontal direction represents time. Each block represents a task unit, processing the buffer
assigned to a thread.

The gap between each task represents synchronization overhead. The decimal number in the parenthesis
represents a buffer index. On an Intel Core Duo processor, the producer thread can store data in the
second-level cache to allow the consumer thread to continue work requiring minimal bus traffic.

The basic structure to implement the producer and consumer thread functions with synchronization to
communicate buffer index is shown in Example 11-2.

Example 11-1. Serial Execution of Producer and Consumer Work Items

for (i = 0; i < number_of_iterations; i++) {
producer (i, buff); // pass buffer index and buffer address
consumer (i, buff);

}(

Figure 11-2. Single-threaded Execution of Producer-consumer Threading Model

Figure 11-3. Execution of Producer-consumer Threading Model
on a Multicore Processor

P(1)P(1) C(1)C(1)P(1)
Main

Thread

Main
Thread P(2) P(1)P(2)P(1)

C(1)C(2)C(1) C(2)

P(1)

P: producer
C: consumer

MULTICORE AND HYPER-THREADING TECHNOLOGY

11-6

It is possible to structure the producer-consumer model in an interlaced manner such that it can mini-
mize bus traffic and be effective on multicore processors without shared second-level cache.

In this interlaced variation of the producer-consumer model, each scheduling quanta of an application
thread comprises of a producer task and a consumer task. Two identical threads are created to execute
in parallel. During each scheduling quanta of a thread, the producer task starts first and the consumer
task follows after the completion of the producer task; both tasks work on the same buffer. As each task
completes, one thread signals to the other thread notifying its corresponding task to use its designated
buffer. Thus, the producer and consumer tasks execute in parallel in two threads. As long as the data
generated by the producer reside in either the first or second level cache of the same core, the consumer
can access them without incurring bus traffic. The scheduling of the interlaced producer-consumer model
is shown in Figure 11-4.

Example 11-2. Basic Structure of Implementing Producer Consumer Threads

(a) Basic structure of a producer thread function
void producer_thread()
{ int iter_num = workamount - 1; // make local copy

int mode1 = 1; // track usage of two buffers via 0 and 1
produce(buffs[0],count); // placeholder function
while (iter_num--) {

Signal(&signal1,1); // tell the other thread to commence
produce(buffs[mode1],count); // placeholder function
WaitForSignal(&end1);
mode1 = 1 - mode1; // switch to the other buffer

}

}
b) Basic structure of a consumer thread
void consumer_thread()
{ int mode2 = 0; // first iteration start with buffer 0, than alternate

int iter_num = workamount - 1;
while (iter_num--) {

WaitForSignal(&signal1);
consume(buffs[mode2],count); // placeholder function
Signal(&end1,1);
mode2 = 1 - mode2;

}
consume(buffs[mode2],count);

}

Figure 11-4. Interlaced Variation of the Producer Consumer Model

P(2)

P(1)

P(2)

P(1) C(1)

C(2)

C(1)

C(2)

P(1)Thread 0

Thread 1

11-7

MULTICORE AND HYPER-THREADING TECHNOLOGY

Example 11-3 shows the basic structure of a thread function that can be used in this interlaced producer-
consumer model.

11.2.4 Tools for Creating Multithreaded Applications
Programming directly to a multithreading application programming interface (API) is not the only method
for creating multithreaded applications. New tools (such as the Intel compiler) have become available
with capabilities that make the challenge of creating multithreaded application easier.

Features available in the latest Intel compilers are:
• Generating multithreaded code using OpenMP* directives1.
• Generating multithreaded code automatically from unmodified high-level code2.

Example 11-3. Thread Function for an Interlaced Producer Consumer Model

// master thread starts first iteration, other thread must wait
// one iteration
void producer_consumer_thread(int master)
{
int mode = 1 - master; // track which thread and its designated

// buffer index
unsigned int iter_num = workamount >> 1;
unsigned int i=0;

iter_num += master & workamount & 1;

 if (master) // master thread starts the first iteration
 {

produce(buffs[mode],count);
Signal(sigp[1-mode1],1); // notify producer task in follower

// thread that it can proceed
 consume(buffs[mode],count);

Signal(sigc[1-mode],1);
 i = 1;
 }

for (; i < iter_num; i++)
{

 WaitForSignal(sigp[mode]);
produce(buffs[mode],count); // notify the producer task in

// other thread
Signal(sigp[1-mode],1);

 WaitForSignal(sigc[mode]);
 consume(buffs[mode],count);

Signal(sigc[1-mode],1);
}

}

1. Intel Compiler 5.0 and later supports OpenMP directives. Visit http://software.intel.com for details.

2. Intel Compiler 6.0 supports auto-parallelization.

http://software.intel.com

MULTICORE AND HYPER-THREADING TECHNOLOGY

11-8

11.2.4.1 Programming with OpenMP Directives
OpenMP provides a standardized, non-proprietary, portable set of Fortran and C++ compiler directives
supporting shared memory parallelism in applications. OpenMP supports directive-based processing.
This uses special preprocessors or modified compilers to interpret parallelism expressed in Fortran
comments or C/C++ pragmas. Benefits of directive-based processing include:
• The original source can be compiled unmodified.
• It is possible to make incremental code changes. This preserves algorithms in the original code and

enables rapid debugging.
• Incremental code changes help programmers maintain serial consistency. When the code is run on

one processor, it gives the same result as the unmodified source code.
• Offering directives to fine tune thread scheduling imbalance.
• Intel’s implementation of OpenMP runtime can add minimal threading overhead relative to hand-

coded multithreading.

11.2.4.2 Automatic Parallelization of Code
While OpenMP directives allow programmers to quickly transform serial applications into parallel applica-
tions, programmers must identify specific portions of the application code that contain parallelism and
add compiler directives. Intel Compiler 6.0 supports a new (-QPARALLEL) option, which can identify loop
structures that contain parallelism. During program compilation, the compiler automatically attempts to
decompose the parallelism into threads for parallel processing. No other intervention or programmer is
needed.

11.2.4.3 Supporting Development Tools
See Appendix A, “Application Performance Tools” for information on the various tools that Intel provides
for software development.

11.3 OPTIMIZATION GUIDELINES
This section summarizes optimization guidelines for tuning multithreaded applications. Five areas are
listed (in order of importance):
• Thread synchronization.
• Bus utilization.
• Memory optimization.
• Front end optimization.
• Execution resource optimization.

Practices associated with each area are listed in this section. Guidelines for each area are discussed in
greater depth in sections that follow.

Most of the coding recommendations improve performance scaling with processor cores; and scaling
due to HT Technology. Techniques that apply to only one environment are noted.

11.3.1 Key Practices of Thread Synchronization
Key practices for minimizing the cost of thread synchronization are summarized below:
• Insert the PAUSE instruction in fast spin loops and keep the number of loop repetitions to a minimum

to improve overall system performance.
• Replace a spin-lock that may be acquired by multiple threads with pipelined locks such that no more

than two threads have write accesses to one lock. If only one thread needs to write to a variable
shared by two threads, there is no need to acquire a lock.

11-9

MULTICORE AND HYPER-THREADING TECHNOLOGY

• Use a thread-blocking API in a long idle loop to free up the processor.
• Prevent “false-sharing” of per-thread-data between two threads.
• Place each synchronization variable alone, separated by 128 bytes or in a separate cache line.

See Section 11.4, “Thread Synchronization,” for details.

11.3.2 Key Practices of System Bus Optimization
Managing bus traffic can significantly impact the overall performance of multithreaded software and MP
systems. Key practices of system bus optimization for achieving high data throughput and quick
response are:
• Improve data and code locality to conserve bus command bandwidth.
• Avoid excessive use of software prefetch instructions and allow the automatic hardware prefetcher to

work. Excessive use of software prefetches can significantly and unnecessarily increase bus
utilization if used inappropriately.

• Consider using overlapping multiple back-to-back memory reads to improve effective cache miss
latencies.

• Use full write transactions to achieve higher data throughput.

See Section 11.5, “System Bus Optimization,” for details.

11.3.3 Key Practices of Memory Optimization
Key practices for optimizing memory operations are summarized below:
• Use cache blocking to improve locality of data access. Target one quarter to one half of cache size

when targeting processors supporting HT Technology.
• Minimize the sharing of data between threads that execute on different physical processors sharing a

common bus.
• Minimize data access patterns that are offset by multiples of 64-KBytes in each thread.
• Adjust the private stack of each thread in an application so the spacing between these stacks is not

offset by multiples of 64 KBytes or 1 MByte (prevents unnecessary cache line evictions) when
targeting processors supporting HT Technology.

• Add a per-instance stack offset when two instances of the same application are executing in lock
steps to avoid memory accesses that are offset by multiples of 64 KByte or 1 MByte when targeting
processors supporting HT Technology.

See Section 11.6, “Memory Optimization,” for details.

11.3.4 Key Practices of Execution Resource Optimization
Each physical processor has dedicated execution resources. Logical processors in physical processors
supporting HT Technology share specific on-chip execution resources. Key practices for execution
resource optimization include:
• Optimize each thread to achieve optimal frequency scaling first.
• Optimize multithreaded applications to achieve optimal scaling with respect to the number of physical

processors.
• Use on-chip execution resources cooperatively if two threads are sharing the execution resources in

the same physical processor package.
• For each processor supporting HT Technology, consider adding functionally uncorrelated threads to

increase the hardware resource utilization of each physical processor package.

See Section 11.8, “Affinities and Managing Shared Platform Resources,” for details.

MULTICORE AND HYPER-THREADING TECHNOLOGY

11-10

11.3.5 Generality and Performance Impact
The next five sections cover the optimization techniques in detail. Recommendations discussed in each
section are ranked by importance in terms of estimated local impact and generality.

Rankings are subjective and approximate. They can vary depending on coding style, application and
threading domain. The purpose of including high, medium and low impact ranking with each recommen-
dation is to provide a relative indicator as to the degree of performance gain that can be expected when
a recommendation is implemented.

It is not possible to predict the likelihood of a code instance across many applications, so an impact
ranking cannot be directly correlated to application-level performance gain. The ranking on generality is
also subjective and approximate.

Coding recommendations that do not impact all three scaling factors are typically categorized as medium
or lower.

11.4 THREAD SYNCHRONIZATION
Applications with multiple threads use synchronization techniques in order to ensure correct operation.
However, thread synchronization that are improperly implemented can significantly reduce performance.

The best practice to reduce the overhead of thread synchronization is to start by reducing the applica-
tion’s requirements for synchronization. Intel Thread Profiler can be used to profile the execution timeline
of each thread and detect situations where performance is impacted by frequent occurrences of synchro-
nization overhead.

Several coding techniques and operating system (OS) calls are frequently used for thread synchroniza-
tion. These include spin-wait loops, spin-locks, critical sections, to name a few. Choosing the optimal OS
call for the circumstance and implementing synchronization code with parallelism in mind are critical in
minimizing the cost of handling thread synchronization.

SSE3 provides two instructions (MONITOR/MWAIT) to help multithreaded software improve synchroniza-
tion between multiple agents. In the first implementation of MONITOR and MWAIT, these instructions are
available to operating system so that operating system can optimize thread synchronization in different
areas. For example, an operating system can use MONITOR and MWAIT in its system idle loop (known as
C0 loop) to reduce power consumption. An operating system can also use MONITOR and MWAIT to imple-
ment its C1 loop to improve the responsiveness of the C1 loop. See Chapter 9 in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

11.4.1 Choice of Synchronization Primitives
Thread synchronization often involves modifying some shared data while protecting the operation using
synchronization primitives. There are many primitives to choose from. Guidelines that are useful when
selecting synchronization primitives are:
• Favor compiler intrinsics or an OS provided interlocked API for atomic updates of simple data

operation, such as increment and compare/exchange. This will be more efficient than other more
complicated synchronization primitives with higher overhead.
For more information on using different synchronization primitives, see the white paper Developing
Multi-threaded Applications: A Platform Consistent Approach. See
https://software.intel.com/sites/default/files/article/147714/51534-developing-multithreaded-
applications.pdf.

• When choosing between different primitives to implement a synchronization construct, using Intel
Thread Checker and Thread Profiler can be very useful in dealing with multithreading functional
correctness issue and performance impact under multi-threaded execution. Additional information on
the capabilities of Intel Thread Checker and Thread Profiler are described in Appendix A.

Table 11-1 is useful for comparing the properties of three categories of synchronization objects available
to multi-threaded applications.

https://software.intel.com/sites/default/files/article/147714/51534-developing-multithreaded-applications.pdf
https://software.intel.com/sites/default/files/article/147714/51534-developing-multithreaded-applications.pdf
https://software.intel.com/sites/default/files/article/147714/51534-developing-multithreaded-applications.pdf

11-11

MULTICORE AND HYPER-THREADING TECHNOLOGY

11.4.2 Synchronization for Short Periods
The frequency and duration that a thread needs to synchronize with other threads depends application
characteristics. When a synchronization loop needs very fast response, applications may use a spin-wait
loop.

A spin-wait loop is typically used when one thread needs to wait a short amount of time for another
thread to reach a point of synchronization. A spin-wait loop consists of a loop that compares a synchro-
nization variable with some pre-defined value. See Example 11-4(a).

On a modern microprocessor with a superscalar speculative execution engine, a loop like this results in
the issue of multiple simultaneous read requests from the spinning thread. These requests usually
execute out-of-order with each read request being allocated a buffer resource. On detection of a write by
a worker thread to a load that is in progress, the processor must guarantee no violations of memory
order occur. The necessity of maintaining the order of outstanding memory operations inevitably costs
the processor a severe penalty that impacts all threads.

This penalty occurs on the Pentium M processor, the Intel Core Solo and Intel Core Duo processors.
However, the penalty on these processors is small compared with penalties suffered on the Pentium 4
and Intel Xeon processors. There the performance penalty for exiting the loop is about 25 times more
severe.

On a processor supporting HT Technology, spin-wait loops can consume a significant portion of the
execution bandwidth of the processor. One logical processor executing a spin-wait loop can severely
impact the performance of the other logical processor.

Table 11-1. Properties of Synchronization Objects

Characteristics
Operating System
Synchronization Objects

Light Weight User
Synchronization

Synchronization Object
based on MONITOR/MWAIT

Cycles to acquire and
release (if there is a
contention)

Thousands or Tens of thousands
cycles

Hundreds of cycles Hundreds of cycles

Power consumption Saves power by halting the core or
logical processor if idle

Some power saving if using
PAUSE

Saves more power than
PAUSE

Scheduling and
context switching

Returns to the OS scheduler if
contention exists (can be tuned
with earlier spin loop count)

Does not return to OS
scheduler voluntarily

Does not return to OS
scheduler voluntarily

Ring level Ring 0 Ring 3 Ring 0

Miscellaneous Some objects provide intra-process
synchronization and some are for
inter-process communication

Must lock accesses to
synchronization variable if
several threads may write
to it simultaneously.

Otherwise can write
without locks.

Same as light weight.

Can be used only on
systems supporting
MONITOR/MWAIT

Recommended use
conditions

• Number of active threads is
greater than number of cores

• Waiting thousands of cycles for a
signal

• Synchronization among processes

• Number of active threads
is less than or equal to
number of cores

• Infrequent contention
• Need inter process

synchronization

• Same as light weight
objects

• MONITOR/MWAIT available

MULTICORE AND HYPER-THREADING TECHNOLOGY

11-12

User/Source Coding Rule 14. (M impact, H generality) Insert the PAUSE instruction in fast spin
loops and keep the number of loop repetitions to a minimum to improve overall system performance.

The penalty of exiting from a spin-wait loop can be avoided by inserting a PAUSE instruction in the loop.
In spite of the name, the PAUSE instruction improves performance by introducing a slight delay in the
loop and effectively causing the memory read requests to be issued at a rate that allows immediate
detection of any store to the synchronization variable. This prevents the occurrence of a long delay due
to memory order violation.

One example of inserting the PAUSE instruction in a simplified spin-wait loop is shown in
Example 11-4(b). The PAUSE instruction is compatible with all Intel 64 and IA-32 processors. On IA-32
processors prior to Intel NetBurst microarchitecture, the PAUSE instruction is essentially a NOP instruc-
tion. Additional examples of optimizing spin-wait loops using the PAUSE instruction are available in Appli-
cation note AP-949, “Using Spin-Loops on Intel Pentium 4 Processor and Intel Xeon Processor.” See
https://software.intel.com/sites/default/files/22/30/25602.

Inserting the PAUSE instruction has the added benefit of significantly reducing the power consumed
during the spin-wait because fewer system resources are used.

Example 11-4. Spin-wait Loop and PAUSE Instructions

(a) An un-optimized spin-wait loop experiences performance penalty when exiting the loop. It consumes execution
resources without contributing computational work.
do {

// This loop can run faster than the speed of memory access,
// other worker threads cannot finish modifying sync_var until
// outstanding loads from the spinning loops are resolved.

} while(sync_var != constant_value);
(b) Inserting the PAUSE instruction in a fast spin-wait loop prevents performance-penalty to the spinning thread and the
worker thread

do {
_asm pause

// Ensure this loop is de-pipelined, i.e. preventing more than one
// load request to sync_var to be outstanding,
// avoiding performance penalty when the worker thread updates
// sync_var and the spinning thread exiting the loop.

}
while(sync_var != constant_value);
(c) A spin-wait loop using a “test, test-and-set” technique to determine the availability of the synchronization variable.
This technique is recommended when writing spin-wait loops to run on Intel 64 and IA-32 architecture processors.

Spin_Lock:
CMP lockvar, 0 ; // Check if lock is free.
JE Get_lock

PAUSE; // Short delay.
JMP Spin_Lock;

Get_Lock:
MOV EAX, 1;
XCHG EAX, lockvar; // Try to get lock.
CMP EAX, 0; // Test if successful.
JNE Spin_Lock;

Critical_Section:
<critical section code>
MOV lockvar, 0; // Release lock.

https://software.intel.com/sites/default/files/22/30/25602

11-13

MULTICORE AND HYPER-THREADING TECHNOLOGY

11.4.3 Optimization with Spin-Locks
Spin-locks are typically used when several threads needs to modify a synchronization variable and the
synchronization variable must be protected by a lock to prevent un-intentional overwrites. When the lock
is released, however, several threads may compete to acquire it at once. Such thread contention signifi-
cantly reduces performance scaling with respect to frequency, number of discrete processors, and HT
Technology.

To reduce the performance penalty, one approach is to reduce the likelihood of many threads competing
to acquire the same lock. Apply a software pipelining technique to handle data that must be shared
between multiple threads.

Instead of allowing multiple threads to compete for a given lock, no more than two threads should have
write access to a given lock. If an application must use spin-locks, include the PAUSE instruction in the
wait loop. Example 11-4(c) shows an example of the “test, test-and-set” technique for determining the
availability of the lock in a spin-wait loop.
User/Source Coding Rule 15. (M impact, L generality) Replace a spin lock that may be acquired
by multiple threads with pipelined locks such that no more than two threads have write accesses to one
lock. If only one thread needs to write to a variable shared by two threads, there is no need to use a
lock.

11.4.4 Synchronization for Longer Periods
When using a spin-wait loop not expected to be released quickly, an application should follow these
guidelines:
• Keep the duration of the spin-wait loop to a minimum number of repetitions.
• Applications should use an OS service to block the waiting thread; this can release the processor so

that other runnable threads can make use of the processor or available execution resources.

On processors supporting HT Technology, operating systems should use the HLT instruction if one logical
processor is active and the other is not. HLT will allow an idle logical processor to transition to a halted
state; this allows the active logical processor to use all the hardware resources in the physical package.
An operating system that does not use this technique must still execute instructions on the idle logical
processor that repeatedly check for work. This “idle loop” consumes execution resources that could
otherwise be used to make progress on the other active logical processor.

If an application thread must remain idle for a long time, the application should use a thread blocking API
or other method to release the idle processor. The techniques discussed here apply to traditional MP
system, but they have an even higher impact on processors that support HT Technology.

Typically, an operating system provides timing services, for example Sleep(dwMilliseconds)1; such vari-
ables can be used to prevent frequent checking of a synchronization variable.

Another technique to synchronize between worker threads and a control loop is to use a thread-blocking
API provided by the OS. Using a thread-blocking API allows the control thread to use less processor
cycles for spinning and waiting. This gives the OS more time quanta to schedule the worker threads on
available processors. Furthermore, using a thread-blocking API also benefits from the system idle loop
optimization that OS implements using the HLT instruction.
User/Source Coding Rule 16. (H impact, M generality) Use a thread-blocking API in a long idle
loop to free up the processor.

Using a spin-wait loop in a traditional MP system may be less of an issue when the number of runnable
threads is less than the number of processors in the system. If the number of threads in an application is
expected to be greater than the number of processors (either one processor or multiple processors), use
a thread-blocking API to free up processor resources. A multithreaded application adopting one control
thread to synchronize multiple worker threads may consider limiting worker threads to the number of
processors in a system and use thread-blocking APIs in the control thread.

1. The Sleep() API is not thread-blocking, because it does not guarantee the processor will be released. Example 11-5(a)
shows an example of using Sleep(0), which does not always realize the processor to another thread.

MULTICORE AND HYPER-THREADING TECHNOLOGY

11-14

11.4.4.1 Avoid Coding Pitfalls in Thread Synchronization
Synchronization between multiple threads must be designed and implemented with care to achieve good
performance scaling with respect to the number of discrete processors and the number of logical
processor per physical processor. No single technique is a universal solution for every synchronization
situation.

The pseudo-code example in Example 11-5(a) illustrates a polling loop implementation of a control
thread. If there is only one runnable worker thread, an attempt to call a timing service API, such as
Sleep(0), may be ineffective in minimizing the cost of thread synchronization. Because the control thread
still behaves like a fast spinning loop, the only runnable worker thread must share execution resources
with the spin-wait loop if both are running on the same physical processor that supports HT Technology.
If there are more than one runnable worker threads, then calling a thread blocking API, such as Sleep(0),
could still release the processor running the spin-wait loop, allowing the processor to be used by another
worker thread instead of the spinning loop.

A control thread waiting for the completion of worker threads can usually implement thread synchroniza-
tion using a thread-blocking API or a timing service, if the worker threads require significant time to
complete. Example 11-5(b) shows an example that reduces the overhead of the control thread in its
thread synchronization.

In general, OS function calls should be used with care when synchronizing threads. When using OS-
supported thread synchronization objects (critical section, mutex, or semaphore), preference should be
given to the OS service that has the least synchronization overhead, such as a critical section.

11.4.5 Prevent Sharing of Modified Data and False-Sharing
Depending on the cache topology relative to processor/core topology and the specific underlying
microarchitecture, sharing of modified data can incur some degree of performance penalty when a soft-
ware thread running on one core tries to read or write data that is currently present in modified state in
the local cache of another core. This will cause eviction of the modified cache line back into memory and
reading it into the first-level cache of the other core. The latency of such cache line transfer is much
higher than using data in the immediate first level cache or second level cache.

Example 11-5. Coding Pitfall using Spin Wait Loop

(a) A spin-wait loop attempts to release the processor incorrectly. It experiences a performance penalty if the only
worker thread and the control thread runs on the same physical processor package.
// Only one worker thread is running,
// the control loop waits for the worker thread to complete.

ResumeWorkThread(thread_handle);
While (!task_not_done) {
 Sleep(0) // Returns immediately back to spin loop.
 …
}
(b) A polling loop frees up the processor correctly.

// Let a worker thread run and wait for completion.
ResumeWorkThread(thread_handle);
While (!task_not_done) {
 Sleep(FIVE_MILISEC)

// This processor is released for some duration, the processor
// can be used by other threads.
…
}

11-15

MULTICORE AND HYPER-THREADING TECHNOLOGY

False sharing applies to data used by one thread that happens to reside on the same cache line as
different data used by another thread. These situations can also incur a performance delay depending on
the topology of the logical processors/cores in the platform.

False sharing can experience a performance penalty when the threads are running on logical processors
reside on different physical processors or processor cores. For processors that support HT Technology,
false-sharing incurs a performance penalty when two threads run on different cores, different physical
processors, or on two logical processors in the physical processor package. In the first two cases, the
performance penalty is due to cache evictions to maintain cache coherency. In the latter case, perfor-
mance penalty is due to memory order machine clear conditions.

A generic approach for multi-threaded software to prevent incurring false-sharing penalty is to allocate
separate critical data or locks with alignment granularity according to a “false-sharing threshold” size.
The following steps will allow software to determine the “false-sharing threshold” across Intel proces-
sors:

1. If the processor supports CLFLUSH instruction, i.e. CPUID.01H:EDX.CLFLUSH[bit 19] =1:

Use the CLFLUSH line size, i.e. the integer value of CPUID.01H:EBX[15:8], as the “false-sharing
threshold”.

2. If CLFLUSH line size is not available, use CPUID leaf 4 as described below:

Determine the “false-sharing threshold” by evaluating the largest system coherency line size among
valid cache types that are reported via the sub-leaves of CPUID leaf 4. For each sub-leaf n, its
associated system coherency line size is (CPUID.(EAX=4, ECX=n):EBX[11:0] + 1).

3. If neither CLFLUSH line size is available, nor CPUID leaf 4 is available, then software may choose the
“false-sharing threshold” from one of the following:

a. Query the descriptor tables of CPUID leaf 2 and choose from available descriptor entries.

b. A Family/Model-specific mechanism available in the platform or a Family/Model-specific known
value.

c. Default to a safe value 64 bytes.

User/Source Coding Rule 17. (H impact, M generality) Beware of false sharing within a cache line
or within a sector. Allocate critical data or locks separately using alignment granularity not smaller than
the “false-sharing threshold”.

When a common block of parameters is passed from a parent thread to several worker threads, it is
desirable for each work thread to create a private copy (each copy aligned to multiples of the “false-
sharing threshold”) of frequently accessed data in the parameter block.

11.4.6 Placement of Shared Synchronization Variable
On processors based on Intel NetBurst microarchitecture, bus reads typically fetch 128 bytes into a
cache, the optimal spacing to minimize eviction of cached data is 128 bytes. To prevent false-sharing,
synchronization variables and system objects (such as a critical section) should be allocated to reside
alone in a 128-byte region and aligned to a 128-byte boundary.

Example 11-6 shows a way to minimize the bus traffic required to maintain cache coherency in MP
systems. This technique is also applicable to MP systems using processors with or without HT Technology.

Example 11-6. Placement of Synchronization and Regular Variables

int regVar;
int padding[32];
int SynVar[32*NUM_SYNC_VARS];
int AnotherVar;

MULTICORE AND HYPER-THREADING TECHNOLOGY

11-16

On Pentium M, Intel Core Solo, Intel Core Duo processors, and processors based on Intel Core microar-
chitecture; a synchronization variable should be placed alone and in separate cache line to avoid false-
sharing. Software must not allow a synchronization variable to span across page boundary.
User/Source Coding Rule 18. (M impact, ML generality) Place each synchronization variable
alone, separated by 128 bytes or in a separate cache line.
User/Source Coding Rule 19. (H impact, L generality) Do not place any spin lock variable to span
a cache line boundary.

At the code level, false sharing is a special concern in the following cases:
• Global data variables and static data variables that are placed in the same cache line and are written

by different threads.
• Objects allocated dynamically by different threads may share cache lines. Make sure that the

variables used locally by one thread are allocated in a manner to prevent sharing the cache line with
other threads.

Another technique to enforce alignment of synchronization variables and to avoid a cacheline being
shared is to use compiler directives when declaring data structures. See Example 11-7.

Other techniques that prevent false-sharing include:
• Organize variables of different types in data structures (because the layout that compilers give to

data variables might be different than their placement in the source code).
• When each thread needs to use its own copy of a set of variables, declare the variables with:

— Directive threadprivate, when using OpenMP.

— Modifier __declspec (thread), when using Microsoft compiler.
• In managed environments that provide automatic object allocation, the object allocators and

garbage collectors are responsible for layout of the objects in memory so that false sharing through
two objects does not happen.

• Provide classes such that only one thread writes to each object field and close object fields, in order
to avoid false sharing.

One should not equate the recommendations discussed in this section as favoring a sparsely populated
data layout. The data-layout recommendations should be adopted when necessary and avoid unneces-
sary bloat in the size of the work set.

11.5 SYSTEM BUS OPTIMIZATION
The system bus services requests from bus agents (e.g. logical processors) to fetch data or code from
the memory sub-system. The performance impact due data traffic fetched from memory depends on the
characteristics of the workload, and the degree of software optimization on memory access, locality
enhancements implemented in the software code. A number of techniques to characterize memory traffic
of a workload is discussed in Appendix A. Optimization guidelines on locality enhancement is also
discussed in Section 3.6.10, “Locality Enhancement,” and Section 9.5.11, “Hardware Prefetching and
Cache Blocking Techniques.”

The techniques described in Chapter 3 and Chapter 9 benefit application performance in a platform
where the bus system is servicing a single-threaded environment. In a multi-threaded environment, the
bus system typically services many more logical processors, each of which can issue bus requests inde-

Example 11-7. Declaring Synchronization Variables without Sharing a Cache Line

__declspec(align(64)) unsigned __int64 sum;
struct sync_struct {…};
__declspec(align(64)) struct sync_struct sync_var;

11-17

MULTICORE AND HYPER-THREADING TECHNOLOGY

pendently. Thus, techniques on locality enhancements, conserving bus bandwidth, reducing large-stride-
cache-miss-delay can have strong impact on processor scaling performance.

11.5.1 Conserve Bus Bandwidth
In a multithreading environment, bus bandwidth may be shared by memory traffic originated from
multiple bus agents (These agents can be several logical processors and/or several processor cores).
Preserving the bus bandwidth can improve processor scaling performance. Also, effective bus bandwidth
typically will decrease if there are significant large-stride cache-misses. Reducing the amount of large-
stride cache misses (or reducing DTLB misses) will alleviate the problem of bandwidth reduction due to
large-stride cache misses.

One way for conserving available bus command bandwidth is to improve the locality of code and data.
Improving the locality of data reduces the number of cache line evictions and requests to fetch data. This
technique also reduces the number of instruction fetches from system memory.
User/Source Coding Rule 20. (M impact, H generality) Improve data and code locality to
conserve bus command bandwidth.

Using a compiler that supports profiler-guided optimization can improve code locality by keeping
frequently used code paths in the cache. This reduces instruction fetches. Loop blocking can also improve
the data locality. Other locality enhancement techniques can also be applied in a multithreading environ-
ment to conserve bus bandwidth (see Section 9.5, “Memory Optimization Using Prefetch”).

Because the system bus is shared between many bus agents (logical processors or processor cores),
software tuning should recognize symptoms of the bus approaching saturation. One useful technique is
to examine the queue depth of bus read traffic. When the bus queue depth is high, locality enhancement
to improve cache utilization will benefit performance more than other techniques, such as inserting more
software prefetches or masking memory latency with overlapping bus reads. An approximate working
guideline for software to operate below bus saturation is to check if bus read queue depth is significantly
below 5.

Some MP and workstation platforms may have a chipset that provides two system buses, with each bus
servicing one or more physical processors. The guidelines for conserving bus bandwidth described above
also applies to each bus domain.

11.5.2 Understand the Bus and Cache Interactions
Be careful when parallelizing code sections with data sets that results in the total working set exceeding
the second-level cache and /or consumed bandwidth exceeding the capacity of the bus. On an Intel Core
Duo processor, if only one thread is using the second-level cache and / or bus, then it is expected to get
the maximum benefit of the cache and bus systems because the other core does not interfere with the
progress of the first thread. However, if two threads use the second-level cache concurrently, there may
be performance degradation if one of the following conditions is true:
• Their combined working set is greater than the second-level cache size.
• Their combined bus usage is greater than the capacity of the bus.
• They both have extensive access to the same set in the second-level cache, and at least one of the

threads writes to this cache line.

To avoid these pitfalls, multithreading software should try to investigate parallelism schemes in which
only one of the threads access the second-level cache at a time, or where the second-level cache and the
bus usage does not exceed their limits.

11.5.3 Avoid Excessive Software Prefetches
Pentium 4 and Intel Xeon Processors have an automatic hardware prefetcher. It can bring data and
instructions into the unified second-level cache based on prior reference patterns. In most situations, the
hardware prefetcher is likely to reduce system memory latency without explicit intervention from soft-

MULTICORE AND HYPER-THREADING TECHNOLOGY

11-18

ware prefetches. It is also preferable to adjust data access patterns in the code to take advantage of the
characteristics of the automatic hardware prefetcher to improve locality or mask memory latency.
Processors based on Intel Core microarchitecture also provides several advanced hardware prefetching
mechanisms. Data access patterns that can take advantage of earlier generations of hardware prefetch
mechanism generally can take advantage of more recent hardware prefetch implementations.

Using software prefetch instructions excessively or indiscriminately will inevitably cause performance
penalties. This is because excessively or indiscriminately using software prefetch instructions wastes the
command and data bandwidth of the system bus.

Using software prefetches delays the hardware prefetcher from starting to fetch data needed by the
processor core. It also consumes critical execution resources and can result in stalled execution. In some
cases, it may be fruitful to evaluate the reduction or removal of software prefetches to migrate towards
more effective use of hardware prefetch mechanisms. The guidelines for using software prefetch instruc-
tions are described in Chapter 3. The techniques for using automatic hardware prefetcher is discussed in
Chapter 9.
User/Source Coding Rule 21. (M impact, L generality) Avoid excessive use of software prefetch
instructions and allow automatic hardware prefetcher to work. Excessive use of software prefetches can
significantly and unnecessarily increase bus utilization if used inappropriately.

11.5.4 Improve Effective Latency of Cache Misses
System memory access latency due to cache misses is affected by bus traffic. This is because bus read
requests must be arbitrated along with other requests for bus transactions. Reducing the number of
outstanding bus transactions helps improve effective memory access latency.

One technique to improve effective latency of memory read transactions is to use multiple overlapping
bus reads to reduce the latency of sparse reads. In situations where there is little locality of data or when
memory reads need to be arbitrated with other bus transactions, the effective latency of scattered
memory reads can be improved by issuing multiple memory reads back-to-back to overlap multiple
outstanding memory read transactions. The average latency of back-to-back bus reads is likely to be
lower than the average latency of scattered reads interspersed with other bus transactions. This is
because only the first memory read needs to wait for the full delay of a cache miss.
User/Source Coding Rule 22. (M impact, M generality) Consider using overlapping multiple back-
to-back memory reads to improve effective cache miss latencies.

Another technique to reduce effective memory latency is possible if one can adjust the data access
pattern such that the access strides causing successive cache misses in the last-level cache is predomi-
nantly less than the trigger threshold distance of the automatic hardware prefetcher. See Section 9.5.3,
“Example of Effective Latency Reduction with Hardware Prefetch.”
User/Source Coding Rule 23. (M impact, M generality) Consider adjusting the sequencing of
memory references such that the distribution of distances of successive cache misses of the last level
cache peaks towards 64 bytes.

11.5.5 Use Full Write Transactions to Achieve Higher Data Rate
Write transactions across the bus can result in write to physical memory either using the full line size of
64 bytes or less than the full line size. The latter is referred to as a partial write. Typically, writes to write-
back (WB) memory addresses are full-size and writes to write-combine (WC) or uncacheable (UC) type
memory addresses result in partial writes. Both cached WB store operations and WC store operations
utilize a set of six WC buffers (64 bytes wide) to manage the traffic of write transactions. When
competing traffic closes a WC buffer before all writes to the buffer are finished, this results in a series of
8-byte partial bus transactions rather than a single 64-byte write transaction.
User/Source Coding Rule 24. (M impact, M generality) Use full write transactions to achieve
higher data throughput.

Frequently, multiple partial writes to WC memory can be combined into full-sized writes using a software
write-combining technique to separate WC store operations from competing with WB store traffic. To
implement software write-combining, uncacheable writes to memory with the WC attribute are written to

11-19

MULTICORE AND HYPER-THREADING TECHNOLOGY

a small, temporary buffer (WB type) that fits in the first level data cache. When the temporary buffer is
full, the application copies the content of the temporary buffer to the final WC destination.

When partial-writes are transacted on the bus, the effective data rate to system memory is reduced to
only 1/8 of the system bus bandwidth.

11.6 MEMORY OPTIMIZATION
Efficient operation of caches is a critical aspect of memory optimization. Efficient operation of caches
needs to address the following:
• Cache blocking.
• Shared memory optimization.
• Eliminating 64-KByte aliased data accesses.
• Preventing excessive evictions in first-level cache.

11.6.1 Cache Blocking Technique
Loop blocking is useful for reducing cache misses and improving memory access performance. The selec-
tion of a suitable block size is critical when applying the loop blocking technique. Loop blocking is appli-
cable to single-threaded applications as well as to multithreaded applications running on processors with
or without HT Technology. The technique transforms the memory access pattern into blocks that effi-
ciently fit in the target cache size.

When targeting Intel processors supporting HT Technology, the loop blocking technique for a unified
cache can select a block size that is no more than one half of the target cache size, if there are two logical
processors sharing that cache. The upper limit of the block size for loop blocking should be determined
by dividing the target cache size by the number of logical processors available in a physical processor
package. Typically, some cache lines are needed to access data that are not part of the source or desti-
nation buffers used in cache blocking, so the block size can be chosen between one quarter to one half of
the target cache (see Chapter 3, “General Optimization Guidelines”).

Software can use the deterministic cache parameter leaf of CPUID to discover which subset of logical
processors are sharing a given cache (see Chapter 9, “Optimizing Cache Usage”). Therefore, guideline
above can be extended to allow all the logical processors serviced by a given cache to use the cache
simultaneously, by placing an upper limit of the block size as the total size of the cache divided by the
number of logical processors serviced by that cache. This technique can also be applied to single-
threaded applications that will be used as part of a multitasking workload.
User/Source Coding Rule 25. (H impact, H generality) Use cache blocking to improve locality of
data access. Target one quarter to one half of the cache size when targeting Intel processors
supporting HT Technology or target a block size that allow all the logical processors serviced by a cache
to share that cache simultaneously.

11.6.2 Shared-Memory Optimization
Maintaining cache coherency between discrete processors frequently involves moving data across a bus
that operates at a clock rate substantially slower that the processor frequency.

11.6.2.1 Minimize Sharing of Data between Physical Processors
When two threads are executing on two physical processors and sharing data, reading from or writing to
shared data usually involves several bus transactions (including snooping, request for ownership
changes, and sometimes fetching data across the bus). A thread accessing a large amount of shared
memory is likely to have poor processor-scaling performance.

MULTICORE AND HYPER-THREADING TECHNOLOGY

11-20

User/Source Coding Rule 26. (H impact, M generality) Minimize the sharing of data between
threads that execute on different bus agents sharing a common bus. The situation of a platform
consisting of multiple bus domains should also minimize data sharing across bus domains.

One technique to minimize sharing of data is to copy data to local stack variables if it is to be accessed
repeatedly over an extended period. If necessary, results from multiple threads can be combined later by
writing them back to a shared memory location. This approach can also minimize time spent to synchro-
nize access to shared data.

11.6.2.2 Batched Producer-Consumer Model
The key benefit of a threaded producer-consumer design, shown in Figure 11-5, is to minimize bus traffic
while sharing data between the producer and the consumer using a shared second-level cache. On an
Intel Core Duo processor and when the work buffers are small enough to fit within the first-level cache,
re-ordering of producer and consumer tasks are necessary to achieve optimal performance. This is
because fetching data from L2 to L1 is much faster than having a cache line in one core invalidated and
fetched from the bus.

Figure 11-5 illustrates a batched producer-consumer model that can be used to overcome the drawback
of using small work buffers in a standard producer-consumer model. In a batched producer-consumer
model, each scheduling quanta batches two or more producer tasks, each producer working on a desig-
nated buffer. The number of tasks to batch is determined by the criteria that the total working set be
greater than the first-level cache but smaller than the second-level cache.

Example 11-8 shows the batched implementation of the producer and consumer thread functions.

Figure 11-5. Batched Approach of Producer Consumer Model

Example 11-8. Batched Implementation of the Producer Consumer Threads

void producer_thread()
{ int iter_num = workamount - batchsize;

int mode1;
for (mode1=0; mode1 < batchsize; mode1++)
{ produce(buffs[mode1],count); }

while (iter_num--)
{ Signal(&signal1,1);

produce(buffs[mode1],count); // placeholder function
WaitForSignal(&end1);
mode1++;
if (mode1 > batchsize)

mode1 = 0;
}

}

Main
Thread P(2) P(5)P(4)P(3)

C(3)C(2)C(1) C(4)

P(1)

P: producer
C: consumer

P(6)

11-21

MULTICORE AND HYPER-THREADING TECHNOLOGY

11.6.3 Eliminate 64-KByte Aliased Data Accesses
The 64-KByte aliasing condition is discussed in Chapter 3. Memory accesses that satisfy the 64-KByte
aliasing condition can cause excessive evictions of the first-level data cache. Eliminating 64-KByte
aliased data accesses originating from each thread helps improve frequency scaling in general. Further-
more, it enables the first-level data cache to perform efficiently when HT Technology is fully utilized by
software applications.
User/Source Coding Rule 27. (H impact, H generality) Minimize data access patterns that are
offset by multiples of 64 KBytes in each thread.

The presence of 64-KByte aliased data access can be detected using Pentium 4 processor performance
monitoring events. Appendix B includes an updated list of Pentium 4 processor performance metrics.
These metrics are based on events accessed using the Intel VTune Performance Analyzer.

Performance penalties associated with 64-KByte aliasing are applicable mainly to current processor
implementations of HT Technology or Intel NetBurst microarchitecture. The next section discusses
memory optimization techniques that are applicable to multithreaded applications running on processors
supporting HT Technology.

11.7 FRONT END OPTIMIZATION
For dual-core processors where the second-level unified cache is shared by two processor cores (Intel
Core Duo processor and processors based on Intel Core microarchitecture), multi-threaded software
should consider the increase in code working set due to two threads fetching code from the unified cache
as part of front end and cache optimization. For quad-core processors based on Intel Core microarchitec-
ture, the considerations that applies to Intel Core 2 Duo processors also apply to quad-core processors.

11.7.1 Avoid Excessive Loop Unrolling
Unrolling loops can reduce the number of branches and improve the branch predictability of application
code. Loop unrolling is discussed in detail in Chapter 3. Loop unrolling must be used judiciously. Be sure
to consider the benefit of improved branch predictability and the cost of under-utilization of the loop
stream detector (LSD).

void consumer_thread()
{ int mode2 = 0;

int iter_num = workamount - batchsize;
while (iter_num--)
{ WaitForSignal(&signal1);

consume(buffs[mode2],count); // placeholder function
Signal(&end1,1);
mode2++;
if (mode2 > batchsize)

mode2 = 0;

}
for (i=0;i<batchsize;i++)
{ consume(buffs[mode2],count);

mode2++;
if (mode2 > batchsize)

mode2 = 0;
}

}

Example 11-8. Batched Implementation of the Producer Consumer Threads (Contd.)

MULTICORE AND HYPER-THREADING TECHNOLOGY

11-22

User/Source Coding Rule 28. (M impact, L generality) Avoid excessive loop unrolling to ensure
the LSD is operating efficiently.

11.8 AFFINITIES AND MANAGING SHARED PLATFORM RESOURCES
Modern OSes provide either API and/or data constructs (e.g. affinity masks) that allow applications to
manage certain shared resources , e.g. logical processors, Non-Uniform Memory Access (NUMA) memory
sub-systems.

Before multithreaded software considers using affinity APIs, it should consider the recommendations in
Table 11-2.

Table 11-2. Design-Time Resource Management Choices

Runtime Environment Thread Scheduling/Processor
Affinity Consideration Memory Affinity Consideration

A single-threaded application Support OS scheduler objectives on
system response and throughput by
letting OS scheduler manage
scheduling. OS provides facilities for
end user to optimize runtime specific
environment.

Not relevant; let OS do its job.

A multi-threaded application
requiring:
i) less than all processor
resource in the system,
ii) share system resource with
other concurrent applications,
iii) other concurrent
applications may have higher
priority.

Rely on OS default scheduler policy.
Hard-coded affinity-binding will likely
harm system response and throughput;
and/or in some cases hurting
application performance.

Rely on OS default scheduler policy.
Use API that could provide
transparent NUMA benefit without
managing NUMA explicitly.

A multi-threaded application
requiring
i) foreground and higher
priority,
ii) uses less than all
processor resource in the
system,
iii) share system resource
with other concurrent
applications,
iv) but other concurrent
applications have lower
priority.

If application-customized thread
binding policy is considered, a
cooperative approach with OS
scheduler should be taken instead of
hard-coded thread affinity binding
policy. For example, the use of
SetThreadIdealProcessor() can provide
a floating base to anchor a next-free-
core binding policy for locality-
optimized application binding policy,
and cooperate with default OS policy.

Use API that could provide
transparent NUMA benefit without
managing NUMA explicitly.
Use performance event to diagnose
non-local memory access issue if
default OS policy cause
performance issue.

11-23

MULTICORE AND HYPER-THREADING TECHNOLOGY

11.8.1 Topology Enumeration of Shared Resources
Whether multithreaded software ride on OS scheduling policy or need to use affinity APIs for customized
resource management, understanding the topology of the shared platform resource is essential. The
processor topology of logical processors (SMT), processor cores, and physical processors in the platform
can enumerated using information provided by CPUID. This is discussed in Chapter 9, “Multiple-Processor
Management” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A. A white
paper and reference code is also available from Intel.

11.8.2 Non-Uniform Memory Access
Platforms using two or more Intel Xeon processors based on Nehalem microarchitecture support non-
uniform memory access (NUMA) topology because each physical processor provides its own local
memory controller. NUMA offers system memory bandwidth that can scale with the number of physical
processors. System memory latency will exhibit asymmetric behavior depending on the memory trans-
action occurring locally in the same socket or remotely from another socket. Additionally, OS-specific
construct and/or implementation behavior may present additional complexity at the API level that the
multi-threaded software may need to pay attention to memory allocation/initialization in a NUMA envi-
ronment.

Generally, latency sensitive workload would favor memory traffic to stay local over remote. If multiple
threads shares a buffer, the programmer will need to pay attention to OS-specific behavior of memory
allocation/initialization on a NUMA system.

Bandwidth sensitive workloads will find it convenient to employ a data composition threading model and
aggregates application threads executing in each socket to favor local traffic on a per-socket basis to
achieve overall bandwidth scalable with the number of physical processors.

The OS construct that provides the programming interface to manage local/remote NUMA traffic is
referred to as memory affinity. Because OS manages the mapping between physical address (populated
by system RAM) to linear address (accessed by application software); and paging allows dynamic reas-
signment of a physical page to map to different linear address dynamically, proper use of memory affinity
will require a great deal of OS-specific knowledge.

To simplify application programming, OS may implement certain APIs and physical/linear address
mapping to take advantage of NUMA characteristics transparently in certain situations. One common
technique is for OS to delay commit of physical memory page assignment until the first memory refer-
ence on that physical page is accessed in the linear address space by an application thread. This means
that the allocation of a memory buffer in the linear address space by an application thread does not

A multi-threaded application
runs in foreground, requiring
all processor resource in the
system and not sharing
system resource with
concurrent applications; MPI-
based multi-threading.

Application-customized thread binding
policy can be more efficient than default
OS policy. Use performance event to
help optimize locality and cache
transfer opportunities.
A multi-threaded application that
employs its own explicit thread affinity-
binding policy should deploy with some
form of opt-in choice granted by the
end-user or administrator. For example,
permission to deploy explicit thread
affinity-binding policy can be activated
after permission is granted after
installation.

Application-customized memory
affinity binding policy can be more
efficient than default OS policy. Use
performance event to diagnose non-
local memory access issues related
to either OS or custom policy

Table 11-2. Design-Time Resource Management Choices (Contd.)

Runtime Environment Thread Scheduling/Processor
Affinity Consideration Memory Affinity Consideration

MULTICORE AND HYPER-THREADING TECHNOLOGY

11-24

necessarily determine which socket will service local memory traffic when the memory allocation API
returns to the program. However, the memory allocation API that supports this level of NUMA transpar-
ency varies across different OSes. For example, the portable C-language API “malloc” provides some
degree of transparency on Linux*, whereas the API “VirtualAlloc” behave similarly on Windows*.
Different OSes may also provide memory allocation APIs that require explicit NUMA information, such
that the mapping between linear address to local/remote memory traffic are fixed at allocation.

Example 11-9 shows an example that multi-threaded application could undertake the least amount of
effort dealing with OS-specific APIs and to take advantage of NUMA hardware capability. This parallel
approach to memory buffer initialization is conducive to having each worker thread keep memory traffic
local on NUMA systems.

Note that the example shown in Example 11-9 implies that the memory buffers will be freed after the
worker threads created by OpenMP have ended. This situation avoids a potential issue of repeated use of
malloc/free across different application threads. Because if the local memory that was initialized by one
thread and subsequently got freed up by another thread, the OS may have difficulty in tracking/re-allo-
cating memory pools in linear address space relative to NUMA topology. In Linux, another API, “numa_lo-
cal_alloc” may be used.

Example 11-9. Parallel Memory Initialization Technique Using OpenMP and NUMA

#ifdef _LINUX // Linux implements malloc to commit physical page at first touch/access

buf1 = (char *) malloc(DIM*(sizeof (double))+1024);

buf2 = (char *) malloc(DIM*(sizeof (double))+1024);

buf3 = (char *) malloc(DIM*(sizeof (double))+1024);

#endif

#ifdef windows

// Windows implements malloc to commit physical page at allocation, so use VirtualAlloc

buf1 = (char *) VirtualAlloc(NULL, DIM*(sizeof (double))+1024, fAllocType, fProtect);

buf2 = (char *) VirtualAlloc(NULL, DIM*(sizeof (double))+1024, fAllocType, fProtect);

buf3 = (char *) VirtualAlloc(NULL, DIM*(sizeof (double))+1024, fAllocType, fProtect);

#endif

(continue)

a = (double *) buf1;

b = (double *) buf2;

c = (double *) buf3;

#pragma omp parallel

{ // use OpenMP threads to execute each iteration of the loop

// number of OpenMP threads can be specified by default or via environment variable

#pragma omp for private(num)

// each loop iteration is dispatched to execute in different OpenMP threads using private iterator

for(num=0;num<len;num++)

{// each thread perform first-touches to its own subset of memory address, physical pages

// mapped to the local memory controller of the respective threads

a[num]=10.;

b[num]=10.;

c[num]=10.;

}

}

11-25

MULTICORE AND HYPER-THREADING TECHNOLOGY

11.9 OPTIMIZATION OF OTHER SHARED RESOURCES
Resource optimization in multi-threaded application depends on the cache topology and execution
resources associated within the hierarchy of processor topology. Processor topology and an algorithm for
software to identify the processor topology are discussed in Chapter 9, “Multiple-Processor Management”
of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

In platforms with shared buses, the bus system is shared by multiple agents at the SMT level and at the
processor core level of the processor topology. Thus multi-threaded application design should start with
an approach to manage the bus bandwidth available to multiple processor agents sharing the same bus
link in an equitable manner. This can be done by improving the data locality of an individual application
thread or allowing two threads to take advantage of a shared second-level cache (where such shared
cache topology is available).

In general, optimizing the building blocks of a multi-threaded application can start from an individual
thread. The guidelines discussed in Chapter 3 through Chapter 13 largely apply to multi-threaded opti-
mization.
Tuning Suggestion 2. Optimize single threaded code to maximize execution throughput first.
Tuning Suggestion 3. Employ efficient threading model, leverage available tools (such as Intel
Threading Building Block, Intel Thread Checker, Intel Thread Profiler) to achieve optimal processor
scaling with respect to the number of physical processors or processor cores.

11.9.1 Expanded Opportunity for HT Optimization
The Hyper-Threading Technology (HT) implementation in Nehalem microarchitecture differs from
previous generations of HT implementations. It offers broader opportunity for multi-threaded software to
take advantage of HT and achieve higher system throughput over a broader range of application prob-
lems. This section provides a few heuristic recommendations and illustrates some of these optimization
opportunities.

Chapter 2, “Intel® 64 and IA-32 Architectures” covered some of the microarchitectural capability
enhancements in Hyper-Threading Technology. Many of these enhancements center around the basic
needs of multi-threaded software in terms of sharing common hardware resources that may be used by
more than one thread context.

Different software algorithms and workload characteristics may produce different performance charac-
teristics due to their demands on critical microarchitectural resources that may be shared amongst
several logical processors. A brief comparison of the various microarchitectural subsystems that can play
a significant role in software tuning for HT is summarized in Table 11-3.

Table 11-3. Microarchitectural Resources Comparisons of HT Implementations

Microarchitectural Subsystem Nehalem Microarchitecture Intel NetBurst Microarchitecture

06_1AH 0F_02H, 0F_03H, 0F_04H, 0F_06H

Issue ports, execution units Three issue ports (0, 1, 5) distributed to
handle ALU, SIMD, and FP
computations.

Unbalanced ports, fast ALU SIMD
and FP sharing the same port (port
1).

Buffering More entries in ROB, RS, fill buffers,
etc., with moderate pipeline depths.

Less balance between buffer entries
and pipeline depths.

Branch Prediction and
Misaligned memory access

More robust speculative execution with
immediate reclamation after
misprediction; efficient handling of
cache splits.

More microarchitectural hazards
resulting in pipeline cleared for both
threads.

MULTICORE AND HYPER-THREADING TECHNOLOGY

11-26

For compute bound workloads, the HT opportunity in Intel NetBurst microarchitecture tends to favor
thread contexts that executes with relatively high CPI (average cycles to retire consecutive instructions).
At a hardware level, this is in part due to the issue port imbalance in the microarchitecture, as port 1 is
shared by fast ALU, slow ALU (more heavy-duty integer operations), SIMD, and FP computations. At a
software level, some of the cause for high CPI and may appear as benign catalyst for providing HT benefit
may include: long latency instructions (port 1), some L2 hits, occasional branch mispredictions, etc. But
the length of the pipeline in Intel NetBurst microarchitecture often impose additional internal hardware
constraints that limits software’s ability to take advantage of HT.

The microarchitectural enhancements listed in Table 11-3 are expected to provide broader software opti-
mization opportunities for compute-bound workloads. Whereas contention in the same execution unit by
two compute-bound threads might be a concern to choose a functional-decomposition threading model
over data-composition threading. Nehalem microarchitecture will likely be more accommodating to
support the programmer to choose the optimal threading decomposition models.

Memory intensive workloads can exhibit a wide range of performance characteristics, ranging from
completely parallel memory traffic (saturating system memory bandwidth, as in the well-known example
of Stream), memory traffic dominated by memory latency, or various mixtures of compute operations
and memory traffic of either kind.

The HT implementation in Intel NetBurst microarchitecture may provide benefit to some of the latter two
types of workload characteristics. The HT capability in the Nehalem microarchitecture can broaden the
operating envelop of the two latter types of workload characteristics to deliver higher system throughput,
due to its support for non-uniform memory access (NUMA), more efficient link protocol, and system
memory bandwidth that scales with the number of physical processors.

Some cache levels of the cache hierarchy may be shared by multiple logical processors. Using the cache
hierarchy is an important means for software to improve the efficiency of memory traffic and avoid satu-
rating the system memory bandwidth. Multi-threaded applications employing cache-blocking technique
may wish to partition a target cache level to take advantage of Hyper-Threading Technology. Alternately
two logical processors sharing the same L1 and L2, or logical processors sharing the L3 may wish to
manage the shared resources according to their relative topological relationship. A white paper on
processor topology enumeration and cache topology enumeration with companion reference code has
been published (see reference at the end of Chapter 1).

Cache hierarchy Larger and more efficient. More microarchitectural hazards to
work around.

Memory and bandwidth NUMA, three channels per socket to
DDR3, up to 32GB/s per socket.

SMP, FSB, or dual FSB, up to 12.8
GB/s per FSB.

Table 11-3. Microarchitectural Resources Comparisons of HT Implementations

Microarchitectural Subsystem Nehalem Microarchitecture Intel NetBurst Microarchitecture

06_1AH 0F_02H, 0F_03H, 0F_04H, 0F_06H

CHAPTER 12
INTEL® OPTANE™ DC PERSISTENT MEMORY

The Intel® Xeon® Scalable Performance processor family based on the Cascade Lake product introduces
support for Intel® Optane™ DC Persistent Memory Modules. These Intel Optane DC Persistent Memory
Modules are larger in size compared to DRAM and are persistent, i.e., the content is maintained even
when the system is powered down. However, latency is higher and bandwidth is lower than DRAM
DIMMs.

12.1 MEMORY MODE AND APP-DIRECT MODE
Intel Optane DC Persistent Memory Module DIMMs can be used in two different modes.

12.1.1 Memory Mode
In memory mode, the memory is exposed as volatile memory. This is transparent to the operating
system and applications. In particular, software can benefit, without modifications, from large memory
capacity. The DRAM memory present in the system is being used as a memory-side cache. The intent
behind this is for software to get the latency of the DRAM tier, while holding “in-memory” data that is the
capacity of the Intel Optane DC Persistent Memory Module tier.

In memory mode, data on Intel Optane DC Persistent Memory Modules becomes inaccessible after a
reboot. Since the media itself is non-volatile, this is implemented by encrypting the data with a key that
is discarded during a power-cycle. The DRAM memory that is present on the socket is used as a directly-
mapped cache for the Intel Optane DC Persistent Memory Modules. This implies that, in contrast to
processor caches, there is no LRU policy for the cache. A cache line on Intel Optane DC Persistent
Memory Modules will always evict the same cache line from DRAM. Operating systems can optimize for
memory mode by using pages whose addresses do not conflict with pages that hold data that should not
be evicted from the DRAM cache. For example, it is usually beneficial to always keep page tables in
DRAM. The size of the working set greatly determines performance. If the working set of an application
fits in DRAM, performance is not impacted as much by the latency and bandwidth of Intel Optane DC
Persistent Memory Modules.

12.1.2 App Direct Mode
In app direct mode, the memory is exposed as a device, which can be formatted with a file system. One
option is to use the Intel Optane DC Persistent Memory Module as a very fast block device, with a file
system, called “storage over app direct”. This has the advantage that applications that are I/O bound
benefit from the Intel Optane DC Persistent Memory Module without modifications to the software. In
other words, we are using app direct for getting a fast storage device, but not using it as persistent
memory. In contrast with this usage, rewriting the application for usage as persistent memory has
several key benefits. The key difference from usage as “storage over app direct” is that data can be
accessed on a cache line granularity. In order to load or store data on the device, the processor load and
store instructions are used and no OS interaction is needed, once a page is allocated to a process. Thus
app direct mode implements persistent memory. The operating system does not access persistent
memory as RAM, but rather through a file system mounted with a special flag called “dax”. This usage of
“dax” is what differentiates “app direct mode” (mount with dax) from “storage over app direct mode”
(mount without dax). Mounting with dax provides the following advantages.

Once the persistent memory is mapped to the virtual address space of the application, reads and writes
can be done using load and store instructions, and this has the following advantages over storage over
app direct:

• This completely avoids the system call.

INTEL® OPTANE™ DC PERSISTENT MEMORY

12-2

• Instead of transferring a complete page (e.g. 4KB), only a cache line is transferred (64B).

• Only one copy of the data is needed as memory is not copied back and forth between
persistent memory and DRAM.

• Access is synchronous.

Note that the memory the operating system and conventional OS memory reporting tools report only the
DRAM that is present in the system, since persistent memory is accessible via a file system. The two
pools of memory are distinct from one another, and one of the key differentiators of app direct mode is
that software has full control over which data is located in DRAM vs. NVDIMM. For optimal performance,
software can therefore place latency-sensitive data structures in DRAM, either by generating a copy or
reconstructing it. Examples are index data structures, which are typically accessed randomly but can be
reconstructed after a restart.

12.1.3 Selecting a Mode
The software developer needs to consider various factors while determining which mode may be best
suited for a given application and usage scenario.
• Is there a benefit from large memory capacity (larger than what is possible with DRAM on a given

platform)? For example, an application may be paging heavily to disk, and may be able to page less
with larger memory capacity. Other examples may be an application choosing a different algorithm
when given larger memory capacity, which may result in better performance, and an application
choosing to store and re-use intermediate results when given larger capacity.

• Is there a benefit from using persistence in the memory sub-system? This may include faster startup
times (avoid loading data from disk to memory, and/or avoid re-building “in-memory” pointer-based
structures like linked lists or trees on restart. This may also include benefits from a faster path to
durability. For example, memory could be the final, durable destination for data instead of disk. Appli-
cations that are bound by disk latency or bandwidth can benefit from using memory for durability.

• What is the sensitivity of the application to memory latency? Intel Optane DC Persistent Memory
Module latencies are higher than DRAM, typically around 3-4 times the latency of DRAM. In the cases
where an Intel Optane DC Persistent Memory Module is replacing memory, a lot depends on how
predicable those accesses are, and also how sensitive those memory accesses are to latency. To
illustrate these cases, let’s first consider the scenario where the application is reading a sequential
array of numbers that is several GB in size from an Intel Optane DC Persistent Memory Module. In
this case, since the accesses are spatially predictable, they are prefetchable by hardware and
software prefetchers. As a result, the data can always be in the processor caches before the

Figure 12-1. In App Direct Mode, Data on the Intel® Optane™ DC Persistent Memory Module is Accessed
Directly with Loads and Stores

12-3

INTEL® OPTANE™ DC PERSISTENT MEMORY

application requests the data, and the latency of the Intel Optane DC Persistent Memory Module is
not seen by the application. On the other hand, if the application was walking a linked list for
example, it is not possible to identify the next node in the linked list without first reading the current
node (this is called “pointer chasing”). In this case, the latency of the Intel Optane DC Persistent
Memory Module is seen by the application. Another important consideration mentioned above is the
sensitivity of the application to memory latency. In some cases, the application is such that the
processor cores can do other useful work while waiting for memory references to the Intel Optane DC
Persistent Memory Module to return; since useful work is being done, performance is often not
significantly impacted. In other cases, the cores are stalled while waiting for memory references from
the Intel Optane DC Persistent Memory Module, and this can often impact performance.

If the application as a whole is indeed sensitive to memory latency, this then warrants an examination of
which memory data structures are sensitive. A good use for the Intel Optane DC Persistent Memory
Module is large capacity data structures that are not as sensitive to memory latency based on the consid-
erations outlines above. Smaller data structures that are heavily accessed and/or are sensitive to
memory latency are better suited to DRAM.

The chart below shows a pictorial flow based on the above considerations.

12.2 DEVICE CHARACTERISTICS OF INTEL® OPTANE™ DC PERSISTENT
MEMORY MODULE

In the previous section, one of the considerations for software developers to select the Intel Optane DC
Persistent Memory Module for a data structure was “performance sensitivity to memory latency”. In this
section, we provide various considerations that determine this sensitivity; these include different device
characteristics from DRAM, additional code changes required for new features like persistence in
memory, etc.

Figure 12-2. Decision Flow for Determining When to Use
Intel® Optane™ DC Persistent Memory Module vs. DRAM

INTEL® OPTANE™ DC PERSISTENT MEMORY

12-4

12.2.1 Intel® Optane™ DC Persistent Memory Module Latency
Intel Optane DC Persistent Memory Module devices have different access characteristics from DRAM
since they are made of a different material than DRAM. The table below summarizes read latencies for
sequential and random accesses respectively.

In the case of DRAM, the difference between sequential and random latencies is limited to a few nanosec-
onds; this is due to sequential accesses resulting in greater hits in DRAM row buffers. However in the
case of Intel Optane DC Persistent Memory Modules, not only do the latencies differ overall from DRAM,
they also differ significantly between the sequential and random access cases.

The difference in access latency of Intel Optane DC Persistent Memory Modules from DRAM requires
special consideration for software developers from a performance perspective. See Chapter 9, “Opti-
mizing Cache Usage” for general guidelines on optimizing processor cache usage.

In memory mode, it is expected that the DRAM cache would absorb most of the accesses, and the appli-
cation would see DRAM-like latencies. Note that the latency to access Intel Optane DC Persistent Memory
Modules in memory mode is ~30-40 ns higher than in app direct mode, due to the overhead of first
looking up the DRAM cache. Performance in memory mode can be improved with traditional cache tiling
and locality optimization techniques that keep the working set within the size of the DRAM cache.

Further, each Intel Optane DC Persistent Memory Module features some form of buffering at 256 Byte
granularity, and this is one of the units at which we distinguish between sequential and random accesses.
It is therefore beneficial to collocate data inside 256 Bytes and read them together to get sequential
access latencies as opposed to random, a consideration for software data structure design.

12.2.2 Read vs. Write Bandwidth
The different access characteristics of Intel Optane DC Persistent Memory Modules include different read
and write bandwidths compared to DRAM, as illustrated in the table below.

From the above table, we can make the following observations.

1. Reads and writes are asymmetrical, and more specifically read bandwidths are higher than write
bandwidths. This is an important consideration for software design, and should be factored in
decisions. For example, a data structure with random writes and high write amplification would not
be a good choice for Intel Optane DC Persistent Memory Modules.

2. Sequential and random access characteristics are also markedly different. This is again a consider-
ation for choice of data structure design and placement in Intel Optane DC Persistent Memory
Modules compared with DRAM, with emphasis on the locality within 256B granularity to get the
benefits of sequential access placements.

Table 12-1. Latencies for Accessing Intel® Optane™ DC Persistent Memory Modules

Latency Intel® Optane™ DC Persistent Memory Module DRAM

Idle sequential read latency ~170ns ~75ns

Idle random read latency ~320ns ~80ns

Table 12-2. Bandwidths per DIMM for Intel® Optane™ DC Persistent Memory Modules and DRAM

Per DIMM Bandwidths Intel® Optane™ DC Persistent Memory Module DRAM

Sequential read ~7.6 GB/s ~15 GB/s

Random read ~2.4 GB/s ~15 GB/s

Sequential write ~2.3 GB/s ~15 GB/s

Random write ~0.5 GB/s ~15 GB/s

12-5

INTEL® OPTANE™ DC PERSISTENT MEMORY

It is important to note that bandwidth is a first class constraint in usage of these DIMMs and it is
important to avoid operating at bandwidths close to the capability of the DIMM, as illustrated with the red
circles in Figure 12-3.

When memory bandwidth is close to being saturated, the latencies tend to be very high and hurt applica-
tion performance. The bandwidth demand is typically a function of the number of cores driving memory
accesses, and the nature of the accesses, i.e., sequential vs. random access pattern as well as the read-
write mix. On the other hand, the bandwidth capability of the platform is a function of the number of
channels and DIMMs available. It is therefore important to balance the read and write traffic with the
capabilities of the system, e.g., the number of threads reading and writing to the Intel Optane DC
Persistent Memory Module vs. the number of populated memory channels.

While writing to Intel Optane DC Persistent Memory Module, since bandwidth is more limited than for
DRAM, it is recommended to use non-temporal stores over regular stores in cases when it is not expected
that the data written to will be re-used in the near future, or while writing to very large buffers. (See
Section 9.4.1.2 for details).

12.2.3 Number of Threads for Optimal Bandwidth
As noted earlier, the Intel Optane DC Persistent Memory Module DIMM is buffering and combining data at
256B granularity. This can have implications on the number of threads that are accessing memory on the
Intel Optane DC Persistent Memory Module. If there are too many threads attempting to write to the
memory on the Intel Optane DC Persistent Memory Module concurrently, the benefits of write combining
and 256B locality are lost if spatial locality is lost due to writes intercepting from other threads. As a
result, even though each thread may write sequentially, the traffic begins to look random at the DIMM
level, and therefore as the number of threads writing to the Intel Optane DC Persistent Memory Module
crosses a threshold, one begins to observe random access bandwidths instead of sequential access band-
widths.

Figure 12-3. Loaded Latency Curves for One Intel® Optane™ DC Persistent Memory Module DIMM:
Sequential Traffic (Left) and Random Traffic (Right)

INTEL® OPTANE™ DC PERSISTENT MEMORY

12-6

Figure 12-5, Figure 12-6, and Figure 12-7 illustrate the differences in combining at 256B locality and
how this is impacted by the number of threads that are injecting references to the Intel Optane DC
Persistent Memory Module. It is important to keep this 256B locality in mind while selecting data struc-
tures, and the concurrency of accesses to the Intel Optane DC Persistent Memory Module.

Figure 12-4. Number of Threads vs. Bandwidth1

NOTES:
1. As the number of threads increases, the bandwidth first increases and then decreases. This decrease is due to the fact

that even though the accesses are sequential in nature, as we have more and more threads injecting their accesses into
the memory subsystem, the “sequentiality” (especially at the mentioned 256B granularity) is lost when observed from
the standpoint of a finite buffer for write combining.

Figure 12-5. Combining with Two Cores1

12-7

INTEL® OPTANE™ DC PERSISTENT MEMORY

NOTES:
1. 101, 102, etc. refer to 64B accesses from a core 1, and likewise for the other core. It can be seen that for two cores, and

a sample buffer size of 8 (note that this is strictly an example size for illustration purposes), there is 100% combining
within the buffer at 256B granularity. This makes the accesses 100% sequential from the memory system standpoint.

Figure 12-6. Combining with Four Cores1

NOTES:
1. 101, 102, etc refer to 64B accesses from core 1, and likewise for the other cores. It can be seen that for four cores, and

a sample buffer size of 8, there is 50% combining within the buffer at 256B granularity (only 128B combining is possible
as the buffer gets full and needs to be drained for forward progress). This makes the accesses 50% sequential from the
memory system standpoint.

INTEL® OPTANE™ DC PERSISTENT MEMORY

12-8

12.3 PLATFORM IMPLICATIONS OF HANDLING A SECOND TYPE OF
MEMORY

12.3.1 Multi-Processor Cache Coherence
On systems with multiple processors, a directory is used for cache coherence. This directory is imple-
mented as a distributed in-memory directory, with the coherence state of each cache line stored in meta-
data within the line itself in memory. This implementation improves over the pure snoop-based
mechanisms where for each memory access, the processor always checks the other processors’ caches
in order to know the coherence state of the line, i.e., if the line is present elsewhere, therefore increasing
the latency of each access.

In directory based protocols, the directory tracks if the coherence state is changed. For example, a
memory read from another processor is recorded in the metadata in memory. These directory updates
result in write to memory (metadata) to record the change in coherence state. In cases where there are
cores in different processors repeatedly reading the same set of lines in the Intel Optane DC Persistent
Memory Module, there will be several writes to the Intel Optane DC Persistent Memory Module recording
the change in the coherence state each time. These writes are called “directory writes” and tend to be
random in nature. As a result, several of these writes can lower the effective Intel Optane DC Persistent
Memory Module bandwidth that is available to the application. From a software standpoint, it is worth-
while to consider how the Intel Optane DC Persistent Memory Module may be accessed by different
threads, and if these kind of patterns are observed, one option to consider is to change the coherence
protocol for Intel Optane DC Persistent Memory Module regions from directory-based to snoop-based by
disabling the directory system-wide.

Figure 12-7. Combining with Eight Cores1

NOTES:
1. For eight cores, there is no combining possible and the sequential references seem random from a memory system

standpoint.

12-9

INTEL® OPTANE™ DC PERSISTENT MEMORY

12.3.2 Shared Queues in the Memory Hierarchy
In processors based on the Cascade Lake product, accesses to DRAM and Intel Optane DC Persistent
Memory Modules are mostly independent of each other. However there are instances where both DRAM
and memory in Intel Optane DC Persistent Memory Modules reference traverse common paths in the
memory subsystem and impact each other. As an example, there are processor queues that are common
between DRAM and Intel Optane DC Persistent Memory Modules. There is a QoS setting in the BIOS that
helps arbitrate these queues. Likewise, DRAM and Intel Optane DC Persistent Memory Modules can share
the same memory channel (although there are separate queues per channel, the channel itself is
shared). There is a setting to control switching between these separate queues (switching at finer gran-
ularity optimizes for latency; switching at coarser granularity allows more bursts and optimizes for band-
width). These settings are exposed as BIOS knobs; please refer to the BIOS optimization guide for
further detail.

12.4 IMPLEMENTING PERSISTENCE FOR MEMORY
In app direct mode, when software is using persistence, software might want to explicitly control that
memory stores have been propagated to durability. However, when a processor core issues a write, the
data is first combined in a fill buffer and the modified cache line might then be store in the volatile cache
of the processors. For durability, software therefore might need to explicitly evict modified cache lines
from the processor caches. This is accomplished by the use of cache line flush instructions
(CLFLUSH/CLFLUSHOPT/CLWB). In general, usage of CLFLUSHOPT is recommended over CLFLUSH, as
detailed in Section 9.4.6, “CLFLUSH Instruction” and Section 9.4.7, “CLFLUSHOPT Instruction”.

For operations that will reuse the data that is being flushed, usage of CLWB is recommended. CLWB
retains a copy of the cache line that is flushed to durability; as a result, for a subsequent access (reuse
of data), the line will hit in the caches, reducing the latency of access. If only a small section of large
memory ranges are actually modified, it might be worth tracking which sections have been changed and
only flush these sections. In particular, if an operation system can track the pages that are written to
(“dirty”), and only flushes those pages, it can be more efficient in cases when a small set of the range is
written to. When almost the entire range is written to, it may be more efficient to implement the flushes
using optimized code in user-space.

Figure 12-8 shows how msync in Linux* is more efficient when there only a small percentage of files that
are dirty, whereas use of CLFLUSHOPT instructions in user space is more efficient when most of the file is
dirty.

Figure 12-8. PMDK vs. MSYNC Flushing Times1

INTEL® OPTANE™ DC PERSISTENT MEMORY

12-10

12.5 POWER CONSUMPTION
In general, Intel Optane DC Persistent Memory Module bandwidth is constrained by power consumption,
as illustrated with the figure below. If a power limit is imposed by software using techniques like RAPL
(Runtime Average Power Limiting), then the overall bandwidth available is appropriately constrained.

12.5.1 Read-Write Equivalence
On Intel Optane DC Persistent Memory Modules, writes are a lot more expensive in terms of power than
reads. As a general guideline, one write consumes as much power as three read operations. This is in
stark contrast with DRAM, where the power consumption of reads and writes does not differ as much.
Therefore it is clear that writes are to be more sparingly used than reads. The implication of this is that
write amplification by software is far more expensive than read amplification, when it comes to Intel
Optane DC Persistent Memory Module accesses. This is to be considered while designing data structures,
for example, a tree that needs to be rebalanced several times may incur a lot of writes compared to alter-
nate data structures that may have more reads for look up, but fewer writes for insertion.

In case of a given a power budget, the read-write ratio determines the maximum bandwidth. For
example, if several threads are writing to an Intel Optane DC Persistent Memory Module, the power
consumed by the threads doing the writes is subtracted from the total power available on the platform.
The figure below illustrates the read-write equivalence for Intel Optane DC Persistent Memory Module
DIMMs within a total power budget.

NOTES:
1. When 10% or 50% of the files are dirty, it is more optimal from a software standpoint to use msync instead of flushes in

user space. When the file is 100% dirty, the user space implementation (labeled pmdk) is more efficient.

Figure 12-9. Bandwidth vs. Power Consumption

12-11

INTEL® OPTANE™ DC PERSISTENT MEMORY

Figure 12-10. Read-Write Equivalence for Intel® Optane™ DC Persistent Memory Module
DIMMs within Different Power Budgets1

NOTES:
1. The bars on the left show the case for 100% reads. In this scenario, if we consider a power budget of 15W, then

~6.9GB/s of reads are possible. However, if we have the same power budget of 15W, only 2.1GB/s of writes are possi-
ble.

INTEL® OPTANE™ DC PERSISTENT MEMORY

12-12

12.5.2 Spatial and Temporal Locality
An additional consideration while optimizing for power is to consider the effect of combining data
accesses at 256B granularity. The bandwidth available to the application is extremely constrained when
there is no locality in accesses, as shown in the figure below.

From Figure 12-11, we can infer that it is critical to choose data structures that have good access locality
at 256B in order to make good use of a given power budget from a bandwidth standpoint. More specifi-
cally, by comparing Figure 12-10 with Figure 12-11, we can observe that using access locality from a
256B window, the bandwidth improves by factors up to 3-4.

Figure 12-11. Bandwidth Available to Software when There is No Locality at 256B Granularity

CHAPTER 13
64-BIT MODE CODING GUIDELINES

13.1 INTRODUCTION
This chapter describes coding guidelines for application software written to run in 64-bit mode. Some
coding recommendations applicable to 64-bit mode are covered in Chapter 3. The guidelines in this
chapter should be considered as an addendum to the coding guidelines described in Chapter 3 through
Chapter 11.

Software that runs in either compatibility mode or legacy non-64-bit modes should follow the guidelines
described in Chapter 3 through Chapter 11.

13.2 CODING RULES AFFECTING 64-BIT MODE

13.2.1 Use Legacy 32-Bit Instructions When Data Size Is 32 Bits
64-bit mode makes 16 general purpose 64-bit registers available to applications. If application data size
is 32 bits, there is no need to use 64-bit registers or 64-bit arithmetic.

The default operand size for most instructions is 32 bits. The behavior of those instructions is to make the
upper 32 bits all zeros. For example, when zeroing out a register, the following two instruction streams
do the same thing, but the 32-bit version saves one instruction byte:

32-bit version:

xor eax, eax; Performs xor on lower 32bits and zeroes the upper 32 bits.

64-bit version:

xor rax, rax; Performs xor on all 64 bits.

This optimization holds true for the lower 8 general purpose registers: EAX, ECX, EBX, EDX, ESP, EBP,
ESI, EDI. To access the data in registers R9-R15, the REX prefix is required. Using the 32-bit form there
does not reduce code size.
Assembly/Compiler Coding Rule 56. (H impact, M generality) Use the 32-bit versions of
instructions in 64-bit mode to reduce code size unless the 64-bit version is necessary to access 64-bit
data or additional registers.

13.2.2 Use Extra Registers to Reduce Register Pressure
64-bit mode makes 8 additional 64-bit general purpose registers and 8 additional XMM registers avail-
able to applications. To access the additional registers, a single byte REX prefix is necessary. Using 8
additional registers can prevent the compiler from needing to spill values onto the stack.

Note that the potential increase in code size, due to the REX prefix, can increase cache misses. This can
work against the benefit of using extra registers to access the data. When eight registers are sufficient
for an algorithm, don’t use the registers that require an REX prefix. This keeps the code size smaller.

64-BIT MODE CODING GUIDELINES

13-2

Assembly/Compiler Coding Rule 57. (M impact, MH generality) When they are needed to reduce
register pressure, use the 8 extra general purpose registers for integer code and 8 extra XMM registers
for floating-point or SIMD code.

13.2.3 Effective Use of 64-Bit by 64-Bit Multiplication
Integer multiplication of 64-bit by 64-bit operands can produce a result that is 128 bits wide. The upper
64 bits of a 128-bit result may take a few cycles longer to be ready than the lower 64 bits. In a dependent
chain of addition of integers wider than 128 bits, accessing the high 64-bit result of the multiplication
should be delayed relative to the low 64-bit multiplication result for optimal software pipelining.

If the compiler can determine at compile time that the result of a multiplication will not exceed 64 bits,
then the compiler should generate the multiplication instruction that produces a 64-bit result. If the
compiler or assembly programmer cannot determine that the result will be less than 64 bits, then a
multiplication that produces a 128-bit result is necessary.
Assembly/Compiler Coding Rule 58. (ML impact, M generality) Prefer 64-bit by 64-bit integer
multiplication that produces 64-bit results over multiplication that produces 128-bit results.
Assembly/Compiler Coding Rule 59. (ML impact, M generality) Stagger accessing the high 64-bit
result of a 128-bit multiplication after accessing the low 64-bit results.

In Sandy Bridge microarchitecture, the low 64-bit result of a 128-bit multiplication is ready to use in 3
cycles, and the high 64-bit result is ready one cycle after the low 64-bit result. This can speed up the
calculation of integer multiplication and division of large integers.

13.2.4 Replace 128-bit Integer Division with 128-bit Multiplication
Modern compilers can transform expressions of integer division in high-level language code with a
constant divisor into assembly sequences that use IMUL/MUL to replace IDIV/DIV instructions. Typically,
compilers will replace a divisor value that is within the range of 32-bits if the divisor value is known at
compile time. If the divisor value is not known at compile time or the divisor is greater than those repre-
sented by 32-bits, DIV or IDIV will be generated.

The latency of a DIV instruction with a 128-bit dividend is quite long. For dividend values greater than 64-
bits, the latency can range from 70-90 cycles.

The basic technique that a compiler employs to transform integer division into 128-bit integer multiplica-
tion is based on the congruence principle of modular arithmetic. It can be easily extended to handle
larger divisor values to take advantage of fast 128-bit IMUL/MUL operation.

The integer equation:

Dividend = Q * divisor + R, or

Q = floor(Dividend/Divisor), R = Dividend - Q * Divisor

Transform to the real number domain:

floor(Dividend/Divisor) = Dividend/Divisor - R/Divisor, is equivalent to

Q * C2 = Dividend * (C2 /divisor) + R*C2/Divisor

One can choose C2 = 2^N to control the rounding of the last term, then

Q = ((Dividend * (C2 /divisor)) >> N) + ((R*C2/Divisor) >> N).

If the “divisor” is known at compile time, (C2/Divisor) can be pre-computed into a congruent constant Cx
= Ceil(C2/divisor), then the quotient can computed by an integer multiple, followed by a shift:

Q = (Dividend * Cx) >> N;

R = Dividend - ((Dividend * Cx) >> N) * divisor;

The 128-bit IDIV/DIV instructions restrict the range of divisor, quotient, and remainder to be within 64-
bits to avoid causing numerical exceptions. This presents a challenge for situations with either of the

13-3

64-BIT MODE CODING GUIDELINES

three having a value near the upper bounds of 64-bit and for dividend values nearing the upper bound of
128 bits.

This challenge can be overcome with choosing a larger shift count N, and extending the (Dividend * Cx)
operation from the 128-bit range to the next computing-efficient range. For example, if (Dividend * Cx)
is greater than 128 bits and N is greater than 63 bits, one can take advantage of computing bits 191:64
of the 192-bit results using 128-bit MUL without implementing a full 192-bit multiplication.

A convenient way to choose the congruent constant Cx is as follows:
• If the range of dividend is within 64 bits: Nmin ~ BSR(Divisor) + 63.
• In situations of disparate dynamic range of quotient/remainder relative to the range of divisor, raise

N accordingly so that quotient/remainder can be computed efficiently.

Consider the computation of quotient/remainder computation for the divisor 10^16 on unsigned divi-
dends near the range of 64-bits. Example 13-1 illustrates using the “MUL r64” instruction to handle a 64-
bit dividend with 64-bit divisors.

Example 13-2 shows a similar technique to handle a 128-bit dividend with 64-bit divisors.

Example 13-1. Compute 64-bit Quotient and Remainder with 64-bit Divisor

_Cx10to16: ; Congruent constant for 10^16 with shift count ‘N’ = 117
DD 0c44de15ch ; floor ((2^117 / 10^16) + 1)
DD 0e69594beh ; Optimize length of Cx to reduce # of 128-bit multiplication

_tento16: ; 10^16
DD 6fc10000h
DD 002386f2h

mov r9, qword ptr [rcx] ; load 64-bit dividend value
mov rax, r9
mov rsi, _Cx10to16 ; Congruent Constant for 10^16 with shift count 117
mul [rsi] ; 128-bit multiplication
mov r10, qword ptr 8[rsi] ; load divisor 10^16
shr rdx, 53; ;
mov r8, rdx

 mov rax, r8
mul r10 ; 128-bit multiplication
sub r9, rax; ;
jae remain
sub r8, 1 ; this may be off by one due to round up
mov rax, r8
mul r10 ; 128-bit multiplication
sub r9, rax; ;

remain:
mov rdx, r8 ; quotient
mov rax, r9 ; remainder

64-BIT MODE CODING GUIDELINES

13-4

The techniques illustrated in Example 13-1 and Example 13-2 can increase the speed of the
remainder/quotient calculation of 128-bit dividends to at or below the cost of a 32-bit integer division.

Extending the technique above to deal with a divisor greater than 64-bits is relatively straightforward.
One optimization worth considering is to choose a shift count N > 128 bits. This can reduce the number
of 128-bit MUL needed to compute the relevant upper bits of (Dividend * Cx).

13.2.5 Sign Extension to Full 64-Bits
When in 64-bit mode, processors based on Intel NetBurst microarchitecture can sign-extend to 64 bits in
a single micro-op. In 64-bit mode, when the destination is 32 bits, the upper 32 bits must be zeroed.

Zeroing the upper 32 bits requires an extra micro-op and is less optimal than sign extending to 64 bits.
While sign extending to 64 bits makes the instruction one byte longer, it reduces the number of micro-
ops that the trace cache has to store, improving performance.

For example, to sign-extend a byte into ESI, use:

movsx rsi, BYTE PTR[rax]

Example 13-2. Quotient and Remainder of 128-bit Dividend with 64-bit Divisor

mov rax, qword ptr [rcx] ; load bits 63:0 of 128-bit dividend from memory
mov rsi, _Cx10to16 ; Congruent Constant for 10^16 with shift count 117
mov r9, qword ptr [rsi] ; load Congruent Constant
mul r9 ; 128-bit multiplication
xor r11, r11 ; clear accumulator
mov rax, qword ptr 8[rcx] ; load bits 127:64 of 128-bit dividend
shr rdx, 53; ;
mov r10, rdx ; initialize bits 127:64 of 192 b it result
mul r9 ; Accumulate to bits 191:128
add rax, r10; ;
adc rdx, r11; ;
shr rax, 53; ;
shl rdx, 11; ;
or rdx, rax; ;
mov r8, qword ptr 8[rsi] ; load Divisor 10^16
mov r9, rdx; ; approximate quotient, may be off by 1
mov rax, r8
mul r9 ; will quotient * divisor > dividend?
sub rdx, qword ptr 8[rcx] ;
sbb rax, qword ptr [rcx] ;

jb remain
sub r9, 1 ; this may be off by one due to round up
mov rax, r8 ; retrieve Divisor 10^16
mul r9 ; final quotient * divisor
sub rax, qword ptr [rcx] ;
sbb rdx, qword ptr 8[rcx] ;

remain:
mov rdx, r9 ; quotient
neg rax ; remainder

13-5

64-BIT MODE CODING GUIDELINES

instead of:

movsx esi, BYTE PTR[rax]

If the next instruction uses the 32-bit form of esi register, the result will be the same. This optimization
can also be used to break an unintended dependency. For example, if a program writes a 16-bit value to
a register and then writes the register with an 8-bit value, if bits 15:8 of the destination are not needed,
use the sign-extended version of writes when available.

For example:
mov r8w, r9w; Requires a merge to preserve

; bits 63:15.
mov r8b, r10b; Requires a merge to preserve bits 63:8

Can be replaced with:
movsx r8, r9w ; If bits 63:8 do not need to be

; preserved.
movsx r8, r10b ; If bits 63:8 do not need to

; be preserved.

In the above example, the moves to R8W and R8B both require a merge to preserve the rest of the bits
in the register. There is an implicit real dependency on R8 between the 'MOV R8W, R9W' and 'MOV R8B,
R10B'. Using MOVSX breaks the real dependency and leaves only the output dependency, which the
processor can eliminate through renaming.

For processors based on Intel Core microarchitecture, zeroing the upper 32 bits is faster than sign-
extend to 64 bits. For processors based on Nehalem microarchitecture, zeroing or sign-extend the upper
bits is single micro-op.

13.3 ALTERNATE CODING RULES FOR 64-BIT MODE

13.3.1 Use 64-Bit Registers Instead of Two 32-Bit Registers
for 64-Bit Arithmetic Result

Legacy 32-bit mode offers the ability to support extended precision integer arithmetic (such as 64-bit
arithmetic). However, 64-bit mode offers native support for 64-bit arithmetic. When 64-bit integers are
desired, use the 64-bit forms of arithmetic instructions.

In 32-bit legacy mode, getting a 64-bit result from a 32-bit by 32-bit integer multiply requires three
registers; the result is stobbred in 32-bit chunks in the EDX:EAX pair. When the instruction is available in
64-bit mode, using the 32-bit version of the instruction is not the optimal implementation if a 64-bit
result is desired. Use the extended registers.

For example, the following code sequence loads the 32-bit values sign-extended into the 64-bit registers
and performs a multiply:

movsx rax, DWORD PTR[x]
movsx rcx, DWORD PTR[y]
imul rax, rcx

The 64-bit version above is more efficient than using the following 32-bit version:
mov eax, DWORD PTR[x]
mov ecx, DWORD PTR[y]
imul ecx

In the 32-bit case above, EAX is required to be a source. The result ends up in the EDX:EAX pair instead
of in a single 64-bit register.

64-BIT MODE CODING GUIDELINES

13-6

Assembly/Compiler Coding Rule 60. (ML impact, M generality) Use the 64-bit versions of
multiply for 32-bit integer multiplies that require a 64 bit result.

To add two 64-bit numbers in 32-bit legacy mode, the add instruction followed by the addc instruction is
used. For example, to add two 64-bit variables (X and Y), the following four instructions could be used:

mov eax, DWORD PTR[X]
mov edx, DWORD PTR[X+4]
add eax, DWORD PTR[Y]
adc edx, DWORD PTR[Y+4]

The result will end up in the two-register EDX:EAX.

In 64-bit mode, the above sequence can be reduced to the following:
mov rax, QWORD PTR[X]
add rax, QWORD PTR[Y]

The result is stored in rax. One register is required instead of two.
Assembly/Compiler Coding Rule 61. (ML impact, M generality) Use the 64-bit versions of add for
64-bit adds.

13.3.2 Using Software Prefetch
Intel recommends that software developers follow the recommendations in Chapter 3 and Chapter 9
when considering the choice of organizing data access patterns to take advantage of the hardware
prefetcher (versus using software prefetch).
Assembly/Compiler Coding Rule 62. (L impact, L generality) If software prefetch instructions are
necessary, use the prefetch instructions provided by SSE.

CHAPTER 14
SSE4.2 AND SIMD PROGRAMMING FOR TEXT-

PROCESSING/LEXING/PARSING

String/text processing spans a discipline that often employs techniques different from traditional SIMD
integer vector processing. Much of the traditional string/text algorithms are character based, where
characters may be represented by encodings (or code points) of fixed or variable byte sizes. Textual data
represents a vast amount of raw data and often carrying contextual information. The contextual informa-
tion embedded in raw textual data often requires algorithmic processing dealing with a wide range of
attributes, such as character values, character positions, character encoding formats, subsetting of char-
acter sets, strings of explicit or implicit lengths, tokens, delimiters; contextual objects may be repre-
sented by sequential characters within a pre-defined character subsets (e.g. decimal-valued strings);
textual streams may contain embedded state transitions separating objects of different contexts (e.g.,
tag-delimited fields).

Traditional Integer SIMD vector instructions may, in some simpler situations, be successful to speed up
simple string processing functions. SSE4.2 includes four new instructions that offer advances to compu-
tational algorithms targeting string/text processing, lexing and parsing of either unstructured or struc-
tured textual data.

14.1 SSE4.2 STRING AND TEXT INSTRUCTIONS
SSE4.2 provides four instructions, PCMPESTRI/PCMPESTRM/PCMPISTRI/PCMPISTRM that can accelerate
string and text processing by combining the efficiency of SIMD programming techniques and the lexical
primitives that are embedded in these 4 instructions. Simple examples of these instructions include
string length determination, direct string comparison, string case handling, delimiter/token processing,
locating word boundaries, locating sub-string matches in large text blocks. Sophisticated application of
SSE4.2 can accelerate XML parsing and Schema validation.

Processor’s support for SSE4.2 is indicated by the feature flag value returned in ECX [bit 20] after
executing CPUID instruction with EAX input value of 1 (i.e. SSE4.2 is supported if
CPUID.01H:ECX.SSE4_2 [bit 20] = 1). Therefore, software must verify CPUID.01H:ECX.SSE4_2 [bit 20]
is set before using these 4 instructions. (Verifying CPUID.01H:ECX.SSE4_2 = 1 is also required before
using PCMPGTQ or CRC32. Verifying CPUID.01H:ECX.POPCNT[Bit 23] = 1 is required before using the
POPCNT instruction.)

These string/text processing instructions work by performing up to 256 comparison operations on text
fragments. Each text fragment can be 16 bytes. They can handle fragments of different formats: either
byte or word elements. Each of these four instructions can be configured to perform four types of parallel
comparison operation on two text fragments.

The aggregated intermediate result of a parallel comparison of two text fragments become a bit
patterns:16 bits for processing byte elements or 8 bits for word elements. These instruction provide
additional flexibility, using bit fields in the immediate operand of the instruction syntax, to configure an
unary transformation (polarity) on the first intermediate result.

Lastly, the instruction’s immediate operand offers a output selection control to further configure the flex-
ibility of the final result produced by the instruction. The rich configurability of these instruction is
summarized in Figure 14-1.

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING

14-2

The PCMPxSTRI instructions produce final result as an integer index in ECX, the PCMPxSTRM instructions
produce final result as a bit mask in the XMM0 register. The PCMPISTRy instructions support processing
string/text fragments using implicit length control via null termination for handling string/text of
unknown size. the PCMPESTRy instructions support explicit length control via EDX:EAX register pair to
specify the length text fragments in the source operands.

The first intermediate result, IntRes1, is an aggregated result of bit patterns from parallel comparison
operations done on pairs of data elements from each text fragment, according to the imm[3:2] bit field
encoding, see Table 14-1.

Input data element format selection using imm[1:0] can support signed or unsigned byte/word
elements.

The bit field imm[5:4] allows applying a unary transformation on IntRes1, see Table 14-2.

Figure 14-1. SSE4.2 String/Text Instruction Immediate Operand Control

Table 14-1. SSE4.2 String/Text Instructions Compare Operation on N-elements

Imm[3:2] Name IntRes1[i] is TRUE if Potential Usage

00B Equal Any Element i in fragment2 matches any element j in
fragment1

Tokenization, XML parser

01B Ranges Element i in fragment2 is within any range pairs specified
in fragment1

Subsetting, Case handling,
XML parser, Schema validation

10B Equal Each Element i in fragment2 matches element i in fragment1 Strcmp()

11B Equal
Ordered

Element i and subsequent, consecutive valid elements in
fragment2 match fully or partially with fragment1 starting
from element 0

Substring Searches, KMP, Strstr()

Fragment1

0

IntRes1

Data Format Imm[1:0]:

Imm[3:2]

Imm[5:4]

PCMPxSTRy XMM1, XMM2/M128, imm

Fragment2 of words
127

015|7
015|7

IntRes2

031

Imm[6] Imm[6]

Index Result Mask Result

Compare
Polarity

Output
Select

00b: unsigned bytes
01b: unsigned words
10b: signed bytes
11b: signed words

XMM0ECX

14-3

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING

The output selection field, imm[6] is described in Table 14-3.

The comparison operation on each data element pair is defined in Table 14-4. Table 14-4 defines the type
of comparison operation between valid data elements (last row of Table 14-4) and boundary conditions
when the fragment in a source operand may contain invalid data elements (rows 1 through 3 of
Table 14-4). Arithmetic comparison are performed only if both data elements are valid element in frag-
ment1 and fragment2, as shown in row 4 of Table 14-4.

The string and text processing instruction provides several aid to handle end-of-string situations, see
Table 14-5. Additionally, the PCMPxSTRy instructions are designed to not require 16-byte alignment to
simplify text processing requirements.

Table 14-2. SSE4.2 String/Text Instructions Unary Transformation on IntRes1

Imm[5:4] Name IntRes2[i] = Potential Usage

00B No Change IntRes1[i]

01B Invert -IntRes1[i]

10B No Change IntRes1[i]

11B Mask Negative IntRes1[i] if element i of fragment2 is invalid, otherwise -
IntRes1[i]

Table 14-3. SSE4.2 String/Text Instructions Output Selection Imm[6]

Imm[6] Instruction Final Result Potential Usage

0B PCMPxSTRI ECX = offset of least significant bit set in IntRes2 if IntRes2
!= 0, otherwise
ECX = number of data element per 16 bytes

0B PCMPxSTRM XMM0 = ZeroExtend(IntRes2);

1B PCMPxSTRI ECX = offset of most significant bit set in IntRes2 if IntRes2
!= 0, otherwise
ECX = number of data element per 16 bytes

1B PCMPxSTRM Data element i of XMM0 = SignExtend(IntRes2[i]);

Table 14-4. SSE4.2 String/Text Instructions Element-Pair Comparison Definition

Fragment1
Element

Fragment2
Element

Imm[3:2]=
00B, Equal Any

Imm[3:2]=
01B, Ranges

Imm[3:2]=
10B, Equal Each

Imm[3:2]=
11B, Equal Ordered

Invalid Invalid Force False Force False Force True Force True

Invalid Valid Force False Force False Force False Force True

Valid Invalid Force False Force False Force False Force False

Valid Valid Compare Compare Compare Compare

Table 14-5. SSE4.2 String/Text Instructions Eflags Behavior

EFLAGs Description Potential Usage

CF Reset if IntRes2 = 0; Otherwise set When CF=0, ECX= #of data element to scan next

ZF Reset if entire 16-byte fragment2 is valid likely end-of-string

SF Reset if entire 16-byte fragment1 is valid

OF IntRes2[0];

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING

14-4

14.1.1 CRC32
CRC32 instruction computes the 32-bit cyclic redundancy checksum signature for byte/word/dword or
qword stream of data. It can also be used as a hash function. For example, a dictionary uses hash indices
to de-reference strings. CRC32 instruction can be easily adapted for use in this situation.

Example 14-1 shows a straight forward hash function that can be used to evaluate the hash index of a
string to populate a hash table. Typically, the hash index is derived from the hash value by taking the
remainder of the hash value modulo the size of a hash table.

CRC32 instruction can be use to derive an alternate hash function. Example 14-2 takes advantage the
32-bit granular CRC32 instruction to update signature value of the input data stream. For string of small
to moderate sizes, using the hardware accelerated CRC32 can be twice as fast as Example 14-1.

Example 14-1. A Hash Function Examples

unsigned int hash_str(unsigned char* pStr)

{ unsigned int hVal = (unsigned int)(*pStr++);

 while (*pStr)

{ hVal = (hashVal * CONST_A) + (hVal >> 24) + (unsigned int)(*pStr++);

}

return hVal;

}

Example 14-2. Hash Function Using CRC32

static unsigned cn_7e = 0x7efefeff, Cn_81 = 0x81010100;

unsigned int hash_str_32_crc32x(unsigned char* pStr)

{ unsigned *pDW = (unsigned *) &pStr[1];

unsigned short *pWd = (unsigned short *) &pStr[1];

unsigned int tmp, hVal = (unsigned int)(*pStr);

if(!pStr[1]) ;

else {

tmp = ((pDW[0] +cn_7e) ^(pDW[0]^ -1)) & Cn_81;

while (!tmp) // loop until there is byte in *pDW had 0x00

{

hVal = _mm_crc32_u32 (hVal, *pDW ++);

tmp = ((pDW[0] +cn_7e) ^(pDW[0]^ -1)) & Cn_81;

};

if(!pDW[0]);

else if(pDW[0] < 0x100) { // finish last byte that’s non-zero

hVal = _mm_crc32_u8 (hVal, pDW[0]);

}

14-5

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING

14.2 USING SSE4.2 STRING AND TEXT INSTRUCTIONS
String libraries provided by high-level languages or as part of system library are used in a wide range of
situations across applications and privileged system software. These situations can be accelerated using
a replacement string library that implements PCMPESTRI/PCMPESTRM/PCMPISTRI/PCMPISTRM.

Although system-provided string library provides standardized string handling functionality and inter-
faces, most situations dealing with structured document processing requires considerable more sophisti-
cation, optimization, and services not available from system-provided string libraries. For example,
structured document processing software often architect different class objects to provide building block
functionality to service specific needs of the application. Often application may choose to disperse equiv-
alent string library services into separate classes (string, lexer, parser) or integrate memory manage-
ment capability into string handling/lexing/parsing objects.

PCMPESTRI/PCMPESTRM/PCMPISTRI/PCMPISTRM instructions are general-purpose primitives that soft-
ware can use to build replacement string libraries or build class hierarchy to provide lexing/parsing
services for structured document processing. XML parsing and schema validation are examples of the
latter situations.

Unstructured, raw text/string data consist of characters, and have no natural alignment preferences.
Therefore, PCMPESTRI/PCMPESTRM/PCMPISTRI/PCMPISTRM instructions are architected to not require
the 16-Byte alignment restrictions of other 128-bit SIMD integer vector processing instructions.

With respect to memory alignment, PCMPESTRI/PCMPESTRM/PCMPISTRI/PCMPISTRM support unaligned
memory loads like other unaligned 128-bit memory access instructions, e.g. MOVDQU.

Unaligned memory accesses may encounter special situations that require additional coding techniques,
depending on the code running in ring 3 application space or in privileged space. Specifically, an
unaligned 16-byte load may cross page boundary. Section 14.2.1 discusses a technique that application
code can use. Section 14.2.2 discusses the situation string library functions needs to deal with. Section
14.3 gives detailed examples of using PCMPESTRI/PCMPESTRM/PCMPISTRI/PCMPISTRM instructions to
implement equivalent functionality of several string library functions in situations that application code
has control over memory buffer allocation.

14.2.1 Unaligned Memory Access and Buffer Size Management
In application code, the size requirements for memory buffer allocation should consider unaligned SIMD
memory semantics and application usage.
For certain types of application usage, it may be desirable to make distinctions between valid buffer
range limit versus valid application data size (e.g. a video frame). The former must be greater or equal
to the latter.

else if(pDW[0] < 0x10000) { // finish last two byte that’s non-zero

hVal = _mm_crc32_u16 (hVal, pDW[0]);

}

else { // finish last three byte that’s non-zero

hVal = _mm_crc32_u32 (hVal, pDW[0]);

}

}

return hVal;

}

Example 14-2. Hash Function Using CRC32 (Contd.)

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING

14-6

To support algorithms requiring unaligned 128-bit SIMD memory accesses, memory buffer allocation by
a caller function should consider adding some pad space so that a callee function can safely use the
address pointer safely with unaligned 128-bit SIMD memory operations.

The minimal padding size should be the width of the SIMD register that might be used in conjunction with
unaligned SIMD memory access.

14.2.2 Unaligned Memory Access and String Library
String library functions may be used by application code or privileged code. String library functions must
be careful not to violate memory access rights. Therefore, a replacement string library that employ SIMD
unaligned access must employ special techniques to ensure no memory access violation occur.

Section 14.3.6 provides an example of a replacement string library function implemented with SSE4.2
and demonstrates a technique to use 128-bit unaligned memory access without unintentionally crossing
page boundary.

14.3 SSE4.2 APPLICATION CODING GUIDELINE AND EXAMPLES
Software implementing SSE4.2 instruction must use CPUID feature flag mechanism to verify processor’s
support for SSE4.2. Details can be found in CHAPTER 12 of Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1 and in CPUID of CHAPTER 3 in Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
2A.

In the following sections, we use several examples in string/text processing of progressive complexity to
illustrates the basic techniques of adapting the SIMD approach to implement string/text processing using
PCMPxSTRy instructions in SSE4.2. For simplicity, we will consider string/text in byte data format in situ-
ations that caller functions have allocated sufficient buffer size to support unaligned 128-bit SIMD loads
from memory without encountering side-effects of cross page boundaries.

14.3.1 Null Character Identification (Strlen equivalent)
The most widely used string function is probably strlen(). One can view the lexing requirement of strlen()
is to identify the null character in a text block of unknown size (end of string condition). Brute-force,
byte-granular implementation fetches data inefficiently by loading one byte at a time.

Optimized implementation using general-purpose instructions can take advantage of dword operations in
32-bit environment (and qword operations in 64-bit environment) to reduce the number of iterations.

A 32-bit assembly implementation of strlen() is shown Example 14-3. The peak execution throughput of
handling EOS condition is determined by eight ALU instructions in the main loop.

Example 14-3. Strlen() Using General-Purpose Instructions

int strlen_asm(const char* s1)
{int len = 0;

_asm{
mov ecx, s1
test ecx, 3 ; test addr aligned to dword
je short _main_loop1 ; dword aligned loads would be faster

_malign_str1:
mov al, byte ptr [ecx] ; read one byte at a time
add ecx, 1
test al, al ; if we find a null, go calculate the length
je short _byte3a

(continue)

14-7

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING

The equivalent functionality of EOS identification can be implemented using PCMPISTRI. Example 14-4
shows a simplistic SSE4.2 implementation to scan a text block by loading 16-byte text fragments and
locate the null termination character. Example 14-5 shows the optimized SSE4.2 implementation that
demonstrates the effectiveness of memory disambiguation to improve instruction-level parallelism.

test ecx, 3; test if addr is now aligned to dword
jne short _malign_str1; if not, repeat
align16

_main_loop1:; read each 4-byte block and check for a NULL char in the dword
mov eax, [ecx]; read 4 byte to reduce loop count
mov edx, 7efefeffh
add edx, eax
xor eax, -1
xor eax, edx
add ecx, 4; increment address pointer by 4
test eax, 81010100h ; if no null code in 4-byte stream, do the next 4 bytes
je short _main_loop1
; there is a null char in the dword we just read,
; since we already advanced pointer ecx by 4, and the dword is lost
mov eax, [ecx -4]; re-read the dword that contain at least a null char
test al, al ; if byte0 is null
je short _byte0a; the least significant byte is null
test ah, ah ; if byte1 is null
je short _byte1a
test eax, 00ff0000h; if byte2 is null
je short _byte2a
test eax, 00ff000000h; if byte3 is null
je short _byte3a
jmp short _main_loop1

_byte3a:
; we already found the null, but pointer already advanced by 1
lea eax, [ecx-1]; load effective address corresponding to null code
mov ecx, s1
sub eax, ecx; difference between null code and start address
jmp short _resulta

_byte2a:

lea eax, [ecx-2]
mov ecx, s1
sub eax, ecx
jmp short _resulta

_byte1a:
lea eax, [ecx-3]
mov ecx, s1
sub eax, ecx
jmp short _resulta

_byte0a:
lea eax, [ecx-4]
mov ecx, s1
sub eax, ecx

_resulta:
mov len, eax; store result
}
return len;

}

Example 14-3. Strlen() Using General-Purpose Instructions (Contd.)

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING

14-8

The code sequence shown in Example 14-4 has a loop consisting of three instructions. From a perfor-
mance tuning perspective, the loop iteration has loop-carry dependency because address update is done
using the result (ECX value) of a previous loop iteration. This loop-carry dependency deprives the out-of-
order engine’s capability to have multiple iterations of the instruction sequence making forward progress.
The latency of memory loads, the latency of these instructions, any bypass delay could not be amortized
by OOO execution in the presence of loop-carry dependency.

A simple optimization technique to eliminate loop-carry dependency is shown in Example 14-5.

Using memory disambiguation technique to eliminate loop-carry dependency, the cumulative latency
exposure of the 3-instruction sequence of Example 14-5 is amortized over multiple iterations, the net
cost of executing each iteration (handling 16 bytes) is less than 3 cycles. In contrast, handling 4 bytes of
string data using 8 ALU instructions in Example 14-3 will also take a little less than 3 cycles per iteration.
Whereas each iteration of the code sequence in Example 14-4 will take more than 10 cycles because of
loop-carry dependency.

Example 14-4. Sub-optimal PCMPISTRI Implementation of EOS handling

static char ssch2[16]= {0x1, 0xff, 0x00, }; // range values for non-null characters

int strlen_un_optimized(const char* s1)
{int len = 0;

_asm{
mov eax, s1
movdquxmm2, ssch2 ; load character pair as range (0x01 to 0xff)
xor ecx, ecx ; initial offset to 0

(continue)

_loopc:
add eax, ecx ; update addr pointer to start of text fragment
pcmpistri xmm2, [eax], 14h; unsigned bytes, ranges, invert, lsb index returned to ecx

; if there is a null char in the 16Byte fragment at [eax], zf will be set.
; if all 16 bytes of the fragment are non-null characters, ECX will return 16,

jnz short _loopc; xmm1 has no null code, ecx has 16, continue search
; we have a null code in xmm1, ecx has the offset of the null code i
add eax, ecx ; add ecx to the address of the last fragment2/xmm1
mov edx, s1; retrieve effective address of the input string
sub eax, edx;the string length
mov len, eax; store result
}
return len;

}

Example 14-5. Strlen() Using PCMPISTRI without Loop-Carry Dependency

int strlen_sse4_2(const char* s1)
{int len = 0;

_asm{
mov eax, s1
movdquxmm2, ssch2 ; load character pair as range (0x01 to 0xff)
xor ecx, ecx ; initial offset to 0
sub eax, 16 ; address arithmetic to eliminate extra instruction and a branch

14-9

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING

SSE4.2 Coding Rule 5. (H impact, H generality) Loop-carry dependency that depends on the ECX
result of PCMPESTRI/PCMPESTRM/PCMPISTRI/PCMPISTRM for address adjustment must be minimized.
Isolate code paths that expect ECX result will be 16 (bytes) or 8 (words), replace these values of ECX
with constants in address adjustment expressions to take advantage of memory disambiguation
hardware.

14.3.2 White-Space-Like Character Identification
Character-granular-based text processing algorithms have developed techniques to handle specific tasks
to remedy the efficiency issue of character-granular approaches. One such technique is using look-up
tables for character subset classification. For example, some application may need to separate alpha-
numeric characters from white-space-like characters. More than one character may be treated as white-
space characters.

Example 14-6 illustrates a simple situation of identifying white-space-like characters for the purpose of
marking the beginning and end of consecutive non-white-space characters.

_loopc:
add eax, 16 ; adjust address pointer and disambiguate load address for each iteration
pcmpistri xmm2, [eax], 14h; unsigned bytes, ranges, invert, lsb index returned to ecx

; if there is a null char in [eax] fragment, zf will be set.
; if all 16 bytes of the fragment are non-null characters, ECX will return 16,

jnz short _loopc ; ECX will be 16 if there is no null byte in [eax], so we disambiguate
_endofstring:

add eax, ecx ; add ecx to the address of the last fragment
mov edx, s1; retrieve effective address of the input string
sub eax, edx;the string length
mov len, eax; store result
}
return len;

}

Example 14-6. WordCnt() Using C and Byte-Scanning Technique

// Counting words involves locating the boundary of contiguous non-whitespace characters.
// Different software may choose its own mapping of white space character set.
// This example employs a simple definition for tutorial purpose:
// Non-whitespace character set will consider: A-Z, a-z, 0-9, and the apostrophe mark '
// The example uses a simple technique to map characters into bit patterns of square waves
// we can simply count the number of falling edges

static char alphnrange[16]= {0x27, 0x27, 0x30, 0x39, 0x41, 0x5a, 0x61, 0x7a, 0x0};
static char alp_map8[32] = {0x0, 0x0, 0x0, 0x0, 0x80,0x0,0xff, 0x3,0xfe, 0xff, 0xff, 0x7, 0xfe, 0xff, 0xff, 0x7}; // 32
byte lookup table, 1s map to bit patterns of alpha numerics in alphnrange
int wordcnt_c(const char* s1)
{int i, j, cnt = 0;
char cc, cc2;
char flg[3]; // capture the a wavelet to locate a falling edge

cc2 = cc = s1[0];
// use the compacted bit pattern to consolidate multiple comparisons into one look up
if(alp_map8[cc>>3] & (1<< (cc & 7)))
{ flg[1] = 1; } // non-white-space char that is part of a word,

(continue)

Example 14-5. Strlen() Using PCMPISTRI without Loop-Carry Dependency (Contd.)

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING

14-10

In Example 14-6, a 32-byte look-up table is constructed to represent the ascii code values 0x0-0xff, and
partitioned with each bit of 1 corresponding to the specified subset of characters. While this bit-lookup
technique simplifies the comparison operations, data fetching remains byte-granular.

Example 14-7 shows an equivalent implementation of counting words using PCMPISTRM. The loop itera-
tion is performed at 16-byte granularity instead of byte granularity. Additionally, character set subsetting
is easily expressed using range value pairs and parallel comparisons between the range values and each
byte in the text fragment are performed by executing PCMPISTRI once.

// we're including apostrophe in this example since counting the
// following 's' as a separate word would be kind of silly
else
{ flg[1] = 0; } // 0: whitespace, punctuations not be considered as part of a word

i = 1; // now we’re ready to scan through the rest of the block
// we'll try to pick out each falling edge of the bit pattern to increment word count.
// this works with consecutive white spaces, dealing with punctuation marks, and
// treating hyphens as connecting two separate words.
while (cc2)
{ cc2 = s1[i];

if(alp_map8[cc2>>3] & (1<< (cc2 & 7)))
{ flg[2] = 1;} // non-white-space
else
{ flg[2] = 0;} // white-space-like

if(!flg[2] && flg[1])
{ cnt ++; }// found the falling edge
flg[1] = flg[2];
i++;

}
return cnt;

}

Example 14-7. WordCnt() Using PCMPISTRM

// an SSE4.2 example of counting words using the definition of non-whitespace character
// set of {A-Z, a-z, 0-9, '}. Each text fragment (up to 16 bytes) are mapped to a
// 16-bit pattern, which may contain one or more falling edges. Scanning bit-by-bit
// would be inefficient and goes counter to leveraging SIMD programming techniques.
// Since each falling edge must have a preceding rising edge, we take a finite
// difference approach to derive a pattern where each rising/falling edge maps to 2-bit pulse,
// count the number of bits in the 2-bit pulses using popcnt and divide by two.
int wdcnt_sse4_2(const char* s1)
{int len = 0;

_asm{
mov eax, s1
movdquxmm3, alphnrange ; load range value pairs to detect non-white-space codes
xor ecx, ecx
xor esi, esi
xor edx, edx

(continue)

Example 14-6. WordCnt() Using C and Byte-Scanning Technique (Contd.)

14-11

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING

14.3.3 Substring Searches
Strstr() is a common function in the standard string library. Typically, A library may implement
strstr(sTarg, sRef) with a brute-force, byte-granular technique of iterative comparisons between the
reference string with a round of string comparison with a subset of the target string. Brute-force, byte-
granular techniques provide reasonable efficiency when the first character of the target substring and the
reference string are different, allowing subsequent string comparisons of target substrings to proceed
forward to the next byte in the target string.

When a string comparison encounters partial matches of several characters (i.e. the sub-string search
found a partial match starting from the beginning of the reference string) and determined the partial
match led to a false-match. The brute-force search process need to go backward and restart string
comparisons from a location that had participated in previous string comparison operations. This is
referred to as re-trace inefficiency of the brute-force substring search algorithm. See Figure 14-2.

movdquxmm1, [eax]
pcmpistrm xmm3, xmm1, 04h ; white-space-like char becomes 0 in xmm0[15:0]
movdqa xmm4, xmm0
movdqa xmm1, xmm0
psrld xmm4, 15 ; save MSB to use in next iteration
movdqa xmm5, xmm1
psllw xmm5, 1; lsb is effectively mapped to a white space
pxor xmm5, xmm0; the first edge is due to the artifact above
pextrd edi, xmm5, 0
jz _lastfragment; if xmm1 had a null, zf would be set
popcnt edi, edi; the first fragment will include a rising edge
add esi, edi
mov ecx, 16

_loopc:
add eax, ecx ; advance address pointer
movdquxmm1, [eax]
pcmpistrm xmm3, xmm1, 04h ; white-space-like char becomes 0 in xmm0[15:0]
movdqa xmm5, xmm4 ; retrieve the MSB of the mask from last iteration
movdqa xmm4, xmm0
psrld xmm4, 15 ; save mSB of this iteration for use in next iteration
movdqa xmm1, xmm0

psllw xmm1, 1
por xmm5, xmm1 ; combine MSB of last iter and the rest from current iter
pxor xmm5, xmm0; differentiate binary wave form into pattern of edges
pextrdedi, xmm5, 0 ; the edge patterns has (1 bit from last, 15 bits from this round)
jz _lastfragment; if xmm1 had a null, zf would be set
mov ecx, 16; xmm1, had no null char, advance 16 bytes
popcntedi, edi; count both rising and trailing edges
add esi, edi; keep a running count of both edges
jmp short _loopc

_lastfragment:
popcntedi, edi; count both rising and trailing edges
add esi, edi; keep a running count of both edges
shr esi, 1 ; word count corresponds to the trailing edges
mov len, esi
}
return len;

}

Example 14-7. WordCnt() Using PCMPISTRM (Contd.)

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING

14-12

The Knuth, Morris, Pratt algorithm1 (KMP) provides an elegant enhancement to overcome the re-trace
inefficiency of brute-force substring searches. By deriving an overlap table that is used to manage
retrace distance when a partial match leads to a false match, KMP algorithm is very useful for applica-
tions that search relevant articles containing keywords from a large corpus of documents.

Example 14-8 illustrates a C-code example of using KMP substring searches.

Figure 14-2. Retrace Inefficiency of Byte-Granular, Brute-Force Search

1. Donald E. Knuth, James H. Morris, and Vaughan R. Pratt; SIAM J. Comput. Volume 6, Issue 2, pp. 323-350 (1977)

Example 14-8. KMP Substring Search in C

// s1 is the target string of length cnt1
// s2 is the reference string of length cnt2
// j is the offset in target string s1 to start each round of string comparison
// i is the offset in reference string s2 to perform byte granular comparison

(continue)

int str_kmp_c(const char* s1, int cnt1, const char* s2, int cnt2)

{ int i, j;

i = 0; j = 0;

while (i+j < cnt1) {

if(s2[i] == s1[i+j]) {

i++;

if(i == cnt2) break; // found full match

}

else {

j = j+i - ovrlap_tbl[i]; // update the offset in s1 to start next round of string compare

if(i > 0) {

i = ovrlap_tbl[i]; // update the offset of s2 for next string compare should start at

}

}

};

 return j;

}

Ref str

T/F:

Target Str

B

B

A

A

A

A

C

C

G

GC

M

M

C

C

M

B A C A G M C M

T T T T F

B A AC G M C M

F

B A AC G M C M
F

Retrace 3 bytes after partial match of first 4 bytes

14-13

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING

Example 14-8 also includes the calculation of the KMP overlap table. Typical usage of KMP algorithm
involves multiple invocation of the same reference string, so the overhead of precalculating the overlap
table is easily amortized. When a false match is determined at offset i of the reference string, the overlap
table will predict where the next round of string comparison should start (updating the offset j), and the
offset in the reference string that byte-granular character comparison should resume/restart.

While KMP algorithm provides efficiency improvement over brute-force byte-granular substring search,
its best performance is still limited by the number of byte-granular operations. To demonstrate the versa-
tility and built-in lexical capability of PCMPISTRI, we show an SSE4.2 implementation of substring search
using brute-force 16-byte granular approach in Example 14-9, and combining KMP overlap table with
substring search using PCMPISTRI in Example 14-10.

void kmp_precalc(const char * s2, int cnt2)
{int i = 2;
char nch = 0;

ovrlap_tbl[0] = -1; ovrlap_tbl[1] = 0;
// pre-calculate KMP table

while(i < cnt2) {
if(s2[i-1] == s2[nch]) {

ovrlap_tbl[i] = nch +1;
i++; nch++;

}
else if (nch > 0) nch = ovrlap_tbl[nch];
else {

ovrlap_tbl[i] = 0;
i++;

}
};
ovrlap_tbl[cnt2] = 0;

}

Example 14-9. Brute-Force Substring Search Using PCMPISTRI Intrinsic

int strsubs_sse4_2i(const char* s1, int cnt1, const char* s2, int cnt2)

{ int kpm_i=0, idx;

int ln1= 16, ln2=16, rcnt1 = cnt1, rcnt2= cnt2;

__m128i *p1 = (__m128i *) s1;

__m128i *p2 = (__m128i *) s2;

__m128ifrag1, frag2;

int cmp, cmp2, cmp_s;

__m128i *pt = NULL;

if(cnt2 > cnt1 || !cnt1) return -1;

frag1 = _mm_loadu_si128(p1);// load up to 16 bytes of fragment

frag2 = _mm_loadu_si128(p2);// load up to 16 bytes of fragment

(continue)

Example 14-8. KMP Substring Search in C (Contd.)

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING

14-14

while(rcnt1 > 0)

{ cmp_s = _mm_cmpestrs(frag2, (rcnt2>ln2)? ln2: rcnt2, frag1, (rcnt1>ln1)? ln1: rcnt1, 0x0c);

cmp = _mm_cmpestri(frag2, (rcnt2>ln2)? ln2: rcnt2, frag1, (rcnt1>ln1)? ln1: rcnt1, 0x0c);

if(!cmp) { // we have a partial match that needs further analysis

if(cmp_s) { // if we're done with s2

if(pt)

{idx = (int) ((char *) pt - (char *) s1) ; }

else

{idx = (int) ((char *) p1 - (char *) s1) ; }

return idx;

}

// we do a round of string compare to verify full match till end of s2

if(pt == NULL) pt = p1;

cmp2 = 16;

rcnt2 = cnt2 - 16 -(int) ((char *)p2-(char *)s2);

while(cmp2 == 16 && rcnt2) { // each 16B frag matches,

rcnt1 = cnt1 - 16 -(int) ((char *)p1-(char *)s1);

rcnt2 = cnt2 - 16 -(int) ((char *)p2-(char *)s2);

if(rcnt1 <=0 || rcnt2 <= 0) break;

p1 = (__m128i *)(((char *)p1) + 16);

p2 = (__m128i *)(((char *)p2) + 16);

frag1 = _mm_loadu_si128(p1);// load up to 16 bytes of fragment

frag2 = _mm_loadu_si128(p2);// load up to 16 bytes of fragment

cmp2 = _mm_cmpestri(frag2, (rcnt2>ln2)? ln2: rcnt2, frag1, (rcnt1>ln1)? ln1: rcnt1, 0x18); // lsb, eq each

};

if(!rcnt2 || rcnt2 == cmp2) {

idx = (int) ((char *) pt - (char *) s1) ;

return idx;

}

else if (rcnt1 <= 0) { // also cmp2 < 16, non match

if(cmp2 == 16 && ((rcnt1 + 16) >= (rcnt2+16)))

{idx = (int) ((char *) pt - (char *) s1) ;

return idx;

}

else return -1;

}

(continue)

Example 14-9. Brute-Force Substring Search Using PCMPISTRI Intrinsic (Contd.)

14-15

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING

In Example 14-9, address adjustment using a constant to minimize loop-carry dependency is practised
in two places:
• In the inner while loop of string comparison to determine full match or false match (the result cmp2

is not used for address adjustment to avoid dependency).
• In the last code block when the outer loop executed PCMPISTRI to compare 16 sets of ordered

compare between a target fragment with the first 16-byte fragment of the reference string, and all
16 ordered compare operations produced false result (producing cmp with a value of 16).

Example 14-10 shows an equivalent intrinsic implementation of substring search using SSE4.2 and KMP
overlap table. When the inner loop of string comparison determines a false match, the KMP overlap table
is consulted to determine the address offset for the target string fragment and the reference string frag-
ment to minimize retrace.

It should be noted that a significant portions of retrace with retrace distance less than 15 bytes are
avoided even in the brute-force SSE4.2 implementation of Example 14-9. This is due to the order-
compare primitive of PCMPISTRI. “Ordered compare” performs 16 sets of string fragment compare, and
many false match with less than 15 bytes of partial matches can be filtered out in the same iteration that
executed PCMPISTRI.

Retrace distance of greater than 15 bytes does not get filtered out by the Example 14-9. By consulting
with the KMP overlap table, Example 14-10 can eliminate retraces of greater than 15 bytes.

else { // in brute force, we advance fragment offset in target string s1 by 1
p1 = (__m128i *)(((char *)pt) + 1); // we're not taking advantage of kmp
rcnt1 = cnt1 -(int) ((char *)p1-(char *)s1);
pt = NULL;
p2 = (__m128i *)((char *)s2) ;
rcnt2 = cnt2 -(int) ((char *)p2-(char *)s2);
frag1 = _mm_loadu_si128(p1);// load next fragment from s1
frag2 = _mm_loadu_si128(p2);// load up to 16 bytes of fragment

}
}
else{

if(cmp == 16) p1 = (__m128i *)(((char *)p1) + 16);
else p1 = (__m128i *)(((char *)p1) + cmp);
rcnt1 = cnt1 -(int) ((char *)p1-(char *)s1);
if(pt && cmp) pt = NULL;
frag1 = _mm_loadu_si128(p1);// load next fragment from s1

}
}
return idx;

}

Example 14-10. Substring Search Using PCMPISTRI and KMP Overlap Table

int strkmp_sse4_2(const char* s1, int cnt1, const char* s2, int cnt2)

{ int kpm_i=0, idx;

int ln1= 16, ln2=16, rcnt1 = cnt1, rcnt2= cnt2;

__m128i *p1 = (__m128i *) s1;

__m128i *p2 = (__m128i *) s2;

__m128ifrag1, frag2;

(continue)

Example 14-9. Brute-Force Substring Search Using PCMPISTRI Intrinsic (Contd.)

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING

14-16

int cmp, cmp2, cmp_s;

__m128i *pt = NULL;

if(cnt2 > cnt1 || !cnt1) return -1;

frag1 = _mm_loadu_si128(p1);// load up to 16 bytes of fragment

frag2 = _mm_loadu_si128(p2);// load up to 16 bytes of fragment

while(rcnt1 > 0)

{ cmp_s = _mm_cmpestrs(frag2, (rcnt2>ln2)? ln2: rcnt2, frag1, (rcnt1>ln1)? ln1: rcnt1, 0x0c);

cmp = _mm_cmpestri(frag2, (rcnt2>ln2)? ln2: rcnt2, frag1, (rcnt1>ln1)? ln1: rcnt1, 0x0c);

if(!cmp) { // we have a partial match that needs further analysis

if(cmp_s) { // if we've reached the end with s2

if(pt)

{idx = (int) ((char *) pt - (char *) s1) ; }

else

{idx = (int) ((char *) p1 - (char *) s1) ; }

return idx;

}

// we do a round of string compare to verify full match till end of s2

if(pt == NULL) pt = p1;
cmp2 = 16;
rcnt2 = cnt2 - 16 -(int) ((char *)p2-(char *)s2);

while(cmp2 == 16 && rcnt2) { // each 16B frag matches

rcnt1 = cnt1 - 16 -(int) ((char *)p1-(char *)s1);

rcnt2 = cnt2 - 16 -(int) ((char *)p2-(char *)s2);

if(rcnt1 <=0 || rcnt2 <= 0) break;

p1 = (__m128i *)(((char *)p1) + 16);

p2 = (__m128i *)(((char *)p2) + 16);

frag1 = _mm_loadu_si128(p1);// load up to 16 bytes of fragment

frag2 = _mm_loadu_si128(p2);// load up to 16 bytes of fragment

cmp2 = _mm_cmpestri(frag2, (rcnt2>ln2)? ln2: rcnt2, frag1, (rcnt1>ln1)? ln1: rcnt1, 0x18); // lsb, eq each

};

if(!rcnt2 || rcnt2 == cmp2) {

idx = (int) ((char *) pt - (char *) s1) ;

return idx;

}

else if (rcnt1 <= 0) { // also cmp2 < 16, non match

return -1;

}

(continue)

Example 14-10. Substring Search Using PCMPISTRI and KMP Overlap Table (Contd.)

14-17

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING

The relative speed up of byte-granular KMP, brute-force SSE4.2, and SSE4.2 with KMP overlap table over
byte-granular brute-force substring search is illustrated in the graph that plots relative speedup over
percentage of retrace for a reference string of 55 bytes long. A retrace of 40% in the graph meant, after
a partial match of the first 22 characters, a false match is determined.

So when brute-force, byte-granular code has to retrace, the other three implementation may be able to
avoid the need to retrace because:
• Example 14-8 can use KMP overlap table to predict the start offset of next round of string compare

operation after a partial-match/false-match, but forward movement after a first-character-false-
match is still byte-granular.

else { // a partial match led to false match, consult KMP overlap table for addr adjustment

kpm_i = (int) ((char *)p1 - (char *)pt)+ cmp2 ;

p1 = (__m128i *)(((char *)pt) + (kpm_i - ovrlap_tbl[kpm_i])); // use kmp to skip retrace

rcnt1 = cnt1 -(int) ((char *)p1-(char *)s1);

pt = NULL;

p2 = (__m128i *)(((char *)s2) + (ovrlap_tbl[kpm_i]));

rcnt2 = cnt2 -(int) ((char *)p2-(char *)s2);

frag1 = _mm_loadu_si128(p1);// load next fragment from s1

frag2 = _mm_loadu_si128(p2);// load up to 16 bytes of fragment

}

}

else{
if(kpm_i && ovrlap_tbl[kpm_i]) {
p2 = (__m128i *)(((char *)s2));
frag2 = _mm_loadu_si128(p2);// load up to 16 bytes of fragment
//p1 = (__m128i *)(((char *)p1));

//rcnt1 = cnt1 -(int) ((char *)p1-(char *)s1);
if(pt && cmp) pt = NULL;
rcnt2 = cnt2 ;
//frag1 = _mm_loadu_si128(p1);// load next fragment from s1
frag2 = _mm_loadu_si128(p2);// load up to 16 bytes of fragment
kpm_i = 0;
}
else { // equ order comp resulted in sub-frag match or non-match
if(cmp == 16) p1 = (__m128i *)(((char *)p1) + 16);
else p1 = (__m128i *)(((char *)p1) + cmp);
rcnt1 = cnt1 -(int) ((char *)p1-(char *)s1);
if(pt && cmp) pt = NULL;
frag1 = _mm_loadu_si128(p1);// load next fragment from s1
}

}
}
return idx;

}

Example 14-10. Substring Search Using PCMPISTRI and KMP Overlap Table (Contd.)

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING

14-18

• Example 14-9 can avoid retrace of shorter than 15 bytes but will be subject to retrace of 21 bytes
after a partial-match/false-match at byte 22 of the reference string. Forward movement after each
order-compare-false-match is 16 byte granular.

• Example 14-10 avoids retrace of 21 bytes after a partial-match/false-match, but KMP overlap table
lookup incurs some overhead. Forward movement after each order-compare-false-match is 16 byte
granular.

14.3.4 String Token Extraction and Case Handling
Token extraction is a common task in text/string handling. It is one of the foundation of implementing
lexer/parser objects of higher sophistication. Indexing services also build on tokenization primitives to
sort text data from streams.

Tokenization requires the flexibility to use an array of delimiter characters.

A library implementation of Strtok_s() may employ a table-lookup technique to consolidate sequential
comparisons of the delimiter characters into one comparison (similar to Example 14-6). An SSE4.2
implementation of the equivalent functionality of strtok_s() using intrinsic is shown in Example 14-11.

Figure 14-3. SSE4.2 Speedup of SubString Searches

SSE4.2 Sub-String Match Performance

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.7
%

17
.4%

27
.8%

34
.8%

43
.4%

52
.1%

60
.8%

69
.5%

78
.2%

86
.9%

95
.6%

Retrace of non-degen. String n = 55

Re
lat

ive
 P

er
f.

Brute

KMP

STTNI

STTNI+KMP

14-19

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING

Example 14-11. I Equivalent Strtok_s() Using PCMPISTRI Intrinsic

char ws_map8[32]; // packed bit lookup table for delimiter characters

char * strtok_sse4_2i(char* s1, char *sdlm, char ** pCtxt)
{
__m128i *p1 = (__m128i *) s1;
__m128ifrag1, stmpz, stmp1;
int cmp_z, jj =0;
int start, endtok, s_idx, ldx;

if (sdlm == NULL || pCtxt == NULL) return NULL;
if(p1 == NULL && *pCtxt == NULL) return NULL;
if(s1 == NULL) {

if(*pCtxt[0] == 0) { return NULL; }
p1 = (__m128i *) *pCtxt;
s1 = *pCtxt;

}
else p1 = (__m128i *) s1;
memset(&ws_map8[0], 0, 32);
while (sdlm[jj]) {

ws_map8[(sdlm[jj] >> 3)] |= (1 << (sdlm[jj] & 7)); jj ++
}
frag1 = _mm_loadu_si128(p1);// load up to 16 bytes of fragment
stmpz = _mm_loadu_si128((__m128i *)sdelimiter);
// if the first char is not a delimiter , proceed to check non-delimiter,
// otherwise need to skip leading delimiter chars
if(ws_map8[s1[0]>>3] & (1 << (s1[0]&7))) {
 start = s_idx = _mm_cmpistri(stmpz, frag1, 0x10);// unsigned bytes/equal any, invert, lsb
}
else start = s_idx = 0;

// check if we're dealing with short input string less than 16 bytes
cmp_z = _mm_cmpistrz(stmpz, frag1, 0x10);
if(cmp_z) { // last fragment

if(!start) {
endtok = ldx = _mm_cmpistri(stmpz, frag1, 0x00);
if(endtok == 16) { // didn't find delimiter at the end, since it's null-terminated

// find where is the null byte
*pCtxt = s1+ 1+ _mm_cmpistri(frag1, frag1, 0x40);
return s1;

}
else { // found a delimiter that ends this word
s1[start+endtok] = 0;
*pCtxt = s1+start+endtok+1;
}

}
(continue)

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING

14-20

else {
if(!s1[start]) {

*pCtxt = s1 + start +1;
return NULL;

}
p1 = (__m128i *)(((char *)p1) + start);
frag1 = _mm_loadu_si128(p1);// load up to 16 bytes of fragment
endtok = ldx = _mm_cmpistri(stmpz, frag1, 0x00);// unsigned bytes/equal any, lsb
if(endtok == 16) { // looking for delimiter, found none

*pCtxt = (char *)p1 + 1+ _mm_cmpistri(frag1, frag1, 0x40);
return s1+start;

}
else { // found delimiter before null byte

s1[start+endtok] = 0;
*pCtxt = s1+start+endtok+1;

}
}

}

else
{ while (!cmp_z && s_idx == 16) {

p1 = (__m128i *)(((char *)p1) + 16);
frag1 = _mm_loadu_si128(p1);// load up to 16 bytes of fragment
s_idx = _mm_cmpistri(stmpz, frag1, 0x10);// unsigned bytes/equal any, invert, lsb
cmp_z = _mm_cmpistrz(stmpz, frag1, 0x10);

}
if(s_idx != 16) start = ((char *) p1 -s1) + s_idx;
else { // corner case if we ran to the end looking for delimiter and never found a non-dilimiter

*pCtxt = (char *)p1 +1+ _mm_cmpistri(frag1, frag1, 0x40);
return NULL;

}
if(!s1[start]) { // in case a null byte follows delimiter chars

*pCtxt = s1 + start+1;
return NULL;

}
// now proceed to find how many non-delimiters are there
p1 = (__m128i *)(((char *)p1) + s_idx);
frag1 = _mm_loadu_si128(p1);// load up to 16 bytes of fragment
endtok = ldx = _mm_cmpistri(stmpz, frag1, 0x00);// unsigned bytes/equal any, lsb
cmp_z = 0;
while (!cmp_z && ldx == 16) {

p1 = (__m128i *)(((char *)p1) + 16);
frag1 = _mm_loadu_si128(p1);// load up to 16 bytes of fragment
ldx = _mm_cmpistri(stmpz, frag1, 0x00);// unsigned bytes/equal any, lsb
cmp_z = _mm_cmpistrz(stmpz, frag1, 0x00);
if(cmp_z) { endtok += ldx; }

}
(continue)

Example 14-11. I Equivalent Strtok_s() Using PCMPISTRI Intrinsic (Contd.)

14-21

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING

An SSE4.2 implementation of the equivalent functionality of strupr() using intrinsic is shown in
Example 14-12.

if(cmp_z) { // reached the end of s1
if(ldx < 16) // end of word found by finding a delimiter

endtok += ldx;
else { // end of word found by finding the null

if(s1[start+endtok]) // ensure this frag don’t start with null byte
endtok += 1+ _mm_cmpistri(frag1, frag1, 0x40);

}
}
*pCtxt = s1+start+endtok+1;
s1[start+endtok] = 0;

}
return (char *) (s1+ start);

}

Example 14-12. I Equivalent Strupr() Using PCMPISTRM Intrinsic

static char uldelta[16]= {0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20};

static char ranglc[6]= {0x61, 0x7a, 0x00, 0x00, 0x00, 0x00};

char * strup_sse4_2i(char* s1)

{int len = 0, res = 0;

__m128i *p1 = (__m128i *) s1;

__m128ifrag1, ranglo, rmsk, stmpz, stmp1;

int cmp_c, cmp_z, cmp_s;

if(!s1[0]) return (char *) s1;

frag1 = _mm_loadu_si128(p1);// load up to 16 bytes of fragment

ranglo = _mm_loadu_si128((__m128i *)ranglc);// load up to 16 bytes of fragment

stmpz = _mm_loadu_si128((__m128i *)uldelta);

cmp_z = _mm_cmpistrz(ranglo, frag1, 0x44);// range compare, produce byte masks

while (!cmp_z)

{

rmsk = _mm_cmpistrm(ranglo, frag1, 0x44); // producing byte mask

stmp1 = _mm_blendv_epi8(stmpz, frag1, rmsk); // bytes of lc preserved, other bytes replaced by const

stmp1 =_mm_sub_epi8(stmp1, stmpz); // bytes of lc becomes uc, other bytes are now zero

stmp1 = _mm_blendv_epi8(frag1, stmp1, rmsk); //bytes of lc replaced by uc, other bytes unchanged

_mm_storeu_si128(p1, stmp1);//

p1 = (__m128i *)(((char *)p1) + 16);

frag1 = _mm_loadu_si128(p1);// load up to 16 bytes of fragment

cmp_z = _mm_cmpistrz(ranglo, frag1, 0x44);

}

(continue)

Example 14-11. I Equivalent Strtok_s() Using PCMPISTRI Intrinsic (Contd.)

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING

14-22

14.3.5 Unicode Processing and PCMPxSTRy
Unicode representation of string/text data is required for software localization. UTF-16 is a common
encoding scheme for localized content. In UTF-16 representation, each character is represented by a
code point. There are two classes of code points: 16-bit code points and 32-bit code points which consists
of a pair of 16-bit code points in specified value range, the latter is also referred to as a surrogate pair.

A common technique in unicode processing uses a table-loop up method, which has the benefit of
reduced branching. As a tutorial example we compare the analogous problem of determining properly-
encoded UTF-16 string length using general purpose code with table-lookup vs. SSE4.2.

Example 14-13 lists the C code sequence to determine the number of properly-encoded UTF-16 code
points (either 16-bit or 32-bit code points) in a unicode text block. The code also verifies if there are any
improperly-encoded surrogate pairs in the text block.

if(*(char *)p1 == 0) return (char *) s1;

rmsk = _mm_cmpistrm(ranglo, frag1, 0x44);// byte mask, valid lc bytes are 1, all other 0

stmp1 = _mm_blendv_epi8(stmpz, frag1, rmsk); // bytes of lc continue, other bytes replaced by const

stmp1 =_mm_sub_epi8(stmp1, stmpz); // bytes of lc becomes uc, other bytes are now zero

stmp1 = _mm_blendv_epi8(frag1, stmp1, rmsk); //bytes of lc replaced by uc, other bytes unchanged

rmsk = _mm_cmpistrm(frag1, frag1, 0x44);// byte mask, valid bytes are 1, invalid bytes are zero

_mm_maskmoveu_si128(stmp1, rmsk, (char *) p1);//

return (char *) s1;

}

Example 14-13. UTF16 VerStrlen() Using C and Table Lookup Technique

// This example demonstrates validation of surrogate pairs (32-bit code point) and
// tally the number of16-bit and 32-bit code points in the text block
// Parameters: s1 is pointer to input utf-16 text block.
// pLen: store count of utf-16 code points
// return the number of 16-bit code point encoded in the surrogate range but do not form
// a properly encoded surrogate pair. if 0: s1 is a properly encoded utf-16 block,
// If return value >0 then s1 contains invalid encoding of surrogates

int u16vstrlen_c(const short* s1, unsigned * pLen)
{int i, j, cnt = 0, cnt_invl = 0, spcnt= 0;
unsigned short cc, cc2;
char flg[3];

 cc2 = cc = s1[0];
 // map each word in s1into bit patterns of 0, 1or 2 using a table lookup
// the first half of a surrogate pair must be encoded between D800-DBFF and mapped as 2
// the 2nd half of a surrogate pair must be encoded between DC00-DFFF and mapped as 1
// regular 16-bit encodings are mapped to 0, except null code mapped to 3
flg[1] = utf16map[cc];
 flg[0] = flg[1];
 if(!flg[1]) cnt ++;
 i = 1;

(continue)

Example 14-12. I Equivalent Strupr() Using PCMPISTRM Intrinsic (Contd.)

14-23

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING

The VerStrlen() function for UTF-16 encoded text block can be implemented using SSE4.2.

Example 14-14 shows the listing of SSE4.2 assembly implementation and Example 14-15 shows the
listing of SSE4.2 intrinsic listings of VerStrlen().

 while (cc2) // examine each non-null word encoding
 { cc2 = s1[i];

flg[2] = utf16map[cc2];
if((flg[1] && flg[2] && (flg[1]-flg[2] == 1)))
{ spcnt ++; }// found a surrogate pair
else if(flg[1] == 2 && flg[2] != 1)
{ cnt_invl += 1; } // orphaned 1st half
else if(!flg[1] && flg[2] == 1)
{ cnt_invl += 1; } // orphaned 2nd half
else
{ if(!flg[2]) cnt ++;// regular non-null code16-bit code point

else ;
}
flg[0] = flg[1];// save the pair sequence for next iteration
flg[1] = flg[2];
i++;

 }
 *pLen = cnt + spcnt;
 return cnt_invl;
}

Example 14-14. Assembly Listings of UTF16 VerStrlen() Using PCMPISTRI

// complementary range values for detecting either halves of 32-bit UTF-16 code point
static short ssch0[16]= {0x1, 0xd7ff, 0xe000, 0xffff, 0, 0};
// complementary range values for detecting the 1st half of 32-bit UTF-16 code point
static short ssch1[16]= {0x1, 0xd7ff, 0xdc00, 0xffff, 0, 0};
// complementary range values for detecting the 2nd half of 32-bit UTF-16 code point
static short ssch2[16]= {0x1, 0xdbff, 0xe000, 0xffff, 0, 0};

int utf16slen_sse4_2a(const short* s1, unsigned * pLen)
{int len = 0, res = 0;

_asm{
mov eax, s1
movdquxmm2, ssch0 ; load range value to identify either halves
movdquxmm3, ssch1 ; load range value to identify 1st half (0xd800 to 0xdbff)
movdquxmm4, ssch2 ; load range value to identify 2nd half (0xdc00 to 0xdfff)
xor ecx, ecx
xor edx, edx; store # of 32-bit code points (surrogate pairs)
xor ebx, ebx; store # of non-null 16-bit code points
xor edi, edi ; store # of invalid word encodings

(continue)

Example 14-13. UTF16 VerStrlen() Using C and Table Lookup Technique (Contd.)

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING

14-24

_loopc:
shl ecx, 1; pcmpistri with word processing return ecx in word granularity, multiply by 2 to get byte offset
add eax, ecx
movdquxmm1, [eax] ; load a string fragment of up to 8 words
pcmpistri xmm2, xmm1, 15h; unsigned words, ranges, invert, lsb index returned to ecx

; if there is a utf-16 null wchar in xmm1, zf will be set.
; if all 8 words in the comparison matched range,
; none of bits in the intermediate result will be set after polarity inversions,
; and ECX will return with a value of 8

jz short _lstfrag; if null code, handle last fragment
; if ecx < 8, ecx point to a word of either 1st or 2nd half of a 32-bit code point
cmp ecx, 8
jne _chksp
add ebx, ecx ; accumulate # of 16-bit non-null code points
mov ecx, 8 ; ecx must be 8 at this point, we want to avoid loop carry dependency
jmp _loopc

_chksp:; this fragment has word encodings in the surrogate value range
add ebx, ecx ; account for the 16-bit code points
shl ecx, 1; pcmpistri with word processing return ecx in word granularity, multiply by 2 to get byte offset
add eax, ecx
movdquxmm1, [eax] ; ensure the fragment start with word encoding in either half
pcmpistri xmm3, xmm1, 15h; unsigned words, ranges, invert, lsb index returned to ecx
jz short _lstfrag2; if null code, handle the last fragment
cmp ecx, 0 ; properly encoded 32-bit code point must start with 1st half
jg _invalidsp; some invalid s-p code point exists in the fragment
pcmpistri xmm4, xmm1, 15h; unsigned words, ranges, invert, lsb index returned to ecx
cmp ecx, 1 ; the 2nd half must follow the first half
jne _invalidsp
add edx, 1; accumulate # of valid surrogate pairs
add ecx, 1 ; we want to advance two words
jmp _loopc

_invalidsp:; the first word of this fragment is either the 2nd half or an un-paired 1st half
add edi, 1 ; we have an invalid code point (not a surrogate pair)
mov ecx, 1 ; advance one word and continue scan for 32-bit code points
jmp _loopc

_lstfrag:
add ebx, ecx ; account for the non-null 16-bit code points

_morept:
shl ecx, 1; pcmpistri with word processing return ecx in word granularity, multiply by 2 to get byte offset
add eax, ecx
mov si, [eax] ; need to check for null code
cmp si, 0
je _final
movdquxmm1, [eax] ; load remaining word elements which start with either 1st/2nd half
pcmpistri xmm3, xmm1, 15h; unsigned words, ranges, invert, lsb index returned to ecx

_lstfrag2:
cmp ecx, 0 ; a valid 32-bit code point must start from 1st half
jne _invalidsp2
pcmpistri xmm4, xmm1, 15h; unsigned words, ranges, invert, lsb index returned to ecx
cmp ecx, 1
jne _invalidsp2

(continue)

Example 14-14. Assembly Listings of UTF16 VerStrlen() Using PCMPISTRI (Contd.)

14-25

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING

add edx, 1
mov ecx, 2
jmp _morept

_invalidsp2:
add edi, 1
mov ecx, 1
jmp _morept

_final:
add edx, ebx; add # of 16-bit and 32-bit code points
mov ecx, pLen; retrieve address of pointer provided by caller
mov [ecx], edx; store result of string length to memory
mov res, edi
}
return res;

}

Example 14-15. Intrinsic Listings of UTF16 VerStrlen() Using PCMPISTRI

int utf16slen_i(const short* s1, unsigned * pLen)
{int len = 0, res = 0;
__m128i *pF = (__m128i *) s1;
__m128iu32 =_mm_loadu_si128((__m128i *)ssch0);
__m128i u32a =_mm_loadu_si128((__m128i *)ssch1);
__m128i u32b =_mm_loadu_si128((__m128i *)ssch2);
__m128ifrag1;
int offset1 = 0, cmp, cmp_1, cmp_2;
intcnt_16 = 0, cnt_sp=0, cnt_invl= 0;
short *ps;
while (1) {

pF = (__m128i *)(((short *)pF) + offset1);
frag1 = _mm_loadu_si128(pF);// load up to 8 words
// does frag1 contain either halves of a 32-bit UTF-16 code point?
cmp = _mm_cmpistri(u32, frag1, 0x15);// unsigned bytes, equal order, lsb index returned to ecx

if (_mm_cmpistrz(u32, frag1, 0x15))// there is a null code in frag1
{ cnt_16 += cmp;

ps = (((short *)pF) + cmp);
while (ps[0])
{ frag1 = _mm_loadu_si128((__m128i *)ps);

cmp_1 = _mm_cmpistri(u32a, frag1, 0x15);
if(!cmp_1)
{ cmp_2 = _mm_cmpistri(u32b, frag1, 0x15);

if(cmp_2 ==1) { cnt_sp++; offset1 = 2;}
else {cnt_invl++; offset1= 1;}

}
(continue)

Example 14-14. Assembly Listings of UTF16 VerStrlen() Using PCMPISTRI (Contd.)

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING

14-26

14.3.6 Replacement String Library Function Using SSE4.2
Unaligned 128-bit SIMD memory access can fetch data cross page boundary, since system software
manages memory access rights with page granularity.

Implementing a replacement string library function using SIMD instructions must not cause memory
access violation. This requirement can be met by adding a small amounts of code to check the memory
address of each string fragment. If a memory address is found to be within 16 bytes of crossing over to
the next page boundary, string processing algorithm can fall back to byte-granular technique.

Example 14-16 shows an SSE4.2 implementation of strcmp() that can replace byte-granular implemen-
tation supplied by standard tools.

else
{ cmp_2 = _mm_cmpistri(u32b, frag1, 0x15);

if(!cmp_2) {cnt_invl ++; offset1 = 1;}
else {cnt_16 ++; offset1 = 1; }

}
ps = (((short *)ps) + offset1);

}
break;

}

if(cmp != 8) // we have at least some half of 32-bit utf-16 code points
{ cnt_16 += cmp; // regular 16-bit UTF16 code points

pF = (__m128i *)(((short *)pF) + cmp);
frag1 = _mm_loadu_si128(pF);
cmp_1 = _mm_cmpistri(u32a, frag1, 0x15);
if(!cmp_1)
{ cmp_2 = _mm_cmpistri(u32b, frag1, 0x15);

if(cmp_2 ==1) { cnt_sp++; offset1 = 2;}
else {cnt_invl++; offset1= 1;}

}
else
{ cnt_invl ++;

offset1 = 1;
}

}
else {

offset1 = 8; // increment address by 16 bytes to handle next fragment
cnt_16+= 8;

}
};

*pLen = cnt_16 + cnt_sp;
return cnt_invl;

}

Example 14-15. Intrinsic Listings of UTF16 VerStrlen() Using PCMPISTRI (Contd.)

14-27

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING

Example 14-16. Replacement String Library Strcmp Using SSE4.2

// return 0 if strings are equal, 1 if greater, -1 if less
int strcmp_sse4_2(const char *src1, const char *src2)
{

int val;
__asm{

mov esi, src1 ;
mov edi, src2
mov edx, -16 ; common index relative to base of either string pointer
xor eax, eax

topofloop:
add edx, 16 ; prevent loop carry dependency

next:
lea ecx, [esi+edx] ; address of fragment that we want to load
and ecx, 0x0fff ; check least significant12 bits of addr for page boundary
cmp ecx, 0x0ff0
jg too_close_pgb ; branch to byte-granular if within 16 bytes of boundary
lea ecx, [edi+edx] ; do the same check for each fragment of 2nd string
and ecx, 0x0fff
cmp ecx, 0x0ff0
jg too_close_pgb
movdqu xmm2, BYTE PTR[esi+edx]
movdqu xmm1, BYTE PTR[edi+edx]
pcmpistri xmm2, xmm1, 0x18 ; equal each
ja topofloop
jnc ret_tag
add edx, ecx ; ecx points to the byte offset that differ

not_equal:
movzx eax, BYTE PTR[esi+edx]
movzx edx, BYTE PTR[edi+edx]
cmp eax, edx
cmova eax, ONE
cmovb eax, NEG_ONE
jmp ret_tag

too_close_pgb:
add edx, 1 ; do byte granular compare
movzx ecx, BYTE PTR[esi+edx-1]
movzx ebx, BYTE PTR[edi+edx-1]
cmp ecx, ebx
jne inequality
add ebx, ecx
jnz next
jmp ret_tag

inequality:
cmovb eax, NEG_ONE
cmova eax, ONE

(continue)

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING

14-28

In Example 14-16, 8 instructions were added following the label “next” to perform 4KByte boundary
checking of address that will be used to load two string fragments into registers. If either address is
found to be within 16 bytes of crossing over to the next page, the code branches to byte-granular
comparison path following the label “too_close_pgb“.
The return values of Example 14-16 uses the convention of returning 0, +1, -1 using CMOV. It is straight
forward to modify a few instructions to implement the convention of returning 0, positive integer, nega-
tive integer.

14.4 SSE4.2 ENABLED NUMERICAL AND LEXICAL COMPUTATION
SSE4.2 can enable SIMD programming techniques to explore byte-granular computational problems that
were considered unlikely candidates for using SIMD instructions. We consider a common library function
atol() in its full 64-bit flavor of converting a sequence of alpha numerical characters within the range
representable by the data type __int64.

There are several attributes of this string-to-integer problem that poses as difficult challenges for using
prior SIMD instruction sets (before the introduction of SSE4.2) to accelerate the numerical computation
aspect of string-to-integer conversions:
• Character subset validation: Each character in the input stream must be validated with respect to the

character subset definitions and conform to data representation rules of white space, signs,
numerical digits. SSE4.2 provides the perfect tools for character subset validation.

• State-dependent nature of character validation: While SIMD computation instructions can expedite
the arithmetic operations of “multiply by 10 and add“, the arithmetic computation requires the input
byte stream to consist of numerical digits only. For example, the validation of numerical digits, white-
space, and the presence/absence of sign, must be validated in mid-stream. The flexibility of the
SSE4.2 primitive can handle these state-dependent validation well.

• Additionally, exit condition to wrap up arithmetic computation can happen in mid-stream due to
invalid characters, or due to finite representable range of the data type (~10^19 for int64, no more
than 10 non-zero-leading digits for int32) may lead one to believe this type data stream consisting of
short bursts are not suited for exploring SIMD ISA and be content with byte-granular solutions.

Because of the character subset validation and state-dependent nature, byte-granular solutions of the
standard library function tends to have a high start-up cost (for example, converting a single numerical
digit to integer may take 50 or 60 cycles), and low throughput (each additional numeric digit in the input
character stream may take 6-8 cycles per byte).

A high level pseudo-operation flow of implementing a library replacement of atol() is described in
Example 14-17.

ret_tag:
mov [val], eax

}
return(val);

}

Example 14-16. Replacement String Library Strcmp Using SSE4.2 (Contd.)

14-29

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING

Example 14-18 shows the code listing of an equivalent functionality of atol() capable of producing int64
output range. Auxiliary function and data constants are listed in Example 14-19.

Example 14-17. High-level flow of Character Subset Validation for String Conversion

1. Check Early_Out Exit Conditions (e.g. first byte is not valid).
2. Check if 1st byte is white space and skip any additional leading white space.
3. Check for the presence of a sign byte.
4. Check the validity of the remaining byte stream if they are numeric digits.
5. If the byte stream starts with ‘0’, skip all leading digits that are ‘0’.
6. Determine how many valid non-zero-leading numeric digits.
7. Convert up to 16 non-zero-leading digits to int64 value.
8. load up to the next 16 bytes safely and check for consecutive numeric digits
9. Normalize int64 value converted from the first 16 digits, according to # of remaining digits,
10. Check for out-of-bound results of normalized intermediate int64 value,
11. Convert remaining digits to int64 value and add to normalized intermediate result,
12. Check for out-of-bound final results.

Example 14-18. Intrinsic Listings of atol() Replacement Using PCMPISTRI

__int64 sse4i_atol(const char* s1)
{char *p = (char *) s1;
 int NegSgn = 0;
 __m128i mask0;
 __m128i value0, value1;
 __m128i w1, w1_l8, w1_u8, w2, w3 = _mm_setzero_si128();
 __int64 xxi;
 int index, cflag, sflag, zflag, oob=0;
// check the first character is valid via lookup
if ((BtMLValDecInt[*p >> 3] & (1 << ((*p) & 7))) == 0) return 0;
// if the first character is white space, skip remaining white spaces
if (BtMLws[*p >>3] & (1 <<((*p) & 7)))
{ p ++;
 value0 = _mm_loadu_si128 ((__m128i *) listws);
skip_more_ws:
 mask0 = __m128i_strloadu_page_boundary (p);
 /* look for the 1st non-white space character */
 index = _mm_cmpistri (value0, mask0, 0x10);
 cflag = _mm_cmpistrc (value0, mask0, 0x10);
 sflag = _mm_cmpistrs (value0, mask0, 0x10);
 if(!sflag && !cflag)
 { p = (char *) ((size_t) p + 16);
 goto skip_more_ws;
 }
 else p = (char *) ((size_t) p + index);
}

(continue)

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING

14-30

if(*p == '-')
{ p++;
 NegSgn = 1;
}
else if(*p == '+') p++;

/* load up to 16 byte safely and check how many valid numeric digits we can do SIMD */
value0 = _mm_loadu_si128 ((__m128i *) rangenumint);
mask0 = __m128i_strloadu_page_boundary (p);
index = _mm_cmpistri (value0, mask0, 0x14);
zflag = _mm_cmpistrz (value0, mask0, 0x14);

/* index points to the first digit that is not a valid numeric digit */
if(!index) return 0;
else if (index == 16)
{ if(*p == '0') /* if all 16 bytes are numeric digits */
 { /* skip leading zero */
 value1 = _mm_loadu_si128 ((__m128i *) rangenumintzr);
 index = _mm_cmpistri (value1, mask0, 0x14);
 zflag = _mm_cmpistrz (value1, mask0, 0x14);
 while(index == 16 && !zflag)
 { p = (char *) ((size_t) p + 16);
 mask0 = __m128i_strloadu_page_boundary (p);
 index = _mm_cmpistri (value1, mask0, 0x14);
 zflag = _mm_cmpistrz (value1, mask0, 0x14);
 }
 /* now the 1st digit is non-zero, load up to 16 bytes and update index */
 if(index < 16)
 p = (char *) ((size_t) p + index);
 /* load up to 16 bytes of non-zero leading numeric digits */
 mask0 = __m128i_strloadu_page_boundary (p);
 /* update index to point to non-numeric character or indicate we may have more than 16 bytes */
 index = _mm_cmpistri (value0, mask0, 0x14);
 }
}
if(index == 0) return 0;
else if(index == 1) return (NegSgn? (long long) -(p[0]-48): (long long) (p[0]-48));
// Input digits in xmm are ordered in reverse order. the LS digit of output is next to eos
// least sig numeric digit aligned to byte 15 , and subtract 0x30 from each ascii code
mask0 = ShfLAlnLSByte(mask0, 16 -index);
w1_u8 = _mm_slli_si128 (mask0, 1);
w1 = _mm_add_epi8(mask0, _mm_slli_epi16 (w1_u8, 3)); /* mul by 8 and add */
w1 = _mm_add_epi8(w1, _mm_slli_epi16 (w1_u8, 1)); /* 7 LS bits per byte, in bytes 0, 2, 4, 6, 8, 10, 12, 14*/
w1 = _mm_srli_epi16(w1, 8); /* clear out upper bits of each wd*/
w2 = _mm_madd_epi16(w1, _mm_loadu_si128((__m128i *) &MulplyPairBaseP2[0])); /* multiply base^2, add adjacent
word,*/
w1_u8 = _mm_packus_epi32 (w2, w2); /* pack 4 low word of each dword into 63:0 */
w1 = _mm_madd_epi16(w1_u8, _mm_loadu_si128((__m128i *) &MulplyPairBaseP4[0])); /* multiply base^4, add
adjacent word,*/
w1 = _mm_cvtepu32_epi64(w1); /* converted dw was in 63:0, expand to qw */
w1_l8 = _mm_mul_epu32(w1, _mm_setr_epi32(100000000, 0, 0, 0));
w2 = _mm_add_epi64(w1_l8, _mm_srli_si128 (w1, 8));

(continue)

Example 14-18. Intrinsic Listings of atol() Replacement Using PCMPISTRI (Contd.)

14-31

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING

The general performance characteristics of an SSE4.2 enhanced atol() replacement have a start-up cost
that is somewhat lower than byte-granular implementations generated from C code.

if(index < 16)
{ xxi = _mm_extract_epi64(w2, 0);
 return (NegSgn? (long long) -xxi: (long long) xxi);
}
/* 64-bit integer allow up to 20 non-zero-leading digits. */
/* accumulate each 16-digit fragment*/
w3 = _mm_add_epi64(w3, w2);
/* handle next batch of up to 16 digits, 64-bit integer only allow 4 more digits */
p = (char *) ((size_t) p + 16);
if(*p == 0)
{ xxi = _mm_extract_epi64(w2, 0);
 return (NegSgn? (long long) -xxi: (long long) xxi);
}
mask0 = __m128i_strloadu_page_boundary (p);
/* index points to first non-numeric digit */
index = _mm_cmpistri (value0, mask0, 0x14);
zflag = _mm_cmpistrz (value0, mask0, 0x14);
if(index == 0) /* the first char is not valid numeric digit */
{ xxi = _mm_extract_epi64(w2, 0);
 return (NegSgn? (long long) -xxi: (long long) xxi);
}
if (index > 3) return (NegSgn? (long long) RINT64VALNEG: (long long) RINT64VALPOS);
/* multiply low qword by base^index */
w1 = _mm_mul_epu32(_mm_shuffle_epi32(w2, 0x50), _mm_setr_epi32(MulplyByBaseExpN
 [index - 1] , 0, MulplyByBaseExpN[index-1], 0));
w3 = _mm_add_epi64(w1, _mm_slli_epi64 (_mm_srli_si128(w1, 8), 32));
mask0 = ShfLAlnLSByte(mask0, 16 -index);
// convert upper 8 bytes of xmm: only least sig. 4 digits of output will be added to prev 16 digits
w1_u8 = _mm_cvtepi8_epi16(_mm_srli_si128 (mask0, 8));
/* merge 2 digit at a time with multiplier into each dword*/
w1_u8 = _mm_madd_epi16(w1_u8, _mm_loadu_si128((__m128i *) &MulplyQuadBaseExp3To0 [0]));
/* bits 63:0 has two dword integer, bits 63:32 is the LS dword of output; bits 127:64 is not needed*/
w1_u8 = _mm_cvtepu32_epi64(_mm_hadd_epi32(w1_u8, w1_u8));
w3 = _mm_add_epi64(w3, _mm_srli_si128(w1_u8, 8));
xxi = _mm_extract_epi64(w3, 0);
if(xxi >> 63)
 return (NegSgn? (long long) RINT64VALNEG: (long long) RINT64VALPOS);
else return (NegSgn? (long long) -xxi: (long long) xxi);

}

Example 14-19. Auxiliary Routines and Data Constants Used in sse4i_atol() listing

// bit lookup table of valid ascii code for decimal string conversion, white space, sign, numeric digits
static char BtMLValDecInt[32] = {0x0, 0x3e, 0x0, 0x0, 0x1, 0x28, 0xff, 0x03,
0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0};

(continue)

Example 14-18. Intrinsic Listings of atol() Replacement Using PCMPISTRI (Contd.)

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING

14-32

// bit lookup table, white space only
static char BtMLws[32] = {0x0, 0x3e, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0,
0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0};
// list of white space for sttni use
static char listws[16] =
 {0x20, 0x9, 0xa, 0xb, 0xc, 0xd, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0};
// list of numeric digits for sttni use
static char rangenumint[16] =
 {0x30, 0x39, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0};
static char rangenumintzr[16] =
 {0x30, 0x30, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0};

// we use pmaddwd to merge two adjacent short integer pair, this is the second step of merging each pair of 2-digit
integers
static short MulplyPairBaseP2[8] =
{ 100, 1, 100, 1, 100, 1, 100, 1};

// Multiplier-pair for two adjacent short integer pair, this is the third step of merging each pair of 4-digit integers
static short MulplyPairBaseP4[8] =
{ 10000, 1, 10000, 1, 10000, 1, 10000, 1 };

// multiplier for pmulld for normalization of > 16 digits
static int MulplyByBaseExpN[8] =
{ 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000};

static short MulplyQuadBaseExp3To0[8] =
{ 1000, 100, 10, 1, 1000, 100, 10, 1};

__m128i __m128i_shift_right (__m128i value, int offset)
{ switch (offset)
 {
 case 1: value = _mm_srli_si128 (value, 1); break;
 case 2: value = _mm_srli_si128 (value, 2); break;
 case 3: value = _mm_srli_si128 (value, 3); break;
 case 4: value = _mm_srli_si128 (value, 4); break;
 case 5: value = _mm_srli_si128 (value, 5); break;
 case 6: value = _mm_srli_si128 (value, 6); break;
 case 7: value = _mm_srli_si128 (value, 7); break;
 case 8: value = _mm_srli_si128 (value, 8); break;
 case 9: value = _mm_srli_si128 (value, 9); break;
 case 10: value = _mm_srli_si128 (value, 10); break;
 case 11: value = _mm_srli_si128 (value, 11); break;
 case 12: value = _mm_srli_si128 (value, 12); break;
 case 13: value = _mm_srli_si128 (value, 13); break;
 case 14: value = _mm_srli_si128 (value, 14); break;
 case 15: value = _mm_srli_si128 (value, 15); break;
 }
 return value;
}

(continue)

Example 14-19. Auxiliary Routines and Data Constants Used in sse4i_atol() listing (Contd.)

14-33

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING

/* Load string at S near page boundary safely. */

__m128i __m128i_strloadu_page_boundary (const char *s)
{
 int offset = ((size_t) s & (16 - 1));
 if (offset)
 {
 __m128i v = _mm_load_si128 ((__m128i *) (s - offset));
 __m128i zero = _mm_setzero_si128 ();
 int bmsk = _mm_movemask_epi8 (_mm_cmpeq_epi8 (v, zero));
 if ((bmsk >> offset) != 0) return __m128i_shift_right (v, offset);
 }
 return _mm_loadu_si128 ((__m128i *) s);
}

__m128i ShfLAlnLSByte(__m128i value, int offset)
{
 /*now remove constant bias, so each byte element are unsigned byte int */
 value = _mm_sub_epi8(value, _mm_setr_epi32(0x30303030, 0x30303030, 0x30303030, 0x30303030));
 switch (offset)

{
case 1:
 value = _mm_slli_si128 (value, 1); break;
case 2:
 value = _mm_slli_si128 (value, 2); break;
case 3:
 value = _mm_slli_si128 (value, 3); break;
case 4:
 value = _mm_slli_si128 (value, 4); break;
case 5:
 value = _mm_slli_si128 (value, 5); break;
case 6:
 value = _mm_slli_si128 (value, 6); break;
case 7:
 value = _mm_slli_si128 (value, 7); break;
case 8:
 value = _mm_slli_si128 (value, 8); break;
case 9:
 value = _mm_slli_si128 (value, 9); break;
case 10:
 value = _mm_slli_si128 (value, 10); break;
case 11:
 value = _mm_slli_si128 (value, 11); break;
case 12:
 value = _mm_slli_si128 (value, 12); break;
case 13:
 value = _mm_slli_si128 (value, 13); break;
case 14:
 value = _mm_slli_si128 (value, 14); break;
case 15:
 value = _mm_slli_si128 (value, 15); break;
}
return value;

}

Example 14-19. Auxiliary Routines and Data Constants Used in sse4i_atol() listing (Contd.)

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING

14-34

With an input byte stream no more than 16 non-zero-leading digits, it has a constant performance. An
input string consisting of more than 16 bytes of non-zero-leading digits can be processed in about 100
cycles or less, compared byte-granular solution needing around 200 cycles. Even for shorter input strings
of 9 non-zero-leading digits, SSE4.2 enhanced replacement can also achieve ~2X performance of byte-
granular solutions.

14.5 NUMERICAL DATA CONVERSION TO ASCII FORMAT
Conversion of binary integer data to ASCII format gets used in many situations from simple C library
functions to computations with finances. Some C libraries provides exported conversion functions like
itoa, ltoa; other libraries implement internal equivalents to support data formatting needs of standard
output functions. Among the most common binary integer to ascii conversion is conversion based on
radix 10. Example 14-20 shows the basic technique implemented in many libraries for base 10 conver-
sion to ascii of a 64-bit integer. For simplicity, the example produces lower-case output format.

Example 14-20. Conversion of 64-bit Integer to ASCII

// Convert 64-bit signed binary integer to lower-case ASCII format

static char lc_digits[]= "0123456789abcdefghijklmnopqrstuvwxyz";

int lltoa_cref(__int64 x, char* out)
{const char *digits = &lc_digits[0];
char lbuf[32] // base 10 conversion of 64-bit signed integer need only 21 digits
char * p_bkwd = &lbuf[2];
 __int64 y ;
unsigned int base = 10, len = 0, r, cnt;

if(x < 0)
{ y = -x;

while (y > 0)
{ r = (int) (y % base); // one digit at a time from least significant digit

y = y /base;
* --p_bkwd = digits[r];
len ++;

}
*out++ = ‘-’;
cnt = len +1;
while(len--) *out++ = p_bkwd++; // copy each converted digits

} else

{
y = x;
while (y > 0)
{ r = (int) (y % base); // one digit at a time from least significant digit

y = y /base;
* --p_bkwd = digits[r];
len ++;

}
cnt = len;;
while(len--) *out++ = p_bkwd++; // copy each converted digits

}
(continue)

14-35

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING

Example 14-20 employs iterative sequence that process one digit at a time using the hardware native
integer divide instruction. The reliance on integer divide can be replaced by fixed-point multiply tech-
nique discussed in Chapter 13. This is shown in Example 14-21.

out[cnt] = 0;
return (int) cnt;

}

Example 14-21. Conversion of 64-bit Integer to ASCII without Integer Division

// Convert 64-bit signed binary integer to lower-case ASCII format and
// replace integer division with fixed-point multiply
;__int64 umul_64x64(__int64* p128, __int64 u, __int64 v)
umul_64x64 PROC
 mov rax, rdx ; 2nd parameter

mul r8 ; u * v
mov qword ptr [rcx], rax
mov qword ptr [rcx+8], rdx
ret 0

umul_64x64 ENDP
#define cg_10_pms3 0xcccccccccccccccdull
static char lc_digits[]= "0123456789";

int lltoa_cref(__int64 x, char* out)
{const char *digits = &lc_digits[0];
char lbuf[32] // base 10 conversion of 64-bit signed integer need only 21 digits
char * p_bkwd = &lbuf[2];
 __int64 y, z128[2];
unsigned __int64 q;
unsigned int base = 10, len = 0, r, cnt;

if(x < 0)
{ y = -x;

while (y > 0)
{ umul_64x64(&z128[0], y, cg_10_pms3);

q = z128[1] >> 3;
q = (y < q * (unsigned __int64) base)? q-1: q;
r = (int) (y - q * (unsigned __int64) base); // one digit at a time from least significant digit
y =q;
* --p_bkwd = digits[r];
len ++;

}
*out++ = ‘-’;
cnt = len +1;
while(len--) *out++ = p_bkwd++; // copy each converted digits

} else
(continue)

Example 14-20. Conversion of 64-bit Integer to ASCII (Contd.)

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING

14-36

Example 14-21 provides significant speed improvement by eliminating the reliance on integer divisions.
However, the numeric format conversion problem is still constrained by the dependent chain that process
one digit at a time.

SIMD technique can apply to this class of integer numeric conversion problem by noting that an unsigned
64-bit integer can expand a dynamic range of up to 20 digits. Such a wide dynamic range can be
expressed as polynomial expressions of the form:

a0 + a1 *10^4 + a2 *10^8 + a3 *10^12 + a4 *10^16 where

the dynamic range of ai is between [0, 9999].

Reduction of an unsigned 64-bit integer into up-to 5 reduced-range coefficients can be computed using
fixed-point multiply in stages. Once the dynamic range of coefficients are reduced to no more than 4
digits, one can apply SIMD techniques to compute ascii conversion in parallel.

The SIMD technique to convert an unsigned 16-bit integer via radix 10 with input dynamic range [0,
9999] is shown in Figure 14-4. This technique can also be generalized to apply to other non-power-of-2
radix that is less than 16.

{
y = x;
while (y > 0)
{ umul_64x64(&z128[0], y, cg_10_pms3);

q = z128[1] >> 3;
q = (y < q * (unsigned __int64) base)? q-1: q;
r = (int) (y - q * (unsigned __int64) base); // one digit at a time from least significant digit
y =q;
* --p_bkwd = digits[r];
len ++;

}
cnt = len;;
while(len--) *out++ = p_bkwd++; // copy each converted digits

}
out[cnt] = 0;
return cnt;

}

Example 14-21. Conversion of 64-bit Integer to ASCII without Integer Division (Contd.)

14-37

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING

To handle greater input dynamic ranges, the input is reduced into multiple unsigned short integers and
converted sequentially. The most significant U16 conversion is computed first, followed by the conversion
of the next four significant digits.

Example 14-22 shows the fixed-point multiply combined with parallel remainder computation using SSE4
instructions for 64-bit integer conversion up to 19 digits.

Figure 14-4. Compute Four Remainders of Unsigned Short Integer in Parallel

Example 14-22. Conversion of 64-bit Integer to ASCII Using SSE4

#include <smmintrin.h>
#include <stdio.h>
#define QWCG10to8 0xabcc77118461cefdull
#define QWCONST10to8 100000000ull

/* macro to convert input parameter of short integer "hi4" into output variable "x3" which is __m128i;
 the input value "hi4" is assume to be less than 10^4;
 the output is 4 single-digit integer between 0-9, located in the low byte of each dword,
 most significant digit in lowest DW.
 implicit overwrites: locally allocated __m128i variable "x0", "x2"
*/

(continue)

0127
U (range < 10^4) -> r0 + r1 *10 + r2*100 + r3*1000

U UUU 0x00x0 0x00x0

U/100 U/10000U/1000U/10 0x00x0 0x00x0

U/100 0x0U/1000U/10 U/1000U/10 U/100U

U/1000U/10 - (U/100)*10 U/100-(U/1000)*10U-(U/10)*10

0127

r3r2r1r0

U32 (range <10^8) -> r0 + r1 *10 + r2*100 + r3*1000 + r4*10^4 + r5*10^5 + r6*10^6 + r7*10^7

0127

r3r2r1r0 r7r6r5r4

Generalization to dynamic range of input value beyond 10^4...

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING

14-38

#define __ParMod10to4SSSE3(x3, hi4) \
{ \

x0 = _mm_shuffle_epi32(_mm_cvtsi32_si128((hi4)), 0); \
x2 = _mm_mulhi_epu16(x0, _mm_loadu_si128((__m128i *) quoTenThsn_mulplr_d));\
x2 = _mm_srli_epi32(_mm_madd_epi16(x2, _mm_loadu_si128((__m128i *) quo4digComp_mulplr_d)), 10); \
(x3) = _mm_insert_epi16(_mm_slli_si128(x2, 6), (int) (hi4), 1); \
(x3) = _mm_or_si128(x2, (x3));\
(x3) = _mm_madd_epi16((x3), _mm_loadu_si128((__m128i *) mten_mulplr_d)) ;\

}

/* macro to convert input parameter of the 3rd dword element of "t5" (__m128i type)
 into output variable "x3" which is __m128i;
 the third dword element "t5" is assume to be less than 10^4, the 4th dword must be 0;
 the output is 4 single-digit integer between 0-9, located in the low byte of each dword,
 MS digit in LS DW.
 implicit overwrites: locally allocated __m128i variable "x0", "x2"
*/

#define __ParMod10to4SSSE3v(x3, t5) \
{ \

x0 = _mm_shuffle_epi32(t5, 0xaa); \
x2 = _mm_mulhi_epu16(x0, _mm_loadu_si128((__m128i *) quoTenThsn_mulplr_d));\
x2 = _mm_srli_epi32(_mm_madd_epi16(x2, _mm_loadu_si128((__m128i *) quo4digComp_mulplr_d)), 10); \
(x3) = _mm_or_si128(_mm_slli_si128(x2, 6), _mm_srli_si128(t5, 6)); \
(x3) = _mm_or_si128(x2, (x3));\
(x3) = _mm_madd_epi16((x3), _mm_loadu_si128((__m128i *) mten_mulplr_d)) ;\

}

static __attribute__ ((aligned(16))) short quo4digComp_mulplr_d[8] =
{ 1024, 0, 64, 0, 8, 0, 0, 0};
static __attribute__ ((aligned(16))) short quoTenThsn_mulplr_d[8] =
{ 0x199a, 0, 0x28f6, 0, 0x20c5, 0, 0x1a37, 0};
static __attribute__ ((aligned(16))) short mten_mulplr_d[8] =
{ -10, 1, -10, 1, -10, 1, -10, 1};
static __attribute__ ((aligned(16))) unsigned short bcstpklodw[8] =
{0x080c, 0x0004, 0x8080, 0x8080, 0x8080, 0x8080, 0x8080, 0x8080};
static __attribute__ ((aligned(16))) unsigned short bcstpkdw1[8] =
{0x8080, 0x8080, 0x080c, 0x0004, 0x8080, 0x8080, 0x8080, 0x8080};
static __attribute__ ((aligned(16))) unsigned short bcstpkdw2[8] =
{0x8080, 0x8080, 0x8080, 0x8080, 0x080c, 0x0004, 0x8080, 0x8080};
static __attribute__ ((aligned(16))) unsigned short bcstpkdw3[8] =
{0x8080, 0x8080, 0x8080, 0x8080, 0x8080, 0x8080, 0x080c, 0x0004};
static __attribute__ ((aligned(16))) int asc0bias[4] =
{0x30, 0x30, 0x30, 0x30};
static __attribute__ ((aligned(16))) int asc0reversebias[4] =
{0xd0d0d0d0, 0xd0d0d0d0, 0xd0d0d0d0, 0xd0d0d0d0};
static __attribute__ ((aligned(16))) int pr_cg_10to4[4] =
{ 0x68db8db, 0 , 0x68db8db, 0};
static __attribute__ ((aligned(16))) int pr_1_m10to4[4] =
{ -10000, 0 , 1, 0};

(continue)

Example 14-22. Conversion of 64-bit Integer to ASCII Using SSE4 (Contd.)

14-39

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING

/*input value "xx" is less than 2^63-1 */
/* In environment that does not support binary integer arithmetic on __int128_t,
 this helper can be done as asm routine
*/
__inline __int64_t u64mod10to8(__int64_t * pLo, __int64_t xx)
{__int128_t t, b = (__int128_t)QWCG10to8;
__int64_t q;

t = b * (__int128_t)xx;
q = t>>(64 +26); // shift count associated with QWCG10to8
*pLo = xx - QWCONST10to8 * q;
return q;

}

/* convert integer between 2^63-1 and 0 to ASCII string */
int sse4i_q2a_u63 (__int64_t xx, char *ps)
{int j, tmp, idx=0, cnt;
__int64_t lo8, hi8, abv16, temp;
__m128i x0, m0, x1, x2, x3, x4, x5, x6, m1;
long long w, u;

if (xx < 10000)
{ j = ubs_Lt10k_2s_i2 ((unsigned) xx, ps);

ps[j] = 0; return j;
}
if (xx < 100000000) // dynamic range of xx is less than 32-bits
{ m0 = _mm_cvtsi32_si128(xx);

x1 = _mm_shuffle_epi32(m0, 0x44); // broadcast to dw0 and dw2
 x3 = _mm_mul_epu32(x1, _mm_loadu_si128((__m128i *) pr_cg_10to4));
 x3 = _mm_mullo_epi32(_mm_srli_epi64(x3, 40), _mm_loadu_si128((__m128i *)pr_1_m10to4));

m0 = _mm_add_epi32(_mm_srli_si128(x1, 8), x3); // quotient in dw2, remainder in dw0
 __ParMod10to4SSSE3v(x3, m0); // pack single digit from each dword to dw0
 x4 = _mm_shuffle_epi8(x3, _mm_loadu_si128((__m128i *) bcstpklodw));
 __ParMod10to4SSSE3v(x3, _mm_slli_si128(m0, 8)); // move the remainder to dw2 first
 x5 = _mm_shuffle_epi8(x3, _mm_loadu_si128((__m128i *) bcstpkdw1));
 x4 = _mm_or_si128(x4, x5); // pack digits in bytes 0-7 with leading 0
 cnt = 8;
}
else
{ hi8 = u64mod10to8(&lo8, xx);

if (hi8 < 10000) // decompose lo8 dword into quotient and remainder mod 10^4
{ m0 = _mm_cvtsi32_si128(lo8);

x2 = _mm_shuffle_epi32(m0, 0x44);
x3 = _mm_mul_epu32(x2, _mm_loadu_si128((__m128i *)pr_cg_10to4));
x3 = _mm_mullo_epi32(_mm_srli_epi64(x3, 40), _mm_loadu_si128((__m128i *)pr_1_m10to4));
m0 = _mm_add_epi32(_mm_srli_si128(x2, 8), x3); // quotient in dw0
__ParMod10to4SSSE3(x3, hi8); // handle digist 11:8 first
x4 = _mm_shuffle_epi8(x3, _mm_loadu_si128((__m128i *) bcstpklodw));
__ParMod10to4SSSE3v(x3, m0); // handle digits 7:4
x5 = _mm_shuffle_epi8(x3, _mm_loadu_si128((__m128i *) bcstpkdw1));
x4 = _mm_or_si128(x4, x5);
__ParMod10to4SSSE3v(x3, _mm_slli_si128(m0, 8));
x5 = _mm_shuffle_epi8(x3, _mm_loadu_si128((__m128i *) bcstpkdw2));
x4 = _mm_or_si128(x4, x5); // pack single digist in bytes 0-11 with leading 0
cnt = 12;

}
(continue)

Example 14-22. Conversion of 64-bit Integer to ASCII Using SSE4 (Contd.)

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING

14-40

else
{ cnt = 0;

if (hi8 >= 100000000) // handle input greater than 10^16
{ abv16 = u64mod10to8(&temp, (__int64_t)hi8);

hi8 = temp;
__ParMod10to4SSSE3(x3, abv16);
x6 = _mm_shuffle_epi8(x3, _mm_loadu_si128((__m128i *) bcstpklodw));
cnt = 4;

} // start with handling digits 15:12
m0 = _mm_cvtsi32_si128(hi8);
x2 = _mm_shuffle_epi32(m0, 0x44);
x3 = _mm_mul_epu32(x2, _mm_loadu_si128((__m128i *)pr_cg_10to4));
x3 = _mm_mullo_epi32(_mm_srli_epi64(x3, 40), _mm_loadu_si128((__m128i *)pr_1_m10to4));
m0 = _mm_add_epi32(_mm_srli_si128(x2, 8), x3);
m1 = _mm_cvtsi32_si128(lo8);
x2 = _mm_shuffle_epi32(m1, 0x44);
x3 = _mm_mul_epu32(x2, _mm_loadu_si128((__m128i *)pr_cg_10to4));
x3 = _mm_mullo_epi32(_mm_srli_epi64(x3, 40), _mm_loadu_si128((__m128i *)pr_1_m10to4));
m1 = _mm_add_epi32(_mm_srli_si128(x2, 8), x3);
__ParMod10to4SSSE3v(x3, m0);
x4 = _mm_shuffle_epi8(x3, _mm_loadu_si128((__m128i *) bcstpklodw));
__ParMod10to4SSSE3v(x3, _mm_slli_si128(m0, 8));
x5 = _mm_shuffle_epi8(x3, _mm_loadu_si128((__m128i *) bcstpkdw1));
x4 = _mm_or_si128(x4, x5);
__ParMod10to4SSSE3v(x3, m1);
x5 = _mm_shuffle_epi8(x3, _mm_loadu_si128((__m128i *) bcstpkdw2));
x4 = _mm_or_si128(x4, x5);
__ParMod10to4SSSE3v(x3, _mm_slli_si128(m1, 8));
x5 = _mm_shuffle_epi8(x3, _mm_loadu_si128((__m128i *) bcstpkdw3));
x4 = _mm_or_si128(x4, x5);
cnt += 16;

}
}
m0 = _mm_loadu_si128((__m128i *) asc0reversebias);
if(cnt > 16)
{ tmp = _mm_movemask_epi8(_mm_cmpgt_epi8(x6,_mm_setzero_si128()));

x6 = _mm_sub_epi8(x6, m0);
} else {

tmp = _mm_movemask_epi8(_mm_cmpgt_epi8(x4,_mm_setzero_si128()));
}

#ifndef __USE_GCC__
__asm__ ("bsfl %1, %%ecx; movl %%ecx, %0;" :"=r"(idx) :"r"(tmp) : "%ecx");

#else
_BitScanForward(&idx, tmp);

#endif
x4 = _mm_sub_epi8(x4, m0);
cnt -= idx;
w = _mm_cvtsi128_si64(x4);

switch(cnt)
{ case5:*ps++ = (char) (w >>24); *(unsigned *) ps = (w >>32);

break;
case6:*(short *)ps = (short) (w >>16); *(unsigned *) (&ps[2]) = (w >>32);

break;
(continue)

Example 14-22. Conversion of 64-bit Integer to ASCII Using SSE4 (Contd.)

14-41

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING

case7:*ps = (char) (w >>8); *(short *) (&ps[1]) = (short) (w >>16);
*(unsigned *) (&ps[3]) = (w >>32);
break;

case 8: *(long long *)ps = w;
break;
case9:*ps++ = (char) (w >>24);

*(long long *) (&ps[0]) = _mm_cvtsi128_si64(_mm_srli_si128(x4, 4));
break;

case10:*(short *)ps = (short) (w >>16);
*(long long *) (&ps[2]) = _mm_cvtsi128_si64(_mm_srli_si128(x4, 4));
break;

case11:*ps = (char) (w >>8); *(short *) (&ps[1]) = (short) (w >>16);
*(long long *) (&ps[3]) = _mm_cvtsi128_si64(_mm_srli_si128(x4, 4));

break;
case 12: *(unsigned *)ps = w;

*(long long *) (&ps[4]) = _mm_cvtsi128_si64(_mm_srli_si128(x4, 4));
break;

case13:*ps++ = (char) (w >>24); *(unsigned *) ps = (w >>32);
*(long long *) (&ps[4]) = _mm_cvtsi128_si64(_mm_srli_si128(x4, 8));
break;

case14:*(short *)ps = (short) (w >>16); *(unsigned *) (&ps[2]) = (w >>32);
*(long long *) (&ps[6]) = _mm_cvtsi128_si64(_mm_srli_si128(x4, 8));

break;
case15: *ps = (char) (w >>8);

*(short *) (&ps[1]) = (short) (w >>16); *(unsigned *) (&ps[3]) = (w >>32);
*(long long *) (&ps[7]) = _mm_cvtsi128_si64(_mm_srli_si128(x4, 8));
break;

case 16: _mm_storeu_si128((__m128i *) ps, x4);
break;

case17:u = _mm_cvtsi128_si64(x6); *ps++ = (char) (u >>24);
_mm_storeu_si128((__m128i *) &ps[0], x4);
break;

case18:u = _mm_cvtsi128_si64(x6); *(short *)ps = (short) (u >>16);
_mm_storeu_si128((__m128i *) &ps[2], x4);
break;

case19:u = _mm_cvtsi128_si64(x6); *ps = (char) (u >>8);
*(short *) (&ps[1]) = (short) (u >>16);
_mm_storeu_si128((__m128i *) &ps[3], x4);
break;

case20:u = _mm_cvtsi128_si64(x6); *(unsigned *)ps = (short) (u);
_mm_storeu_si128((__m128i *) &ps[4], x4);
break;

}
return cnt;

}
(continue)

Example 14-22. Conversion of 64-bit Integer to ASCII Using SSE4 (Contd.)

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING

14-42

/* convert input value into 4 single digits via parallel fixed-point arithmetic with each dword
element, and pack each digit into low dword element and write to buffer without leading
white space; input value must be < 10000 and > 9

*/
__inline int ubs_Lt10k_2s_i2(int x_Lt10k, char *ps)
{int tmp;
__m128i x0, m0, x2, x3, x4, compv;
// Use a set of scaling constant to compensate for lack for per-element shift count

compv = _mm_loadu_si128((__m128i *) quo4digComp_mulplr_d);
// broadcast input value to each dword element

x0 = _mm_shuffle_epi32(_mm_cvtsi32_si128(x_Lt10k), 0);
// low to high dword in x0 : u16, u16, u16, u16
m0 = _mm_loadu_si128((__m128i *) quoTenThsn_mulplr_d); // load 4 congruent consts
x2 = _mm_mulhi_epu16(x0, m0); // parallel fixed-point multiply for base 10,100, 1000, 10000
x2 = _mm_srli_epi32(_mm_madd_epi16(x2, compv), 10);

// dword content in x2: u16/10, u16/100, u16/1000, u16/10000
x3 = _mm_insert_epi16(_mm_slli_si128(x2, 6), (int) x_Lt10k, 1);
//word content in x3: 0, u16, 0, u16/10, 0, u16/100, 0, u16/1000

x4 = _mm_or_si128(x2, x3);
// perform parallel remainder operation with each word pair to derive 4 unbiased single-digit result
x4 = _mm_madd_epi16(x4, _mm_loadu_si128((__m128i *) mten_mulplr_d)) ;
x2 = _mm_add_epi32(x4, _mm_loadu_si128((__m128i *) asc0bias)) ;
// pack each ascii-biased digits from respective dword to the low dword element
x3 = _mm_shuffle_epi8(x2, _mm_loadu_si128((__m128i *) bcstpklodw));

// store ascii result to buffer without leading white space
if (x_Lt10k > 999)
{ *(int *) ps = _mm_cvtsi128_si32(x3);
 return 4;
}
else if (x_Lt10k > 99)
{ tmp = _mm_cvtsi128_si32(x3);
 *ps = (char) (tmp >>8);
 *((short *) (++ps)) = (short) (tmp >>16);
 return 3;
}
else if (x_Lt10k > 9) // take advantage of reduced dynamic range > 9 to reduce branching
{ *((short *) ps) = (short) _mm_extract_epi16(x3, 1);

return 2;
}
*ps = '0' + x_Lt10k;
return 1;

}
(continue)

Example 14-22. Conversion of 64-bit Integer to ASCII Using SSE4 (Contd.)

14-43

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING

When an ltoa()-like utility implementation executes native IDIV instruction to convert one digit at a time,
it can produce output at a speed of about 45-50 cycles per digit. Using fixed-point multiply to replace
IDIV (like Example 14-21) can reduce 10-15 cycles per digit. Using 128-bit SIMD technique to perform
parallel fixed-point arithmetic, the output speed can further improve to 4-5 cycles per digit with recent
Intel microarchitectures like Sandy Bridge and Nehalem.

The range-reduction technique demonstrated in Example 14-22 reduces up-to 19 levels of dependency
chain down to 5 hierarchy and allows parallel SIMD technique to perform 4-wide numeric conversion.
This technique can also be done with only SSSE3, and with similar speed improvement.

Support for conversion to wide character strings can be easily adapted using the code snippet shown in
Example 14-23.

char lower_digits[] = "0123456789";

int ltoa_sse4 (const long long s1, char * buf)
{long long temp ;
int j = 1, len = 0;
const char *digits = &lower_digits[0];

if(s1 < 0) {
temp = -s1;
len ++;
 beg[0] = '-';
if(temp < 10) beg[1] = digits[(int) temp];
else len += sse4i_q2a_u63(temp, &buf[1]); // parallel conversion in 4-digit granular operation

}
else {
if(s1 < 10) beg[0] = digits[(int)s1];
else len += sse4i_q2a_u63(s1, &buf[1]);
}
buf[len] = 0;
return len;

}

Example 14-23. Conversion of 64-bit Integer to Wide Character String Using SSE4

static __attribute__ ((aligned(16))) int asc0bias[4] =
{0x30, 0x30, 0x30, 0x30};

// exponent_x must be < 10000 and > 9
__inline int ubs_Lt10k_2wcs_i2(int x_Lt10k, wchar_t *ps)
{
__m128i x0, m0, x2, x3, x4, compv;

compv = _mm_loadu_si128((__m128i *) quo4digComp_mulplr_d);
x0 = _mm_shuffle_epi32(_mm_cvtsi32_si128(x_Lt10k), 0); // low to high dw: u16, u16, u16, u16
m0 = _mm_loadu_si128((__m128i *) quoTenThsn_mulplr_d);

 // u16, 0, u16, 0, u16, 0, u16, 0
x2 = _mm_mulhi_epu16(x0, m0);
x2 = _mm_srli_epi32(_mm_madd_epi16(x2, compv), 10); // u16/10, u16/100, u16/1000, u16/10000

x3 = _mm_insert_epi16(_mm_slli_si128(x2, 6), (int) x_Lt10k, 1); // 0, u16, 0, u16/10, 0, u16/100, 0, u16/1000
x4 = _mm_or_si128(x2, x3);
x4 = _mm_madd_epi16(x4, _mm_loadu_si128((__m128i *) mten_mulplr_d)) ;

(continue)

Example 14-22. Conversion of 64-bit Integer to ASCII Using SSE4 (Contd.)

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING

14-44

x2 = _mm_add_epi32(x4, _mm_loadu_si128((__m128i *) asc0bias)) ;
x2 = _mm_shuffle_epi32(x2, 0x1b); // switch sequence
if (x_Lt10k > 999) {

_mm_storeu_si128((__m128i *) ps, x2);
return 4;

}
else if (x_Lt10k > 99) {

*ps++ = (wchar_t) _mm_cvtsi128_si32(_mm_srli_si128(x2, 4));
*(long long *) ps = _mm_cvtsi128_si64(_mm_srli_si128(x2, 8));
return 3;

}
else if (x_Lt10k > 9){ // take advantage of reduced dynamic range > 9 to reduce branching

*(long long *) ps = _mm_cvtsi128_si64(_mm_srli_si128(x2, 8));
 return 2;
}
*ps = L'0' + x_Lt10k;
return 1;

}

long long sse4i_q2wcs_u63 (__int64_t xx, wchar_t *ps)
{int j, tmp, idx=0, cnt;
__int64_t lo8, hi8, abv16, temp;
__m128i x0, m0, x1, x2, x3, x4, x5, x6, x7, m1;

if (xx < 10000) {
j = ubs_Lt10k_2wcs_i2 ((unsigned) xx, ps); ps[j] = 0; return j;

}
if (xx < 100000000) { // dynamic range of xx is less than 32-bits
 m0 = _mm_cvtsi32_si128(xx);
 x1 = _mm_shuffle_epi32(m0, 0x44); // broadcast to dw0 and dw2
 x3 = _mm_mul_epu32(x1, _mm_loadu_si128((__m128i *) pr_cg_10to4));
 x3 = _mm_mullo_epi32(_mm_srli_epi64(x3, 40), _mm_loadu_si128((__m128i *)pr_1_m10to4));
 m0 = _mm_add_epi32(_mm_srli_si128(x1, 8), x3); // quotient in dw2, remainder in dw0
 __ParMod10to4SSSE3v(x3, m0);
 //x4 = _mm_shuffle_epi8(x3, _mm_loadu_si128((__m128i *) bcstpklodw));
 x3 = _mm_shuffle_epi32(x3, 0x1b);
 __ParMod10to4SSSE3v(x4, _mm_slli_si128(m0, 8)); // move the remainder to dw2 first
 x4 = _mm_shuffle_epi32(x4, 0x1b);
 cnt = 8;
} else {
 hi8 = u64mod10to8(&lo8, xx);
 if(hi8 < 10000) {

m0 = _mm_cvtsi32_si128(lo8);
x2 = _mm_shuffle_epi32(m0, 0x44);
x3 = _mm_mul_epu32(x2, _mm_loadu_si128((__m128i *)pr_cg_10to4));
x3 = _mm_mullo_epi32(_mm_srli_epi64(x3, 40), _mm_loadu_si128((__m128i *)pr_1_m10to4));

m0 = _mm_add_epi32(_mm_srli_si128(x2, 8), x3);
__ParMod10to4SSSE3(x3, hi8);

 x3 = _mm_shuffle_epi32(x3, 0x1b);
__ParMod10to4SSSE3v(x4, m0);

 x4 = _mm_shuffle_epi32(x4, 0x1b);
(continue)

Example 14-23. Conversion of 64-bit Integer to Wide Character String Using SSE4 (Contd.)

14-45

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING

__ParMod10to4SSSE3v(x5, _mm_slli_si128(m0, 8));
 x5 = _mm_shuffle_epi32(x5, 0x1b);

cnt = 12;
 } else {
 cnt = 0;

if (hi8 > 100000000) {
 abv16 = u64mod10to8(&temp, (__int64_t)hi8);

 hi8 = temp;
 __ParMod10to4SSSE3(x7, abv16);

 x7 = _mm_shuffle_epi32(x7, 0x1b);
 cnt = 4;

 }
m0 = _mm_cvtsi32_si128(hi8);
x2 = _mm_shuffle_epi32(m0, 0x44);
x3 = _mm_mul_epu32(x2, _mm_loadu_si128((__m128i *)pr_cg_10to4));
x3 = _mm_mullo_epi32(_mm_srli_epi64(x3, 40), _mm_loadu_si128((__m128i *)pr_1_m10to4));
m0 = _mm_add_epi32(_mm_srli_si128(x2, 8), x3);
m1 = _mm_cvtsi32_si128(lo8);
x2 = _mm_shuffle_epi32(m1, 0x44);
x3 = _mm_mul_epu32(x2, _mm_loadu_si128((__m128i *)pr_cg_10to4));
x3 = _mm_mullo_epi32(_mm_srli_epi64(x3, 40), _mm_loadu_si128((__m128i *)pr_1_m10to4));
m1 = _mm_add_epi32(_mm_srli_si128(x2, 8), x3);
__ParMod10to4SSSE3v(x3, m0);

 x3 = _mm_shuffle_epi32(x3, 0x1b);
__ParMod10to4SSSE3v(x4, _mm_slli_si128(m0, 8));

 x4 = _mm_shuffle_epi32(x4, 0x1b);
__ParMod10to4SSSE3v(x5, m1);

 x5 = _mm_shuffle_epi32(x5, 0x1b);
__ParMod10to4SSSE3v(x6, _mm_slli_si128(m1, 8));

 x6 = _mm_shuffle_epi32(x6, 0x1b);
cnt += 16;

 }
}

m0 = _mm_loadu_si128((__m128i *) asc0bias);
if(cnt > 16) {

tmp = _mm_movemask_epi8(_mm_cmpgt_epi32(x7,_mm_setzero_si128())) ;
//x7 = _mm_add_epi32(x7, m0);

} else {
tmp = _mm_movemask_epi8(_mm_cmpgt_epi32(x3,_mm_setzero_si128()));

}
#ifndef __USE_GCC__

__asm__ ("bsfl %1, %%ecx; movl %%ecx, %0;" :"=r"(idx) :"r"(tmp) : "%ecx");
#else

_BitScanForward(&idx, tmp);
#endif

x3 = _mm_add_epi32(x3, m0);
cnt -= (idx >>2);
x4 = _mm_add_epi32(x4, m0);
switch(cnt) {
case5:*ps++ = (wchar_t) _mm_cvtsi128_si32(_mm_srli_si128(x3, 12));

 _mm_storeu_si128((__m128i *) ps, x4);
break;
case6:*(long long *)ps = _mm_cvtsi128_si64(_mm_srli_si128(x3, 8));

 _mm_storeu_si128((__m128i *) &ps[2], x4);
break;

(continue)

Example 14-23. Conversion of 64-bit Integer to Wide Character String Using SSE4 (Contd.)

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING

14-46

case7:*ps++ = (wchar_t) _mm_cvtsi128_si32(_mm_srli_si128(x3, 4));
 *(long long *) ps = _mm_cvtsi128_si64(_mm_srli_si128(x3, 8));
 _mm_storeu_si128((__m128i *) &ps[2], x4);
break;
case 8: _mm_storeu_si128((__m128i *) &ps[0], x3);

_mm_storeu_si128((__m128i *) &ps[4], x4);
break;
case9:*ps++ = (wchar_t) _mm_cvtsi128_si32(_mm_srli_si128(x3, 12));

x5 = _mm_add_epi32(x5, m0);
_mm_storeu_si128((__m128i *) ps, x4);
_mm_storeu_si128((__m128i *) &ps[4], x5);

break;
case10:*(long long *)ps = _mm_cvtsi128_si64(_mm_srli_si128(x3, 8));

x5 = _mm_add_epi32(x5, m0);
_mm_storeu_si128((__m128i *) &ps[2], x4);
_mm_storeu_si128((__m128i *) &ps[6], x5);

break;

case11:*ps++ = (wchar_t) _mm_cvtsi128_si32(_mm_srli_si128(x3, 4));
 *(long long *) ps = _mm_cvtsi128_si64(_mm_srli_si128(x3, 8));

x5 = _mm_add_epi32(x5, m0);
 _mm_storeu_si128((__m128i *) &ps[2], x4);

_mm_storeu_si128((__m128i *) &ps[6], x5);
break;
case 12: _mm_storeu_si128((__m128i *) &ps[0], x3);

x5 = _mm_add_epi32(x5, m0);
_mm_storeu_si128((__m128i *) &ps[4], x4);
_mm_storeu_si128((__m128i *) &ps[8], x5);

break;
case13:*ps++ = (wchar_t) _mm_cvtsi128_si32(_mm_srli_si128(x3, 12));

x5 = _mm_add_epi32(x5, m0);
_mm_storeu_si128((__m128i *) ps, x4);
x6 = _mm_add_epi32(x6, m0);
_mm_storeu_si128((__m128i *) &ps[4], x5);
_mm_storeu_si128((__m128i *) &ps[8], x6);

break;
case14:*(long long *)ps = _mm_cvtsi128_si64(_mm_srli_si128(x3, 8));

x5 = _mm_add_epi32(x5, m0);
_mm_storeu_si128((__m128i *) &ps[2], x4);
x6 = _mm_add_epi32(x6, m0);
_mm_storeu_si128((__m128i *) &ps[6], x5);
_mm_storeu_si128((__m128i *) &ps[10], x6);

break;
case15:*ps++ = (wchar_t) _mm_cvtsi128_si32(_mm_srli_si128(x3, 4));
 *(long long *) ps = _mm_cvtsi128_si64(_mm_srli_si128(x3, 8));

x5 = _mm_add_epi32(x5, m0);
 _mm_storeu_si128((__m128i *) &ps[2], x4);

x6 = _mm_add_epi32(x6, m0);
_mm_storeu_si128((__m128i *) &ps[6], x5);
_mm_storeu_si128((__m128i *) &ps[10], x6);

break;
(continue)

Example 14-23. Conversion of 64-bit Integer to Wide Character String Using SSE4 (Contd.)

14-47

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING

case 16: _mm_storeu_si128((__m128i *) &ps[0], x3);
x5 = _mm_add_epi32(x5, m0);
_mm_storeu_si128((__m128i *) &ps[4], x4);
x6 = _mm_add_epi32(x6, m0);
_mm_storeu_si128((__m128i *) &ps[8], x5);
_mm_storeu_si128((__m128i *) &ps[12], x6);

break;

case17:x7 = _mm_add_epi32(x7, m0);
*ps++ = (wchar_t) _mm_cvtsi128_si32(_mm_srli_si128(x7, 12));
x5 = _mm_add_epi32(x5, m0);
_mm_storeu_si128((__m128i *) ps, x3);
x6 = _mm_add_epi32(x6, m0);
_mm_storeu_si128((__m128i *) &ps[4], x4);
_mm_storeu_si128((__m128i *) &ps[8], x5);
_mm_storeu_si128((__m128i *) &ps[12], x6);

break;
case18:x7 = _mm_add_epi32(x7, m0);

*(long long *)ps = _mm_cvtsi128_si64(_mm_srli_si128(x7, 8));
x5 = _mm_add_epi32(x5, m0);
_mm_storeu_si128((__m128i *) &ps[2], x3);
x6 = _mm_add_epi32(x6, m0);
_mm_storeu_si128((__m128i *) &ps[6], x4);
_mm_storeu_si128((__m128i *) &ps[10], x5);
_mm_storeu_si128((__m128i *) &ps[14], x6);

break;
case19:x7 = _mm_add_epi32(x7, m0);

*ps++ = (wchar_t) _mm_cvtsi128_si64(_mm_srli_si128(x7, 4));
*(long long *)ps = _mm_cvtsi128_si64(_mm_srli_si128(x7, 8));
x5 = _mm_add_epi32(x5, m0);
_mm_storeu_si128((__m128i *) &ps[2], x3);
x6 = _mm_add_epi32(x6, m0);
_mm_storeu_si128((__m128i *) &ps[6], x4);
_mm_storeu_si128((__m128i *) &ps[10], x5);
_mm_storeu_si128((__m128i *) &ps[14], x6);

break;
case20:x7 = _mm_add_epi32(x7, m0);

_mm_storeu_si128((__m128i *) &ps[0], x7);
x5 = _mm_add_epi32(x5, m0);
_mm_storeu_si128((__m128i *) &ps[4], x3);
x6 = _mm_add_epi32(x6, m0);
_mm_storeu_si128((__m128i *) &ps[8], x4);
_mm_storeu_si128((__m128i *) &ps[12], x5);
_mm_storeu_si128((__m128i *) &ps[16], x6);

break;
}
return cnt;

}

Example 14-23. Conversion of 64-bit Integer to Wide Character String Using SSE4 (Contd.)

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING

14-48

14.5.1 Large Integer Numeric Computation

14.5.1.1 MULX Instruction and Large Integer Numeric Computation
The MULX instruction is similar to the MUL instruction but does not read or write arithmetic flags and is
enhanced with more flexibility in register allocations for the destination operands. These enhancements
allow better out-of-order operation of the hardware and for software to intermix add-carry instruction
without corrupting the carry chain.

For computations calculating large integers (e.g. 2048-bit RSA key), MULX can improve performance
significantly over techniques based on MUL/ADC chain sequences (see
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-large-integer-arith-
metic-paper.pdf). AVX2 can be used to build efficient techniques, see Section 15.16.2.

Example 14-24 gives an example of how MULX is used to improve the carry chain computation of integer
numeric greater than 64-bit wide.

Using MULX to implement 128-bit integer output can be a useful building block for implementing library
functions ranging from atof/strtod or intermediate mantisa computation or mantissa/exponent normal-
ization in 128-bit binary decimal floating-point operations. Example 14-25 gives examples of building-
block macros, used in 128-bit binary-decimal floating-point operations, which can take advantage MULX
to calculate intermediate results of multiple-precision integers of widths between 128 to 256 bits. Details
of binary-integer-decimal (BID) floating-point format and library implementation of BID operation can be
found at http://software.intel.com/en-us/articles/intel-decimal-floating-point-math-library.

Example 14-24. MULX and Carry Chain in Large Integer Numeric

mov rax, [rsi+8*1]

mul rbp ; rdx:rax = rax * rbp

mov r8, rdx

add r9, rax

adc r8, 0

add r9, rbx

adc r8, 0

mulx rbx, r8, [rsi+8*1] ; rbx:r8 = rdx * [rsi+8*1]

add r8, r9

adc rbx, 0

add r8, rbp

adc rbx, 0

http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-large-integer-arithmetic-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-large-integer-arithmetic-paper.pdf

14-49

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING

Example 14-25. Building-block Macro Used in Binary Decimal Floating-point Operations

// Portable C macro of 64x64-bit product using 32-bit word granular operations

// Output: BID_UINT128 P128

#define __mul_64x64_to_128MACH(P128, CX64, CY64) \

{ \

 BID_UINT64 CXH,CXL,CYH,CYL,PL,PH,PM,PM2; \

 CXH = (CX64) >> 32; \

 CXL = (BID_UINT32)(CX64); \

 CYH = (CY64) >> 32; \

 CYL = (BID_UINT32)(CY64); \

 PM = CXH*CYL; \

 PH = CXH*CYH; \

 PL = CXL*CYL; \

 PM2 = CXL*CYH; \

 PH += (PM>>32); \

 PM = (BID_UINT64)((BID_UINT32)PM)+PM2+(PL>>32); \

 (P128).w[1] = PH + (PM>>32); \

 (P128).w[0] = (PM<<32)+(BID_UINT32)PL; \

}

// 64x64-bit product using intrinsic producing 128-bit output in 64-bit mode

// Output: BID_UINT128 P128

#define __mul_64x64_to_128MACH_x64(P128, CX64, CY64) \

{ \

(P128).w[0] = mulx_u64(CX64, CY64, &((P128).w[1])); \

}

SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING

14-50

CHAPTER 15
OPTIMIZATIONS FOR INTEL® AVX, FMA AND AVX2

Intel® Advanced Vector Extension (Intel® AVX), is a major enhancement to Intel Architecture. It extends
the functionality of previous generations of 128-bit SSE vector instructions and increased the vector
register width to support 256-bit operations. The Intel AVX ISA enhancement is focused on float-point
instructions. Some 256-bit integer vectors are supported via floating-point to integer and integer to
floating-point conversions.

Sandy Bridge microarchitecture implements the Intel AVX instructions, in most cases, on 256-bit hard-
ware. Thus, each core has 256-bit floating-point Add and Multiply units. The Divide and Square-root
units are not enhanced to 256-bits. Thus, Intel AVX instructions use the 128-bit hardware in two steps to
complete these 256-bit operations.

Prior generations of Intel® Streaming SIMD Extensions (Intel® SSE) instructions generally are two-
operand syntax, where one of the operands serves both as source and as destination. Intel AVX instruc-
tions are encoded with a VEX prefix, which includes a bit field to encode vector lengths and support
three-operand syntax. A typical instruction has two sources and one destination. Four operand instruc-
tions such as VBLENDVPS and VBLENDVPD exist as well. The added operand enables non destructive
source (NDS) and it eliminates the need for register duplication using MOVAPS operations.

With the exception of MMX instructions, almost all legacy 128-bit SSE instructions have AVX equivalents
that support three operand syntax. 256-bit AVX instructions employ three-operand syntax and some
with 4-operand syntax.

The 256-bit vector register, YMM, extends the 128-bit XMM register to 256 bits. Thus the lower 128-bits
of YMM is aliased to the legacy XMM registers.

While 256-bit AVX instructions writes 256 bits of results to YMM, 128-bit AVX instructions writes 128-bits
of results into the XMM register and zeros the upper bits above bit 128 of the corresponding YMM. 16
vector registers are available in 64-bit mode. Only the lower 8 vector registers are available in non-64-
bit modes.

Software can continue to use any mixture of legacy SSE code, 128-bit AVX code and 256-bit AVX code.
Section covers guidelines to deliver optimal performance across mixed-vector-length code modules
without experiencing transition delays between legacy SSE and AVX code. There are no transition delays
of mixing 128-bit AVX code and 256-bit AVX code.

The optimal memory alignment of an Intel AVX 256-bit vector, stored in memory, is 32 bytes. Some
data-movement 256-bit Intel AVX instructions enforce 32-byte alignment and will signal #GP fault if
memory operand is not properly aligned. The majority of 256-bit Intel AVX instructions do not require
address alignment. These instructions generally combine load and compute operations, so any non-
aligned memory address can be used in these instructions.

For best performance, software should pay attention to align the load and store addresses to 32 bytes
whenever possible.

The major differences between using AVX instructions and legacy SSE instructions are summarized in
Table 15-1 below.

OPTIMIZATIONS FOR INTEL® AVX, FMA AND AVX2

15-2

15.1 INTEL® AVX INTRINSICS CODING
256-bit AVX instructions have new intrinsics. Specifically, 256-bit AVX instruction that are promoted to
256-bit vector length from existing SSE functionality are generally prototyped with a “_mm256” prefix
instead of the “_mm” prefix and using new data types defined for 256-bit operation. New functionality in
256-bit AVX instructions have brand new prototype.

The 128-bit AVX instruction that were promoted from legacy SIMD ISA uses the same prototype as
before. Newer functionality common in 256-bit and 128-bit AVX instructions are prototyped with
“_mm256” and “_mm” prefixes respectively.

Thus porting from legacy SIMD code written in intrinsic can be ported to 256-bit AVX code with a modest
effort.

The following guidelines show how to convert a simple intrinsic from Intel SSE code sequence to Intel
AVX:
• Align statically and dynamically allocated buffers to 32-bytes.
• May need to double supplemental buffer size.
• Change __mm_ intrinsic name prefix with __mm256_.
• Change variable data types names from __m128 to __m256.
• Divide by 2 iteration count (or double stride length).

This example below on Cartesian coordinate transformation demonstrates the Intel AVX Instruction
format, 32 byte YMM registers, dynamic and static memory allocation with data alignment of 32bytes,
and the C data type representing 8 floating-point elements in a YMM register.

Table 15-1. Features between 256-bit AVX, 128-bit AVX and Legacy SSE Extensions

Features 256-bit AVX 128-bit AVX Legacy SSE-AESNI

Functionality Scope Floating-point operation,
Data Movement.

Matches legacy SIMD ISA
(except MMX).

128-bit FP and integer SIMD
ISA.

Register Operand YMM. XMM. XMM.

Operand Syntax Up to 4; non-destructive
source.

Up to 4; non-destructive
source.

2 operand syntax;
destructive source.

Memory alignment Load-Op semantics do not
require alignment.

Load-Op semantics do not
require alignment.

Always enforce 16B
alignment.

Aligned Move Instructions 32 byte alignment. 16 byte alignment. 16 byte alignment.

Non-destructive source
operand

Yes. Yes. No.

Register State Handling Updates bits 255:0. Updates 127:0; Zeroes bits
above 128.

Updates 127:0; Bits above
128 unmodified.

Intrinsic Support • New 256-bit data types.
• _mm256 prefix for

promoted functionality.
• New intrinsics for new

functionalities.

• Existing data types.
• Inherit same prototype for

exiting functionalities.
• Use “_mm” prefix for new

VEX-128 functionalities.

Baseline datatypes and
prototype definitions.

128-bit Lanes Applies to most 256-bit
operations.

One 128-bit lane. One 128-bit lane.

Mixed Code Handling Use VZEROUPPER to
avoid transition penalty.

No transition penalty. Transition penalty after
executing 256-bit AVX code.

15-3

OPTIMIZATIONS FOR INTEL® AVX, FMA AND AVX2

Example 15-1. Cartesian Coordinate Transformation with Intrinsics

//Use SSE intrinsic
#include "wmmintrin.h"

int main()
{ int len = 3200;
 //Dynamic memory allocation with 16byte
 //alignment
 float* pInVector = (float*) _mm_malloc(len*sizeof(float),
16);
 float* pOutVector = (float*) _mm_malloc(len*sizeof(float),
16);
//init data
for(int i=0; i<len; i++) pInVector[i] = 1;

float cos_teta = 0.8660254037;
 float sin_teta = 0.5;
//Static memory allocation of 4 floats with 16byte
alignment
__declspec(align(16)) float cos_sin_teta_vec[4] = {cos_teta,
sin_teta, cos_teta, sin_teta};

__declspec(align(16)) float sin_cos_teta_vec[4] = {sin_teta,
cos_teta, sin_teta, cos_teta};

//__m128 data type represents an xmm
 //register with 4 float elements
 __m128 Xmm_cos_sin = _mm_load_ps(cos_sin_teta_vec);

 //SSE 128bit packed single load
 __m128 Xmm_sin_cos = _mm_load_ps(sin_cos_teta_vec);

 __m128 Xmm0, Xmm1, Xmm2, Xmm3;
//processing 8 elements in an unrolled twice loop

for(int i=0; i<len; i+=8)
 {
 Xmm0 = _mm_load_ps(pInVector+i);
 Xmm1 = _mm_moveldup_ps(Xmm0);
 Xmm2 = _mm_movehdup_ps(Xmm0);
 Xmm1 = _mm_mul_ps(Xmm1,Xmm_cos_sin);
 Xmm2 = _mm_mul_ps(Xmm2,Xmm_sin_cos);
 Xmm3 = _mm_addsub_ps(Xmm1, Xmm2);
 _mm_store_ps(pOutVector + i, Xmm3);

// Use Intel AVX intrinsic
#include "immintrin.h"

int main()
{ int len = 3200;
 //Dynamic memory allocation with 32byte
 //alignment
 float* pInVector = (float*) _mm_malloc(len*sizeof(float),
32);
 float* pOutVector = (float*) _mm_malloc(len*sizeof(float),
32);
//init data
for(int i=0; i<len; i++) pInVector[i] = 1;

float cos_teta = 0.8660254037;
 float sin_teta = 0.5;
//Static memory allocation of 8 floats with 32byte
alignment
__declspec(align(32)) float cos_sin_teta_vec[8] = {cos_teta,
sin_teta, cos_teta, sin_teta, cos_teta, sin_teta, cos_teta,
sin_teta};

__declspec(align(32)) float sin_cos_teta_vec[8] = {sin_teta,
cos_teta, sin_teta, cos_teta, sin_teta, cos_teta, sin_teta,
cos_teta };

 //__m256 data type holds 8 float elements
 __m256 Ymm_cos_sin =
_mm256_load_ps(cos_sin_teta_vec);

 //AVX 256bit packed single load
 __m256 Ymm_sin_cos =
_mm256_load_ps(sin_cos_teta_vec);

 __m256 Ymm0, Ymm1, Ymm2, Ymm3;

 //processing 8 elements in an unrolled twice loop

for(int i=0; i<len; i+=16)
 {
 Ymm0 = _mm256_load_ps(pInVector+i);
 Ymm1 = _mm256_moveldup_ps(Ymm0);
 Ymm2 = _mm256_movehdup_ps(Ymm0);
 Ymm1 = _mm256_mul_ps(Ymm1,Ymm_cos_sin);
 Ymm2 = _mm256_mul_ps(Ymm2,Ymm_sin_cos);
 Ymm3 = _mm256_addsub_ps(Ymm1, Ymm2);
 _mm256_store_ps(pOutVector + i, Ymm3);

OPTIMIZATIONS FOR INTEL® AVX, FMA AND AVX2

15-4

15.1.1 Intel® AVX Assembly Coding
Similar to the intrinsic porting guidelines, assembly porting guidelines are listed below.
• Align statically and dynamically allocated buffers to 32-bytes.
• Double the supplemental buffer sizes if needed.
• Add a “v” prefix to instruction names.
• Change register names from xmm to ymm.
• Add destination registers to computational Intel AVX instructions.
• Divide the iteration count by two (or double stride length).

 Xmm0 = _mm_load_ps(pInVector+i+4);
 Xmm1 = _mm_moveldup_ps(Xmm0);
 Xmm2 = _mm_movehdup_ps(Xmm0);
 Xmm1 = _mm_mul_ps(Xmm1,Xmm_cos_sin);
 Xmm2 = _mm_mul_ps(Xmm2,Xmm_sin_cos);
 Xmm3 = _mm_addsub_ps(Xmm1, Xmm2);
 _mm_store_ps(pOutVector+i+4, Xmm3);
 }
_mm_free(pInVector);
 _mm_free(pOutVector);
return 0;
}

 Ymm0 = _mm256_load_ps(pInVector+i+8);
 Ymm1 = _mm256_moveldup_ps(Ymm0);
 Ymm2 = _mm256_movehdup_ps(Ymm0);
 Ymm1 = _mm256_mul_ps(Ymm1,Ymm_cos_sin);
 Ymm2 = _mm256_mul_ps(Ymm2,Ymm_sin_cos);
 Ymm3 = _mm256_addsub_ps(Ymm1, Ymm2);
 _mm256_store_ps(pOutVector+i+8, Ymm3);
 }
_mm_free(pInVector);
 _mm_free(pOutVector);
return 0;
}

Example 15-2. Cartesian Coordinate Transformation with Assembly

//Use SSE Assembly
int main()
{
 int len = 3200;
 //Dynamic memory allocation with 16byte
 //alignment
 float* pInVector = (float*) _mm_malloc(len*sizeof(float),
16);
 float* pOutVector = (float*) _mm_malloc(len*sizeof(float),
16);

//init data
for(int i=0; i<len; i++)
 pInVector[i] = 1;

 //Static memory allocation of 4 floats
 //with 16byte alignment
 float cos_teta = 0.8660254037;
 float sin_teta = 0.5;
 __declspec(align(16)) float cos_sin_teta_vec[4] =
{cos_teta, sin_teta, cos_teta, sin_teta};

// Use Intel AVX assembly
int main()
{
 int len = 3200;
 //Dynamic memory allocation with 32byte
 //alignment
 float* pInVector = (float*) _mm_malloc(len*sizeof(float),
32);
 float* pOutVector = (float*) _mm_malloc(len*sizeof(float),
32);

//init data
for(int i=0; i<len; i++)
 pInVector[i] = 1;

 //Static memory allocation of 8 floats
 //with 32byte alignment
 float cos_teta = 0.8660254037;
 float sin_teta = 0.5;
 __declspec(align(32)) float cos_sin_teta_vec[8] =
{cos_teta, sin_teta, cos_teta, sin_teta, cos_teta, sin_teta,
cos_teta, sin_teta};

Example 15-1. Cartesian Coordinate Transformation with Intrinsics (Contd.)

15-5

OPTIMIZATIONS FOR INTEL® AVX, FMA AND AVX2

 __declspec(align(16)) float sin_cos_teta_vec[4] = {sin_teta,
cos_teta, sin_teta, cos_teta};

//processing 8 elements in an unrolled-twice loop
__asm
{
 mov rax, pInVector
 mov rbx, pOutVector
// Load into an xmm register of 16 bytes
 movups xmm3,
 xmmword ptr[cos_sin_teta_vec]
 movups xmm4,
 xmmword ptr[sin_cos_teta_vec]

 mov rdx, len

shl rdx, 2 //size of input array in bytes
 xor rcx, rcx
loop1:
 movsldup xmm0, [rax+rcx]
 movshdup xmm1, [rax+rcx]
//example: mulps has 2 operands
 mulps xmm0, xmm3
 mulps xmm1, xmm4
 addsubps xmm0, xmm1
// 16 byte store from an xmm register
 movaps [rbx+rcx], xmm0

 movsldup xmm0, [rax+rcx+16]
 movshdup xmm1, [rax+rcx+16]
 mulps xmm0, xmm3
 mulps xmm1, xmm4
 addsubps xmm0, xmm1
// offset of 16 bytes from previous store
 movaps [rbx+rcx+16], xmm0

// Processed 32bytes in this loop
//(The code is unrolled twice)
 add rcx, 32
 cmp rcx, rdx
 jl loop1
}
 _mm_free(pInVector);
 _mm_free(pOutVector);
 return 0;
}

 __declspec(align(32)) float sin_cos_teta_vec[8] = {sin_teta,
cos_teta, sin_teta, cos_teta, sin_teta, cos_teta, sin_teta,
cos_teta};

//processing 16 elements in an unrolled-twice loop
__asm
 {
 mov rax, pInVector
 mov rbx, pOutVector
// Load into an ymm register of 32 bytes
 vmovups ymm3,
 ymmword ptr[cos_sin_teta_vec]
 vmovups ymm4,
 ymmword ptr[sin_cos_teta_vec]

 mov rdx, len
shl rdx, 2 //size of input array in bytes

 xor rcx, rcx
loop1:
 vmovsldup ymm0, [rax+rcx]
 vmovshdup ymm1, [rax+rcx]
//example: vmulps has 3 operands
 vmulps ymm0, ymm0, ymm3
 vmulps ymm1, ymm1, ymm4
 vaddsubps ymm0, ymm0, ymm1
// 32 byte store from an ymm register
 vmovaps [rbx+rcx], ymm0

 vmovsldup ymm0, [rax+rcx+32]
 vmovshdup ymm1, [rax+rcx+32]
 vmulps ymm0, ymm0, ymm3
 vmulps ymm1, ymm1, ymm4
 vaddsubps ymm0, ymm0, ymm1
// offset of 32 bytes from previous store
 vmovaps [rbx+rcx+32], ymm0

// Processed 64bytes in this loop
//(The code is unrolled twice)
 add rcx, 64
 cmp rcx, rdx
 jl loop1
 }
 _mm_free(pInVector);
 _mm_free(pOutVector);
 return 0;
}

Example 15-2. Cartesian Coordinate Transformation with Assembly (Contd.)

OPTIMIZATIONS FOR INTEL® AVX, FMA AND AVX2

15-6

15.2 NON-DESTRUCTIVE SOURCE (NDS)
Most Intel AVX instructions have three operands. A typical instruction has two sources and one destina-
tion, with both source operands unmodified by the instruction. This section describes how using the NDS
feature to save register copies, reduce the amount of instructions, reduce the amount of micro-ops, and
improve performance. In this example, the Intel AVX code is more than 2x faster than the Intel SSE code.

The following example uses a vectorized calculation of the polynomial A^3+A^2+A. The polynomial
calculation pseudo code is:
While (i<len)
{
 B[i] := A[i]^3 + A[i]^2 + A[i]
 i++
}

In Example 15-3 below, the left column shows the vectorized implementation using SSE assembly. In this
code, A is copied by an additional load from memory to a register, and A2 is copied using a register to
register assignment. The code uses 10 micro-ops to process four elements.

The middle column in this example uses 128-bit Intel AVX instructions and takes advantage of NDS. The
additional load and register copies are eliminated. This code uses 8 micro-ops to process four elements
and is about 30% faster than the baseline above.

The right column in this example uses 256-bit Intel AVX instructions. It uses 8 micro-ops to process 8
elements. Combining the NDS feature with the doubling of vector width, this speeds up the baseline by
more than 2x.

Example 15-3. Direct Polynomial Calculation
 SSE Code 128-bit AVX Code 256-bit AVX Code

float* pA = InputBuffer;
float* pB = OutputBuffer;
int len = miBufferWidth-4;

__asm
{
mov rax, pA
mov rbx, pB
movsxd r8, len

loop1:
//Load A
movups xmm0, [rax+r8*4]
//Copy A
movups xmm1, [rax+r8*4]
//A^2
mulps xmm1, xmm1
//Copy A^2
movupsxmm2, xmm1
//A^3
mulps xmm2, xmm0
//A + A^2
addps xmm0, xmm1
//A + A^2 + A^3
addps xmm0, xmm2
//Store result
movups[rbx+r8*4], xmm0

float* pA = InputBuffer1;
float* pB = OutputBuffer1;
int len = miBufferWidth-4;

__asm
{
mov rax, pA
mov rbx, pB
movsxd r8, len

loop1:
//Load A
vmovups xmm0, [rax+r8*4]

//A^2
vmulps xmm1, xmm0, xmm0

//A^3
vmulps xmm2, xmm1, xmm0
//A+A^2
vaddps xmm0, xmm0, xmm1
//A+A^2+A^3
vaddps xmm0, xmm0, xmm2
//Store result
vmovups[rbx+r8*4], xmm0

float* pA = InputBuffer1;
float* pB = OutputBuffer1;
int len = miBufferWidth-8;

__asm
{
mov rax, pA
mov rbx, pB
movsxd r8, len

loop1:
//Load A
vmovups ymm0, [rax+r8*4]

//A^2
vmulps ymm1, ymm0, ymm0

//A^3
vmulps ymm2, ymm1, ymm0
//A+A^2
vaddps ymm0, ymm0, ymm1
//A+A^2+A^3
vaddps ymm0, ymm0, ymm2
//Store result
vmovups [rbx+r8*4], ymm0

15-7

OPTIMIZATIONS FOR INTEL® AVX, FMA AND AVX2

15.3 MIXING AVX CODE WITH SSE CODE
The Intel AVX architecture allows programmers to port a large code base gradually, resulting in mixed
AVX code and SSE code. If your code includes both Intel AVX and Intel SSE, consider the following:
• Recompilation of Intel SSE code with the Intel compiler and the option “/QxAVX” in Windows or “-

xAVX” in Linux. This transforms all SSE instructions to 128-bit Intel AVX instructions automatically.
This refers to inline assembly and intrinsic code. “GCC -c -mAVX” will generate AVX code, including
assembly files. GCC assembler also supports “-msse2avx” switch to generate AVX code from SSE.

• Intel AVX and Intel SSE code can co-exist and execute in the same run. This can happen if your
application includes third party libraries with Intel SSE code, a new DLL using AVX code is deployed
that calls other modules running SSE code, or you cannot recompile all your application at once. In
these cases, the AVX code must use the VZEROUPPER instruction to avoid AVX/SSE transition
penalty.

Intel AVX instructions always modify the upper bits of YMM registers and SSE instructions do not modify
the upper bits. From a hardware perspective, the upper bits of the YMM register collection can be consid-
ered to be in one of three states:
• Clean: All upper bits of YMM are zero. This is the state when the processor starts from RESET.
• Modified and Unsaved (In Table 15-2, this is abbreviated as M/U): The execution of one AVX

instruction (either 256-bit or 128-bit) modifies the upper bits of the destination YMM. This is also
referred to as dirty upper YMM state. In this state, bits 255:128 and bits 127:0 of a given YMM are
related to the most recent 256-bit or 128-bit AVX instruction that operated on that register.

• Preserved/Non_INIT Upper State (In Table 15-2, this is abbreviated as P/N): In this state, the upper
YMM state is not zero. The upper 128 bits of a YMM and the lower 128 bits may be unrelated to the
last AVX instruction executed in the processor as a result of XRSTOR from a saved image with dirty
upper YMM state.

If software inter-mixes AVX and SSE instructions without using VZEROUPPER properly, it can experience
an AVX/SSE transition penalty. The situations of executing SSE, AVX, or managing the YMM state using
XSAVE/XRSTOR/VZEROUPPER/VZEROALL is illustrated in Figure 15-1. The penalty associated with tran-
sitions into or out of the processor state “Modified and Unsaved” is implementation specific, depending
on the microarchitecture.

Figure 15-1 depicts the situations that a transition penalty will occur for recent generations of microar-
chitectures that support AVX, up to and including the Broadwell microarchitecture. The transition penalty
of A and B occurs with each instruction execution that would cause the transition. It is largely the cost of
copying the entire YMM state to internal storage.

To minimize the occurrence of YMM state transitions related to the “Preserved/Non_INIT Upper State”,
software that uses XSAVE/XRSTOR family of instructions to save/restore the YMM state should write a
“Clean” upper YMM state to the XSAVE region in memory. Restoring a dirty YMM image from memory into
the YMM registers can experience a penalty. This is illustrated in Figure 15-1.

The Skylake microarchitecture implements a different state machine than prior generations to manage
the YMM state transition associated with mixing SSE and AVX instructions. It no longer saves the entire
upper YMM state when executing an SSE instruction when in “Modified and Unsaved” state, but saves the
upper bits of individual register. As a result, mixing SSE and AVX instructions will experience a penalty
associated with partial register dependency of the destination registers being used and additional blend
operation on the upper bits of the destination registers. Figure 15-2 depicts the transition penalty appli-
cable to the Skylake microarchitecture.

sub r8, 4
jge loop1
}

sub r8, 4
jge loop1
}

sub r8, 8
jge loop1
}

Example 15-3. Direct Polynomial Calculation (Contd.)
 SSE Code 128-bit AVX Code 256-bit AVX Code

OPTIMIZATIONS FOR INTEL® AVX, FMA AND AVX2

15-8

Table 15-2 lists the effect of mixing Intel AVX and Intel SSE code, with the bottom row indicating the
types of penalty that might arise depending on the initial YMM state (the row marked ‘Begin’) and the
ending state. Table 15-2 also includes the effect of transition penalty (Type C and D) associated with
restoring a dirty YMM state image stored in memory.

Figure 15-1. AVX-SSE Transitions in the Broadwell, and Prior Generation Microarchitectures

Figure 15-2. AVX-SSE Transitions in the Skylake Microarchitecture

Clean
UpperState

Preserved

Upper State

Dirty
Upper State

XSAVE’d Dirty
Image in Mem

XSAVE’d Clean
Image in Mem

Execute 256-bit AVX

Execute Vzeroupper/
VzeroallXrstor w/ INIT

Execute Vzeroupper/
Vzeroall/Xrstor w/ INIT

Penalty D

Execute SSE
Penalty A

Execute 256 or

Penalty B
128 Bit AVX

XRSTOR
Penalty C

XSAVE w/o
Vzero*

Execute SSE
Execute 256-bit
or 128-bit AVX

or 128-bit AVX

Execute SSE

XSAVE w/
Vzero*

XRSTOR

Non-INIT

Clean
UpperState

Dirty
Upper State

XSAVE’d Dirty

Image in Mem

XSAVE’d Clean
Image in Mem

Execute 256-bit AVX

Execute Vzeroupper/
VzeroallXrstor w/ INIT

XRSTOR
Penalty C

XSAVE w/o
Vzero*

Execute SSE
Execute 256-bit
or 128-bit AVX

or 128-bit AVX

XSAVE w/
Vzero*

XRSTOR

NON-INIT

Execute SSE
Penalty A

15-9

OPTIMIZATIONS FOR INTEL® AVX, FMA AND AVX2

The magnitude of each type of transition penalty can vary across different microarchitectures. In Skylake
microarchitecture, some of the transition penalty is reduced. The transition diagram and associated
penalty is depicted in Figure 15-2. Table 15-3 gives approximate order of magnitude of the different
transition penalty types across recent microarchitectures.

To enable fast transitions between 256-bit Intel AVX and Intel SSE code blocks, use the VZEROUPPER
instruction before and after an AVX code block that would need to switch to execute SSE code. The VZER-
OUPPER instruction resets the upper 128 bits of all Intel AVX registers. This instruction has zero latency.
In addition, the processor changes back to a Clean state, after which execution of SSE instructions or
Intel AVX instructions has no transition penalty with prior microarchitectures. In Skylake microarchitec-
ture, the SSE block can executed from a Clean state without the penalty of upper-bits dependency and
blend operation.

128-bit Intel AVX instructions zero the upper 128-bits of the destination registers. Therefore, 128-bit and
256-bit Intel AVX instructions can be mixed with no penalty.
Assembly/Compiler Coding Rule 63. (H impact, H generality) Whenever a 256-bit AVX code
block and 128-bit SSE code block might execute in sequence, use the VZEROUPPER instruction to
facilitate a transition to a “Clean” state for the next block to execute from.

15.3.1 Mixing Intel® AVX and Intel SSE in Function Calls
Intel AVX to Intel SSE transitions can occur unexpectedly when calling functions or returning from func-
tions. For example, if a function that uses 256-bit Intel AVX, calls another function, the callee might be
using SSE code. Similarly, after a 256-bit Intel AVX function returns, the caller might be executing Intel
SSE code.

Table 15-2. State Transitions of Mixing AVX and SSE Code

Execute SSE Execute AVX-128 Execute AVX-256 VZeroupper XRSTOR

Begin Clean M/U P/N Clean M/U P/S Clean M/U P/N P/N Dirty
Image

Clean
Image

End Clean P/N P/N Clean M/U M/U M/U M/U M/U Clean P/N Clean

Penalty No A No No No B No No B D C No

Table 15-3. Approximate Magnitude of AVX-SSE Transition Penalties in Different Microarchitectures

Type Haswell
Microarchitecture

Broadwell
Microarchitecture

Skylake
Microarchitecture

Ice Lake Client
Microarchitecture

A ~XSAVE ~XSAVE Partial Register
Dependency + Blend

~XSAVE

B ~XSAVE ~XSAVE NA ~XSAVE

C ~Fraction of XSAVE ~Fraction of XSAVE ~XSAVE ~Fraction of XSAVE

D ~XSAVE ~XSAVE NA ~XSAVE

OPTIMIZATIONS FOR INTEL® AVX, FMA AND AVX2

15-10

Assembly/Compiler Coding Rule 64. (H impact, H generality) Add VZEROUPPER instruction after
256-bit AVX instructions are executed and before any function call that might execute SSE code. Add
VZEROUPPER at the end of any function that uses 256-bit AVX instructions.

Table 15-2 summarizes a heuristic of the performance impact of using or not using VZEROUPPER to
bridge transitions of inter-function calls that changes between AVX code implementation and SSE code.

15.4 128-BIT LANE OPERATION AND AVX
256-bit operations in Intel AVX are generally performed in two halves of 128-bit lanes. Most of the 256-
bit Intel AVX instructions are defined as in-lane: the destination elements in each lane are calculated
using source elements only from the same lane. There are only a few cross-lane instructions, which are
described below.

Example 15-4. Function Calls and AVX/SSE transitions

__attribute__((noinline)) void SSE_function()
{
 __asm addps xmm1, xmm2
 __asm xorps xmm3, xmm4
}

__attribute__((noinline)) void AVX_function_no_zeroupper()
{
 __asm vaddps ymm1, ymm2, ymm3
 __asm vxorps ymm4, ymm5, ymm6
}
__attribute__((noinline)) void AVX_function_with_zeroupper()
{
 __asm vaddps ymm1, ymm2, ymm3
 __asm vxorps ymm4, ymm5, ymm6
 //add vzeroupper when returning from an AVX function
 __asm vzeroupper
}

// Code encounter transition penalty

__asm vaddps ymm1, ymm2, ymm3
..

//penalty
SSE_function();
AVX_function_no_zeroupper();
//penalty
__asm addps xmm1, xmm2

// Code mitigated transition penalty

__asm vaddps ymm1, ymm2, ymm3
//add vzeroupper before
//calling SSE function from AVX code
__asm vzeroupper //no penalty
SSE_function();
AVX_function_with_zeroupper();
//no penalty
__asm addps xmm1, xmm2

Table 15-4. Effect of VZEROUPPER with Inter-Function Calls Between AVX and SSE Code

Inter-Function Call Prior Microarchitectures Skylake Microarchitecture

With VZEROUPPER 1X (baseline) ~1

No VZEROUPPER < 0.1X Fraction of baseline

15-11

OPTIMIZATIONS FOR INTEL® AVX, FMA AND AVX2

The majority of SSE computational instructions perform computation along vertical slots with each data
elements. The 128-bit lanes does not affect porting 128-bit code into 256-bit AVX code. VADDPS is one
example of this.

Many 128-bit SSE instruction moves data elements horizontally, e.g. SHUFPS uses an imm8 byte to
control the horizontal movement of data elements.

Intel AVX promotes these horizontal 128-bit SIMD instruction in-lane into 256-bit operation by using the
same control field within the low 128-bit land and the high 128-bit lane. For example, the 256-bit
VSHUFPS instruction uses a control byte containing 4 control values to select the source location of each
destination element in a 128-bit lane. This is shown below.

15.4.1 Programming With the Lane Concept
Using the lane concept, algorithms implemented with SSE instruction set can be easily converted to use
256-bit Intel AVX. An SSE algorithm that executes iterations 0 to n can be converted such that the calcu-
lation of iteration i is done in the low lane and the calculation of iteration i+k is done in the high lane. For
consecutive iterations k equals one.

Some vectorized algorithms implemented with SSE instructions cannot use a simple conversion
described above. For example, shuffles that move elements within 16 bytes cannot be naturally
converted to shuffles with 32 byte since 32 byte shuffles can't cross lanes.

You can use the following instructions as building blocks for working with lanes:
• VINSERTF128 - insert packed floating-point values.
• VEXTRACTF128 - extract packed floating-point values.
• VPERM2F128 - permute floating-point values.
• VBROADCAST - load with broadcast.

The sections below describe two techniques: the strided loads and the cross register overlap. These
methods implement the in lane data arrangement described above and are useful in many algorithms
that initially seem to require cross lane calculations.

15.4.2 Strided Load Technique
The strided load technique is a programming method that uses Intel AVX instructions and is useful for
algorithms that involve unsupported cross-lane shuffles.

The method describes how to arrange data to avoid cross-lane shuffles. The main idea is to use 128-bit
loads in a way that mimics the corresponding Intel SSE algorithm, and enables the 256 Intel AVX instruc-

Y7 .. Y4 X7 .. X4 Y3 ..Y0 X3 .. X0DEST

SRC1 X0

SRC2

X1X2X3X4X5X6X7

Y0Y1Y2Y3Y4Y5Y6Y7

X3 .. X0Y7 .. Y4 X7 .. X4 Y3 ..Y0

Imm[1:0]Imm[1:0] Imm[3:2]Imm[3:2] Imm[5:4]Imm[5:4]Imm[7:6] Imm[7:6]Imm8:

Control Values 00b: X0/Y0 (Low lane), X4/Y4 (high lane)
Control Values 01b: X1/Y1 (Low lane), X5/Y5 (high lane)
Control Values 10b: X2/Y2 (Low lane), X6/Y6 (high lane)
Control Values 11b: X3/Y3 (Low lane), X7/Y7 (high lane)

OPTIMIZATIONS FOR INTEL® AVX, FMA AND AVX2

15-12

tions to execute iterations i of the loop in the low lanes and the iteration and i+k in the high lanes. In the
following example, k equals one.

The values in the low lanes of Ymm1 and Ymm2 in the figure above correspond to iteration i in the SSE
implementation. Similarly, the values in the high lanes of Ymm1 and Ymm2 correspond to iteration i+1.

The following example demonstrates the strided load method in a conversion of an Array of Structures
(AoS) to a Structure of Arrays (SoA). In this example, the input buffer contains complex numbers in an
AoS format. Each complex number is made of a real and an imaginary float values. The output buffer is
arranged as SoA. All the real components of the complex numbers are located at the first half of the
output buffer and all the imaginary components are located at the second half of the buffer. The following
pseudo code and figure illustrate the conversion:

A simple extension of the Intel SSE algorithm from 16-byte to 32-byte operations would require cross-
lane data transition, as shown in the following figure. However, this is not possible with Intel AVX archi-
tecture and a different technique is required.

Example 15-5. AoS to SoA Conversion of Complex Numbers in C Code

for (i = 0; i < N; i++)
{
 Real[i] = Complex[i].Real;
 Imaginary[i] = Complex[i].Imaginary;
}

15-13

OPTIMIZATIONS FOR INTEL® AVX, FMA AND AVX2

The challenge of cross-lane shuffle can be overcome with Intel AVX for AoS to SoA conversion. Using
VINSERTF128 to load 16 bytes to the appropriate lane in the YMM registers obviates the need for cross-
lane shuffle. Once the data is organized properly in the YMM registers for step 1, 32-byte VSHUFPS can
be used to move the data in lanes, as shown in step 2.

The following code compares the Intel SSE implementation of AoS to SoA with the 256-bit Intel AVX
implementation and demonstrates the performance gained.

Example 15-6. Aos to SoA Conversion of Complex Numbers Using AVX
SSE Code AVX Code

xor rbx, rbx xor rbx, rbx

xor rdx, rdx xor rdx, rdx

mov rcx, len mov rcx, len

mov rdi, inPtr mov rdi, inPtr

mov rsi, outPtr1 mov rsi, outPtr1

mov rax, outPtr2 mov rax, outPtr2

loop1: loop1:

movups xmm0, [rdi+rbx] vmovups xmm0, [rdi+rbx]

//i1 r1 i0 r0 //i1 r1 i0 r0

movups xmm1, [rdi+rbx+16] vmovups xmm1, [rdi+rbx+16]

// i3 r3 i2 r2 // i3 r3 i2 r2

movups xmm2, xmm0 vinsertf128 ymm0, ymm0, [rdi+rbx+32] , 1

//i5 r5 i4 r4; i1 r1 i0 r0

shufps xmm0, xmm1, 0xdd vinsertf128 ymm1, ymm1, [rdi+rbx+48] , 1

//i3 i2 i1 i0 //i7 r7 i6 r6; i3 r3 i2 r2

shufps xmm2, xmm1, 0x88 vshufps ymm2, ymm0, ymm1, 0xdd

//r3 r2 r1 r0 //i7 i6 i5 i4; i3 i2 i1 i0

vshufps ymm3, ymm0, ymm1, 0x88

//r7 r6 r5 r4; r3 r2 r1 r0

OPTIMIZATIONS FOR INTEL® AVX, FMA AND AVX2

15-14

15.4.3 The Register Overlap Technique
The register overlap technique is useful for algorithms that use shuffling. Similar to the strided load tech-
nique, the register overlap technique arranges data to avoid cross-lane shuffles.

This technique is useful for algorithm that process continues data, which is partially shared by sequential
iterations. The following figure illustrates the desired data layout. This is enabled by using overlapping
256-bit loads, or by using the VPERM2F128 instruction.

The Median3 code sample below demonstrates the register overlap technique. The median3 technique
calculates the median of every three consecutive elements in a vector.

Y[i] = Median(X[i], X[i+1], X[i+2])

Where Y is the output vector and X is the input vector. The following figure illustrates the calculation done
by the median algorithm.

movups [rax+rdx], xmm0 vmovups [rax+rdx], ymm2

movups [rsi+rdx], xmm2 vmovups [rsi+rdx], ymm3

add rdx, 16 add rdx, 32

add rbx, 32 add rbx, 64

cmp rcx, rbx cmp rcx, rbx

jnz loop1 jnz loop1

Example 15-6. Aos to SoA Conversion of Complex Numbers Using AVX (Contd.)
SSE Code AVX Code

15-15

OPTIMIZATIONS FOR INTEL® AVX, FMA AND AVX2

Following are three implementations of the Median3 algorithm. Alternative 1 is the Intel SSE implemen-
tation. Alternatives 2 and 3 implement the register overlap technique in two ways. Alternative 2 loads the
data from the input buffer into the YMM registers using overlapping 256-bit load operations. Alternative
3 loads the data from the input buffer into the YMM registers using a 256-bit load operation and
VPERM2F128. Alternatives 2 and 3 gain performance by using wider vectors.

.

15.5 DATA GATHER AND SCATTER
This section describes techniques for implementing data gather and scatter operations using Intel AVX
instructions.

15.5.1 Data Gather
The gather operation reads elements from an input buffer based on indexes specified in an index buffer.
The gathered elements are written in an output buffer. The following figure illustrates an example for a
gather operation.

Example 15-7. Register Overlap Method for Median of 3 Numbers
1: SSE Code 2: 256-bit AVX w/ Overlapping Loads 3: 256-bit AVX with VPERM2F128

xor ebx, ebx
mov rcx, len
mov rdi, inPtr
mov rsi, outPtr
movaps xmm0, [rdi]

xor ebx, ebx
mov rcx, len
mov rdi, inPtr
mov rsi, outPtr
vmovaps ymm0, [rdi]

xor ebx, ebx
mov rcx, len
mov rdi, inPtr
mov rsi, outPtr
vmovaps ymm0, [rdi]

loop_start:
movaps xmm4, [rdi+16]
movaps xmm2, [rdi]
movaps xmm1, [rdi]
movaps xmm3, [rdi]

loop_start:
vshufps ymm2, ymm0,
 [rdi+16], 0x4E
vshufps ymm1, ymm0,
 ymm2, 0x99

loop_start:
add rdi, 32
vmovaps ymm6, [rdi]
vperm2f128 ymm1, ymm0, ymm6, 0x21
vshufps ymm3, ymm0, ymm1, 0x4E

add rdi, 16
add rbx, 4
shufps xmm2, xmm4, 0x4e
shufps xmm1, xmm2, 0x99
minps xmm3, xmm1
maxps xmm0, xmm1
minps xmm0, xmm2
maxps xmm0, xmm3
movaps [rsi], xmm0
movaps xmm0, xmm4
add rsi, 16
cmp rbx, rcx
jl loop_start

add rbx, 8
add rdi, 32

vminps ymm4, ymm0, ymm1
vmaxps ymm0, ymm0, ymm1
vminps ymm3, ymm0, ymm2
vmaxps ymm5, ymm3, ymm4
vmovaps [rsi], ymm5
add rsi, 32
vmovaps ymm0, [rdi]
cmp rbx, rcx
jl loop_start

vshufps ymm2, ymm0, ymm3, 0x99
add rbx, 8
vminps ymm5, ymm0, ymm2
vmaxps ymm0, ymm0, ymm2
vminps ymm4, ymm0, ymm3
vmaxps ymm7, ymm4, ymm5
vmovaps ymm0, ymm6
vmovaps [rsi], ymm7
add rsi, 32
cmp rbx, rcx
jl loop_start

OPTIMIZATIONS FOR INTEL® AVX, FMA AND AVX2

15-16

Following are 3 implementations for the gather operation from an array of 4 byte elements. Alternative 1
is a scalar implementation using general purpose registers. Alternative 2 and 3 use Intel AVX instruc-
tions. The figure below shows code snippets from Example 15-8 assuming that it runs the first iteration
on data from the previous figure.

Performance of the Intel AVX examples is similar to the performance of a corresponding Intel SSE imple-
mentation. The table below shows the three gather implementations.

15-17

OPTIMIZATIONS FOR INTEL® AVX, FMA AND AVX2

15.5.2 Data Scatter
The scatter operation reads elements from an input buffer sequentially. It then writes them to an output
buffer based on indexes specified in an index buffer. The following figure illustrates an example for a
scatter operation.

Example 15-8. Data Gather - AVX versus Scalar Code
1: Scalar Code 2: AVX w/ VINSERTPS 3: VINSERTPS+VSHUFPS

mov rdi, InBuf
mov rsi, OutBuf
mov rdx, Index
xor rcx, rcx

mov rdi, InBuf
mov rsi, OutBuf
mov rdx, Index
xor rcx, rcx

mov rdi, InBuf
mov rsi, OutBuf
mov rdx, Index
xor rcx, rcx

loop1:
mov rax, [rdx]
movsxd rbx, eax
sar rax, 32
mov ebx, [rdi + 4*rbx]
mov [rsi], ebx
mov eax, [rdi + 4*rax]
mov [rsi + 4], eax

mov rax, [rdx + 8]
movsxd rbx, eax
sar rax, 32
mov ebx, [rdi + 4*rbx]
mov [rsi + 8], ebx
mov eax, [rdi + 4*rax]
mov [rsi + 12], eax

loop1:
mov rax, [rdx + 4*rcx]
movsxd rbx, eax
sar rax, 32
vmovss xmm1, [rdi + 4*rbx]
vinsertps xmm1, xmm1,
 [rdi + 4*rax], 0x10
mov rax, [rdx + 8 + 4*rcx]
movsxd rbx, eax
sar rax, 32
vinsertps xmm1, xmm1,
 [rdi + 4*rbx], 0x20

vinsertps xmm1, xmm1,
 [rdi + 4*rax], 0x30

loop1:
mov rax, [rdx + 4*rcx]
movsxd rbx, eax
sar rax, 32
vmovss xmm1, [rdi + 4*rbx]
vinsertps xmm1, xmm1,
 [rdi + 4*rax], 0x10
mov rax, [rdx + 8 + 4*rcx]
movsxd rbx, eax
sar rax, 32
vmovss xmm3, [rdi + 4*rbx]
vinsertps xmm3, xmm3,
 [rdi + 4*rax], 0x10

vshufps xmm1, xmm1,
 xmm3, 0x44

mov rax, [rdx + 16]
movsxd rbx, eax
sar rax, 32
mov ebx, [rdi + 4*rbx]
mov [rsi + 16], ebx
mov eax, [rdi + 4*rax]
mov [rsi + 20], eax

mov rax, [rdx + 24]
movsxd rbx, eax
sar rax, 32
mov ebx, [rdi + 4*rbx]
mov [rsi + 24], ebx
mov eax, [rdi + 4*rax]
mov [rsi + 28], eax

add rsi, 32
add rdx, 32
add rcx, 8
cmp rcx, len
jl loop1

mov rax, [rdx + 16 + 4*rcx]
movsxd rbx, eax
sar rax, 32
vmovss xmm2, [rdi + 4*rbx]
vinsertps xmm2, xmm2,
 [rdi + 4*rax], 0x10

mov rax, [rdx + 24 + 4*rcx]
movsxd rbx, eax
sar rax, 32
vinsertps xmm2, xmm2,
 [rdi + 4*rbx], 0x20

vinsertps xmm2, xmm2,
 [rdi + 4*rax], 0x30

vinsertf128 ymm1, ymm1,
 xmm2, 1

vmovaps [rsi + 4*rcx], ymm1
add rcx, 8
cmp rcx, len
jl loop1

mov rax, [rdx + 16 + 4*rcx]
movsxd rbx, eax
sar rax, 32
vmovss xmm2, [rdi + 4*rbx]
vinsertps xmm2, xmm2,
 [rdi + 4*rax], 0x10

mov rax, [rdx + 24 + 4*rcx]
movsxd rbx, eax
sar rax, 32
vmovss xmm4, [rdi + 4*rbx]
vinsertps xmm4, xmm4,
 [rdi + 4*rax], 0x10

vshufps xmm2, xmm2,
 xmm4, 0x44

vinsertf128 ymm1, ymm1,
 xmm2, 1

vmovaps [rsi + 4*rcx], ymm1
add rcx, 8
cmp rcx, len
jl loop1

OPTIMIZATIONS FOR INTEL® AVX, FMA AND AVX2

15-18

The following table includes a scalar implementation and an Intel AVX implementation of a scatter
sequence. The Intel AVX examples consist mainly of 128-bit Intel AVX instructions. Performance of the
Intel AVX examples is similar to the performance of corresponding Intel SSE implementation.

Example 15-9. Scatter Operation Using AVX
Scalar Code AVX Code
mov rdi, InBuf
mov rsi, OutBuf
mov rdx, Index
xor rcx, rcx

loop1:
movsxd rax, [rdx]
mov ebx, [rdi]
mov [rsi + 4*rax], ebx
movsxd rax, [rdx + 4]
mov ebx, [rdi + 4]
mov [rsi + 4*rax], ebx
movsxd rax, [rdx + 8]

mov ebx, [rdi + 8]
mov [rsi + 4*rax], ebx
movsxd rax, [rdx + 12]
mov ebx, [rdi + 12]
mov [rsi + 4*rax], ebx
movsxd rax, [rdx + 16]
mov ebx, [rdi + 16]
mov [rsi + 4*rax], ebx
movsxd rax, [rdx + 20]
mov ebx, [rdi + 20]
mov [rsi + 4*rax], ebx
movsxd rax, [rdx + 24]
mov ebx, [rdi + 24]

mov rdi, InBuf
mov rsi, OutBuf
mov rdx, Index
xor rcx, rcx

loop1:
vmovaps ymm0, [rdi + 4*rcx]
movsxd rax, [rdx + 4*rcx]
movsxd rbx, [rdx + 4*rcx + 4]
vmovss [rsi + 4*rax], xmm0
movsxd rax, [rdx + 4*rcx + 8]
vpalignr xmm1, xmm0, xmm0, 4

vmovss [rsi + 4*rbx], xmm1
movsxd rbx, [rdx + 4*rcx + 12]
vpalignr xmm2, xmm0, xmm0, 8
vmovss [rsi + 4*rax], xmm2
movsxd rax, [rdx + 4*rcx + 16]
vpalignr xmm3, xmm0, xmm0, 12
vmovss [rsi + 4*rbx], xmm3
movsxd rbx, [rdx + 4*rcx + 20]
vextractf128 xmm0, ymm0, 1
vmovss [rsi + 4*rax], xmm0
movsxd rax, [rdx + 4*rcx + 24]
vpalignr xmm1, xmm0, xmm0, 4
vmovss [rsi + 4*rbx], xmm1
movsxd rbx, [rdx + 4*rcx + 28]

15-19

OPTIMIZATIONS FOR INTEL® AVX, FMA AND AVX2

15.6 DATA ALIGNMENT FOR INTEL® AVX
This section explains the benefit of aligning data that is used by Intel AVX instructions and proposes some
methods to improve performance when such alignment is not possible. Most examples in this section are
variations of the SAXPY kernel. SAXPY is the Scalar Alpha * X + Y algorithm.

The C code below is a C implementation of SAXPY.

for (int i = 0; i < n; i++)

{ c[i] = alpha * a[i] + b[i]; }

15.6.1 Align Data to 32 Bytes
Aligning data to vector length is recommended. When using 16-byte SIMD instructions, loaded data
should be aligned to 16 bytes. Similarly, for best results when using Intel AVX instructions with 32-byte
registers align the data to 32-bytes.

When using Intel AVX with unaligned 32-byte vectors, every second load is a cache-line split, since the
cache-line is 64 bytes. This doubles the cache line split rate compared to Intel SSE code that uses 16-
byte vectors. Even though split line access penalties have been reduced significantly since Nehalem
microarchitecture, a high cache-line split rate in memory-intensive code may cause performance degra-
dation.

mov [rsi + 4*rax], ebx
movsxd rax, [rdx + 28]
mov ebx, [rdi + 28]
mov [rsi + 4*rax], ebx
add rdi, 32
add rdx, 32
add rcx, 8
cmp rcx, len
jl loop1

vpalignr xmm2, xmm0, xmm0, 8
vmovss [rsi + 4*rax], xmm2
vpalignr xmm3, xmm0, xmm0, 12
vmovss [rsi + 4*rbx], xmm3
add rcx, 8
cmp rcx, len
jl loop1

Example 15-9. Scatter Operation Using AVX (Contd.)
Scalar Code AVX Code

OPTIMIZATIONS FOR INTEL® AVX, FMA AND AVX2

15-20

SAXPY is a memory intensive kernel that emphasizes the importance of data alignment. Optimal perfor-
mance requires both data source address to be 32-byte aligned and destination address also 32-byte
aligned. If only one of the three address is not aligned to 32-byte boundary, the performance may be
halved. If all three addresses are mis-aligned relative to 32 byte, the performance degrades further. In
some cases, unaligned accesses may result in lower performance for Intel AVX code compared to Intel
SSE code. Other Intel AVX kernels typically have more computation which can reduce the effect of the
data alignment penalty.
Assembly/Compiler Coding Rule 65. (H impact, M generality) Align data to 32-byte boundary
when possible. Prefer store alignment over load alignment.

You can use dynamic data alignment using the _mm_malloc intrinsic instruction with the Intel®
Compiler, or _aligned_malloc of the Microsoft* Compiler. For example:

//dynamically allocating 32byte aligned buffer with 2048 float elements.

InputBuffer = (float*) _mm_malloc (2048*sizeof(float), 32);

You can use static data alignment using __declspec(align(32)). For example:

//Statically allocating 32byte aligned buffer with 2048 float elements.

__declspec(align(32)) float InputBuffer[2048];

15.6.2 Consider 16-Byte Memory Access when Memory is Unaligned
For best results use Intel AVX 32-byte loads and align data to 32-bytes. However, there are cases where
you cannot align the data, or data alignment is unknown. This can happen when you are writing a library
function and the input data alignment is unknown. In these cases, using 16-byte memory accesses may
be the best alternative. The following method uses 16-byte loads while still benefiting from the 32-byte
YMM registers.

Example 15-10. SAXPY using Intel AVX

mov rax, src1
mov rbx, src2
mov rcx, dst
mov rdx, len
xor rdi, rdi
vbroadcastss ymm0, alpha

start_loop:
vmovups ymm1, [rax + rdi]
vmulps ymm1, ymm1, ymm0
vmovups ymm2, [rbx + rdi]
vaddps ymm1, ymm1, ymm2
vmovups [rcx + rdi], ymm1
vmovups ymm1, [rax + rdi + 32]
vmulps ymm1, ymm1, ymm0
vmovups ymm2, [rbx + rdi + 32]
vaddps ymm1, ymm1, ymm2
vmovups [rcx + rdi + 32], ymm1

add rdi, 64
cmp rdi, rdx
jl start_loop

15-21

OPTIMIZATIONS FOR INTEL® AVX, FMA AND AVX2

NOTE
Beginning with Skylake microarchitecture, this optimization is not necessary. The only
case where 16-byte loads may be more efficient is when the data is 16-byte aligned but
not 32-byte aligned. In this case 16-byte loads might be preferable as no cache line split
memory accesses are issued.

Consider replacing unaligned 32-byte memory accesses using a combination of VMOVUPS,
VINSERTF128, and VEXTRACTF128 instructions.

Example 15-12 shows two implementations for SAXPY with unaligned addresses. Alternative 1 uses 32-
byte loads and alternative 2 uses 16-byte loads. These code samples are executed with two source
buffers, src1, src2, at 4 byte offset from 32-byte alignment, and a destination buffer, DST, that is 32-byte
aligned. Using two 16-byte memory operations in lieu of 32-byte memory access performs faster.1

Example 15-11. Using 16-Byte Memory Operations for Unaligned 32-Byte Memory Operation

Convert 32-byte loads as follows:
vmovups ymm0, mem -> vmovups xmm0, mem

vinsertf128 ymm0, ymm0, mem+16, 1
Convert 32-byte stores as follows:

vmovups mem, ymm0 -> vmovups mem, xmm0
vextractf128 mem+16, ymm0, 1

The following intrinsics are available to handle unaligned 32-byte memory operating using 16-byte memory accesses:
_mm256_loadu2_m128 (float const * addr_hi, float const * addr_lo);
_mm256_loadu2_m128d (double const * addr_hi, double const * addr_lo);
_mm256_loadu2_m128 i(__m128i const * addr_hi, __m128i const * addr_lo);
_mm256_storeu2_m128 (float * addr_hi, float * addr_lo, __m256 a);
_mm256_storeu2_m128d (double * addr_hi, double * addr_lo, __m256d a);
_mm256_storeu2_m128 i(__m128i * addr_hi, __m128i * addr_lo, __m256i a);

1. Beginning with Haswell microarchitecture and onward, it is better to read the entire register: 32-byte register or 64-
byte register (with the availability of Intel® AVX-512).

Example 15-12. SAXPY Implementations for Unaligned Data Addresses
AVX with 32-byte memory operation AVX using two 16-byte memory operations

mov rax, src1
mov rbx, src2
mov rcx, dst
mov rdx, len
xor rdi, rdi
vbroadcastss ymm0, alpha

start_loop:
vmovups ymm1, [rax + rdi]
vmulps ymm1, ymm1, ymm0
vmovups ymm2, [rbx + rdi]
vaddps ymm1, ymm1, ymm2
vmovups [rcx + rdi], ymm1

mov rax, src1
mov rbx, src2
mov rcx, dst
mov rdx, len
xor rdi, rdi
vbroadcastss ymm0, alpha

start_loop:
vmovups xmm2, [rax+rdi]
vinsertf128 ymm2, ymm2, [rax+rdi+16], 1
vmulps ymm1, ymm0, ymm2
vmovups xmm2, [rbx + rdi]
vinsertf128 ymm2, ymm2, [rbx+rdi+16], 1
vaddps ymm1, ymm1, ymm2

OPTIMIZATIONS FOR INTEL® AVX, FMA AND AVX2

15-22

Assembly/Compiler Coding Rule 66. (M impact, H generality) Align data to 32-byte boundary
when possible. If it is not possible to align both loads and stores, then prefer store alignment over load
alignment.

15.6.3 Prefer Aligned Stores Over Aligned Loads
There are cases where it is possible to align only a subset of the processed data buffers. In these cases,
aligning data buffers used for store operations usually yields better performance than aligning data
buffers used for load operations.

Unaligned stores are likely to cause greater performance degradation than unaligned loads, since there
is a very high penalty on stores to a split cache-line that crosses pages. This penalty is estimated at 150
cycles. Stores that cross a page boundary are executed at retirement. In Example 15-12, unaligned store
address can affect SAXPY performance for 3 unaligned addresses to about one quarter of the aligned
case.

15.7 L1D CACHE LINE REPLACEMENTS

NOTE
Beginning with Haswell microarchitecture, cache line replacement is no longer a concern .

When a load misses the L1D Cache, a cache line with the requested data is brought from a higher
memory hierarchy level. In memory intensive code where the L1D Cache is always active, replacing a
cache line in the L1D Cache may delay other loads. In Sandy Bridge and Ivy Bridge microarchitectures,
the penalty for 32-Byte loads may be higher than the penalty for 16-Byte loads. Therefore, memory
intensive Intel AVX code with 32-Byte loads and with data set larger than the L1D Cache may be slower
than similar code with 16-Byte loads.

When Example 15-12 is run with a data set that resides in the L2 Cache, the 16-byte memory access
implementation is slightly faster than the 32-byte memory operation.

Be aware that the relative merit of 16-byte memory accesses versus 32-byte memory access is imple-
mentation specific across generations of microarchitectures.

In Haswell microarchitecture, the L1D Cache can support two 32-byte fetch each cycle.

vmovups ymm1, [rax+rdi+32]
vmulps ymm1, ymm1, ymm0

vmovups ymm2, [rbx+rdi+32]
vaddps ymm1, ymm1, ymm2
vmovups [rcx+rdi+32], ymm1

add rdi, 64
cmp rdi, rdx
jl start_loop

vmovups [rcx+rdi], ymm1
vmovups xmm2, [rax+rdi+32]
vinsertf128 ymm2, ymm2, [rax+rdi+48], 1
vmulps ymm1, ymm0, ymm2
vmovups xmm2, [rbx+rdi+32]
vinsertf128 ymm2, ymm2, [rbx+rdi+48], 1
vaddps ymm1, ymm1, ymm2
vmovups [rcx+rdi+32], ymm1
add rdi, 64
cmp rdi, rdx
jl start_loop

Example 15-12. SAXPY Implementations for Unaligned Data Addresses (Contd.)
AVX with 32-byte memory operation AVX using two 16-byte memory operations

15-23

OPTIMIZATIONS FOR INTEL® AVX, FMA AND AVX2

15.8 4K ALIASING
4-KByte memory aliasing occurs when the code stores to one memory location and shortly after that it
loads from a different memory location with a 4-KByte offset between them. For example, a load to linear
address 0x400020 follows a store to linear address 0x401020.

The load and store have the same value for bits 5 - 11 of their addresses and the accessed byte offsets
should have partial or complete overlap.

4K aliasing may have a five-cycle penalty on the load latency. This penalty may be significant when 4K
aliasing happens repeatedly and the loads are on the critical path. If the load spans two cache lines it
might be delayed until the conflicting store is committed to the cache. Therefore 4K aliasing that happens
on repeated unaligned Intel AVX loads incurs a higher performance penalty.

To detect 4K aliasing, use the LD_BLOCKS_PARTIAL.ADDRESS_ALIAS event that counts the number of
times Intel AVX loads were blocked due to 4K aliasing.

To resolve 4K aliasing, try the following methods in the following order:
• Align data to 32 Bytes.
• Change offsets between input and output buffers if possible.
• Sandy Bridge and Ivy Bridge microarchitectures may benefit from using 16-Byte memory accesses

on memory which is not 32-Byte aligned.

15.9 CONDITIONAL SIMD PACKED LOADS AND STORES
The VMASKMOV instruction conditionally moves packed data elements to/from memory, depending on
the mask bits associated with each data element. The mask bit for each data element is the most signif-
icant bit of the corresponding element in the mask register.

When performing a mask load, the returned value is 0 for elements which have a corresponding mask
value of 0. The mask store instruction writes to memory only the elements with a corresponding mask
value of 1, while preserving memory values for elements with a corresponding mask value of 0. Faults
can occur only for memory accesses that are required by the mask. Faults do not occur due to refer-
encing any memory location if the corresponding mask bit value for that memory location is zero. For
example, no faults are detected if the mask bits are all zero.

The following figure shows an example for a mask load and a mask store which does not cause a fault. In
this example, the mask register for the load operation is ymm1 and the mask register for the store oper-
ation is ymm2.

When using masked load or store consider the following:
• On processors based on microarchitectures prior to Skylake, the address of a VMASKMOV store is

considered as resolved only after the mask is known. Loads that follow a masked store may be
blocked, depending on the memory disambiguation prediction, until the mask value is known.

• If the mask is not all 1 or all 0, loads that depend on the masked store have to wait until the store
data is written to the cache. If the mask is all 1 the data can be forwarded from the masked store to
the dependent loads. If the mask is all 0 the loads do not depend on the masked store.

OPTIMIZATIONS FOR INTEL® AVX, FMA AND AVX2

15-24

• Masked loads including an illegal address range do not result in an exception if the range is under a
zero mask value. However, the processor may take a multi-hundred-cycle “assist” to determine that
no part of the illegal range have a one mask value. This assist may occur even when the mask is
“zero” and it seems obvious to the programmer that the load should not be executed.

When using VMASKMOV, consider the following:
• Use VMASKMOV only in cases where VMOVUPS cannot be used.
• Use VMASKMOV on 32Byte aligned addresses if possible.
• If possible use valid address range for masked loads, even if the illegal part is masked with zeros.
• Determine the mask as early as possible.
• Avoid store-forwarding issues by performing loads prior to a VMASKMOV store if possible.
• Be aware of mask values that would cause the VMASKMOV instruction to require assist (if an assist is

required, the latency of VMASKMOV to load data will increase dramatically):

— Load data using VMASKMOV with a mask value selecting 0 elements from an illegal address will
require an assist.

— Load data using VMASKMOV with a mask value selecting 0 elements from a legal address
expressed in some addressing form (e.g. [base+index], disp[base+index])will require an assist.

With processors based on the Skylake microarchitecture, the performance characteristics of VMASKMOV
instructions have the following notable items:
• Loads that follow a masked store is not longer blocked until the mask value is known.
• Store data using VMASKMOV with a mask value permitting 0 elements to be written to an illegal

address will require an assist.

15.9.1 Conditional Loops
VMASKMOV enables vectorization of loops that contain conditional code. There are two main benefits in
using VMASKMOV over the scalar implementation in these cases:
• VMASKMOV code is vectorized.
• Branch mispredictions are eliminated.

Below is a conditional loop C code:

15-25

OPTIMIZATIONS FOR INTEL® AVX, FMA AND AVX2

Example 15-13. Loop with Conditional Expression

for(int i = 0; i < miBufferWidth; i++)
{ if(A[i]>0)

{ B[i] = (E[i]*C[i]);
}
else
{ B[i] = (E[i]*D[i]);
}

}

Example 15-14. Handling Loop Conditional with VMASKMOV
Scalar AVX using VMASKMOV
float* pA = A;
float* pB = B;
float* pC = C;
float* pD = D;
float* pE = E;
uint64 len = (uint64) (miBuffer-
Width)*sizeof(float);
__asm
{

mov rax, pA
mov rbx, pB
mov rcx, pC
mov rdx, pD
mov rsi, pE
mov r8, len

float* pA = A;
float* pB = B;
float* pC = C;
float* pD = D;
float* pE = E;
uint64 len = (uint64) (miBufferWidth)*sizeof(float);
__asm
{

mov rax, pA
mov rbx, pB
mov rcx, pC
mov rdx, pD
mov rsi, pE
mov r8, len

//xmm8 all zeros
vxorps xmm8, xmm8, xmm8

xor r9, r9
loop1:

vmovss xmm1, [rax+r9]
vcomiss xmm1, xmm8
jbe a_le

a_gt:
vmovss xmm4, [rcx+r9]
jmp mul

a_le:
vmovss xmm4, [rdx+r9]

mul:
vmulss xmm4, xmm4, [rsi+r9]
vmovss [rbx+r9], xmm4
add r9, 4
cmp r9, r8

 jl loop1
}

//ymm8 all zeros
 vxorps ymm8, ymm8, ymm8
 //ymm9 all ones
 vcmpps ymm9, ymm8, ymm8, 0
 xor r9, r9
loop1:
 vmovups ymm1, [rax+r9]
 vcmpps ymm2, ymm8, ymm1, 1
 vmaskmovps ymm4, ymm2, [rcx+r9]
 vxorps ymm2, ymm2, ymm9
 vmaskmovps ymm5, ymm2, [rdx+r9]
 vorps ymm4, ymm4, ymm5
 vmulps ymm4, ymm4, [rsi+r9]
 vmovups [rbx+r9], ymm4
 add r9, 32
 cmp r9, r8
 jl loop1
}

OPTIMIZATIONS FOR INTEL® AVX, FMA AND AVX2

15-26

The performance of the left side of Example 15-14 is sensitive to branch mis-predictions and can be an
order of magnitude slower than the VMASKMOV example which has no data-dependent branches.

15.10 MIXING INTEGER AND FLOATING-POINT CODE
Integer SIMD functionalities in Intel AVX instructions are limited to 128-bit. There are some algorithm
that uses mixed integer SIMD and floating-point SIMD instructions. Therefore, porting such legacy 128-
bit code into 256-bit AVX code requires special attention.

For example, PALINGR (Packed Align Right) is an integer SIMD instruction that is useful arranging data
elements for integer and floating-point code. But VPALINGR instruction does not have a corresponding
256-bit instruction in AVX.

There are three approaches to consider when porting legacy code consisting of mostly floating-point with
some integer operations into 256-bit AVX code:
• Locate a 256-bit AVX alternative to replace the critical128-bit Integer SIMD instructions if such an

AVX instructions exist. This is more likely to be true with integer SIMD instruction that rearranges
data elements.

• Mix 128-bit AVX and 256-bit AVX instructions.
• Use Intel AVX2 instructions.

The performance gain from these two approaches may vary. Where possible, use method (1), since this
method utilizes the full 256-bit vector width.

In case the code is mostly integer, convert the code from 128-bit SSE to 128 bit AVX instructions and gain
from the Non destructive Source (NDS) feature.

Example 15-15. Three-Tap Filter in C Code

for(int i = 0; i < len -2; i++)
{

pOut[i] = A[i]*coeff[0]+A[i+1]*coeff[1]+A[i+2]*coeff[2];
}

Example 15-16. Three-Tap Filter with 128-bit Mixed Integer and FP SIMD

xor ebx, ebx
mov rcx, len
mov rdi, inPtr
mov rsi, outPtr
mov r15, coeffs
movss xmm2, [r15] // load coeff 0
shufps xmm2, xmm2, 0 // broadcast coeff 0
movss xmm1, [r15+4] // load coeff 1
shufps xmm1, xmm1, 0 // broadcast coeff 1
movss xmm0, [r15+8] // coeff 2
shufps xmm0, xmm0, 0 // broadcast coeff 2
movaps xmm5, [rdi] // xmm5={A[n+3],A[n+2],A[n+1],A[n]}

15-27

OPTIMIZATIONS FOR INTEL® AVX, FMA AND AVX2

 loop_start:
movaps xmm6, [rdi+16] // xmm6={A[n+7],A[n+6],A[n+5],A[n+4]}
movaps xmm7, xmm6
movaps xmm8, xmm6
add rdi, 16 // inPtr+=16
add rbx, 4 // loop counter
palignr xmm7, xmm5, 4 // xmm7={A[n+4],A[n+3],A[n+2],A[n+1]}
palignr xmm8, xmm5, 8 // xmm8={A[n+5],A[n+4],A[n+3],A[n+2]}
mulps xmm5, xmm2 //xmm5={C0*A[n+3],C0*A[n+2],C0*A[n+1], C0*A[n]}

mulps xmm7, xmm1 // xmm7={C1*A[n+4],C1*A[n+3],C1*A[n+2],C1*A[n+1]}
mulps xmm8, xmm0 // xmm8={C2*A[n+5],C2*A[n+4] C2*A[n+3],C2*A[n+2]}
addps xmm7 ,xmm5
addps xmm7, xmm8
movaps [rsi], xmm7

 movaps xmm5, xmm6
add rsi, 16 // outPtr+=16
cmp rbx, rcx
jl loop_start

Example 15-17. 256-bit AVX Three-Tap Filter Code with VSHUFPS

xor ebx, ebx
mov rcx, len
mov rdi, inPtr
mov rsi, outPtr
mov r15, coeffs
vbroadcastss ymm2, [r15] // load and broadcast coeff 0
vbroadcastss ymm1, [r15+4] // load and broadcast coeff 1
vbroadcastss ymm0, [r15+8] // load and broadcast coeff 2

Example 15-16. Three-Tap Filter with 128-bit Mixed Integer and FP SIMD (Contd.)

OPTIMIZATIONS FOR INTEL® AVX, FMA AND AVX2

15-28

loop_start:
vmovaps ymm5, [rdi] // Ymm5={A[n+7],A[n+6],A[n+5],A[n+4];

// A[n+3],A[n+2],A[n+1] , A[n]}
vshufps ymm6, ymm5, [rdi+16], 0x4e // ymm6={A[n+9],A[n+8],A[n+7],A[n+6];

// A[n+5],A[n+4],A[n+3],A[n+2]}
vshufps ymm7, ymm5, ymm6, 0x99 // ymm7={A[n+8],A[n+7],A[n+6],A[n+5];

// A[n+4],A[n+3],A[n+2],A[n+1]}
vmulps ymm3, ymm5, ymm2 // ymm3={C0*A[n+7],C0*A[n+6],C0*A[n+5],C0*A[n+4];

// C0*A[n+3],C0*A[n+2],C0*A[n+1],C0*A[n]}
vmulps ymm9, ymm7, ymm1 // ymm9={C1*A[n+8],C1*A[n+7],C1*A[n+6],C1*A[n+5];

// C1*A[n+4],C1*A[n+3],C1*A[n+2],C1*A[n+1]}
vmulps ymm4, ymm6, ymm0 // ymm4={C2*A[n+9],C2*A[n+8],C2*A[n+7],C2*A[n+6];

// C2*A[n+5],C2*A[n+4],C2*A[n+3],C2*A[n+2]}
vaddps ymm8, ymm3, ymm4
vaddps ymm10, ymm8, ymm9
vmovaps [rsi], ymm10
add rdi, 32 // inPtr+=32
add rbx, 8 // loop counter
add rsi, 32 // outPtr+=32
cmp rbx, rcx
jl loop_start

Example 15-18. Three-Tap Filter Code with Mixed 256-bit AVX and 128-bit AVX Code

xor ebx, ebx
mov rcx, len
mov rdi, inPtr
mov rsi, outPtr
mov r15, coeffs
vbroadcastss ymm2, [r15] // load and broadcast coeff 0
vbroadcastss ymm1, [r15+4] // load and broadcast coeff 1
vbroadcastss ymm0, [r15+8] // load and broadcast coeff 2
vmovaps xmm3, [rdi] // xmm3={A[n+3],A[n+2],A[n+1],A[n]}

loop_start:
vmovaps xmm4, [rdi+16] // xmm4={A[n+7],A[n+6],A[n+5],A[n+4]}
vmovaps xmm5, [rdi+32] // xmm5={A[n+11], A[n+10],A[n+9],A[n+8]}
vinsertf128 ymm3, ymm3, xmm4, 1 // ymm3={A[n+7],A[n+6],A[n+5],A[n+4];

 // A[n+3], A[n+2],A[n+1],A[n]}
vpalignr xmm6, xmm4, xmm3, 4 // xmm6={A[n+4],A[n+3],A[n+2],A[n+1]}
vpalignr xmm7, xmm5, xmm4, 4 // xmm7={A[n+8],A[n+7],A[n+6],A[n+5]}
vinsertf128 ymm6, ymm6, xmm7, 1 // ymm6={A[n+8],A[n+7],A[n+6],A[n+5];

 // A[n+4],A[n+3],A[n+2],A[n+1]}
vpalignr xmm8, xmm4, xmm3, 8 // xmm8={A[n+5],A[n+4],A[n+3],A[n+2]}
vpalignr xmm9, xmm5, xmm4, 8 // xmm9={A[n+9],A[n+8],A[n+7],A[n+6]}
vinsertf128 ymm8, ymm8, xmm9, 1 // ymm8={A[n+9],A[n+8],A[n+7],A[n+6];

 // A[n+5],A[n+4],A[n+3],A[n+2]}
vmulps ymm3, ymm3, ymm2 // ymm3={C0*A[n+7],C0*A[n+6],C0*A[n+5], C0*A[n+4];

// C0*A[n+3],C0*A[n+2],C0*A[n+1],C0*A[n]}
vmulps ymm6, ymm6, ymm1 // ymm6={C1*A[n+8],C1*A[n+7],C1*A[n+6],C1*A[n+5];

// C1*A[n+4],C1*A[n+3],C1*A[n+2],C1*A[n+1]}

Example 15-17. 256-bit AVX Three-Tap Filter Code with VSHUFPS (Contd.)

15-29

OPTIMIZATIONS FOR INTEL® AVX, FMA AND AVX2

Example 15-17 uses 256-bit VSHUFPS to replace the PALIGNR in 128-bit mixed SSE code. This speeds up
almost 70% over the 128-bit mixed SSE code of Example 15-16 and slightly ahead of Example 15-18.

For code that includes integer instructions and is written with 256-bit Intel AVX instructions, replace the
integer instruction with floating-point instructions that have similar functionality and performance. If
there is no similar floating-point instruction, consider using a 128-bit Intel AVX instruction to perform the
required integer operation.

15.11 HANDLING PORT 5 PRESSURE
Port 5 in Sandy Bridge microarchitecture includes shuffle units which frequently become a performance
bottleneck. Ice Lake Client microarchitecture has added a restricted, in-lane shuffle unit to port 1 to help
reduce some of the pressure. Shuffle operations which can be restructured to operate in-lane will benefit
from this unit. Sometimes it is possible to replace shuffle instructions that dispatch only on port 5, with
different instructions and improve performance by reducing port 5 pressure. For more information, see
Table E-11.

15.11.1 Replace Shuffles with Blends
There are a few cases where shuffles such as VSHUFPS or VPERM2F128 can be replaced by blend instruc-
tions. Intel AVX shuffles are executed only on port 5, while blends are also executed on port 0. Therefore,
replacing shuffles with blends could reduce port 5 pressure. The following figure shows how a VSHUFPS
is implemented using VBLENDPS.

vmulps ymm8, ymm8, ymm0 // ymm8={C2*A[n+9],C2*A[n+8],C2*A[n+7],C2*A[n+6];
 // C2*A[n+5],C2*A[n+4],C2*A[n+3],C2*A[n+2]}

vaddps ymm3, ymm3, ymm6
vaddps ymm3, ymm3, ymm8
vmovaps [rsi], ymm3
vmovaps xmm3, xmm5
add rdi, 32 // inPtr+=32
add rbx, 8 // loop counter
add rsi, 32 // outPtr+=32
cmp rbx, rcx
jl loop_start

Example 15-18. Three-Tap Filter Code with Mixed 256-bit AVX and 128-bit AVX Code (Contd.)

OPTIMIZATIONS FOR INTEL® AVX, FMA AND AVX2

15-30

The following example shows two implementations of an 8x8 Matrix transpose. In both cases, the bottle-
neck is Port 5 pressure. Alternative 1 uses 12 vshufps instructions that are executed only on port 5. Alter-
native 2 replaces eight of the vshufps instructions with the vblendps instruction which can be executed
on Port 0.

Example 15-19. 8x8 Matrix Transpose - Replace Shuffles with Blends
256-bit AVX using VSHUFPS AVX replacing VSHUFPS with VBLENDPS
mov rcx, inpBuf
mov rdx, outBuf
mov r10, NumOfLoops

loop1:
vmovaps ymm9, [rcx]
vmovaps ymm10, [rcx+32]
vmovaps ymm11, [rcx+64]
vmovaps ymm12, [rcx+96]
vmovaps ymm13, [rcx+128]
vmovaps ymm14, [rcx+160]
vmovaps ymm15, [rcx+192]
vmovaps ymm2, [rcx+224]
vunpcklps ymm6, ymm9, ymm10
vunpcklps ymm1, ymm11, ymm12
vunpckhps ymm8, ymm9, ymm10
vunpcklps ymm0, ymm13, ymm14
vunpcklps ymm9, ymm15, ymm2
vshufps ymm3, ymm6, ymm1, 0x4E
vshufps ymm10, ymm6, ymm3, 0xE4
vshufps ymm6, ymm0, ymm9, 0x4E
vunpckhps ymm7, ymm11, ymm12
vshufps ymm11, ymm0, ymm6, 0xE4

mov rcx, inpBuf
mov rdx, outBuf
mov r10, NumOfLoops

loop1:
vmovaps ymm9, [rcx]
vmovaps ymm10, [rcx+32]
vmovaps ymm11, [rcx+64]
vmovaps ymm12, [rcx+96]
vmovaps ymm13, [rcx+128]
vmovaps ymm14, [rcx+160]
vmovaps ymm15, [rcx+192]
vmovaps ymm2, [rcx+224]
vunpcklps ymm6, ymm9, ymm10
vunpcklps ymm1, ymm11, ymm12
vunpckhps ymm8, ymm9, ymm10
vunpcklps ymm0, ymm13, ymm14
vunpcklps ymm9, ymm15, ymm2
vshufps ymm3, ymm6, ymm1, 0x4E
vblendps ymm10, ymm6, ymm3, 0xCC
vshufps ymm6, ymm0, ymm9, 0x4E
vunpckhps ymm7, ymm11, ymm12
vblendps ymm11, ymm0, ymm6, 0xCC

15-31

OPTIMIZATIONS FOR INTEL® AVX, FMA AND AVX2

In Example 15-19, replacing VSHUFPS with VBLENDPS relieved port 5 pressure and can gain almost 40%
speedup.
Assembly/Compiler Coding Rule 67. (M impact, M generality) Use Blend instructions in lieu of
shuffle instruction in AVX whenever possible.

15.11.2 Design Algorithm With Fewer Shuffles
In some cases you can reduce port 5 pressure by changing the algorithm to use less shuffles. The figure
below shows that the transpose moved all the elements in rows 0-4 to the low lanes, and all the elements
in rows 4-7 to the high lanes. Therefore, using 256-bit loads in the beginning of the algorithm requires
using VPERM2F128 in order to swap elements between the lanes. The processor executes the
VPERM2F128 instruction only on port 5.

Example 15-19 used eight 256-bit loads and eight VPERM2F128 instructions. You can implement the
same 8x8 Matrix Transpose using VINSERTF128 instead of the 256-bit loads and the eight VPERM2F128.
Using VINSERTF128 from memory is executed in the load ports and on port 0 or 5. The original method
required loads that are performed on the load ports and VPERM2F128 that is only performed on port 5.
Therefore redesigning the algorithm to use VINSERTF128 reduces port 5 pressure and improves perfor-
mance.

vshufps ymm12, ymm3, ymm1, 0xE4
vperm2f128 ymm3, ymm10, ymm11, 0x20
vmovaps [rdx], ymm3
vunpckhps ymm5, ymm13, ymm14
vshufps ymm13, ymm6, ymm9, 0xE4
vunpckhps ymm4, ymm15, ymm2
vperm2f128 ymm2, ymm12, ymm13, 0x20
vmovaps 32[rdx], ymm2
vshufps ymm14, ymm8, ymm7, 0x4E
vshufps ymm15, ymm14, ymm7, 0xE4
vshufps ymm7, ymm5, ymm4, 0x4E
vshufps ymm8, ymm8, ymm14, 0xE4
vshufps ymm5, ymm5, ymm7, 0xE4
vperm2f128 ymm6, ymm8, ymm5, 0x20
vmovaps 64[rdx], ymm6
vshufps ymm4, ymm7, ymm4, 0xE4
vperm2f128 ymm7, ymm15, ymm4, 0x20
vmovaps 96[rdx], ymm7
vperm2f128 ymm1, ymm10, ymm11, 0x31
vperm2f128 ymm0, ymm12, ymm13, 0x31
vmovaps 128[rdx], ymm1
vperm2f128 ymm5, ymm8, ymm5, 0x31
vperm2f128 ymm4, ymm15, ymm4, 0x31
vmovaps 160[rdx], ymm0
vmovaps 192[rdx], ymm5
vmovaps 224[rdx], ymm4
dec r10
jnz loop1

vblendps ymm12, ymm3, ymm1, 0xCC
vperm2f128 ymm3, ymm10, ymm11, 0x20
vmovaps [rdx], ymm3
vunpckhps ymm5, ymm13, ymm14
vblendps ymm13, ymm6, ymm9, 0xCC
vunpckhps ymm4, ymm15, ymm2
vperm2f128 ymm2, ymm12, ymm13, 0x20
vmovaps 32[rdx], ymm2
vshufps ymm14, ymm8, ymm7, 0x4E
vblendps ymm15, ymm14, ymm7, 0xCC
vshufps ymm7, ymm5, ymm4, 0x4E
vblendps ymm8, ymm8, ymm14, 0xCC
vblendps ymm5, ymm5, ymm7, 0xCC
vperm2f128 ymm6, ymm8, ymm5, 0x20
vmovaps 64[rdx], ymm6
vblendps ymm4, ymm7, ymm4, 0xCC
vperm2f128 ymm7, ymm15, ymm4, 0x20
vmovaps 96[rdx], ymm7
vperm2f128 ymm1, ymm10, ymm11, 0x31
vperm2f128 ymm0, ymm12, ymm13, 0x31
vmovaps 128[rdx], ymm1
vperm2f128 ymm5, ymm8, ymm5, 0x31
vperm2f128 ymm4, ymm15, ymm4, 0x31
vmovaps 160[rdx], ymm0
vmovaps 192[rdx], ymm5
vmovaps 224[rdx], ymm4
dec r10
jnz loop1

Example 15-19. 8x8 Matrix Transpose - Replace Shuffles with Blends (Contd.)
256-bit AVX using VSHUFPS AVX replacing VSHUFPS with VBLENDPS

OPTIMIZATIONS FOR INTEL® AVX, FMA AND AVX2

15-32

The following figure describes step 1 of the 8x8 matrix transpose with vinsertf128. Step 2 performs the
same operations on different columns.

15-33

OPTIMIZATIONS FOR INTEL® AVX, FMA AND AVX2

Example 15-20. 8x8 Matrix Transpose Using VINSERTPS

mov rcx, inpBuf
mov rdx, outBuf
mov r10, NumOfLoops

loop1:
vmovaps xmm0, [rcx]
vinsertf128 ymm0, ymm0, [rcx + 128], 1
vmovaps xmm1, [rcx + 32]
vinsertf128 ymm1, ymm1, [rcx + 160], 1

vunpcklpd ymm8, ymm0, ymm1
vunpckhpd ymm9, ymm0, ymm1
vmovaps xmm2, [rcx+64]
vinsertf128 ymm2, ymm2, [rcx + 192], 1
vmovaps xmm3, [rcx+96]
vinsertf128 ymm3, ymm3, [rcx + 224], 1
vunpcklpd ymm10, ymm2, ymm3
vunpckhpd ymm11, ymm2, ymm3
vshufps ymm4, ymm8, ymm10, 0x88
vmovaps [rdx], ymm4
vshufps ymm5, ymm8, ymm10, 0xDD
vmovaps [rdx+32], ymm5
vshufps ymm6, ymm9, ymm11, 0x88
vmovaps [rdx+64], ymm6
vshufps ymm7, ymm9, ymm11, 0xDD
vmovaps [rdx+96], ymm7
vmovaps xmm0, [rcx+16]
vinsertf128 ymm0, ymm0, [rcx + 144], 1
vmovaps xmm1, [rcx + 48]
vinsertf128 ymm1, ymm1, [rcx + 176], 1

vunpcklpd ymm8, ymm0, ymm1
vunpckhpd ymm9, ymm0, ymm1

vmovaps xmm2, [rcx+80]
vinsertf128 ymm2, ymm2, [rcx + 208], 1
vmovaps xmm3, [rcx+112]
vinsertf128 ymm3, ymm3, [rcx + 240], 1

vunpcklpd ymm10, ymm2, ymm3
vunpckhpd ymm11, ymm2, ymm3
vshufps ymm4, ymm8, ymm10, 0x88
vmovaps [rdx+128], ymm4
vshufps ymm5, ymm8, ymm10, 0xDD
vmovaps [rdx+160], ymm5
vshufps ymm6, ymm9, ymm11, 0x88
vmovaps [rdx+192], ymm6
vshufps ymm7, ymm9, ymm11, 0xDD
vmovaps [rdx+224], ymm7
dec r10
jnz loop1

OPTIMIZATIONS FOR INTEL® AVX, FMA AND AVX2

15-34

In Example 15-20, this reduced port 5 pressure further than the combination of VSHUFPS with
VBLENDPS in Example 15-19. It can gain 70% speedup relative to relying on VSHUFPS alone in Example
15-19.

15.11.3 Perform Basic Shuffles on Load Ports
Some shuffles can be executed in the load ports (ports 2, 3) if the source is from memory. The following
example shows how moving some shuffles (vmovsldup/vmovshdup) from Port 5 to the load ports
improves performance significantly.

The following figure describes an Intel AVX implementation of the complex multiply algorithm with
vmovsldup/vmovshdup on the load ports.

Example 15-21 includes two versions of the complex multiply. Both versions are unrolled twice. Alterna-
tive 1 shuffles all the data in registers. Alternative 2 shuffles data while it is loaded from memory.

15-35

OPTIMIZATIONS FOR INTEL® AVX, FMA AND AVX2

15.12 DIVIDE AND SQUARE ROOT OPERATIONS
In Intel microarchitectures prior to Skylake, the SSE divide and square root instructions DIVPS and
SQRTPS have a latency of 14 cycles (or the neighborhood) and they are not pipelined. This means that
the throughput of these instructions is one in every 14 cycles. The 256-bit Intel AVX instructions VDIVPS
and VSQRTPS execute with 128-bit data path and have a latency of 28 cycles and they are not pipelined
as well. Therefore, the performance of the Intel SSE divide and square root instructions is similar to the
Intel AVX 256-bit instructions on Sandy Bridge microarchitecture.

With the Skylake microarchitecture, 256-bit and 128-bit version of (V)DIVPS/(V)SQRTPS have the same
latency because the 256-bit version can execute with a 256-bit data path. The latency is improved and is
pipelined to execute with significantly improved throughput. See Appendix D, “Instruction Latency and
Throughput”.

In microarchitectures that provide DIVPS/SQRTPS with high latency and low throughput, it is possible to
speed up single-precision divide and square root calculations using the (V)RSQRTPS and (V)RCPPS
instructions. For example, with 128-bit RCPPS/RSQRTPS at 5-cycle latency and 1-cycle throughput or
with 256-bit implementation of these instructions at 7-cycle latency and 2-cycle throughput, a single
Newton-Raphson iteration or Taylor approximation can achieve almost the same precision as the

Example 15-21. Port 5 versus Load Port Shuffles
Shuffles data in registers Shuffling loaded data
mov rax, inPtr1
mov rbx, inPtr2
mov rdx, outPtr
mov r8, len
xor rcx, rcx

loop1:
vmovaps ymm0, [rax +8*rcx]
vmovaps ymm4, [rax +8*rcx +32]
vmovaps ymm3, [rbx +8*rcx]
vmovsldup ymm2, ymm3
vmulps ymm2, ymm2, ymm0
vshufps ymm0, ymm0, ymm0, 177
vmovshdup ymm1, ymm3
vmulps ymm1, ymm1, ymm0
vmovaps ymm7, [rbx +8*rcx +32]
vmovsldup ymm6, ymm7
vmulps ymm6, ymm6, ymm4
vaddsubps ymm2, ymm2, ymm1
vmovshdup ymm5, ymm7

mov rax, inPtr1
mov rbx, inPtr2
mov rdx, outPtr
mov r8, len
xor rcx, rcx

loop1:
vmovaps ymm0, [rax +8*rcx]
vmovaps ymm4, [rax +8*rcx +32]

vmovsldup ymm2, [rbx +8*rcx]
vmulps ymm2, ymm2, ymm0
vshufps ymm0, ymm0, ymm0, 177
vmovshdup ymm1, [rbx +8*rcx]
vmulps ymm1, ymm1, ymm0
vmovsldup ymm6, [rbx +8*rcx +32]
vmulps ymm6, ymm6, ymm4
vaddsubps ymm3, ymm2, ymm1
vmovshdup ymm5, [rbx +8*rcx +32]

vmovaps [rdx+8*rcx], ymm2
vshufps ymm4, ymm4, ymm4, 177
vmulps ymm5, ymm5, ymm4
vaddsubps ymm6, ymm6, ymm5
vmovaps [rdx+8*rcx+32], ymm6

add rcx, 8
cmp rcx, r8
jl loop1

vmovaps [rdx +8*rcx], ymm3
vshufps ymm4, ymm4, ymm4, 177
vmulps ymm5, ymm5, ymm4
vaddsubps ymm7, ymm6, ymm5
vmovaps [rdx +8*rcx +32], ymm7

add rcx, 8
cmp rcx, r8
jl loop1

OPTIMIZATIONS FOR INTEL® AVX, FMA AND AVX2

15-36

(V)DIVPS and (V)SQRTPS instructions. See Intel® 64 and IA-32 Architectures Software Developer's
Manual for more information on these instructions.

In some cases, when the divide or square root operations are part of a larger algorithm that hides some
of the latency of these operations, the approximation with Newton-Raphson can slow down execution,
because more micro-ops, coming from the additional instructions, fill the pipe.

With the Skylake microarchitecture, choosing between approximate reciprocal instruction alternative
versus DIVPS/SQRTPS for optimal performance of simple algebraic computations depend on a number of
factors. Table 15-5 shows several algebraic formula the throughput comparison of implementations of
different numeric accuracy tolerances. In each row, 24-bit accurate implementations are IEEE-compliant
and using the respective instructions of 128-bit or 256-bit ISA. The columns of 22-bit and 11-bit accurate
implementations are using approximate reciprocal instructions of the respective instruction set.

If targeting processors based on the Skylake microarchitecture, Table 15-5 can be summarized as:
• For 256- bit AVX code, Newton-Raphson approximation can be beneficial on Skylake microarchi-

tecture when the algorithm contains only operations executed on the divide unit. However, when
single precision divide or square root operations are part of a longer computation, the lower latency
of the DIVPS or SQRTPS instructions can lead to better overall performance.

• For SSE or 128-bit AVX implementation, consider use of approximation for divide and square root
instructions only for algorithms that do not require precision higher than 11-bit or algorithms that
contain multiple operations executed on the divide unit.

Table 15-6 summarizes recommended calculation methods of divisions or square root when using single-
precision instructions, based on the desired accuracy level across recent generations of Intel microarchi-
tectures.

Table 15-5. Comparison of Numeric Alternatives of Selected Linear Algebra in Skylake Microarchitecture
Algorithm Instruction Type 24-bit Accurate 22-bit Accurate 11-bit Accurate

Z = X/Y SSE 1X 0.9X 1.3X

256-bit AVX 1X 1.5X 2.6X

Z = X0.5 SSE 1X 0.7X 2X

256-bit AVX 1X 1.4X 3.4X

Z = X-0.5 SSE 1X 1.7X 4.3X

256-bit AVX 1X 3X 7.7X

Z = (X *Y + Y*Y)0.5 SSE 1X 0.75X 0.85X

256-bit AVX 1X 1.1X 1.6X

Z = (X+2Y+3)/(Z-2Y-3) SSE 1X 0.85X 1X

256-bit AVX 1X 0.8X 1X

Table 15-6. Single-Precision Divide and Square Root Alternatives
Operation Accuracy Tolerance Recommendation

Divide 24 bits (IEEE) DIVPS

~ 22 bits Skylake: Consult Table 15-5
Prior uarch: RCPPS + 1 Newton-Raphson Iteration + MULPS

~ 11 bits RCPPS + MULPS

Reciprocal square
root

24 bits (IEEE) SQRTPS + DIVPS

~ 22 bits RSQRTPS + 1 Newton-Raphson Iteration

~ 11 bits RSQRTPS

15-37

OPTIMIZATIONS FOR INTEL® AVX, FMA AND AVX2

15.12.1 Single-Precision Divide
To compute:

Z[i]=A[i]/B[i]

On a large vector of single-precision numbers, Z[i] can be calculated by a divide operation, or by multi-
plying 1/B[i] by A[i].

Denoting B[i] by N, it is possible to calculate 1/N using the (V)RCPPS instruction, achieving approxi-
mately 11-bit precision.

For better accuracy you can use the one Newton-Raphson iteration:

X_(0) ~= 1/N ; Initial estimation, rcp(N)

X_(0) = 1/N*(1-E)

E=1-N*X_0 ; E ~= 2^(-11)

X_1=X_0*(1+E)=1/N*(1-E^2) ; E^2 ~= 2^(-22)

X_1=X_0*(1+1-N*X_0)= 2 *X_0 - N*X_0^2

X_1 is an approximation of 1/N with approximately 22-bit precision.

Square root 24 bits (IEEE) SQRTPS

~ 22 bits Skylake: Consult Table 15-5
Prior uarch: RSQRTPS + 1 Newton-Raphson Iteration + MULPS

~ 11 bits RSQRTPS + RCPPS

Example 15-22. Divide Using DIVPS for 24-bit Accuracy
SSE code using DIVPS Using VDIVPS
mov rax, pIn1
mov rbx, pIn2
mov rcx, pOut
mov rsi, iLen
xor rdx, rdx

loop1:
movups xmm0, [rax+rdx*1]
movups xmm1, [rbx+rdx*1]
divps xmm0, xmm1
movups [rcx+rdx*1], xmm0
add rdx, 16
cmp rdx, rsi
jl loop1

mov rax, pIn1
mov rbx, pIn2
mov rcx, pOut
mov rsi, iLen
xor rdx, rdx

loop1:
vmovups ymm0, [rax+rdx*1]
vmovups ymm1, [rbx+rdx*1]
vdivps ymm0, ymm0, ymm1
vmovups [rcx+rdx*1], ymm0
add rdx, 32
cmp rdx, rsi
jl loop1

Table 15-6. Single-Precision Divide and Square Root Alternatives (Contd.)
Operation Accuracy Tolerance Recommendation

OPTIMIZATIONS FOR INTEL® AVX, FMA AND AVX2

15-38

15.12.2 Single-Precision Reciprocal Square Root
To compute Z[i]=1/ (A[i]) ^0.5 on a large vector of single-precision numbers, denoting A[i] by N, it is
possible to calculate 1/N using the (V)RSQRTPS instruction.

For better accuracy you can use one Newton-Raphson iteration:

Example 15-23. Divide Using RCPPS 11-bit Approximation
SSE code using RCPPS Using VRCPPS
mov rax, pIn1
mov rbx, pIn2
mov rcx, pOut
mov rsi, iLen
xor rdx, rdx

mov rax, pIn1
mov rbx, pIn2
mov rcx, pOut
mov rsi, iLen
xor rdx, rdx

loop1:
movups xmm0,[rax+rdx*1]
movups xmm1,[rbx+rdx*1]
rcpps xmm1,xmm1
mulps xmm0,xmm1
movups [rcx+rdx*1],xmm0
add rdx, 16
cmp rdx, rsi
jl loop1

loop1:
vmovups ymm0, [rax+rdx]
vmovups ymm1, [rbx+rdx]
vrcpps ymm1, ymm1
vmulps ymm0, ymm0, ymm1
vmovups [rcx+rdx], ymm0
add rdx, 32
cmp rdx, rsi
jl loop1

Example 15-24. Divide Using RCPPS and Newton-Raphson Iteration
RCPPS + MULPS ~ 22 bit accuracy VRCPPS + VMULPS ~ 22 bit accuracy
mov rax, pIn1
mov rbx, pIn2
mov rcx, pOut
mov rsi, iLen
xor rdx, rdx

mov rax, pIn1
mov rbx, pIn2
mov rcx, pOut
mov rsi, iLen
xor rdx, rdx

loop1:
movups xmm0, [rax+rdx*1]
movups xmm1, [rbx+rdx*1]
rcpps xmm3, xmm1
movaps xmm2, xmm3
addps xmm3, xmm2
mulps xmm2, xmm2
mulps xmm2, xmm1
subps xmm3, xmm2
mulps xmm0, xmm3
movups [rcx+rdx*1], xmm0
add rdx, 16
cmp rdx, rsi
jl loop1

loop1:
vmovups ymm0, [rax+rdx]
vmovups ymm1, [rbx+rdx]
vrcpps ymm3, ymm1

vaddps ymm2, ymm3, ymm3
vmulps ymm3, ymm3, ymm3
vmulps ymm3, ymm3, ymm1
vsubps ymm2, ymm2, ymm3
vmulps ymm0, ymm0, ymm2
vmovups [rcx+rdx], ymm0
add rdx, 32
cmp rdx, rsi
jl loop1

15-39

OPTIMIZATIONS FOR INTEL® AVX, FMA AND AVX2

X_0 ~=1/N ; Initial estimation RCP(N)

E=1-N*X_0^2

X_0= (1/N)^0.5 * ((1-E)^0.5) = (1/N)^0.5 * (1-E/2) ; E/2~= 2^(-11)

X_1=X_0*(1+E/2) ~= (1/N)^0.5 * (1-E^2/4) ; E^2/4?2^(-22)

X_1=X_0*(1+1/2-1/2*N*X_0^2)= 1/2*X_0*(3-N*X_0^2)

X1 is an approximation of (1/N)^0.5 with approximately 22-bit precision.

Example 15-25. Reciprocal Square Root Using DIVPS+SQRTPS for 24-bit Accuracy
Using SQRTPS, DIVPS Using VSQRTPS, VDIVPS

mov rax, pIn
mov rbx, pOut
mov rcx, iLen
xor rdx, rdx

loop1:
movups xmm1, [rax+rdx]
sqrtps xmm0, xmm1
divps xmm0, xmm1
movups [rbx+rdx], xmm0
add rdx, 16
cmp rdx, rcx
jl loop1

mov rax, pIn
mov rbx, pOut
mov rcx, iLen
xor rdx, rdx

loop1:
vmovups ymm1, [rax+rdx]
vsqrtps ymm0, ymm1
vdivps ymm0, ymm0, ymm1
vmovups [rbx+rdx], ymm0
add rdx, 32
cmp rdx, rcx
jl loop1

Example 15-26. Reciprocal Square Root Using RSQRTPS 11-bit Approximation
SSE code using RSQRTPS Using VRSQRTPS

mov rax, pIn
mov rbx, pOut
mov rcx, iLen
xor rdx, rdx

loop1:
rsqrtps xmm0, [rax+rdx]
movups [rbx+rdx], xmm0
add rdx, 16
cmp rdx, rcx
jl loop1

mov rax, pIn
mov rbx, pOut
mov rcx, iLen
xor rdx, rdx

loop1:
vrsqrtps ymm0, [rax+rdx]
vmovups [rbx+rdx], ymm0
add rdx, 32
cmp rdx, rcx
jl loop1

OPTIMIZATIONS FOR INTEL® AVX, FMA AND AVX2

15-40

15.12.3 Single-Precision Square Root
To compute Z[i]= (A[i])^0.5 on a large vector of single-precision numbers, denoting A[i] by N, the
approximation for N^0.5 is N multiplied by (1/N)^0.5 , where the approximation for (1/N)^0.5 is
described in the previous section.

To get approximately 22-bit precision of N^0.5, use the following calculation:

N^0.5 = X_1*N = 1/2*N*X_0*(3-N*X_0^2)

Example 15-27. Reciprocal Square Root Using RSQRTPS and Newton-Raphson Iteration
RSQRTPS + MULPS ~ 22 bit accuracy VRSQRTPS + VMULPS ~ 22 bit accuracy
__declspec(align(16)) float minus_half[4] = {-0.5, -0.5, -
0.5, -0.5};
__declspec(align(16)) float three[4] = {3.0, 3.0, 3.0,
3.0};
__asm
{

mov rax, pIn
mov rbx, pOut
mov rcx, iLen
xor rdx, rdx
movups xmm3, [three]
movups xmm4, [minus_half]

__declspec(align(32)) float half[8] =
{0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5};
__declspec(align(32)) float three[8] =
{3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0};
__asm
{

mov rax, pIn
mov rbx, pOut
mov rcx, iLen
xor rdx, rdx
vmovups ymm3, [three]
vmovups ymm4, [half]

loop1:
movups xmm5, [rax+rdx]
rsqrtps xmm0, xmm5
movaps xmm2, xmm0
mulps xmm0, xmm0
mulps xmm0, xmm5
subps xmm0, xmm3
mulps xmm0, xmm2
mulps xmm0, xmm4
movups [rbx+rdx], xmm0

loop1:
vmovups ymm5, [rax+rdx]
vrsqrtps ymm0, ymm5

vmulps ymm2, ymm0, ymm0
vmulps ymm2, ymm2, ymm5
vsubps ymm2, ymm3, ymm2
vmulps ymm0, ymm0, ymm2
vmulps ymm0, ymm0, ymm4

add rdx, 16
cmp rdx, rcx
jl loop1

}

vmovups [rbx+rdx], ymm0
add rdx, 32
cmp rdx, rcx
jl loop1

}

15-41

OPTIMIZATIONS FOR INTEL® AVX, FMA AND AVX2

Example 15-28. Square Root Using SQRTPS for 24-bit Accuracy
Using SQRTPS Using VSQRTPS

mov rax, pIn
mov rbx, pOut
mov rcx, iLen
xor rdx, rdx

loop1:
movups xmm1, [rax+rdx]
sqrtps xmm1, xmm1
movups [rbx+rdx], xmm1
add rdx, 16
cmp rdx, rcx
jl loop1

mov rax, pIn
mov rbx, pOut
mov rcx, iLen
xor rdx, rdx

loop1:
vmovups ymm1, [rax+rdx]
vsqrtps ymm1,ymm1
vmovups [rbx+rdx], ymm1
add rdx, 32
cmp rdx, rcx
jl loop1

Example 15-29. Square Root Using RSQRTPS 11-bit Approximation
SSE code using RSQRTPS Using VRSQRTPS

mov rax, pIn
mov rbx, pOut
mov rcx, iLen
xor rdx, rdx

loop1:
movups xmm1, [rax+rdx]
xorps xmm8, xmm8
cmpneqps xmm8, xmm1
rsqrtps xmm1, xmm1
rcpps xmm1, xmm1
andps xmm1, xmm8
movups [rbx+rdx], xmm1
add rdx, 16
cmp rdx, rcx
jl loop1

mov rax, pIn
mov rbx, pOut
mov rcx, iLen
xor rdx, rdx

vxorps ymm8, ymm8, ymm8
loop1:

vmovups ymm1, [rax+rdx]
vcmpneqps ymm9, ymm8, ymm1
vrsqrtps ymm1, ymm1
vrcpps ymm1, ymm1
vandps ymm1, ymm1, ymm9
vmovups [rbx+rdx], ymm1
add rdx, 32
cmp rdx, rcx
jl loop1

OPTIMIZATIONS FOR INTEL® AVX, FMA AND AVX2

15-42

15.13 OPTIMIZATION OF ARRAY SUB SUM EXAMPLE
This section shows the transformation of SSE implementation of Array Sub Sum algorithm to Intel AVX
implementation.

The Array Sub Sum algorithm is:

 Y[i] = Sum of k from 0 to i (X[k]) = X[0] + X[1] + .. + X[i]

The following figure describes the SSE implementation.

Example 15-30. Square Root Using RSQRTPS and One Taylor Series Expansion
RSQRTPS + Taylor ~ 22 bit accuracy VRSQRTPS + Taylor ~ 22 bit accuracy
__declspec(align(16)) float minus_half[4] =
{-0.5, -0.5, -0.5, -0.5};

__declspec(align(16)) float three[4] =
{3.0, 3.0, 3.0, 3.0};

__asm
{
 mov rax, pIn
 mov rbx, pOut
 mov rcx, iLen
 xor rdx, rdx
 movups xmm6, [three]
 movups xmm7, [minus_half]
loop1:

__declspec(align(32)) float three[8] =
{3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0};

__declspec(align(32)) float minus_half[8] =
{-0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5};

__asm
{
 mov rax, pIn
 mov rbx, pOut
 mov rcx, iLen
 xor rdx, rdx
 vmovups ymm6, [three]
 vmovups ymm7, [minus_half]
 vxorps ymm8, ymm8, ymm8

movups xmm3, [rax+rdx]
rsqrtps xmm1, xmm3

 xorps xmm8, xmm8
 cmpneqps xmm8, xmm3
 andps xmm1, xmm8
 movaps xmm4, xmm1
 mulps xmm1, xmm3
 movaps xmm5, xmm1
 mulps xmm1, xmm4

subps xmm1, xmm6
 mulps xmm1, xmm5

loop1:
 vmovups ymm3, [rax+rdx]
 vrsqrtps ymm4, ymm3
 vcmpneqps ymm9, ymm8, ymm3
 vandps ymm4, ymm4, ymm9
 vmulps ymm1, ymm4, ymm3
 vmulps ymm2, ymm1, ymm4

vsubps ymm2, ymm2, ymm6
 vmulps ymm1, ymm1, ymm2

vmulps ymm1, ymm1, ymm7
 vmovups [rbx+rdx], ymm1

mulps xmm1, xmm7
 movups [rbx+rdx], xmm1
 add rdx, 16
 cmp rdx, rcx
 jl loop1
}

add rdx, 32
 cmp rdx, rcx
 jl loop1
}

15-43

OPTIMIZATIONS FOR INTEL® AVX, FMA AND AVX2

The figure below describes the Intel AVX implementation of the Array Sub Sums algorithm. The PSLLDQ
is an integer SIMD instruction which does not have an AVX equivalent. It is replaced by VSHUFPS.

OPTIMIZATIONS FOR INTEL® AVX, FMA AND AVX2

15-44

Example 15-31 shows SSE implementation of array sub sum and AVX implementation. The AVX code is
about 40% faster.

15.14 HALF-PRECISION FLOATING-POINT CONVERSIONS
In applications that use floating-point and require only the dynamic range and precision offered by the
16-bit floating-point format, storing persistent floating-point data encoded in 16-bits has strong advan-
tages in memory footprint and bandwidth conservation. These situations are encountered in some
graphics and imaging workloads.

The encoding format of half-precision floating-point numbers can be found in Chapter 4, “Data Types” of
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1.

Instructions to convert between packed, half-precision floating-point numbers and packed single-preci-
sion floating-point numbers is described in Chapter 14, “Programming with AVX, FMA and AVX2” of
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1 and in the reference pages of Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 2B.

To perform computations on half precision floating-point data, packed 16-bit FP data elements must be
converted to single precision format first, and the single-precision results converted back to half preci-
sion format, if necessary. These conversions of 8 data elements using 256-bit instructions are very fast
and handle the special cases of denormal numbers, infinity, zero and NaNs properly.

Example 15-31. Array Sub Sums Algorithm
SSE code AVX code

mov rax, InBuff
mov rbx, OutBuff
mov rdx, len
xor rcx, rcx
xorps xmm0, xmm0

loop1:
movaps xmm2, [rax+4*rcx]
movaps xmm3, xmm2
movaps xmm4, xmm2
movaps ymm5, ymm2
pslldq xmm3, 4
pslldq xmm4, 8
pslldq xmm5, 12
addps xmm2, xmm3
addps xmm4, xmm5
addps ymm2, xmm4
addps xmm2, xmm0
movaps xmm0, ymm2
shufps xmm0, xmm2, 0xFF
movaps [rbx+4*rcx], xmm2
add rcx, 4
cmp rcx, rdx
jl loop1

mov rax, InBuff
mov rbx, OutBuff
mov rdx, len
xor rcx, rcx
vxorps ymm0, ymm0, ymm0
vxorps ymm1, ymm1, ymm1

loop1:
vmovaps ymm2, [rax+4*rcx]
vshufps ymm4, ymm0, ymm2, 0x40
vshufps ymm3, ymm4, ymm2, 0x99
vshufps ymm5, ymm0, ymm4, 0x80
vaddps ymm6, ymm2, ymm3
vaddps ymm7, ymm4, ymm5
vaddps ymm9, ymm6, ymm7
vaddps ymm1, ymm9, ymm1
vshufps ymm8, ymm9, ymm9, 0xff
vperm2f128 ymm10, ymm8, ymm0, 0x2
vaddps ymm12, ymm1, ymm10
vshufps ymm11, ymm12, ymm12, 0xff
vperm2f128 ymm1, ymm11, ymm11, 0x11
vmovaps [rbx+4*rcx], ymm12
add rcx, 8
cmp rcx, rdx
jl loop1

15-45

OPTIMIZATIONS FOR INTEL® AVX, FMA AND AVX2

15.14.1 Packed Single-Precision to Half-Precision Conversion
To convert the data in single precision floating-point format to half precision format, without special hard-
ware support like VCVTPS2PH, a programmer needs to do the following:
• Correct exponent bias to permitted range for each data element.
• Shift and round the significand of each data element.
• Copy the sign bit to bit 15 of each element.
• Take care of numbers outside the half precision range.
• Pack each data element to a register of half size.

Example 15-32 compares two implementations of floating-point conversion from single precision to half
precision. The code on the left uses packed integer shift instructions that is limited to 128-bit SIMD
instruction set. The code on right is unrolled twice and uses the VCVTPS2PH instruction.

Example 15-32. Single-Precision to Half-Precision Conversion
AVX-128 code VCVTPS2PH code

__asm {
mov rax, pIn
mov rbx, pOut
mov rcx, bufferSize
add rcx, rax
vmovdqu xmm0,SignMask16
vmovdqu xmm1,ExpBiasFixAndRound
vmovdqu xmm4,SignMaskNot32
vmovdqu xmm5,MaxConvertibleFloat
vmovdqu xmm6,MinFloat

loop:
vmovdqu xmm2, [rax]
vmovdqu xmm3, [rax+16]
vpaddd xmm7, xmm2, xmm1
vpaddd xmm9, xmm3, xmm1
vpand xmm7, xmm7, xmm4
vpand xmm9, xmm9, xmm4
add rax, 32

__asm {
mov rax, pIn
mov rbx, pOut
mov rcx, bufferSize
add rcx, rax

loop:
vmovups ymm0,[rax]
vmovups ymm1,[rax+32]
add rax, 64
vcvtps2ph [rbx],ymm0, roundingCtrl
vcvtps2ph [rbx+16],ymm1,roundingCtrl
add rbx, 32
cmp rax, rcx
jl loop

vminps xmm7, xmm7, xmm5
vminps xmm9, xmm9, xmm5
vpcmpgtd xmm8, xmm7, xmm6
vpcmpgtd xmm10, xmm9, xmm6
vpand xmm7, xmm8, xmm7
vpand xmm9, xmm10, xmm9
vpackssdw xmm2, xmm3, xmm2
vpsrad xmm7, xmm7, 13
vpsrad xmm8, xmm9, 13
vpand xmm2, xmm2, xmm0
vpackssdw xmm3, xmm7, xmm9
vpaddw xmm3, xmm3, xmm2
vmovdqu [rbx], xmm3
add rbx, 16
cmp rax, rcx
jl loop

OPTIMIZATIONS FOR INTEL® AVX, FMA AND AVX2

15-46

The code using VCVTPS2PH is approximately four times faster than the AVX-128 sequence. Although it is
possible to load 8 data elements at once with 256-bit AVX, most of the per-element conversion opera-
tions require packed integer instructions which do not have 256-bit extensions yet. Using VCVTPS2PH is
not only faster but also provides handling of special cases that do not encode to normal half-precision
floating-point values.

15.14.2 Packed Half-Precision to Single-Precision Conversion
Example 15-33 compares two implementations using AVX-128 code and with VCVTPH2PS.

Conversion from half precision to single precision floating-point format is easier to implement, yet using
VCVTPH2PS instruction performs about 2.5 times faster than the alternative AVX-128 code.

15.14.3 Locality Consideration for using Half-Precision FP to Conserve Bandwidth
Example 15-32 and Example 15-33 demonstrate the performance advantage of using FP16C instructions
when software needs to convert between half-precision and single-precision data. Half-precision FP
format is more compact, consumes less bandwidth than single-precision FP format, but sacrifices
dynamic range, precision, and incurs conversion overhead if arithmetic computation is required. Whether
it is profitable for software to use half-precision data will be highly dependent on locality considerations
of the workload.

Example 15-33. Half-Precision to Single-Precision Conversion
AVX-128 code VCVTPS2PH code

__asm {
mov rax, pIn
mov rbx, pOut
mov rcx, bufferSize
add rcx, rax
vmovdqu xmm0,SignMask16
vmovdqu xmm1,ExpBiasFix16
vmovdqu xmm2,ExpMaskMarker
loop:
vmovdqu xmm3, [rax]
add rax, 16
vpandn xmm4, xmm0, xmm3
vpand xmm5, xmm3, xmm0
vpsrlw xmm4, xmm4, 3
vpaddw xmm6, xmm4, xmm1
vpcmpgtw xmm7, xmm6, xmm2

__asm {
mov rax, pIn
mov rbx, pOut
mov rcx, bufferSize
add rcx, rax

loop:
vcvtph2ps ymm0,[rax]
vcvtph2ps ymm1,[rax+16]
add rax, 32
vmovups [rbx], ymm0
vmovups [rbx+32], ymm1
add rbx, 64
cmp rax, rcx
jl loop

vpand xmm6, xmm6, xmm7
vpand xmm8, xmm3, xmm7
vpor xmm6, xmm6, xmm5
vpsllw xmm8, xmm8, 13
vpunpcklwd xmm3, xmm8, xmm6
vpunpckhwd xmm4, xmm8, xmm6
vmovdqu [rbx], xmm3
vmovdqu [rbx+16], xmm4
add rbx, 32
cmp rax, rcx
jl loop

15-47

OPTIMIZATIONS FOR INTEL® AVX, FMA AND AVX2

This section uses an example based on the horizontal median filtering algorithm, “Median3”. The Median3
algorithm calculates the median of every three consecutive elements in a vector:

Y[i] = Median3(X[i], X[i+1], X[i+2])

Where: Y is the output vector, and X is the input vector.

Example 15-34 shows two implementations of the Median3 algorithm; one uses single-precision format
without conversion, the other uses half-precision format and requires conversion. Alternative 1 on the
left works with single precision format using 256-bit load/store operations, each of which loads/stores
eight 32-bit numbers. Alternative 2 uses 128-bit load/store operations to load/store eight 16-bit
numbers in half precision format and VCVTPH2PS/VCVTPS2PH instructions to convert it to/from single
precision floating-point format.

When the locality of the working set resides in memory, using half-precision format with processors
based on Ivy Bridge microarchitecture is about 30% faster than single-precision format, despite the
conversion overhead. When the locality resides in L3, using half-precision format is still ~15% faster.
When the locality resides in L1, using single-precision format is faster because the cache bandwidth of
the L1 data cache is much higher than the rest of the cache/memory hierarchy and the overhead of the
conversion becomes a performance consideration.

15.15 FUSED MULTIPLY-ADD (FMA) INSTRUCTIONS GUIDELINES
FMA instructions perform vectored operations of “a * b + c” on IEEE-754-2008 floating-point values,
where the multiplication operations “a * b” are performed with infinite precision, the final results of the
addition are rounded to produced the desired precision. Details of FMA rounding behavior and special
case handling can be found in section 2.3 of Intel® Architecture Instruction Set Extensions Programming
Reference.

Example 15-34. Performance Comparison of Median3 using Half-Precision vs. Single-Precision
Single-Precision code w/o Conversion Half-Precision code w/ Conversion

xor rbx, rbx
mov rcx, len
mov rdi, inPtr
mov rsi, outPtr
vmovaps ymm0, [rdi]

loop:
add rdi, 32
vmovaps ymm6, [rdi]
vperm2f128 ymm1, ymm0, ymm6, 0x21
vshufps ymm3, ymm0, ymm1, 0x4E
vshufps ymm2, ymm0, ymm3, 0x99
vminps ymm5, ymm0, ymm2
vmaxps ymm0, ymm0, ymm2

xor rbx, rbx
mov rcx, len
mov rdi, inPtr
mov rsi, outPtr
vcvtph2ps ymm0, [rdi]

loop:
add rdi,16
vcvtph2ps ymm6, [rdi]
vperm2f128 ymm1, ymm0, ymm6, 0x21
vshufps ymm3, ymm0, ymm1, 0x4E
vshufps ymm2, ymm0, ymm3, 0x99
vminps ymm5, ymm0, ymm2
vmaxps ymm0, ymm0, ymm2

vminps ymm4, ymm0, ymm3
vmaxps ymm7, ymm4, ymm5
vmovaps ymm0, ymm6
vmovaps [rsi], ymm7
add rsi, 32
add rbx, 8
cmp rbx, rcx
jl loop

vminps ymm4, ymm0, ymm3
vmaxps ymm7, ymm4, ymm5
vmovaps ymm0, ymm6
vcvtps2ph [rsi], ymm7, roundingCtrl
add rsi, 16
add rbx, 8
cmp rbx, rcx
jl loop

OPTIMIZATIONS FOR INTEL® AVX, FMA AND AVX2

15-48

FMA instruction can speed up and improve the accuracy of many FP calculations. Haswell microarchitec-
ture implements FMA instructions with execution units on port 0 and port 1 and 256-bit data paths. Dot
product, matrix multiplication and polynomial evaluations are expected to benefit from the use of FMA,
256-bit data path and the independent executions on two ports. The peak throughput of FMA from each
processor core are 16 single-precision and 8 double-precision results each cycle.

Algorithms designed to use FMA instruction should take into consideration that non-FMA sequence of
MULPD/PS and ADDPD/PS likely will produce slightly different results compared to using FMA. For numer-
ical computations involving a convergence criteria, the difference in the precision of intermediate results
must be factored into the numeric formalism to avoid surprise in completion time due to rounding issues.
User/Source Coding Rule 29. Factor in precision and rounding characteristics of FMA instructions
when replacing multiply/add operations executing non-FMA instructions. FMA improves performance
when an algorithm is execution-port throughput limited, like DGEMM.

There may be situations where using FMA might not deliver better performance. Consider the vectored
operation of “a * b + c * d” and data are ready at the same time:

In the three-instruction sequence of
VADDPS (VMULPS (a,b) , VMULPS (c,b));

VMULPS can be dispatched in the same cycle and execute in parallel, leaving the latency of VADDPS (3
cycle) exposed. With unrolling the exposure of VADDPS latency may be further amortized.

When using the two-instruction sequence of
VFMADD213PS (c, d, VMULPS (a,b));

The latency of FMA (5 cycle) is exposed for producing each vector result.
User/Source Coding Rule 30. Factor in result-dependency, latency of FP add vs. FMA instructions
when replacing FP add operations with FMA instructions.

15.15.1 Optimizing Throughput with FMA and Floating-Point Add/MUL
In the Skylake microarchitecture, there are two pipes of executions supporting FMA, vector FP Multiply,
and FP ADD instructions. All three categories of instructions have a latency of 4 cycles and can dispatch
to either port 0 or port 1 to execute every cycle.

The arrangement of identical latency and number of pipes allows software to increase the performance of
situations where floating-point calculations are limited by the floating-point add operations that follow FP
multiplies. Consider a situation of vector operation An = C1 + C2 * An-1:

Example 15-35. FP Mul/FP Add Versus FMA
FP Mul/FP Add Sequence FMA Sequence

mov eax, NumOfIterations
mov rbx, pA
mov rcx, pC1
mov rdx, pC2
vmovups ymm0, ymmword ptr [rbx] // A
vmovups ymm1, ymmword ptr [rcx] // C1
vmovups ymm2, ymmword ptr [rdx] // C2

loop:
vmulps ymm4, ymm0 ,ymm2 // A * C2
vaddps ymm0, ymm1, ymm4
dec eax
jnz loop

vmovups ymmword ptr[rbx], ymm0 // store A

mov eax, NumOfIterations
mov rbx, pA
mov rcx, pC1
mov rdx, pC2
vmovups ymm0, ymmword ptr [rbx] // A
vmovups ymm1, ymmword ptr [rcx] // C1
vmovups ymm2, ymmword ptr [rdx] // C2

loop:
vfmadd132ps ymm0, ymm1, ymm2 // C1 + A * C2
dec eax
jnz loop

vmovups ymmword ptr[rbx], ymm0 // store A

15-49

OPTIMIZATIONS FOR INTEL® AVX, FMA AND AVX2

The overall throughput of the code sequence on the LHS is limited by the combined latency of the FP MUL
and FP ADD instructions of specific microarchitecture. The overall throughput of the code sequence on
the RHS is limited by the throughput of the FMA instruction of the corresponding microarchitecture.

A common situation where the latency of the FP ADD operation dominates performance is the following
C code:

for (int 1 = 0; i < arrLenght; i ++) result += arrToSum[i];

Example 15-35 shows two implementations with and without unrolling.

Cost per iteration: ~ fp add latency + fp add latency Cost per iteration: ~ fma latency

Example 15-36. Unrolling to Hide Dependent FP Add Latency
No Unroll Unroll 8 times

mov eax, arrLength
mov rbx, arrToSum
vmovups ymm0, ymmword ptr [rbx]
sub eax, 8

loop:
add rbx, 32
vaddps ymm0, ymm0, ymmword ptr [rbx]
sub eax, 8
jnz loop

mov eax, arrLength
mov rbx, arrToSum
vmovups ymm0, ymmword ptr [rbx]
vmovups ymm1, ymmword ptr 32[rbx]
vmovups ymm2, ymmword ptr 64[rbx]
vmovups ymm3, ymmword ptr 96[rbx]
vmovups ymm4, ymmword ptr 128[rbx]
vmovups ymm5, ymmword ptr 160[rbx]
vmovups ymm6, ymmword ptr 192[rbx]
vmovups ymm7, ymmword ptr 224[rbx]

vextractf128 xmm1, ymm0, 1
vaddps xmm0, xmm0, xmm1
vpermilps xmm1, xmm0, 0xe
vaddps xmm0, xmm0, xmm1
vpermilps xmm1, xmm0, 0x1
vaddss xmm0, xmm0, xmm1

sub eax, 64
loop:

add rbx, 256
vaddps ymm0, ymm0, ymmword ptr [rbx]
vaddps ymm1, ymm1, ymmword ptr 32[rbx]
vaddps ymm2, ymm2, ymmword ptr 64[rbx]
vaddps ymm3, ymm3, ymmword ptr 96[rbx]
vaddps ymm4, ymm4, ymmword ptr 128[rbx]
vaddps ymm5, ymm5, ymmword ptr 160[rbx]
vaddps ymm6, ymm6, ymmword ptr 192[rbx]
vaddps ymm7, ymm7, ymmword ptr 224[rbx]
sub eax, 64
jnz loop

vaddps ymm0, ymm0, ymm1
vaddps ymm2, ymm2, ymm3
vaddps ymm4, ymm4, ymm5
vaddps ymm6, ymm6, ymm7
vaddps ymm0, ymm0, ymm2
vaddps ymm4, ymm4, ymm6
vaddps ymm0, ymm0, ymm4

Example 15-35. FP Mul/FP Add Versus FMA
FP Mul/FP Add Sequence FMA Sequence

OPTIMIZATIONS FOR INTEL® AVX, FMA AND AVX2

15-50

Without unrolling (LHS of Example 15-35), the cost of summing every 8 array elements is about propor-
tional to the latency of the FP ADD instruction, assuming the working set fit in L1. To use unrolling effec-
tively, the number of unrolled operations should be at least “latency of the critical operation” * “number
of pipes”. The performance gain of optimized unrolling versus no unrolling, for a given microarchitecture,
can approach “number of pipes” * “Latency of FP ADD”.
User/Source Coding Rule 31. Consider using unrolling technique for loops containing back-to-back
dependent FMA, FP Add or Vector MUL operations, The unrolling factor can be chosen by considering
the latency of the critical instruction of the dependency chain and the number of pipes available to
execute that instruction.

15.15.2 Optimizing Throughput with Vector Shifts
In the Skylake microarchitecture, many common vector shift instructions can dispatch into either port 0
or port 1, compared to only one port in prior generations, see Table 2-12 and Table E-2.

A common situation where the latency of the FP ADD operation dominates performance is the following
C code, where a, b, and c are integer arrays:

for (int 1 = 0; i < len; i ++) c[i] += 4* a[i] + b[i]/2;

Example 15-35 shows two implementations with and without unrolling.

movss result, xmm0 vextractf128 xmm1, ymm0, 1
vaddps xmm0, xmm0, xmm1
vpermilps xmm1, xmm0, 0xe
vaddps xmm0, xmm0, xmm1
vpermilps xmm1, xmm0, 0x1
vaddss xmm0, xmm0, xmm1
movss result, xmm0

Example 15-37. FP Mul/FP Add Versus FMA
FP Mul/FP Add Sequence FMA Sequence

mov eax, NumOfIterations
mov rbx, pA
mov rcx, pC1
mov rdx, pC2
vmovups ymm0, ymmword ptr [rbx] // A
vmovups ymm1, ymmword ptr [rcx] // C1
vmovups ymm2, ymmword ptr [rdx] // C2

loop:
vmulps ymm4, ymm0 ,ymm2 // A * C2
vaddps ymm0, ymm1, ymm4
dec eax
jnz loop

vmovups ymmword ptr[rbx], ymm0 // store An

mov eax, NumOfIterations
mov rbx, pA
mov rcx, pC1
mov rdx, pC2
vmovups ymm0, ymmword ptr [rbx] // A
vmovups ymm1, ymmword ptr [rcx] // C1
vmovups ymm2, ymmword ptr [rdx] // C2

loop:
vfmadd132ps ymm0, ymm1, ymm2 // C1 + A * C2
dec eax
jnz loop

vmovups ymmword ptr[rbx], ymm0 // store An

Cost per iteration: ~ fp add latency + fp add latency Cost per iteration: ~ fma latency

Example 15-36. Unrolling to Hide Dependent FP Add Latency (Contd.)
No Unroll Unroll 8 times

15-51

OPTIMIZATIONS FOR INTEL® AVX, FMA AND AVX2

15.16 AVX2 OPTIMIZATION GUIDELINES
AVX2 instructions promotes the great majority of 128-bit SIMD integer instructions to operate on 256-bit
YMM registers. AVX2 also adds a rich mix of broadcast/permute/variable-shift instructions to accelerate
numerical computations. The 256-bit AVX2 instructions are supported by Haswell microarchitecture,
which implements 256-bit data path with low latency and high throughput.

Consider an intra-coding 4x4 block image transformation1 shown in Figure 15-3.

A 128-bit SIMD implementation can perform this transformation by the following technique:
• Convert 8-bit pixels into 16-bit word elements and fetch two 4x4 image block as 4 row vectors.
• The matrix operation 1/128 * (B x R) can be evaluated with row vectors of the image block and

column vectors of the right-hand-side coefficient matrix using a sequence of SIMD instructions of
PMADDWD, packed shift and blend instructions.

• The two 4x4 word-granular, intermediate result can be re-arranged into column vectors.
• The left-hand-side coefficient matrix in row vectors and the column vectors of the intermediate block

can be calculated (using PMADDWD, shift, blend) and written out.

The same technique can be implemented using AVX2 instructions in a straightforward manner. The AVX2
sequence is illustrated in Example 15-38 and Example 15-39.

1. C. Yeo, Y. H. Tan, Z. Li and S. Rahardja, “Mode-Dependent Fast Separable KLT for Block-based Intra
Coding,” JCTVC-B024, Geneva, Switzerland, Jul 2010

Figure 15-3. 4x4 Image Block Transformation

Example 15-38. Macros for Separable KLT Intra-block Transformation Using AVX2

// b0: input row vector from 4 consecutive 4x4 image block of word pixels

// rmc0-3: columnar vector coefficient of the RHS matrix, repeated 4X for 256-bit

// min32km1: saturation constant vector to cap intermediate pixel to less than or equal to 32767

// w0: output row vector of garbled intermediate matrix, elements within each block are garbled

// e.g Low 128-bit of row 0 in descending order: y07, y05, y06, y04, y03, y01, y02, y00

#define __MyM_KIP_PxRMC_ROW_4x4Wx4(b0, w0, rmc0_256,

rmc1_256, rmc2_256, rmc3_256, min32km1)\

R

1
128

29 55 74 84
74 74 0 74–
84 29– 74– 55
55 84– 74 29–

1
128

29 55 74 84
74 74 0 74–
84 29– 74– 55
55 84– 74 29–

1
128

64 64 64 64
84 35 35– 84–
64 64– 64– 64
35 84– 84 35–

X X

L B

OPTIMIZATIONS FOR INTEL® AVX, FMA AND AVX2

15-52

{__m256i tt0, tt1, tt2, tt3, tttmp;\

tt0 = _mm256_madd_epi16(b0, (rmc0_256));\

tt1 = _mm256_madd_epi16(b0, rmc1_256);\

tt1 = _mm256_hadd_epi32(tt0, tt1);\

tttmp = _mm256_srai_epi32(tt1, 31);\

tttmp = _mm256_srli_epi32(tttmp, 25);\

tt1 = _mm256_add_epi32(tt1, tttmp);\

tt1 = _mm256_min_epi32(_mm256_srai_epi32(tt1, 7), min32km1);\

tt1 = _mm256_shuffle_epi32(tt1, 0xd8); \

tt2 = _mm256_madd_epi16(b0, rmc2_256);\

tt3 = _mm256_madd_epi16(b0, rmc3_256);\

tt3 = _mm256_hadd_epi32(tt2, tt3);\

tttmp = _mm256_srai_epi32(tt3, 31);\

tttmp = _mm256_srli_epi32(tttmp, 25);\

tt3 = _mm256_add_epi32(tt3, tttmp);\

tt3 = _mm256_min_epi32(_mm256_srai_epi32(tt3, 7), min32km1);\

tt3 = _mm256_shuffle_epi32(tt3, 0xd8);\

w0 = _mm256_blend_epi16(tt1, _mm256_slli_si256(tt3, 2), 0xaa);\

}
// t0-t3: 256-bit input vectors of un-garbled intermediate matrix 1/128 * (B x R)
// lmr_256: 256-bit vector of one row of LHS coefficient, repeated 4X
// min32km1: saturation constant vector to cap final pixel to less than or equal to 32767

// w0; Output row vector of final result in un-garbled order
#define __MyM_KIP_LMRxP_ROW_4x4Wx4(w0, t0, t1, t2, t3, lmr_256, min32km1)\

{__m256i tb0, tb1, tb2, tb3, tbtmp;
tb0 = _mm256_madd_epi16(lmr_256, t0);\
tb1 = _mm256_madd_epi16(lmr_256, t1);\
tb1 = _mm256_hadd_epi32(tb0, tb1);\
tbtmp = _mm256_srai_epi32(tb1, 31);\
tbtmp = _mm256_srli_epi32(tbtmp, 25);\
tb1 = _mm256_add_epi32(tb1, tbtmp);\
tb1 = _mm256_min_epi32(_mm256_srai_epi32(tb1, 7), min32km1);\
tb1 = _mm256_shuffle_epi32(tb1, 0xd8);\
tb2 = _mm256_madd_epi16(lmr_256, t2);\
tb3 = _mm256_madd_epi16(lmr_256, t3);\
tb3 = _mm256_hadd_epi32(tb2, tb3);\
tbtmp = _mm256_srai_epi32(tb3, 31);\
tbtmp = _mm256_srli_epi32(tbtmp, 25);\
tb3 = _mm256_add_epi32(tb3, tbtmp);\
tb3 = _mm256_min_epi32(_mm256_srai_epi32(tb3, 7), min32km1);\
tb3 = _mm256_shuffle_epi32(tb3, 0xd8); \
tb3 = _mm256_slli_si256(tb3, 2);\
tb3 = _mm256_blend_epi16(tb1, tb3, 0xaa);\

Example 15-38. Macros for Separable KLT Intra-block Transformation Using AVX2 (Contd.)

15-53

OPTIMIZATIONS FOR INTEL® AVX, FMA AND AVX2

In Example 15-39, matrix multiplication of 1/128 * (B xR) is evaluated first in a 4-wide manner by
fetching from 4 consecutive 4x4 image block of word pixels. The first macro shown in Example 15-38
produces an output vector where each intermediate row result is in an garbled sequence between the two
middle elements of each 4x4 block. In Example 15-39, undoing the garbled elements and transposing
the intermediate row vector into column vectors are implemented using blend primitives instead of
shuffle/unpack primitives.

In Haswell microarchitecture, shuffle/pack/unpack primitives rely on the shuffle execution unit
dispatched to port 5. In some situations of heavy SIMD sequences, port 5 pressure may become a deter-
mining factor in performance.

If 128-bit SIMD code faces port 5 pressure when running on Haswell microarchitecture, porting 128-bit
code to use 256-bit AVX2 can improve performance and alleviate port 5 pressure.

w0 = _mm256_shuffle_epi8(tb3, _mm256_setr_epi32(0x5040100, 0x7060302, 0xd0c0908, 0xf0e0b0a,
0x5040100, 0x7060302, 0xd0c0908, 0xf0e0b0a));\
}

Example 15-39. Separable KLT Intra-block Transformation Using AVX2

short __declspec(align(16))cst_rmc0[8] = {64, 84, 64, 35, 64, 84, 64, 35};

short __declspec(align(16))cst_rmc1[8] = {64, 35, -64, -84, 64, 35, -64, -84};

short __declspec(align(16))cst_rmc2[8] = {64, -35, -64, 84, 64, -35, -64, 84};

short __declspec(align(16))cst_rmc3[8] = {64, -84, 64, -35, 64, -84, 64, -35};

short __declspec(align(16))cst_lmr0[8] = {29, 55, 74, 84, 29, 55, 74, 84};

short __declspec(align(16))cst_lmr1[8] = {74, 74, 0, -74, 74, 74, 0, -74};

short __declspec(align(16))cst_lmr2[8] = {84, -29, -74, 55, 84, -29, -74, 55};

short __declspec(align(16)) cst_lmr3[8] = {55, -84, 74, -29, 55, -84, 74, -29};

void Klt_256_d(short * Input, short * Output, int iWidth, int iHeight)

{int iX, iY;

__m256i rmc0 = _mm256_broadcastsi128_si256(_mm_loadu_si128((__m128i *) &cst_rmc0[0]));

__m256i rmc1 = _mm256_broadcastsi128_si256(_mm_loadu_si128((__m128i *)&cst_rmc1[0]));

__m256i rmc2 = _mm256_broadcastsi128_si256(_mm_loadu_si128((__m128i *)&cst_rmc2[0]));

__m256i rmc3 = _mm256_broadcastsi128_si256(_mm_loadu_si128((__m128i *)&cst_rmc3[0]));

__m256i lmr0 = _mm256_broadcastsi128_si256(_mm_loadu_si128((__m128i *)&cst_lmr0[0]));

__m256i lmr1 = _mm256_broadcastsi128_si256(_mm_loadu_si128((__m128i *)&cst_lmr1[0]));

__m256i lmr2 = _mm256_broadcastsi128_si256(_mm_loadu_si128((__m128i *)&cst_lmr2[0]));

__m256i lmr3 = _mm256_broadcastsi128_si256(_mm_loadu_si128((__m128i *)&cst_lmr3[0]));

__m256i min32km1 = _mm256_broadcastd_epi32(_mm_cvtsi32_si128(_mm_setr_epi32(0x7fff7fff, 0x7fff7fff,
0x7fff7fff, 0x7fff7fff));

__m256i b0, b1, b2, b3, t0, t1, t2, t3;

__m256i w0, w1, w2, w3;

short* pImage = Input;

short* pOutImage = Output;

int hgt = iHeight, wid= iWidth;

(continue)

Example 15-38. Macros for Separable KLT Intra-block Transformation Using AVX2 (Contd.)

OPTIMIZATIONS FOR INTEL® AVX, FMA AND AVX2

15-54

// We implement 1/128 * (Mat_L x (1/128 * (Mat_B x Mat_R))) from the inner most parenthesis

for(iY = 0; iY < hgt; iY+=4) {

for(iX = 0; iX < wid; iX+=16) {

//load row 0 of 4 consecutive 4x4 matrix of word pixels

b0 = _mm256_loadu_si256((__m256i *) (pImage + iY*wid+ iX)) ;

// multiply row 0 with columnar vectors of the RHS matrix coefficients

__MyM_KIP_PxRMC_ROW_4x4Wx4(b0, w0, rmc0, rmc1, rmc2, rmc3, min32km1);

 // low 128-bit of garbled row 0, from hi->lo: y07, y05, y06, y04, y03, y01, y02, y00

b1 = _mm256_loadu_si256((__m256i *) (pImage + (iY+1)*wid+ iX));

__MyM_KIP_PxRMC_ROW_4x4Wx4(b1, w1, rmc0, rmc1, rmc2, rmc3, min32km1);

 // hi->lo y17, y15, y16, y14, y13, y11, y12, y10

b2 = _mm256_loadu_si256((__m256i *) (pImage + (iY+2)*wid+ iX));

__MyM_KIP_PxRMC_ROW_4x4Wx4(b2, w2, rmc0, rmc1, rmc2, rmc3, min32km1);

b3 = _mm256_loadu_si256((__m256i *) (pImage + (iY+3)*wid+ iX));

__MyM_KIP_PxRMC_ROW_4x4Wx4(b3, w3, rmc0, rmc1, rmc2, rmc3, min32km1);

// unscramble garbled middle 2 elements of each 4x4 block, then

// transpose into columnar vectors: t0 has 4 consecutive column 0 or 4 4x4 intermediate

t0 = _mm256_blend_epi16(w0, _mm256_slli_epi64(w1, 16), 0x22);

t0 = _mm256_blend_epi16(t0, _mm256_slli_epi64(w2, 32), 0x44);

t0 = _mm256_blend_epi16(t0, _mm256_slli_epi64(w3, 48), 0x88);

t1 = _mm256_blend_epi16(_mm256_srli_epi64(w0, 32), _mm256_srli_epi64(w1, 16), 0x22);

t1 = _mm256_blend_epi16(t1, w2, 0x44);

t1 = _mm256_blend_epi16(t1, _mm256_slli_epi64(w3, 16), 0x88); // column 1

t2 = _mm256_blend_epi16(_mm256_srli_epi64(w0, 16), w1, 0x22);

t2 = _mm256_blend_epi16(t2, _mm256_slli_epi64(w2, 16), 0x44);

t2 = _mm256_blend_epi16(t2, _mm256_slli_epi64(w3, 32), 0x88); // column 2

t3 = _mm256_blend_epi16(_mm256_srli_epi64(w0, 48), _mm256_srli_epi64(w1, 32), 0x22);

t3 = _mm256_blend_epi16(t3, _mm256_srli_epi64(w2, 16), 0x44);

t3 = _mm256_blend_epi16(t3, w3, 0x88);// column 3

// multiply row 0 of the LHS coefficient with 4 columnar vectors of intermediate blocks

// final output row are arranged in normal order

__MyM_KIP_LMRxP_ROW_4x4Wx4(w0, t0, t1, t2, t3, lmr0, min32km1);

_mm256_store_si256((__m256i *) (pOutImage+iY*wid+ iX), w0) ;

__MyM_KIP_LMRxP_ROW_4x4Wx4(w1, t0, t1, t2, t3, lmr1, min32km1);

_mm256_store_si256((__m256i *) (pOutImage+(iY+1)*wid+ iX), w1) ;

__MyM_KIP_LMRxP_ROW_4x4Wx4(w2, t0, t1, t2, t3, lmr2, min32km1);

_mm256_store_si256((__m256i *) (pOutImage+(iY+2)*wid+ iX), w2) ;

Example 15-39. Separable KLT Intra-block Transformation Using AVX2 (Contd.)

15-55

OPTIMIZATIONS FOR INTEL® AVX, FMA AND AVX2

Although 128-bit SIMD implementation is not shown here, it can be easily derived.

When running 128-bit SIMD code of this KLT intra-coding transformation on Sandy Bridge microarchitec-
ture, the port 5 pressure are less because there are two shuffle units, and the effective throughput for
each 4x4 image block transformation is around 50 cycles. Its speed-up relative to optimized scalar imple-
mentation is about 2.5X.

When the 128-bit SIMD code runs on Haswell microarchitecture, micro-ops issued to port 5 account for
slightly less than 50% of all micro-ops, compared to about one third on prior microarchitecture, resulting
in about 25% performance regression. On the other hand, AVX2 implementation can deliver effective
throughput in less than 35 cycle per 4x4 block.

15.16.1 Multi-Buffering and AVX2
There are many compute-intensive algorithms (e.g. hashing, encryption, etc.) which operate on a
stream of data buffers. Very often, the data stream may be partitioned and treated as multiple indepen-
dent buffer streams to leverage SIMD instruction sets.

Detailed treatment of hashing several buffers in parallel can be found at
http://www.scirp.org/journal/PaperInformation.aspx?paperID=23995 and at
http://eprint.iacr.org/2012/476.pdf.

With AVX2 providing a full compliment of 256-bit SIMD instructions with rich functionality at multiple
width granularities for logical and arithmetic operations. Algorithms that had leveraged XMM registers
and prior generations of SSE instruction sets can extend those multi-buffering algorithms to use AVX2 on
YMM and deliver even higher throughput. Optimized 256-bit AVX2 implementation may deliver up to
1.9X throughput when compared to 128-bit versions.

The image block transformation example discussed in Section 15.16 can be construed also as a multi-
buffering implementation of 4x4 blocks. When the performance baseline is switched from a two-shuffle-
port microarchitecture (Sandy Bridge) to single-shuffle-port microarchitecture, the 256-bit wide AVX2
provides a speed up of 1.9X relative to 128-bit SIMD implementation.

Greater details on multi-buffering can be found in the white paper at:
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/communications-ia-
multi-buffer-paper.pdf.

15.16.2 Modular Multiplication and AVX2
Modular multiplication of very large integers are often used to implement efficient modular exponentia-
tion operations which are critical in public key cryptography, such as RSA 2048. Library implementation
of modular multiplication is often done with MUL/ADC chain sequences. Typically, a MUL instruction can
produce a 128-bit intermediate integer output, and add-carry chains must be used at 64-bit intermediate
data granularity.

In AVX2, VPMULUDQ/VPADDQ/VPSRLQ/VPSLLQ/VPBROADCASTQ/VPERMQ allow vectorized approach to
implement efficient modular multiplication/exponentiation for key lengths corresponding to RSA1024
and RSA2048. For details of modular exponentiation/multiplication and AVX2 implementation in
OpenSSL, see http://rd.springer.com/chapter/10.1007%2F978-3-642-31662-3_9?LI=true.

__MyM_KIP_LMRxP_ROW_4x4Wx4(w3, t0, t1, t2, t3, lmr3, min32km1);

_mm256_store_si256((__m256i *) (pOutImage+(iY+3)*wid+ iX), w3) ;

}

}

}

Example 15-39. Separable KLT Intra-block Transformation Using AVX2 (Contd.)

http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/communications-ia-multi-buffer-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/communications-ia-multi-buffer-paper.pdf
http://eprint.iacr.org/2012/476.pdf
http://www.scirp.org/journal/PaperInformation.aspx?paperID=23995
http://rd.springer.com/chapter/10.1007%2F978-3-642-31662-3_9?LI=true

OPTIMIZATIONS FOR INTEL® AVX, FMA AND AVX2

15-56

The basic heuristic starts with reformulating the large integer input operands in 512/1024 bit exponenti-
ation in redundant representations. For example, a 1024-bit integer can be represented using base 2^29
and 36 “digits”, where each “digit” is less than 2^29. A digit in such redundant representation can be
placed in a dword slot of a vector register. Such redundant representation of large integer simplifies the
requirement to perform carry-add chains across the hardware granularity of the intermediate results of
unsigned integer multiplications.

Each VPMULUDQ in AVX2 using the digits from a redundant representation can produce 4 separate 64-
bit intermediate result with sufficient headroom (e.g. 5 most significant bits are 0 excluding sign bit).
Then, VPADDQ is sufficient to implement add-carry chain requirement without needing SIMD versions of
equivalent of ADC-like instructions. More details are available in the reference cited in paragraph above,
including the cost factor of conversion to redundant representation and effective speedup accounting for
parallel output bandwidth of VPMULUDQ/VPADDQ chain.

15.16.3 Data Movement Considerations
Haswell microarchitecture can support up to two 256-bit loads and one 256-bit store micro-ops
dispatched each cycle. Most existing binaries with heavy data-movement operation can benefit from this
enhancement and the higher bandwidths of the L1 data cache and L2 without re-compilation, if the
binary is already optimized for the prior generation microarchitecture. For example, 256-bit SAXPY
computation was limited by the number of load/store ports available in the previous microarchitecture
generation; it will benefit immediately on Haswell microarchitecture.

In some situations, there may be some intricate interactions between microarchitectural restrictions on
the instruction set that is worth some discussion. We consider two commonly used library functions
memcpy() and memset() and the optimal choice to implement them on the new microarchitecture.

With memcpy() on Haswell microarchitecture, using REP MOVSB to implement memcpy operation for
large copy length can take advantage the 256-bit store data path and deliver throughput of more than 20
bytes per cycle. For copy length that are smaller than a few hundred bytes, REP MOVSB approach is
slower than using 128-bit SIMD technique described in Section 15.16.3.1.

With memcpy() on Ice Lake microarchitecture, using in-lined REP MOVSB to implement memcpy is as
fast as a 256-bit AVX implementation for copy lengths that are variable and unknown at compile time.
For lengths that are known at compile time, REP MOVSB is almost as good as 256-bit AVX for short
strings up to 128 bytes (9 cycles vs 3-7 cycles), and better for strings of 2K bytes and longer. For these
cases we recommend using inline REP MOVSB. That said, software should still branch away for zero byte
copies.

15.16.3.1 SIMD Heuristics to implement Memcpy()
We start with a discussion of the general heuristic to attempt implementing memcpy() with 128-bit SIMD
instructions, which revolves around three numeric factors (destination address alignment, source
address alignment, bytes to copy) relative to the width of register width of the desired instruction set.
The data movement work of memcpy can be separated into the following phases:
• An initial unaligned copy of 16 bytes, allows looping destination address pointer to become 16-byte

aligned. Thus subsequent store operations can use as many 16-byte aligned stores.
• The remaining bytes-left-to-copy are decomposed into (a) multiples of unrolled 16-byte copy

operations, plus (b) residual count that may include some copy operations of less than 16 bytes. For
example, to unroll eight time to amortize loop iteration overhead, the residual count must handle
individual cases from 1 to 8x16-1 = 127.

• Inside an 8X16 unrolled main loop, each 16 byte copy operation may need to deal with source pointer
address is not aligned to 16-byte boundary and store 16 fresh data to 16B-aligned destination
address. When the iterating source pointer is not 16B-aligned, the most efficient technique is a three
instruction sequence of:

— Fetch an 16-byte chunk from an 16-byte-aligned adjusted pointer address and use a portion of
this chunk with complementary portion from previous 16-byte-aligned fetch.

— Use PALIGNR to stitch a portion of the current chunk with the previous chunk.

15-57

OPTIMIZATIONS FOR INTEL® AVX, FMA AND AVX2

— Stored stitched 16-byte fresh data to aligned destination address, and repeat this 3 instruction
sequence.

This 3-instruction technique allows the fetch:store instruction ratio for each 16-byte copy operation
to remain at 1:1.

While the above technique (specifically, the main loop dealing with copying thousands of bytes of data)
can achieve throughput of approximately 10 bytes per cycle on Sandy Bridge and Ivy Bridge microarchi-
tectures with 128-bit data path for store operations, an attempt to extend this technique to use wider
data path will run into the following restrictions:
• To use 256-bit VPALIGNR with its 2X128-bit lane microarchitecture, stitching of two partial chunks of

the current 256-bit 32-byte-aligned fetch requires another 256-bit fetch from an address 16-byte
offset from the current 32-byte-aligned 256-bit fetch.

— The fetch:store ratio for each 32-byte copy operation becomes 2:1.

— The 32-byte-unaligned fetch (although aligned to 16-byte boundary) will experience a cache-line
split penalty, once every 64-bytes of copy operation.

The net of this attempt to use 256-bit ISA to take advantage of the 256-bit store data-path microarchi-
tecture was offset by the 4-instruction sequence and cacheline split penalty.

15.16.3.2 Memcpy() Implementation Using Enhanced REP MOVSB
It is interesting to compare the alternate approach of using enhanced REP MOVSB to implement
memcpy(). In Haswell and Ivy Bridge microarchitectures, REP MOVSB is an optimized, hardware
provided, micro-op flow.

On Ivy Bridge microarchitecture, a REP MOVSB implementation of memcpy can achieve throughput at
slightly better than the 128-bit SIMD implementation when copying thousands of bytes. However, if the
size of copy operation is less than a few hundred bytes, the REP MOVSB approach is less efficient than the
explicit residual copy technique described in phase 2 of Section 15.16.3.1. This is because handling 1-
127 residual copy length (via jump table or switch/case, and is done before the main loop) plus one or
two 8x16B iterations incurs less branching overhead than the hardware provided micro-op flows. For the
grueling implementation details of 128-bit SIMD implementation of memcpy(), one can look up from the
archived sources of open source library such as GLibC.

On Haswell microarchitecture, using REP MOVSB to implement memcpy operation for large copy length
can take advantage the 256-bit store data path and deliver throughput of more than 20 bytes per cycle.
For copy length that are smaller than a few hundred bytes, REP MOVSB approach is still slower than
treating the copy length as the residual phase of Section 15.16.3.1.

15.16.3.3 Memset() Implementation Considerations
The interface of Memset() has one address pointer as destination, which simplifies the complexity of
managing address alignment scenarios to use 256-bit aligned store instruction. After an initial unaligned
store, and adjusting the destination pointer to be 32-byte aligned, the residual phase follows the same
consideration as described in Section 15.16.3.1, which may employ a large jump table to handle each
residual value scenario with minimal branching, depending on the amount of unrolled 32B-aligned
stores. The main loop is a simple YMM register to 32-byte-aligned store operation, which can deliver
close to 30 bytes per cycle for lengths more than a thousand byte. The limiting factor here is due to each
256-bit VMOVDQA store consists of a store_address and a store_data micro-op flow. Only port 4 is avail-
able to dispatch the store_data micro-op each cycle.

Using REP STOSB to implement memset() has the code size advantage versus a SIMD implementation,
like REP MOVSB for memcpy(). On Haswell microarchitecture, a memset() routine implemented using
REP STOSB will also benefit the from the 256-bit data path and increased L1 data cache bandwidth to
deliver up to 32 bytes per cycle for large count values.

Comparing the performance of memset() implementations using REP STOSB vs. 256-bit AVX2 requires
one to consider the pattern of invocation of memset(). The invocation pattern can lead to the necessity
of using different performance measurement techniques. There may be side effects affecting the
outcome of each measurement technique.

OPTIMIZATIONS FOR INTEL® AVX, FMA AND AVX2

15-58

The most common measurement technique that is often used with a simple routine like memset() is to
execute memset() inside a loop with a large iteration count, and wrap the invocation of RDTSC before
and after the loop.

A slight variation of this measurement technique can apply to measuring memset() invocation patterns
of multiple back-to-back calls to memset() with different count values with no other intervening instruc-
tion streams executed between calls to memset().

In both of the above memset() invocation scenarios, branch prediction can play a significant role in
affecting the measured total cycles for executing the loop. Thus, measuring AVX2-implemented
memset() under a large loop to minimize RDTSC overhead can produce a skewed result with the branch
predictor being trained by the large loop iteration count.

In more realistic software stacks, the invocation patterns of memset() will likely have the characteristics
that:
• There are intervening instruction streams being executed between invocations of memset(), the

state of branch predictor prior to memset() invocation is not pre-trained for the branching sequence
inside a memset() implementation.

• Memset() count values are likely to be uncorrected.

The proper measurement technique to compare memset() performance for more realistic memset()
invocation scenarios will require a per-invocation technique that wraps two RDTSC around each invoca-
tion of memset().

With the per-invocation RDTSC measurement technique, the overhead of RDTSC and be pre-calibrated
and post-validated outside of a measurement loop. The per-invocation technique may also consider
cache warming effect by using a loop to wrap around the per-invocation measurements.

When the relevant skew factors of measurement techniques are taken into effect, the performance of
memset() using REP STOSB, for count values smaller than a few hundred bytes, is generally faster than
the AVX2 version for the common memset() invocation scenarios. Only in the extreme scenarios of
hundreds of unrolled memset() calls, all using count values less than a few hundred bytes and with no
intervening instruction stream between each pair of memset() can the AVX2 version of memset() take
advantage of the training effect of the branch predictor.

15.16.3.4 Hoisting Memcpy/Memset Ahead of Consuming Code
There may be situations where the data furnished by a call to memcpy/memset and subsequent instruc-
tions consuming the data can be re-arranged:

memcpy (pBuf, pSrc, Cnt); // make a copy of some data with knowledge of Cnt
..... // subsequent instruction sequences are not consuming pBuf immediately
result = compute(pBuf); // memcpy result consumed here

When the count is known to be at least a thousand byte or more, using enhanced REP MOVSB/STOSB can
provide another advantage to amortize the cost of the non-consuming code. The heuristic can be under-
stood using a value of Cnt = 4096 and memset() as example:
• A 256-bit SIMD implementation of memset() will need to issue/execute retire 128 instances of 32-

byte store operation with VMOVDQA, before the non-consuming instruction sequences can make
their way to retirement.

• An instance of enhanced REP STOSB with ECX= 4096 is decoded as a long micro-op flow provided by
hardware, but retires as one instruction. There are many store_data operation that must complete
before the result of memset() can be consumed. Because the completion of store data operation is
de-coupled from program-order retirement, a substantial part of the non-consuming code stream
can process through the issue/execute and retirement, essentially cost-free if the non-consuming
sequence does not compete for store buffer resources.

Software that use enhanced REP MOVSB/STOSB must check its availability by verifying
CPUID.(EAX=07H, ECX=0):EBX.[bit 9] reports 1.

15-59

OPTIMIZATIONS FOR INTEL® AVX, FMA AND AVX2

15.16.3.5 256-bit Fetch versus Two 128-bit Fetches
On Sandy Bridge and Ivy Bridge microarchitectures, using two 16-byte aligned loads are preferred due
to the 128-bit data path limitation in the memory pipeline of the microarchitecture.

To take advantage of Haswell microarchitecture’s 256-bit data path microarchitecture, the use of 256-bit
loads must consider the alignment implications. Instruction that fetched 256-bit data from memory
should pay attention to be 32-byte aligned. If a 32-byte unaligned fetch would span across cache line
boundary, it is still preferable to fetch data from two 16-byte aligned address instead.

15.16.3.6 Mixing MULX and AVX2 Instructions
Combining MULX and AVX2 instruction can further improve the performance of some common computa-
tion task, e.g. numeric conversion 64-bit integer to ascii format can benefit from the flexibility of MULX
register allocation, wider YMM register, and variable packed shift primitive VPSRLVD for parallel
moduli/remainder calculations.

Example 15-40 shows a macro sequence of AVX2 instruction to calculate one or two finite range
unsigned short integer(s) into respective decimal digits, featuring VPSRLVD in conjunction with Mont-
gomery reduction technique.

Example 15-40. Macros for Parallel Moduli/Remainder Calculation

static short quoTenThsn_mulplr_d[16] =

{ 0x199a, 0, 0x28f6, 0, 0x20c5, 0, 0x1a37, 0, 0x199a, 0, 0x28f6, 0, 0x20c5, 0, 0x1a37, 0};

static short mten_mulplr_d[16] = { -10, 1, -10, 1, -10, 1, -10, 1, -10, 1, -10, 1, -10, 1, -10, 1};

// macro to convert input t5 (a __m256i type) containing quotient (dword 4) and remainder

// (dword 0) into single-digit integer (between 0-9) in output y3 (a__m256i);

//both dword element "t5" is assume to be less than 10^4, the rest of dword must be 0;

//the output is 8 single-digit integer, located in the low byte of each dword, MS digit in dword 0

#define __ParMod10to4AVX2dw4_0(y3, t5) \

{ __m256i x0, x2; \

x0 = _mm256_shuffle_epi32(t5, 0); \

x2 = _mm256_mulhi_epu16(x0, _mm256_loadu_si256((__m256i *) quoTenThsn_mulplr_d));\

x2 = _mm256_srlv_epi32(x2, _mm256_setr_epi32(0x0, 0x4, 0x7, 0xa, 0x0, 0x4, 0x7, 0xa)); \

(y3) = _mm256_or_si256(_mm256_slli_si256(x2, 6), _mm256_slli_si256(t5, 2)); \

(y3) = _mm256_or_si256(x2, y3);\

(y3) = _mm256_madd_epi16(y3, _mm256_loadu_si256((__m256i *) mten_mulplr_d)) ;\

}

// parallel conversion of dword integer (< 10^4) to 4 single digit integer in __m128i

#define __ParMod10to4AVX2dw(x3, dw32) \

{ __m128i x0, x2; \

x0 = _mm_broadcastd_epi32(_mm_cvtsi32_si128(dw32)); \

x2 = _mm_mulhi_epu16(x0, _mm_loadu_si128((__m128i *) quoTenThsn_mulplr_d));\

x2 = _mm_srlv_epi32(x2, _mm_setr_epi32(0x0, 0x4, 0x7, 0xa)); \

(x3) = _mm_or_si128(_mm_slli_si128(x2, 6), _mm_slli_si128(_mm_cvtsi32_si128(dw32), 2)); \

(x3) = _mm_or_si128(x2, (x3));\

(x3) = _mm_madd_epi16((x3), _mm_loadu_si128((__m128i *) mten_mulplr_d)) ;\

}

OPTIMIZATIONS FOR INTEL® AVX, FMA AND AVX2

15-60

Example 15-41 shows a helper utility and overall steps to reduce a 64-bit signed integer into a 63-bit
unsigned range with reduced-range integer quotient/remainder pairs using MULX. Note that this
example relies on Example 15-40 and Example 15-42.

Example 15-41. Signed 64-bit Integer Conversion Utility

#define QWCG10to 80xabcc77118461cefdull

static int pr_cg_10to4[8] = { 0x68db8db, 0 , 0, 0, 0x68db8db, 0, 0, 0};

static int pr_1_m10to4[8] = { -10000, 0 , 0, 0 , 1, 0 , 0, 0};

(continue)

char * i64toa_avx2i(__int64 xx, char * p)

{int cnt;

_mm256_zeroupper();

if(xx < 0) cnt = avx2i_q2a_u63b(-xx, p);

else cnt = avx2i_q2a_u63b(xx, p);

p[cnt] = 0;

return p;

}

// Convert unsigned short (< 10^4) to ascii

__inline int ubsAvx2_Lt10k_2s_i2(int x_Lt10k, char *ps)

{int tmp;

__m128i x0, m0, x2, x3, x4;

if(x_Lt10k < 10) { *ps = '0' + x_Lt10k; return 1; }

x0 = _mm_broadcastd_epi32(_mm_cvtsi32_si128(x_Lt10k));

// calculate quotients of divisors 10, 100, 1000, 10000

m0 = _mm_loadu_si128((__m128i *) quoTenThsn_mulplr_d);

x2 = _mm_mulhi_epu16(x0, m0);

// u16/10, u16/100, u16/1000, u16/10000

x2 = _mm_srlv_epi32(x2, _mm_setr_epi32(0x0, 0x4, 0x7, 0xa));

// 0, u16, 0, u16/10, 0, u16/100, 0, u16/1000

x3 = _mm_insert_epi16(_mm_slli_si128(x2, 6), (int) x_Lt10k, 1);

x4 = _mm_or_si128(x2, x3);

// produce 4 single digits in low byte of each dword

x4 = _mm_madd_epi16(x4, _mm_loadu_si128((__m128i *) mten_mulplr_d)) ;// add bias for ascii encoding

x2 = _mm_add_epi32(x4, _mm_set1_epi32(0x30303030));

// pack 4 single digit into a dword, start with most significant digit

x3 = _mm_shuffle_epi8(x2, _mm_setr_epi32(0x0004080c, 0x80808080, 0x80808080, 0x80808080));

if (x_Lt10k > 999) {*(int *) ps = _mm_cvtsi128_si32(x3); return 4;}

15-61

OPTIMIZATIONS FOR INTEL® AVX, FMA AND AVX2

Example 15-42 shows the steps of numeric conversion of a 63-bit dynamic range into ascii format
according to a progressive range reduction technique using a vectorized Montgomery reduction scheme.
Note that this example relies on Example 15-40.

 tmp = _mm_cvtsi128_si32(x3);

 if (x_Lt10k > 99) {

 *((short *) (ps)) = (short) (tmp >>8);

 ps[2] = (char) (tmp >>24);

 return 3;

 }

 *((short *) ps) = (short) (tmp>>16); return 2;

 }

 }

Example 15-42. Unsigned 63-bit Integer Conversion Utility

unsigned avx2i_q2a_u63b (unsigned __int64 xx, char *ps)

{ __m128i v0;

 __m256i m0, x1, x3, x4, x5 ;

 unsigned __int64 xxi, xx2, lo64, hi64;

__int64 w;

 int j, cnt, abv16, tmp, idx, u;

 // conversion of less than 4 digits

if (xx < 10000) {

j = ubsAvx2_Lt10k_2s_i2 ((unsigned) xx, ps); return j;

} else if (xx < 100000000) { // dynamic range of xx is less than 9 digits

 // conversion of 5-8 digits

 x1 = _mm256_broadcastd_epi32(_mm_cvtsi32_si128((int)xx)); // broadcast to every dword

 // calculate quotient and remainder, each with reduced range (< 10^4)

 x3 = _mm256_mul_epu32(x1, _mm256_loadu_si256((__m256i *) pr_cg_10to4));

 x3 = _mm256_mullo_epi32(_mm256_srli_epi64(x3, 40), _mm256_loadu_si256((__m256i *)pr_1_m10to4));

// quotient in dw4, remainder in dw0

 m0 = _mm256_add_epi32(_mm256_inserti128_si256(_mm256_setzero_si256(), _mm_cvtsi32_si128((int)xx), 0),
x3);

 __ParMod10to4AVX2dw4_0(x3, m0); // 8 digit in low byte of each dw

 x3 = _mm256_add_epi32(x3, _mm256_set1_epi32(0x30303030));

 x4 = _mm256_shuffle_epi8(x3, _mm256_setr_epi32(0x0004080c, 0x80808080, 0x80808080, 0x80808080,

0x0004080c, 0x80808080, 0x80808080, 0x80808080));

(continue)

Example 15-41. Signed 64-bit Integer Conversion Utility (Contd.)

OPTIMIZATIONS FOR INTEL® AVX, FMA AND AVX2

15-62

// pack 8 single-digit integer into first 8 bytes and set rest to zeros

 x4 = _mm256_permutevar8x32_epi32(x4, _mm256_setr_epi32(0x4, 0x0, 0x1, 0x1, 0x1, 0x1, 0x1, 0x1));

 tmp = _mm256_movemask_epi8(_mm256_cmpgt_epi8(x4, _mm256_set1_epi32(0x30303030)));

 _BitScanForward((unsigned long *) &idx, tmp);

 cnt = 8 -idx; // actual number non-zero-leading digits to write to output

} else { // conversion of 9-12 digits

 lo64 = _mulx_u64(xx, (unsigned __int64) QWCG10to8, &hi64);

 hi64 >>= 26;

 xxi = _mulx_u64(hi64, (unsigned __int64)100000000, &xx2);

 lo64 = (unsigned __int64)xx - xxi;

 if(hi64 < 10000) { // do digist 12-9 first

 __ParMod10to4AVX2dw(v0, (int)hi64);

 v0 = _mm_add_epi32(v0, _mm_set1_epi32(0x30303030));

 // continue conversion of low 8 digits of a less-than 12-digit value

 x5 = _mm256_inserti128_si256(_mm256_setzero_si256(), _mm_cvtsi32_si128((int)lo64), 0);

 x1 = _mm256_broadcastd_epi32(_mm_cvtsi32_si128((int)lo64)); // broadcast to every dword

 x3 = _mm256_mul_epu32(x1, _mm256_loadu_si256((__m256i *) pr_cg_10to4));

 x3 = _mm256_mullo_epi32(_mm256_srli_epi64(x3, 40), _mm256_loadu_si256((__m256i *)pr_1_m10to4));

 m0 = _mm256_add_epi32(x5, x3); // quotient in dw4, remainder in dw0

 __ParMod10to4AVX2dw4_0(x3, m0);

 x3 = _mm256_add_epi32(x3, _mm256_set1_epi32(0x30303030));

 x4 = _mm256_shuffle_epi8(x3, _mm256_setr_epi32(0x0004080c, 0x80808080, 0x80808080, 0x80808080,

0x0004080c, 0x80808080, 0x80808080, 0x80808080));

 x5 = _mm256_inserti128_si256(_mm256_setzero_si256(), _mm_shuffle_epi8(v0,

_mm_setr_epi32(0x80808080, 0x80808080, 0x0004080c, 0x80808080)), 0);

 x4 = _mm256_permutevar8x32_epi32(_mm256_or_si256(x4, x5), _mm256_setr_epi32(0x2, 0x4, 0x0, 0x1,

0x1, 0x1, 0x1, 0x1));

 tmp = _mm256_movemask_epi8(_mm256_cmpgt_epi8(x4, _mm256_set1_epi32(0x30303030)));

 _BitScanForward((unsigned long *) &idx, tmp);

 cnt = 12 -idx;

 } else { // handle greater than 12 digit input value

 cnt = 0;

 if (hi64 > 100000000) { // case of input value has more than 16 digits

 xxi = _mulx_u64(hi64, (unsigned __int64) QWCG10to8, &xx2) ;

abv16 = (int)(xx2 >>26);

hi64 -= _mulx_u64((unsigned __int64) abv16, (unsigned __int64) 100000000, &xx2);

__ParMod10to4AVX2dw(v0, abv16);

v0 = _mm_add_epi32(v0, _mm_set1_epi32(0x30303030));

v0 = _mm_shuffle_epi8(v0, _mm_setr_epi32(0x0004080c, 0x80808080, 0x80808080, 0x80808080));

(continue)

Example 15-42. Unsigned 63-bit Integer Conversion Utility (Contd.)

15-63

OPTIMIZATIONS FOR INTEL® AVX, FMA AND AVX2

tmp = _mm_movemask_epi8(_mm_cmpgt_epi8(v0, _mm_set1_epi32(0x30303030)));

_BitScanForward((unsigned long *) &idx, tmp);

cnt = 4 -idx;

 }

// conversion of lower 16 digits

 x1 = _mm256_broadcastd_epi32(_mm_cvtsi32_si128((int)hi64)); // broadcast to every dword

 x3 = _mm256_mul_epu32(x1, _mm256_loadu_si256((__m256i *) pr_cg_10to4));

 x3 = _mm256_mullo_epi32(_mm256_srli_epi64(x3, 40), _mm256_loadu_si256((__m256i *)pr_1_m10to4));

 m0 = _mm256_add_epi32(_mm256_inserti128_si256(_mm256_setzero_si256(), _mm_cvtsi32_si128((int)hi64),
0), x3);

 __ParMod10to4AVX2dw4_0(x3, m0);

 x3 = _mm256_add_epi32(x3, _mm256_set1_epi32(0x30303030));

 x4 = _mm256_shuffle_epi8(x3, _mm256_setr_epi32(0x0004080c, 0x80808080, 0x80808080, 0x80808080,

0x0004080c, 0x80808080, 0x80808080, 0x80808080));

 x1 = _mm256_broadcastd_epi32(_mm_cvtsi32_si128((int)lo64)); // broadcast to every dword

 x3 = _mm256_mul_epu32(x1, _mm256_loadu_si256((__m256i *) pr_cg_10to4));

 x3 = _mm256_mullo_epi32(_mm256_srli_epi64(x3, 40), _mm256_loadu_si256((__m256i *)pr_1_m10to4));

 m0 = _mm256_add_epi32(_mm256_inserti128_si256(_mm256_setzero_si256(), _mm_cvtsi32_si128((int)lo64),
0),), x3);

 __ParMod10to4AVX2dw4_0(x3, m0);

 x3 = _mm256_add_epi32(x3, _mm256_set1_epi32(0x30303030));

 x5 = _mm256_shuffle_epi8(x3, _mm256_setr_epi32(0x80808080, 0x80808080, 0x0004080c, 0x80808080,

0x80808080, 0x80808080, 0x0004080c, 0x80808080));

 x4 = _mm256_permutevar8x32_epi32(_mm256_or_si256(x4, x5), _mm256_setr_epi32(0x4, 0x0, 0x6, 0x2,

0x1, 0x1, 0x1, 0x1));

 cnt += 16;

 if (cnt <= 16) {

 tmp = _mm256_movemask_epi8(_mm256_cmpgt_epi8(x4, _mm256_set1_epi32(0x30303030)));

 _BitScanForward((unsigned long *) &idx, tmp);

 cnt -= idx;

 }

 }

 }

w = _mm_cvtsi128_si64(_mm256_castsi256_si128(x4));

switch(cnt) {

case 5:*ps++ = (char) (w >>24); *(unsigned *) ps = (w >>32);

break;

case 6:*(short *)ps = (short) (w >>16); *(unsigned *) (&ps[2]) = (w >>32);

break;

case 7:*ps = (char) (w >>8); *(short *) (&ps[1]) = (short) (w >>16);

 *(unsigned *) (&ps[3]) = (w >>32);

(continue)

Example 15-42. Unsigned 63-bit Integer Conversion Utility (Contd.)

OPTIMIZATIONS FOR INTEL® AVX, FMA AND AVX2

15-64

break;

case 8: *(long long *)ps = w;

break;

case 9:*ps++ = (char) (w >>24); *(long long *) (&ps[0]) = _mm_cvtsi128_si64(
_mm_srli_si128(_mm256_castsi256_si128(x4), 4));

break;

case 10:*(short *)ps = (short) (w >>16);

*(long long *) (&ps[2]) = _mm_cvtsi128_si64(_mm_srli_si128(_mm256_castsi256_si128(x4), 4));

break;

case 11:*ps = (char) (w >>8); *(short *) (&ps[1]) = (short) (w >>16);

*(long long *) (&ps[3]) = _mm_cvtsi128_si64(_mm_srli_si128(_mm256_castsi256_si128(x4), 4));

break;

case 12: *(unsigned *)ps = (unsigned int) w; *(long long *) (&ps[4]) = _mm_cvtsi128_si64(
_mm_srli_si128(_mm256_castsi256_si128(x4), 4));

break;

case 13:*ps++ = (char) (w >>24); *(unsigned *) ps = (w >>32);

*(long long *) (&ps[4]) = _mm_cvtsi128_si64(_mm_srli_si128(_mm256_castsi256_si128(x4), 8));

break;

case 14:*(short *)ps = (short) (w >>16); *(unsigned *) (&ps[2]) = (w >>32);

*(long long *) (&ps[6]) = _mm_cvtsi128_si64(_mm_srli_si128(_mm256_castsi256_si128(x4), 8));

break;

case 15:*ps = (char) (w >>8); *(short *) (&ps[1]) = (short) (w >>16);

 *(unsigned *) (&ps[3]) = (w >>32);

*(long long *) (&ps[7]) = _mm_cvtsi128_si64(_mm_srli_si128(_mm256_castsi256_si128(x4), 8));

break;

case 16: _mm_storeu_si128((__m128i *) ps, _mm256_castsi256_si128(x4));

break;

case 17:u = (int) _mm_cvtsi128_si64(v0); *ps++ = (char) (u >>24);

_mm_storeu_si128((__m128i *) &ps[0], _mm256_castsi256_si128(x4));

break;

case 18:u = (int) _mm_cvtsi128_si64(v0); *(short *)ps = (short) (u >>16);

_mm_storeu_si128((__m128i *) &ps[2], _mm256_castsi256_si128(x4));

break;

case 19:u = (int) _mm_cvtsi128_si64(v0); *ps = (char) (u >>8); *(short *) (&ps[1]) = (short) (u >>16);

_mm_storeu_si128((__m128i *) &ps[3], _mm256_castsi256_si128(x4));

break;

case 20:u = (int) _mm_cvtsi128_si64(v0); *(unsigned *)ps = (short) (u);

_mm_storeu_si128((__m128i *) &ps[4], _mm256_castsi256_si128(x4));

break;

}

 return cnt;

}

Example 15-42. Unsigned 63-bit Integer Conversion Utility (Contd.)

15-65

OPTIMIZATIONS FOR INTEL® AVX, FMA AND AVX2

The AVX2 version of numeric conversion across the dynamic range of 3/9/17 output digits are approxi-
mately 23/57/54 cycles per input, compared to standard library implement ion’s range of 85/260/560
cycles per input.

The techniques illustrated above can be extended to numeric conversion of other library, such as binary-
integer-decimal (BID) encoded IEEE-754-2008 Decimal floating-point format. For BID-128 format,
Example 15-42 can be adapted by adding another range-reduction stage using a pre-computed 256-bit
constant to perform Montgomery reduction at modulus 10^16. The technique to construct the 256-bit
constant is covered in Chapter 14, “SSE4.2 and SIMD Programming For Text-
Processing/Lexing/Parsing”of Intel® 64 and IA-32 Architectures Optimization Reference Manual.

15.16.4 Considerations for Gather Instructions
VGATHER family of instructions fetch multiple data elements specified by a vector index register
containing relative offsets from a base address. Processors based on Haswell microarchitecture is the
first implementation of the VGATHER instruction and a single instruction results in multiple micro-ops
being executed. In the Broadwell microarchitecture, the throughput of the VGATHER family of instruc-
tions have improved significantly; see Table D-5.

Depending on data organization and access patterns, it is possible to create equivalent code sequences
without using VGATHER instruction that will execute faster and with fewer micro-ops than a single
VGATHER instruction (e.g. see Section 15.5.1). Example 15-43 shows some of the situations where use
of VGATHER on Haswell microarchitecture is unlikely to provide performance benefit.

In other cases, using the VGATHER instruction can reduce code size and execute faster with techniques
including but not limited to amortizing the latency and throughput of VGATHER, or by hoisting the fetch
operations well in advance of consumer code of the destination register of those fetches. Example
15-44 lists some patterns that can benefit from using VGATHER on Haswell microarchitecture.
General tips for using VGATHER:
• Gathering more elements with a VGATHER instruction helps amortize the latency and throughput of

VGATHER, and is more likely to provide performance benefit over an equivalent non-VGATHER flow.
For example, the latency of 256-bit VGATHER is less than twice the equivalent 128-bit VGATHER and
therefore more likely to show gains than two 128-bit equivalent ones. Also, using index size larger
than data element size results in only half of the register slots utilized but not a proportional latency

Example 15-43. Access Patterns Favoring Non-VGATHER Techniques

Access Patterns Recommended Instruction Selection

Sequential elements Regular SIMD loads (MOVAPS/MOVUPS, MOVDQA/MOVDQU)

Fewer than 4 elements Regular SIMD load + horizontal data-movement to re-arrange slots

Small Strides Load all nearby elements + shuffle/permute to collected strided elements:

VMOVUPD YMM0, [sequential elements]
VPERMQ YMM1, YMM0, 0x08 // the even elements
VPERMQ YMM2, YMM0, 0x0d // the odd elements

Transpositions Regular SIMD loads + shuffle/permute/blend to transpose to columns

Redundant elements Load once + shuffle/blend/logical to build data vectors in register. In this case, result[i] =
x[index[i]] + x[index[i+1]], the technique below may be preferable to using multiple VGATHER:

ymm0 <- VGATHER (x[index[k]]); // fetching 8 elements
ymm1 <- VBLEND(VPERM (ymm0), VBROADCAST (x[indexx[k+8]]);
ymm2 <- VPADD(ymm0, ymm1);

OPTIMIZATIONS FOR INTEL® AVX, FMA AND AVX2

15-66

reduction. Therefore the dword index form of VGATHER is preferred over qword index if dwords or
single-precision values are to be fetched.

• It is advantageous to hoist VGATHER well in advance of the consumer code.
• VGATHER merges the (unmasked) gathered elements with the previous value of the destination.

Therefore, in cases where the previous value of the destination doesn’t need to be merged (for
instance, when no elements is masked off), it can be beneficial to break the dependency of the
VGATHER instruction on the previous writer of the destination register (by zeroing out the register
with a VXOR instruction).

Performance of the VGATHER instruction compared to a multi-instruction gather equivalent flow can vary
due to (1) differences in the base algorithm, (2) different data organization, and (3) the effectiveness of
the equivalent flow. In performance critical applications it is advisable to evaluate both options before
choosing one.

The throughput of GATHER instructions continue to improve from Broadwell to Skylake Microarchitec-
ture. This is shown in Figure 15-4.

Example 15-44. Access Patterns Likely to Favor VGATHER Techniques

Access Patterns Instruction Selection

4 or more
elements with
unknown masks

Code with conditional element gathers typically either will not vectorize without a VGATHER
instruction or provide relatively poor performance due to data-dependent mis-predicted branches.

C code with data-dependent branches:

if (condition[i] > 0) { result[i] = x[index[i]] }

AVX2 equivalent sequence:

YMM0 <- VPCMPGT (condition, zeros) // compute vector mask
YMM2 <- VGATHER (x[YMM1], YMM0) // addr=x[YMM1], mask=YMM0

Vectorized index
calculation with 8
elements

Vectorized calculations to generate the index synergizes well with the VGATHER instruction
functionality.

C code snippet:

x[index1[i] + index2[i]]

AVX2 equivalent:

YMM0 <- VPADD (index1, index2) // calc vector index
YMM1 <- VGATHER (x[YMM0], mask) // addr=x[YMM0]

15-67

OPTIMIZATIONS FOR INTEL® AVX, FMA AND AVX2

Example 15-45 gives the asm sequence of software implementation that is equivalent to the VPGATHERD
instruction. This can be used to compare the trade-off of using a hardware gather instruction or software
gather sequence based on inserting an individual element.

Figure 15-4. Throughput Comparison of Gather Instructions

Example 15-45. Software AVX Sequence Equivalent to Full-Mask VPGATHERD

 mov eax, [rdi] // load index0

vmovd xmm0, [rsi+4*rax] // load element0

mov eax, [rdi+4] // load index1

vpinsrd xmm0, xmm0, [rsi+4*rax], 0x1 // load element1

mov eax, [rdi+8] // load index2

vpinsrd xmm0, xmm0, [rsi+4*rax], 0x2 // load element2

mov eax, [rdi+12] // load index3

vpinsrd xmm0, xmm0, [rsi+4*rax], 0x3 // load element3

mov eax, [rdi+16] // load index4

vmovd xmm1, [rsi+4*rax] // load element4

mov eax, [rdi+20] // load index5

vpinsrd xmm1, xmm1, [rsi+4*rax], 0x1 // load element5

mov eax, [rdi+24] // load index6

vpinsrd xmm1, xmm1, [rsi+4*rax], 0x2 // load element6

mov eax, [rdi+28] // load index7

vpinsrd xmm1, xmm1, [rsi+4*rax], 0x3 // load element7

vinserti128 ymm0, ymm0, xmm1, 1 //result in ymm0

OPTIMIZATIONS FOR INTEL® AVX, FMA AND AVX2

15-68

Figure 15-5 compares per-element throughput using the VPGATHERD instruction versus a software
gather sequence with Skylake microarchitecture as a function of cache locality of data supply. With the
exception of using hardware GATHER on two data elements per instruction, the gather instruction out-
performs the software sequence on Skylake microarchitecture.

If data supply locality is from memory, software sequences are likely to perform better than the hardware
GATHER instruction.

15.16.4.1 Strided Loads
This section compares using the hardware GATHER instruction versus alternative implementations of
handling Array of Structures (AOS) to Structure of Arrays (SOA) transformation. The code separates the
real and imaginary elements in a complex array into two separate arrays.

C code:

for(int i=0;i<len;i++){

Real_buffer[i] = Complex_buffer[i].real;

Imaginary_buffer[i] = Complex_buffer[i].imag;

}

Figure 15-5. Comparison of HW GATHER Versus Software Sequence in Skylake Microarchitecture

15-69

OPTIMIZATIONS FOR INTEL® AVX, FMA AND AVX2

With strided access patterns, an AVX software sequence can load and shuffle on multiple elements and is
the more optimal technique.

15.16.4.2 Adjacent Loads
This section compares using the hardware GATHER instruction versus alternative implementations of
handling a variant situation of AOS to SOA transformation. In this case, AOS data are not loaded sequen-
tially but via an index array.

Example 15-46. AOS to SOA Transformation Alternatives
1: Scalar Code 2: AVX w/ VINSRT+VSHUFPS 3: AVX2 w/ VPGATHERD

loop:
lea eax, [r10+r10*1]
movsxd rax, eax
inc r10d
mov r11d, dword ptr [rsi+rax*8]
mov dword ptr [rcx+rax*4], r11d
mov r11d, dword ptr [rsi+rax*8+0x4]
mov dword ptr [rdx+rax*4], r11d
mov r11d, dword ptr [rsi+rax*8+0x8]
mov dword ptr [rcx+rax*4+0x4],
r11d
mov r11d, dword ptr [rsi+rax*8+0xc]
mov dword ptr [rdx+rax*4+0x4],
r11d
cmp r10d, r8d
jl loop

loop:
vmovdqu xmm0, xmmword ptr
[r10+rcx*8]
vmovdqu xmm1, xmmword ptr
[r10+rcx*8+0x10]
vmovdqu xmm4, xmmword ptr
[r10+rcx*8+0x40]
vmovdqu xmm5, xmmword ptr
[r10+rcx*8+0x50]
vinserti128 ymm2, ymm0, xmmword
ptr [r10+rcx*8+0x20], 0x1
vinserti128 ymm3, ymm1, xmmword
ptr [r10+rcx*8+0x30], 0x1
vinserti128 ymm6, ymm4, xmmword
ptr [r10+rcx*8+0x60], 0x1
vinserti128 ymm7, ymm5, xmmword
ptr [r10+rcx*8+0x70], 0x1
add rcx, 0x10
vshufps ymm0, ymm2, ymm3, 0x88
vshufps ymm1, ymm2, ymm3, 0xdd
vshufps ymm4, ymm6, ymm7, 0x88
vshufps ymm5, ymm6, ymm7, 0xdd
vmovups ymmword ptr [r9], ymm0
vmovups ymmword ptr [r8], ymm1
vmovups ymmword ptr [r9+0x20],
ymm4
vmovups ymmword ptr [r8+0x20],
ymm5

loop:
lea r11, [r10+rcx*8]
vpxor ymm5, ymm5, ymm5
add rcx, 0x8
vpxor ymm6, ymm6, ymm6
vmovdqa ymm3, ymm0
vmovdqa ymm4, ymm0
vpgatherdd ymm5, ymmword ptr
[r11+ymm2*4], ymm3
vpgatherdd ymm6, ymmword ptr
[r11+ymm1*4], ymm4
vmovdqu ymmword ptr [r9], ymm5
vmovdqu ymmword ptr [r8], ymm6
add r9, 0x20
add r8, 0x20
cmp rcx, rsi
jl loop

add r9, 0x40
add r8, 0x40
cmp rcx, rsi
jl loop

Table 15-7. Comparison of AOS to SOA with Strided Access Pattern
Microarchitecture Scalar VPGATHERD AVX VINSRTF128/VSHUFFLEPS

Broadwell 1X 1.7X 4.8X

Skylake 1X 2.7X 4.9X

OPTIMIZATIONS FOR INTEL® AVX, FMA AND AVX2

15-70

C code:

for(int i=0;i<len;i++){

Real_buffer[i] = Complex_buffer[Index_buffer[i]].real;

Imaginary_buffer[i] = Complex_buffer[Index_buffer[i]].imag;

}

Example 15-47. Non-Strided AOS to SOA
AVX2 GATHERPD AVX VINSRTF128 /UNPACK
loop:
vmovdqu ymm1, ymmword ptr [rsi+rdx*4]
vpaddd ymm3, ymm1, ymm1
vpaddd ymm14, ymm13, ymm3
vxorpd ymm5, ymm5, ymm5
vmovdqa ymm2, ymm0
vxorpd ymm6, ymm6, ymm6
vmovdqa ymm4, ymm0
vxorpd ymm10, ymm10, ymm10
vmovdqa ymm7, ymm0
vxorpd ymm11, ymm11, ymm11
vmovdqa ymm9, ymm0
vextracti128 xmm12, ymm14, 0x1
vextracti128 xmm8, ymm3, 0x1
vgatherdpd ymm6, ymmword ptr[r8+xmm8*8],ymm4
vgatherdpd ymm5, ymmword ptr[r8+xmm3*8],ymm2
vmovupd ymmword ptr [rcx+rdx*8], ymm5
vmovupd ymmword ptr [rcx+rdx*8+0x20], ymm6

loop:
movsxd r10, dword ptr [rdx+rsi*4]
shl r10, 0x4
movsxd r11, dword ptr [rdx+rsi*4+0x8]
shl r11, 0x4
vmovupd xmm0, xmmword ptr [r9+r10*1]
movsxd r10, dword ptr [rdx+rsi*4+0x4]
shl r10, 0x4
vinsertf128 ymm2, ymm0, xmmword ptr [r9+r11*1], 0x1
vmovupd xmm1, xmmword ptr [r9+r10*1]
movsxd r10, dword ptr [rdx+rsi*4+0xc]
shl r10, 0x4
vinsertf128 ymm3, ymm1, xmmword ptr [r9+r10*1], 0x1
movsxd r10, dword ptr [rdx+rsi*4+0x10]
shl r10, 0x4
vunpcklpd ymm4, ymm2, ymm3
vunpckhpd ymm5, ymm2, ymm3
vmovupd ymmword ptr [rcx], ymm4

vgatherdpd ymm11, ymmword ptr[r8+xmm12*8],ymm7
vgatherdpd ymm10, ymmword ptr[r8+xmm14*8],ymm9
vmovupd ymmword ptr [rax+rdx*8], ymm10
vmovupd ymmword ptr [rax+rdx*8+0x20], ymm11
add rdx, 0x8
cmp rdx, r11
jb loop

vmovupd xmm6, xmmword ptr [r9+r10*1]
vmovupd ymmword ptr [rax], ymm5
movsxd r10, dword ptr [rdx+rsi*4+0x18]
shl r10, 0x4
vinsertf128 ymm8, ymm6, xmmword ptr [r9+r10*1], 0x1
movsxd r10, dword ptr [rdx+rsi*4+0x14]
shl r10, 0x4
vmovupd xmm7, xmmword ptr [r9+r10*1]
movsxd r10, dword ptr [rdx+rsi*4+0x1c]
add rsi, 0x8
shl r10, 0x4
vinsertf128 ymm9, ymm7, xmmword ptr [r9+r10*1], 0x1
vunpcklpd ymm10, ymm8, ymm9
vunpckhpd ymm11, ymm8, ymm9
vmovupd ymmword ptr [rcx+0x20], ymm10
add rcx, 0x40
vmovupd ymmword ptr [rax+0x20], ymm11
add rax, 0x40
cmp rsi, r8
jl loop

15-71

OPTIMIZATIONS FOR INTEL® AVX, FMA AND AVX2

With non-strided, regular access pattern of AOS to SOA, an AVX software sequence that uses
VINSERTF128 and interleaved packing of multiple elements can be more optimal.

15.16.5 AVX2 Conversion Remedy to MMX Instruction Throughput Limitation
In processors based on the Skylake microarchitecture, the functionality of the MMX instruction set is
unchanged from prior generations. But many MMX instructions are constrained to execute to one port
with half the instruction throughput relative to prior microarchitectures. The MMX instructions with
throughput constraints include:
• PADDS[B/W], PADDUS[B/W], PSUBS[B/W], PSUBUS[B/W].
• PCMPGT[B/W/D], PCMPEQ[B/W/D].
• PMAX[UB/SW], PMIN[UB/SW].
• PAVG[B/W], PABS[B/W/D], PSIGN[B/W/D].

To overcome the reduction of MMX instruction throughput, conversion of asm and intrinsic code to use
AVX2 instruction will provide significant performance improvements. Example 15-48 shows the asm
sequence using AVX2 versus MMX equivalent. In Skylake microarchitecture, the MMX code shown in
Example 15-48 will execute at approximately half the speed relative to the Broadwell microarchitecture.
This is due to PMAXSW/PMINSW throughput being reduced by half with the single-port restriction. When
the same task is implemented with the equivalent AVX2 sequence, the performance of the AVX2 code on
Skylake microarchitecture will be ~3.9X of the MMX code executing on the Broadwell microarchitecture.

Table 15-8. Comparison of Indexed AOS to SOA Transformation
Microarchitecture VPGATHERPD AVX VINSRTF128/VUNPCK*

Broadwell 1X 1.4X

Skylake 1.3X 1.7X

OPTIMIZATIONS FOR INTEL® AVX, FMA AND AVX2

15-72

Example 15-48. Conversion to Throughput-Reduced MMX sequence to AVX2 Alternative
MMX Code AVX2 Code

mov rax, pIn
mov rbx, pOut
mov r8, len
mov rcx, 8
movq mm0, [rax]
movq mm1, [rax + 8]
movq mm2, mm0
movq mm3, mm1
cmp rcx, r8
jge end

loop:
movq mm4, [rax + 2*rcx]
movq mm5, [rax + 2*rcx + 8]

pmaxsw mm0, mm4
pmaxsw mm1, mm5
pminsw mm2, mm4
pminsw mm3, mm5

add rcx, 8
cmp rcx, r8
jl loop

end:
//Reduction
pmaxsw mm0, mm1
pshufw mm1, mm0, 0xE
pmaxsw mm0, mm1
pshufw mm1, mm0, 1
pmaxsw mm0, mm1

pminsw mm2, mm3
pshufw mm3, mm2, 0xE
pminsw mm2, mm3
pshufw mm3, mm2, 1
pminsw mm2, mm3

movd eax, mm0
mov WORD PTR [rbx], ax
movd eax, mm2
mov WORD PTR [rbx + 2], ax
emms

mov rax, pIn
mov rbx, pOut
mov r8, len
mov rcx, 32
vmovdqu ymm0, ymmword ptr [rax]
vmovdqu ymm1, ymmword ptr [rax + 32]
vmovdqu ymm2, ymm0
vmovdqu ymm3, ymm1
cmp rcx, r8
jge end

loop:
vmovdqu ymm4, ymmword ptr [rax + 2*rcx]
vmovdqu ymm5, ymmword ptr [rax + 2*rcx + 32]
vpmaxsw ymm0, ymm0, ymm4
vpmaxsw ymm1, ymm1, ymm5
vpminsw ymm2, ymm2, ymm4
vpminsw ymm3, ymm3, ymm5
add rcx, 32
cmp rcx, r8
jl loop

end:
//Reduction
vpmaxsw ymm0, ymm0, ymm1
vextracti128 xmm1, ymm0, 1
vpmaxsw xmm0, xmm0, xmm1
vpshufd xmm1, xmm0, 0xe
vpmaxsw xmm0, xmm0, xmm1
vpshuflw xmm1, xmm0, 0xe
vpmaxsw xmm0, xmm0, xmm1
vpshuflw xmm1, xmm0, 1
vpmaxsw xmm0, xmm0, xmm1
vmovd eax, xmm0
mov word ptr [rbx], ax
vpminsw ymm2, ymm2, ymm3
vextracti128 xmm1, ymm2, 1
vpminsw xmm2, xmm2, xmm1
vpshufd xmm1, xmm2, 0xe
vpminsw xmm2, xmm2, xmm1
vpshuflw xmm1, xmm2, 0xe
vpminsw xmm2, xmm2, xmm1
vpshuflw xmm1, xmm2, 1
vpminsw xmm2, xmm2, xmm1
vmovd eax, xmm2
mov word ptr [rbx + 2], ax

CHAPTER 16
INTEL® TSX RECOMMENDATIONS

16.1 INTRODUCTION
Intel® Transactional Synchronization Extensions (Intel TSX) aim to improve the performance of lock-
protected critical sections while maintaining the lock-based programming model.

Intel TSX allows the processor to determine dynamically whether threads need to serialize through lock-
protected critical sections, and to perform serialization only when required. This lets hardware expose
and exploit concurrency hidden in an application due to dynamically unnecessary synchronization
through a technique known as lock elision.

With lock elision, the hardware executes the programmer-specified critical sections (also referred to as
transactional regions) transactionally. In such an execution, the lock variable is only read within the
transactional region; it is not written to (and therefore not acquired), with the expectation that the lock
variable remains unchanged after the transactional region, thus exposing concurrency.

If the transactional execution completes successfully, then the hardware ensures that all memory oper-
ations performed within the transactional region will appear to have occurred instantaneously when
viewed from other logical processors. A processor makes architectural updates performed within the
region visible to other logical processors only on a successful commit, a process referred to as an atomic
commit. Any updates performed within the transactional region are made visible to other logical proces-
sors only on an atomic commit.

Since a successful transactional execution ensures an atomic commit, the processor can execute the
programmer-specified code section optimistically without synchronization. If synchronization was
unnecessary for that specific execution, execution can commit without any cross-thread serialization.

If the transactional execution is unsuccessful, the processor cannot commit the updates atomically.
When this happens, the processor will roll back the execution, a process referred to as a transactional
abort. On a transactional abort, the processor will discard all updates performed in the region, restore
architectural state to appear as if the optimistic execution never occurred, and resume execution non-
transactionally. Depending on the policy in place, lock elision may be retried or the lock may be explicitly
acquired to ensure forward progress.

Intel TSX provides two software interfaces to programmers:
• Hardware Lock Elision (HLE) is a legacy compatible instruction set extension (comprising of the

XACQUIRE and XRELEASE prefixes).
• Restricted Transactional Memory (RTM) is a new instruction set interface (comprising of the

XBEGIN and XEND instructions).

Programmers who would like to run Intel TSX enabled software on legacy hardware would use the HLE
interface to implement lock elision. On the other hand, programmers who do not have legacy hardware
requirements and who deal with more complex locking primitives would use the RTM interface of Intel
TSX to implement lock elision. In the latter case when using new instructions, the programmer must
always provide a non-transactional path (which would have code to eventually acquire the lock being
elided) to execute following a transactional abort and must not rely on the transactional execution alone.

In addition, Intel TSX also provides the XTEST instruction to test whether a logical processor is executing
transactionally, and the XABORT instruction to abort a transactional region.

A processor can perform a transactional abort for numerous reasons. A primary cause is due to
conflicting data accesses between the transactionally executing logical processor and another logical
processor. Such conflicting accesses may prevent a successful transactional execution. Memory
addresses read from within a transactional region constitute the read-set of the transactional region
and addresses written to within the transactional region constitute the write-set of the transactional
region. Intel TSX maintains the read- and write-sets at the granularity of a cache line. For lock elision
using RTM, the address of the lock being elided must be added to the read-set to ensure correct behavior
of a transactionally executing thread in the presence of another thread that explicitly acquires the lock.

INTEL® TSX RECOMMENDATIONS

16-2

A conflicting data access occurs if another logical processor either reads a location that is part of the
transactional region's write-set or writes a location that is a part of either the read- or write-set of the
transactional region. We refer to this as a data conflict. Since Intel TSX detects data conflicts at the
granularity of a cache line, unrelated data locations placed in the same cache line will be detected as
conflicts. Transactional aborts may also occur due to limited transactional resources. For example, the
amount of data accessed in the region may exceed an implementation-specific capacity. Some instruc-
tions, such as CPUID and IO instructions, may always cause a transactional execution to abort in the
implementation.

Details of the Intel TSX interface can be found in Chapter 16 of Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 1.

The rest of this chapter provides guidelines for software developers to use the Intel TSX instructions. The
guidelines focus on the use of the Intel TSX instructions to implement lock elision to enable concurrency
of lock-protected critical sections, whether through the use of prefix hints as with HLE or through the use
of new instructions as with RTM. Programmers may find other usages of the Intel TSX instructions
beyond lock elision; those usages are not covered here.

In the sections below, we use the term lock elision to refer to either an HLE-based or an RTM-based
implementation that elides locks.

16.1.1 Optimization Outline
This rest of this chapter describes the recommended approach for optimization and tuning of multi-
threaded applications to use the Intel TSX instructions for lock elision. The focus of Intel TSX is to
improve application performance (See Section 16.2) instead of synthetic micro-kernels that tend to over-
look how real applications behave after acquiring a lock. We also discuss how to enable a synchronization
library for lock elision using Intel TSX (See Section 16.3). We then discuss how to use the performance
monitoring infrastructure for Intel TSX effectively (See Section 16.4) and present some performance
guidelines for the first implementation (See Section 16.5).

The recommended guideline is to enable elision for all critical section locks and then identify problematic
critical sections. Such a “bottoms-up” approach simplifies the evaluation and tuning of the resulting
application and allows the programmer to focus on relevant critical sections.

Additional resources for TSX tuning are available at http://www.intel.com/software/tsx.

16.2 APPLICATION-LEVEL TUNING AND OPTIMIZATIONS
Applications typically use synchronization libraries to implement the lock acquire and lock release
functions associated with critical sections. The simplest way to enable these applications to take advan-
tage of Intel TSX-based lock elision is to use an Intel TSX-enabled synchronization library. Existing
libraries may be already enabled to take advantage of the Intel TSX instructions (see Section 16.2.1). If
an off-the-shelf, TSX-enabled library is not yet available, Section 16.3 discusses how to extend a locking
library to use the Intel TSX instructions if it has not already been enabled. TSX-enabled synchronization
libraries can be interchangeably used with conventional synchronization libraries.

While applications using these libraries can use Intel TSX without application modification, some basic
tuning and profiling can improve performance by increasing the commit rate of transactional execution
and by lowering the wasted execution cycles due to transactional aborts. The recommended first step for
tuning is to use a profiling tool (see Section 16.4) to characterize the transactional behavior of the appli-
cation. The profiling tool uses the performance monitoring and sampling capabilities implemented in the
hardware to provide detailed information about the transactional behavior of the application. The tool
uses capabilities provided by the processor such as performance monitoring counters and the Precise
Event Based Sampling (PEBS) mechanism, see chapter 18 of Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 3B.

Applications using an Intel TSX-enabled synchronization library should have the same functional
behavior as if they were using a conventional synchronization library. However, because Intel TSX

16-3

INTEL® TSX RECOMMENDATIONS

changes latencies and can make cross-thread synchronization faster than before, latent bugs in the code
may be exposed.

16.2.1 Existing TSX-enabled Locking Libraries
This section summarizes off-the-shelf locking libraries that are already TSX-enabled for lock elision. The
list is non-exhaustive and represents a snap shot as of the first half of 2015. Not all libraries mentioned
here may be completely tuned.

16.2.1.1 Libraries allowing lock elision for unmodified programs
• On Linux, GNU glibc 2.18 added support for lock elision of pthread mutexes of PTHREAD_MUTEX_DE-

FAULT type. Glibc 2.19 added support for elision of read/write mutexes. Whether elision is enabled.
depends whether the --enable-lock-elision=yes parameter was set at compilation time of the library.

• Java JDK 8u20 or later support adaptive elision for synchronized sections when the -XX:+UseRTM-
Locking option is enabled.

• Intel Composer XE 2013 SP1 or later supports lock elision for OpenMP omp_lock_t. Use “export
KMP_LOCK_KIND=adaptive” to enable lock elision.

16.2.1.2 Libraries requiring program modifications
• Intel Thread Building Blocks (TBB) 4.2 supports elision with the speculative_spin_rw_mutex. The

program needs to be modified to use this new lock type.
• gcc 4.8 and later supports TSX acceleration of its software transactional memory implementation.
• Concurrency Kit supports lock elision of spinlocks with its ck_elide wrappers.
• DPDK library supports lock elision of spin locks and read-write locks (through lock/unlock calls with

“_tm” suffix).

16.2.2 Initial Checks
A couple of simple sanity checks can save tuning effort later on; specifically, using a good library imple-
mentation and dealing with statistics collection inside critical sections.
• Use a good Intel TSX enabled synchronization library. The application should directly be using the

TSX-enabled synchronization library. When the application implements its own custom library built on
top of an Intel TSX-enabled library, it still may be missing opportunities to identify transactional
regions. See Section 3 on how to enable the synchronization library for Intel TSX.

• Avoid collecting statistics inside critical sections. Critical sections (and sometimes the synchroni-
zation library itself) may employ shared global statistics counters. Such counters will cause data
conflicts and transactional aborts. Applications often have flags to disable such statistics collection.
Disabling such statistics in the initial tuning phase will help focus on inherent data conflicts.

16.2.3 Run and Profile the Application
Visualizing synchronization-related thread interactions in multi-threaded applications is often difficult.
The first step should be to run the application with an Intel TSX-enabled synchronization library and
measure performance. Next, the profiling tool should be used to understand the result. First we should
determine how much of the application is actually employing transactional execution, by using a profiling
tool to measure the percentage of the application cycles spent in transactional execution (See Section
16.4).

Numerous causes may contribute to a low percentage of transactional execution cycles:
• The application may not be making noticeable use of critical-section based synchronization. In this

case, lock elision is not going to provide benefits.

INTEL® TSX RECOMMENDATIONS

16-4

• The application's synchronization library may not use Intel TSX for all its primitives. This can occur if
the application uses internal custom functions and libraries for some of the critical section locks.
These lock implementations need to be identified and modified for elision (See Section 16.4.2).

• The application may be employing higher level locking constructs (referred to as meta-locks in this
document) different from the one provided by the elision-enabled synchronization libraries. In these
cases, the construct needs to be identified and enabled for elision (See Section 16.3.7)

• A program may be using LOCK-prefixed instructions for usages other than critical sections. TSX will
not help with these typically, unless the algorithms are adapted to be transactional. Details on such
non-locking usage are beyond the scope of this guide.

In the “bottom-up“ approach of Intel TSX performance tuning, the methodology can be modularized into
the following tasks:
• Identify all locks.
• Run the unmodified program with a TSX synchronization library eliding all locks.
• Use a profiling tool to measure transactional execution.
• Address causes of transactional aborts if necessary.

16.2.4 Minimize Transactional Aborts
Data conflicts are detected through the cache coherence protocol. Data conflicts cause transactional
aborts. In the initial implementation, the thread that detects the data conflict will transactionally abort.

If an HLE-based transactional execution experiences a transactional abort, then in the current implemen-
tation, the hardware will restart at the XACQUIRE prefixed instruction that initiated HLE execution but will
ignore the XACQUIRE prefix. This results in the re-execution without lock elision and the lock is explicitly
acquired. If an RTM-based transactional execution experiences a transactional abort, then in the current
implementation, the hardware will restart at the instruction address provided by the operation of the
XBEGIN instruction.

The initial TSX implementation supports a limited form of nesting. RTM supports a nesting level of 7. HLE
supports a nesting level of 1. This is an implementation specific number that may change in subsequent
implementations of the same generation of processor families.

The Chapter 16 of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1 also describes the
various causes for transactional aborts in detail. Details of Intel TSX instructions and prefixes can be
found in Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B.

The profiling tool can use performance monitoring to compute cycles that were spent in transactional
execution that subsequently aborted. It is important to note that not all transactional aborts cause
performance loss. The execution may otherwise have stalled due to waiting on a lock that had been
acquired by another thread, and the transactional execution may also have a data prefetching effect.

The profiling tool can use PEBS to identify the top aborted transactional regions and provide information
on the relative costs (see Section 16.4). We next discuss common causes for transactional aborts and
provide mitigation strategies.
Tuning Suggestion 4. Use a profiling tool to identify the transactional aborts that contribute most to
any performance loss.

The broad categories for transactional abort causes include:
• Aborts due to conflicting data accesses.
• Aborts due to conflicts on the lock variable.
• Aborts due to exceeding resource buffering.
• Aborts due to HLE interface specific constraints.
• Miscellaneous aborts as described in Chapter 8 of the Intel® Architecture Instruction Set Extensions

Programming Reference.

16-5

INTEL® TSX RECOMMENDATIONS

16.2.4.1 Transactional Aborts due to Data Conflicts
A data conflict occurs if another logical processor either reads a location that is part of the transactional
region's write-set or writes a location that is a part of either the read- or write-set of the transactional
region. In the initial implementation, data conflicts are detected through the cache coherence protocol
that operates at the granularity of a cache line.

We now discuss various sources of data conflicts that can cause transactional aborts. Some are avoidable
while others are inherently present in the application.

Conflicts due to False Sharing

False sharing occurs when unrelated variables map to the same cache line (64 bytes) and are inde-
pendently written by different threads. In this case, although the addresses of the unrelated variables do
not overlap, since the hardware checks data conflicts at cache-line granularity, these unrelated variables
appear to have the same address and this causes unnecessary transactional aborts.

Note that negative effects of false sharing are not unique to Intel TSX. The cache coherence protocol is
moving the cache line around the system with high overhead. Good software practice already recom-
mends against placing unrelated variables on the same cache line when at least one of the variables is
frequently written by different threads.
Tuning Suggestion 5. Add padding to put the two conflicting variables in separate cache line.
Tuning Suggestion 6. Reorganize the data structure to minimize false sharing whenever possible.

Conflicts due to True Sharing

These transactional aborts occur if the conflict data is actually shared and is not due to false sharing.
Sometimes such conflicts can also be mitigated through software changes. We discuss how to address
some of these conflicts next.

Conflicts due to Statistics Maintenance

Software may often use global statistics counters shared among multiple threads. Examples of such use
include synchronization libraries that count the number of times a critical section lock is either success-
fully acquired or was found to be held. Other examples include a count in a global variable or in an object
that is accessed by multiple threads. Such statistics contribute to transactional aborts. In such cases, one
must first try to understand the use of such statistics.

Sometimes these statistics can be disabled or conditionally skipped as they do not affect program logic.
For example, such statistics may be measuring the frequency of serialized execution of a critical section.
Without lock elision, the statistic is updated inside the critical section as the execution is already serial-
ized. However, if the lock has been elided, then counting the number of times the lock has been elided
isn't particularly useful. The only time it matters is if the lock was not elided; in those situations, the soft-
ware can use the statistics to track the level of serialization. The XTEST instruction can be used to update
the statistics only when the execution is not eliding a lock (i.e., serialized). Sometimes these statistics
are only useful during program development and can be disabled in production software.

In some cases these statistics cannot be disabled or skipped. The programmer can avoid unnecessary
transactional aborts by maintaining these statistics per logical thread (while taking care to avoid false
sharing). Such an approach requires results to be aggregated across all threads when read. This can also
improve the performance of applications even without Intel TSX instructions by minimizing communica-
tion among various threads.

Other approaches include moving the statistic outside critical sections and using an atomic operation to
update the statistic. This will reduce transactional aborts but may add additional overhead due to an
additional atomic operation and will not reduce the communication overhead.
Tuning Suggestion 7. Global statistics may also be sampled rather than being updated for every
operation.
Tuning Suggestion 8. Avoid unnecessary statistics in critical sections.
Tuning Suggestion 9. Consider maintaining statistics in critical sections on a per-thread basis.

INTEL® TSX RECOMMENDATIONS

16-6

The programmer will have to determine the best approach for reducing transactional aborts due to
shared global statistics. Disabling all global statistics during initial testing can help identify whether they
are a problem.

Conflicts due to Accounting in Data Structures

Another common source of data conflicts are accounting operations in data structures. For example, data
structures may maintain a variable to track the number of entries present at any time. This has the same
effect as a statistics counter and can cause unnecessary transactional aborts.

In some usages, it is possible to move the accounting update to outside the critical section using atomic
updates (e.g., the number of entries to trigger heap reorganization).

In other scenarios, approaches may be adopted to reduce the window of time where data conflicts may
occur (see Section 16.2.4.1 on Reducing the Window for Data Conflict).

Conflicts in Memory Allocators

Some critical sections perform memory allocations. It is recommended to use a thread-friendly memory
allocation library that maintains its free list in thread local space and avoid false sharing of the allocated
memory.

Conflict Reduction through Conditional Writes

A common software pattern involves updates to a shared variable or flag that only infrequently changes
value. Such an operation (even with the same value) causes an update to the cache line, which may in
turn result in the processor requesting write-permissions to the cache line. Such an operation will cause
transactional aborts in other threads that are also accessing the shared variable. Software can avoid such
data conflicts by performing the update only when necessary - not performing the store if the value
doesn't change, see Example 16-1.

Reducing the Window for Data Conflict

Sometimes the techniques described are insufficient to avoid transactional aborts due to frequent real
data conflicts. In such cases, the goal should be to reduce the window of time where a data conflict can
occur. To reduce this probability, one may move the actual conflicting memory access towards the end of
the critical section.

16.2.4.2 Transactional Aborts due to Limited Transactional Resources
While an Intel TSX implementation provides sufficient resources for executing common transactional
regions, implementation constraints and excessive data footprint for transactional regions may cause a
transactional abort. The architecture provides neither a guarantee of the resources available for transac-
tional execution nor that a transactional execution will ever succeed.

The processor tracks both the read-set addresses and the write-set addresses in the first level data
cache (L1 cache) of the processor.

An eviction of a read set address may not always result in an immediate transactional abort since these
lines may be tracked in an implementation-specific second level structure. In current implementations,
the second level structure tracks evicted read-set addresses probabilistically. As a result, accesses from
other threads may at times result in a false positive match thus causing an unnecessary transactional
abort. The rate of such false conflicts is a function of the address stream from different threads and the
precise hardware implementation. The Broadwell microarchitecture implementation has an improved

Example 16-1. Reduce Data Conflict with Conditional Updates

state = true; // updates every time

var |= flag;

if (state != true) state = true;
if (!(var & flag)) var |= flag;

16-7

INTEL® TSX RECOMMENDATIONS

second level structure. The rate of false conflicts is expected to reduce further with future implementa-
tions.

The architecture does not provide any guarantee for buffering and software must not assume any such
guarantee.

With Haswell, Broadwell and Skylake microarchitectures, the L1 data cache has an associativity of 8. This
means that in this implementation, a transactional execution that writes to 9 distinct locations mapping
to the same cache set will abort. However, due to microarchitectural implementations, this does not
mean that fewer accesses to the same set are guaranteed to never abort.

Additionally, in configurations with Intel Hyper-Threading Technology, the L1 cache is shared between the
two logical processors on the same core, so operations in a sibling logical processor of the same core can
cause evictions and significantly reduce the effective read and write set sizes.

Use the profiler to identify transactional regions that frequently abort due to capacity limitations (see
Section 16.4.4). Software should avoid accessing excessive data within such transactional regions.
Since, in general, accessing large amounts of data takes time, such aborts result in an excessive wasted
execution cycles.

Sometimes, the data footprint of the critical section can be reduced by changing the algorithm. For
example, for a sorted array, a binary instead of a linear search could be used to reduce the number of
addresses accessed within the critical section.

If the algorithm expects certain code paths in the transactional region to access excessive data it may
force an early transactional abort (through the XABORT instruction) or transition into a non-transactional
execution without aborting by first acquiring the elided locks (see Section 16.2.6).

Sometimes, capacity aborts may occur due to side effects of actions inside a transactional region. For
example, if an application invokes a dynamic library function for the first time the software system has to
invoke the dynamic linker to resolve the symbols. If this first time happens inside a transactional region,
it may result in excessive data being accessed, and thus will typically cause an abort. These types of
aborts happen only the first time such a function is invoked. If this happens often, it is likely due to trans-
actional only path not used in a non-transactional execution.

16.2.4.3 Lock Elision Specific Transactional Aborts
In addition to conflicts on data, transactional aborts may also occur due to conflicts on the lock itself. This
is necessary to detect a transactional execution and a non-transactional execution of the critical section
overlap in time. When implementing lock elision through Intel TSX, the implementation adds the lock to
the read set - this occurs automatically for HLE but must be explicitly done in the software library when
using RTM for lock elision. This allows checking conflicts with other threads that explicitly acquire the
lock. This is a natural part of a transactional execution that aborts and re-starts and eventually acquires
the lock.

For lock elision with HLE and RTM, many observed aborts occur due to such secondary conflicts on the
lock variable: an aborting transactional thread transitions to a regular non-transactional execution, and
as part of the transition also explicitly acquires the lock. This lock acquisition causes other transactionally
executing threads to abort as they must serialize behind the thread that just acquired the lock.

For RTM, the fallback handler can potentially reduce these secondary aborts by waiting for the lock to be
free before trying to acquire the lock (see Section 16.3.5).

16.2.4.4 HLE Specific Transactional Aborts
Some transactional aborts only occur in HLE-based lock elision. They are described in subsequent
sections.

Unsupported Lock Elision Patterns

For the transactional execution to commit successfully, the lock must satisfy certain properties and
access to the lock must follow certain guidelines. An XRELEASE-prefixed instruction must restore the
value of the elided lock to the value it had before the corresponding XACQUIRE-prefixed lock acquisition.

INTEL® TSX RECOMMENDATIONS

16-8

This allows hardware to elide locks safely without adding them to the write-set. Both the data size and
data address of the lock release (XRELEASE-prefixed) instruction must match that of the lock acquire
(XACQUIRE-prefixed) and the lock must not cross a cache line boundary. For example, an XACQUIRE-
prefixed lock acquire to an address A followed by an XRELEASE-prefixed lock release to a different
address B will abort since the addresses A and B do not match.

Unsupported Access to Lock Variables inside HLE regions

Typically, a lock variable can be read from inside an HLE region without aborting. However, certain
uncommon types of accesses may cause transactional aborts. For example, performing an unaligned
access or a partially overlapping access to an elided lock variable will cause a transactional abort. Soft-
ware should be changed to perform properly aligned accesses to the elided lock variable.

Software should not write to the elided lock inside a transactional HLE region with any instruction other
than an XRELEASE prefixed instruction, otherwise it will cause a transactional abort.

16.2.4.5 Miscellaneous Transactional Aborts
Programmers can use any instruction safely inside a transactional region and can use transactional
regions at any privilege level. However, some instructions will always abort the transactional execution
and cause execution to seamlessly and safely transition to a non-transactional path. Such transactional
aborts will appear as Instruction Aborts in the PEBS record transactional abort status collected by the
profiling tool (see Section 16.4).

The Intel SDM presents a comprehensive list of such instructions. Common examples include instructions
that operate on the X87 and MMX architecture state, operations that update segment, control, and debug
registers, IO instructions, and instructions that cause ring transitions, such as SYSENTER, SYSCALL,
SYSEXIT, and SYSRET.

Programmers should use SSE/AVX instructions instead of X87/MMX instructions inside transactional
regions. However, programmers must be careful when inter-mixing SSE and AVX operations inside a
transactional region. Intermixing SSE instructions accessing XMM registers and AVX instructions
accessing YMM registers may cause transactional regions to abort. The VZEROUPPER instruction may
also cause an abort, and programmers should try to move the instruction to prior to the critical section.

Certain 32-bit calling conventions may use X87 state to pass or return arguments. Programmers should
consider alternate calling conventions or inline the functions. Some types such as long double may use
X87 instructions and should be avoided.

In addition to the instruction-based considerations, various runtime events may cause transactional
execution to abort.

Asynchronous events (NMI, SMI, INTR, IPI, PMI, etc.) occurring during transactional execution may
cause the transactional execution to abort and transition to a non-transactional execution. The rate of
such aborts depends on the background state of the operating system. For example, operating systems
with timer ticks generate interrupts that can cause transactional aborts.

Synchronous exception events (#BR, #PF, #DB, #BP/INT3, etc.) that occur during transactional execu-
tion may cause an execution not to commit transactionally, and require a non-transactional execution.
These events are suppressed as if they had never occurred.

Page faults (#PF) typically occur most when a program starts up. Transactional regions will experience
aborts at a higher rate during this period since pages are being mapped for the first time. These aborts
will disappear as the program reaches a steady state behavior. However, for programs with very short run
times, these aborts may appear to dominate. A similar behavior happens when large regions of memory
were allocated in the recent past.

Memory accesses within a transactional region may require the processor to set the Accessed and Dirty
flags of the referenced page table entry. These actions occur on the first access and write to the page,
respectively. These operations will cause a transactional abort in the current implementation. A re-
execution in non-transactional mode will cause these bits to be appropriately updated and subsequent
transactional executions will typically not observe these transactional aborts. Although these transac-

16-9

INTEL® TSX RECOMMENDATIONS

tional aborts will show up as Instruction Aborts in the PEBS record transactional abort status, special
attention isn't needed unless they occur frequently.

In addition to the above, implementation-specific conditions and background system activity may cause
transactional aborts. Examples include aborts as a result of the caching hierarchy of the system, subtle
interactions with processor micro-architecture implementations, and interrupts from system timers
among others. Aborts due to such activity are expected to be fairly infrequent for typical Intel TSX usage
for lock elision.
Tuning Suggestion 10. Transactional regions during program startup may observe a higher abort
rate than during steady state.
Tuning Suggestion 11. Operating system services may cause infrequent transactional aborts due to
background activity.

16.2.5 Using Transactional-Only Code Paths
With Intel TSX, programmers can write code that is only ever executed in a transactional region and the
non-transactional fallback path may be different. This is possible with RTM (through the use of the fall-
back handler) and with HLE in conjunction with the XTEST instruction.

Care is required if the code executed during transactional execution is significantly different than the
code executed when not in transactional execution. Certain events such as page faults (instruction and
data) and operations on pages that modify the accessed and dirty bits may repeatedly abort a transac-
tional execution. Thus programmers must ensure such operations are also performed in a non-transac-
tional fallback path, otherwise the transactional region may never succeed. This is not a problem in
general since with lock elision the transactional path and non-transactional path in the application is the
same and the only differences are captured in the synchronization libraries.

The XTEST instruction can be used to skip over code sequences that are unnecessary during transac-
tional execution and likely to lead to aborts. The XTEST instruction can also be used to implement opti-
mizations such as skipping unwind code and other error handling code (such as deadlock detection) that
is only required if the lock is actually acquired.
Tuning Suggestion 12. Keep any transactional only code paths simple and inlined.
Tuning Suggestion 13. Minimize code paths that are only executed transactionally.

16.2.6 Dealing with Transactional Regions or Paths that Abort at a High Rate
Some transactional regions abort at a high rate and the methods discussed so far are not effective in
reducing the aborts. In such cases, the following options may be considered.

16.2.6.1 Transitioning to Non-Elided Execution without Aborting
Sometimes, a transactional abort is unavoidable. Examples include system calls, and IO operations.
When these are required on a transactional code path, software using RTM for lock elision can transition
to a non-elided execution by attempting to acquire the lock and if successful committing the transactional
execution. A simplified example is shown in Example 16-2. The actual code may need to handle nesting,
etc.

INTEL® TSX RECOMMENDATIONS

16-10

16.2.6.2 Forcing an Early Abort
Programmers should try to insert a PAUSE or XABORT instruction early in paths that lead to aborts inside
transactional regions. This will force a transactional abort early and minimize work that needs to be
discarded.

16.2.6.3 Not Eliding Selected Locks
Sometimes if the application performance is lower with lock elision and the transactional abort reduction
techniques have been exhausted, software can disable elision for the specific locks that have high and
expensive transactional abort rates. This should always be validated with application level performance
metrics, as even high abort rates may still result in a performance improvement.

16.3 DEVELOPING AN INTEL TSX ENABLED SYNCHRONIZATION LIBRARY
This section describes how to enable a synchronization library for lock elision using the Intel TSX instruc-
tions.

16.3.1 Adding HLE Prefixes
The programmer uses the XACQUIRE prefix in front of the instruction that is used to acquire the lock that
is protecting the critical section. The programmer uses the XRELEASE prefix in front of the instruction
that is used to release the lock protecting the critical section. This instruction will be a write to the lock.
If the instruction is restoring the value of the lock to the value it had prior to the XACQUIRE prefixed lock
acquire operation on the same lock, then the processor elides the external write request associated with
the release of the lock, enabling concurrency in the absence of data conflicts.

16.3.2 Elision Friendly Critical Section Locks
The library itself shouldn't be a source of data conflicts. Common examples of such problems include:
• Conflicts on the lock owner field.
• Conflicts on lock-related statistics.

When using HLE for lock elision, programmers must add the elision capability to the existing code path
(since the code path executed with and without elision is the same with HLE). The programmer should
also check that the only write operation to a shared location is through the lock-acquire/lock-release
instructions on the lock variable. Any other write operation to a shared location would typically manifest
itself as a data conflict among two threads using the elision library to elide a common lock. A test running
multiple threads looping through an empty critical section protected by a shared lock can quickly identify
such situations.

Example 16-2. Transition from Non-Elided Execution without Aborting

/* … in RTM transaction, but the transactional execution will abort */

/* Acquire the lock without elision */

<original lock acquire code>

_xend(); /* Commit */

/* Do aborting operation */

16-11

INTEL® TSX RECOMMENDATIONS

16.3.3 Using HLE or RTM for Lock Elision
Software can use the CPUID information to determine whether the processor supports the HLE and RTM
extensions. However, software can use the HLE prefixes (XACQUIRE and XRELEASE) without checking
whether the processor supports HLE. Processors without HLE support ignore these prefixes and will
execute the code without entering transactional execution. In contrast, software must check if the
processor supports RTM before it uses the RTM instructions (XBEGIN, XEND, XABORT). These instruc-
tions will generate a #UD exception when used on a processor that does not support RTM. The XTEST
instruction also requires a CPUID check to ensure either HLE or RTM is supported, else it will also
generate a #UD exception. The CPUID information may be cached in some variable to avoid checking for
CPUID repeatedly.

With HLE, if the eliding processor itself reads the value of the lock in the critical section, the value
returned will appear as if the processor had acquired the lock; the read will return the non-elided value.
This behavior makes an HLE execution functionally equivalent to an execution without the HLE prefixes.

The RTM interface allows programmers to write more complex synchronization algorithms and to control
the retry policies following transactional aborts. The preferred way is to use the RTM-based locking
implementation as a wrapper with multiple code paths within; one path exercising the RTM-based lock
and the other exercising the non-RTM based lock (See Section 16.3.4). This typically does not require
changes to the non-RTM based lock code. Performance may further be improved by using a try-once
primitive, which allows the thread to re-attempt lock elision after the lock becomes free.

Since the RTM instructions do not have any explicit lock associated with the instructions, software using
these instructions for lock elision must test the lock within the transactional region, and only if free
should it continue executing transactionally. Further, the software may also define a policy to retry if the
lock is not free.

In a subtle difference with HLE, if the code within the RTM-based critical section reads the lock, it will
appear as if it is free and not acquired. So library functions used to return the value of locks must abort
the transactional execution and return the value when executed non-transactionally (See Section
16.3.9). This situation does not exist with HLE because the HLE instructions have an explicit lock address
associated with them and the hardware ensures the right value is returned.
User/Source Coding Rule 32. When using RTM for implementing lock elision, always test for lock
inside the transactional region.
Tuning Suggestion 14. Don't use an RTM wrapper if the lock variable is not readable in the wrapper.

16.3.4 An example wrapper for lock elision using RTM
This section describes how to write a wrapper to implement lock elision using RTM instructions. The idea
is to take the conventional lock implementation (without elision), add a wrapper around it, and then add
a new path within the wrapper to implement elision. Thus, the wrapper provides separate code paths for
the elided path and the non-elided paths. The non-elided lock-acquire path is executed only if the elided
path was unsuccessful. Further, such an approach allows the non-elided path to remain unchanged. Such
an approach works well for wide variety of locks, including ticket locks and read-write locks.

An example code sequence is shown in Example 16-3 (See Section 16.7 for a description of the intrinsics
used).

INTEL® TSX RECOMMENDATIONS

16-12

In Example 16-3, _xabort() terminates the transactional execution if the lock was not free. One can use
_xend() to achieve the same effect. However, the profiling tool can easily recognize the _xabort() opera-
tion along with the 0xff abort code (which is a software convention) and determine that this is the case
where the lock was not available. If the _xend() were used, the profiling tool would be unable to distin-
guish this case from the case where a lock was successfully elided.

The example above is a simplified version showing a basic policy of retrying only once and not distin-
guishing between various causes for transactional aborts. A more sophisticated implementation may add
heuristics to determine whether to try elision on a per-lock basis based on information about the causes
of transactional aborts. It may also have code to switch back to re-attempting lock elision after blocking
if the lock was not free. This may require small changes to the underlying synchronization library.

Sometimes programming errors can lead to a thread releasing a lock that is already free. This error may
not manifest itself immediately. However, when such a lock release function is replaced with an RTM-
enabled library using the wrapper described above, an XEND instruction will execute outside a transac-
tional region. In this case, the hardware will signal a #GP exception. It is generally a good idea to fix the
error in the original application. Alternatively, if the software wants to retain the original erroneous code
path, then a XTEST can be used to guard the XEND.

16.3.5 Guidelines for the RTM fallback handler
The fallback handler for RTM provides the code path that is executed if the RTM-based transactional
execution is unsuccessful. Since the Intel TSX architecture specification does not provide any guarantee
that a transactional execution will ever succeed, the RTM fallback handler must have the capability to
ensure forward progress; it should not simply keep retrying the transactional execution.
Tuning Suggestion 15. When RTM is used for lock elision, forward progress is easily ensured by
acquiring the lock.

If the fallback handler explicitly acquires the lock, then all other transactionally executing threads eliding
the same lock will abort and the execution serializes on the lock. This is achieved by ensuring that the
lock is in the transactional region's read-set.

Example 16-3. Exemplary Wrapper Using RTM for Lock/Unlock Primitives

void rtm_wrapped_lock(lock) {

 if (_xbegin() == _XBEGIN_STARTED) {

 if (lock is free)

 /* add lock to the read-set */

 return; /* Execute transactionally */

 _xabort(0xff);

 /* 0xff means the lock was not free */

 }

 /* come here following the transactional abort */

 original_locking_code(lock);

}

void rtm_wrapped_unlock(lock) {

 /* If lock is free, assume that the lock was elided */

 if (lock is free)

 _xend(); /* commit */

 else

 original_unlocking_code(lock);

}

16-13

INTEL® TSX RECOMMENDATIONS

Software can use the abort information provided in the EAX register to develop heuristics as to when to
retry the transactional execution and when to fallback and explicitly acquire the lock. For example, if the
_XABORT_RETRY bit is clear, then retrying the transactional execution is likely to result in another abort.
The fallback handler should distinguish this situation from cases where the lock was not free (for
example, the _XABORT_EXPLICIT bit is set but the _XABORT_CODE()1 returns a 0xff identifying the
condition as a "lock busy" condition). In those cases, the fallback handler should eventually retry after
waiting.

Performance may also be improved by retrying (after a delay) if the abort cause was a data conflict
(_XABORT_CONFLICT) because such conditions are often transient. Such retries however should be
limited and must not continually retry.

A very small number of retries for capacity aborts (_XABORT_CAPACITY) can be beneficial on configura-
tions with Hyper Threading enabled. The L1 cache is a shared resource between HT threads and one
thread may push data out of the other. On retry there is a reasonable chance to succeed. This requires
ignoring the _XABORT_RETRY bit in the status code for this case. The _XABORT_RETRY bit should not be
ignored for any other reason.

Generally on higher core count and multi-socket systems the number of retries should be increased.

In general, if the lock was not free, then the fallback handler should wait until the lock is free prior to
retrying the transactional execution. This helps to avoid situations where the execution may persistently
stay in a non-transactional execution without lock elision. This can happen because the fallback handler
never had an opportunity to try a transactional execution while the lock was free (See Section 16.3.8).
User/Source Coding Rule 33. RTM abort handlers must provide a valid tested non transactional
fallback path.
Tuning Suggestion 16. Lock Busy retries should wait for the lock to become free again.

16.3.6 Implementing Elision-Friendly Locks using Intel® TSX
This section discusses strategies for implementing elision friendly versions of common locking algorithms
using the Intel TSX instructions. Similar approaches can be adopted for algorithms not covered in this
section.

16.3.6.1 Implementing a Simple Spinlock using HLE
A spinlock is a simple yet very common locking algorithm. In this algorithm, a thread first checks to see
if the lock is free and then attempts to acquire the lock through a LOCK-prefixed instruction. If not, the
thread spins (using a read operation that typically completes from the local data cache holding the lock
value) on the lock waiting for it to become free.

For this example, assume the lock is free when its value is zero, and held by some thread otherwise. The
lock is released through a regular store instruction.

Example 16-4 uses the gcc 4.8+ atomic intrinsics which are similar to the C11 standard. The descrip-
tion here follows the recommended approach to implement a spin lock using gcc 4.8+ intrinsics. To
enable HLE for this spin lock, the only change required would be the addition of the __ATOMIC_HLE_AC-
QUIRE and __ATOMIC_HLE_RELEASE flags. The rest of the code is the same as without using HLE.

1. _XABORT_CODE accesses the xabort status in the RTM abort code

INTEL® TSX RECOMMENDATIONS

16-14

The following shows the same example using intrinsics for the Windows C/C++ compilers (Microsoft
Visual Studio 2012 and Intel C++ Compiler 17.0).

See Section 16.7 for an assembler implementation of an HLE spinlock.

Example 16-4. Spin Lock Example Using HLE in GCC 4.8 and Later

#include <immintrin.h> /* For _mm_pause() */

/* Lock initialized with 0 initially */

void hle_spin_lock(int *lock)

{

 while (__atomic_exchange_n(lock, 1, __ATOMIC_ACQUIRE|__ATOMIC_HLE_ACQUIRE) != 0)

 { int val;

 /* Wait for lock to become free again before retrying. */

 do {

 _mm_pause(); /* Abort speculation */

 __atomic_load_n(lock, &val, __ATOMIC_CONSUME);

 } while (val == 1);

 }

}

void hle_spin_unlock(int *lock)

{

 __atomic_clear(lock, __ATOMIC_RELEASE|__ATOMIC_HLE_RELEASE);

}

Example 16-5. Spin Lock Example Using HLE in Intel and Microsoft Compiler Intrinsic

#include <intrin.h> /* For _mm_pause() */

#include <imminitrin.h> /* For HLE intrinsics */

/* Lock initialized with 0 initially */

void hle_spin_lock(int *lock)

{

while (_InterlockedCompareExchange_HLEAcquire(&lock, 1, 0) != 0){

 /* Wait for lock to become free again before retrying speculation */

 do {

 _mm_pause(); /* Abort speculation */

 /* prevent compiler instruction reordering and wait-loop skipping,

 no additional fence instructions are generated on IA */

 _ReadWriteBarrier();

 } while (lock == 1);

}

}

void hle_spin_unlock(int *lock)

{

_Store_HLERelease (lock, 0);

}

16-15

INTEL® TSX RECOMMENDATIONS

16.3.6.2 Implementing Reader-Writer Locks using Intel TSX
Reader-Writer locks are common where the critical sections are mostly read-only. Such locks can avoid
serializing access to the critical section for readers; however, they still require an atomic operation on a
shared location (often through a LOCK prefixed XADD or CMPXCHG) and require communication among
the multiple readers. Note that lock elision essentially makes all locks behave as reader-writer locks -
except that, with lock elision readers and non-conflicting writers can proceed concurrently without
communication.

RTM can be used to elide reader-writer locks through a wrapper approach as discussed earlier. The only
difference being that, with reader-writer locks, the lock algorithm normally checks both the reader and
the writer states to determine that the lock is free. When it is possible to place the reader and writer
locking state on different cache lines, it is also possible to let transactional and non-transactional readers
execute in parallel. The readers only need to check the writer state being free.

With HLE, the code path for the elided version and non-elided version should remain the same. Some
reader-writer lock implementations use a lock to protect the reader/writer state instead of the actual crit-
ical section. In this case, the lock first needs to be changed to have a fast path with a single atomic oper-
ation. Beyond this, the path should not change the cache line with the lock variable. This can be done by
combining the reader and writer counts into a single field, and then checking/updating it atomically with
a LOCK- prefixed XADD or CMPXCHG instruction for the lock acquire and lock release functions. The HLE
prefixes - XACQUIRE and XRELEASE - are placed on these LOCK-prefixed operations. Interestingly, this
approach also improves the performance of reader-writer locks even without using Intel TSX. Alterna-
tively, using an RTM wrapper can avoid changing lock structure since you can have different lock acquire
paths for elided and non-elided versions in the synchronization library.
Tuning Suggestion 17. For Read/Write locks elide the complete lock operation, not the building block
locks.

16.3.6.3 Implementing Ticket Locks using Intel® TSX
Ticket locks are another common algorithm. A ticket lock is a variant of a spinlock where instead of spin-
ning on a shared location and then racing to acquire the lock when the lock is free, threads use tickets to
determine which thread can enter the critical section.

RTM can be used to elide ticket locks through a wrapper approach as discussed earlier (See Section
16.3.4).

Some ticket lock implementations assume an increasing ticket value and such locks do not meet HLE's
requirement that the value of the lock following the lock release be the same as the value prior to the lock
acquire.
Tuning Suggestion 18. Use RTM to elide ticket locks.

16.3.6.4 Implementing Queue-Based Locks using Intel® TSX
In general, the idea of lock elision requires multiple threads to concurrently enter and try to commit a
common critical section. The idea of fair locks requires threads to enter and release the critical section in
a first-come first-served order. The two ideas may sometimes appear at odds, but the general objective
is usually more flexible.

Queue-based locks are a form of fair locks where the threads construct a queue of lock requests. This
includes different forms of ticket locks.

In some implementations the queue is formed through an initial LOCK-prefixed operation. For such
implementations, the HLE XACQUIRE prefix can be added to this operation to enable lock elision. In the
absence of any transactional aborts, the queue remains empty following the lock release. However, if a
transactional abort occurs and the aborting thread acquires the lock explicitly (thus forming a queue),
subsequent threads will add themselves to the queue, and when the lock is released, only a single thread
will attempt lock elision as the other threads are not at the front of the queue. Further, if another thread
arrives and adds itself to the queue, this may cause the transactionally executing thread to abort, and the
execution remains in a non-eliding phase until the queue is drained.

INTEL® TSX RECOMMENDATIONS

16-16

This scenario only occurs with lock implementations that attempt lock elision as part of the queuing
process. It does not apply to implementations that construct a queue only after an initial atomic opera-
tion, like an adaptive spinning-sleeping lock that elides the spinning phase but only queues for waiting
after initial spinning failed. Such a problem also doesn't exist for implementations that use wrappers
(such as those using RTM). In these implementations, the thread does not attempt lock elision as part of
the queuing process.
Tuning Suggestion 19. Use an RTM wrapper for locks that implement queuing as part of the initial
atomic operation.

16.3.7 Eliding Application-Specific Meta-Locks using Intel® TSX
Some applications build their own locks, called meta-locks, using an underlying synchronization library.
In this approach, the application uses a lock from the underlying synchronization library to protect the
data of the meta-lock. It then updates the data and releases the lock. If you recall, a similar approach
was taken for the reader-writer lock implementation discussed in Section 16.3.6.2.

The application executes the critical section while holding the meta-lock, and then uses a lock from the
underlying synchronization library to protect the meta-lock while it is being released. In this sequence,
eliding the lock from the underlying synchronization library isn't useful; the goal should be to elide the
meta-lock itself and transactionally execute the application code itself instead of the code in the synchro-
nization library. A profiling tool can be used to identify such critical sections. An RTM wrapper (similar to
one discussed in Section 16.3.4) can be used to avoid the meta-lock during lock elision.

For illustration, assume the following as an example of a meta-lock implementation.

The above example can be transformed into the following code.

Example 16-6. A Meta Lock Example

void meta_lock(Metalock *metalock) {

__lock(metalock->lock);

 /* modify meta lock state for lock */

 unlock(metalock->lock);

}

void meta_unlock(Metalock *metalock) {

 lock(metalock->lock);

/* drop metalock state */

unlock(metalock->lock);

}

meta_lock(metalock);

/* critical section */

meta_unlock(metalock);

16-17

INTEL® TSX RECOMMENDATIONS

Tuning Suggestion 20. For meta-locking elide the full outer lock, not the building block locks.

16.3.8 Avoiding Persistent Non-Elided Execution
A transactional abort eventually results in execution transitioning to a non-transactional state without
lock elision. This ensures forward progress. However, under certain conditions and with some lock
acquire algorithms, threads may remain in a persistent non-transactional execution without attempting
lock elision for an extended duration. This will limit performance opportunities.

To understand such situations, consider the following example with a simple spin lock implementation
using HLE (a similar scenario can also exist with RTM). The lock value of zero means the lock is free and
a value of one means it is acquired by some thread.

Example 16-7. A Meta Lock Example Using RTM

void rtm_meta_lock(Metalock *metalock) {

 if (_xbegin() == _XBEGIN_STARTED)

 if (meta_state_is_all_free(metalock))

 return;

 _xabort(0xff);

 }

 meta_lock(metalock);

}

void rtm_meta_unlock(Metalock *metalock) {

 if (meta_state_is_all_free(metalock))

 _xend();

 else

 meta_unlock(metalock);

}

rtm_meta_lock(metalock);

/* critical section */

rtm_meta_unlock(metalock);

INTEL® TSX RECOMMENDATIONS

16-18

The HLE-enabled lock-acquire sequence can be written as shown in Example 16-8.

If a thread is unable to perform lock elision, then it acquires the lock without elision. Assume another
thread arrives to acquire the lock. It executes the “XACQUIRE; xchg lockWord, eax” instruction, elides
the lock operation on the lock, and enters transactional execution. However the lock at this point was
held by another thread causing this thread to enter the SpinWait loop while still executing transactionally.
This spin occurs during transactional execution because hardware does not have the notion of a critical
section lock - it only sees the instruction to implement the atomic operation on the lock variable. The
hardware doesn't have the semantic knowledge that the lock was not free.

Now, if the thread that held the lock releases it, the write operation to the lock will cause the current
transactional thread spinning on the location to transactionally abort (because of the conflict between the
lock release operation and the read loop of the lock by the transactional thread). Once it has aborted, the
thread will restart execution without lock elision. It is easy to see how this extends to all other threads -
they spin transactionally but end up executing non-transactionally and without lock elision when they
actually find the lock free. This will continue until no other threads are trying to acquire the lock. The
threads have thus entered a persistent non-elided execution.

A simple fix for this includes using the pause instruction (which causes an abort) as part of the spin-wait
loop. This is also the recommended approach to waiting on a lock to be released, even without Intel TSX.
The pause instruction will force the spin-wait loop to occur non-transactionally, thus allowing the threads
to try lock elision when the lock is released.

Example 16-8. HLE-enabled Lock-Acquire/ Lock-Release Sequence

mov eax,$1

Retry:

XACQUIRE; xchg LockWord,eax

cmp eax,$0 # Was zero so lock was acquired successfully

jz Locked

SpinWait:

cmp LockWord, $1

jz SpinWait# Still one

jmp Retry# It's free, try to claim

Locked:

XRELEASE; mov LockWord,$0

16-19

INTEL® TSX RECOMMENDATIONS

Tuning Suggestion 21. Always include a pause instruction in the wait loop of a HLE spinlock.

16.3.9 Reading the Value of an Elided Lock in RTM-based libraries
Some synchronization libraries provide interfaces that read the value of a lock. Libraries implementing
lock elision using RTM may be unable to reliably determine if the lock variable has been acquired by the
thread performing the elision since the lock was only read but not written to inside the library.

Sometimes the library interface may be as simple as a test to check whether a lock is acquired thus
providing a sanity check to the software. To ensure the correct value is provided to the function using an
RTM-based library, the transactional execution must be aborted and the lock explicitly acquired. This can
be achieved by forcing an abort through the XABORT instruction (using _xabort(0xfe)). The 0xfe code
can be used by the fallback handler to determine this situation and aid in optimizations in eliminating
such a read. Alternatively, the _xtest() intrinsic can be used avoid unnecessary transactional aborts:

assert(is_locked(my_lock)) => assert(_xtest() || is_locked(my_lock))

A better primitive for an elided synchronization library would combine both - the lock being acquired or a
lock elision in progress. For example:

bool is_atomic(lock) { return _xtest() || is_locked(lock); }

At other times, the lock variable may be read as part of a function with assumptions about behavior. An
example is the try-lock interface to acquire a lock where a thread makes a single attempt to acquire the
lock and returns a value indicating whether the lock was free or not. This is in contrast to a spin lock that
continues to spin trying to acquire the lock. In general, this isn't a problem. But sometimes, software
may make implicit assumptions about the actual value returned by a nested try-lock. With an RTM-based
implementation, the value returned will be that of a free lock since the lock was elided. If software is
making such implicit assumptions about the value, then the synchronization library can force a transac-
tional abort through the XABORT instruction (using _xabort(0xfd)). This will however cause unnecessary
aborts in some programs. Such implicit programming assumptions are not recommended. As such
implicit programming assumptions are rare, it is recommended to not abort in the synchronization library
in trylock.

16.3.10 Intermixing HLE and RTM
HLE and RTM provide two alternative software interfaces to a common transactional execution capability.
The behavior when HLE and RTM are nested together-HLE inside RTM or RTM inside HLE-is implementa-
tion specific. For the first implementation of the 4th generation Intel Core Processor, intermixing causes

Example 16-9. A Spin Wait Example Using HLE

mov eax,$1

Retry:

XACQUIRE; xchg LockWord,eax

cmp eax,$0# Was zero so we got it

jz Locked

SpinWait:

pause

cmp LockWord, $1

jz SpinWait# Still one

jmp Retry# It's free, try to claim

Locked:

INTEL® TSX RECOMMENDATIONS

16-20

a transactional abort. This behavior may change in subsequent processor implementations but the
semantics of a transactional commit will be maintained.

In general, applications should avoid intermixing HLE and RTM as they are essentially achieving the end
purpose of lock elision but through different software interfaces. However, library functions implementing
lock elision may be unaware of the calling function and whether the calling function is invoking the library
function while eliding locks using RTM or HLE.

Software can handle such conditions by using the _xtest() operation. For example, the library may check
if it was invoked within a transactional region and if the lock is free. If the call was within a transactional
region, the library may avoid starting a new transactional region. If the lock was not free, the library may
return an indication through the _xabort(0xff) function. This does require the function that will be
invoked on a release to recognize that the acquire operation was skipped.

Example 16-10 shows a conceptual sequence.

16.4 USING THE PERFORMANCE MONITORING SUPPORT FOR INTEL®
TSX

Application tuning using Intel TSX relies on performance counter-based profiling to understand transac-
tional execution behavior and the causes of transactional aborts. Achieving good performance with Intel
TSX often requires some tuning based on data from a profiling tool to minimize aborts. Using the perfor-
mance counters is often preferable to instrumenting the application as it is usually less intrusive and
easier. Chapter 19 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B provides infor-
mation about performance monitoring.

In general, profiling can impact transactional execution as any profiling tool generates periodic interrupts
to collect information, and the interrupt will cause a transactional abort. Hence, any profiling should try
to minimize the impact of this in analysis. This is not an issue if one is profiling only transactional aborts.

Program startup tends to have a large number of events that occur only once. When profiling complex
programs, skipping over the startup phase can significantly reduce any noise introduced by these events.

Profilers that support TSX tuning include Linux perf, Intel Performance Counter Monitor, and Intel VTune.
See http://www.intel.com/software/tsx for references.

Example 16-10. A Conceptual Example of Intermixed HLE and RTM

// Lock Acquire sequence

// Use a function local or per-thread location

bool lock_in_transactional_region = false;

if (_xtest() && my lock is free) { /* Already in a transactional region*/

lock_in_transactional_region = true;

} else {

// acquire lock if free, else abort

}

// the lock release sequence

if (!lock_in_transactional_region) {

 // release lock

}

16-21

INTEL® TSX RECOMMENDATIONS

16.4.1 Measuring Transactional Success
The first step should be to measure the transactional success in an application. This is done with the
Unhalted_Core_Cycles event programmed in three separate configurations with three counters:

1. Use the fixed cycles counter (IA32_FIXED_CTR0) to measure FixedCyclesCounter.

2. Configure IA32_PERFEVTSEL2 with the IN_TX and IN_TXCP filters set to measure CyclesInTxCP in
IA32_PMC2.

3. Configure another MSR IA32_PERFEVTSELx (x= 0, 1, 3) with IN_TX filter to measure CyclesInTXOnly
on the corresponding counter.

These cycle measurements should be set up to count and not sample frequently; sampling may cause
additional transactional aborts. With these three values the total cycles, cycles spent in transactional
execution, and cycles spent in transactional regions that eventually aborted can be computed:

CyclesTotal = FixedCycleCounter
%CyclesTransactionalAborted = ((CyclesInTxOnly - CyclesInTxCP) / CyclesTotal) * 100.0
%CyclesTransactional = (CyclesInTx / CyclesTotal) * 100.0
%CyclesNonTransactional = 100.0 - %CyclesTransactional

If CyclesTransactional is near zero then the application is either not using lock-based synchronization or
not using a synchronization library enabled for lock elision through the Intel TSX instructions. In the
latter case, the programmer should use an Intel TSX-enabled synchronization library (See Section 16.3).

If CyclesTransactionalAborted is small relative to CyclesTransactional, then the transactional success rate
is high and additional tuning is not required.

If the CyclesTransactionalAborted is almost the same as CyclesTransactional (but not very small), then
most transactional regions are aborting and lock elision is not going to be beneficial. The next step would
be to identify the causes for transactional aborts and reduce them (See Section 16.2.4).

16.4.2 Finding locks to elide and verifying all locks are elided.
This step is useful if the cycles spent in transactional execution is low. This may be because few locks are
being elided. The MEM_UOPS_RETIRED.LOCK_LOADS event should be counted and compared to the
RTM_RETIRED.START or HLE_RETIRED.START events. If the number of lock loads is significantly higher
than the number of transactional regions started, then one can usually assume that not all locks are
marked for lock elision. The PEBS version of MEM_UOPS_RETIRED.LOCK_LOADS can be sampled to iden-
tify the missing locks. However, this technique isn't effective in immediately detecting missed opportuni-
ties with meta-locking (See Section 16.3.7). Additionally, a profile on the call graph of the
MEM_UOPS_RETIRED.LOCK_LOADS event often identifies the high level synchronization library that
needs to be TSX-enabled to allow transactional execution of the application level critical sections.

16.4.3 Sampling Transactional Aborts
The hardware implementation defines PEBS precise events to sample transactional aborts - HLE_RE-
TIRED.ABORTED for HLE and RTM_RETIRED.ABORTED for RTM. This allows programmers to perform
precise profiling of all transactional aborts in the execution. The test should be run with PEBS enabled
and sampled to identify the code location where the transactional aborts are occurring. The PEBS handler
(a part of the profiling tool) uses the EventingIP field in the PEBS record to report the correct code loca-
tion of the transactional aborts.

As a next step, the most common transactional aborts should be examined and addressed. Sampling
transactional aborts does not cause any additional aborts.

16.4.4 Classifying Aborts using a Profiling Tool
The PEBS record generated as a result of profiling transactional aborts contains additional information on
the cause of the transactional abort in the TX Abort Information field. The lower 32 bits of the TX Abort

INTEL® TSX RECOMMENDATIONS

16-22

Information, called Cycles_Last_TX, also provides the cycles spent in the last transactional region prior
to the abort. This approximately captures the cost of a transactional abort.

RelativeCostOfAbortForIP = SUM(Cycles_Last_TX_For_IP)

Not all transactional aborts are equal - some don't contribute to performance degradation while the more
expensive ones can have significant impact. The programmer can use this information to decide which
transactional aborts to focus on first.

For more details on the PEBS record see the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
3B Section 18.10.5.1

The profiling tool should display the abort cost to the user to classify the abort.
Tuning Suggestion 22. The aborts with the highest cost should be examined first.
Tuning Suggestion 23. The TX Abort Information has additional information about the transactional
abort.

If the PEBS record Instruction_Abort bit (bit 34) is set, then the cause of the transactional abort can
be directly associated with an instruction. For these aborts, the PEBS record captures the instruction
address that was the source of the transactional abort. Exceptions, like page faults (including those that
would normally terminate the program and those that fault in the working set of the program at startup)
also show up as in this category.

If the PEBS record Non_Instruction_Abort bit (bit 35) is set, then the abort may not have been caused
by the instruction reported by the instruction address in the PEBS record. An example of such an abort is
one due to a data conflict with other threads. In this case, the Data_Conflict bit (bit 37) is also set.
Another example is when transactional aborts occur due to capacity limitations for transactional write-
and read-sets. This is captured by the Capacity_Write (bit 38) and the Capacity_Read (bit 39) fields.

Aborts due to data conflicts may occur at arbitrary instructions within the transactional region. Hence it
is useful to concentrate on conflict causes in the whole critical section. Instead of relying on the
EventingIP reported by PEBS for the abort, one should focus on the return IP (IP of the abort code) in
conjunction with the call graphs. The return IP typically points into the synchronization library, unless the
lock is inlined. The caller identifies the critical section.

For capacity it can be also useful to concentrate on the whole critical section (profiling for ReturnIP) as
the whole critical section needs to be changed to access less memory.
Tuning Suggestion 24. Instruction aborts should be analyzed early, but only when they are costly
and happen after program startup.
Tuning Suggestion 25. For data conflicts or capacity aborts, concentrate on the whole critical section,
not just the instruction address reported at the time of the abort.
Tuning Suggestion 26. The profiler should support displaying the ReturnIP with callgraph for non-
Instruction abort events, but display the EventingRIP for instruction abort events.
Tuning Suggestion 27. The PEBS TX Abort Information bits should be all displayed by the profiling
tool.

16.4.5 XABORT Arguments for RTM fallback handlers
If the XABORT instruction is used to abort an RTM-based transactional region, the instruction operand is
passed to the fallback handler through the EAX register. This information is also provided by the PEBS-
based profiling tool for RTM. A profiling tool can use this information to classify various XABORT-based
transactional aborts. Defining a convention can be also helpful to write sophisticated fallback handlers.

16-23

INTEL® TSX RECOMMENDATIONS

The following table presents the convention used in this document:

Tuning Suggestion 28. The profiling tool should display the abort code to the user for RTM aborts.

16.4.6 Call Graphs for Transactional Aborts
The profiling tool generates interrupts to collect performance monitoring information. Such interrupts will
cause transactional aborts. This means a profiling tool can only collect information after a transactional
abort happened and the tool cannot see any function calls on the stack that only happened inside the
transactional region; the only view of the call graph it has was the one at the beginning of the transac-
tional execution. When a transactional abort is sampled with PEBS the RIP field contains the instruction
pointer after the abort and the EventingIP field contains the instruction pointer within the transactional
region at the time of the abort. The same also applies for sampling non-abort events, as any sampling
causes transactional aborts.

Depending on the type of abort, it can be useful to profile for either ReturnIP or EventingIP. The stack
callgraph collected by the profiling tool is always associated with the ReturnIP. When it is combined with
the EventingIP, it may appear noncontiguous (the EventingIP may not be associated with the lowest level
caller), as any function calls inside the transactional region are not included. When the function calls
inside the transactional region are required to understand the abort cause, Last Branch Records (LBRs,
See Section 25) or the SDE software emulation (see Section 16.4.8) can be used.
Tuning Suggestion 29. The profiler should have options to display ReturnIP and EventingIP.
Tuning Suggestion 30. The stack callgraph is always associated with the ReturnIP and may appear
noncontiguous with the EventingIP.
Tuning Suggestion 31. To see function calls inside the transactional region use LBRs or SDE.

16.4.7 Last Branch Records and Transactional Aborts
The Last Branch Records (see section 17.4 in Volume 3 of the Intel Software Developer's Manual) provide
information about transactional execution and aborts. Regular LBR usage is compatible with Intel TSX.
Using LBRs can be useful to provide context inside the transaction, as the normal call graph is not visible.
The lcall filter can be used to approximate a call graph. However, the LBR Call Graph Stack facility
(Section 17.8 in Volume 3 of the Intel Software Developer's Manual) is not compatible with Intel TSX and
may provide incomplete information.
Tuning Suggestion 32. The PEBS profiling handler should support sampling LBRs on abort and report
them to the user.

16.4.8 Profiling and Testing Intel TSX Software using the Intel® SDE
The Intel® Software Development Emulator (Intel® SDE) tool [http://software.intel.com/en-us/arti-
cles/intel-software-development-emulator] enables software development for planned instruction set
extensions before they appear in hardware. The tool can also be used for extended testing, debugging
and analysis of software that take advantage of the new instructions.

Programmers can use a number of Intel SDE capabilities for functional testing, profiling and debugging
programs using the Intel TSX instructions. The tool can provide insight into common transactional aborts
and additional profiling capability not available directly on hardware. Programmers should not use the

Table 16-1. RTM Abort Status Definition
XABORT Code Description

0xff XABORT-based abort because lock was not free when tested (Section 16.3.4)

0xfe XABORT-based abort because lock tested for the value of the elided lock (Section 16.3.9)

0xfd XABORT-based abort during a nested try lock (Section 16.3.9)

0xfc: 0xf0 Reserved

http://software.intel.com/en-us/articles/intel-software-development-emulator

INTEL® TSX RECOMMENDATIONS

16-24

tool to derive runtimes and absolute performance characteristics as those are a function of the inherently
high overheads of the emulation the tool performs.

As described previously in Section 16.4.4, hardware reports the precise address of the instruction that
caused an abort, unless the abort is due to either a data conflict or a resource limitation. The tool can
provide the precise address of such an instruction and additional information about the instruction. The
tool can further map this back to the application source code, providing the instruction address, source
file names, line number, the call stacks, and the data address information the instruction was operating
on. For victim transactions (aborted due to a conflict) the tool can also output source code locations
where conflicting memory accesses have been executed.

This is achieved through the tool options:
-tsx -hle_enabled 1 -rtm-mode full -tsx_stats 1 -tsx_stats_call_stack 1

The fallback handler can use the contents of the EAX register to determine causes of aborts. The SDE tool
can force a transactional abort with a specific EAX register value provided as an emulator parameter. This
allows developers to test their fallback handler code with different EAX values. In this mode, every RTM-
based transactional execution will immediately abort with the EAX register value being that provided as
the parameter. This is quite effective in functionally testing for corner cases where a transactional execu-
tion aborts due to unresolved page faults or other similar operations (EAX = 0).

This is achieved through the tool options:
-tsx -rtm-mode abort -rtm_abort_reason EAX.

Intel SDE has instruction and memory access logging features which are useful for debugging capacity
aborts. With the log data from Intel SDE, one can diagnose cache set population to determine if there is
non-uniform cache set usage causing capacity overflows. A refined log data may be used to further diag-
nose the source of the aborts. The logging feature is enabled with the following options:

-tsx_debug_log 3 -tsx_log_inst 1 -tsx_log_file 1

Additionally Intel SDE allows to use a standard debugger (gdb and Microsoft Visual Studio) to perform
functional debugging inside transactions.

16.4.9 HLE Specific Performance Monitoring Events
The Intel TSX Performance Events also include HLE-specific transactional abort conditions. These events
track aborts due to causes listed in Section 16.2.4.4. These aborts often occur due to issues in synchro-
nization library implementations. When a synchronization library is initially enabled for Intel TSX, it is
useful to measure these events and improve the library until these counts are negligible.

TX_MEM.ABORT_HLE_STORE_TO_ELIDED_LOCK counts the number of transactional aborts due to a
store operation without the XRELEASE prefix operating on an elided lock in the elision buffer. This is often
because the library is missing the XRELEASE prefix on the lock release instruction.

TX_MEM.ABORT_ELISION_BUFFER_NOT_EMPTY counts the number of transactional aborts that occur
because an XRELEASE prefixed lock release instruction that was committing the transactional execution
finds the elision buffer with an elided lock. This typically occurs for code sequences where an XRELEASE
occurs on a lock that wasn't elided and hence wasn't in the elision buffer.

TX_MEM.ABORT_HLE_ELISION_BUFFER_MISMATCH counts the number of transactional aborts because
the XRELEASE lock does not satisfy the address and value requirements for elision in the elision buffer.
This occurs for example if the value being written by the XRELEASE operation is different from the value
that was read by the earlier XACQUIRE operation to the same lock.

TX_MEM.ABORT_HLE_ELISION_UNSUPPORTED_ALIGNMENT counts the number of transactional aborts
if the lock in the elision buffer was accessed by a read in the transactional region but the read could not
be serviced. This typically occurs if the access was not properly aligned, or had a partial overlap, or the
read operation's linear address was different than the elided locks but the physical address was the
same. These are fairly rare events.

16-25

INTEL® TSX RECOMMENDATIONS

16.4.10 Computing Useful Metrics for Intel® TSX
We now provide formulas to compute useful metrics with the performance events. While some of the
counts are available as their own events, it can sometimes be useful to do a derivation with limited
counters.

The following calculates the number of times a HLE or RTM transactional execution was started. This
combines all nested regions into one region for counting purposes.

#HLE Regions Started: HLE_RETIRED.COMMIT + HLE_RETIRED.ABORTED
#RTM Regions Started: RTM_RETIRED.COMMIT + RTM_RETIRED.ABORTED

The following calculates the percentage of HLE or RTM transactional executions that aborted.
%AbortedHLE = 100.0 * (HLE_RETIRED.ABORTED/HLE_RETIRED.START)
%AbortedRTM = 100.0 * (RTM_RETIRED.ABORTED/RTM_RETIRED.START)

The following calculates the average number of cycles spent in a transactional region (See Section 16.4.1
for CyclesInTX computation).

AvgCyclesInHLE = CyclesInTX/HLE_RETIRED_START
AvgCyclesInRTM = CyclesInTX/RTM_RETIRED.START
AvgCyclesInTX=CyclesInTX/(HLE_RETIRED.START + RTM_RETIRED.START)

The following calculates the percentage of HLE or RTM transactional executions that aborted due to a
data conflict.

%AbortedHLEDataConflict = TX_MEM.ABORT_CONFLICT/HLE_RETIRED.START;
%AbortedRTMDataConflict = TX_MEM.ABORT_CONFLICT / RTM_RETIRED.START;
%AbortedTXDataConlict= TX_MEM.ABORT_CONFLICT / (HLE_RETIRED.START+RTM_RETIRED.START);

The following calculates the number of HLE or RTM transactional executions that aborted due to limited
resources for transactional stores.

%AbortedTXStoreResource = TX_MEM.ABORT_CAPACITY_WRITE

On processors based on the Broadwell and Skylake microarchitectures, the event “TX_MEM.ABORT_CAPACI-
TY_WRITE” is replaced by TX_MEM.ABORT_CAPACITY that counts aborts due to either read or write.

The following calculates the total number of HLE or RTM transactional executions that aborted due to
resource limitations. The distinction occurs because transactional reads that are evicted from the L1 data
cache may not immediately cause an abort.

%AbortedHLEResource = HLE_RETIRED.ABORTED_MISC1 - TX_MEM.ABORT_CONFLICT
%AbortedRTMResource = RTM_RETIRED.ABORTED_MISC1- TX_MEM.ABORT_CONFLICT
%AbortedTXResource = (HLE_RETIRED.ABORTED_MISC1+RTM_RETIRED.ABORTED_MISC5) - TX_EM.ABORT_CONFLICT

For HLE, HLE_RETIRED.ABORTED_MISC1 may include some additional contributions from the events
discussed in Section 16.4.9. For accurate results the lock library should be tuned first to minimize them.

Note that HLE_RETIRED.ABORTED_MISC1 is also known with the more descriptive name HLE_RETIRED.ABORT-
ED_MIEM. Similarly, RTM_RETIRED.ABORTED_MISC1 is also known as RTM_RETIRED.ABORTED_MEM.

16.5 PERFORMANCE GUIDELINES
The 4th generation Intel Core Processor is the first implementation that support Intel TSX. Transactional
execution incurs some implementation dependent overheads. Performance will improve in subsequent
microarchitecture generations. The first TSX implementation is oriented towards typical usage of critical
sections in applications. As a result, these overheads are amortized and do not normally manifest them-
selves at an application level performance.

However, some guidelines are relevant to keep in mind:
Tuning Suggestion 33. Intel TSX is designed for critical sections and thus the latency profiles of the
XBEGIN/XEND instructions and XACQUIRE/XRELEASE prefixes are intended to match the LOCK prefixed
instructions. These instructions should not be expected to have the latency of a regular load operation.

There is an additional implementation-specific overhead associated with executing a transactional
region. This consists of a mostly fixed cost in addition to a variable dynamic component. The overhead is

INTEL® TSX RECOMMENDATIONS

16-26

largely independent of the size and memory foot print of the critical section. The additional overhead is
typically amortized and hidden behind the out-of-order execution of the microarchitecture. However, on
the 4th generation Intel Core Processor implementation, certain sequences may appear to exacerbate
the overhead. This is particularly true if the critical section is very small and appear in tight loops (for
example something typically done in microbenchmarks). Realistic applications do not normally exhibit
such behavior.

The overhead is amortized in larger critical sections but will be exposed in very small critical sections.
One simple approach to reduce perceived overhead is to perform an access to the transactional cache
lines early in the critical section

The overhead of commits is reduced with processors based on the Broadwell microarchitecture.

16.6 DEBUGGING GUIDELINES
Using Intel TSX to implement Lock Elision does not change application semantics - all architectural state
updated during an aborted transactional execution is automatically discarded by the hardware. Care
must be taken if new code paths are added to the application and these paths are exercised only under
transactional execution (See Section 16.2.5).

However, lock elision may change the timing relationships among different threads since it requires
communication among threads only when required by data conflicts. Hence, locks may appear to execute
much faster than normal. Such timing changes may expose latent bugs in an application. Exposure of
such latent bugs is not unique to Intel TSX and can be expected with every new hardware generation.

Code instrumentation is a common technique while debugging multi-threaded software. As is the case
with debugging timing related issues, care must be taken when instrumenting code to not perturb timing
significantly and to not cause unnecessary aborts. A per thread buffer can be utilized to trace execution
and log events of interests. The RDTSC instruction can be used to obtain a timestamp. The buffer should
be printed outside the critical section.

Transactional aborts discard all memory state updated within the transactional region. This information
cannot be traced without instrumentation support. Issues within transactional regions will show up in a
profiling tool as a transactional abort and the Last Branch Record information can be used to reconstruct
the control flow. On processors that support Intel® Processor Trace, the trace log allows reconstructing
the full trace of the control flow inside transactions. The trace also contains markers indicating transac-
tion start, commit and abort.

The regular assert() function would cause a transactional abort and its output information would not
make it out of the transactional region. When using the RTM instructions, the assert functionality can be
enhanced to end the transactional execution, make side effects visible, and terminate the program
through the assert function. For example:

assert(x) => if (!(x)) { while (_xtest()) _xend(); assert(0); }

16.7 COMMON INTRINSICS FOR INTEL® TSX
Recent assemblers (GNU binutils version 2.23, Microsoft Visual Studio 2012) include support for the Intel
TSX instructions. On older tool chains it is possible to use the instructions as byte values.

16.7.1 RTM C Intrinsics
Recent C/C++ compilers (gcc 4.8, Microsoft Visual Studio 2012, Intel C++ Compiler 17.0) support RTM
intrinsics in the immintrin.h header file. RTM is a new instruction set and should be only used after
checking the RTM feature flag using the CPUID instruction (See Chapter 3 of the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 2A).

16-27

INTEL® TSX RECOMMENDATIONS

_xbegin()

_xbegin() starts the transactional region and returns _XBEGIN_STARTED when in the transactional
region, otherwise the abort code. It is important to check _xbegin() against _XBEGIN_STARTED which is
not zero. Zero is a valid abort code. When the value is not _XBEGIN_STARTED the return code contains
various status bits and an optional 8bit constant passed by _xabort().

Valid status bits are:
• _XABORT_EXPLICIT: Abort caused by _xabort(). _XABORT_CODE(status) contains the value passed

to _xabort().
• _XABORT_RETRY: When this bit is set retrying the transactional region has a chance to commit. If not

set retrying will likely not succeed.
• _XABORT_CAPACITY: The abort is related to a capacity overflow.
• _XABORT_DEBUG: The abort happened due to a debug trap.
• _XABORT_NESTED: The abort happened in a nested transaction.

_xend()

_xend() commits the transaction.

_xtest()

_xtest() returns true when the code is currently executing in a transaction. It can be also used with HLE.

_xabort()

_xabort(constant) aborts the current transaction. Constant can be only 8 bits. The constant is contained
in the status code returned by _xbegin() and can be accessed with _XABORT_CODE() when the
_XABORT_EXPLICIT flag is set. See Section 4.5 for a recommended convention.

On gcc 4.8 and later compilers, the -mrtm flag needs to be used to enable these intrinsics.

16.7.1.1 Emulated RTM intrinsics on older gcc compatible compilers
On older gcc compatible compilers that do not support the RTM intrinsics in immintrin.h, Example 16-11
shows the inline assembler equivalents that can be used.

Example 16-11. Emulated RTM intrinsic for Older GCC compilers

/* Not needed on newer toolchains that support this interface in immintrin.h */

#define _XBEGIN_STARTED (~0u)

#define _XABORT_EXPLICIT (1 << 0)

#define _XABORT_RETRY (1 << 1)

#define _XABORT_CONFLICT (1 << 2)

#define _XABORT_CAPACITY (1 << 3)

#define _XABORT_DEBUG (1 << 4)

#define _XABORT_NESTED (1 << 5)

#define _XABORT_CODE(x) (((x) >> 24) & 0xff)

#define __force_inline __attribute__((__always_inline__)) inline

INTEL® TSX RECOMMENDATIONS

16-28

16.7.2 HLE Intrinsics on gcc and Other Linux Compatible Compilers
On Linux and compatible systems HLE is implemented as an extension to gcc 4.8 and an older form of the
C11 atomic primitives. HLE XACQUIRE can be used by setting the __ATOMIC_HLE_ACQUIRE flag to the
memory model argument. HLE XRELEASE can be used with __ATOMIC_HLE_RELEASE.

For __ATOMIC_HLE_ACQUIRE the memory model must be __ATOMIC_ACQUIRE or stronger, for
__ATOMIC_HLE_RELEASE __ATOMIC_RELEASE or stronger. For operations with a failure memory model
(like __atomic_compare_exchange_n) the HLE flag is only supported on the non-failure memory model.

HLE is only supported on atomic operations that can be directly translated into IA atomic instructions. It
is not supported with:
• 8 byte values on 32-bit targets.
• 16 byte values.
• Fetch-op or op-fetch other than add/sub when the result is accessed.
• __atomic_store and __atomic_clear only support __ATOMIC_HLE_RELEASE.

16.7.2.1 Generating HLE intrinsics with gcc4.8
Due to a compiler bug in some versions of gcc 4.8 the -O2 or higher optimization level must be used to
generate HLE hints using the atomic intrinsics.

static __force_inline int _xbegin(void)

{

 int ret = _XBEGIN_STARTED;

 asm volatile(“.byte 0xc7,0xf8 ; .long 0" : “+a” (ret) :: “memory”);

 return ret;

}

static __force_inline void _xend(void)

{

 asm volatile(“.byte 0x0f,0x01,0xd5” ::: “memory”);

}

static __force_inline void _xabort(const unsigned int status)

{

 asm volatile(“.byte 0xc6,0xf8,%P0” :: “i” (status) : “memory”);

}

static __force_inline int _xtest(void)

{

 unsigned char out;

 asm volatile(“.byte 0x0f,0x01,0xd6 ; setnz %0” : “=r” (out) :: “memory”);

 return out;

}

Example 16-11. Emulated RTM intrinsic for Older GCC compilers (Contd.)

16-29

INTEL® TSX RECOMMENDATIONS

16.7.2.2 C++11 atomic support
gcc 4.8 has support for the C++11 <atomic> header. The memory models defined there are extended
with HLE flags similar to the C atomic interface. Two new flags __memory_order_hle_acquire and
__memory_order_hle_release are defined. The constraints listed for the C atomic intrinsics apply.
Example 16-12 shows a C++ example of an HLE intrinsic.

16.7.2.3 Emulating HLE intrinsics with older gcc-compatible compilers
For older compilers that do not support these intrinsics inline assembler can be used. For example to
emulate __atomic_exchange_n(&lock, 1, __ATOMIC_ACQUIRE|__ATOMIC_HLE_ACQUIRE), see
Example 16-13.

16.7.3 HLE intrinsics on Windows C/C++ compilers
Windows C/C++ compilers (Microsoft Visual Studio 2012 and Intel C++ Compiler 17.0) provide versions
of certain atomic intrinsic with HLE prefixes; see Example 16-14.

Example 16-12. C++ Example of HLE Intrinsic

#include <atomic>

#include <immintrin.h>

using namespace std;

atomic_flag lock;

for (;;) {

 if (!lock.test_and_test(memory_order_acquire|__memory_order_hle_acquire) {

 // Critical section with HLE lock elision

 lock.clear(memory_order_release|__memory_order_hle_release);

 break;

 } else {

 // Lock not acquired. Wait for lock and retry.

 while (lock.load())

 _mm_pause(); // abort transactional region on lock busy

 }

}

Example 16-13. Emulated HLE Intrinsic with Older GCC compiler

#define XACQUIRE ".byte 0xf2; " /* For older assemblers not supporting XACQUIRE */

#define XRELEASE ".byte 0xf3; "

static inline int hle_acquire_xchg(int *lock, int val)

{

 asm volatile(XACQUIRE “xchg %0,%1” : “+r” (val), “+m” (*lock) :: “memory”);

 return val;

}

static void hle_release_store(int *lock, int val)

{

 asm volatile(XRELEASE “mov %0,%1” : “r” (val), “+m” (*lock) :: “memory”);

}

INTEL® TSX RECOMMENDATIONS

16-30

Please consult the compiler documentation for further information on these intrinsics.

Example 16-14. HLE Intrinsic Supported by Intel and Microsoft Compilers

Atomic compare-and-exchange operations:

long _InterlockedCompareExchange_HLEAcquire(long volatile *Destination, long Exchange, long Comparand);

__int64 _InterlockedCompareExchange64_HLEAcquire(__int64 volatile *Destination, __int64 Exchange, __int64
Comparand);

void * _InterlockedCompareExchangePointer_HLEAcquire(void * volatile *Destination, void * Exchange, void *
Comparand);

long _InterlockedCompareExchange_HLERelease(long volatile *Destination, long Exchange, long Comparand);

__int64 _InterlockedCompareExchange64_HLERelease(__int64 volatile *Destination, __int64 Exchange, __int64
Comparand);

void * _InterlockedCompareExchangePointer_HLERelease(void * volatile *Destination, void * Exchange, void *
Comparand);

Atomic addition:

long _InterlockedExchangeAdd_HLEAcquire(long volatile *Addend, long Value);

__int64 _InterlockedExchangeAdd64_HLEAcquire(__int64 volatile *Addend, __int64 Value);

long _InterlockedExchangeAdd_HLERelease(long volatile *Addend, long Value);

__int64 _InterlockedExchangeAdd64_HLERelease(__int64 volatile *Addend, __int64 Value);

Intrinsics for HLE prefixed stores:

void _Store_HLERelease(long volatile *Destination, long Value);

void _Store64_HLERelease(__int64 volatile *Destination, __int64 Value);

void _StorePointer_HLERelease(void * volatile *Destination, void * Value);

CHAPTER 17
POWER OPTIMIZATION FOR MOBILE USAGES

17.1 OVERVIEW
Mobile computing allows computers to operate anywhere, anytime. Battery life is a key factor in deliv-
ering this benefit. Mobile applications require software optimization that considers both performance and
power consumption. This chapter provides background on power saving techniques in mobile proces-
sors1 and makes recommendations that developers can leverage to provide longer battery life.

A microprocessor consumes power while actively executing instructions and doing useful work. It also
consumes power in inactive states (when halted). When a processor is active, its power consumption is
referred to as active power. When a processor is halted, its power consumption is referred to as static
power.

ACPI 3.0 (ACPI stands for Advanced Configuration and Power Interface) provides a standard that enables
intelligent power management and consumption. It does this by allowing devices to be turned on when
they are needed and by allowing control of processor speed (depending on application requirements).
The standard defines a number of P-states to facilitate management of active power consumption; and
several C-state types2 to facilitate management of static power consumption.

Pentium M, Intel Core Solo, Intel Core Duo processors, and processors based on Intel Core microarchi-
tecture implement features designed to enable the reduction of active power and static power consump-
tion. These include:
• Enhanced Intel SpeedStep® Technology enables operating system (OS) to program a processor to

transition to lower frequency and/or voltage levels while executing a workload.
• Support for various activity states (for example: Sleep states, ACPI C-states) to reduces static power

consumption by turning off power to sub-systems in the processor.

Enhanced Intel SpeedStep Technology provides low-latency transitions between operating points that
support P-state usages. In general, a high-numbered P-state operates at a lower frequency to reduce
active power consumption. High-numbered C-state types correspond to more aggressive static power
reduction. The trade-off is that transitions out of higher-numbered C-states have longer latency.

17.2 MOBILE USAGE SCENARIOS
In mobile usage models, heavy loads occur in bursts while working on battery power. Most productivity,
web, and streaming workloads require modest performance investments. Enhanced Intel SpeedStep
Technology provides an opportunity for an OS to implement policies that track the level of performance
history and adapt the processor’s frequency and voltage. If demand changes in the last 300 ms3, the
technology allows the OS to optimize the target P-state by selecting the lowest possible frequency to
meet demand.

1. For Intel® Centrino® mobile technology and Intel® Centrino® Duo mobile technology, only processor-related tech-
niques are covered in this manual.

2. ACPI 3.0 specification defines four C-state types, known as C0, C1, C2, C3. Microprocessors supporting the ACPI standard
implement processor-specific states that map to each ACPI C-state type.

3. This chapter uses numerical values representing time constants (300 ms, 100 ms, etc.) on power management decisions
as examples to illustrate the order of magnitude or relative magnitude. Actual values vary by implementation and may
vary between product releases from the same vendor.

POWER OPTIMIZATION FOR MOBILE USAGES

17-2

Consider, for example, an application that changes processor utilization from 100% to a lower utilization
and then jumps back to 100%. The diagram in Figure 17-1 shows how the OS changes processor
frequency to accommodate demand and adapt power consumption. The interaction between the OS
power management policy and performance history is described below.

1. Demand is high and the processor works at its highest possible frequency (P0).

2. Demand decreases, which the OS recognizes after some delay; the OS sets the processor to a lower
frequency (P1).

3. The processor decreases frequency and processor utilization increases to the most effective level,
80-90% of the highest possible frequency. The same amount of work is performed at a lower
frequency.

4. Demand decreases and the OS sets the processor to the lowest frequency, sometimes called Low
Frequency Mode (LFM).

5. Demand increases and the OS restores the processor to the highest frequency.

17.2.1 Intelligent Energy Efficient Software
With recent advances in power technology and wide range of computing scenarios demanded by end
users, intelligent balance between power consumption and performance becomes more and more
important. Energy efficient software plays a key role in exploring the latest hardware power savings
offered by current generation architecture. Poorly-written code can prevent a system from taking advan-
tage of new hardware features and serving the dynamic needs of end users.

A mobile platform consists of various components such as a CPU, LCD, HDD, DVD, and chipsets, which
individually contribute to the power drain of the notebook. Understanding the power contribution of each
major component in the platform provides a better view on the total power usage, provides guidance on
optimizing power consumption, and may help software to adjust dynamic balance of power budgets
between some components.

The following are a few general guidelines for energy efficient software:
• Application should leverage modern OS facility to select appropriate operating frequency instead of

setting processor frequency by itself. The latter is likely to have negative impact on both power
consumption and performance.

• When your application is waiting for user input or another event to happen, let your application use
services that are optimized to go to idle mode quickly. The idle behavior can have a big impact on
power consumption. When an application knows it will be operating in a mostly idle context, reduce
the frequency of application events that wake up the processor, avoid periodic polling, and reduce the
number of services that are active in memory.

• Build context awareness into applications to extend battery life further and optimal user experience.

Figure 17-1. Performance History and State Transitions

 Frequency
 & Power

CPU demand

1

2

3 4
5

17-3

POWER OPTIMIZATION FOR MOBILE USAGES

• Architect an awareness of power consumption and/or dynamic power policy into your application for
contextual usages and optimal end user experiences. Specific detail may vary across OSes. For
Microsoft Windows OS consult http://www.microsoft.com/whdc/system/pnppwr/powermgmt/PMpol-
icy_Windows.mspx#.

• Characterize your application’s power consumption. There are various techniques available to
measure the power consumption of a platform:

— Use hardware instrumentation such as Fluke NetDAQ*. This provides power measurements for
each component such as CPU, HDD, and memory.

— Use C-state residency counters. See Chapter 2, “Model-Specific Registers (MSRs)” of Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 4.

— Study parameters such as CPU usage, kernel time, and time interrupt rate, to gain insight into
the behavior of the software, which can then be related to platform power consumption if the
hardware instrumentation is not available.

Section 17.5 provide some examples on how to relate performance with power consumption and tech-
niques for optimizing software.

17.3 ACPI C-STATES
When computational demands are less than 100%, part of the time the processor is doing useful work
and the rest of the time it is idle. For example, the processor could be waiting on an application time-out
set by a Sleep() function, waiting for a web server response, or waiting for a user mouse click.
Figure 17-2 illustrates the relationship between active and idle time.

When an application moves to a wait state, the OS issues a HLT instruction and the processor enters a
halted state in which it waits for the next interrupt. The interrupt may be a periodic timer interrupt or an
interrupt that signals an event.

As shown in the illustration of Figure 17-2, the processor is in either active or idle (halted) state. ACPI
defines four C-state types (C0, C1, C2 and C3). Processor-specific C states can be mapped to an ACPI C-
state type via ACPI standard mechanisms. The C-state types are divided into two categories: active (C0),
in which the processor consumes full power; and idle (C1-3), in which the processor is idle and may
consume significantly less power.

The index of a C-state type designates the depth of sleep. Higher numbers indicate a deeper sleep state
and lower power consumption. They also require more time to wake up (higher exit latency).

C-state types are described below:
• C0 — The processor is active and performing computations and executing instructions.
• C1 — This is the lowest-latency idle state, which has very low exit latency. In the C1 power state, the

processor is able to maintain the context of the system caches.

Figure 17-2. Active Time Versus Halted Time of a Processor

POWER OPTIMIZATION FOR MOBILE USAGES

17-4

• C2 — This level has improved power savings over the C1 state. The main improvements are provided
at the platform level.

• C3 — This level provides greater power savings than C1 or C2. In C3, the processor stops clock
generating and snooping activity. It also allows system memory to enter self-refresh mode.

The basic technique to implement OS power management policy to reduce static power consumption is
by evaluating processor idle durations and initiating transitions to higher-numbered C-state types. This
is similar to the technique of reducing active power consumption by evaluating processor utilization and
initiating P-state transitions. The OS looks at history within a time window and then sets a target C-state
type for the next time window, as illustrated in Figure 17-3:

Consider that a processor is in lowest frequency (LFM- low frequency mode) and utilization is low. During
the first time slice window (Figure 17-3 shows an example that uses 100 ms time slice for C-state deci-
sions), processor utilization is low and the OS decides to go to C2 for the next time slice. After the second
time slice, processor utilization is still low and the OS decides to go into C3.

17.3.1 Processor-Specific C4 and Deep C4 States
The Pentium M, Intel Core Solo, Intel Core Duo processors, and processors based on Intel Core microar-
chitecture1 provide additional processor-specific C-states (and associated sub C-states) that can be
mapped to ACPI C3 state type. The processor-specific C states and sub C-states are accessible using
MWAIT extensions and can be discovered using CPUID. One of the processor-specific state to reduce
static power consumption is referred to as C4 state. C4 provides power savings in the following manner:
• The voltage of the processor is reduced to the lowest possible level that still allows the L2 cache to

maintain its state.
• In an Intel Core Solo, Intel Core Duo processor or a processor based on Intel Core microarchitecture,

after staying in C4 for an extended time, the processor may enter into a Deep C4 state to save
additional static power.

The processor reduces voltage to the minimum level required to safely maintain processor context.
Although exiting from a deep C4 state may require warming the cache, the performance penalty may be
low enough such that the benefit of longer battery life outweighs the latency of the deep C4 state.

17.3.2 Processor-Specific Deep C-States and Intel® Turbo Boost Technology
Processors based on Nehalem microarchitecture implement several processor-specific C-states.

Figure 17-3. Application of C-states to Idle Time

1. Pentium M processor can be detected by CPUID signature with family 6, model 9 or 13; Intel Core Solo and Intel Core Duo
processor has CPUID signature with family 6, model 14; processors based on Intel Core microarchitecture has CPUID sig-
nature with family 6, model 15.

17-5

POWER OPTIMIZATION FOR MOBILE USAGES

The processor-specific deep C-states are implementation dependent. Generally, the low power C-states
(higher numbered C-states) have higher exit latencies. For example, when the cores are already in C7,
the last level cache (L3) is flushed. The processor support auto-demotion of OS request to deep C-states
(C3/C7) and demote to C1/C3 state to support flexible power-performance settings.

In addition to low-power, deep C-states, Intel Turbo Boost Technology can opportunistically boost perfor-
mance in normal state (C0) by mapping p1 state to the processor’s qualified high-frequency mode oper-
ation. Headroom in the system’s TDP can be converted to an even higher frequency than P1 state target.
When the operating system requests P0 state, the processor sets core frequencies between P1 to P0
range. A P0 state with only one core busy, achieves the maximum possible Intel Turbo Boost Technology
frequency, whereas when the processor is running two to four cores the frequency is constrained by
processor limitations. Under normal conditions the frequency does not go below P1, even when all cores
are running.

17.3.3 Processor-Specific Deep C-States for Sandy Bridge Microarchitecture
Processors based on Sandy Bridge microarchitecture implement several processor-specific C-states.

The microarchitectural behavior of processor-specific deep C-states are implementation dependent. The
following summarizes some of their key power-saving and intelligent responsive characteristics:
• For mobile platforms, while the cores are already in C7, the last level cache (L3) is flushed.
• Auto-demotion: The processor can demote OS requests to a target C-state (core C6/C7 or C3 state)

to a numerically lower C-state (core C3 or C1 state) in the following cases:

— When history indicates that C6/C7 or C3 states are less energy efficient than C3 or C1 states.

— When history indicates that a deeper sleep state may impact performance.

— Energy inefficiency or performance degradation can occur due to the deeper C-state transition
overhead occurring too frequently. Sandy Bridge microarchitecture has an enhanced algorithm
that improves power gain from this feature.

• Un-demotion: An OS request to a deeper C-state can be demoted by auto-demotion, resulting in C1
or C3 states. After long residency in the demoted state, the hardware returns control back to the OS.
The expectation is that in this case, the OS will repeat the deeper C-state request and hardware un-
demotion will enter into the OS-requested deeper C state.

Table 17-1. ACPI C-State Type Mappings to Processor Specific C-State for Mobile Processors Based on
Nehalem Microarchitecture

ACPI C-State Type Processor-Specific C-State

C0 C0

C1 C1

C2 C3

C3 C7

Table 17-2. ACPI C-State Type Mappings to Processor Specific C-State of Sandy Bridge Microarchitecture

ACPI C-State Type Processor-Specific C-State

C0 C0

C1 C1

C2 C3

C3 C6/C7

POWER OPTIMIZATION FOR MOBILE USAGES

17-6

17.3.4 Intel® Turbo Boost Technology 2.0
Intel® Turbo Boost Technology 2.0 is a second generation enhancement of Intel® Turbo Boost Tech-
nology. The latter can opportunistically boost the processor core’s frequency to a higher frequency above
the qualified frequency depending on the TDP headroom.

The TDP of Intel Core processors based on Sandy Bridge microarchitecture include budgets for the
processor core and processor graphic sub-system. Intel® Turbo Boost Technology 2.0 allows more oppor-
tunity to convert the thermal and power budget headroom to boost the processor core frequency and/or
operating frequency of the processor graphic sub-system.

Energy consumption by the processor cores and/or by the processor graphic unit can be measured using
a set of MSR interface1. Operating system requirements to support Intel Turbo Boost Technology, to use
hints to optimize performance and energy bias in turbo mode operation, are described in Chapter 15,
“Power and Thermal Management” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

17.4 GUIDELINES FOR EXTENDING BATTERY LIFE
Follow the guidelines below to optimize to conserve battery life and adapt for mobile computing usage:
• Adopt a power management scheme to provide just-enough (not the highest) performance to

achieve desired features or experiences.
• Avoid using spin loops.
• Reduce the amount of work the application performs while operating on a battery.
• Take advantage of hardware power conservation features using ACPI C3 state type and coordinate

processor cores in the same physical processor.
• Implement transitions to and from system sleep states (S1-S4) correctly.
• Allow the processor to operate at a higher-numbered P-state (lower frequency but higher efficiency

in performance-per-watt) when demand for processor performance is low.
• Allow the processor to enter higher-numbered ACPI C-state type (deeper, low-power states) when

user demand for processor activity is infrequent.

17.4.1 Adjust Performance to Meet Quality of Features
When a system is battery powered, applications can extend battery life by reducing the performance or
quality of features, turning off background activities, or both. Implementing such options in an applica-
tion increases the processor idle time. Processor power consumption when idle is significantly lower than
when active, resulting in longer battery life.

Example of techniques to use are:
• Reducing the quality/color depth/resolution of video and audio playback.
• Turning off automatic spell check and grammar correction.
• Turning off or reducing the frequency of logging activities.
• Consolidating disk operations over time to prevent unnecessary spin-up of the hard drive.
• Reducing the amount or quality of visual animations.
• Turning off, or significantly reducing file scanning or indexing activities.
• Postponing possible activities until AC power is present.

1. Generally, energy measurements and power management decisions based on these MSR interfaces should operate
within the same processor family/model and refrain from extrapolating across different family/models or unsupported
environmental conditions.

17-7

POWER OPTIMIZATION FOR MOBILE USAGES

Performance/quality/battery life trade-offs may vary during a single session, which makes implementa-
tion more complex. An application may need to implement an option page to enable the user to optimize
settings for user’s needs (see Figure 17-4).

To be battery-power-aware, an application may use appropriate OS APIs. For Windows XP, these include:
• GetSystemPowerStatus — Retrieves system power information. This status indicates whether the

system is running on AC or DC (battery) power, whether the battery is currently charging, and how
much battery life remains.

• GetActivePwrScheme — Retrieves the active power scheme (current system power scheme) index.
An application can use this API to ensure that system is running best power scheme.Avoid Using Spin
Loops.

Spin loops are used to wait for short intervals of time or for synchronization. The main advantage of a
spin loop is immediate response time. Using the PeekMessage() in Windows API has the same advantage
for immediate response (but is rarely needed in current multitasking operating systems).

However, spin loops and PeekMessage() in message loops require the constant attention of the
processor, preventing it from entering lower power states. Use them sparingly and replace them with the
appropriate API when possible. For example:
• When an application needs to wait for more then a few milliseconds, it should avoid using spin loops

and use the Windows synchronization APIs, such as WaitForSingleObject().
• When an immediate response is not necessary, an application should avoid using PeekMessage(). Use

WaitMessage() to suspend the thread until a message is in the queue.

Intel® Mobile Platform Software Development Kit provides a rich set of APIs for mobile software to
manage and optimize power consumption of mobile processor and other components in the platform.

17.4.2 Reducing Amount of Work
When a processor is in the C0 state, the amount of energy a processor consumes from the battery is
proportional to the amount of time the processor executes an active workload. The most obvious tech-
nique to conserve power is to reduce the number of cycles it takes to complete a workload (usually that
equates to reducing the number of instructions that the processor needs to execute, or optimizing appli-
cation performance).

Optimizing an application starts with having efficient algorithms and then improving them using Intel
software development tools, such as Intel VTune Performance Analyzers, Intel compilers, and Intel
Performance Libraries.

See Chapter 3 through Chapter 9 for more information about performance optimization to reduce the
time to complete application workloads.

17.4.3 Platform-Level Optimizations
Applications can save power at the platform level by using devices appropriately and redistributing the
workload. The following techniques do not impact performance and may provide additional power
conservation:
• Read ahead from CD/DVD data and cache it in memory or hard disk to allow the DVD drive to stop

spinning.
• Switch off unused devices.
• When developing a network-intensive application, take advantage of opportunities to conserve

power. For example, switch to LAN from WLAN whenever both are connected.
• Send data over WLAN in large chunks to allow the WiFi card to enter low power mode in between

consecutive packets. The saving is based on the fact that after every send/receive operation, the WiFi
card remains in high power mode for up to several seconds, depending on the power saving mode.
(Although the purpose keeping the WiFI in high power mode is to enable a quick wake up).

POWER OPTIMIZATION FOR MOBILE USAGES

17-8

• Avoid frequent disk access. Each disk access forces the device to spin up and stay in high power mode
for some period after the last access. Buffer small disk reads and writes to RAM to consolidate disk
operations over time. Use the GetDevicePowerState() Windows API to test disk state and delay the
disk access if it is not spinning.

17.4.4 Handling Sleep State Transitions
In some cases, transitioning to a sleep state may harm an application. For example, suppose an applica-
tion is in the middle of using a file on the network when the system enters suspend mode. Upon
resuming, the network connection may not be available and information could be lost.

An application may improve its behavior in such situations by becoming aware of sleep state transitions.
It can do this by using the WM_POWERBROADCAST message. This message contains all the necessary
information for an application to react appropriately.

Here are some examples of an application reaction to sleep mode transitions:
• Saving state/data prior to the sleep transition and restoring state/data after the wake up transition.
• Closing all open system resource handles such as files and I/O devices (this should include duplicated

handles).
• Disconnecting all communication links prior to the sleep transition and re-establishing all communi-

cation links upon waking up.
• Synchronizing all remote activity, such as like writing back to remote files or to remote databases,

upon waking up.
• Stopping any ongoing user activity, such as streaming video, or a file download, prior to the sleep

transition and resuming the user activity after the wake up transition.

Recommendation: Appropriately handling the suspend event enables more robust, better performing
applications.

17.4.5 Using Enhanced Intel SpeedStep® Technology
Use Enhanced Intel SpeedStep Technology to adjust the processor to operate at a lower frequency and
save energy. The basic idea is to divide computations into smaller pieces and use OS power management
policy to effect a transition to higher P-states.

Typically, an OS uses a time constant on the order of 10s to 100s of milliseconds1 to detect demand on
processor workload. For example, consider an application that requires only 50% of processor resources
to reach a required quality of service (QOS). The scheduling of tasks occurs in such a way that the
processor needs to stay in P0 state (highest frequency to deliver highest performance) for 0.5 seconds
and may then goes to sleep for 0.5 seconds. The demand pattern then alternates.

Thus the processor demand switches between 0 and 100% every 0.5 seconds, resulting in an average of
50% of processor resources. As a result, the frequency switches accordingly between the highest and
lowest frequency. The power consumption also switches in the same manner, resulting in an average
power usage represented by the equation Paverage = (Pmax+Pmin)/2.

1. The actual number may vary by OS and by OS release.

17-9

POWER OPTIMIZATION FOR MOBILE USAGES

Figure 17-4 illustrates the chronological profiles of coarse-grain (> 300 ms) task scheduling and its effect
on operating frequency and power consumption.

The same application can be written in such a way that work units are divided into smaller granularity,
but scheduling of each work unit and Sleep() occurring at more frequent intervals (e.g. 100 ms) to
deliver the same QOS (operating at full performance 50% of the time). In this scenario, the OS observes
that the workload does not require full performance for each 300 ms sampling. Its power management
policy may then commence to lower the processor’s frequency and voltage while maintaining the level of
QOS.

The relationship between active power consumption, frequency and voltage is expressed by the equa-
tion:

In the equation: ‘V’ is core voltage, ‘F’ is operating frequency, and ‘’ is the activity factor. Typically, the
quality of service for 100% performance at 50% duty cycle can be met by 50% performance at 100%
duty cycle. Because the slope of frequency scaling efficiency of most workloads will be less than one,
reducing the core frequency to 50% can achieve more than 50% of the original performance level. At the
same time, reducing the core frequency to 50% allows for a significant reduction of the core voltage.

Because executing instructions at higher P-state (lower power state) takes less energy per instruction
than at P0 state, Energy savings relative to the half of the duty cycle in P0 state (Pmax /2) more than
compensate for the increase of the half of the duty cycle relative to inactive power consumption (Pmin
/2). The non-linear relationship between power consumption to frequency and voltage means that
changing the task unit to finer granularity will deliver substantial energy savings. This optimization is
possible when processor demand is low (such as with media streaming, playing a DVD, or running less
resource intensive applications like a word processor, email or web browsing).

An additional positive effect of continuously operating at a lower frequency is that frequent changes in
power draw (from low to high in our case) and battery current eventually harm the battery. They accel-
erate its deterioration.

When the lowest possible operating point (highest P-state) is reached, there is no need for dividing
computations. Instead, use longer idle periods to allow the processor to enter a deeper low power mode.

17.4.6 Enabling Intel® Enhanced Deeper Sleep
In typical mobile computing usages, the processor is idle most of the time. Conserving battery life must
address reducing static power consumption.

Typical OS power management policy periodically evaluates opportunities to reduce static power
consumption by moving to lower-power C-states. Generally, the longer a processor stays idle, OS power
management policy directs the processor into deeper low-power C-states.

After an application reaches the lowest possible P-state, it should consolidate computations in larger
chunks to enable the processor to enter deeper C-States between computations. This technique utilizes
the fact that the decision to change frequency is made based on a larger window of time than the period

Figure 17-4. Profiles of Coarse Task Scheduling and Power Consumption

CPU demand

Average power

Frequency
& Power

POWER OPTIMIZATION FOR MOBILE USAGES

17-10

to decide to enter deep sleep. If the processor is to enter a processor-specific C4 state to take advantage
of aggressive static power reduction features, the decision should be based on:
• Whether the QOS can be maintained in spite of the fact that the processor will be in a low-power,

long-exit-latency state for a long period.
• Whether the interval in which the processor stays in C4 is long enough to amortize the longer exit

latency of this low-power C state.

Eventually, if the interval is large enough, the processor will be able to enter deeper sleep and save a
considerable amount of power. The following guidelines can help applications take advantage of Intel®
Enhanced Deeper Sleep:
• Avoid setting higher interrupt rates. Shorter periods between interrupts may keep OSes from

entering lower power states. This is because transition to/from a deep C-state consumes power, in
addition to a latency penalty. In some cases, the overhead may outweigh power savings.

• Avoid polling hardware. In a ACPI C3 type state, the processor may stop snooping and each bus
activity (including DMA and bus mastering) requires moving the processor to a lower-numbered C-
state type. The lower-numbered state type is usually C2, but may even be C0. The situation is signifi-
cantly improved in the Intel Core Solo processor (compared to previous generations of the Pentium
M processors), but polling will likely prevent the processor from entering into highest-numbered,
processor-specific C-state.

17.4.7 Multicore Considerations
Multicore processors deserves some special considerations when planning power savings. The dual-core
architecture in Intel Core Duo processor and mobile processors based on Intel Core microarchitecture
provide additional potential for power savings for multi-threaded applications.

17.4.7.1 Enhanced Intel SpeedStep® Technology
Using domain-composition, a single-threaded application can be transformed to take advantage of multi-
core processors. A transformation into two domain threads means that each thread will execute roughly
half of the original number of instructions. Dual core architecture enables running two threads simulta-
neously, each thread using dedicated resources in the processor core. In an application that is targeted
for the mobile usages, this instruction count reduction for each thread enables the physical processor to
operate at lower frequency relative to a single-threaded version. This in turn enables the processor to
operate at a lower voltage, saving battery life.

Note that the OS views each logical processor or core in a physical processor as a separate entity and
computes CPU utilization independently for each logical processor or core. On demand, the OS will
choose to run at the highest frequency available in a physical package. As a result, a physical processor
with two cores will often work at a higher frequency than it needs to satisfy the target QOS.

For example if one thread requires 60% of single-threaded execution cycles and the other thread
requires 40% of the cycles, the OS power management may direct the physical processor to run at 60%
of its maximum frequency.

However, it may be possible to divide work equally between threads so that each of them require 50% of
execution cycles. As a result, both cores should be able to operate at 50% of the maximum frequency (as
opposed to 60%). This will allow the physical processor to work at a lower voltage, saving power.

So, while planning and tuning your application, make threads as symmetric as possible in order to
operate at the lowest possible frequency-voltage point.

17.4.7.2 Thread Migration Considerations
Interaction of OS scheduling and multicore unaware power management policy may create some situa-
tions of performance anomaly for multi-threaded applications. The problem can arise for multithreading
application that allow threads to migrate freely.

17-11

POWER OPTIMIZATION FOR MOBILE USAGES

When one full-speed thread is migrated from one core to another core that has idled for a period of time,
an OS without a multicore-aware P-state coordination policy may mistakenly decide that each core
demands only 50% of processor resources (based on idle history). The processor frequency may be
reduced by such multicore unaware P-state coordination, resulting in a performance anomaly. See
Figure 17-5.

Software applications have a couple of choices to prevent this from happening:
• Thread affinity management — A multi-threaded application can enumerate processor topology and

assign processor affinity to application threads to prevent thread migration. This can work around the
issue of OS lacking multicore aware P-state coordination policy.

• Upgrade to an OS with multicore aware P-state coordination policy — Some newer OS releases may
include multicore aware P-state coordination policy. The reader should consult with specific OS
vendors.

17.4.7.3 Multicore Considerations for C-States
There are two issues that impact C-states on multicore processors.

Multicore-unaware C-state Coordination May Not Fully Realize Power Savings

When each core in a multicore processor meets the requirements necessary to enter a different C-state
type, multicore-unaware hardware coordination causes the physical processor to enter the lowest
possible C-state type (lower-numbered C state has less power saving). For example, if Core 1 meets the
requirement to be in ACPI C1 and Core 2 meets requirement for ACPI C3, multicore-unaware OS coordi-
nation takes the physical processor to ACPI C1. See Figure 17-6.

Figure 17-5. Thread Migration in a Multicore Processor

Figure 17-6. Progression to Deeper Sleep

Core 1

Core 2

active

Idle

active

Idle

Thread 1
(core 1)

Thread 2
(core 2)

CPU

Active

Sleep

Active

Active

Sleep

Sleep
Deeper
Sleep

POWER OPTIMIZATION FOR MOBILE USAGES

17-12

Enabling Both Cores to Take Advantage of Intel Enhanced Deeper Sleep.

To best utilize processor-specific C-state (e.g., Intel Enhanced Deeper Sleep) to conserve battery life in
multithreaded applications, a multi-threaded application should synchronize threads to work simultane-
ously and sleep simultaneously using OS synchronization primitives. By keeping the package in a fully
idle state longer (satisfying ACPI C3 requirement), the physical processor can transparently take advan-
tage of processor-specific Deep C4 state if it is available.

Multi-threaded applications need to identify and correct load-imbalances of its threaded execution before
implementing coordinated thread synchronization. Identifying thread imbalance can be accomplished
using performance monitoring events. Intel Core Duo processor provides an event for this purpose. The
event (Serial_Execution_Cycle) increments under the following conditions:
• Core actively executing code in C0 state.
• Second core in physical processor in idle state (C1-C4).

This event enables software developers to find code that is executing serially, by comparing Serial_Exe-
cution_Cycle and Unhalted_Ref_Cycles. Changing sections of serialized code to execute into two parallel
threads enables coordinated thread synchronization to achieve better power savings.

Although Serial_Execution_Cycle is available only on Intel Core Duo processors, application thread with
load-imbalance situations usually remains the same for symmetric application threads and on symmetri-
cally configured multicore processors, irrespective of differences in their underlying microarchitecture.
For this reason, the technique to identify load-imbalance situations can be applied to multi-threaded
applications in general, and not specific to Intel Core Duo processors.

17.5 TUNING SOFTWARE FOR INTELLIGENT POWER CONSUMPTION
This section describes some techniques for tuning software for balance of both power and performance.
Most of the power optimization techniques are generic. The last sub section (Section 17.5.8) describes
features specific to Sandy Bridge microarchitecture. Explore these features to optimize software for
performance and corresponding power benefits.

17.5.1 Reduction of Active Cycles
Finishing the task quicker by reducing the amount of active cycles, then transfer control to the system
idle loop will take advantage of modern operating system’s power saving optimizations.

Reduction of active cycles can be achieved in several ways, from applying performance-oriented coding
techniques discussed in Chapter 3, vectorization using SSE and/or AVX, to multi-threading.

17.5.1.1 Multi-threading to reduce Active Cycles
If given a task of some fixed amount of computational work that has thread-level parallelism, one can
apply data-decomposition for multi-threading. The amount of reduction in active cycles will depend on
the degree of parallelism. Similar principle can also apply to function-decomposition situations.

A balanced multi-threading implementation is more likely to achieve more optimal results in intelligent
efficient performance and power saving benefits. Choosing the right synchronization primitives also has
significant impact on both power and performance.

17-13

POWER OPTIMIZATION FOR MOBILE USAGES

Figure 17-7 above shows the result of a study that compares processor energy consumption of single
threaded workloads with their corresponding performance-optimized implementations, using three sets
of applications across different application domains. In this particular study, optimization effort in appli-
cation 1 (Cryptography) achieved 2X gain in performance alone. At the same time, its energy consump-
tion reduced about 12%. In application 3 (a media application), performance optimization efforts
including multi-threading and other techniques achieved 10X performance gain. Its energy consumption
reduced about 60%.

17.5.1.2 Vectorization
Use SIMD instructions can reduce the path length of completing a given computational task, often
reducing active cycles. Code that performs the same operation on multiple independent data elements is
a good candidate for vectorization. Vectorization techniques are typically applied to applications with
loops with elements that can be processed in single instruction. Typically, the slight power increase per
unit time of using SIMD instructions are compensated by much greater reduction of active cycles. The net
effect is improved energy consumption.

Figure 17-7. Energy Saving due to Performance Optimization

Figure 17-8. Energy Saving due to Vectorization

C ry p t o g rp h y B en ch M a rk A p p M ed ia A p p

Lo w e r B a r C o n s u m e d L e s s E n e r g y

S in g le T h r e a d ed

M u lt iT h r e a d ed

Media Playback Audio Processing

Lower Bar Saved More Energy

Baseline

SSE/AVX

POWER OPTIMIZATION FOR MOBILE USAGES

17-14

Figure 17-7 shows the result of a study on the energy saving effect due to vectorization. A media play-
back workload achieved 2.15X speedup due to using SSE2 and SSE4 instruction sets. Another audio
processing workload increased performance to ~5X by using Intel AVX instruction sets. At the same
time, the latter also had better energy saving.

17.5.2 PAUSE and Sleep(0) Loop Optimization
In multi-threading implementation, a popular construct in thread synchronization and for yielding sched-
uling quanta to another thread waiting to carry out its task is to sit in a loop and issuing SLEEP(0).

These are typically called “sleep loops”, see Example 17-1. It should be noted that a SwitchToThread call
can also be used. The “sleep loop” is common in locking algorithms and thread pools as the threads are
waiting on work.

This construct of sitting in a tight loop and calling Sleep() service with a parameter of 0 is actually a
polling loop with side effects:
• Each call to Sleep() experiences the expensive cost of a context switch, which can be 10000+ cycles.
• It also suffers the cost of ring 3 to ring 0 transitions, which can be 1000+ cycles.
• When there is no other thread waiting to take possession of control, this sleep loop behaves to the OS

as a highly active task demanding CPU resource, preventing the OS to put the CPU into a low-power
state.

Example 17-1. Unoptimized Sleep Loop

while(!acquire_lock())
{ Sleep(0); }
do_work();
release_lock();

Example 17-2. Power Consumption Friendly Sleep Loop Using PAUSE

if (!acquire_lock())
{ /* Spin on pause max_spin_count times before backing off to sleep */

for(int j = 0; j < max_spin_count; ++j)
{ /* intrinsic for PAUSE instruction*/

_mm_pause();
if (read_volatile_lock())
{

if (acquire_lock()) goto PROTECTED_CODE;
}

}
/* Pause loop didn't work, sleep now */
Sleep(0);
goto ATTEMPT_AGAIN;

}
PROTECTED_CODE:
do_work();
release_lock();

17-15

POWER OPTIMIZATION FOR MOBILE USAGES

Example 17-2 shows the technique of using PAUSE instruction to make the sleep loop power friendly.

By slowing down the “spin-wait” with the PAUSE instruction, the multi-threading software gains:
• Performance by facilitating the waiting tasks to acquire resources more easily from a busy wait.
• Power-savings by both using fewer parts of the pipeline while spinning.
• Elimination of great majority of unnecessarily executed instructions caused by the overhead of a

Sleep(0) call.

In one case study, this technique achieved 4.3x of performance gain, which translated to 21% power
savings at the processor and 13% power savings at platform level.

17.5.3 Spin-Wait Loops
Use the PAUSE instruction in all spin wait loops. The PAUSE instruction de-pipelines the spin-wait loop to
prevent it from consuming execution resources excessively and consuming power needlessly.

When executing a spin-wait loop, the processor can suffer a severe performance penalty when exiting
the loop because it detects a possible memory order violation and flushes the core processor's pipeline.

The PAUSE instruction provides a hint to the processor that the code sequence is a spin-wait loop. The
processor uses this hint to avoid the memory order violation and prevent the pipeline flush. However, you
should try to keep spin-wait loops with PAUSE short.

17.5.4 Using Event Driven Service Instead of Polling in Code
Consistently polling for devices or state changes can cause the platform to wake up and consume more
power. Minimize polling whenever possible and use an event driven framework if available. If an OS
provides notification services for various device state changes, such as transition from AC to battery, use
them instead of polling for device state changes. Using this new event notification framework reduces the
overhead for the code to poll the status of the power source, because the code can get notifications asyn-
chronously when status changes happen.

17.5.5 Reducing Interrupt Rate
High interrupt rate may have two consequences that impact processor power and performance:
• It prevents the processor package and its cores from going into deeper sleep states (C-states), which

means that the system does not enable the hardware to utilize the power saving features.
• It limits the frequency to which Intel Turbo Boost Technology 2.0 can reach, and therefore the

performance of other applications running on the processor degrades.

If a user session and/or an application experiences a rate of thousands of interrupts per second, it would
have inhibited the processor to achieve intelligent balance between performance and saving power.

To avoid this situation minimize sporadic wakeups. Schedule all periodic activities of an application or
driver into one wakeup period and reduce the interrupt rate to the minimum required.

Many media applications set a very high timer tick rate (1ms). Where possible, use the operating system
default timer tick rate. If high granularity is absolutely necessary make sure the software resets the timer
tick rate when the task finishes.

17.5.6 Reducing Privileged Time
Applications spending significant time in privileged mode lead to excessive energy use due to various
reasons. Some examples are: high system call rate and IO bottlenecks. You can use Windows Perfmon to
get an estimate of privileged mode time.

A high system call rate, as measured by system calls per second, indicates that the software is causing
frequent kernel mode transitions. That is, the application jumps from Ring3 - user mode to Ring0 - kernel

POWER OPTIMIZATION FOR MOBILE USAGES

17-16

mode, frequently. A very common example of this is using an expensive synchronization call such as the
Win32 API WaitForSingleObject(). This is a very important synchronization API, especially for inter-
process communication. However, it enters kernel mode irrespective of whether the lock is achieved or
not. For multi-threaded code with no or a short period contention on the lock, you can use EnterCritical-
Section with a spin count. The advantage of this API over WaitForSingleObject() is that it does not enter
kernel mode unless there is a contention on the lock. Hence, when there is no contention, EnterCritical-
Section with spin count is much cheaper to use and reduces the time spent in privilege mode.

Studies were done by taking a small test application which has four active threads on a Sandy Bridge
microarchitecture-based system. The locks in the test case were implemented by using WaitForSingleO-
bject and EnterCriticalSection. There was no contention on the lock, so each thread achieved the lock at
the first attempt. As shown in the graph below, when there is no contention, using WaitForSingleObject()
has negative impact on both power and performance as compared to using EnterCriticalSection().

As indicated in the following graph, using WaitForSingleObject() on an un-contended lock uses more
power. Using EnterCriticalSection() provides a 10x performance gain and 60% energy reduction.

For more information see: https://software.intel.com/en-us/articles/implementing-scalable-atomic-
locks-for-multi-core-intel-em64t-and-ia32-architectures.

17.5.7 Setting Context Awareness in the Code
Context awareness provides a way for software to save power when energy resources are limited. The
following are some examples of context awareness that you can implement to conserve power:
• When running a game on laptop on battery power, change the frame rate to 60FPS instead of running

uncapped.
• Dim the display when running on battery and not in use.
• Provide easy options for the end user to turn off devices such as wireless when not connected to

network

Applications can do these changes transparently when running the game on battery power, or provide
hints to users how to extend battery life. For either case, the application needs to be context aware to
identify when battery power is in use as opposed to AC power.

A study done with two games running at different frame rates. The blue bar represents baseline default
frame rate (uncapped) for these games. The brown line represents games running at 60FPS and the
yellow line represents games running at 30FPS. This study shows that capping frame rate can help
reduce power consumption.

Figure 17-9. Energy Saving Comparison of Synchronization Primitives

WaitForSingleObject (4T) EnterCritical Section (4T)

Lower Bar Saved More Energy

https://software.intel.com/en-us/articles/implementing-scalable-atomic-locks-for-multi-core-intel-em64t-and-ia32-architectures
https://software.intel.com/en-us/articles/implementing-scalable-atomic-locks-for-multi-core-intel-em64t-and-ia32-architectures

17-17

POWER OPTIMIZATION FOR MOBILE USAGES

17.5.8 Saving Energy by Optimizing for Performance
As general rule, performance optimizations that reduce the number of cycles the CPU is busy running
code also save energy consumption. Here are some examples of optimizing performance for specific
microarchitectural features that produced energy savings.

The additional load port feature of Sandy Bridge microarchitecture can save cycles, as demonstrated in
Section 3.6.1. As a result the load port feature also saves power. For example, in an experiment with the
kernel in Section 3.6.1.3, a sample application running on an engineering system with and without a
bank conflict, the version without the bank conflict utilizes the second load port and provided a perfor-
mance improvement along with 25mWHr energy savings.

Another features, the Decoded ICache and the LSD, cache micro-ops, hence eliminating power consump-
tion by the decoders. For example, using the code alignment technique of arranging no more than three
unconditional branches within an aligned 32 byte chunk (see Section 3.4.2.5) for switch statement,
where we see 1.23x speedup, helps provide 1.12x power saving as well compared to the aligned version
of dense unconditional branches in 32-byte chunk that can not fit the decoded ICache.

Using vectorization with Intel AVX allows processing of several elements in one cycle, hence reducing the
overall processing cycles and saving energy. An example for the energy saving is shown in Figure 17-8.

17.6 PROCESSOR SPECIFIC POWER MANAGEMENT OPTIMIZATION FOR
SYSTEM SOFTWARE

This section covers power management information that is processor specific. This information applies to
the second generation Intel Core processors based on Sandy Bridge microarchitecture. These processors
have CPUID DisplayFamily_DisplayModel signature of 06_2AH. These processor-specific capabilities may
help system software to optimize/balance responsiveness and power consumption of the processor.

17.6.1 Power Management Recommendation of Processor-Specific Inactive State
Configurations

Programming ACPI’s _CST object with exit latency values appropriate to various inactive states will help
OS power management to deliver optimal power reduction. Intel recommended values are model-
specific.

Figure 17-10. Power Saving Comparison of Power-Source-Aware Frame Rate Configurations

Game A Game B

Lower Bar Consumes Less Power

POWER OPTIMIZATION FOR MOBILE USAGES

17-18

Table 17-3 and Table 17-4 list Package C-State entry/exit latency for processors with CPUID DisplayFam-
ily_DisplayModel signature of 06_2AH, and for two configurations of voltage regulator slew rate capabil-
ities. Table 17-3 applies to slow VR configuration, and Table 17-4 applies to fast VR configuration. For
each configuration, the VR device can operate in either a fast interrupt break mode enabled or slow inter-
rupt break mode, depending on the setting of MSR_POWER_CTL.[bit 4]. These C-Sate entry/exit latency are
not processor specifications but estimates derived from empirical measurements. There may be some
situations exit latency from a core is higher than those listed in Table 17-3 and Table 17-4.

Table 17-3. C-State Total Processor Exit Latency for Client Systems (Core+ Package Exit Latency) with
Slow VR

 C-State1

NOTES:
1. These C-State Entry/Exit Latencies are Intel estimates only and not processor specifications.

Typical Exit Latency 2

2. It is assumed that package is in C0 when one of the core is active.
3. Fast interrupt break mode is enabled if MSR_POWER_CTL.[4] = 1.
4.A device that connect to PCH may result in latencies equivalent to that of a slow interrupt break mode.

Worst Case Exit Latency

MSR_POWER_CTL MSR.[4] =0 MSR_POWER_CTL MSR.[4] =1

C1 1 s 1 s

C3 156 s 80 s

C6 181 s 104 s

C7 199 s 109 s

Table 17-4. C-State Total Processor Exit Latency for Client Systems (Core+ Package Exit Latency) with
Fast VR

 C-State1

NOTES:
1. These C-State Entry/Exit Latencies are Intel estimates only and not processor specifications.

Typical Worst Case Exit Latency Time (All Skus)2

2. It is assumed that package is in C0 when one of the core is active.
3. If the package is in a deeper C-states, the exit latency of Local APIC timer wake up depends on the typical core level exit

latency; If the package is in C0, it may vary between typical or worst case of the respective core-level exit latency.

MSR_POWER_CTL MSR.[4] =0 MSR_POWER_CTL MSR.[4] =1

C1 1 s 1 s

C3 156 s 80 s

C6 181 s 104 s

C7 199 s 109 s

17-19

POWER OPTIMIZATION FOR MOBILE USAGES

Table 17-5 lists Core-only C-State entry/exit latency for processors with CPUID DisplayFamily_Display-
Model signature of 06_2AH, and for two configurations of voltage regulator slew rate capabilities. Core-
only exit latency is not affected by MSR_POWER_CTL.[4].

17.6.1.1 Balancing Power Management and Responsiveness of Inactive To Active State
Transitions

MSR_PKGC3_IRTL, MSR_PKGC6_IRTL, MSR_PKGC7_IRTL provide processor-specific interfaces for
system software to balance power consumption and system responsiveness. System software may
change budgeted values from a package inactive states to C0 during runtime to accommodate system
specific requirements. For example, more aggressive timings when on battery vs. on AC power.

The exit latency is greatly impacted by the VR swing rate. Table 17-5 specifies the total interrupt
response times per state (including the core component) for a “fast” exit rate (the default recommended
configuration in the PCH and CPU for all events except the internal HPET and CPU timers).

Selecting a “slow” rate by the BIOS (disable the fast break event method in the POWER_CTL MSR bit 4)
for various events from the PCIE will require extending the above budget respectively. Otherwise CPU
may select a shallower PKG_Cstate to still meet the budget at a much slower VR swing rate.

Selecting a “slow” exit rate for various PCH-connected devices (PCH BIOS setting) will not be visible to
the above latency calculation mechanism and thus result in the CPU not meeting the required latency
goals.

Table 17-5. C-State Core-Only Exit Latency for Client Systems with Slow VR

 C-State1

NOTES:
1. These C-State Entry/Exit Latencies are Intel estimates only and not processor specifications.

Typical Worst Case Exit Latency Time (All Skus)2

2. A slow VR device refers to a device with ramp time of 10 mv/µs in fast mode and 2.5 mv/µs in slow mode.

C1 1 s 1 s

C3 21 s 240 s

C6 46 s 250 s

C7 46 s 250 s

Table 17-6. POWER_CTL MSR in Processors Based on Sandy Bridge Microarchitecture

Register Address
Register Name

Scope
Bit Description Hex Dec

1FCH 508 MSR_POWER_CTL Core Power Control Register

3:0 Reserved.

4 FAST_Brk_Int_En.

When set to 1, enables the voltage regulator for fast
slope for PCI-E interrupt wakeup events.

63:5 Reserved.

POWER OPTIMIZATION FOR MOBILE USAGES

17-20

CHAPTER 18
SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

Intel® Advanced Vector Extensions 512 (Intel® AVX-512) are the following set of 512-bit instruction set
extensions supported by recent microarchitectures, beginning with Skylake server microarchitecture,
and the Intel® Xeon Phi™ processors based on Knights Landing microarchitecture.
• Intel® AVX-512 Foundation (F)

— 512-bit vector width.

— 32 512-bit long vector registers.

— Data expand and data compress instructions.

— Ternary logic instruction.

— 8 new 64-bit long mask registers.

— Two source cross-lane permute instructions.

— Scatter instructions.

— Embedded broadcast/rounding.

— Transcendental support.
• Intel® AVX-512 Conflict Detection Instructions (CD)
• Intel® AVX-512 Exponential and Reciprocal Instructions (ER)
• Intel® AVX-512 Prefetch Instructions (PF)
• Intel® AVX-512 Byte and Word Instructions (BW)
• Intel® AVX-512 Double Word and Quad Word Instructions (DQ)

— New QWORD and Compute and Convert Instructions.
• Intel® AVX-512 Vector Length Extensions (VL)

The Venn diagram below shows the different extensions supported by the two processor families.

Figure 18-1. Intel® AVX-512 Extensions Supported by Skylake Server Microarchitecture and Knights
Landing Microarchitecture

Processors based on Skylake
Server Microarchitecture

SOM00001

Intel AVX-512 F

Intel AVX-512 CD

Intel® Xeon Phi™ Processor

Intel AVX-512 BW

Intel AVX-512 DQ

Intel AVX-512 VL

Intel AVX-512 ER

Intel AVX-512 PF

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-2

Performance reports in this chapter are based on Data Cache Unit (DCU) resident data measurements on
the Skylake Server System with Intel® Turbo-Boost technology disabled, Intel® SpeedStep® Technology
disabled, core and uncore frequency set to 1.8GHz, unless otherwise specified. This fixed frequency
configuration is used in order to isolate code change impacts from other factors. See Section 2.5.3,
“Skylake Server Power Management”, to understand the power and frequency impacts of using Intel
AVX-512.

18.1 BASIC INTEL® AVX-512 VS. INTEL® AVX2 CODING
In most cases, the main performance driver for Intel AVX-512 will be the 512-bit register width. This
section demonstrates the similarity and differences between basic Intel AVX2 and Intel AVX-512 code
and explains how to convert code from Intel AVX2 to Intel AVX-512 easily. The first sub section demon-
strates the conversion of intrinsic code and the second sub-section of assembly code. The following
sections highlight advanced aspects that require consideration and treatment when doing such conver-
sions.

The examples in the following subsections implement a Cartesian coordinate system rotation. A point in
a Cartesian coordinate system is described by the pair (x,y). The following picture demonstrates a Carte-
sian rotation of (x,y) by angle  to (x',y').

18.1.1 Intrinsic Coding
The following comparison of Intel AVX2 and Intel AVX-512 shows how to convert a simple intrinsic Intel
AVX2 code sequence to Intel AVX-512. This example demonstrates the Intel AVX Instruction format, 64
byte ZMM registers, dynamic and static memory allocation with data alignment of 64bytes, and the C
data type representing 16 floating point elements in a ZMM register. Follow these guidelines when doing
this transformation.

Figure 18-2. Cartesian Rotation

Y5 X5 Y5 X5 Y5 X5 Y5 X5 Y5 X5 Y5 X5... : In Buffer

s*X5
+

c*Y5

s*X5
-

c*Y5

s*X4
+

c*Y4

s*X4
-

c*Y4

s*X3
+

c*Y3

s*X3
-

c*Y3

s*X2
+

c*Y2

s*X2
-

c*Y2

s*X1
+

c*Y1

s*X1
-

c*Y1

s*X0
+

c*Y0

s*X0
-

c*Y0
...

Y’5 X’5 Y’4 X’4 Y’3 X’3 Y’2 X’2 Y’1 X’1 Y’0 X’0

: Out Buffer

SOM00002

*c = cosθ
s = sinθ

x‘ = xcosθ - ysinθ
y‘ = xsinθ + ycosθ

θ

Y’

Y

X’

X

18-3

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

• Align statically and dynamically allocated buffers to 64-bytes.
• Use a double supplemental buffer size for constants.
• Change __mm256_ intrinsic name prefix with __mm512_.
• Change variable data types names from __m256 to __m512.
• Divide by 2 iteration count (double stride length).

Example 18-1. Cartesian Coordinate System Rotation with Intrinsics

Intel® AVX2 Intrinsics Code Intel® AVX-512 Intrinsics Code

#include <immintrin.h>
int main()
{
 int len = 3200;
 //Dynamic memory allocation with 32byte
 //alignment
float* pInVector = (float *)
_mm_malloc(len*sizeof(float),32);
 float* pOutVector = (float *)
_mm_malloc(len*sizeof(float),32);

 //init data
 for (int i=0; i<len; i++)
 pInVector[i] = 1;

 float cos_teta = 0.8660254037;
 float sin_teta = 0.5;

 //Static memory allocation of 8 floats with 32byte align-
ments
 __declspec(align(32)) float cos_sin_teta_vec[8] =
{cos_teta, sin_teta, cos_teta, sin_teta, cos_teta, sin_teta,
cos_teta, sin_teta};

 __declspec(align(32)) float sin_cos_teta_vec[8] =
{sin_teta, cos_teta, sin_teta, cos_teta, sin_teta, cos_teta,
sin_teta, cos_teta};

 //__m256 data type represents a Ymm
 // register with 8 float elements
 __m256 Ymm_cos_sin = _mm256_-
load_ps(cos_sin_teta_vec);

#include <immintrin.h>
int main()
{
 int len = 3200;
 //Dynamic memory allocation with 64byte
 //alignment
float* pInVector = (float *)
_mm_malloc(len*sizeof(float),64);
 float* pOutVector = (float *)
_mm_malloc(len*sizeof(float),64);

 //init data
 for (int i=0; i<len; i++)
 pInVector[i] = 1;

 float cos_teta = 0.8660254037;
 float sin_teta = 0.5;

 //Static memory allocation of 16 floats with 64byte align-
ments
 __declspec(align(64)) float cos_sin_teta_vec[16] =
{cos_teta, sin_teta, cos_teta, sin_teta, cos_teta, sin_teta,
cos_teta, sin_teta, cos_teta, sin_teta, cos_teta, sin_teta,
cos_teta, sin_teta, cos_teta, sin_teta};

 __declspec(align(64)) float sin_cos_teta_vec[16] =
{sin_teta, cos_teta, sin_teta, cos_teta, sin_teta, cos_teta,
sin_teta, cos_teta, sin_teta, cos_teta, sin_teta, cos_teta,
sin_teta, cos_teta, sin_teta, cos_teta};

 //__m512 data type represents a Zmm
 // register with 16 float elements
 __m512 Zmm_cos_sin = _mm512_-
load_ps(cos_sin_teta_vec);

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-4

18.1.2 Assembly Coding
Similar to the intrinsic porting guidelines, assembly porting guidelines are listed below:
• Align statically and dynamically allocated buffers to 64-bytes.
• Double the supplemental buffer sizes if needed.
• Add a “v” prefix to instruction names.
• Change register names from ymm to zmm.
• Divide the iteration count by two (or double stride length).

 //Intel® AVX2 256bit packed single load
 __m256 Ymm_sin_cos = _mm256_-
load_ps(sin_cos_teta_vec);

 __m256 Ymm0, Ymm1, Ymm2, Ymm3;
 //processing 16 elements in an unrolled
 //twice loop
 for(int i=0; i<len; i+=16)
 {
 Ymm0 = _mm256_load_ps(pInVector+i);
 Ymm1 = _mm256_moveldup_ps(Ymm0);
 Ymm2 = _mm256_movehdup_ps(Ymm0);
 Ymm2 = _mm256_mul_ps(Ymm2,Ymm_sin_cos);
 Ymm3 =
_mm256_fmaddsub_ps(Ymm1,Ymm_cos_sin,Ymm2);
 _mm256_store_ps(pOutVector + i,Ymm3);

 Ymm0 = _mm256_load_ps(pInVector+i+8);
 Ymm1 = _mm256_moveldup_ps(Ymm0);
 Ymm2 = _mm256_movehdup_ps(Ymm0);
 Ymm2 = _mm256_mul_ps(Ymm2, Ymm_sin_cos);
 Ymm3 =
_mm256_fmaddsub_ps(Ymm1,Ymm_cos_sin,Ymm2);
 _mm256_store_ps(pOutVector+i+8,Ymm3);
 }

 _mm_free(pInVector);
 _mm_free(pOutVector);

 return 0;
}

 //Intel® AVX-512 512bit packed single load
 __m512 Zmm_sin_cos = _mm512_-
load_ps(sin_cos_teta_vec);
__m512 Zmm0, Zmm1, Zmm2, Zmm3;
 //processing 32 elements in an unrolled
 //twice loop
 for(int i=0; i<len; i+=32)
 {
 Zmm0 = _mm512_load_ps(pInVector+i);
 Zmm1 = _mm512_moveldup_ps(Zmm0);
 Zmm2 = _mm512_movehdup_ps(Zmm0);
 Zmm2 = _mm512_mul_ps(Zmm2,Zmm_sin_cos);
 Zmm3 =
_mm512_fmaddsub_ps(Zmm1,Zmm_cos_sin,Zmm2);
 _mm512_store_ps(pOutVector + i,Zmm3);

 Zmm0 = _mm512_load_ps(pInVector+i+16);
 Zmm1 = _mm512_moveldup_ps(Zmm0);
 Zmm2 = _mm512_movehdup_ps(Zmm0);
 Zmm2 = _mm512_mul_ps(Zmm2, Zmm_sin_cos);
 Zmm3 =
_mm512_fmaddsub_ps(Zmm1,Zmm_cos_sin,Zmm2);
_mm512_store_ps(pOutVector+i+16,Zmm3);
 }
 _mm_free(pInVector);
 _mm_free(pOutVector);

 return 0;
}

Baseline Speedup: 1.95x

Example 18-1. Cartesian Coordinate System Rotation with Intrinsics (Contd.)

18-5

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

Example 18-2. Cartesian Coordinate System Rotation with Assembly

Intel® AVX2 Assembly Code Intel® AVX-512 Assembly Code

#include <immintrin.h>
int main()
{
 int len = 3200;
 //Dynamic memory allocation with 32byte alignment
 float* pInVector = (float *)
_mm_malloc(len*sizeof(float),32);
 float* pOutVector = (float *)
_mm_malloc(len*sizeof(float),32);

 //init data
 for (int i=0; i<len; i++)
 pInVector[i] = 1;

 float cos_teta = 0.8660254037;
 float sin_teta = 0.5;

 //Static memory allocation of 8 floats with 32byte align-
ments
 __declspec(align(32)) float cos_sin_teta_vec[8] =
{cos_teta, sin_teta,
cos_teta, sin_teta, cos_teta, sin_teta, cos_teta, sin_teta};

 __declspec(align(32)) float sin_cos_teta_vec[8] =
{sin_teta, cos_teta, sin_teta, cos_teta, sin_teta, cos_teta,
sin_teta, cos_teta};

 __asm
 {
 mov rax,pInVector
 mov r8,pOutVector
 // Load into a ymm register of 32 bytes
 vmovups ymm3, ymmword ptr[cos_sin_teta_vec]
 vmovups ymm4, ymmword ptr[sin_cos_teta_vec]

 mov edx, len
 shl edx, 2
 xor ecx, ecx
loop1:
 vmovsldup ymm0, [rax+rcx]
 vmovshdup ymm1, [rax+rcx]
 vmulps ymm1, ymm1, ymm4
 vfmaddsub213ps ymm0, ymm3, ymm1
 // 32 byte store from a ymm register
 vmovaps [r8+rcx], ymm0

#include <immintrin.h>
int main()
{
 int len = 3200;
 //Dynamic memory allocation with 64byte alignment
 float* pInVector = (float *)
_mm_malloc(len*sizeof(float),64);
 float* pOutVector = (float *)
_mm_malloc(len*sizeof(float),64);

 //init data
 for (int i=0; i<len; i++)
 pInVector[i] = 1;

 float cos_teta = 0.8660254037;
 float sin_teta = 0.5;

 //Static memory allocation of 16 floats with 64byte align-
ments
 __declspec(align(64)) float cos_sin_teta_vec[16] =
{cos_teta,
sin_teta, cos_teta, sin_teta, cos_teta, sin_teta, cos_teta,
sin_teta, cos_teta, sin_teta, cos_teta, sin_teta, cos_teta,
sin_teta, cos_teta, sin_teta};

 __declspec(align(64)) float sin_cos_teta_vec[16] =
{sin_teta, cos_teta, sin_teta, cos_teta, sin_teta, cos_teta,
sin_teta, cos_teta, sin_teta, cos_teta, sin_teta, cos_teta,
sin_teta, cos_teta, sin_teta, cos_teta};
 __asm
 {
 mov rax,pInVector
 mov r8,pOutVector
 // Load into a zmm register of 64 bytes
 vmovups zmm3, zmmword ptr[cos_sin_teta_vec]
 vmovups zmm4, zmmword ptr[sin_cos_teta_vec]

 mov edx, len
 shl edx, 2
 xor ecx, ecx
loop1:
 vmovsldup zmm0, [rax+rcx]
 vmovshdup zmm1, [rax+rcx]
 vmulps zmm1, zmm1, zmm4
 vfmaddsub213ps zmm0, zmm3, zmm1
 // 64 byte store from a zmm register
 vmovaps [r8+rcx], zmm0

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-6

18.2 MASKING
Intel AVX-512 instructions which use the Extended VEX coding scheme (EVEX) encode a predicate
operand to conditionally control per-element computational operation and update the result to the desti-
nation operand. The predicate operand is known as the opmask register. The opmask is a set of eight
architectural registers, 64 bits each. From this set of 8 architectural registers, only k1 through k7 can be
addressed as the predicate operand; k0 can be used as a regular source or destination but cannot be
encoded as a predicate operand.

A predicate operand can be used to enable memory fault-suppression for some instructions with a
memory source operand.

As a predicate operand, the opmask registers contain one bit to govern the operation / update of each
data element of a vector register. Masking is supported on Skylake microarchitecture for instructions with
all data sizes: byte (int8), word (int16), single precision floating-point (float32), integer doubleword
(int32), double precision floating-point (float64), integer quadword (int64). Therefore, a vector register
holds either 8, 16, 32 or 64 elements; accordingly, the length of a vector mask register is 64 bits.
Masking on Skylake microarchitecture is also enabled for all vector length values: 128-bit, 256-bit and
512-bit. Each instruction accesses only the number of least significant mask bits needed based on its
data type and vector length. For example, Intel AVX-512 instructions operating on 64-bit data elements
with a 512-bit vector length, only use the 8 (i.e., 512/64) least significant bits of the opmask register.

An opmask register affects an Intel AVX-512 instruction at per-element granularity. So, any numeric or
non-numeric operation of each data element and per-element updates of intermediate results to the
destination operand are predicated on the corresponding bit of the opmask register.

 vmovsldup ymm0, [rax+rcx+32]
 vmovshdup ymm1, [rax+rcx+32]
 vmulps ymm1, ymm1, ymm4
 vfmaddsub213ps ymm0, ymm3, ymm1
 // offset 32 bytes from previous store
 vmovaps [r8+rcx+32], ymm0

 // Processed 64bytes in this loop
 // (the code is unrolled twice)
 add ecx, 64
 cmp ecx, edx
 jl loop1
 }

 _mm_free(pInVector);
 _mm_free(pOutVector);

 return 0;
}

 vmovsldup zmm0, [rax+rcx+64]
 vmovshdup zmm1, [rax+rcx+64]
 vmulps zmm1, zmm1, zmm4
 vfmaddsub213ps zmm0, zmm3, zmm1
 // offset 64 bytes from previous store
 vmovaps [r8+rcx+64], zmm0

 // Processed 128bytes in this loop
 // (the code is unrolled twice)
 add ecx, 128
 cmp ecx, edx
 jl loop1
 }

 _mm_free(pInVector);
 _mm_free(pOutVector);

 return 0;
}

Baseline Speedup: 1.95x

Example 18-2. Cartesian Coordinate System Rotation with Assembly (Contd.)

18-7

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

An opmask serving as a predicate operand in Intel AVX-512 has the following properties:
• The instruction's operation is only performed for an element if the corresponding opmask bit is set.

This implies that no exception or violation can be caused by an operation on a masked-off element.
Consequently, no MXCSR exception flag is updated as a result of a masked-off operation.

• A destination element is not updated with the result of the operation if the corresponding writemask
bit is not set. Instead, the destination element value may be preserved (merging-masking) or zeroed
out (zeroing-masking).

• For some instructions with a memory operand, memory faults are suppressed for elements with a
mask bit of 0.

Note that this feature provides a powerful construct to implement control-flow predication, since the
mask provides a merging behavior for Intel AVX-512 vector register destinations. As an alternative the
masking can be used for zeroing instead of merging, so that the masked out elements are updated with
0 instead of preserving the old value. The zeroing behavior removes the implicit dependency on the old
value when it is not needed.

Most instructions with masking enabled accept both forms of masking. Instructions that must have
EVEX.aaa bits different than 0 (gather and scatter) and instructions that write to memory, only accept
merging-masking.

The per-element destination update rule also applies when the destination operand is a memory location.
Vectors are written on a per element basis, based on the opmask register used as a predicate operand.

The value of an opmask register can be:
• Generated as a result of a vector instruction (CMP, FPCLASS, etc.).
• Loaded from memory.
• Loaded from GPR register.
• Modified by mask-to-mask operations.

18.2.1 Masking Example
The masked instructions conditionally operate with packed data elements, depending on the mask bits
associated with each data element. The mask bit for each data element is the corresponding bit in the
mask register.

When performing a mask instruction, the returned value is 0 for elements which have a corresponding
mask value of 0. The corresponding value in the destination register depends on the zeroing flag:
• If the flag is set, the memory location is filled with zeros.
• If the flag is not set, the values in memory location can are preserved.

The following figures show an example for a mask move from one register to another when using
merging masking.

vmovaps zmm1 {k1}, zmm0

The destination register before instruction execution is shown below.

SOM00003

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

0313263... bits

ZMM1

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-8

Operation is as follows.

The result of the execution with zeroing masking is (notice the {z} in the instruction):

vmovaps zmm1 {k1}{z}, zmm0

.

Notice that merging masking operations has a dependency on the destination, but zeroing masking is
free of such dependency.

The following example shows how masking could be done with Intel AVX-512 in contrast to Intel AVX2.

C Code:

const int N = miBufferWidth;

const double* restrict a = A;

const double* restrict b = B;

double* restrict c = Cref;

for (int i = 0; i < N; i++){

double res = b[i];

if(a[i] > 1.0){

res = res * a[i];

}

c[i] = res;

}

a15 a14 a13 a12 a11 a10 a9 a8 a7 a6 a5 a4 a3 a2 a1 a0 ZMM0

0 1 0 0 0 0 0 0 1 1 1 1 0 0 1 1 K1

SOM00004

b15 a14 b13 b12 b11 b10 b9 b8 a7 a6 a5 a4 b3 b2 a1 a0 ZMM1

… 63 32 31 0 bits

… 63 32 31 0 bits

… 5 4 3 2 1 0 bits

SOM00005

0 a14 0 0 0 0 0 0 a7 a6 a5 a4 0 0 a1 a0 ZMM1

… 63 32 31 0 bits

18-9

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

Example 18-3. Masking with Intrinsics

Intel® AVX2 Intrinsics Code Intel® AVX-512 Intrinsics Code

for (int i = 0; i < N; i+=32){
__m256d aa, bb, mask;
#pragma unroll(8)
for (int j = 0; j < 8; j++){

aa = _mm256_loadu_pd(a+i+j*4);
bb = _mm256_loadu_pd(b+i+j*4);
mask = _mm256_c-

mp_pd(_mm256_set1_pd(1.0), aa, 1);
aa = _mm256_and_pd(aa, mask); // zero the

false values
aa = _mm256_mul_pd(aa, bb);
bb = _mm256_blendv_pd(bb, aa, mask);
_mm256_storeu_pd(c+4*j, bb);

}

c += 32;
}

for (int i = 0; i < N; i+=32){
__m512d aa, bb;
__mmask8 mask;
#pragma unroll(4)
for (int j = 0; j < 4; j++){

aa = _mm512_loadu_pd(a+i+j*8);
bb = _mm512_loadu_pd(b+i+j*8);
mask = _mm512_cmp_p-

d_mask(_mm512_set1_pd(1.0), aa, 1);
bb = _mm512_mask_mul_pd(bb, mask, aa,

bb);
_mm512_storeu_pd(c+8*j, bb);

}

c += 32;
}

Baseline Speedup: 2.9x

Example 18-4. Masking with Assembly

Intel® AVX2 Assembly Code Intel® AVX-512 Assembly Code

mov rax, a
mov r11, b
mov r8, N
shr r8, 5
mov rsi, c

xor rcx, rcx
xor r9, r9

loop:
vmovupd ymm1, ymmword ptr [rax+rcx*8]
inc r9d
vmovupd ymm6, ymmword ptr [rax+rcx*8+0x20]
vmovupd ymm2, ymmword ptr [r11+rcx*8]
vmovupd ymm7, ymmword ptr [r11+rcx*8+0x20]
vmovupd ymm11, ymmword ptr [rax+rcx*8+0x40]
vmovupd ymm12, ymmword ptr [r11+rcx*8+0x40]
vcmppd ymm4, ymm0, ymm1, 0x1
vcmppd ymm9, ymm0, ymm6, 0x1
vcmppd ymm14, ymm0, ymm11, 0x1
vandpd ymm16, ymm1, ymm4
vandpd ymm17, ymm6, ymm9

mov rax, a
mov r11, b
mov r8, N
shr r8, 5
mov rsi, c

xor rcx, rcx
xor r9, r9
mov rdi, 1
cvtsi2sd xmm8, rdi
vbroadcastsd zmm8, xmm8

loop:
vmovups zmm0, zmmword ptr [rax+rcx*8]
inc r9d
vmovups zmm2, zmmword ptr [rax+rcx*8+0x40]
vmovups zmm4, zmmword ptr [rax+rcx*8+0x80]
vmovups zmm6, zmmword ptr [rax+rcx*8+0xc0]
vmovups zmm1, zmmword ptr [r11+rcx*8]
vmovups zmm3, zmmword ptr [r11+rcx*8+0x40]
vmovups zmm5, zmmword ptr [r11+rcx*8+0x80]
vmovups zmm7, zmmword ptr [r11+rcx*8+0xc0]

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-10

vmulpd ymm3, ymm16, ymm2
vmulpd ymm8, ymm17, ymm7
vmovupd ymm1, ymmword ptr [rax+rcx*8+0x60]
vmovupd ymm6, ymmword ptr [rax+rcx*8+0x80]
vblendvpd ymm5, ymm2, ymm3, ymm4
vblendvpd ymm10, ymm7, ymm8, ymm9
vmovupd ymm2, ymmword ptr [r11+rcx*8+0x60]
vmovupd ymm7, ymmword ptr [r11+rcx*8+0x80]
vmovupd ymmword ptr [rsi], ymm5
vmovupd ymmword ptr [rsi+0x20], ymm10
vcmppd ymm4, ymm0, ymm1, 0x1
vcmppd ymm9, ymm0, ymm6, 0x1
vandpd ymm18, ymm11, ymm14
vandpd ymm19, ymm1, ymm4
vandpd ymm20, ymm6, ymm9
vmulpd ymm13, ymm18, ymm12
vmulpd ymm3, ymm19, ymm2
vmulpd ymm8, ymm20, ymm7
vmovupd ymm11, ymmword ptr [rax+rcx*8+0xa0]
vmovupd ymm1, ymmword ptr [rax+rcx*8+0xc0]
vmovupd ymm6, ymmword ptr [rax+rcx*8+0xe0]
vblendvpd ymm15, ymm12, ymm13, ymm14
vblendvpd ymm5, ymm2, ymm3, ymm4
vblendvpd ymm10, ymm7, ymm8, ymm9
vmovupd ymm12, ymmword ptr [r11+rcx*8+0xa0]
vmovupd ymm2, ymmword ptr [r11+rcx*8+0xc0]
vmovupd ymm7, ymmword ptr [r11+rcx*8+0xe0]
vmovupd ymmword ptr [rsi+0x40], ymm15
vmovupd ymmword ptr [rsi+0x60], ymm5
vmovupd ymmword ptr [rsi+0x80], ymm10
vcmppd ymm14, ymm0, ymm11, 0x1
vcmppd ymm4, ymm0, ymm1, 0x1
vcmppd ymm9, ymm0, ymm6, 0x1
vandpd ymm21, ymm11, ymm14
add rcx, 0x20
vandpd ymm22, ymm1, ymm4
vandpd ymm23, ymm6, ymm9
vmulpd ymm13, ymm21, ymm12
vmulpd ymm3, ymm22, ymm2
vmulpd ymm8, ymm23, ymm7
vblendvpd ymm15, ymm12, ymm13, ymm14
vblendvpd ymm5, ymm2, ymm3, ymm4
vblendvpd ymm10, ymm7, ymm8, ymm9
vmovupd ymmword ptr [rsi+0xa0], ymm15
vmovupd ymmword ptr [rsi+0xc0], ymm5
vmovupd ymmword ptr [rsi+0xe0], ymm10
add rsi, 0x100
cmp r9d, r8d
jb loop

vcmppd k1, zmm8, zmm0, 0x1
vcmppd k2, zmm8, zmm2, 0x1
vcmppd k3, zmm8, zmm4, 0x1
vcmppd k4, zmm8, zmm6, 0x1
vmulpd zmm1{k1}, zmm0, zmm1
vmulpd zmm3{k2}, zmm2, zmm3
vmulpd zmm5{k3}, zmm4, zmm5
vmulpd zmm7{k4}, zmm6, zmm7
vmovups zmmword ptr [rsi], zmm1
vmovups zmmword ptr [rsi+0x40], zmm3
vmovups zmmword ptr [rsi+0x80], zmm5
vmovups zmmword ptr [rsi+0xc0], zmm7
add rcx, 0x20
add rsi, 0x100
cmp r9d, r8d
jb loop

Baseline Speedup: 2.9x

Example 18-4. Masking with Assembly (Contd.)

18-11

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18.2.2 Masking Cost
Using masking may result in lower performance than the corresponding non-masked code. This may be
caused by one of the following situations:
• An additional blend operation on each load.
• Dependency on the destination when using merge masking. This dependency does not exist when

using zero masking.
• More restrictive masking forwarding rules (see Forwarding and Memory Masking for more infor-

mation).

The following example shows how using merge masking creates a dependency on the destination
register.

With no masking, the processor executes 2 multiplies per cycle on a 2 FMA server.

With merge masking, the processor executes 2 multiplies every 4 cycles as the multiplies in iteration N
depend on the output of the multiplies in iteration N-1.

Zero masking does not have a dependency on the destination register and therefore can execute 2 multi-
plies per cycle on a 2 FMA server.

Recommendation: Masking has a cost, so use it only when necessary. When possible, use zero
masking rather than merge masking.

18.2.3 Masking vs. Blending
This section discusses the advantages and disadvantages of using blending vs. masking for conditional
code.

Consider the following code:

for (i=0; i<SIZE; i++)

{

if (a[i] > 0)

{

b[i] *= 2;

}

else

{

b[i] /= 2;

}

}

Example 18-5. Masking Example

No Masking Merge Masking Zero Masking

mov rbx, iter

loop:

vmulps zmm0, zmm9, zmm8

vmulps zmm1, zmm9, zmm8

dec rbx

jnle loop

mov rbx, iter

loop:

vmulps zmm0{k1}, zmm9, zmm8

vmulps zmm1{k1}, zmm9, zmm8

dec rbx

jnle loop

mov rbx, iter

loop:

vmulps zmm0{k1}{z}, zmm9, zmm8

vmulps zmm1{k1}{z}, zmm9, zmm8

dec rbx

jnle loop

Baseline Slowdown: 4x Slowdown: Equal to baseline.

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-12

The example below shows two possible compilation alternatives of the code.
• Alternative 1 uses masked code and straight-forward arithmetic processing of data.
• Alternative 2 splits code to two independent unmasked flows that are processed one after another,

and then a masked move (blending), just before storing to memory.

In Alternative 1, there is a dependency between instructions (1) and (2), and (2) and (3). That means
that instruction (2) has to wait for the result of the blending of instruction (1), before starting execution,
and instruction (3) needs to wait for instruction (2).

In Alternative 2, there is only one such dependency because each branch of conditional code is executed
in parallel on all the data, and a mask is used for blending back to one register only before writing data
back to the memory.

Blending is faster, but it does not mask exceptions, which may occur on the unmasked data.

Alternative 2 executes 11% more instructions; it provides 23% speedup in overall execution. Alternative
2 uses an extra register (zmm3). This extra register usage may cause extra latency in case of register
pressure (freeing register to memory and loading it afterwards).

The following code is another example of masking vs. blending.

for (int i = 0;i<len;i++){

if (a[i] > b[i]){

a[i] += b[i];

}

}

Example 18-6. Masking vs. Blending Example 1

Alternative 1 Alternative 2

mov rax, pImage
mov rbx, pImage1
mov rcx, pOutImage
mov rdx, len
vpxord zmm0, zmm0, zmm0

mainloop:
vmovdqa32 zmm2, [rax+rdx*4-0x40]
vmovdqa32 zmm1, [rbx+rdx*4-0x40]
vpcmpgtd k1, zmm1, zmm0
knotw k2, k1

(1) vpslld zmm2 {k1}, zmm2, 1
(2) vpsrld zmm2 {k2}, zmm2, 1
(3) vmovdqa32 [rcx+rdx*4-0x40], zmm2

sub rdx, 16
jne mainloop

mov rax, pImage
mov rbx, pImage1
mov rcx, pOutImage
mov rdx, len
vpxord zmm0, zmm0, zmm0

mainloop:
vmovdqa32 zmm2, [rax+rdx*4-0x40]
vmovdqa32 zmm1, [rbx+rdx*4-0x40]
vpcmpgtd k1, zmm1, zmm0
vmovdqa32 zmm3, zmm2
vpslld zmm2, zmm2, 1
vpsrld zmm3, zmm3, 1

(1) vmovdqa32 zmm3 {k1}, zmm2
(2) vmovdqa32 [rcx+rdx*4-0x40], zmm3

sub rdx, 16
jne mainloop

Baseline cycles 1x
Baseline instructions 1x

Speedup: 1.23x
Instructions: 1.11x

18-13

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

In Alternative 1, there is a dependency between instructions (1) and (2), and (2) and (3).

In Alternative 2, there are only 2 instructions in the dependency chain: (1) and (2).

18.2.4 Nested Conditions / Mask Aggregation
Intel AVX-512 contains a set of instructions for mask operation, which enable executing all bitwise logical
operators on a mask register, facilitating implementation of nested and/or multiply conditions.

In the following example, logical and (&&) is executed using a kandw instruction.

for(int iX = 0; iX < iBufferWidth; iX++)

{

if ((*pInImage)>0 && ((*pInImage)&3)==3)

{

*pRefImage = (*pInImage)+5;

}

else

{

*pRefImage = (*pInImage);

}

pRefImage++;

pInImage++;

}

Example 18-7. Masking vs. Blending Example 2

Alternative 1 Alternative 2

mov rax,a
mov rbx,b
mov rdx,size2
loop1:
vmovdqa32 zmm1,[rax +rdx*4 -0x40]
vmovdqa32 zmm2,[rbx +rdx*4 -0x40]
(1) vpcmpgtd k1,zmm1,zmm2
(2) vmovdqa32 zmm3{k1}{z},zmm2
(3) vpaddd zmm1,zmm1,zmm3
vmovdqa32 [rax +rdx*4 -0x40],zmm1
sub rdx,16
jne loop1

mov rax,a
mov rbx,b
mov rdx,size2
loop1:
vmovdqa32 zmm1,[rax +rdx*4 -0x40]
vmovdqa32 zmm2,[rbx +rdx*4 -0x40]
(1)vpcmpgtd k1,zmm1,zmm2
(2)vpaddd zmm1{k1},zmm1,zmm2
vmovdqa32 [rax +rdx*4 -0x40],zmm1
sub rdx,16
jne loop1

Baseline cycles 1x
Baseline instructions 1x

Speedup: 1.05x
Instructions: 0.87x

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-14

18.2.5 Memory Masking Microarchitecture Improvements
Masking improvements since Broadwell microarchitecture are detailed below.

Example 18-8. Multiple Condition Execution

Scalar Intel® AVX2 Intel® AVX-512

mov rsi, pImage
mov rdi, pOutImage
mov rbx, len
xor rax, rax
mainloop:
mov r8d, dword ptr [rsi+rax*4]
mov r9d, r8d
cmp r8d, 0
jle label1
and r9d, 0x3
cmp r9d, 3
jne label1
add r8d, 5
label1:
mov dword ptr [rdi+rax*4], r8d
add rax, 1
cmp rax, rbx
jne mainloop

mov rsi, pImage
mov rdi, pOutImage
mov rbx, len
xor rax, rax
vpbroadcastd ymm1, [five]
vpbroadcastd ymm7, [three]
vpxor ymm3, ymm3, ymm3
mainloop:
vmovdqa ymm0, [rsi+rax*4]
vmovaps ymm6, ymm0
vpcmpgtd ymm5, ymm0, ymm3
vpand ymm6, ymm6, ymm7
vpcmpeqd ymm6, ymm6, ymm7
vpand ymm5, ymm5, ymm6
vpaddd ymm4, ymm0, ymm1
vblendvps ymm4, ymm0, ymm4, ymm5
vmovdqa [rdi+rax*4], ymm4
add rax, 8
cmp rax, rbx
jne mainloop

mov rsi, pImage
mov rdi, pOutImage
mov rbx, len
xor rax, rax
vpbroadcastd zmm1, [five]
vpbroadcastd zmm5, [three]
vpxord zmm3, zmm3, zmm3
mainloop:
vmovdqa32 zmm0, [rsi+rax*4]
vpcmpgtd k1, zmm0, zmm3
vpandd zmm6, zmm5, zmm0
vpcmpeqd k2, zmm6, zmm5
kandw k1, k2, k1
vpaddd zmm0 {k1}, zmm0, zmm1
vmovdqa32 [rdi+rax*4], zmm0
add rax, 16
cmp rax, rbx
jne mainloop

Baseline 1x Speedup: 5x Speedup: 11x

Table 18-1. Cache Comparison Between Skylake Server Microarchitecture and Broadwell Microarchitecture

Item Broadwell Microarchitecture Skylake Server Microarchitecture

1 The address of a vmaskmov store is considered as resolved
only after the mask is known. Loads that follow a masked
store may be blocked, depending on the memory
disambiguation predictor, until the mask value is known.

This issue is resolved. The address of a vmaskmov
store can be resolved before the mask is known.

2 If the mask is not all 1 or all 0, loads that depend on the
masked store must wait until the store data is written to
the cache. If the mask is all 1 the data can be forwarded
from the masked store to the dependent loads. If the mask
is all 0 the loads do not depend on the masked store.

If the mask is not all 1 or all 0, loads that depend on
the masked store must wait until the store data is
written to the cache. If the mask is all 1 the data can
be forwarded from the masked store to the
dependent loads. If the mask is all 0 the loads do not
depend on the masked store.

3 When including an illegal memory address range with
masked loads (using the vmaskmov instruction), the
processor might take a multi-cycle "assist" to determine if
any part of the illegal range has a one mask value.
This assist might occur even when the mask was "all-zero"
and it seemed obvious to the programmer that the load
should not be executed.

For Intel AVX-512 masking, if the mask is all-zeros
then memory faults will be ignored and no assist will
be issued.

18-15

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18.2.6 Peeling and Remainder Masking
Accessing cache line aligned data gives better performance than accessing non-aligned data. In many
cases, the address is not known in compile time, or known and not-aligned. In these cases a peeling algo-
rithm may be proposed, to process first elements in masked mode, up to first aligned address, and then
process unmasked body and masked remainder. This method increases code size, but improves data
processing overall.

The following code is an example of peeling and remainder masking.

for (size_t i = 0; i < len; i++)

pOutImage[i] = (pInImage[i] * alfa) + add_value;

The table below shows the difference in implementation and execution speed of two versions of the code,
both working on unaligned output data array.

Example 18-9. Peeling and Remainder Masking

No peeling, unmasked body, masked remainder Peeling, unmasked body, masked remainder

mov rbx, pOutImage // Output
mov rax, pImage // Input
mov rcx, len
mov edx, addValue
vpbroadcastd zmm0, edx
mov edx, alfa
vpbroadcastd zmm3, edx
mov rdx, rcx
sar rdx, 4 // 16 elements per iteration, RDX - number of

full iterations
jz remainder // no full iterations
xor r8, r8
vmovups zmm10, [indices]

mainloop:
vmovups zmm1, [rax + r8]
vfmadd213ps zmm1, zmm3, zmm0
vmovups [rbx + r8], zmm1
add r8, 0x40
sub rdx, 1
jne mainloop

remainder:
// produce mask for remainder
and rcx, 0xF // number of elements in remainder
jz end // no elements in remainder
vpbroadcastd zmm2, ecx

 vpcmpd k2, zmm10, zmm2, 1 //compare lower

vmovups zmm1 {k2}{z}, [rax + r8]
vfmadd213ps zmm1 {k2}{z}, zmm3, zmm0
vmovups [rbx + r8] {k2}, zmm1

end:

mov rax, pImage // Input
mov rbx, pOutImage // Output
mov rcx, len
movss xmm0, addValue
vpbroadcastd zmm0, xmm0
movss xmm1, alfa
vpbroadcastd zmm3, xmm1
xor r8, r8
xor r9, r9
vmovups zmm10, [indices]
vpbroadcastd zmm12, ecx

peeling:
mov rdx, rbx
and rdx, 0x3F
jz endofpeeling //nothing to peel
neg rdx
add rdx, 64 // 64 - X
// now rdx contains the number of bytes to the closest

alignment
mov r9, rdx
sar r9, 2 // now r9 contains number of elements in

peeling

vpbroadcastd zmm12, r9d
vpcmpd k2, zmm10, zmm12, 1 //compare lower to

produce mask for peeling

vmovups zmm1 {k2}{z}, [rax]
vfmadd213ps zmm1 {k2}{z}, zmm3, zmm0
vmovups [rbx] {k2}, zmm1 //unaligned store

endofpeeling:
sub rcx, r9
mov r8, rcx
sar r8, 4 //number of full iterations
jz remainder //no full iterations

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-16

18.3 FORWARDING AND UNMASKED OPERATIONS
When using an unmasked store instruction, and load instruction after it, data forwarding depends on load
type, size and address offset from store address, and does not depend on the store address itself (i.e.,
the store address does not have to be aligned to or fit into cache line, forwarding will occur for non-
aligned and even line-split stores).

The figure below describes all possible cases when data forwarding will occur.

mainloop:
vmovups zmm1, [rax + rdx]
vfmadd213ps zmm1, zmm3, zmm0
vmovaps [rbx + rdx], zmm1 // aligned store is safe here

!!
add rdx, 0x40
sub r8, 1
jne mainloop

remainder:
// produce mask for remainder
and rcx, 0xF // number of elements in remainder
jz end // no elements in remainder
vpbroadcastd zmm2, ecx

 vpcmpd k2, zmm10, zmm2, 1 //compare lower
vmovups zmm1 {k2}{z}, [rax + rdx]
vfmadd213ps zmm1 {k2}{z}, zmm3, zmm0
vmovaps [rbx + rdx] {k2}, zmm1 //aligned

end:

Baseline 1x Speedup: 1.04x

Figure 18-3. Data Forwarding Cases

Example 18-9. Peeling and Remainder Masking (Contd.)

SOM00006

Load
size

Offset from store address (in bytes)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

1 Y

2 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N

4 Y Y Y Y N N N N Y Y Y Y Y N N N Y Y Y Y Y N N N Y Y Y Y Y N N N

8 Y N N N N N N N Y N N N N N N N Y N N N N N N N Y N N N N N N N

General Purpose Registers (GPR)

32..63

N

N

N

N

Load
size

Offset from store address (in bytes)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

2 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N

4 Y Y Y Y Y N N N Y Y Y Y Y N N N Y Y Y Y Y N N N Y Y Y Y Y N N N

8 Y N N N N N N N Y N N N N N N N Y N N N N N N N Y N N N N N N N

16 Y N N N N N N N N N N N N N N N Y N N N N N N N N N N N N N N N

32 Y N

64 Y N

X87, MMX, XMM, YMM, ZMM

Load
size

Offset from store address (in bytes)

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

2 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N

4 Y Y Y Y Y N N N Y Y Y Y Y N N N Y Y Y Y Y N N N Y Y Y Y Y N N N

8 Y N N N N N N N Y N N N N N N N Y N N N N N N N Y N N N N N N N

16 Y N N N N N N N N N N N N N N N Y N N N N N N N N N N N N N N N

32 Y N

64 N

X87, MMX, XMM, YMM, ZMM

18-17

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

There are two important points to be considered when using data forwarding.

1. Data forwarding to GPR is possible only from the lower 256 bits of store instruction. Note this when
loading GPR with data that has recently been written.

2. Do not use masks, as forwarding is supported only for certain masks.

18.4 FORWARDING AND MEMORY MASKING
When using masked store and load, consider the following:
• When the mask is not all-ones or all-zeroes, the load operation, following the masked store operation

from the same address is blocked, until the data is written to the cache.
• Unlike GPR forwarding rules, vector loads whether or not they are masked, do not forward unless

load and store addresses are exactly the same.

— st_mask = 10101010, ld_mask = 01010101, can forward: no, should block: yes

— st_mask = 00001111, ld_mask = 00000011, can forward: no, should block: yes
• When the mask is all-ones, blocking does not occur, because the data may be forwarded to the load

operation.

— st_mask = 11111111, ld_mask = don’t care, can forward: yes, should block: no
• When mask is all-zeroes, blocking does not occur, though neither does forwarding.

— st_mask = 00000000, ld_mask = don’t care, can forward: no, should block: no

In summary, a masked store should be used carefully, for example, if the remainder size is known at
compile time to be 1, and there is a load operation from the same cache line after it (or there is an
overlap in addresses + vector lengths), it may be better to use scalar remainder processing, rather than
a masked remainder block.

18.5 DATA COMPRESS
The data compress operation reads elements from an input buffer on indices specified by mask register
1's bits. The elements which have been read, are then written to the destination buffer. If the number of
elements is less than the destination register size, the rest of the space is filled with zeroes.

The following figure describes the data compress operation.

if (k[i] == 1)

{

dest[a] = src[i];

a++;

}

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-18

18.5.1 Data Compress Example
The following snippet shows collection of all positive elements from one array to another array.

for (int i=0; i<SIZE; i++)

{

if (a[i] > 0)

b[j++] = a[i];

}

Figure 18-4. Data Compress Operation

... 0 0 1 1 1 0 0 1 1 0 0 0 1 0 Mask
Register

... a13 a12 a11 a10 a9 a8 a7 a6 a5 a4 a3 a2 a1 a0
Input
Buffer

… 63 32 31 0 bits

… 5 4 3 2 1 0 bits

SOM00007

... 0 0 0 0 0 0 0 0 a11 a10 a9 a6 a5 a1 Destination

… 63 32 31 0 bits

18-19

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

Following are four implementations for the compress operation from an array of dword elements.
• Alternative 1 uses scalar data access and checks each element separately. If it is greater than 0 it is

written to the destination array.
• Alternative 2 is Intel AVX code that uses a shuffle instruction together with the pre-allocated and pre-

initialized table with shuffle keys. The compare instruction provides the entry point number to the
shuffle-key table. Then the key is loaded and the original array is shuffled according to the keys. Four
elements are processed in each iteration.

• Alternative 3 uses the same algorithm as in Alternative 2, but uses Intel AVX2 256-bit registers, and
a permutation on the dword instruction instead of using byte shuffle. Eight elements are processed in
each iteration.

• Alternative 4 is an Intel AVX-512 algorithm, which uses the vpcompress instruction together with the
mask register as a compress key. 16 elements are processed in each iteration.

Example 18-10. Comparing Intel® AVX-512 Data Compress with Other Alternatives

Alternative 1: Scalar

mov rsi, source
mov rdi, dest
mov r9, len

xor r8, r8
xor r10, r10

mainloop:
mov r11d, dword ptr [rsi+r8*4]
test r11d, r11d
jle m1
mov dword ptr [rdi+r10*4], r11d
inc r10

m1:
inc r8
cmp r8, r9
jne mainloop

Baseline 1x

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-20

Alternative 2: Intel® AVX

mov rsi, source
mov rdi, dest
mov r14, shuffle_LUT
mov r15, write_mask
mov r9, len

xor r8, r8
xor r11, r11
vpxor xmm0, xmm0, xmm0

mainloop:
vmovdqa xmm1, [rsi+r8*4]
vpcmpgtd xmm2, xmm1, xmm0
mov r10, 4
vmovmskps r13, xmm2
shl r13, 4
vmovdqu xmm3, [r14+r13]
vpshufb xmm2, xmm1, xmm3
popcnt r13, r13
sub r10, r13
vmovdqu xmm3, [r15+r10*4]
vmaskmovps [rdi+r11*4], xmm3, xmm2
add r11, r13
add r8, 4
cmp r8, r9
jne mainloop

shuffle_LUT:
.int 0x80808080, 0x80808080, 0x80808080, 0x80808080
.int 0x03020100, 0x80808080, 0x80808080, 0x80808080
.int 0x07060504, 0x80808080, 0x80808080, 0x80808080
.int 0x03020100, 0x07060504, 0x80808080, 0x80808080
.int 0x0b0A0908, 0x80808080, 0x80808080, 0x80808080
.int 0x03020100, 0x0b0A0908, 0x80808080, 0x80808080
.int 0x07060504, 0x0b0A0908, 0x80808080, 0x80808080
.int 0x03020100, 0x07060504, 0x0b0A0908, 0x80808080
.int 0x0F0E0D0C, 0x80808080, 0x80808080, 0x80808080
.int 0x03020100, 0x0F0E0D0C, 0x80808080, 0x80808080
.int 0x07060504, 0x0F0E0D0C, 0x80808080, 0x80808080
.int 0x03020100, 0x07060504, 0x0F0E0D0C, 0x80808080
.int 0x0b0A0908, 0x0F0E0D0C, 0x80808080, 0x80808080
.int 0x03020100, 0x0b0A0908, 0x0F0E0D0C, 0x80808080
.int 0x07060504, 0x0b0A0908, 0x0F0E0D0C, 0x80808080
.int 0x03020100, 0x07060504, 0x0b0A0908, 0x0F0E0D0C

write_mask:
.int 0x80000000, 0x80000000, 0x80000000, 0x80000000
.int 0x00000000, 0x00000000, 0x00000000, 0x00000000

Speedup: 2.87x

Example 18-10. Comparing Intel® AVX-512 Data Compress with Other Alternatives (Contd.)

18-21

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

Alternative 3: Intel® AVX2

mov rsi, source
mov rdi, dest
mov r14, shuffle_LUT
mov r15, write_mask
mov r9, len

xor r8, r8
xor r11, r11
vpxor ymm0, ymm0, ymm0

mainloop:
vmovdqa ymm1, [rsi+r8*4]
vpcmpgtd ymm2, ymm1, ymm0
mov r10, 8
vmovmskps r13, ymm2
shl r13, 5
vmovdqu ymm3, [r14+r13]
vpermd ymm2, ymm3, ymm1
popcnt r13, r13
sub r10, r13
vmovdqu ymm3, [r15+r10*4]
vmaskmovps [rdi+r11*4], ymm3, ymm2
add r11, r13
add r8, 8
cmp r8, r9
jne mainloop

// The lookup table is too large to reproduce in the document. It consists of 256 rows of 8 32 bit integers.
//The first 8 and the last 8 rows are shown below.

shuffle_LUT:
.int 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0
.int 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0
.int 0x1, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0
.int 0x0, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0
.int 0x2, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0
.int 0x0, 0x2, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0
.int 0x1, 0x2, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0
.int 0x0, 0x1, 0x2, 0x0, 0x0, 0x0, 0x0, 0x0
// Skipping 240 lines
.int 0x3, 0x4, 0x5, 0x6, 0x7, 0x0, 0x0, 0x0
.int 0x0, 0x3, 0x4, 0x5, 0x6, 0x7, 0x0, 0x0
.int 0x1, 0x3, 0x4, 0x5, 0x6, 0x7, 0x0, 0x0
.int 0x0, 0x1, 0x3, 0x4, 0x5, 0x6, 0x7, 0x0
.int 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x0, 0x0
.int 0x0, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x0
.int 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x0
.int 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7

Example 18-10. Comparing Intel® AVX-512 Data Compress with Other Alternatives (Contd.)

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-22

18.6 DATA EXPAND
Data expand operations read elements from the source array (register) and put them in the destination
register in the places indicated by enabled bits in the mask register. If the number of enabled bits is less
than destination register size, the extra values are ignored.

if (k[i] == 1)

{

dest[i] = src[a];

a++;

}

write_mask:
.int 0x80000000, 0x80000000, 0x80000000, 0x80000000
.int 0x80000000, 0x80000000, 0x80000000, 0x80000000
.int 0x00000000, 0x00000000, 0x00000000, 0x00000000
.int 0x00000000, 0x00000000, 0x00000000, 0x00000000

Speedup: 5.27x

Alternative 4: Intel® AVX-512

mov rsi, source
mov rdi, dest
mov r9, len

xor r8, r8
xor r10, r10
vpxord zmm0, zmm0, zmm0

mainloop:
vmovdqa32 zmm1, [rsi+r8*4]
vpcmpgtd k1, zmm1, zmm0
vpcompressd zmm2 {k1}, zmm1
vmovdqu32 [rdi+r10*4], zmm2
kmovd r11d, k1
popcnt r12, r11
add r8, 16
add r10, r12
cmp r8, r9
jne mainloop

Speedup: 11.9x

Example 18-10. Comparing Intel® AVX-512 Data Compress with Other Alternatives (Contd.)

18-23

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18.6.1 Data Expand Example
The following snippet shows an example of using the expand operation. For every positive number in an
array, the code sets its consecutive number among positives.

for (int i=0; i<SIZE; i++)

{

if (a[i] > 0)

dest[i] = a[count++];

else

dest[i] = 0;

}

Here are three implementations for the expand operation from an array of 16 dword elements.
• Alternative 1 uses scalar data access and checks each element separately. If it is greater than 0 then

the corresponding element in the destination array is rewritten with the value from source value at
index count, and the counter is incremented.

• Alternative 2 shows Intel AVX2 code that uses a shuffle instruction together with the pre-allocated
and pre-initialized table with shuffle keys. The compare instruction provides the entry point number
to the shuffle-key table. Then the key is loaded and the original array is shuffled according to the
keys. Four elements are processed in each iteration.

• Alternative 3 shows Intel AVX-512 code, which uses the vpexpandd instruction together with the
mask register as an expand key. 16 elements are processed in each iteration.

Figure 18-5. Data Expand Operation

… 13 12 11 10 9 8 7 6 5 4 3 2 1 0 bits

... a13 a12 a11 a10 a9 a8 a7 a6 a5 a4 a3 a2 a1 a0
Input
Buffer

… 63 32 31 0 bits

SOM00008

... 0 0 a5 a4 a3 0 0 a2 a1 0 0 0 a0 0 Destination

… 63 32 31 0 bits

... 0 0 1 1 1 0 0 1 1 0 0 0 1 0 Mask
Register

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-24

Example 18-11. Comparing Intel® AVX-512 Data Expand Operation with Other Alternatives

Alternative 1: Scalar Alternative 2: Intel® AVX2 Code Alternative 3: Intel® AVX-512 Code

mov rsi, input
mov rdi, output
mov r9, len
xor r8, r8
xor r10, r10

mainloop:
mov r11d, dword ptr

[rsi+r8*4]
test r11d, r11d
jle m1
mov r11d, dword ptr

[rsi+r10*4]
mov dword ptr [rdi+r8*4],

r11d
inc r10

m1:
inc r8
cmp r8, r9
jne mainloop

mov rsi, input
mov rdi, output
mov r9, len
xor r8, r8
xor r10, r10
vpxor ymm0, ymm0, ymm0
mov r14, shuf2

mainloop:
vmovdqa ymm1, [rsi+r8*4]
vpxor ymm4, ymm4, ymm4
vpcmpgtd ymm2, ymm1, ymm0
vmovdqu ymm1, [rsi+r10*4]
vmovmskps r13, ymm2
shl r13, 5
vmovdqa ymm3, [r14+r13]
vpermd ymm4, ymm3, ymm1
popcnt r13, r13
add r10, r13
vmaskmovps [rdi+r8*4], ymm2,

ymm4
add r8, 8
cmp r8, r9
jne mainloop

// The lookup table is too large to
// reproduce in the document. It consists
// of 256 rows of 8 32-bit integers. The
// first 8 and the last 8 rows are shown
// below. The table needs to be 32-byte
// aligned.

shuf2:
.int 0, 0, 0, 0, 0, 0, 0, 0
.int 0, 0, 0, 0, 0, 0, 0, 0
.int 0, 0, 0, 0, 0, 0, 0, 0
.int 0, 1, 0, 0, 0, 0, 0, 0
.int 0, 0, 0, 0, 0, 0, 0, 0
.int 0, 0, 1, 0, 0, 0, 0, 0
.int 0, 0, 1, 0, 0, 0, 0, 0
.int 0, 1, 2, 0, 0, 0, 0, 0

// Skipping 240 lines
.int 0, 0, 0, 0, 1, 2, 3, 4
.int 0, 0, 0, 1, 2, 3, 4, 5
.int 0, 0, 0, 1, 2, 3, 4, 5
.int 0, 1, 0, 2, 3, 4, 5, 6
.int 0, 0, 0, 1, 2, 3, 4, 5
.int 0, 0, 1, 2, 3, 4, 5, 6
.int 0, 0, 1, 2, 3, 4, 5, 6
.int 0, 1, 2, 3, 4, 5, 6, 7

vpxord zmm0, zmm0, zmm0
mainloop:

vmovdqa32 zmm1, [rsi+r8*4]
vpcmpgtd k1, zmm1, zmm0
vmovdqu32 zmm1,

[rsi+r10*4]
vpexpandd zmm2 {k1}{z},

zmm1
vmovdqu32 [rdi+r8*4], zmm2
add r8, 16
kmovd r11d, k1
popcnt r12, r11
add r10, r12
cmp r8, r9
jne mainloop

Baseline 1x Speedup: 4.23x Speedup: 8.58x

18-25

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18.7 TERNARY LOGIC
A ternary logic vpternlog operation executes any bitwise logical function between three operands in one
instruction. The instruction requires three operands and an immediate value, which is the truth table of
this logical expression. The first operand is used as destination, and, therefore, destroyed after the
execution.

18.7.1 Ternary Logic Example 1
The following example shows a bitwise logic function of three variables. The function in this example is
defined by the following truth table.

Using Karnaugh maps on this truth table, we can define the function as:

f(X,Y,Z) =

or, in shorter notation, using fewer binary operations:

f(X,Y,Z) =

The C code for the function above is as follows:

for (int i=0; i<SIZE; i++)

{

 Dst[i] = ((~Src2[i]) & (Src1[i] ^ Src3[i])) | (Src1[i] & Src2[i] & Src3[i]);

}

The value of the function for each combination of X, Y and Z gives an immediate value that is used in the
instruction.

Here are three implementations for this logical function applied to all values in X, Y and Z arrays.
• Alternative 1 is an Intel AVX2 256-bit vector computation, using bitwise logical functions available in

Intel AVX2.
• Alternative 2 is a 512-bit vector computation, using bitwise logical functions available in Intel AVX-

512, without using the vpternlog instruction.
• Alternative 3 is an Intel AVX-512 512-bit vector computation, using the vpternlog instruction.

All alternatives in the table are unrolled by factor 2.

Figure 18-6. Ternary Logic Example 1 Truth Table

SOM00009

X 1 1 1 1 0 0 0 0

Y 1 1 0 0 1 1 0 0

Z 1 0 1 0 1 0 1 0

f(X, Y, Z) 1 0 0 1 0 0 1 0 0x92

Immediate value
that is used.

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-26

Example 18-12. Comparing Ternary Logic to Other Alternatives

Alternative 1: Intel® AVX2

mov rax, src1
mov rbx, src2
mov rcx, src3
mov r11, dst
mov r8, len
xor r10, r10

mainloop:
vmovdqu ymm1, ymmword ptr [rax+r10*4]
vmovdqu ymm3, ymmword ptr [rdx+r10*4]
vmovdqu ymm2, ymmword ptr [rcx+r10*4]
vmovdqu ymm10, ymmword ptr [rcx+r10*4+0x20]
vpand ymm0, ymm1, ymm3
vpxor ymm4, ymm1, ymm2
vpand ymm5, ymm0, ymm2
vpandn ymm6, ymm3, ymm4
vpor ymm7, ymm5, ymm6
vmovdqu ymmword ptr [r11+r10*4], ymm7
vmovdqu ymm9, ymmword ptr [rax+r10*4+0x20]
vmovdqu ymm11, ymmword ptr [rdx+r10*4+0x20]
vpxor ymm12, ymm9, ymm10
vpand ymm8, ymm9, ymm11
vpandn ymm14, ymm11, ymm12
vpand ymm13, ymm8, ymm10
vpor ymm15, ymm13, ymm14
vmovdqu ymmword ptr [r11+r10*4+0x20], ymm15

add r10, 0x10
cmp r10, r8
jb mainloop

Baseline 1x

18-27

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18.7.2 Ternary Logic Example 2
The next example is a sign change operation, frequently used in Fortran. Consider the following code,
running on two arrays of floating point numbers.

for (int i=0; i<SIZE; i++)

{

 b[i] = a[i] > 0 ? b[i] : -b[i];

}

Alternative 2: Intel® AVX-512 Logic Instructions Alternative 3: Intel® AVX-512 using vpternlog
Instruction

mov rdi, src1
mov rsi, src2
mov rdx, src3
mov r11, dst
mov r8, len

xor r10, r10

mainloop:
vmovups zmm2, zmmword ptr [rdi+r10*4]
vmovups zmm4, zmmword ptr [rdi+r10*4+0x40]
vmovups zmm6, zmmword ptr [rsi+r10*4]
vmovups zmm8, zmmword ptr [rsi+r10*4+0x40]
vmovups zmm3, zmmword ptr [rdx+r10*4]
vmovups zmm5, zmmword ptr [rdx+r10*4+0x40]
vpandd zmm0, zmm2, zmm6
vpandd zmm1, zmm4, zmm8
vpxord zmm7, zmm2, zmm3
vpxord zmm9, zmm4, zmm5
vpandd zmm10, zmm0, zmm3
vpandd zmm12, zmm1, zmm5
vpandnd zmm11, zmm6, zmm7
vpandnd zmm13, zmm8, zmm9
vpord zmm14, zmm10, zmm11
vpord zmm15, zmm12, zmm13
vmovups zmmword ptr [r11+r10*4], zmm14
vmovups zmmword ptr [r11+r10*4+0x40], zmm15
add r10, 0x20
cmp r10, r9
jb mainloop

mov r9, src1
mov r8, src2
mov r10, src3
mov r11, dst
mov rsi, len

xor rax rax

mainloop:
vmovaps zmm1, [r8+rax*4]
vmovaps zmm0, [r9+rax*4]
vpternlogd zmm0,zmm1,[r10], 0x92
vmovaps [r11], zmm0
vmovaps zmm1, [r8+rax*4+0x40]
vmovaps zmm0, [r9+rax*4+0x40]
vpternlogd zmm0,zmm1, [r10+0x40], 0x92
vmovaps [r11+0x40], zmm0
add rax, 32
add r10, 0x80
add r11, 0x80
cmp rax, rsi
jne mainloop

Speedup: 1.94x Speedup: 2.36x
(1.22x vs Intel® AVX-512 with logic instructions)

Example 18-12. Comparing Ternary Logic to Other Alternatives (Contd.)

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-28

This code is equivalent to:

for (int i=0; i<SIZE; i++)

{

 b[i] = (a[i] & 0x80000000) ^ b[i];

}

Or, in other words:

This logic expression gives the following truth table.

Therefore one vpternlog instruction can be used instead of using two logic instructions (vpand and
vpxor):

vpternlog x,y,z,0x78

18.8 NEW SHUFFLE INSTRUCTIONS
Intel AVX-512 added 3 new shuffle operations.
• vpermw: a new single source any-to-any word permute.
• permt2[w/d/q/ps/pd]: a new any to any 2 source permute (overriding src register).
• permi2[w/d/q/ps/pd]: a new any to any 2 source permute (overriding control register).

The following figure shows how vpermi2ps is used. Notice that in the following example zmm0 is the
shuffle control but also the output register (the control register is overridden).

vpermi2ps zmm0, zmm1, zmm2

Figure 18-7. Ternary Logic Example 2 Truth Table

SOM00010

X 1 1 1 1 0 0 0 0

Y 1 1 0 0 1 1 0 0

Z 1 0 1 0 1 0 1 0

f(X, Y, Z) 0 1 1 1 1 0 0 0 0x78

Immediate value
that is used in the
vpternlog instruction.

18-29

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

Note that the index register values must have the same resolution as the instruction and source registers
(word when working on words, dword when working on dwords, etc.).

18.8.1 Two Source Permute Example
In this example we will show the use of the two source permute instructions in a matrix transpose oper-
ation. The matrix we want to transpose is square 8x8 matrix of word elements.

Figure 18-8. VPERMI2PS Instruction Operation

 →

SOM00011

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 index

b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0 ZMM2

… 63 32 31 0 bits

b15

... ... b15 b13 a7 a1 a3 ZMM0

… 63 32 31 0 bits

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 index

a14 a13 a12 a11 a10 a9 a8 a7 a6 a5 a4 a3 a2 a1 a0 ZMM1

… 63 32 31 0 bits

a15

... ... 31 29 7 1 3 ZMM0

… 63 32 31 0 bits

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-30

The corresponding C code is as follows (assuming each matrix occupies a continuous block of 8*8*2 =
128 bytes):

for(int iY = 0; iY < 8; iY++)

{

for(int iX = 0; iX < 8; iX++)

{

trasposedMatrix[iY*8+iX] = originalMatrix[iX*8+iY];

}

}

Here are three implementations for this matrix transpose.
• Alternative 1 is scalar code, which accesses each element of the source matrix and puts it to the

corresponding place in the destination matrix. This code does 64 (8x8) iterations per 1 matrix.
• Alternative 2 is Intel AVX2 code, which uses Intel AVX2 permutation and shuffle (unpack) instruc-

tions. Only 1 iteration per 8x8 matrix is required.
• Alternative 3 Intel AVX-512 code which uses the Two Source Permutation instructions. Note that this

code first loads permutation masks, and then matrix data. The mask used to perform the
permutation is stored in the following array:

short permMaskBuffer [8*8] = { 0, 8, 16, 24, 32, 40, 48, 56,

 1, 9, 17, 25, 33, 41, 49, 57,

2, 10, 18, 26, 34, 42, 50, 58,

3, 11, 19, 27, 35, 43, 51, 59,

 4, 12, 20, 28, 36, 44, 52, 60,

 5, 13, 21, 29, 37, 45, 53, 61,

 6, 14, 22, 30, 38, 46, 54, 62,

 7, 15, 23, 31, 39, 47, 55, 63 };

Each alternative transposes 50 matrixes, 8x8 2-byte elements each.

18-31

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

Example 18-13. Matrix Transpose Alternatives

Alternative 1: Scalar code Alternative 2: Intel® AVX2 Code Alternative 3: Intel® AVX-512 Code

mov rsi, pImage
mov rdi, pOutImage
xor rdx, rdx

matrix_loop:
xor rax, rax

outerloop:
xor rbx, rbx

innerloop:
mov rcx, rax
shl rcx, 3
add rcx, rbx
mov r8w, word ptr [rsi+rcx*2]
mov rcx, rbx
shl rcx, 3
add rcx, rax
mov word ptr [rdi+rcx*2], r8w
add rbx, 1
cmp rbx, 8
jne innerloop
add rax, 1
cmp rax, 8
jne outerloop
add rdx, 1
add rsi, 64*2
add rdi, 64*2
cmp rdx, 50
jne matrix_loop

mov rsi, pImage
mov rdi, pOutImage
xor rdx, rdx

matrix_loop:
vmovdqa xmm0, [rsi]
vmovdqa xmm1, [rsi+0x10]
vmovdqa xmm2, [rsi+0x20]
vmovdqa xmm3, [rsi+0x30]

vinserti128 ymm0, ymm0,
[rsi+0x40], 0x1

vinserti128 ymm1, ymm1,
[rsi+0x50], 0x1

vinserti128 ymm2, ymm2,
[rsi+0x60], 0x1

vinserti128 ymm3, ymm3,
[rsi+0x70], 0x1

vpunpcklwd ymm4, ymm0, ymm1
vpunpckhwd ymm5, ymm0, ymm1
vpunpcklwd ymm6, ymm2, ymm3
vpunpckhwd ymm7, ymm2, ymm3

vpunpckldq ymm0, ymm4, ymm6
vpunpckhdq ymm1, ymm4, ymm6
vpunpckldq ymm2, ymm5, ymm7
vpunpckhdq ymm3, ymm5, ymm7

vpermq ymm0, ymm0, 0xD8
vpermq ymm1, ymm1, 0xD8
vpermq ymm2, ymm2, 0xD8
vpermq ymm3, ymm3, 0xD8

vmovdqa [rdi], ymm0
vmovdqa [rdi+0x20], ymm1
vmovdqa [rdi+0x40], ymm2
vmovdqa [rdi+0x60], ymm3
add rdx, 1
add rsi, 64*2
add rdi, 64*2
cmp rdx, 50
jne matrix_loop

mov rax, permMaskBuffer
vmovdqa32 zmm10, [rax]
vmovdqa32 zmm11, [rax+0x40]

 mov rsi, pImage
mov rdi, pOutImage
xor rdx, rdx

matrix_loop:
vmovdqa32 zmm2, [rsi]
vmovdqa32 zmm3, [rsi+0x40]
vmovdqa32 zmm0, zmm10
vmovdqa32 zmm1, zmm11
vpermi2w zmm0, zmm2, zmm3
vpermi2w zmm1, zmm2, zmm3
vmovdqa32 [rdi], zmm0
vmovdqa32 [rdi+0x40], zmm1

add rdx, 1
add rsi, 64*2
add rdi, 64*2
cmp rdx, 50
jne matrix_loop

Baseline 1x Speedup: 13.7x Speedup: 37.3x
(2.7x vs Intel® AVX2 code)

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-32

18.9 BROADCAST

18.9.1 Embedded Broadcast
Intel AVX-512 introduces embedded broadcast operations, in which a broadcast operation is implied
within the syntax of a non-broadcast instruction. A source from memory can be broadcast, that is,
repeated, across all the elements of the effective source operand, up to 16 times for a 32-bit data
element, and up to 8 times for a 64-bit data element, without using an additional source register. This is
useful when we want to reuse the same scalar operand for all the operations in a vector instruction.

Embedded broadcast is only enabled on instructions with an element size of 32 or 64 bits; however, new
FP16 instructions allow embedded broadcast. Please see Section 19.4.7, “FP16 Conversions to and from
Other Data Types” for more information. In the case of older technologies, byte and word element broad-
casts do not support embedded broadcast. Use a broadcast instruction, rather than embedded broad-
cast, to broadcast a byte or word.

Using embedded broadcast can reduce the number of registers used in the code, which may be helpful
when register pressure exists.

In addition, when using embedded broadcast the load micro-op is in the same instruction as the opera-
tion micro-op, and therefore can benefit from micro fusion.

For example, replace the following code:

vbroadcastss zmm3, [rax]

vmulps zmm1, zmm2, zmm3

with:

vmulps zmm1, zmm2, [rax] {1to16}

The {1to16} primitive does the following:

1. Loads one float32 (single precision) element from memory.

2. Replicates it 16 times to form a vector of 16 32-bit floating point elements.

Intel AVX-512 instructions with store semantics and pure load instructions do not support broadcast
primitives.

18.9.2 Broadcast Executed on Load Ports
In Skylake Server microarchitecture, a broadcast instruction with a memory operand of 32 bits or above
is executed on the load ports; it is not executed on port 5 as other shuffles are. Alternative 2 in the
following example shows how executing the broadcast on the load ports reduces the workload on port 5
and increases performance. Alternative 3 shows how embedded broadcast benefits from both executing
the broadcast on the load ports and micro fusion.

Example 18-14. Broadcast Executed on Load Ports Alternatives

Alternative 1: 32-bit Load and
Register Broadcast

Alternative 2: Broadcast with a 32-
bit Memory Operand

Alternative 3: 32-bit Embedded
Broadcast

18-33

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

The following example shows that on Skylake Server microarchitecture, 16-bit broadcast is executed on
port 5 and therefore does not gain from the memory operand broadcast.

Notice that embedded broadcast is not supported for 16-bit memory operands.

18.10 EMBEDDED ROUNDING
By default, the Rounding Mode is set by bits 13:14 of the MXCSR register.

Intel AVX-512 introduces a new instruction attribute called Static (per instruction) Rounding Mode (RM)
or Rounding Mode override. This attribute allows a specific arithmetic rounding mode to be applied,
ignoring the value of the RM bits in the MXCSR. In combination with the rounding-mode, Intel AVX-512
also has an SAE (“suppress-all-exceptions”) attribute, to disable reporting any floating-point exception
flag in the MXCSR. SAE is always implied when rounding-mode is enabled.

Static Rounding Mode and SAE control can be enabled in the encoding of the instruction by setting the
EVEX.b bit to 1 in a register-register vector instruction. In this case, vector length is assumed to be the
maximal possible vector length (512-bit in case of Intel AVX-512). The table below summarizes the
possible static rounding-mode assignments in Intel AVX-512. Note that some instructions already allow
the rounding mode to be statically specified via immediate bits. In such case, the immediate bits take
precedence over the embedded rounding mode in the same way as they take precedence over the bits in
MXCSR.RM

18.10.1 Static Rounding Mode
Static rounding mode functions and descriptions are listed below.

loop:
vmovd xmm0, [rax]
vpbroadcastd zmm0, xmm0
vpaddd zmm2, zmm1, zmm0
vpermd zmm2, zmm3, zmm2
add rax, 0x4
sub rdx, 0x1
jnz loop

loop:
vpbroadcastd zmm0, [rax]
vpaddd zmm2, zmm1, zmm0
vpermd zmm2, zmm3, zmm2
add rax, 0x4
sub rdx, 0x1
jnz loop

loop:
vpaddd zmm2, zmm1, [rax]{1to16}
vpermd zmm2, zmm3, zmm2
add rax, 0x4
sub rdx, 0x1
jnz loop

Baseline 1x Speedup: 1.57x Speedup: 1.9x

Example 18-15. 16-bit Broadcast Executed on Port 5

Alternative 1: 16-bit Load and Register Broadcast Alternative 2: Broadcast with a 16-bit Memory Operand

loop:
vmovd xmm0, [rax]
vpbroadcastw zmm0, xmm0
vpaddw zmm2, zmm1, zmm0
vpermw zmm2, zmm3, zmm2
add rax, 0x4
sub rdx, 0x1
jnz loop

loop:
vpbroadcastw zmm0, [rax]
vpaddw zmm2, zmm1, zmm0
vpermw zmm2, zmm3, zmm2
add rax, 0x2
sub rdx, 0x1
jnz loop

Baseline 1x Speedup: equal to baseline

Example 18-14. Broadcast Executed on Load Ports Alternatives (Contd.)

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-34

The following code snippet shows a usage example.

This piece of code would perform the single-precision floating point addition of vectors zmm2 and zmm4
with round-towards-plus-infinity, leaving the result in vector zmm7 using k6 as a conditional writemask.
Note that MXCSR.RM bits are ignored and unaffected by the outcome of this instruction.

The following are examples of instructions instances where the static rounding-mode is not allowed.

; rounding-mode already specified in the instruction immediate

vrndscaleps zmm7 {k6}, zmm2 {rd}, 0x00

; instructions with memory operands

vmulps zmm7 {k6}, zmm2, [rax] {rd}

; instructions with vector length different than maximal vector length (512-bit)

vaddps ymm7 {k6}, ymm2, ymm4 {rd}

; non-floating point instructions

vpaddd zmm7 {k6}, zmm2, zmm4 {rd}

Table 18-2. Static Rounding Mode Functions

Function Description

{rn-sae} Round to nearest (even) + SAE

{rd-sae} Round down (toward -infinity) + SAE

{ru-sae} Round up (toward +infinity) + SAE

{rz-sae} Round toward zero (Truncate) + SAE

Example 18-16. Embedded vs Non-embedded Rounding

Using Embedded Rounding Without Embedded Rounding

vaddps zmm7 {k6}, zmm2, zmm4, {ru-sae}

;rax & rcx point to temporary dword values in memory used
to load and save (for restoring) MXCSR value

vstmxcsr [rax] ;load mxcsr value to memory
mov ebx, [rax] ;move to register
and ebx, 0xFFFF9FFF ;zero RM bits
or ebx, 0x5F80 ;put {ru} to RM bits and suppress all
exceptions
mov [rcx], ebx ;move new value to the memory
vldmxcsr [rcx] ;save to MXCSR

vaddps zmm7 {k6}, zmm2, zmm4 ;operation itself

vldmxcsr [rax] ;restore previous MXCSR value

18-35

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18.11 SCATTER INSTRUCTION
This instruction performs a non-continuous store of data (scatter). Given a base address, a set of signed
offsets and a data item, the instruction writes each element in the data register to the memory location
computed from the base address and corresponding offset. The instruction stores up to 16 elements (8
elements for qword indices) in a doubleword vector or 8 elements in a quadword vector, to the memory
locations pointed to by the base address and index vector. Elements are stored only if their corresponding
mask bit is one. The figure below describes the following operation.

vscatterdpd [rax + zmm0]{k1} , zmm1

In this example, rax contains the base address, zmm0 contains a set of offsets, and zmm1 contains data to
be written.

18.11.1 Data Scatter Example
Given an array of unique indexes, ranging from 0 to N, we want to sort the array of N values, according
to the corresponding index, while converting the values from long long integers (64 bits) to floating point
numbers (32 bits).

for (int i=0; i < N; i++)

{

dst[ind [i]] = (float)src[i];

}

Here are three implementations of the code above.

Figure 18-9. VSCATTERDPD Instruction Operation

SOM00012

Base
Address

(BA)

GPR

a14 a13 a12 a11 a10 a9 a8 a7 a6 a5 a4 a3 a2 a1 a0 Data

… 63 32 31 0 bits

a15

b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0 Offset

… 63 32 31 0 bits

b15

a0
Mem at
[BA+b0]

a1
Mem at
[BA+b1]

ax
Mem at
[BA+bx]

...

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-36

• Alternative 1 is pure scalar code.
• Alternative 2 is a software sequence for scatter.
• Alternative 3 is a hardware scatter.

NOTE
A hardware Scatter operation issues as many store operations, as the number of
elements in the vector. Do not use a scatter operation to store sequential elements, which
can be stored with one vmov instruction.

.

Example 18-17. Scatter

Scalar

mov rax, pImage //input
mov rcx, pOutImage //output
mov rbx, pIndex //indexes
mov rdx, len //length
xor r9, r9

mainloop:
mov r9d, [rbx+rdx-0x4]
vcvtsi2ss xmm0, xmm0, qword ptr [rax+rdx*2-0x8]
vmovss [rcx+r9*4], xmm0
sub rdx, 4
jnz mainloop

Baseline 1x

Software Sequence Hardware Scatter

18-37

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

shufMaskP:
 .quad·0x0000000200000001
 .quad·0x0000000400000003
 .quad·0x0000000600000005
 .quad·0x0000000800000007

mov rax, pImage //input
mov rcx, pOutImage //output
mov rbx, pIndex //indexes
mov rdx, len //length
mov r9, shufMaskP
vmovaps ymm2, [r9]

mainloop:
vmovaps zmm1, [rax + rdx*2 - 0x80] //load data
vcvtuqq2ps ymm0, zmm1 //convert to float
movsxd r9, [rbx + rdx - 0x40] //load 8th index
vmovss [rcx + 4*r9], xmm0
vpermd ymm0, ymm2, ymm0
movsxd r9, [rbx + rdx - 0x3c] //load 7th index
vmovss [rcx + 4*r9], xmm0
vpermd ymm0, ymm2, ymm0
movsxd r9, [rbx + rdx - 0x38] //load 6th index
vmovss [rcx + 4*r9], xmm0
vpermd ymm0, ymm2, ymm0
movsxd r9, [rbx + rdx - 0x34] //load 5th index
vmovss [rcx + 4*r9], xmm0
vpermd ymm0, ymm2, ymm0
movsxd r9, [rbx + rdx - 0x30] //load 4th index
vmovss [rcx + 4*r9], xmm0
vpermd ymm0, ymm2, ymm0
movsxd r9, [rbx + rdx - 0x2c] //load 3rd index
vmovss [rcx + 4*r9], xmm0
vpermd ymm0, ymm2, ymm0

mov rax, pImage //input
mov rcx, pOutImage //output
mov rbx, pIndex //indexes
mov rdx, len //length

mainloop:
vmovdqa32 zmm0, [rbx+rdx-0x40]
vmovdqa32 zmm1, [rax+rdx*2-0x80]
vcvtuqq2ps ymm1, zmm1

 vmovdqa32 zmm2, [rax+rdx*2-0x40]
vcvtuqq2ps ymm2, zmm2

 vshuff32x4 zmm1, zmm1, zmm2, 0x44
kxnorw k1,k1,k1
vscatterdps [rcx+4*zmm0] {k1}, zmm1
sub rdx, 0x40
jnz mainloop

Example 18-17. Scatter

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-38

18.12 STATIC ROUNDING MODES, SUPPRESS-ALL-EXCEPTIONS (SAE)
The Suppress-all-exceptions (SAE) feature was added to Intel AVX-512 floating-point instructions. This
feature is helpful when spurious flag settings are undesirable. Although current implementations of
vector math functions usually allow spurious flag settings, they can cause problems for applications that
run with exceptions enabled. Standard-compliant code does not allow spurious flag settings.

In addition to standard-mandated uses (IEEE, OpenCL), static rounding modes have applications in math
libraries that operate under the default rounding mode (which can be dynamically set).

18.13 QWORD INSTRUCTION SUPPORT
Intel AVX-512 extends QWORD support to many instructions introduced in Intel AVX and Intel AVX2.
QWORD support was added to the instructions as detailed in the following sections.

movsxd r9, [rbx + rdx - 0x28] //load 2nd index
vmovss [rcx + 4*r9], xmm0
vpermd ymm0, ymm2, ymm0
movsxd r9, [rbx + rdx - 0x24] //load 1st index
vmovss [rcx + 4*r9], xmm0
vmovaps zmm1, [rax + rdx*2 - 0x40] //load data
vcvtuqq2ps ymm0, zmm1 //convert to float
movsxd r9, [rbx + rdx - 0x20] //load 8th index
vmovss [rcx + 4*r9], xmm0
vpermd ymm0, ymm2, ymm0
movsxd r9, [rbx + rdx - 0x1c] //load 7th index
vmovss [rcx + 4*r9], xmm0
vpermd ymm0, ymm2, ymm0
movsxd r9, [rbx + rdx - 0x18] //load 6th index
vmovss [rcx + 4*r9], xmm0
vpermd ymm0, ymm2, ymm0
movsxd r9, [rbx + rdx - 0x14] //load 5th index
vmovss [rcx + 4*r9], xmm0
vpermd ymm0, ymm2, ymm0
movsxd r9, [rbx + rdx - 0x10] //load 4th index
vmovss [rcx + 4*r9], xmm0
vpermd ymm0, ymm2, ymm0
movsxd r9, [rbx + rdx - 0xc] //load 3rd index
vmovss [rcx + 4*r9], xmm0
vpermd ymm0, ymm2, ymm0
movsxd r9, [rbx + rdx - 0x8] //load 2nd index
vmovss [rcx + 4*r9], xmm0
vpermd ymm0, ymm2, ymm0
movsxd r9, [rbx + rdx - 0x4] //load 1st index
vmovss [rcx + 4*r9], xmm0
sub rdx, 0x40
jnz mainloop

Speedup: 1.48x Speedup: 1.53x

Example 18-17. Scatter

18-39

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18.13.1 QUADWORD Support in Arithmetic Instructions
Intel AVX-512 adds new quadword extension to vpmaxsq, vpmaxuq, vpminsq, vpminuq, and vpmullq.

The following example will store to array c the max value between the sum and the multiply of two 64bit
numbers.

const int N = miBufferWidth;

const __int64* restrict a = A;

const __int64* restrict b = B;

__int64* restrict c = Cref;

for (int i = 0; i < N; i++){

 __int64 sum = a[i] + b[i];

 __int64 mul = a[i] * b[i];

 c[i] = mul > sum ? mul : sum;

}

The code below shows how the new support reduces instruction count from 118 in Intel AVX2 to 30 in
Intel AVX-512 and results in a 3.1x speedup.

Example 18-18. QWORD Example, Intel® AVX2 vs. Intel® AVX-512

Intel® AVX2 Intrinsics Intel® AVX-512 Intrinsics

for (int i = 0; i < N; i+= 32){
__m256i aa, bb, aah, bbh, mul, sum;
#pragma unroll(8)
for (int j = 0; j < 8; j++){

aa = _mm256_loadu_si256((const
__m256i*)(a+i+4*j));

bb = _mm256_loadu_si256((const
__m256i*)(b+i+4*j));

sum = _mm256_add_epi64(aa, bb);
mul = _mm256_mul_epu32(aa, bb);
aah = _mm256_srli_epi64(aa, 32);
bbh = _mm256_srli_epi64(bb, 32);
aah = _mm256_mul_epu32(aah, bb);
bbh = _mm256_mul_epu32(bbh, aa);
aah = _mm256_add_epi32(aah, bbh);
aah = _mm256_slli_epi64(aah, 32);
mul = _mm256_add_epi64(mul, aah);
aah = _mm256_cmpgt_epi64(mul, sum);
aa = _mm256_castpd_si256 (

_mm256_blendv_pd(_mm256_castsi256_pd (sum),
_mm256_castsi256_pd(mul), _mm256_castsi256_pd(
aah)));

_mm256_storeu_si256((__m256i*)(c+4*j),
aa);

}
c += 32;

}

for (int i = 0; i < N; i+= 32){
__m512i aa, bb, mul, sum;
#pragma unroll(4)
for (int j = 0; j < 4; j++){

aa = _mm512_loadu_si512((const
__m512i*)(a+i+8*j));

bb = _mm512_loadu_si512((const
__m512i*)(b+i+8*j));

sum = _mm512_add_epi64(aa, bb);
mul = _mm512_mullo_epi64(aa, bb);
aa = _mm512_max_epi64(sum, mul);
_mm512_storeu_si512((__m512i*)(c+8*j), aa);

}

c += 32;
}

Baseline 1x Speedup: 3.1x

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-40

Intel® AVX2 Assembly Intel® AVX-512 Assembly

loop:
vmovdqu32 ymm28, ymmword ptr [rax+rcx*8+0x20]
inc r9d
vmovdqu32 ymm26, ymmword ptr [r11+rcx*8+0x20]
vmovdqu32 ymm17, ymmword ptr [r11+rcx*8]
vmovdqu32 ymm19, ymmword ptr [rax+rcx*8]
vmovdqu ymm13, ymmword ptr [rax+rcx*8+0x40]
vmovdqu ymm11, ymmword ptr [r11+rcx*8+0x40]
vpsrlq ymm25, ymm28, 0x20
vpsrlq ymm27, ymm26, 0x20
vpsrlq ymm16, ymm19, 0x20
vpsrlq ymm18, ymm17, 0x20
vpaddq ymm6, ymm28, ymm26
vpsrlq ymm10, ymm13, 0x20
vpsrlq ymm12, ymm11, 0x20
vpaddq ymm0, ymm19, ymm17
vpmuludq ymm29, ymm25, ymm26
vpmuludq ymm30, ymm27, ymm28
vpaddd ymm31, ymm29, ymm30
vmovdqu32 ymm29, ymmword ptr [r11+rcx*8+0x80]
vpsllq ymm5, ymm31, 0x20
vmovdqu32 ymm31, ymmword ptr [rax+rcx*8+0x80]
vpsrlq ymm30, ymm29, 0x20
vpmuludq ymm20, ymm16, ymm17
vpmuludq ymm21, ymm18, ymm19
vpmuludq ymm4, ymm28, ymm26
vpaddd ymm22, ymm20, ymm21
vpaddq ymm7, ymm4, ymm5
vpsrlq ymm28, ymm31, 0x20
vmovdqu32 ymm20, ymmword ptr [r11+rcx*8+0x60]
vpsllq ymm24, ymm22, 0x20
vmovdqu32 ymm22, ymmword ptr [rax+rcx*8+0x60]
vpsrlq ymm21, ymm20, 0x20
vpaddq ymm4, ymm22, ymm20
vpcmpgtq ymm8, ymm7, ymm6
vblendvpd ymm9, ymm6, ymm7, ymm8
vmovups ymmword ptr [rsi+0x20], ymm9
vpmuludq ymm14, ymm10, ymm11
vpmuludq ymm15, ymm12, ymm13
vpmuludq ymm8, ymm28, ymm29
vpmuludq ymm9, ymm30, ymm31
vpmuludq ymm23, ymm19, ymm17
vpaddd ymm16, ymm14, ymm15
vpsrlq ymm19, ymm22, 0x20
vpaddd ymm10, ymm8, ymm9
vpaddq ymm1, ymm23, ymm24

loop:
vmovups zmm0, zmmword ptr [rax+rcx*8]
inc r9d
vmovups zmm5, zmmword ptr [rax+rcx*8+0x40]
vmovups zmm10, zmmword ptr [rax+rcx*8+0x80]
vmovups zmm15, zmmword ptr [rax+rcx*8+0xc0]
vmovups zmm1, zmmword ptr [r11+rcx*8]
vmovups zmm6, zmmword ptr [r11+rcx*8+0x40]
vmovups zmm11, zmmword ptr [r11+rcx*8+0x80]
vmovups zmm16, zmmword ptr [r11+rcx*8+0xc0]
vpaddq zmm2, zmm0, zmm1
vpmullq zmm3, zmm0, zmm1
vpaddq zmm7, zmm5, zmm6
vpmullq zmm8, zmm5, zmm6
vpaddq zmm12, zmm10, zmm11
vpmullq zmm13, zmm10, zmm11
vpaddq zmm17, zmm15, zmm16
vpmullq zmm18, zmm15, zmm16
vpmaxsq zmm4, zmm2, zmm3
vpmaxsq zmm9, zmm7, zmm8
vpmaxsq zmm14, zmm12, zmm13
vpmaxsq zmm19, zmm17, zmm18
vmovups zmmword ptr [rsi], zmm4
vmovups zmmword ptr [rsi+0x40], zmm9
vmovups zmmword ptr [rsi+0x80], zmm14
vmovups zmmword ptr [rsi+0xc0], zmm19
add rcx, 0x20
add rsi, 0x100
cmp r9d, r8d
jb loop

Example 18-18. QWORD Example, Intel® AVX2 vs. Intel® AVX-512 (Contd.)

18-41

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

Intel® AVX2 Assembly Intel® AVX-512 Assembly

vpsllq ymm18, ymm16, 0x20
vmovdqu32 ymm28, ymmword ptr [rax+rcx*8+0xc0]
vpsllq ymm12, ymm10, 0x20
vpmuludq ymm23, ymm19, ymm20
vpmuludq ymm24, ymm21, ymm22
vpaddd ymm25, ymm23, ymm24
vmovdqu32 ymm19, ymmword ptr [rax+rcx*8+0xa0]
vpsllq ymm27, ymm25, 0x20
vpsrlq ymm25, ymm28, 0x20
vpsrlq ymm16, ymm19, 0x20
vpcmpgtq ymm2, ymm1, ymm0
vblendvpd ymm3, ymm0, ymm1, ymm2
vpaddq ymm0, ymm13, ymm11
vmovups ymmword ptr [rsi], ymm3
vpmuludq ymm17, ymm13, ymm11
vpmuludq ymm11, ymm31, ymm29
vpaddq ymm1, ymm17, ymm18
vpaddq ymm13, ymm31, ymm29
vpaddq ymm14, ymm11, ymm12
vmovdqu32 ymm17, ymmword ptr [r11+rcx*8+0xa0]
vmovdqu ymm12, ymmword ptr [r11+rcx*8+0xe0]
vpsrlq ymm18, ymm17, 0x20
vpcmpgtq ymm2, ymm1, ymm0
vpmuludq ymm26, ymm22, ymm20
vpcmpgtq ymm15, ymm14, ymm13
vblendvpd ymm3, ymm0, ymm1, ymm2
vblendvpd ymm0, ymm13, ymm14, ymm15
vmovdqu ymm14, ymmword ptr [rax+rcx*8+0xe0]
vmovups ymmword ptr [rsi+0x40], ymm3
vmovups ymmword ptr [rsi+0x80], ymm0
vpaddq ymm5, ymm26, ymm27
vpsrlq ymm11, ymm14, 0x20
vpsrlq ymm13, ymm12, 0x20
vpaddq ymm1, ymm19, ymm17
vpaddq ymm0, ymm14, ymm12
vmovdqu32 ymm26, ymmword ptr [r11+rcx*8+0xc0]
vpmuludq ymm20, ymm16, ymm17
add rcx, 0x20
vpmuludq ymm21, ymm18, ymm19
vpaddd ymm22, ymm20, ymm21
vpsrlq ymm27, ymm26, 0x20
vpsllq ymm24, ymm22, 0x20
vpmuludq ymm29, ymm25, ymm26
vpmuludq ymm30, ymm27, ymm28
vpmuludq ymm15, ymm11, ymm12
vpmuludq ymm16, ymm13, ymm14
vpmuludq ymm23, ymm19, ymm17
vpaddd ymm31, ymm29, ymm30
vpaddd ymm17, ymm15, ymm16

Example 18-18. QWORD Example, Intel® AVX2 vs. Intel® AVX-512 (Contd.)

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-42

18.13.2 QUADWORD Support in Convert Instructions
The following tables demonstrate the new quadword extension in convert instructions.

vpaddq ymm2, ymm23, ymm24
vpsllq ymm19, ymm17, 0x20
vpcmpgtq ymm6, ymm5, ymm4
vblendvpd ymm7, ymm4, ymm5, ymm6
vpsllq ymm6, ymm31, 0x20
vmovups ymmword ptr [rsi+0x60], ymm7
vpaddq ymm7, ymm28, ymm26
vpcmpgtq ymm3, ymm2, ymm1
vpmuludq ymm5, ymm28, ymm26
vpmuludq ymm18, ymm14, ymm12
vblendvpd ymm4, ymm1, ymm2, ymm3
vpaddq ymm8, ymm5, ymm6
vpaddq ymm1, ymm18, ymm19
vmovups ymmword ptr [rsi+0xa0], ymm4
vpcmpgtq ymm9, ymm8, ymm7
vpcmpgtq ymm2, ymm1, ymm0
vblendvpd ymm10, ymm7, ymm8, ymm9
vblendvpd ymm3, ymm0, ymm1, ymm2
vmovups ymmword ptr [rsi+0xc0], ymm10
vmovups ymmword ptr [rsi+0xe0], ymm3
add rsi, 0x100
cmp r9d, r8d
jb loop

Baseline 1x Speedup: 3.1x

Table 18-3. Vector Quadword Extensions

From / To Vector SP Vector DP Vector int64 Vector uint64

Vector SP - vcvtps2qq vcvtps2uqq

Vector DP - vcvtpd2qq vcvtpd2qq

Vector int64 vcvtqq2ps vcvtqq2pd -

Vector uint64 vcvtqq2ps vcvtuqq2pd -

Table 18-4. Scalar Quadword Extensions

From / To Scalar SP Scalar DP Scalar int64 Scalar uint64

Scalar SP - vcvtss2si vcvtss2usi

Scalar DP - vcvtsd2si vcvtsd2usi

Scalar int64 vcvtsi2sd vcvtsi2sd -

Scalar uint64 vcvtusi2sd vcvtusi2sd -

Example 18-18. QWORD Example, Intel® AVX2 vs. Intel® AVX-512 (Contd.)

18-43

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18.13.3 QUADWORD Support for Convert with Truncation Instructions
The following tables demonstrate the new quadword extension in convert with truncate instructions.

18.14 VECTOR LENGTH ORTHOGONALITY
All Intel AVX-512 instructions, in processors that support Vector Length Extensions (VL), can operate at
three vector lengths: 128-bit, 256-bit and 512-bit. All of these vector lengths are supported by all Intel
AVX-512 instructions, except instructions with Embedded Rounding.

In the instruction encoding, the same two bits are used for encoding vector length and embedded
rounding control, therefore when embedded rounding is used, the vector length is automatically
assumed to be 512 bits (maximum vector length in Intel AVX-512).

See also Section 18.10, “Embedded Rounding”.

18.15 INTEL® AVX-512 INSTRUCTIONS FOR TRANSCENDENTAL SUPPORT
This section lists and describes the new instructions introduced by Intel AVX-512 for transcendental
support.

18.15.1 VRCP14, VRSQRT14 - Software Sequences for 1/x, x/y, sqrt(x)
Syntax:

VRCP14PD/PS dest, src

VRSQRT14PD/PS dest, src

18.15.1.1 Application Examples
There are software sequences for Reciprocal, Division, Square Root, and Inverse Square Root instruc-
tions.

Software sequences for 1/x, x/y, sqrt(x) are beneficial for throughput (not so much for latency, unless
the accuracy is quite low). They are typically implemented via Newton-Raphson approximations, or poly-
nomial approximations.

One advantage of VRCP14 and VRSQRT14 is the improved accuracy, compared with the legacy RCPPS,
RSQRTPS. This helps shorten the computation, in particular for double precision (which requires two
instead of three Newton-Raphson iterations for a 50-52 bit approximation).

Another advantage of these instructions is that they have double-precision versions (while the legacy
RCP/RSQRT instructions did not). This further boosts double-precision performance. On Skylake Server

Table 18-5. Vector Quadword Extensions

From / To Vector int64 Vector uint64

Vector SP vcvttps2qq vcvttps2uqq

Vector DP vcvttpd2qq vcvttpd2qq

Table 18-6. Scalar Quadword Extensions

From / To Scalar int64 Scalar uint64

Scalar SP vcvttss2si vcvttss2usi

Scalar DP vcvttsd2si vcvttsd2usi

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-44

microarchitecture, double precision reciprocal and square root software sequences have significantly
better throughput than the VDIV and VSQRT instructions in 512-bit vector mode Double Precision Tran-
scendental Argument Reductions (e.g., log, cbrt).

In functions such as log() or the cube root (cbrt), a rounded VRCP14PD result can be used in place of an
expensive reciprocal table lookup. The same technique could be used before via RCPPS, but was less effi-
cient for double-precision.

See Section 18.15.3, “VRNDSCALE - Vector Round Scale” for a log() argument reduction example.

18.15.2 VGETMANT VGETEXP - Vector Get Mantissa and Vector Get Exponent
Syntax:

VGETMANTPD/PS dest_mant, src, imm

VGETEXPPD/PS dest_exp, src

18.15.2.1 Application Examples
Logarithm Function

log2(x) = VGETEXP(x) + log2(VGETMANT(x,8))

log(x) = VGETEXP(x)*log(2.0) + log(VGETMANT(x,8))

As seen above, the computation is reduced to computing log(VGETMANT(x,8)), where VGETMANT(x,8) is
guaranteed to be in [1,2) for all valid function inputs, and NaN for invalid inputs (x<0).

A variety of algorithms can be applied to compute the logarithm of the mantissa. The selection of a
particular algorithm may depend on the desired accuracy, on optimization goals (latency or throughput
optimized), or on specifics of the microarchitecture. Some algorithms may use other normalization
options for the mantissa: [0.5, 1) or [0.75, 1.5); however, the basic identity underlying the computation
is shown above.

See Section 18.15.5, “VSCALEF - Vector Scale” for details on Xalpha (constant alpha) and division.

18.15.3 VRNDSCALE - Vector Round Scale
Syntax:

VRNDSCALEPD/PS dest, src, imm

18.15.3.1 Application Examples
Lookup tables are frequently used in transcendental function implementations. The table index is most
often based on a few leading bits of the input. VRNDSCALE can be used as part of the argument reduction
process, to form the floating-point input value corresponding to the table index. The following example
implements the argument reduction for log(x), where 1  x < 2:

y = RCP14(x); // y is in (0.5, 1]

y0=RNDSCALE(y, k*16); // y0 has k mantissa bits (leading 1

 // included)

R = x?y0 - 1; // |R|<2-14+2-k.

Therefore log(x) = -log(y0) + log(1+R).

log(1+R)can be computed via a polynomial, and log(y0) can be retrieved from a lookup table of 2k-1+1
elements, or 2k-1 elements, at the expense of an additional check.

18-45

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18.15.4 VREDUCE - Vector Reduce
Syntax:

VREDUCEPD/PS dest, src, imm

18.15.4.1 Application Examples
The most significant benefit of VREDUCE is latency reduction in common transcendental operations such
as exp2 and pow (which includes an exp2 operation). Uses in other transcendental functions such as
atan() are also possible.

See Section 18.15.5, “VSCALEF - Vector Scale”.

18.15.5 VSCALEF - Vector Scale
Syntax:

VSCALEFPD/PS dest, src1, src2

18.15.5.1 Application Examples
exp2 (2x)

exp2(x) = VSCALEF(2VREDUCE(x, RD_mode), x)

R(x) = VREDUCE(x, RD_mode) = x - floor(x) is in [0, 1). 2R(x) is computed by other means, such as
polynomial approximation, or table lookup with polynomial approximation. VSCALEF correctly handles
overflow and underflow. It is also defined to handle exp() special cases correctly (such as when the input
is an Infinity), so there is no need for special paths in a vector implementation. In the absence of
VSCALEF, inputs that are very large in magnitude require a separate path.

Since explicit exponent manipulation is no longer needed, VSCALEF also helps improve throughput.

Exp(x)

Exp(x) = VSCALEF(2R(x), x*(1/log(2.0)),

where,

R(x) = x - log(2.0)*floor(x*(1/log(2.0));

R(x) is accurately computed by using a sufficiently long log(2.0) approximation (longer than the native
floating-point format).

As with exp2(), the advantages of using VSCALEF are better throughput and elimination of secondary
branches.

xalpha (constant alpha)

For example, alpha=1/3 (the cube root function, cbrt).

The basic reduction for this computation is:

xalpha = VSCALEF((VGETMANT(x, imm))alpha?2VREDUCE (VGETEXP(x)*alpha, RD_mode),
VGETEXP(x)*alpha)

selecting the immediate (imm) is based on the value of the alpha constant.

Division:

a/b = VSCALEF(VGETMANT(a,0)/VGETMANT(b,0), VGETEXP(a)-VGETEXP(b))

This reduction allows for a branch-free implementation of divide, that covers overflow, underflow, and
special inputs (zeroes, Infinities, or denormals).

|VGETMANT(x,0)| is in [1,2) for all non-NaN inputs.

VGETMANT(a,0)/VGETMANT(b,0) can be computed to the desired accuracy.

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-46

The suppress-all-exceptions (SAE) feature available in Intel AVX-512 can help ensure spurious flag
settings do not occur. Flags can be set correctly as part of the computation (except for divide-by-zero,
which requires an additional step).

For high accuracy or IEEE compliance, the hardware instruction typically provides better performance,
especially in terms of latency.

18.15.6 VFPCLASS - Vector Floating Point Class
Syntax:

VFPCLASSPD/PS dest_mask, src, imm

18.15.6.1 Application Examples
The VFPCLASS instruction is used to detect special cases so they can be directed to a special path, or
alternatively, handled with masked operations in the main path. See two examples below.

Reciprocal Sequence, Square Root Sequence:

The reduced argument for the 1/x computation is e=1-x*RCP14(x). This expression evaluates to NaN
when x is ±0 or ±Inf, as RCP14 returns the correct result for these special cases. VFPCLASS enables you
to set mask=1 for x=±0 or ±Inf, and mask=0 for all other x. This mask can then be used to select
between the RCP14 output (result for special cases), or the result of a reciprocal refinement computation
starting with RCP14 (for typical inputs).

In a similar manner, a square root computation based on RSQRT14 can use the VFPCLASS instruction to
create a mask for =±0 or x=+Inf.

Pow(x,y) function:

The main path of pow(x,y)=2y*log2(x) does not operate on x?0, x=Inf/NaN, or y=Inf/NaN. One
VFPCLASS op can be used to set special_x_mask=1 for x?0 or x=Inf/NaN. A second VFPCLASS op would
be used to set special_y_mask=1 for y=Inf/NaN. A branch to a secondary path is taken if either mask is
set.

18.15.7 VPERM, VPERMI2, VPERMT2 - Small Table Lookup Implementation

18.15.7.1 Application Examples
Math library functions are frequently implemented using table lookups. In vector mode, large table
lookups would use vector gather. Small table lookups can be implemented via the VPERM* instructions,
which are significantly faster.

Examples of common transcendental functions that achieved very significant speedup using VPERM* for
table lookups: exp(), log(), pow() - both single and double precision.

18.16 CONFLICT DETECTION
The Intel AVX-512 Conflict Detection instructions are instructions that, together with Intel AVX-512
Foundation instructions, enable efficient vectorization of loops with possible vector dependencies (i.e.,
conflicts) through memory. VPCONFLICT performs horizontal comparisons of elements within a single
vector register. VPCONFLICT compares each element of a vector register with all previous elements in
that register, and outputs the results of all of the comparisons. These horizontal comparisons can be used
for other purposes.

Other conflict detection instructions allow for efficient manipulation of the comparison results. The
VPLZCNT instruction lets us generate controls for in-register permute operations used to combine vector
elements with matching values.

18-47

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18.16.1 Vectorization with Conflict Detection
The Intel AVX-512CD instructions allow efficient vectorization of loops with reads and writes through an
array of pointers (e.g., *ptr[i] += val[i]) or an indirectly addressed array (e.g., A[B[i]] += val[i]).

Consider the following histogram computation:

for(int i = 0; i < num_inputs; i++)

{

histogram[input[i] & (num_bins - 1)]++;

}

If input[0] = input[1] = 3, we will get an incorrect answer if we use SIMD instructions to read histo-
gram[input[0]] and histogram[input[1]] into a register (with a gather), increment them, and then write
them back (with a scatter). After this sequence, the value in histogram[3] will be 1, when it should be 2.

The problem occurs because we have duplicate indices; this creates a dependence between the write to
the histogram in iteration 0 and the read from the histogram in iteration 1 - the read should get the value
of the previous write.

To detect this scenario, look for duplicate indices (or pointer values), using the VPCONFLICT instruction.
This instruction compares each element of a vector register with all previous elements in that register.

Example:

vpconflictd zmm0, zmm1

The figure below is an example that shows the execution of a VPCONFLICTD instruction. The input,
ZMM1, contains 16 integers, shown in the light grey boxes. ZMM1 is at the top of the figure, and also
visually transposed along the left-hand side of the figure. The white boxes show the equality comparisons
that the hardware performs between different elements of ZMM1, and the outcome of each comparison
(0 = not equal, 1 = equal). Each comparison output is a single bit in the output of the instruction.
Comparisons that are not performed (i.e., the dark grey boxes) produce a single '0' bit in the output.
Finally, the output register, ZMM0, is shown at the bottom of the figure. Each element is shown as a
decimal representation of the bits above it.

Use VPCONFLICT in different ways to help vectorize loops.

The simplest option is to check for any duplicate indices in a given SIMD register. If there are none, SIMD
instructions can be used to compute all elements simultaneously. If conflicts are present, execute a
scalar loop for that group of elements.

Branching to a scalar version of the loop on any duplicate indices can work well if duplicates are
extremely rare. However, if the chance of getting even one duplicate in a given iteration of the vectorized
loop is large enough, then it is better to use SIMD as much as possible, to exploit as much parallelism as
possible.

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-48

For loops performing updates to memory locations, such as in the histogram example, minimize store-
load forwarding by merging the updates to each distinct index while the data is in registers, and only
perform a single write to each memory location. Further, the merge can be performed in a parallel
fashion.

Figure 18-10. VPCONFLICTD Instruction Execution

00

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

0

0

0

0

1

0

5

3

3

1

8

2

50

1

0

7

6

4

9

3

10

3

533182501076493103

0020000800000608198

… 63 32 31 0 bitsZMM1

ZMM1

ZMM0

… 63 32 31 0 bits

…

63

32
31

0
bits

18-49

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

The figure above shows the merging process for the example set of indices. While the figure shows only
the indices, it actually merges the values. Most of the indices are unique, and thus require no merging.
Step 1 combines three pairs of indices: two pairs of '3's and one pair of '1's. Step 2 combines the inter-
mediate results for the '3's from step 1, so that there is now a single value for each distinct index. Notice
that in only two steps, the four elements with an index value of 3 are merged, because we performed a
tree reduction; we merged pairs of results or intermediate results at each step.

The merging (combining or reduction) process shown above is done with a set of permute operations.
The initial permute control is generated with a VPLZCNT+VPSUB sequence. VPLZCNT provides the
number of leading zeros for each vector element (i.e., contiguous zeros in the most significant bit posi-
tions). Subtracting the results of VPLZCNT from the number of bits in each vector element, minus one,
provides the bit position of the most significant '1' bit in the result of the VPCONFLICT instruction, or
results in a '-1' for an element if it has no conflicts. In the example above this sequence results in the
following permute control.

The permute loop for merging matching indices and generating the next set of permute indices repeats
until all values in the permute control become equal to ‘-1’.

The assembly code below shows both the scalar version of a histogram loop, and the vectorized version
with a tree reduction. Speedups are modest because the loop contains little computation; the SIMD
benefit comes almost entirely from vectorizing just the logical AND operation and the increment. SIMD
speedups can be much higher for loops containing more vectorizable computation.

Figure 18-11. VPCONFLICTD Merging Process

Figure 18-12. VPCONFLICTD Permute Control

SOM00014

… 63 32 31 0 bitsZMM1

533182501076493103

Step 1

Step 2

SOM00015

13 -1 -2 -1 -1 -1 -1 -1 -3 -1 -1 -1 -1 -1 -1 -1

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-50

Notice that the end result of the conflict loop (i.e., the resulting vector after all merging is done, ZMM2 in
the above sequence) holds the complete set of partial sums. That is, for each element, the result contains
the value of that element merged with all earlier elements with the same index value. Using the earlier
example values, ZMM2 contains the result shown in Figure 18-13.

Example 18-19. Scatter Implementation Alternatives
Scalar Code (Unrolled Two Times) Intel® AVX-512 Code

mov r9d, bins_minus_1
mov ebx, num_inputs
mov r10, pInput
mov r15, pHistogram
xor rax, rax

histogram_loop:
lea ecx, [rax + rax]
inc eax
movsxd rcx, ecx
mov esi, [r10+rcx*4]
and esi, r9d
mov r8d, [r10+rcx*4+4]
movsxd rsi, esi
and r8d, r9d
movsxd r8, r8d
inc dword ptr [r15+rsi*4]
inc dword ptr [r15+r8*4]
cmp eax, ebx
jb histogram_loop

vmovaps zmm4, all_1 // {1, 1, …, 1}
vmovaps zmm5, all_negative_1
vmovaps zmm6, all_31
vmovaps zmm7, all_bins_minus_1
mov ebx, num_inputs
mov r10, pInput
mov r15, pHistogram
xor rcx, rcx

histogram_loop:
vpandd zmm3, zmm7, [r10+rcx*4]
vpconflictd zmm0, zmm3
kxnorw k1, k1, k1
vmovaps zmm2, zmm4
vpxord zmm1, zmm1, zmm1
vpgatherdd zmm1{k1}, [r15+zmm3*4]
vptestmd k1, zmm0, zmm0
kortestw k1, k1
je update

vplzcntd zmm0, zmm0
vpsubd zmm0, zmm6, zmm0

conflict_loop:
vpermd zmm8{k1}{z}, zmm0, zmm2
vpermd zmm0{k1}, zmm0, zmm0
vpaddd zmm2{k1}, zmm2, zmm8
vpcmpned k1, zmm5, zmm0
kortestw k1, k1
jne conflict_loop

update:
vpaddd zmm0, zmm2, zmm1
kxnorw k1, k1, k1
add rcx, 16
vpscatterdd [r15+zmm3*4]{k1}, zmm0
cmp ecx, ebx
jb histogram_loop

Scalar, Baseline, 1x Speedup: 1.11x (random inputs); 1.34x (input values
identical)

18-51

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

While the above sequence does not take advantage of this, other use cases might.

18.16.2 Sparse Dot Product with VPCONFLICT
A sparse vector may be stored as a pair of arrays: one containing non-zero values, and one containing
the original locations of those values in the vector. Note that the indices are sorted in increasing order.

To perform a dot product of two sparse vectors efficiently, we need to find elements with matching
indices; those are the only ones on which we should perform the multiply and accumulation. The scalar
method for doing this is to start at the beginning of the two index arrays, compare those indices, and if
there is a match, do the multiply and accumulate, then advance the indices of both vectors. If there is no
match, we advance the index of the lagging vector.

Figure 18-13. VPCONFLICTD ZMM2 Result

Figure 18-14. Sparse Vector Example

SOM00016

4 1 1 1 1 1 1 1 2 1 1 1 1 2 1 1

SOM00017

A_index87 41 32 15 10 4 3 0

A_value1.0 5.0 -2.0 8.0 0.1 3.5 3.1 5.0

… 127 64 63 0 bits

… 63 32 31 0 bits

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-52

A_offset = 0; B_offset = 0; sum = 0;

while ((A_offset < A_length) && (B_offset < B_length))

{

if (A_index[A_offset] == B_index[B_offset]) // match

{

sum += A_value[A_offset] * B_value[B_offset];

A_offset++;

B_offset++;

}

else if (A_index[A_offset] < B_index[B_offset])

{

A_offset++;

}

else

{

B_offset++;

}

}

The Intel AVX-512CD instructions provide an efficient way to vectorize this loop. Instead of comparing
one index from each vector at a time, we can compare eight of them. First we combine eight indices from
each vector into a single vector register. Then, the VPCONFLICT instruction compares the indices. We use
the output to create a mask of elements in vector A that have a match, and also to create permute
controls to move the corresponding values of B to the same location, so that we can use a vector FMA
instruction.

Example 18-20 shows the assembly code for both the scalar and vector versions of a single comparison
and FMA. For brevity, the offset updates and looping are omitted.

18-53

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18.17 INTEL® AVX-512 VECTOR BYTE MANIPULATION INSTRUCTIONS
(VBMI)

Intel® AVX-512 VBMI instructions are a set of 512-bit instructions that are designed to speed up bit
manipulation operations. The following sections describe the new instructions and show simple usage
examples. See the Intel® 64 and IA-32 Architectures Software Developer’s Manual for complete instruction defini-
tions. Processors that provide VBMI1 and VBMI2 are enumerated by the CPUID feature flags
CPUID:(EAX=07H, ECX=0):ECX[bit 01] = 1 and CPUID:(EAX=07H, ECX=0):ECX[bit 06] = 1, respec-
tively.

Example 18-20. Scalar vs. Vector Update Using AVX-512CD

Scalar Code Intel® AVX-512 Code

mov rdx, A_index
mov rcx, A_offset
mov rax, A_value
mov r12, B_index
mov r13, B_offset
mov rbx, B_value

mov r10d, [rdx+rcx*4]
mov r11d, [r12+r13*4]
cmp r10d, r11d
jne skip_fma

 // do the fma on a match
movsd xmm5, [rbx+r13*8]
mulsd xmm5, [rax+rcx*8]
addsd xmm4, xmm5

skip_fma:

mov rdx, A_index
mov rcx, A_offset
mov rax, A_value
mov r12, B_index
mov r13, B_offset
mov rbx, B_value
mov r14, all_31s // array of {31, 31, …}
vmovaps zmm2, [r14]
mov r15, upconvert_control // array of {0, 7, 0, 6, 0, 5,

0, 4, 0, 3, 0, 2, 0, 1, 0, 0}
vmovaps zmm1, [r15]
vpternlogd zmm0, zmm0, zmm0, 255
movl esi, 21845
kmovw k1, esi // odd bits set

// read 8 indices for A
vmovdqu ymm5, [rdx+rcx*4]
// read 8 indices for B, and put
// them in the high part of zmm6
vinserti64x4 zmm6, zmm5, [r12+r13*4], 1
vpconflictd zmm7, zmm6
// extract A vs. B comparisons
vextracti64x4 ymm8, zmm7, 1
// convert comparison results to
// permute control
vplzcntd zmm9, zmm8
vptestmd k2, zmm8, zmm0
vpsubd zmm10, zmm2, zmm9
// upconvert permute controls from
// 32b to 64b, since data is 64b
vpermd zmm11{k1}, zmm1, zmm10
// Move A values to corresponding
// B values, and do FMA
vpermpd zmm12{k2}{z}, zmm11, [rax+rcx*8]
vfmadd231pd zmm4, zmm12, [rbx+r13*8]

Baseline, 1x Speedup, 4.4x

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-54

18.17.1 Permute Packet Bytes Elements Across Lanes (VPERMB)
The VPERMB instruction is a single source, any-to-any byte permute instruction. The following figure
shows a VPERMB instruction operation example.

VPERMB Operation:

// vpermb zmm Dst {k1}, zmm Src1, zmm Src2
bool zero_masking=false;
unsigned char *Dst, *Src1, *Src2;

for(int i=0;i<64;i++){
if(k1[i]){

Dst[i]= Src2[Src1[i]];
}else{

Dst[i]= zero_masking? 0 : Dst[i];
}

}

The following example shows a 64-byte lookup table implementation.

Scalar code:
void lookup(unsigned char* in_bytes, unsigned char* out_bytes, unsigned char* dictionary_bytes, int numOfElements){

 for(int i = 0; i < numOfElements; i++) {
 out_bytes[i] = dictionary_bytes[in_bytes[i] & 63];

 }
}

Figure 18-15. VPERMB Instruction Operation

SOM00018

A0 A1 A2 A3 A4 ... A63zmm2 src2:

0 4 1 3 63 ... 4zmm1 src1:

A0 A4 A1 A3 A63 ... A4zmm0 dst:

VPERMB zmm0, zmm1, zmm2

18-55

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18.17.2 Two-Source Byte Permute Across Lanes (VPERMI2B, VPERMT2B)
The VPERMI2B and VPERMT2B instructions are two-source byte, permute instructions. The destination is
also an operation source; in VPERMI2B the destination is the operation index, and in VPERMT2B the
destination is one of the data sources.

The following figure shows a VPERMI2B instruction operation example.

Example 18-21. Improvement with VPERMB Implementation

Alternative 1: Vector Implementation Without VBMI Alternative 2: VPERMB Implementation

mov rsi, dictionary_bytes
mov r11, in_bytes
mov rax, out_bytes
mov r9d, numOfElements
xor r8, r8
vpmovzxbw zmm3, [rsi]
vpmovzxbw zmm4, [rsi+32]

loop:
vpmovzxbw zmm1, [r11+r8*1]
vpmovzxbw zmm2, [r11+r8*1+32]
vpermi2w zmm1, zmm3, zmm4
vpermi2w zmm2, zmm3, zmm4
vpmovwb [rax+r8*1], zmm1
vpmovwb [rax+r8*1+32], zmm2
add r8, 64
cmp r8, r9
jl loop

mov rsi, dictionary_bytes
mov r11, in_bytes
mov rax, out_bytes
mov r9d, numOfElements
xor r8, r8
vmovdqu32 zmm2, [rsi]

loop:
vmovdqu32 zmm1, [r11+r8*1]
vpermb zmm1, zmm1, zmm2
vmovdqu32 [rax+r8*1], zmm1
add r8, 64
cmp r8, r9
jl loop

Base Measurement: 1x Speedup: 6.5x

Figure 18-16. VPERMI2B Instruction Operation

VPERMI2B zmm0, zmm1, zmm2

B0 B1 B2 B3 B4 ... B63zmm2 src2:

SOM00019

0 2 65 4 68 ... 63zmm0 (index and source):

A0 A2 B1 A4 B4 ... A63zmm0 (dst):

 64 65 66 67 68 … 127

A0 A1 A2 A3 A4 ... A63zmm1 src1:

Index: 0 1 2 3 4 … 63

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-56

VPERMI2B Operation:

/// vpermi2b Dst{k1}, Src1, Src2
bool zero_masking=false;
unsigned char *Dst, *Src1, *Src2;
for(int i=0;i<64;i++){

if(k1[i]){
Dst[i]= Dst [i]>63 ? Src1[Dst [i] & 63] : Src2[Dst [i] & 63] ;

}else{
Dst[i]= zero_masking? 0 : Dst[i];

}
}

The following figure shows a VPERMT2B instruction operation example.

VPERMT2B Operation:

// vpermt2b Dst{k1}, Src1, Src2
bool zero_masking=false;
unsigned char *Dst, *Src1, * Src2;
data2= copy(Dst);
for(int i=0;i<64;i++){

if(k1[i]){
Dst[i]= Src2[i]>63 ? Src1[Src2 [i] & 63] : Dst[Src2[i] & 63] ;

}else{
Dst[i]= zero_masking? 0 : Dst[i];

}
}

Figure 18-17. VPERMT2B Instruction Operation

VPERMT2B zmm0, zmm1, zmm2

B0 B1 B2 B3 B4 ... B63
zmm0

data source:

SOM00020

0 2 65 4 68 ... 63zmm2 src2:

A0 A2 B1 A4 B4 ... A63zmm0 (dst):

 64 65 66 67 68 … 127

A0 A1 A2 A3 A4 ... A63zmm1 src1:

Index: 0 1 2 3 4 … 63

18-57

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

The following example shows a 128-byte lookup table implementation.

C Code:
void lookup(unsigned char* in_bytes, unsigned char* out_bytes, unsigned char* dictionary_bytes, int numOfElements){

for(int i = 0; i < numOfElements; i++) {
out_bytes[i] = dictionary_bytes[in_bytes[i] & 127];

}
}

Example 18-22. Improvement with VPERMI2B Implementation

Alternative 1: Vector Implementation Without VBMI Alternative 2: VPERMI2B Implementation

//get data sent to function
mov rsi, dictionary_bytes
mov r11, in_bytes
mov rax, out_bytes
mov r9d, numOfElements
xor r8, r8
//Reorganize dictionary
vpmovzxbw zmm10, [rsi]
vpmovzxbw zmm15, [rsi+64]
vpsllw zmm15, zmm15, 8
vpord zmm10, zmm15, zmm10
vpmovzxbw zmm11, [rsi+32]
vpmovzxbw zmm15, [rsi+96]
vpsllw zmm15, zmm15, 8
vpord zmm11, zmm15, zmm11
//initialize constants
mov r10, 0x00400040
vpbroadcastw zmm12, r10d
mov r10, 0
vpbroadcastd zmm13, r10d
mov r10, 0x00ff00ff
vpbroadcastd zmm14, r10d
//start iterations
loop:
vpmovzxbw zmm1, [r11+r8*1]
vpandd zmm2, zmm1, zmm12
vpcmpw k1, zmm2, zmm13, 4
vpermi2w zmm1, zmm10, zmm11
vpsrlw zmm1{k1}, zmm1, 8
vpandd zmm1, zmm1, zmm14
vpmovwb [rax+r8*1], zmm1
add r8, 32
cmp r8, r9
jl loop

mov rsi, dictionary_bytes
mov r11, in_bytes
mov rax, out_bytes
mov r9d, numOfElements
xor r8, r8
vmovdqu32 zmm2, [rsi]
vmovdqu32 zmm3, [rsi+64]
loop:
vmovdqu32 zmm1, [r11+r8*1]
vpermi2b zmm1, zmm2, zmm3
vmovdqu32 [rax+r8*1], zmm1
add r8, 64
cmp r8, r9
jl loop

Base Measurement: 1x Speedup: 5.3x

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-58

18.17.3 Select Packed Unaligned Bytes from Quadword Sources (VPMULTISHIFTQB)
The VPMULTISHIFTQB instruction selects eight unaligned bytes from each input qword element of the
second source operand and writes eight assembled bytes for each qword element in the destination
operand.

The following figure shows a VPMULTISHIFTQB instruction operation example.

VPMULTISHIFTQB Operation:

// vpmultishiftqb Dst{k1},Src1,Src2
bool zero_masking=false;
unsigned char *Dst, * Src1;
unsigned __int64 *Src2;
bit * k1;
for(int i=0;i<8;i++){

for(int j=0;j<8;j++){
if(k1[i*8 +j]){

Dst[i*8 +j]= (src2[i]>> Src1[i*8 +j]) &0xFF ;
}else{

Dst[i*8 +j]= zero_masking? 0 : Dst[i*8 +j];
}

}
}

Figure 18-18. VPMULTISHIFTQB Instruction Operation

SOM00022

zmm2 src2:

zmm1 src1:

0 1 2 3 4 5 6 7 8 9 10 11 ... 63 ...

A1‐8

12 13 14 15

A8‐15

0 1 2 3 4 5 6 7 8 9 10 11 ... 6312 13 14 15

1 8 ...

Index: 0 Index: 1

7 2 ...

B7‐14A8‐15 B2‐9

Index: 8 Index: 9

A1‐8 A8‐15 ... B2‐9 B7‐14 ...zmm0 dst:

qword1 qword2 ...

0 1 2 3 4 5 6 7 8 9 10 11 ... 63

H0‐7

12 13 14 15

H9‐16

qword8

...

... 0 9... ...

H0‐7 H9‐16

VPMULTISHIFTQB zmm0, zmm1, zmm2

18-59

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

The following example converts a 5-bit unsigned integer array to a 1-byte unsigned integer array.
C code:
void decompress (unsigned char* compressedData, unsigned char* decompressedData, int numOfElements){

for(int i = 0; i < numOfElements; i += 8){
unsigned __int64 * data = (unsigned __int64 *)compressedData;
decompressedData[i+0] = * data & 0x1f;
decompressedData[i+1] = (*data >> 5) & 0x1f;
decompressedData[i+2] = (*data >> 10) & 0x1f;
decompressedData[i+3] = (*data >> 15) & 0x1f;
decompressedData[i+4] = (*data >> 20) & 0x1f;
decompressedData[i+5] = (*data >> 25) & 0x1f;
decompressedData[i+6] = (*data >> 30) & 0x1f;
decompressedData[i+7] = (*data >> 35) & 0x1f;
compressedData += 5;

}
}

Example 18-23. Improvement with VPMULTISHIFTQB Implementation

Alternative 1: Vector Implementation Without VBMI Alternative 2: VPMULTISHIFTQB Implementation

mov rdx, compressedData
mov r9, decompressedData
mov eax, numOfElements
shr eax,3
xor rsi, rsi
loop:
mov rcx, qword ptr [rdx]
mov r10, rcx
and r10, 0x1f
mov r11, rcx
mov byte ptr [r9+rsi*8], r10b
mov r10, rcx
shr r10, 0xa
add rdx, 0x5
and r10, 0x1f
mov byte ptr [r9+rsi*8+0x2], r10b
mov r10, rcx
shr r10, 0xf
and r10, 0x1f
mov byte ptr [r9+rsi*8+0x3], r10b
mov r10, rcx
shr r10, 0x14
and r10, 0x1f
mov byte ptr [r9+rsi*8+0x4], r10b
mov r10, rcx
shr r10, 0x19
and r10, 0x1f
mov byte ptr [r9+rsi*8+0x5], r10b
mov r10, rcx
shr r11, 0x5
shr r10, 0x1e

//constants :
__declspec (align(64)) const unsigned __int8
permute_ctrl[64] = {

0, 1, 2, 3, 4, 0, 0, 0
5, 6, 7, 8, 9, 0, 0, 0
10, 11, 12, 13, 14, 0, 0, 0
15, 16, 17, 18, 19, 0, 0, 0
20, 21, 22, 23, 24, 0, 0, 0
25, 26, 27, 28, 29, 0, 0, 0
30, 31, 32, 33, 34, 0, 0, 0
35, 36, 37, 38, 39, 0, 0, 0

};
__declspec (align(64)) const unsigned __int8
multishift_ctrl[64] = {

0, 5, 10, 15, 20, 25, 30, 35
0, 5, 10, 15, 20, 25, 30, 35
0, 5, 10, 15, 20, 25, 30, 35
0, 5, 10, 15, 20, 25, 30, 35
0, 5, 10, 15, 20, 25, 30, 35
0, 5, 10, 15, 20, 25, 30, 35
0, 5, 10, 15, 20, 25, 30, 35
0, 5, 10, 15, 20, 25, 30, 35

};
//asm:
mov rsi, compressedData
mov rdi, decompressedData
mov r8d, numOfElements
lea r8, [rdi+r8]
mov r9, 0x1F1F1F1F
vpbroadcastd zmm12, r9d
vmovdqu32 zmm10, permute_ctrl
vmovdqu32 zmm11, multishift_ctrl

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-60

18.18 FMA LATENCY
When executing in 512-bit register port scheme, Port 0 FMA has a latency of 4 cycles, and Port 5 FMA has
a latency of 6 cycles. Bypass can have a -2 (fast bypass) to +1 cycle delay. Therefore, instructions that
execute on the Skylake microarchitecture FMA have a latency of 4-7 cycles.

The instructions are divided into the following two groups.
• Group A Instructions: vadd*; vfmadd*; vfnmsub*; vfnmadd*; vfnmsub*; vmax*; vmin*; vmul*;

vscalef*; vsub*; vcvt*; vgetexp*; vfixupimm*; vrange*; vgetmant*; vreduce*; vcmp*, vcomi*,
vdpp*, vhadd*, vhsub*, vrndscale*, vround*

• Group B Instructions: vpmaddubsw; vpmaddwd; vpmuldq; vpmulhrsw; vpmulhuw; vpmulhw;
vpmullw; vpmuludq

The FMA unit supports fast bypass when all instruction sources come from the FMA unit. In this case
Group A has a latency of 4 cycles for both ports 0 and 5, and Group B has a latency of 5 cycles for both
ports 0 and 5.

The figure below explains fast bypass when all sources come from the FMA unit.

and r11, 0x1f
shr rcx, 0x23
and r10, 0x1f
and rcx, 0x1f
mov byte ptr [r9+rsi*8+0x1], r11b
mov byte ptr [r9+rsi*8+0x6], r10b
mov byte ptr [r9+rsi*8+0x7], cl
inc rsi
cmp rsi, rax
jb loop

loop:
vmovdqu32 zmm1, [rsi]
vpermb zmm2, zmm10, zmm1
vpmultishiftqb zmm2, zmm11, zmm2
vpandq zmm2, zmm12, zmm2
vmovdqu32 [rdi], zmm2
add rdi, 64
add rsi, 40
cmp rdi, r8
jl loop

Base Measurement: 1x Speedup: 26x

Example 18-23. Improvement with VPMULTISHIFTQB Implementation (Contd.)

18-61

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

The grey boxes represent compute cycles. The white boxes represent data transfer for the port5 FMA
unit.

If fast bypass is not used, that is, when not all sources come from the FMA unit, group A instructions have
a latency of 4 cycles on Port0 and 6 cycles on port5, while group B instructions have an additional cycle
and hence have a latency of 5 cycles on Port0 and 7 cycles on port5.

The following table summarizes the FMA unit latency for the various options.

18.19 MIXING INTEL® AVX EXTENSIONS OR INTEL® AVX-512 EXTENSIONS
WITH INTEL® STREAMING SIMD EXTENSIONS (INTEL® SSE) CODE

There are two main instruction groups that affect the processor states:
• Group A: Instruction types that either set bits 128-511 of vector registers 0-15 to zero, or do not

modify them at all.

— Intel SSE instructions.

— 128-bit Intel AVX instructions, 128-bit Intel AVX-512 instructions.

— 256-bit (ymm16-ymm31) Intel AVX-512 instructions.

Figure 18-19. Fast Bypass When All Sources Come from FMA Unit

Table 18-7. FMA Unit Latency

Instruction Group
Fast Bypass (FMA Data Reuse) No Fast Bypass (No FMA Data Reuse)

Port 0 Port 5 Port 0 Port 5

Group A 4 4 4 6

Group B 5 5 5 7

SOM00021

1 2 3 4

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4

FMA port0

FMA port5

FMA port5

FMA port5

FMA port5

FMA port0

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-62

— 512-bit (zmm16-zmm31) Intel AVX-512 instructions.

— AVX-512 instructions that write to mask registers k0-k7.

— GPR instructions.
• Group B: Instructions types that modify bits 128-511 of vector registers 0-15.

— 256-bit (ymm0-ymm15) Intel AVX instructions, Intel AVX-512 instructions.

— 512-bit (zmm0-zmm15) Intel AVX-512 instructions.

The following figure illustrates Skylake Server microarchitecture's model for mixing Intel AVX instruc-
tions or Intel AVX-512 instructions with Intel SSE instructions.

The implementation is similar to Skylake client microarchitecture, where every Intel SSE instruction
executed in Dirty Upper State (2) needs to preserve bits 128-511 of the destination register, and there-
fore the operation has an additional dependency on the destination register and a blend operation with
bits 128-511.

Recommendations:
• When mixing group B instructions with Intel SSE instructions, or suspecting that such a mixture

might occur, use the VZEROUPPER instruction whenever a transition is expected.
• Add VZEROUPPER after group B instructions were executed and before any function call that might

lead to an Intel SSE instruction execution.
• Add VZEROUPPER at the end of any function that uses group B instructions.
• Add VZEROUPPER before thread creation if not already in a clean state so that the thread does not

inherit a Dirty Upper State.

18.20 MIXING ZMM VECTOR CODE WITH XMM/YMM
Skylake microarchitecture has two port schemes, one for using 256-bit or less registers, and another for
using 512-bit registers.

When using registers up to or including 256 bits, FMA operations dispatch to ports 0 and 1 and SIMD
operations dispatch to ports 0, 1 and 5. When using 512-bit register operations, both FMA and SIMD
operations dispatch to ports 0 and 5.

The maximum register width in the reservation station (RS) determines the 256 or 512 port scheme.

Figure 18-20. Mixing Intel AVX Instructions or Intel AVX-512 Instructions with Intel SSE Instructions

18-63

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

Notice that when using AVX-512 encoded instructions with YMM registers, the instructions are considered
to be 256-bit wide.

The result of the 512-bit port scheme is that XMM or YMM code dispatches to 2 ports (0 and 5) instead of
3 ports (0, 1, and 5) and may have lower throughput and longer latency compared to the 256-bit port
scheme.

In the 256-bit code only example, the FMAs are dispatched to ports 0 and 1, and permd is dispatched to
port 5 as the broadcast instruction is 256 bits wide. In the 256-bit and 512-bit mixed code example, the
broadcast is 512 bits wide; therefore, the processor uses the 512-bit port scheme where the FMAs
dispatch to ports 0 and 5 and permd to port 5, thus increasing the pressure on port 5.

18.21 SERVERS WITH A SINGLE FMA UNIT
Some processors based on Skylake microarchitecture have two Intel AVX-512 FMA units, on ports 0 and
5, while other processors based on Skylake microarchitecture have a single Intel AVX-512 FMA unit,
which is located on port 0.

Code that is optimized to run on a processor with two FMA units might not be optimal when run on a
processor with one FMA unit.

The following example code shows how to detect whether a system has one or two Intel AVX-512 FMA
units. It includes the following:
• An Intel AVX-512 warmup.
• A function that executes only FMA instructions.
• A function that executes both FMA and shuffle instructions.

Example 18-24. 256-bit Code vs. 256-bit Code Mixed with 512-bit Code

256-bit Code Only 256-bit Code Mixed with 512-bit Code

Loop:
vpbroadcastd ymm0, dword ptr [rsp]
vfmadd213ps ymm7, ymm7, ymm7
vfmadd213ps ymm8, ymm8, ymm8
vfmadd213ps ymm9, ymm9, ymm9
vfmadd213ps ymm10, ymm10, ymm10
vfmadd213ps ymm11, ymm11, ymm11
vfmadd213ps ymm12, ymm12, ymm12
vfmadd213ps ymm13, ymm13, ymm13
vfmadd213ps ymm14, ymm14, ymm14
vfmadd213ps ymm15, ymm15, ymm15
vfmadd213ps ymm16, ymm16, ymm16
vfmadd213ps ymm17, ymm17, ymm17
vfmadd213ps ymm18, ymm18, ymm18
vpermd ymm1, ymm1, ymm1
vpermd ymm2, ymm2, ymm2
vpermd ymm3, ymm3, ymm3
vpermd ymm4, ymm4, ymm4
vpermd ymm5, ymm5, ymm5
vpermd ymm6, ymm6, ymm6
dec rdx
jnle Loop

Loop:
vpbroadcastd zmm0, dword ptr [rsp]
vfmadd213ps ymm7, ymm7, ymm7
vfmadd213ps ymm8, ymm8, ymm8
vfmadd213ps ymm9, ymm9, ymm9
vfmadd213ps ymm10, ymm10, ymm10
vfmadd213ps ymm11, ymm11, ymm11
vfmadd213ps ymm12, ymm12, ymm12
vfmadd213ps ymm13, ymm13, ymm13
vfmadd213ps ymm14, ymm14, ymm14
vfmadd213ps ymm15, ymm15, ymm15
vfmadd213ps ymm16, ymm16, ymm16
vfmadd213ps ymm17, ymm17, ymm17
vfmadd213ps ymm18, ymm18, ymm18
vpermd ymm1, ymm1, ymm1
vpermd ymm2, ymm2, ymm2
vpermd ymm3, ymm3, ymm3
vpermd ymm4, ymm4, ymm4
vpermd ymm5, ymm5, ymm5
vpermd ymm6, ymm6, ymm6
dec rdx
jnle Loop

Baseline 1x Slowdown: 1.3x

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-64

• Code that, based on the results of these two tests, identifies whether the processor has one or two
FMA units.

Notice that each test is executed three times to improve test accuracy.

In order to reduce the program overhead, it is highly recommended not to execute this test in every func-
tion call, but as part of installation, or once at startup.

The differentiation between the two processors is based on the ratio between the two throughput tests.
Processors with two FMA units are able to run the FMA-only test twice as fast as the FMA and shuffle test.
However, a processor with one FMA unit will run both tests at the same speed.

Example 18-25. Identifying One or Two FMA Units in a Processor Based on Skylake Microarchitecture
#include <string.h>
#include <stdlib.h>
#include <immintrin.h>
#include <stdio.h>
#include <stdint.h>

static uint64_t rdtsc(void) {
 unsigned int ax, dx;

 __asm__ __volatile__ ("rdtsc" : "=a"(ax), "=d"(dx));

 return ((((uint64_t)dx) << 32) | ax);
}

uint64_t fma_shuffle_tpt(uint64_t loop_cnt){
uint64_t loops = loop_cnt;
__declspec(align(64)) double one_vec[8] = {1, 1, 1, 1,1, 1, 1, 1};
__declspec(align(64)) int shuf_vec[16] = {0, 1, 2, 3,4, 5, 6, 7,8, 9, 10, 11,12, 13, 14, 15};
 __asm

 {
vmovups zmm0, [one_vec]
vmovups zmm1, [one_vec]
vmovups zmm2, [one_vec]

18-65

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

vmovups zmm3, [one_vec]
vmovups zmm4, [one_vec]
vmovups zmm5, [one_vec]
vmovups zmm6, [one_vec]
vmovups zmm7, [one_vec]
vmovups zmm8, [one_vec]
vmovups zmm9, [one_vec]
vmovups zmm10, [one_vec]
vmovups zmm11, [one_vec]
vmovups zmm12, [shuf_vec]
vmovups zmm13, [shuf_vec]
vmovups zmm14, [shuf_vec]
vmovups zmm15, [shuf_vec]
vmovups zmm16, [shuf_vec]
vmovups zmm17, [shuf_vec]
vmovups zmm18, [shuf_vec]
vmovups zmm19, [shuf_vec]
vmovups zmm20, [shuf_vec]
vmovups zmm21, [shuf_vec]
vmovups zmm22, [shuf_vec]
vmovups zmm23, [shuf_vec]
vmovups zmm30, [shuf_vec]
mov rdx, loops

loop1:
vfmadd231pd zmm0, zmm0, zmm0
vfmadd231pd zmm1, zmm1, zmm1
vfmadd231pd zmm2, zmm2, zmm2
vfmadd231pd zmm3, zmm3, zmm3
vfmadd231pd zmm4, zmm4, zmm4
vfmadd231pd zmm5, zmm5, zmm5
vfmadd231pd zmm6, zmm6, zmm6
vfmadd231pd zmm7, zmm7, zmm7
vfmadd231pd zmm8, zmm8, zmm8
vfmadd231pd zmm9, zmm9, zmm9
vfmadd231pd zmm10, zmm10, zmm10
vfmadd231pd zmm11, zmm11, zmm11
vpermd zmm12, zmm30, zmm30
vpermd zmm13, zmm30, zmm30
vpermd zmm14, zmm30, zmm30
vpermd zmm15, zmm30, zmm30
vpermd zmm16, zmm30, zmm30
vpermd zmm17, zmm30, zmm30
vpermd zmm18, zmm30, zmm30
vpermd zmm19, zmm30, zmm30
vpermd zmm20, zmm30, zmm30
vpermd zmm21, zmm30, zmm30
vpermd zmm22, zmm30, zmm30
vpermd zmm23, zmm30, zmm30
dec rdx
jg loop1

 }
}

Example 18-25. Identifying One or Two FMA Units in a Processor Based on Skylake Microarchitecture (Contd.)

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-66

uint64_t fma_only_tpt(int loop_cnt){
uint64_t loops = loop_cnt;
__declspec(align(64)) double one_vec[8] = {1, 1, 1, 1,1, 1, 1, 1};

 __asm
 {

vmovups zmm0, [one_vec]
vmovups zmm1, [one_vec]
vmovups zmm2, [one_vec]
vmovups zmm3, [one_vec]
vmovups zmm4, [one_vec]
vmovups zmm5, [one_vec]
vmovups zmm6, [one_vec]
vmovups zmm7, [one_vec]
vmovups zmm8, [one_vec]
vmovups zmm9, [one_vec]
vmovups zmm10, [one_vec]
vmovups zmm11, [one_vec]
mov rdx, loops

loop1:
vfmadd231pd zmm0, zmm0, zmm0
vfmadd231pd zmm1, zmm1, zmm1
vfmadd231pd zmm2, zmm2, zmm2
vfmadd231pd zmm3, zmm3, zmm3
vfmadd231pd zmm4, zmm4, zmm4
vfmadd231pd zmm5, zmm5, zmm5
vfmadd231pd zmm6, zmm6, zmm6
vfmadd231pd zmm7, zmm7, zmm7
vfmadd231pd zmm8, zmm8, zmm8
vfmadd231pd zmm9, zmm9, zmm9
vfmadd231pd zmm10, zmm10, zmm10
vfmadd231pd zmm11, zmm11, zmm11
dec rdx
jg loop1

 }
}

int main()
{

int i;
uint64_t fma_shuf_tpt_test[3];
uint64_t fma_shuf_tpt_test_min;
uint64_t fma_only_tpt_test[3];
uint64_t fma_only_tpt_test_min;
uint64_t start = 0;
uint64_t number_of_fma_units_per_core = 2;

Example 18-25. Identifying One or Two FMA Units in a Processor Based on Skylake Microarchitecture (Contd.)

18-67

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

/***/
/* Step 1: Warmup */
/***/
fma_only_tpt(100000);

/***/
/* Step 2: Execute FMA and Shuffle TPT Test */
/***/

for(i = 0; i < 3; i++){
start = rdtsc();
fma_shuffle_tpt(1000);
fma_shuf_tpt_test[i] = rdtsc() - start;

}

/***/
/* Step 3: Execute FMA only TPT Test */
/***/
for(i = 0; i < 3; i++){

start = rdtsc();
fma_only_tpt(1000);
fma_only_tpt_test[i] = rdtsc() - start;

}

/***/
/* Step 4: Decide if 1 FMA server or 2 FMA server */
/***/
fma_shuf_tpt_test_min = fma_shuf_tpt_test[0];
fma_only_tpt_test_min = fma_only_tpt_test[0];
for(i = 1; i < 3; i++){

if ((int)fma_shuf_tpt_test[i] < (int)fma_shuf_tpt_test_min) fma_shuf_tpt_test_min = fma_shuf_tpt_test[i];
if ((int)fma_only_tpt_test[i] < (int)fma_only_tpt_test_min) fma_only_tpt_test_min = fma_only_tpt_test[i];

}

if(((double)fma_shuf_tpt_test_min/(double)fma_only_tpt_test_min) < 1.5){
number_of_fma_units_per_core = 1;

}

printf("%d FMA server\n", number_of_fma_units_per_core);
return 0;

}

Example 18-25. Identifying One or Two FMA Units in a Processor Based on Skylake Microarchitecture (Contd.)

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-68

18.22 GATHER/SCATTER TO SHUFFLE (G2S/STS)

18.22.1 Gather to Shuffle in Strided Loads
In cases where there is data locality between gathered elements in memory, performance can be
improved by replacing the gather instruction with a software sequence.

This section discusses the very common strided load pattern. Strided loads are sets of loads where the
offset in memory between two consecutive loads is constant.

The following examples show three different code variations performing an Array of Structures (AOS) to
Structure of Arrays (SOA) transformation. The code separates the real and imaginary elements in a
complex array into two separate arrays.

Consider the following C code:

for(int i=0;i<len;i++){

Real_buffer[i] = Complex_buffer[i].real;

Imaginary_buffer[i] = Complex_buffer[i].imag;

}

Example 18-26. Gather to Shuffle in Strided Loads Example

Alternative 1: Intel® AVX-512 vpgatherdd Alternative 2: G2S Using Intel® AVX-512 vpermi2d

loop:
vpcmpeqb k1, xmm0, xmm0
vpcmpeqb k2, xmm0, xmm0
movsxd rdx, edx
movsxd rdi, esi
inc esi
shl rdi, 0x7
vpxord zmm2, zmm2, zmm2
lea rax, [r8+rdx*8]
add edx, 0x20
vpgatherdd zmm2{k1}, [rax+zmm1*4]
vpxord zmm3, zmm3, zmm3
vpxord zmm4, zmm4, zmm4
vpxord zmm5, zmm5, zmm5
vpgatherdd zmm3{k2}, [rax+zmm0*4]
vpcmpeqb k3, xmm0, xmm0
vpcmpeqb k4, xmm0, xmm0
vmovups [r9+rdi*1], zmm2
vmovups [rcx+rdi*1], zmm3
vpgatherdd zmm4{k3}, [rax+zmm1*4+0x80]
vpgatherdd zmm5{k4}, [rax+zmm0*4+0x80]
vmovups [r9+rdi*1+0x40], zmm4
vmovups [rcx+rdi*1+0x40], zmm5
cmp esi, r14d
jb loop

vmovups zmm4, [rdx+r9*8]
vmovups zmm0, [rdx+r9*8+0x40]
vmovups zmm5, [rdx+r9*8+0x80]
vmovups zmm1, [rdx+r9*8+0xc0]
vmovaps zmm2, zmm7
vmovaps zmm3, zmm7
vpermi2d zmm2, zmm4, zmm0
vpermt2d zmm4, zmm6, zmm0
vpermi2d zmm3, zmm5, zmm1
vpermt2d zmm5, zmm6, zmm1
vmovdqu32 [rcx+r9*4], zmm2
vmovdqu32 [rcx+r9*4+0x40], zmm3
vmovdqu32 [r8+r9*4], zmm4
vmovdqu32 [r8+r9*4+0x40], zmm5
add r9, 0x20
cmp r9, r10
jb loop

Baseline 1x Speedup: 4.8x

18-69

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

The following constants were loaded into zmm registers and used as gather and permute indices:

Zmm0 (Alternative 1), zmm6 (Alternative 2)

__declspec (align(64)) const __int32 gather_imag_index[16] = {1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23,
25, 27, 29, 31};

Zmm1 (Alternative 1), zmm7 (Alternative 2)

__declspec (align(64)) const __int32 gather_real_index[16] = {0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22,
24, 26, 28, 30};

Recommendation: For best performance, replace strided loads where the stride is short, with a
sequence of loads and permutes.

18.22.2 Scatter to Shuffle in Strided Stores
The following is an Scatter to Shuffle example that replaces scatter with permute and store instructions

Consider the following C code:

for(int i=0;i<len;i++){

Complex_buffer[i].real = Real_buffer[i];

Complex_buffer[i].imag = Imaginary_buffer[i];

}

The following constants were used as scatter indices:

Zmm1:

__declspec (align(64)) const __int32 scatter_real_index[16] = {0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22,
24, 26, 28, 30};

Zmm0:

__declspec (align(64)) const __int32 scatter_imag_index[16] = {1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21,
23, 25, 27, 29, 31};

Example 18-27. Gather to Shuffle in Strided Stores Example

Alternative 1: Intel® AVX-512 vscatterdps Alternative 2: S2S using Intel® AVX-512 vpermi2d

loop:
vpcmpeqb k1, xmm0, xmm0
lea r11, [r8+rcx*4]
vpcmpeqb k2, xmm0, xmm0
vmovups zmm2, [rax+rsi*4]
vmovups zmm3, [r9+rsi*4]
vscatterdps [r11+zmm1*4]{k1}, zmm2
vscatterdps [r11+zmm0*4]{k2}, zmm3
add rsi, 0x10
add rcx, 0x20
cmp rsi, r10
jl loop

loop:
vmovups zmm4, [rax+r8*4]
vmovups zmm2, [r10+r8*4]
vmovaps zmm3, zmm1
add r8, 0x10
vpermi2d zmm3, zmm4, zmm2
vpermt2d zmm4, zmm0, zmm2
vmovups [r9+rsi*4], zmm3
vmovups [r9+rsi*4+0x40], zmm4
add rsi, 0x20
cmp r8, r11
jl loop

Baseline 1x Speedup: 4.4x

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-70

The following constants were used as permute indices:

Zmm1:

__declspec (align(64)) const __int32 first_half[16] = {0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7,
23};

Zmm0:

__declspec (align(64)) const __int32 second_half[16] = {8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14,
30, 15, 31};

18.22.3 Gather to Shuffle in Adjacent Loads
In cases where the gathered elements are grouped into adjacent sequences, the gather instruction can
be replaced by a software sequence to improve performance.

The following example shows how to load vectors when elements are adjacent.

Notice that in this case the order of the elements in the arrays is set according to an index buffer and
therefore the software optimization discussed in Section 18.22.1, “Gather to Shuffle in Strided Loads” is
not applicable in this case.

Consider the following C code:

typedef struct{

 double var[4];

} ElemStruct;

const int* indices = Indices;

const ElemStruct *in = (const ElemStruct*) InputBuffer;

double* restrict out = OutputBuffer;

for (int i = 0; i < width; i++){

for (int j = 0; j < 4; j++){

out[i*4+j] = in[indices[i]].var[j];

}

}

18-71

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

The following constants were used in the vgatherdpd implementation:

ymm0:

__declspec (align(64)) const __int32 index_inc[8] = {0, 8, 16, 24, 0, 8, 16, 24};

ymm1:

__declspec (align(64)) const __int32 index_scale[8] = {32, 32, 32, 32, 32, 32, 32, 32};

K1 register value is 0xF0.

18.23 DATA ALIGNMENT
This section explains the benefit of aligning data when using the Intel AVX-512 instructions and proposes
some methods to improve performance when such alignment is not possible. Most examples in this
section are variations of the SAXPY kernel. SAXPY is the Scalar Alpha * X + Y algorithm.

The C code below is a C implementation of SAXPY.

for (int i = 0; i < n; i++)

{

c[i] = alpha * a[i] + b[i];

}

18.23.1 Align Data to 64 Bytes
Aligning data to vector length is recommended. For best results, when using Intel AVX-512 instructions,
align data to 64-bytes.

When doing a 64-byte Intel AVX-512 unaligned load/store, every load/store is a cache-line split, since
the cache-line is 64 bytes. This is double the cache line split rate of Intel AVX2 code that uses 32-byte
registers. A high cache-line split rate in memory-intensive code can cause poor performance.

Example 18-28. Gather to Shuffle in Adjacent Loads Example

Alternative 1: vgatherdpd Implementation Alternative 2: Load and Masked broadcast

loop:
vpbroadcastd ymm3, [r9+rsi*4]
mov r15d, esi
vpbroadcastd xmm2, [r9+rsi*4+0x4]
add rsi, 0x2
vpbroadcastd ymm3{k1}, xmm2
vpmulld ymm4, ymm3, ymm1
vpaddd ymm5, ymm4, ymm0
vpcmpeqb k2, xmm0, xmm0
shl r15d, 0x2
movsxd r15, r15d
vpxord zmm6, zmm6, zmm6
vgatherdpd zmm6{k2}, [r10+ymm5*1]
vmovups [r11+r15*8], zmm6
cmp rsi, rdi
jl loop

loop:
movsxd r11, [r10+rcx*4]
shl r11, 0x5
vmovupd ymm0, [r9+r11*1]
movsxd r11, [r10+rcx*4+0x4]
shl r11, 0x5
vbroadcastf64x4 zmm0{k1}, [r9+r11*1]
mov r11d, ecx
shl r11d, 0x2
add rcx, 0x2
movsxd r11, r11d
vmovups [r8+r11*8], zmm0
cmp rcx, rsi
jl loop

Baseline 1x Speedup: 2.2x

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-72

The following table shows how the performance of the memory intensive SAXPY code is affected by
misaligning input and output buffers. The data in the table is based on the following code.

The following table summarizes the data alignment effects on SAXPY performance with speedup values
for the various options.

Example 18-29. Data Alignment
__asm {

mov rax, src1
mov rbx, src2
mov rcx, dst
mov rdx, len
xor rdi, rdi
vbroadcastss zmm0, alpha

mainloop:
vmovups zmm1, [rax]
vfmadd213ps zmm1, zmm0, [rbx]
vmovups [rcx], zmm1

vmovups zmm1, [rax+0x40]
vfmadd213ps zmm1, zmm0, [rbx+0x40]
vmovups [rcx+0x40], zmm1

vmovups zmm1, [rax+0x80]
vfmadd213ps zmm1, zmm0, [rbx+0x80]
vmovups [rcx+0x80], zmm1

vmovups zmm1, [rax+0xC0]
vfmadd213ps zmm1, zmm0, [rbx+0xC0]
vmovups [rcx+0xC0], zmm1

add rax, 256
add rbx, 256
add rcx, 256
add rdi, 64
cmp rdi, rdx
jl mainloop

}

Table 18-8. Data Alignment Effects on SAXPY Performance vs. Speedup Value

Data Alignment Effects on SAXPY Performance Speedup

Alternative 1: Both sources and the destination are 64-byte aligned. Baseline, 1.0

Alternative 2: Both sources are 64-byte aligned, destination has a 4 byte offset from the alignment. 0.66x

Alternative 3: Both sources and the destinations have 4 bytes offset from the alignment. 0.59x

Alternative 4: One source has a 4 byte offset from the alignment, the other source and the destination
are 64-byte aligned.

0.77x

18-73

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18.24 DYNAMIC MEMORY ALLOCATION AND MEMORY ALIGNMENT
Consider the following structure:

float3_SOA {

 __declspec(align(64)) float x[16];

 __declspec(align(64)) float y[16];

 };

The memory allocated for the structure is aligned to 64 bytes if you use this structure as follows:

float3_SOA f;

However, if you use dynamic memory allocation as follows, the declspec directive is ignored and the 64-
byte memory alignment is not guaranteed:

float3_SOA* stPtr = new float3_SOA();

In this case, you should use dynamic aligned memory allocation and/or redefine operator new.

Recommendation: Align data to 64 bytes, when possible, using the following guidelines.
• Use dynamic data alignment using the _mm_malloc intrinsic instruction with the Intel® Compiler, or

_aligned_malloc of the Microsoft* Compiler. For example:
//dynamically allocating 64byte aligned buffer with 2048 float elements.

InputBuffer = (float*) _mm_malloc (2048*sizeof(float), 64);

• Use static data alignment using __declspec(align(64)). For example:
//Statically allocating 64byte aligned buffer with 2048 float elements.

__declspec(align(64)) float InputBuffer[2048];

18.25 DIVISION AND SQUARE ROOT OPERATIONS
It is possible to speed up single-precision divide and square root calculations using the
VRSQRT14PS/VRSQRT14PD and VRCP14PS/VRCP14PD instructions. These instructions yield an approxi-
mation (with 14 bits accuracy) of the Reciprocal Square Roots / Reciprocal Divide of their input.

The Intel AVX-512 implementation of these instructions is pipelined and has:
• For 256-bit vectors: latency of 4 cycles with a throughput of one instruction every cycle.
• For 512-bit vectors: latency of 6 cycles with a throughput of one instruction every 2 cycles.

Skylake microarchitecture introduces the packed-double (PD) variants of reciprocal square-root and
reciprocal divide: VRSQRT14PD and VRCP14PD (respectively).

The VRSQRT14PS/VRSQRT14PD and VRCP14PS/VRCP14PD instructions can be used with a single
Newton-Raphson iteration or other polynomial approximation to achieve almost the same precision as
the VDIVPS and VSQRTPS instructions (see the Intel® 64 and IA-32 Architectures Software Developer's
Manuals for more information on these instructions), and may yield a much higher throughput.

If the full precision (IEEE) must be maintained, a low latency and high throughput can be achieved due
to the significant performance improvement of the Skylake microarchitecture to DIVPS and SQRTPS,
comparing to their performance on previous microarchitectures. This is illustrated in Figure 18-11.

NOTE
In some cases, when the divide or square root operations are part of a larger algorithm
that hides some of the latency of these operations, the approximation with Newton-
Raphson can slow down execution, because more micro-ops, coming from the additional
instructions, fill the pipe.

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-74

The following sections show the operations with recommended calculation methods depending on the
desired accuracy level.

NOTE
There are two definitions for approximation error of a value and it's approximation
approx:
Absolute error = | - approx|
Relative error = | - approx| / ||

In this chapter, the “number of bits” error is relative, and not the error of absolute values.
The value  to which we compare our approximation should be as accurate as possible,
better double accuracy.

18.25.1 Divide and Square Root Approximation Methods

Table 18-9. Skylake Microarchitecture Recommendations for DIV/SQRT Based Operations (Single Precision)

Operation Accuracy Recommended Method

Divide

24 bits (IEEE) DIVPS

23 bits RCP14PS + MULPS + 1 Newton-Raphson iteration

14 bits RCP14PS + MULPS

Reciprocal Square Root

22 bits SQRTPS + DIVPS

23 bits RSQRT14PS + 1 Newton-Raphson iteration

14 bits RSQRT14PS

Square Root

24 bits (IEEE) SQRTPS

23 bits RSQRT14PS + MULPS + 1 Newton-Raphson iteration

14 bits RSQRT14PS + MULPS

Table 18-10. Skylake Microarchitecture Recommendations for DIV/SQRT Based Operations (Double Precision)

Operation Accuracy Recommended Method

Divide

53 bits (IEEE) DIVPD

52 bits RCP14PD + MULPD + 2 Newton-Raphson iterations

26 bits RCP14PD + MULPD + 1 Newton-Raphson iterations

14 bits RCP14PD + MULPD

18-75

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18.25.2 Divide and Square Root Performance
Performance of vector divide and square root operations on Broadwell and Skylake microarchitectures is
shown below.

18.25.3 Approximation Latencies
This section shows the latency and throughput for the approximation methods, and DIV and SQRT
instructions. The tables below show that in most cases the throughput gain of the approximation
methods is (at least) double that of their IEEE counterparts, in simple loops that compute division or
square root.

The throughput benefits of approximation sequences are diminished when the loop iterations contain a
lot of other computation (besides divide or square root).

As a rule of thumb, approximations of near-IEEE accuracy are recommended when the loop iteration
contains no more than 8-10 additional single precision operations, or no more than 12-15 additional
double precision operations. The tables below show that these accurate approximations are beneficial for

Reciprocal Square Root

53 bits (IEEE) SQRTPD + DIVPD

52 bits RSQRT14PD+2 N-R + error correction or SQRTPD + DIVPD

50 bits RSQRT14PD + Polynomial approximation

26 bits RSQRT14PD+1 N-R

14 bits RSQRT14PD

Square Root

51 bits (IEEE) SQRTPD

52 bits RSQRT14PD + MULPD + Polynomial approximation

26 bits RSQRT14PD + MULPD + 1 N-R

14 bits RSQRT14PD + MULPD

Table 18-11. 256-bit Intel AVX2 Divide and Square Root Instruction Performance

Broadwell Microarchitecture DIVPS SQRTPS DIVPD SQRTPD

Latency 17 21 23 35

Throughput 10 14 16 28

Skylake Microarchitecture DIVPS SQRTPS DIVPD SQRTPD

Latency 11 12 14 18

Throughput 5 6 8 12

Table 18-12. 512-bit Intel AVX-512 Divide and Square Root Instruction Performance

Skylake Microarchitecture DIVPS SQRTPS DIVPD SQRTPD

Latency 17 19 23 31

Throughput 10 12 16 24

Table 18-10. Skylake Microarchitecture Recommendations for DIV/SQRT Based Operations (Double Precision)

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-76

throughput optimizations only. The less accurate approximations can help with latency, as well as
throughput.

It should also be mentioned that Newton-Raphson approximations do not handle the following special
cases correctly: denormal inputs, zeroes, or Infinities. Some sequences also lose accuracy for near-
denormal inputs, due to underflow in intermediate steps. While zero and Infinity inputs are relatively
easy to fix with a few additional operations (as done in some of the sequences below), denormal divisors
cannot be addressed without significant performance impact. The approximation sequences work best
for “middle-of-the-range” inputs that are not close to overflow or underflow thresholds.

The table below shows the latency and throughput of single precision Intel AVX-512 divide and square
root instructions, compared to the approximation methods on Skylake microarchitecture.

Table 18-13. Latency/Throughput of Different Methods of Computing Divide and Square Root on Skylake
Microarchitecture for Different Vector Widths, on Single Precision

Operation Method Accuracy
256-bit Intel® AVX-512

Instructions
512-bit Intel® AVX-512

Instructions

Throughput Latency Throughput Latency

Divide (a/b)

DIVPS 24 bits
(IEEE)

5 11 10 17

RCP14PS + MULPS + 1
Newton-Raphson Iteration

23 bits 2 16 3 20

RCP14PS + MULPS 14 bits 1 8 2 10-12

Square root

SQRTPS 24 bits
(IEEE)

6 12 12 19

RSQRT14PS + MULPS + 1
Newton-Raphson Iteration

23 bits 3 16 5 20

RSQRT14PS + MULPS 14 bits 2 9 3 12

Reciprocal
square root

SQRTPS + DIVPS 22 bits 11 23 22 36

RSQRT14PS + 1 Newton-
Raphson Iteration

23 bits 3.67 20 4.89 25

RSQRT14PS 14 bits 1 4 2 6

18-77

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

Table 18-14. Latency/Throughput of Different Methods of Computing Divide and Square Root on Skylake
Microarchitecture for Different Vector Widths, on Double Precision

Operation Method Accuracy
256-bit Intel® AVX-512

Instructions
512-bit Intel® AVX-512

Instructions

Throughput Latency Throughput Latency

Divide (a/b)

DIVPD 53 bits
(IEEE)

8 14 16 23

RCP14PD + MULPD + 2
Newton-Raphson Iterations

22 bits 3.2 27 4.7 28.4

RCP14PD + MULPD + 1
Newton-Raphson Iteration

26 bits 2 16 3 20

RCP14PD + MULPD 14 bits 1 8 2 10-12

Square root

SQRTPD 53 bits
(IEEE)

12 18 24 31

RSQRT14PD + MULPD +
Polynomial Approximation

22 bits 4.82 24.541 6.4 28.481

RSQRT14PD + MULPD +
1 N-R

26 bits 3.76 17 5 20

RSQRT14PD + MULPD 14 bits 2 9 3 12

Reciprocal
square root

SQRTPD + DIVPD 51 bits 20 32 40 53

RSQRT14PD + 2-NR + error
correction

52 bits 5 29.38 6.53 34

RSQRT14PD+2 N-R 50 bits 3.79 25.73 5.51 30

RSQRT14PD+1 N-R 26 bits 2.7 18 4.5 21.67

RSQRT14PD 14 bits 1 4 2 6

NOTES:
1. These numbers are not rounded because their code sequence contains several FMA (Fused-multiply-add) instructions,

which have a varying latency of 4/6. Therefore the latency for these sequences is not necessarily fixed.

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-78

18.25.4 Code Snippets

Example 18-30. Vectorized 32-bit Float Division

Single Precision, Divide, 24 Bits (IEEE)

float a = 10;
float b = 5;

__asm {
vbroadcastss zmm0, a // fill zmm0 with 16 elements of a
vbroadcastss zmm1, b // fill zmm1 with 16 elements of b
vdivps zmm2, zmm0, zmm1 // zmm2 = 16 elements of a/b

}

Single Precision, Divide, 23 Bits Single Precision, Divide, 14 Bits

/* Input:
zmm0 = vector of a’s
zmm1 = vector of b’s

Output:
zmm3 = vector of a/b

*/

__asm {
vrcp14ps zmm2, zmm1
vmulps zmm3, zmm0, zmm2
vmovaps zmm4, zmm0
vfnmadd231ps zmm4, zmm3, zmm1
vfmadd231ps zmm3, zmm4, zmm2

}

/* Input:
zmm0 = vector of a’s
zmm1 = vector of b’s

Output:
zmm2 = vector of a/b

*/

__asm {
vrcp14ps zmm2, zmm1
vmulps zmm2, zmm0, zmm2

}

18-79

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

Example 18-31. Reciprocal Square Root

Single Precision, Reciprocal Square Root, 22 Bits

/* Input:
zmm0 = vector of a’s
zmm1 = vector of 1’s

Output:
zmm2 = vector of 1/sqrt (a)

*/

float one = 1.0;

__asm {
vbroadcastss zmm1, one // zmm1 = vector of 16 1’s
vsqrtps zmm2, zmm0
vdivps zmm2, zmm1, zmm2

}

Single Precision, Reciprocal Square Root, 23 Bits Single Precision, Reciprocal Square Root, 14 Bits

/* Input:
zmm0 = vector of a’s

Output:
zmm2 = vector of 1/sqrt (a)

*/

float half = 0.5;

__asm {
vbroadcastss zmm1, half // zmm1 = vector of 16 0.5’s
vrsqrt14ps zmm2, zmm0
vmulps zmm3, zmm0, zmm2
vmulps zmm4, zmm1, zmm2
vfnmadd231ps zmm1, zmm3, zmm4
vfmsub231ps zmm3, zmm0, zmm2
vfnmadd231ps zmm1, zmm4, zmm3
vfmadd231ps zmm2, zmm2, zmm1

}

/* Input:
zmm0 = vector of a’s

Output:
zmm2 = vector of 1/sqrt (a)

*/

__asm {
vrsqrt14ps zmm2, zmm0

}

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-80

Example 18-32. Square Root

Single Precision, Square Root, 24 Bits (IEEE)

/* Input:
zmm0 = vector of a’s

Output:
zmm2 = vector of sqrt (a)

*/

__asm {
vsqrtps zmm2, zmm0

}

Single Precision, Square Root, 23 Bits Single Precision, Square Root, 14 Bits

/* Input:
zmm0 = vector of a’s

Output:
zmm0 = vector of sqrt (a)

*/

float half = 0.5;

__asm {
vbroadcastss zmm3, half
vrsqrt14ps zmm1, zmm0
vfpclassps k2, zmm0, 0xe
vmulps zmm2, zmm0, zmm1, {rn-sae}
vmulps zmm1, zmm1, zmm3
knotw k3, k2
vfnmadd231ps zmm0{k3}, zmm2, zmm2
vfmadd213ps zmm0{k3}, zmm1, zmm2

}

/* Input:
zmm0 = vector of a’s

Output:
zmm0 = vector of sqrt (a)

*/

__asm {
vrsqrt14ps zmm1, zmm0
vfpclassps k2, zmm0, 0xe
knotw k3, k2
vmulps zmm0{k3}, zmm0, zmm1

}

18-81

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

Example 18-33. Dividing Packed Doubles

Double Precision, Divide, 53 Bits (IEEE) Double Precision, Divide, 52 Bits

/* Input:
zmm0 = vector of a’s
zmm1 = vector of b’s

Output:
zmm2 = vector of a/b

*/

__asm {
vdivpd zmm2, zmm0, zmm1

}

/* Input:
zmm15 = vector of a’s
zmm0 = vector of b’s

Output:
zmm0 = vector of a/b

*/

double One = 1.0;

__asm {
vrcp14pd zmm1, zmm0
vmovapd zmm4, zmm0
vbroadcastsd zmm2, one
vfnmadd213pd zmm0, zmm1, zmm2, {rn-sae}
vfpclasspd k2, zmm1, 0x1e
vfmadd213pd zmm0, zmm1, zmm1, {rn-sae}}
knotw k3, k2
vfnmadd213pd zmm4, zmm0, zmm2, {rn-sae}
vblendmpd zmm0 {k2}, zmm0, zmm1
vfmadd213pd zmm0 {k3}, zmm4, zmm0, {rn-sae}
vmulpd zmm0, zmm0, zmm15

}

Double Precision, Divide, 26 Bits Double Precision, Divide, 14 Bits

/* Input:
zmm0 = vector of a’s
zmm1 = vector of b’s

Output:
zmm3 = vector of a/b

*/

__asm {
vrcp14pd zmm2, zmm1
vmulpd zmm3, zmm0, zmm2
vmovapd zmm4, zmm0
vfnmadd231pd zmm4, zmm3, zmm1
vfmadd231pd zmm3, zmm4, zmm2

}

/* Input:
zmm0 = vector of a’s
zmm1 = vector of b’s

Output:
zmm2 = vector of a/b

*/

__asm {
vrcp14pd zmm2, zmm1
vmulpd zmm2, zmm0, zmm2

}

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-82

Example 18-34. Reciprocal Square Root of Doubles

Double Precision, Reciprocal Square Root, 51 Bits

/* Input:
zmm0 = vector of a’s
zmm1 = vector of 1’s

Output:
zmm0 = vector of 1/sqrt (a)

*/
__asm {

vsqrtpd zmm0, zmm0
vdivpd zmm0, zmm1, zmm0

}

Double Precision, Reciprocal Square Root, 52 Bits Double Precision, Reciprocal Square Root, 50 Bits

/* Input:
zmm4 = vector of a’s

Output:
zmm0 = vector of 1/sqrt (a)

*/
// duplicates x eight times
#define DUP8_DECL(x) x, x, x, x, x, x, x, x
// used for aligning data structures to n bytes
#define ALIGNTO(n) __declspec(align(n))
ALIGNTO(64) __int64 one[] =
{DUP8_DECL(0x3FF0000000000000)};
ALIGNTO(64) __int64 dc1[] =
{DUP8_DECL(0x3FE0000000000000)};
ALIGNTO(64) __int64 dc2[] =
{DUP8_DECL(0x3FD8000004600001)};
ALIGNTO(64) __int64 dc3[] =
{DUP8_DECL(0x3FD4000005E80001)};
__asm {

vbroadcastsd zmm4, big_num
vmovapd zmm0, one
vmovapd zmm5, dc1
vmovapd zmm6, dc2
vmovapd zmm7, dc3

vrsqrt14pd zmm3, zmm4
vfpclasspd k1, zmm4, 0x5e
vmulpd zmm1, zmm3, zmm4, {rn-sae}
vfnmadd231pd zmm0, zmm3, zmm1
vfmsub231pd zmm1, zmm3, zmm4, {rn-sae}
vfnmadd213pd zmm1, zmm3, zmm0
vmovups zmm0, zmm7
vmulpd zmm2, zmm3, zmm1
vfmadd213pd zmm0, zmm1, zmm6
vfmadd213pd zmm0, zmm1, zmm5
vfmadd213pd zmm0, zmm2, zmm3
vorpd zmm0{k1}, zmm3, zmm3

}

/* Input:
zmm3 = vector of a’s

Output:
zmm4 = vector of 1/sqrt (a)

*/
// duplicates x eight times
#define DUP8_DECL(x) x, x, x, x, x, x, x, x
// used for aligning data structures to n bytes
#define ALIGNTO(n) __declspec(align(n))
ALIGNTO(64) __int64 one[] =
{DUP8_DECL(0x3FF0000000000000)};
ALIGNTO(64) __int64 dc1[] =
{DUP8_DECL(0x3FE0000000000000)};
ALIGNTO(64) __int64 dc2[] =
{DUP8_DECL(0x3FD8000004600001)};
ALIGNTO(64) __int64 dc3[] =
{DUP8_DECL(0x3FD4000005E80001)};
__asm {

vmovapd zmm5, one
vmovapd zmm6, dc1
vmovapd zmm8, dc3
vmovapd zmm7, dc2

vrsqrt14pd zmm2, zmm3
vfpclasspd k1, zmm3, 0x5e
vmulpd zmm0, zmm2, zmm3, {rn-sae}
vfnmadd231pd zmm0, zmm2, zmm5
vmulpd zmm1, zmm2, zmm0
vmovapd zmm4, zmm8
vfmadd213pd zmm4, zmm0, zmm7
vfmadd213pd zmm4, zmm0, zmm6
vfmadd213pd zmm4, zmm1, zmm2
vorpd zmm4{k1}, zmm2, zmm2

}

18-83

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

Double Precision, Reciprocal Square Root, 26 Bits Double Precision, Reciprocal Square Root, 14 Bits

/* Input:
zmm0 = vector of a’s

Output:
zmm1 = vector of 1/sqrt (a)

*/

double half = 0.5;

__asm {
vrsqrt14pd zmm1, zmm0
vmulpd zmm0, zmm0, zmm1
vbroadcastsd zmm3, half
vmulpd zmm2, zmm1, zmm3
vfnmadd213pd zmm2, zmm0, zmm3
vfmadd213pd zmm1, zmm2, zmm1

}

/* Input:
zmm0 = vector of a’s

Output:
zmm2 = vector of 1/sqrt (a)

*/

__asm {
vrsqrt14pd zmm2, zmm0

}

Example 18-35. Square Root of Packed Doubles

Double Precision, Square Root, 53 Bits (IEEE) Double Precision, Square Root, 52 Bits

/* Input:
zmm0 = vector of a’s

Output:
zmm2 = vector of sqrt (a)

*/

__asm {
vsqrtpd zmm2, zmm0

}

/* Input:
zmm0 = vector of a’s

Output:
zmm0 = vector of sqrt (a)

*/

double half = 0.5;

__asm {
vbroadcastsd zmm4, half
vrsqrt14pd zmm1, zmm0
vfpclasspd k2, zmm0, 0xe
vmulpd zmm2, zmm0, zmm1, {rn-sae}
vmulpd zmm1, zmm1, zmm4
knotw k3, k2
vmovapd zmm3, zmm4
vfnmadd231pd zmm3, zmm1, zmm2, {rn-sae}
vfmadd213pd zmm2, zmm3, zmm2, {rn-sae}
vfmadd213pd zmm1, zmm3, zmm1, {rn-sae}
vfnmadd231pd zmm0 {k3}, zmm2, zmm2, {rn-sae}
vfmadd213pd zmm0 {k3}, zmm1, zmm2

}

Example 18-34. Reciprocal Square Root of Doubles (Contd.)

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-84

18.26 CLDEMOTE
Using the CLDEMOTE instruction, a processor puts a cache line into the last shared level of the cache
hierarchy so that other CPU cores 'find' the same cache line in the last shared level and expensive cross-
core snoop is avoided. The most significant advantage of CLDEMOTE is that multiple consumers can
access the shared cache line amortizing each snoop request portion.

18.26.1 Producer-Consumer Communication in Software
In a multiprocessor environment, data sharing between the producers and consumers is an undisputed
event. A cache hierarchy solves the major problem of accessing the line from the main memory resulting
in faster data transfers. Typical cache hierarchy contains:
• Private L1 data and L1 instruction cache.
• A shared L2 cache for sibling hardware thread.
• A common L3 cache for all the CPU cores.

When a producer consumes data from the I/O or produces it, it is brought into the producer's L1 cache.
Consumers read the data by initiating read requests, translating it into cross-core snoops, request, and
response events. Consumers report L3 cache miss events and producer cores responding to the
consumer core's snoop request. Multiplexing these cross-cores requests and responses when dealing
with multiple consumers is detrimental.

Double Precision, Square Root, 26 Bits Double Precision, Square Root, 14 Bits

/* Input:
zmm0 = vector of a’s

Output:
zmm0 = vector of sqrt (a)

*/

// duplicates x eight times
#define DUP8_DECL(x) x, x, x, x, x, x, x, x

// used for aligning data structures to n bytes
#define ALIGNTO(n) __declspec(align(n))

ALIGNTO(64) __int64 OneHalf[] =
{DUP8_DECL(0X3FE0000000000000)};

__asm {
vrsqrt14pd zmm1, zmm0
vfpclasspd k2, zmm0, 0xe
knotw k3, k2
vmulpd zmm0 {k3}, zmm0, zmm1
vmulpd zmm1, zmm1, ZMMWORD PTR [OneHalf]
vfnmadd213pd zmm1, zmm0, ZMMWORD PTR [OneHalf]
vfmadd213pd zmm0 {k3}, zmm1, zmm0

}

/* Input:
zmm0 = vector of a’s

Output:
zmm0 = vector of sqrt (a)

*/

__asm {
vrsqrt14pd zmm1, zmm0
vfpclasspd k2, zmm0, 0xe
knotw k3, k2
vmulpd zmm0 {k3}, zmm0, zmm1

}

Example 18-35. Square Root of Packed Doubles (Contd.)

18-85

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18.27 TIPS ON COMPILER USAGE
This section explains some of the important compiler options that can be used with the Intel compiler to
derive the best performance on a Skylake server. For complete information on the compiler options and
tuning tips, see the main product documentation at: https://software.intel.com/en-us/intel-software-
technical-documentation. For example, the Intel® C++ Compiler 17.0 Developer Guide and Reference
can be found here: https://software.intel.com/en-us/intel-cplusplus-compiler-17.0-user-and-reference-
guide.

Many options have names that are the same on Linux* and Windows*, except that the Windows* form
starts with an initial Q. Within text, such option names are shown as [Q]option-name.

The default optimization level is O2 (unless -g is specified, in which case the default is O0). Level O2
enables many compiler optimizations including vectorization. Optimization level O3 is recommended for
loop-intensive and HPC applications, as it enables more aggressive loop and memory-access optimiza-
tions, such as loop fusion and loop blocking to allow more efficient use of the caches.

For best performance on Skylake server microarchitecture, applications should be compiled with the
processor-specific option [Q]xCORE-AVX512. Note that an executable compiled with these options will
not run on non-Intel processors or on Intel processors that support only lower instruction sets.

For users who want to generate a common binary that can be executed on Skylake server microarchitec-
ture and the Intel® Xeon Phi™ processors based on Knights Landing microarchitecture, use the option
[Q]xCOMMON-AVX512. Note that this option has a performance cost on both Skylake server microarchi-
tecture and Intel® Xeon Phi™ processors compared with executables generated with the target-specific
options [Q]xCORE-AVX512 on Skylake server, and [Q]xMIC-AVX512 on Intel® Xeon Phi™ processors.

In addition, users can tune the zmm code generation done by the compiler for Skylake server microar-
chitecture using the additional option -qopt-zmm-usage=low|high (/Qopt-zmm-usage:low|high on
Windows). The argument value of low provides a smooth transition experience from AVX2 ISA to AVX512
ISA on a Skylake server microarchitecture target, such as for enterprise applications. Tuning for ZMM
instruction use via explicit vector syntax such as #pragma omp simd simdlen() is recommended. The
argument value of high is recommended for applications, such as HPC codes, that are bounded by vector
computation to achieve more compute per instruction through use of the wider vector operations. The
default value is low for Skylake server microarchitecture-family compilation targets, such as [Q]xCORE-
AVX512 and high for CORE/MIC AVX512 combined compilation targets such as [Q]xCOMMON-AVX512.

It is also possible to generate a fat binary that supports multiple instruction sets by using the [Q]axtarget
option. For example, if the application is compiled with [Q]axCORE-AVX512,CORE-AVX2 the compiler
might generate specialized code for the Skylake server microarchitecture and AVX2 targets, while also
generating a default code path that will run on any Intel or compatible, non-Intel processor that supports
at least Intel® Streaming SIMD Extensions 2 (Intel® SSE2). At runtime, the application automatically
detects whether it is running on an Intel processor. If so, it selects the most appropriate code path for
Intel processors; if not, the default code path is selected. It is also important to note that irrespective of
the options used, the compiler might insert calls into specialized library routines, such as optimized
versions of memset/memcpy, that will dispatch to the appropriate codepath at runtime based on
processor detection.

The option -qopt-report[n] (/Qopt-report[:n] on Windows) generates a report on the optimizations
performed by the compiler, by default it is written to a file with a .optrpt file extension. n specifies the
level of detail, from 0 (no report) to 5 (maximum detail). The option -qopt-report-phase (/Qopt-report-
phase on Windows) controls report generation from various compiler phases, but it is recommended to
use the default setting where the report is generated for all compiler phases. The report is a useful tool
to gain insight into the performance optimizations performed, or not performed, by the compiler, and
also to understand the interactions between multiple optimizations such as inlining, OpenMP* paralleliza-
tion, loop optimizations (such as loop distribution or loop unrolling) and vectorization. The report is based
on static compiler analysis. Hence the reports are most useful when correlated with dynamic perfor-
mance analysis tools, such as Intel® VTune™ Amplifier or Vectorization Advisor (part of Intel® Advisor
XE), that do hotspot analysis and provide other dynamic information. Once this information is available,
the optimization information can be studied for hotspots (functions/loopnests) in compiler reports. It is
important to note that the compiler can generate multiple versions of loop-nests, so it is useful to
correlate the analysis with the version actually executed at runtime. The phase ordering of the compiler
loop optimizations is intended to enable optimal vectorization. Often, understanding the loop optimiza-

https://software.intel.com/en-us/intel-software-technical-documentation
https://software.intel.com/en-us/intel-software-technical-documentation
https://software.intel.com/en-us/intel-cplusplus-compiler-17.0-user-and-reference-guide
https://software.intel.com/en-us/intel-cplusplus-compiler-17.0-user-and-reference-guide

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-86

tion parameters helps to further tune performance. In many cases, finer control of these loop optimiza-
tions is available via pragmas, directives, and options.

If the application contains OpenMP pragmas or directives, it can be compiled with -qopenmp (/Qopenmp
on Windows) to enable full OpenMP based multi-threading and vectorization. Alternatively, the SIMD
vectorization features of OpenMP alone can be enabled by using the option -qopenmp-simd (/Qopenmp-
simd on Windows).

For doing studies where compiler-based vectorization has to be turned off completely, use the options

-no-vec -no-simd -qno-openmp-simd (/Qvec- /Qsimd- /Qopenmp-simd- on Windows).

Data alignment plays an important role in improving the efficiency of vectorization. This usually involves
two distinct steps from the user or application:
• Align the data.

When compiling a Fortran program, it is possible to use the option -align array64byte
(/align:array64byte on Windows) to align the start of most arrays at a memory address that is
divisible by 64. For C/C++ programs, data allocation can be done using routines such as
_mm_malloc(…, 64) to align the return-value pointer at 64 bytes. For more information on data
alignment, see https://software.intel.com/en-us/articles/data-alignment-to-assist-vectorization.

• Convey the alignment information to the compiler using appropriate clauses, pragmas, and
directives.

Compiler-based software data prefetching can be enabled with the options -O3 -xcore-avx512 -qopt-
prefetch[=n] (-O3 /QxCORE-AVX512 /Qopt-prefetch[=n] on Windows), for n=0 (no prefetching) to 5
(maximal prefetching). Using a value of n=5 enables aggressive compiler prefetching, disregarding any
hardware prefetching, for strided loads/stores and indexed loads/stores which appear inside loops. Using
a value of n=2 reduces the amount of compiler prefetching and restricts it only to direct memory
accesses where the compiler heuristics determine that the hardware prefetcher may not be able to
handle well. It is recommended to try values of n=2 to 5 to determine the best prefetching strategy for a
particular application. It is also possible to use the -qopt-prefetch-distance=n1[,n2] (/Qopt-prefetch-
distance=n1[,n2] on Windows) option to fine-tune application performance.
• Useful values to try for n1: 0,4,8,16,32,64.
• Useful values to try for n2: 0,1,2,4,8.

Loop-nests that have a relatively low trip-count value at runtime in hotspots can sometimes lead to sub-
optimal AVX-512 performance unless the trip-count is conveyed to the compiler. In many such cases, the
compiler will be able to generate better code and deliver better performance if values of loop trip-counts,
loop-strides, and array extents (such as for Fortran multi-dimensional arrays) are all known to the
compiler. If that is not possible, it may be useful to add appropriate loop_count pragmas to such loops.

Interprocedural optimization (IPO) is enabled using the option -ipo (/Qipo on Windows). This option can
be enabled on all the source-files of the application or it can be applied selectively to the source files
containing the application hot-spots. IPO permits inlining and other inter-procedural optimizations to
happen across these multiple source files. In some cases, this option can significantly increase compile
time and code size. Using the option -inline-factor=n (/Qinline-factor:n on Windows) controls the
amount of inlining done by the compiler. The default value of n is 100, indicating 100%, or a scale factor
of 1. For example, if a value of 200 is specified, all inlining options that define upper limits are multiplied
by a factor of 2, thus enabling more inlining than the default.

Profile-guided optimizations (PGO) are enabled using the options -prof-gen and -prof-use (/Qprof-gen
and /Qprof-use on Windows). Typically, using PGO increases the effectiveness of using IPO.

The option -fp-model name (/fp:name on Windows) controls tradeoffs between performance, accuracy
and reproducibility of floating-point results at a high level. The default value for name is fast=1.
Changing it to fast=2 enables more aggressive optimizations at a slight cost in accuracy or reproduc-
ibility. Using the value precise for name disallows optimizations that might produce slight variations in
floating-point results. When name is double, extended or source, intermediate results are computed in
the corresponding precision. In most situations where enhanced floating-point consistency and repro-
ducibility are needed -fp-model precise -fp-model source (/fp:precise /fp:source on Windows) are
recommended.

18-87

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

The option -fimf-precision=name (/Qimf-precision=name on Windows) is used to set the accuracy for
math library functions. The default is OFF, which means that the compiler uses its own default heuristics.
Possible values of name are high, medium, and low. Reduced precision might lead to increased perfor-
mance and vice versa, particularly for vectorized code. The options -[no-]prec-div and -[no-]prec-sqrt
improve[reduce] precision of floating-point divides and square root computations. This may slightly
degrade [improve] performance. For more details on floating-point options, see https://soft-
ware.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler.

The option -[no-]ansi-alias (/Qansi-alias[-] on Windows) enables [disables] ANSI and ISO C Standard
aliasing rules. By default, this option is enabled on Linux, but disabled on Windows. On Windows, espe-
cially for C++ programs, adding /Qansi-alias to the compilation options enable the compiler to perform
additional optimizations, particularly taking advantage of the type-based disambiguation rules of the
ANSI Standard, which says for example, that pointer and float variables do not overlap.

If the optimization report specifies that compiler optimizations may have been disabled to reduce
compile-time, use the option -qoverride-limits to override such disabling in the compiler and ensure opti-
mization is applied. This can sometimes be important for applications, especially ones with functions that
have big bodies. Note that using this additional option may increase compile time and compiler memory
usage significantly in some cases.

The list below shows a sampling of loop-level controls available for fine-tuning optimizations - including
a way to turn off a particular transformation reported by the compiler.
• #pragma simd reduction(+:sum)

The loop is transformed as is, no other loop-optimizations will change the simd-loop.
• #pragma loop_count min(220) avg (300) max (380)

Fortran syntax: !dir$ loop count(16)
• #pragma vector aligned nontemporal
• #pragma novector // to suppress vectorization
• #pragma unroll(4)
• #pragma unroll(0) // to suppress loop unrolling
• #pragma unroll_and_jam(2) // before an outer loop
• #pragma nofusion
• #pragma distribute_point

If placed as the first statement right after the for-loop, distribution will be suppressed for that loop.
Fortran syntax: !dir$ distribute point

• #pragma prefetch *:<hint>:<distance>
Apply uniform prefetch distance for all arrays in a loop.

• #pragma prefetch <var>:<hint>:<distance>
Fine-grained control for each array

• #pragma noprefetch [<var>]
Turns off prefetching [for a particular array]

• #pragma forceinline (recursive)

https://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler
https://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

18-88

If placed before a call, this is a hint to the compiler to recursively inline the entire call-chain.

CHAPTER 19
INTEL® ADVANCED VECTOR EXTENSIONS 512 - FP16

INSTRUCTION SET FOR INTEL® XEON® PROCESSORS

19.1 INTRODUCTION
The Intel® AVX-512 FP16 instruction set architecture supports a wide range of general purpose numeric
operations for 16-bit half-precision IEEE-754 floating-point and complements the existing 32-bit and 64-
bit floating-point instructions already available in Intel Xeon processors. This instruction set architecture
also provides complex-valued native hardware support.

This instruction set architecture is ideal for numeric operations where reduced precision can be used,
such as signal and media processing. For example, wireless signal processing operations such as beam-
forming, precoding, and minimum mean squared error (MMSE) perform well with this ISA. Furthermore,
traditional signal processing such as real or complex-valued fast Fourier transform (FFTs) also works well
with this instruction set. The advantage of using reduced precision in these cases is that because fewer
bits are processed for each element, the overall compute throughput can be increased, allowing precision
and speed to be traded against each other.

19.1.1 Terminology
Table 19-1 provides definitions of terminology used throughout this chapter.

Table 19-1. Terminology

Term Description

CFP16 Complex-valued floating-point format comprising two FP16 values representing the real
and imaginary values respectively. When used in SIMD, the individual real/imaginary values
from each complex value are interleaved in the register.

Denormal A subset of denormalized numbers that fill the underflow gap around zero in floating-point
arithmetic.

FP16 Half precision 16-bit floating-point data format.

FP32 Single precision 32-bit floating-point data format.

FP64 Double precision 64-bit floating-point data format.

FFT Fast Fourier Transform.

IEEE 754-2019 The current IEEE Standard for Floating-Point Arithmetic used in Intel® AVX-512 FP16
instructions.

Intel® AVX Intel® Advanced Vector Extensions.

Intel® AVX2 Intel® Advanced Vector Extensions 2.

Intel® AVX-512 Intel® Advanced Vector Extensions 512.

Intel® AVX-512 FP16 ISA for handling half precision floating-point, added as an extension to Intel AVX-512.

Intrinsic A function that can be called from a high-level language, like C/C++, which gives direct
access to the underlying ISA. Intrinsics allow the programmer to bypass the compiler and
directly specify that a particular instruction be used.

ISA Instruction Set Architecture.

INTEL® ADVANCED VECTOR EXTENSIONS 512 - FP16 INSTRUCTION SET FOR INTEL® XEON® PROCESSORS

19-2

19.2 OVERVIEW
In this chapter, we describe the addition of the FP16 ISA for Intel AVX-512 into the Intel Xeon processor
family to handle IEEE 754-2019 compliant half-precision floating-point operations (also known officially
as binary16, or unofficially as FP16). This instruction set is general-purpose and can be used for all
numeric operations that could be reasonably expected, including numeric operations (add, subtract,
divide, multiply), fused operations (for example, fused multiply-add), comparisons, conversions to and
from other data types, and many more. Broadly, the FP16 instruction set mirrors the floating-point
support that is already available in Intel Xeon processors for 32-bit (FP32) and 64-bit (FP64), although
there are a few exceptions to this, which will be noted where appropriate. There is one notable new
feature of FP16 when compared to existing FP32 and FP64 instruction sets: the addition of native
complex-value support for interleaved FP16 data, which is useful in scientific computing and signal
processing.

The two major advantages of using the FP16 instruction set compared to other floating-point formats are
increased execution throughput and reduced storage requirements. Half-precision floating-point values
only require 16 bits for storing each value, as opposed to the 32 or 64 bits needed for other common IEEE
floating-point formats. This allows FP16 to handle twice as many operations per each clock cycle
compared to FP32, and four times as many compared to FP64. Similarly, the reduced size means that
more values can be stored in a given memory region compared to the other formats, increasing the
effectiveness of the registers and the cache hierarchy. The disadvantages are the reduced range and
precision. It is the responsibility of the programmer to decide whether this floating-point format is suit-
able for a certain application.

Half-precision floating-point is useful for building systems where the dynamic range of floating-point is
required but a lower numeric precision can be easily tolerated and traded for higher compute perfor-
mance. Typical applications for half-precision floating-point include signal processing, media or video
processing, artificial intelligence, and machine learning.

Historically, some limited support for half-precision data types was available in processors from the 3rd
generation Intel® Core™ processor onwards, but the operations were restricted to converting between
half-precision and FP32 values. On older platforms, all numeric operations had to be implemented using
higher precision formats and down-converted on completion. Those instructions were useful for compat-
ibility with other platforms (for example, Intel® GPUs), but did not realize the benefits in higher compute
performance brought about in FP16.

IEEE FP16 is not the only 16-bit floating-point format. Another common type is bfloat16, which is
primarily used in artificial intelligence and machine learning. Intel Xeon processors support some
bfloat16 operations, including type conversions and a few limited numeric operations, but not the full
range of general-purpose operations that are supported in FP16 for Intel AVX-512. This chapter describes
only the instruction set relating to IEEE 754-2019.

MMSE Minimum Mean Squared Error.

NaN Not A Number. A way to represent a value that is undefined or unrepresentable. For
example, the square root of a negative number would generate a NaN value.

Normal A floating-point number that can be represented without leading zeros in its significand.

SIMD Single instruction, multiple data. A way of packing several data elements into a single
container and operating on them all at once.

SINR Signal-to-Interference-plus-Noise Ratio.

SSE SIMD Streaming Extensions.

Table 19-1. Terminology (Contd.)

Term Description

19-3

INTEL® ADVANCED VECTOR EXTENSIONS 512 - FP16 INSTRUCTION SET FOR INTEL® XEON® PROCESSORS

This chapter covers both the general-purpose instruction set as well as the new complex-valued instruc-
tions. We then look at the numeric implications of using FP16 and discuss how to write optimal code
sequences for some common operations.

The examples provided in this document use the intrinsic and data type support provided as part of the
Intel® OneAPI DPC++ Compiler.

19.3 FP16 NUMERIC INSTRUCTIONS
FP16 is an instruction set extension that mirrors the existing support for other floating-point operations
in Intel AVX-512 and makes it available in IEEE-754 FP16 (binary16) number format. It is a general-
purpose instruction set, and features instructions that support all common operations that are required
in typical numeric software applications. Briefly, the following classes of instructions are supported:
• Fundamental IEEE numeric: Addition, subtraction, multiplication, division, and square root.
• Fused: Fused (multiply-accumulate) operations covering fmadd, fmsub, negated fma, fmaddsub, and

fmsubadd.
• Comparison: Minimum, maximum, and compare-to-mask (e.g., neq, lt, gt, etc.).
• Conversions: Conversions to and from other common data types, including 16/32/64-bit integer and

FP32/FP64 floating-point.
• Approximation: Fast, but approximate operations to support reciprocal and reciprocal-square-root.
• Specialized: Significand (mantissa)/exponent manipulation, scaling, and rounded scaling.
• Complex: Native complex-value multiply and fused-multiply operations.

The following sections will provide information on how to use these new instructions, the impact on
performance, and the consequences of the reduced floating-point decision.

19.3.1 Data Type Support
Table 19-2 shows the new data types supported with the FP16 instruction set. In each case, the name of
the equivalent type in C or C++ is provided.

The complex instructions operate on standard SIMD vector types, such as __m128h, but internally those
instructions treat the register as sets of complex-valued pairs, as shown in Figure 19-1. Note that we
shall refer to a complex pair of FP16 values as `CFP16'. The CFP16 type is laid out as though it were an
array of two FP16 values, or a C++ type such as std::complex<_Float16>.

Table 19-2. Supported FP16 Data Types

Type Format C/C++ Type Name Notes

Scalar _Float16 Single 16-bit value stored in IEEE FP16 format

128-bit AVX register __m128h 8 x FP16 values, or 4 x complex FP16 values (CFP16)

256-bit AVX2 register __m256h 16 x FP16 values, or 8 x complex FP16 values (CFP16)

512-bit AVX-512 register __m512h 32 x FP16 values, or 16 x complex FP16 values (CFP16)

INTEL® ADVANCED VECTOR EXTENSIONS 512 - FP16 INSTRUCTION SET FOR INTEL® XEON® PROCESSORS

19-4

In the latest Intel OneAPI compilers, 16-bit floating-point literals can be created by suffixing a value with
f16. For example:

_Float16 value = 12.34f16;

19.3.2 Overview of Intrinsics
In common with the intrinsics for other vector instruction sets, FP16 intrinsics take the following form:

result = _mmBITLENGTH_OPNAME_ELEMENTTYPE(arguments)

The bit-length can be 512, 256, or 128 bits, and in the 128-bits case the BITLENGTH field is empty. The
OPNAME is a short descriptor or abbreviation of what the operation does (for example, add, sub, fmadd).
The element type is sh for FP16 scalar (scalar-half), ph for a vector of FP16 values (packed-half), or pch
for a vector of CFP16 values (packed-complex-half). Table 19-3 gives some examples to illustrate the
naming conventions.

Note that pch complex operation intrinsics are only provided for multiply and fused-multiply-add opera-
tions since these require special hardware support. No intrinsics are provided for operations like addition,
since the existing add_ph intrinsic behaves correctly for those without extra support requirements.

Figure 19-1. Layout of a 128-Bit Register Representing Four Complex FP16 (CFP16) Values

Table 19-3. Example Intrinsic Names

Intrinsic Name Description

_mm_sub_sh Subtract a single scalar FP16 element from another scalar FP16 element.

_mm_add_ph Add a pair of 8xFP16 vector registers to form a result containing 8xFP16 outputs.

_mm256_add_ph Add a pair of 16xFP16 vector registers to form a result containing 16xFP16 outputs.

_mm512_add_ph Add a pair of 32xFP16 vector registers to form a result containing 32xFP16 outputs.

_mm256_fmadd_ph Multiply a pair of 16xFP16 vector registers and add the result to a third vector register of
16xFP16 values, forming a result containing 16xFP16 vector elements.

_mm512_rcp_ph Compute the reciprocal of a vector register containing 32xFP16 values, generating an
output of another vector register containing 32xFP16 values.

_mm256_fmadd_pch Compute the complex multiplication of 8xCFP16 (complex-FP16) values, adding the result
to another such register, and generating a result containing 8xCFP16 elements.

_mm512_conj_pch Compute the conjugate of a 512-bit register containing 16xCFP16 (complex-FP16)
elements.

CFP16(3) CFP16(2) CFP16(1) CFP16(0)

e6 e5 e4 e3 e1e2 e0e7

128 bits

19-5

INTEL® ADVANCED VECTOR EXTENSIONS 512 - FP16 INSTRUCTION SET FOR INTEL® XEON® PROCESSORS

For a complete list of all the intrinsics provided as part of FP16, refer to the Intel® Intrinsics Guide.

In the remainder of this chapter where the names of intrinsics are given, typically only the 128-bit variant
is shown. Because AVX-512-FP16 supports VL encoding, all three length variants of the intrinsics are
available (i.e., 128-bit, 256-bit, 512-bit).

19.3.3 Fundamental Complex-Valued Support
For complex-valued operations the primary place where hardware support is provided is in multiplication.
Complex multiplication requires several steps, and the FP16 ISA accelerates those steps. Simpler opera-
tions, such as addition and subtraction, do not require explicit complex support since these can be
handled using the other FP16 instructions (for example, addition of two complex numbers is just the
addition of respective real and imaginary values from the two inputs, so _mm_add_ph can be directly
used). Note that complex division is not supported in hardware as this is an uncommon operation, and it
can be constructed from the hardware multiplier and complex multiplier support if required.

To illustrate the mechanics of how complex multiplication is supported, consider the following complex
multiply:

(a + bi) * (c + di)

This operation can be refactored as follows:

(ac - bd) + (ad + bc)i

Note that to compute each of the real and imaginary components of the multiply a stand-alone multiply
is used first, followed by a suitable fmadd/fmsub instruction. The hardware support for complex-valued
multiplies uses these partial mul/fmadd instructions in sequence to perform the entire complex multiply.
The hardware can schedule and route the data inside the processor to do this more quickly and efficiently
than using an explicit instruction sequence to move the real and imaginary data into the correct places.
Note however that each intermediate step produces a temporary FP16 answer, so the final result will
have had an FP16 quantization step.

Using the symbols from the example above, a complex-fma (that is, accumulating against another
complex number) can be implemented using the following refactoring:

((accReal + ac) - bd) + ((accImag + ad) + bc)i

This sequence is equivalent to two FMA operations being performed for each of the real/imag compo-
nents.

The conjugate of a complex number is formed by negating its imaginary component. A common opera-
tion with conjugation is to multiply a complex number with a conjugate of another complex number.
Conjugation in FP16 is supported using three classes of intrinsic, as illustrated in Table 19-4.

Both the multiply and the FMA are able to perform the conjugation as part of the instruction operation
itself. It is not necessary to conjugate the value first. For example, an _mm_fcmul_pch intrinsic is func-
tionally equivalent to:

_mm_fcmul_pch(_mm_conj_pch(lhs), rhs)

Table 19-4. Conjugation Instructions

Intrinsic Name Description

_mm_conj_pch Compute the conjugate of a register containing CFP16 (complex-FP16) elements by
negating each imaginary value.

_mm_fcmul_pch Compute the multiplication of a conjugated value with another complex value.

_mm_fcmadd_pch Compute the multiplication of a conjugated value with another complex value, adding the
result to a third complex-vector register.

INTEL® ADVANCED VECTOR EXTENSIONS 512 - FP16 INSTRUCTION SET FOR INTEL® XEON® PROCESSORS

19-6

However, _mm_fcmul_pc will operate in fewer cycles than calling that sequence explicitly. When the
compiler notices separate conjugate and multiply intrinsics being used, it fuses them into a single conju-
gate-multiply.

19.3.4 Using Intel® AVX-512 Bit Masks for Real-Valued Operations
FP16 is able to use the bit-mask features of Intel AVX-512 both to control when operations in a vector
register take place, and to generate masks that store the results of performing tests on vector registers.

Masks allow execution of an instruction to be conditionally applied to selected elements of a vector
register. Most instructions permit such a mask register to be supplied as part of the operation, where
each bit within the mask corresponds to a different element of the vector register. If a given mask bit is
set, then the instruction operates on the corresponding element. If the bit is cleared, the operation is not
performed and that element's output is replaced by another value. The cleared output value can either
be taken from another source register, or it can be zeroed. The operation of a masked instruction is illus-
trated in Figure 2. Note that the operation only takes place where the 8-element mask has a corre-
sponding bit set and all other outputs are zeroed.

Note that masks also control whether faults within an instruction are suppressed. If an operation gener-
ates a fault in a particular element, but the element's operation has been disabled by a zero bit in the
mask, then the fault is not reported.

Some instructions in Intel AVX-512 can generate mask registers, and with FP16, these are normally the
result of a comparison operation. For example, consider the following code snippet:

whichElementsAreLess = _mm512_cmp_ph_mask(lhs, rhs, _CMP_LT_OS);

In this example, every element of the left-hand vector is compared to see if it is less than the corre-
sponding element in the right-hand vector. If the left element is less than the right element, then a 1 is
generated in the mask bit output, otherwise a zero is emitted. This comparison instruction allows all the
major binary comparison operations to be performed between two vectors.

The FP16 instruction set also provides support to test for special values using the _mm_fpclass_ph_mask
instruction. This instruction takes a special immediate value that directs the instruction to the numeric
classes to look for in the vector register (for example, infinities, NaN, zero, denormal). This instruction is
often used in combination with other instructions to remove special case values from a register and
replace them with something different. For example, the following code snippet removes NaN values and
replaces them with zero:

__mmask8 whichAreNan = _mm_fpclass_ph_mask(values, QUIET_NAN | SIGNAL_NAN);

__m128h valuesWithNoNan = _mm_mask_blend_ph(whichAreNan, values, __m128h());

Figure 19-2. Illustration of a Zero-Masked FP16 Add On Two 128-Bit Vectors

8-element bit mask

1 0 1 1 10 00

_mm_maskz_add_ph(m, srcA, srcB)a6+b6 0 a4+b4 a3+b3 a1+b10 00

MSB

Source Aa6 a5 a4 a3 a1a2 a0a7

128 bits

LSB

b6 b5 b4 b3 b1b2 b0b7 Source B

19-7

INTEL® ADVANCED VECTOR EXTENSIONS 512 - FP16 INSTRUCTION SET FOR INTEL® XEON® PROCESSORS

In Intel AVX-512, there is a special instruction that does direct replacement of special values with known
constants called _mm_fixupimm_ps/pd, but this is not available in the FP16 instruction set.

19.3.5 Using Intel® AVX-512 Bit Masks for Complex-Valued Operations
When a mask operation is applied to an intrinsic that operates directly on complex instruction data (for
example, _mm512_mask_fmadd_pch), then each mask bit refers to a complex pair of FP16 values, not to
the individual FP16 values. This is illustrated in Figure 19-3. Note that there are eight FP16 elements,
grouped into four CFP16 complex values. The four mask bits correspond to the four CFP16 values.

No direct numeric support is provided for complex operations such as addition, subtraction, and real-
valued scaling, but their standard real-valued equivalent instructions can be used instead. However, if
such an operation has to be masked on a per-complex-element basis, then the incoming complex-valued
mask needs to be expanded into pairs of identical bits, one pair per complex-element. An example of this
is illustrated in Figure 19-4. Note that the incoming mask bit, which is per CFP16 element, needs to be
expanded to duplicate each bit for the real-valued intrinsic.

Figure 19-3. Illustration of a Masked Complex Multiplication

Figure 19-4. Illustration of Using a Real-Valued FP16 Vector Operation for Implementing a Masked
Complex Addition

a6 a5 a4 a3 a1a2 a0a7
4-element bit mask

1 1 0 1

_mm_maskz_mul_pch(m, srcA, srcB)

MSB

Source A

128 bits

LSB

b6 b5 b4 b3 b1b2 b0b7 Source B

cfpA3 * cfpB3 cfpA2 * cfpB2 cfpA0 * cfpB00 0

8-bit expanded mask

1 1 1 0 10 11

4-bit complex mask

1 1 0 1
a6 a5 a4 a3 a1a2 a0a7

_mm_maskz_add_ph(m, srcA, srcB)a6+b6 a5+b5 a4+b4 0 a1+b10 a0+b0a7+b7

MSB

Source A

128 bits

LSB

b6 b5 b4 b3 b1b2 b0b7 Source B

INTEL® ADVANCED VECTOR EXTENSIONS 512 - FP16 INSTRUCTION SET FOR INTEL® XEON® PROCESSORS

19-8

The operation to expand the incoming complex-mask-bits to generate real-valued mask could be
performed in numerous different ways, but one efficient way to achieve this operation is shown in
Example 19-1. This code fragment uses the fast mask-to-vector and vector-to-mask instructions to
effect the upscaling of the bit-mask elements.

It may also be necessary to perform a similar operation in reverse, where pairs of bits representing adja-
cent FP16 values need to be reduced in some way into a single bit representing the complete complex
element (e.g., AND, OR). For example, if two complex vectors must be compared for equality then the
individual FP16 elements must be compared for equality first, and then if two adjacent mask bits are both
set (that is, the logical AND of those bits), then the complex element as a whole must be equal. This
comparison test is illustrated in Figure 19-5. Note that some of the sub-elements in each CFP16 do
compare equal when using the _mm_cmp_ph_mask intrinsic, but both elements in each CFP16 value must
be equal for the complex values to be truly equal to each other.

Example 19-1. Function for Converting from a Complex-Valued Mask To a Real-Valued Mask by
Duplicating Adjacent Bits

__mmask8 getRealMaskFromComplexMask(__mmask8 m)
{

// 4 incoming bits representing the 4 complex elements in a 128-bit register.
// Each mask bit is converted into an entire element in a vector register
// where a 0-mask generates 32x0, and a 1-mask generates 32x1. For example
// 0010 -> [000....00], [000...000], [111....111], [000....000]
auto wholeElements = _mm_movm_epi32(m);

// Each complex element can now be treated as a pair of 16-bit elements instead,
// and the MSB of each 16-bit unit can extracted as a mask bit in its own right.
return _mm_movepi16_mask(wholeElements);

}

Figure 19-5. Comparison Operation Between Two Complex-Valued Vectors.
The mask bits are generated using a real-valued comparison, then adjacent bits combined using AND

19-9

INTEL® ADVANCED VECTOR EXTENSIONS 512 - FP16 INSTRUCTION SET FOR INTEL® XEON® PROCESSORS

One implementation of the function to combine adjacent mask bits using an AND operation is shown in
Example 19-2. Like the example above, it uses the mask-to-vector and vector-to-mask instructions to
good effect.

Note that the individual mask bits are expanded to 8-bit elements and then compared for equality as 16-
bit elements to combine adjacent elements. There is no need to expand to the same size as the data
being processed (that is, 16/32-bit respectively in this case), since the bitwise pairing is independent of
the original data element sizes. By using smaller registers, efficiency is very slightly improved compared
to using wider registers.

The adjacent mask bits could also be combined using an OR operation, which might be useful if testing
whether a complex value is NaN (that is, a complex value is NaN if either of its individual elements is
NaN). A sequence for determining an OR of adjacent mask bits is shown in Example 19-3.

19.4 NUMERICS
Using FP16 instead of the more conventional and widely used FP32 and FP64 formats introduces a
number of interesting numeric behaviors. It is beyond the scope of this chapter to discuss these fully or

Example 19-2. Function for Converting from a Real-Valued Mask to a Complex-Valued Mask By AND-
Combining Adjacent Bits

__mmask8 getComplexMaskFromRealMask_AND(__mmask8 m)
{

// 8 incoming bits representing the 8 real-valued elements in a 128-bit register.
// Broadcast the bits into 8-bit elements of all 1's or all 0's.
auto wholeElements = _mm_movm_epi8(m);

// Generate an entire vector of 1's (typically a ternlogic will be used, which is
// very cheap and can be done in parallel with the movm above, or hoisted when
// used repeatedly.
const auto allOnes = _mm_set1_epi16(-1);

// Extract single mask bits from each 16-bit element which are the logical ANDs of the
// MSBs of each incoming 8-bit element. Because the movm above generated all 0/1 bits
// across the whole element the only combinations of values in each 32-bit unit are
// both all zero, both all one, or one of each. The logical AND of the MSBs can only
// occur when both 8-bit sub-elements are all ones, so this is equivalent to
// comparing the 16-bit block as though it were entirely 1, which is a direct
// equality comparison.
return _mm_cmp_epi16_mask(wholeElements, allOnes, _MM_CMPINT_EQ);

}

Example 19-3. Function for Converting from a Real-Valued Mask To a Complex-Valued Mask By OR-
Combining Adjacent Bits

__mmask8 getComplexMaskFromRealMask_OR(__mmask8 m)
{

auto wholeElements = _mm_movm_epi16(m);

// Similar logic to the AND variant above but now any 32-bit element which
// isn't zero represents the logical OR or two adjacent 16-bit block
// elements in one 32-bit block.
return _mm_cmp_epi32_mask(wholeElements, __m128i(), _MM_CMPINT_NE);

}

INTEL® ADVANCED VECTOR EXTENSIONS 512 - FP16 INSTRUCTION SET FOR INTEL® XEON® PROCESSORS

19-10

to describe the numeric methods required to build FP16 algorithms, but in this section, we highlight a few
of the properties and behaviors of the FP16 number format and the consequences that arise from this.

19.4.1 Introduction to FP16 Number Format
An FP16 floating-point number is represented using 16 bits, which are laid out as shown in Figure 19-6.
The figure also shows two other floating-point number formats for comparison, one being the common
32-bit FP32 format, and the other being the alternative 16-bit floating-point format called brain-float 16,
which is used for machine learning. Note how bfloat16 is simply the upper 16-bits of the FP32 format,
giving it the same dynamic range as FP32 but with considerably reduced precision, making this ideal for
machine-learning applications. In contrast, the IEEE FP16 format modifies the sizes of the significand and
the exponent to produce a more balanced blend of precision and range, which is more suitable for
general purpose algorithms.

Certain bitwise operations can be used to manipulate the floating-point numbers without requiring
special hardware support. For example, an absolute operation (that is, convert the value to its positive
equivalent) can be implemented as a bitwise AND of the lower 15 bits of the value, thereby stripping off
any sign bits. Similarly, functions like negate, negative-absolute (nabs), copy-sign, test-sign, and so on
can also be implemented using existing Intel AVX-512 bitwise intrinsics.

19.4.2 Observations on Representing Numbers in FP16 Format
Although FP16 behaves functionally the same way as FP32 and FP64, the limited number of bits in its
representations means that some limits are imposed on the permitted values. In FP32 and FP64, most of
the useful human-comprehensible numbers can be easily represented without considering too much
about the limitations in value representation imposed by the floating-point format, but those limitations
show up in FP16 limitations more easily. In Figure 19-7 some landmark values on the real-valued positive
number line are illustrated, and in Table 19-5 further useful numbers are listed.

Figure 19-6. Bit Layout of Three Types of Floating-Point Formats

Exponent (8) Significand (23)s32-bit single precision (FP32)

16-bit brain-float (BP16)

16-bit half precision (FP16)

Exponent (8) Significand (5)s

Exponent (5) Significand (10)s

19-11

INTEL® ADVANCED VECTOR EXTENSIONS 512 - FP16 INSTRUCTION SET FOR INTEL® XEON® PROCESSORS

Some consequences of using the FP16 number format include:
• Denormal numbers are not very small; it is easy to generate a number that gets too small to be

represented using an FP16 normal value.
• Infinity starts very low down; it is only slightly less than the maximum value of an unsigned 16-bit

integer. Overflow of values converted from 16-bit integers can quickly lead to infinities.
• Only integers up to a magnitude of 2048 can be fully represented. Beyond that, the permitted

integers become very sparse very quickly. Rounding from a real integer type to an FP16 value
introduces large absolute integer errors if the integer is above 2048.

These limitations may seem cumbersome at first, but there are good reasons why FP16 representation is
a good fit for many signal-processing applications. Firstly, it is important to consider the Signal-to-Inter-
ference-plus-Noise ratio, or SINR. In a typical signal-processing system, such as a wireless receiver, the
signals of interest are almost always subject to measurement noise. In the case of a wireless system, this
noise would be introduced by receiver thermal-noise or in-band interference.

With FP16 number representation, any value on the real number-line within the normal range is subject
to approximately -73.7 dB of quantization noise when quantized to FP16 format1. To use common signal-
processing parlance, the SINR is always ~73.7 dB, meaning that the quantizing error variance is 10-7.37

Figure 19-7. Landmark Numbers on the Real-Valued FP16 Axis

Table 19-5. Useful or Interesting FP16 Numbers

Value Hex Representation Description

0 0x0000 Zero

0.000000059604645 0x0001 Smallest denormal value

0.000060975552 0x03ff Largest denormal value

0.00006103515625 0x0400 Smallest normal value

1 0x3c00 One

Inf 0x7c00 Positive Infinity

-Inf 0xfc00 Negative Infinity

Smallest normal, 0.000061

Normal InfiniteDenormal

0

Largest int16_t, 32767

First non-representable integer, 2049

First non-representable even integer, 4098

Largest normal number, 65504



INTEL® ADVANCED VECTOR EXTENSIONS 512 - FP16 INSTRUCTION SET FOR INTEL® XEON® PROCESSORS

19-12

times the squared-magnitude of the signal. When compared to a typical received SINR of 25 dB, this
means that the variance of the additional error introduced by the FP16 quantization is 1048.7/10, ~74,131
times lower than the measurement noise of the signal. In effect, it adds a negligible extra noise power.

Other signal processing requirements include dynamic range. The FP16 representation is able to main-
tain the 73.7 dB SINR over the complete dynamic range of a perfect 16-bit ADC. Care must be taken to
exploit the floating-point aspect of FP16 and not directly convert integers to FP16, as squaring operations
will likely result in “Inf”. However, this is easily overcome by converting 16-bit integers to FP16 and then
scaling by a fixed constant: 1/256 is a good choice.

19.4.3 Numeric Accuracy Guarantees
In any floating-point calculation it is impossible to give the result of every possible computation because
not every value has a valid representation. The output has to be quantized to a nearby value which can
be represented in that number format. If the result is not representable, the distance between the next
lowest representable value and the next highest representable value is called the unit-in-last-place, or
ULP (and less commonly but equivalently, the unit-of-least-precision), and the actual answer will lie
somewhere between the two. When the output value is rounded up or down to the nearest representable
value, it therefore follows that the error in that calculation is no more than 0.5 ULP.

In IEEE 754 floating-point arithmetic, the standard mandates that the result of any hardware implemen-
tation will generate a correctly rounded result that has no more than 0.5 ULP of error when rounding ̀ to
nearest' for the following operations:
• Addition
• Subtraction
• Multiplication
• Division
• Square root
• Fused multiply-add

When rounding up, down, or toward zero, the error is less than 1 ULP.

The fused multiply-add guarantees that the intermediate result of the multiplication is kept in a higher
precision form internally before being added. This means that the result of an FMA operation can have
less overall error than doing a sequence of individual multiply and add instructions.

The Intel AVX-512 FP16 instruction set is compliant with IEEE Standard 754-2019, and arithmetic oper-
ations on it are implemented in the spirit of the Standard (which does not require arithmetic operations
for binary16). Consequently, all the operations listed above yield correctly rounded results. FP16 also
contains a few instructions (not defined in IEEE 754-2019) that produce approximate results to within
0.5625 ULP error. These include:
• Reciprocal (rcp)
• Reciprocal square-root (rsqrt)

Further examination of these special cases is given in later sections.

Note also that complex multiplications (and fused multiplications) have an intermediate quantization to
FP16 because, as described earlier, the hardware implements these operations as a sequence of FMAs.
Each step of that sequence introduces quantizing, so the overall effect of the complete complex multiply
has some small error.

1. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-II: EXPRESS BRIEFS, VOL. 63, NO. 6, JUNE 2016: Quantization Noise
Power Estimation for Floating-Point DSP Circuits Gabriel Caffarena, Senior Member, IEEE, and Daniel Menard, Member,
IEEE: https://ieeexplore.ieee.org/document/7407669.

https://ieeexplore.ieee.org/document/7407669

19-13

INTEL® ADVANCED VECTOR EXTENSIONS 512 - FP16 INSTRUCTION SET FOR INTEL® XEON® PROCESSORS

19.4.4 Handling Denormal Values
FP16 differs from FP32 and FP64 floating-point by allowing computations involving denormals to be
performed with no impact on cycle count. This is in contrast to FP32 and FP64 computation modes where
handling denormals under some conditions can introduce cycle performance penalties. In FP32 and FP64
computations, when a denormal value is encountered the instruction might trap and call into a software
routine to handle the computation instead, which increases the number of processor cycles required.
Describing when this occurs and what the penalties would be is beyond the scope of this document.
However, it is common to attempt to avoid denormal values in FP32 and FP64 computations where
possible by modifying two FP execution flags:
• DAZ. Denormals Are Zero: Any denormal inputs are replaced by zero before use.
• FTZ. Flush To Zero: Any outputs that would be denormal are replaced by zero.

Since FP16 handles denormals at full speed, all FP16 computations ignore the DAZ and FTZ flags and
modifying these flags has no impact on FP16 numeric behavior or performance.

19.4.5 Embedded Rounding
In common with other Intel AVX-512 instructions, the FP16 instruction set allows the use of an instruc-
tion attribute called Static Rounding Mode. Rather than depending upon the contents of a global control
register (called MXCSR) to set the floating-point rounding mode, most of the Intel AVX-512 FP16 instruc-
tions can override the rounding mode behavior for only that instruction. Some permitted rounding modes
are shown in Table 19-6.

For convenience, intrinsics are provided to give easy access to embedded rounding modes. For example,
the FP16 addition instruction can have the rounding mode controlled by using the following intrinsic:

__m128h _mm512_add_round_ph (__m128h a, __m128h b, int rounding);

The third parameter, which supplies the rounding mode immediate, can be taken from the third column
of Table 19-6, which describes four of the IEEE rounding modes and the required selector to invoke that
behavior.

The following points should be noted:
• When a rounding mode is explicitly used then this implies that the `suppress-all-exceptions' flag is

also set for that instruction. Therefore, an instruction that uses embedded rounding never raises a
floating-point exception.

• The C intrinsic constant selector name _MM_FROUND_TO_NEAREST_INT is not ideal, but that name has
been historically used for so long in all common compilers that it is difficult to change to something
more meaningful.

• Embedded rounding is only permitted on full width AVX-512 intrinsics (e.g., __mm512_OP_round_pX)
or scalar operations (e.g., _mm_OP_round_sX). It is not permitted on AVX-512 VL encoded 128-bit or
256-bit operations.

Table 19-6. Conjugation Instructions

IEEE 754-2019
Rounding Mode

Description C Intrinsic Constant Selector

roundTiesToEven Round toward nearest floating
point, with ties to even.

_MM_FROUND_TO_NEAREST_INT |
_MM_FROUND_NO_EXC

roundTowardPositive Round toward negative infinity. _MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC

roundTowardNegative Round toward positive infinity. _MM_FROUND_TO_POS_INF | _MM_FROUND_NO_EXC

roundTowardZero Round toward zero. _MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC

INTEL® ADVANCED VECTOR EXTENSIONS 512 - FP16 INSTRUCTION SET FOR INTEL® XEON® PROCESSORS

19-14

19.4.6 Legacy FP16 Data Type Conversion
Two older Intel instruction sets already supported FP16 values as a storage format and provided conver-
sion instructions to and from other data types. For example:
• _mm_cvtph_ps: Convert from FP16 to FP32.
• _mm_cvtps_ph: Convert from FP32 to FP16.

These instructions were originally available in the FP16C ISA for 128-bit and 256-bit registers. The Intel
AVX-512 FP16 ISA further extended these instructions to work with 512-bit registers, and also added the
option to conditionally mask selected elements (for example, _mm512_mask_cvtph_ps).

These instructions do not have embedded broadcast modes. It is recommended that the newer conver-
sion instructions described in the next section be used instead.

19.4.7 FP16 Conversions to and from Other Data Types
The Intel AVX-512 FP16 ISA contains a comprehensive set of instructions that convert to and from most
of the other supported data types, with and without rounding.

Conversions from FP16 to other data types take the following intrinsic forms:
• _mm_cvtph_epi16: Convert from half-precision to 16-bit integer.
• _mm_cvtph_epi64: Convert from half-precision to 64-bit integer.
• _mm_cvtxph_ps: Convert from half-precision to FP32.

Note that an extra x appears in some of the intrinsics to differentiate the intrinsics from their older
FP16C/Intel AVX-512 F ISA counterparts. Only instructions that could be confused with older instruction
sets have an x in their name (for example, the int16 conversion only appears in Intel AVX-512 FP16 so it
does not need to be disambiguated).

When an FP16 denormal value is converted to a higher-precision FP32 or FP64 value, the denormal is
converted to a normal representation in the output format.

Although the older conversion instructions perform type conversion as expected, they do not support
embedded broadcasts. It is recommended to use the newer instructions wherever possible to get some
instruction encoding advantages.

Conversions to FP16 format from other data types all take the intrinsic form shown in the following exam-
ples:
• _mm_cvtepi16_ph: Convert from 16-bit integer to half-precision.
• _mm_cvtepi64_ph: Convert from 64-bit integer to half-precision.
• _mm_cvtxps_ph: Convert from FP32 to half-precision.

Note that some care must be taken when converting from higher precision types into FP16. For example,
conversion from a signed 16-bit integer value to FP16 generates the equivalent integers in FP16, albeit
with some small loss possibly (for example, integer values greater than 2048 may be quantized to a
nearby integer, not the exact integer). However, a more serious issue is that values that are converted
from full-range 16-bit unsigned integer format are converted into FP16 values, which are at the very
upper end of the permitted FP16 number range. Almost any numeric operation on such values could lead
to overflow and the generation of infinities. In such scenarios, it is beneficial to perform some scaling on
the value after conversion, to bring the range of the new values into the middle of the FP16 number
range, thereby making it more difficult to hit infinities or denormals through normal compute operations.

Note that some care must be taken when converting to and from integer types to FP16. In particular, it
must be noted that not all values in the 16-bit signed integer range of -32768 to +32767 can be repre-
sented in FP16. There will be some quantization effects with values above 2048. As discussed in Section
19.4.2, this additional quantizing noise power is negligible in most signal processing applications.
However, the 16-bit integer range includes numbers that become close to Inf in FP16 format (values
above 65504 are Inf). To avoid potential problems when performing typical signal-processing tasks such
as cross-correlations, which operate in volts2, 16-bit integer values should be scaled after conversion to
FP16. A typical scale would be 1/256. In this scheme, 32768 would be converted to 128.00f16. Note that

19-15

INTEL® ADVANCED VECTOR EXTENSIONS 512 - FP16 INSTRUCTION SET FOR INTEL® XEON® PROCESSORS

both 128.002=16384.00 and (2/256)2=0.00006103515625 are within the normal range of FP16 values.
This means that most typical signal-processing operations can be performed with values mostly in the
normal range (with (1/256)2 just falling outside of the normal range). So, by the simple expedient of
applying a fixed scaling, FP16 representation can be used to comfortably span the dynamic-range
presented by 16-bit ADCs and DACs.

19.4.8 Approximation Instructions and Their Uses
In common with Intel AVX-512, the new FP16 instructions support a number of approximation functions,
including reciprocal (rcp), and reciprocal-sqrt (rsqrt). Although many instructions in Intel AVX-512 FP16
are accurate to within 0.5 ULP, as guaranteed by IEEE 754, the approximation instructions give very
slightly less accurate results, but these are still useful, especially when compared with their equivalents
in FP32 and FP64.

In FP32 and FP64 the approximation instructions are quite rough (that is, have a very high ULP error) and
can only be used as a substitute for full-precision operations if combined with one or two Newton-
Raphson iterations to refine the initial approximation to a point where it becomes sufficiently accurate.
However, in FP16 the approximation functions give results that are so close to their full precision results
- within 0.5 ULP for 98% of the possible values and within 0.5625 ULP for the remaining 2% of values -
that there is no need to add Newton-Raphson iterations. This makes the approximation instructions very
useful. They give virtually the correct answer, but with substantial benefits in performance over their full-
accuracy counterparts. The following sections examine each approximation instruction in more detail.

19.4.8.1 Approximate Reciprocal
The reciprocal instruction in Intel AVX-512 FP16 behaves almost identically to the equivalent code
sequence implemented using a division of the constant 1.0. For example, consider the following two code
fragments:

__m512h trueRcp = _mm512_div_ph(_mm512_set1_ph(1.0f16), x); // #1

__m512h approxRcp = _mm512_rcp_ph(x); // #2

The first, true reciprocal-by-division is guaranteed to be within 0.5 ULP, assuming rounding to nearest-
even is used, but it takes approximately 15 cycles in 128 or 256-bit mode, and 24 cycles in 512-bit mode.
It has a throughput of one instruction every 8 cycles in 128 or 256-bit mode, or one every 16 cycles in
512-bit mode. In contrast, the approximate reciprocal instruction is within 0.5 ULP for 98% of the
possible valid input values, and the remaining 2% of values are within 0.5625 ULP, but it has a latency of
only 4 cycles (or 6 cycles in 512-bit mode), and a throughput of 1 cycle (or 1.5 cycles in 512-bit mode).
This dramatic improvement in compute performance of rcp_ph for almost no difference in numeric
performance makes it ideal whenever that particular use case is required. Only when there is an absolute
requirement for IEEE floating-point behavior should the division sequence be used instead.

19.4.8.2 Approximate Division
The two code fragments below show how a division could be implemented:

__m512h trueDiv = _mm512_div_ph(lhs, rhs); // #1

__m512h approxRcp = _mm512_mul_ph(lhs, mm512_rcp_ph(rhs)); // #2

The first of these uses the actual division instruction and is accurate to within 0.5 ULP (that is, correctly
rounded, regardless of rounding mode).

The second sequence implements division by multiplying by the reciprocal, where the reciprocal is
computed using the approximate function. We have already seen in the section above that the reciprocal
approximation is very good, and this means that performing division using this sequence also turns out
to be very good for most FP16 values. To illustrate how good the approximation of the divide is, consider
the heat-map shown in Figure 19-8. It shows how the ULP error changes for all the possible values of
divisors and dividends. The green areas show that the approximation sequence gives identical results to
a real division operation when the dividend is large and the divisor is small, or when the divisor is large

INTEL® ADVANCED VECTOR EXTENSIONS 512 - FP16 INSTRUCTION SET FOR INTEL® XEON® PROCESSORS

19-16

and the dividend is small. The yellow region shows the cases where both the dividend and divisor fall into
the middle-range of FP16 values, which is where a numerically well-designed algorithm falls, and indi-
cates that 98% of values are within 0.5625 ULP of being correct, and every possible combination of divi-
dend and divisor is never less accurate than about 1.5 ULP. The only places where the approximate
division breaks down is when the divisor is very small (i.e., the left-hand red strip corresponding to the
denormals), or very large (that is, the right-hand red strip where the exponent is at, or close to the
maximum).1

A division instruction is relatively expensive, taking 24 cycles with a throughput of 16 in 512-bit mode. In
contrast, both multiply and reciprocal are cheap instructions, even when used in sequence, and conse-
quently the approximation to division is ~3x faster. This speed, coupled with the low error for most FP16
values, means that well-designed algorithms could use the approximation sequence with little disadvan-
tage.

19.4.8.3 Approximate Reciprocal Square Root
The reciprocal square root instruction in Intel AVX-512 FP16 is numerically very good. It gives a value
that is within 0.5 ULP for 98% of the valid inputs, and the remaining 2% are within 0.5625 ULP of the true
result.

An obvious implementation of a reciprocal square root, which uses the correctly rounded operations, is
shown below:

__m512h rsqrtSequence = _mm512_div_ph(_mm512_set1_ph(1.0f16), _mm512_sqrt_ph(x));

1. For workloads and configurations visit www.Intel.com/PerformanceIndex. Results may vary.

Figure 19-8. Heat-map Showing Relative ULP Error for Different Combinations of Divisor and Dividend
Value Ranges

www.Intel.com/PerformanceIndex

19-17

INTEL® ADVANCED VECTOR EXTENSIONS 512 - FP16 INSTRUCTION SET FOR INTEL® XEON® PROCESSORS

This also gives a very good answer - within 0.5 ULP of the true result for 73% of possible inputs, and
within 1 ULP for the remaining 23% - but that is slightly worse than the _mm_rsqrt_ph instruction itself,
so the approximation intrinsic should be used in preference.

The approximate reciprocal square root takes 6 cycles, compared to the alternative sequence above that
takes 48 cycles when in 512-bit mode.

19.4.9 Approximate Square Root
Although a square root instruction exists and is within 0.5 ULP of the true answer, it is possible to
combine a product and rsqrt to get a good approximation, as shown in the code fragment below:

__m512h sqrtSequence = _mm512_mul_ph(x, _mm512_rsqrt_ph(x));

This sequence gives an answer that is identical to that from the sqrt instruction for 70% of the possible
input values and is never more than 1 ULP away from the true result for any FP16 input value. The
throughput of the product is twice the throughput of the reciprocal square root approximation, allowing
for some flexibility in internal scheduling. The speed of this instruction sequence, coupled with its negli-
gible error, makes it suitable for fast sqrt for any algorithms except those that require guaranteed IEEE
rounding.

19.5 USING EXISTING INTEL® AVX-512 INSTRUCTIONS TO AUGMENT
FP16 SUPPORT

Intel AVX-512 FP16 provides purely numeric operations that require hardware support and cannot easily
be implemented in any other way. For all other related operations needed to support the use of vector
FP16 (for example, permuting FP16 elements in a register), it is necessary to use the instructions that
are already provided as part of the existing Intel AVX-512 instruction set. As a convenience, the compiler
provides many support functions. For example, the intrinsic called _mm512_mask_blend_ph, which blends
FP16 elements from two registers into one, is implemented using the underlying mask_blend_epi16
instruction. In cases where the compiler does not provide such convenience functions it will be necessary
for programmers to create a wrapper to handle this themselves. In this section we show how such func-
tions could be implemented, list some of the common convenience instructions, and show one example
where extra performance can be achieved by exploiting the Intel AVX-512 instruction set to handle
floating-point comparisons more efficiently.

19.5.1 Using Existing Instructions to Extend Intel® AVX-512 FP16 Intrinsics
Suppose we wish to use a bit mask to compress the elements of an FP16 vector register, creating some-
thing that would act as you would expect from a non-existent intrinsic called _mm512_mask_compress_ph.
Although such an intrinsic does not exist, it can be created as shown in Example 19-4.

The strategy followed in the example is to take the incoming vector of FP16 values and recast to a vector
of int16_t values using the castph_si512 intrinsic. The newly cast values are then processed as
though they are a vector of int16_t elements instead. This step does not change the individual 16-bit

Example 19-4. Function to Implement the 16-Bit Compress Operation on FP16 Vector Elements

__m512h compress_ph(__m512h src, __mmask32 mask, __m512h value)
{

const auto asInt16 = _mm512_castph_si512(value);
const auto src16 = _mm512_castph_si512(src);
const auto comp = _mm512_mask_compress_epi16(src16, mask, asInt16);
return _mm512_castsi512_ph(comp);

}

INTEL® ADVANCED VECTOR EXTENSIONS 512 - FP16 INSTRUCTION SET FOR INTEL® XEON® PROCESSORS

19-18

element blocks; it just moves them around within the register. On completion, the value is recast back to
its original type as a vector of FP16 elements.

Note that the cast operations have no runtime impact and are purely used to inform the compiler that the
programmer is treating the underlying bits in the incoming register as though they were a different type.
No type conversion takes place. In practice, the entire code sequence in the example function collapses
into a single compress instruction.

This same strategy can be used to apply any sort of data movement instructions as a method of moving
data around within FP16 vector registers. The code is somewhat verbose but can be easily hidden away
as a library function. Furthermore, many common utility intrinsics of this sort have already been imple-
mented in the Intel OneAPI compiler and can be used directly. It should only be necessary to build addi-
tional intrinsic support functions for more unusual operations.

In addition to data movement instructions, other bitwise operations like abs, nabs, negate, copy-sign,
and so on, can also be implemented using the underlying Intel AVX-512 foundation instructions.

19.5.2 Common Convenience Intrinsics
Convenience instructions are provided for the common cases where FP16 support is implemented with
existing Intel AVX-512 instructions, without requiring the definition of verbose intrinsics given in the
compress_ph example above. Table 19-7 provides a list of some common convenience intrinsics.

19.5.3 Using Integer Comparisons for Fast Floating-Point Comparison
IEEE floating-point values have the property that all non-NaN values that are either both known to be
positive or known to have different signs can be directly compared by treating their bit pattern as a 16-
bit signed integer. This does not work when both values are negative. The fast-integer property can be

Table 19-7. Conjugation Instructions

Mode Purpose and Implementation

_mm512_conj_pch Compute the conjugate of a complex number by using bitwise XOR
operation to flip the sign bit of the imaginary elements.

_mm512_abs_ph Compute the absolute numeric value of an FP16 element by using a
bitwise AND instruction to mask off the sign bit.

_mm512_mask_blend_ph Use the underlying _mm512_mask_blend_epi16 intrinsic to provide
an FP16 (_ph) equivalent.

_mm512_permute[x]var_ph Reorder FP16 elements from one or two source registers.

_mm512_reduce_[add/min/max]_ph Generate a sequence of instructions that performs a reduction operation
across all the elements of an FP16 vector register. This is more
complicated than the other examples because it performs a sequence of
permutes and reorders to pull the data together and intersperses those
operations with numeric reduction operations that perform addition,
multiplication, minimum, and so on.

19-19

INTEL® ADVANCED VECTOR EXTENSIONS 512 - FP16 INSTRUCTION SET FOR INTEL® XEON® PROCESSORS

exploited to give a low-latency minimum (or maximum) function as shown in the code fragment in
Example 19-5.

By using the int16_t minimum instead, the instruction takes only 1 cycle to execute, which is faster than
the equivalent FP16 minimum, and can be used to accelerate latency or dependency-sensitive code. Note
however that the throughput is lower than the equivalent FP16 minimum instruction, so code that is
exclusively performing minimum operations may do better using the FP16 minimum.1

For comparison operations all data types take the same number of cycles to compare so using the equiv-
alent int16_t form of the instruction to perform a comparison makes no difference to performance.

19.6 MATH LIBRARY SUPPORT
The math libraries provided with Intel® compilers offer full functionality for the float16 data type
(_Float16). Compiler support for the float16 data type can be enabled with -arch=sapphirerapids (ICX
compiler). Float16-specific optimizations are available for vectorized math library calls.

Scalar math library functionality is available in the LIBM. These functions have not yet been optimized for
Intel AVX-512 FP16 and currently rely on existing float32 implementations. Scalar float16 function
names use the f16 suffix (for example, expf16, logf16, sinf16, cosf16).

At the default accuracy level (4 ULP or better), most common functions in the short vector math library
(SVML) are optimized to take full advantage of the new Intel AVX-512 FP16 instruction set. Higher accu-
racy versions (1 ULP) are also available, and most have been optimized; however, the 1 ULP versions
frequently rely on single precision computation to achieve the required accuracy. It is thus expected that
the 4 ULP implementations will provide noticeably better performance. SVML calls are generated by the
compiler as part of loop vectorization. Compiler intrinsics for SIMD float16 calls (for example,
_mm_log_ph) are not yet available.

The Intel AVX-512 FP16 instruction set includes several operations that support efficient implementation
of math libraries. These operations are extensions of Intel AVX-512 transcendental support instructions
and include VGETEXP, VGETMANT, VSCALEF, VFPCLASS, VREDUCE, VRNDSCALE (in addition to VRCP,
VRSQRT).

VGETEXP (get normalized exponent) and VGETMANT (get normalized mantissa) are used together in
implementations of functions such as log(), pow(), cbrt(). In the absence of these operations, denormal
and special inputs would require treatment in a separate path (or alternatively, a slower main path that
treats all inputs correctly). Denormals are reasonably likely to occur as inputs to float16 SVML calls due
to the narrow float16 format range. The relative frequency of special inputs also increases with a wider
SIMD length (32 packed float16 inputs per 512-bit SIMD register), so it is especially helpful to avoid
branches. As an example, VGETEXP and VGETMANT can be used to reduce the log() computation to
log(x)=VGETEXP(x)*log(2) + log(VGETMANT(x,8)). VGETMANT with an immediate value of 8 returns the
normalized mantissa (in the [1,2) range) for positive inputs, and QNaN_Indefinite for negative inputs
(which helps with special case handling).

Example 19-5. Function That Performs Fast Floating-Point Minimum Using Integer Instructions

// Assume the inputs are sane values, and either both positive or opposite signs.
__m128h fast_special_min(__m128h lhs, __m128h rhs)
{

const auto lhsInt16 = _mm_castph_si128(lhs);
const auto rhsInt16 = _mm_castph_si128(rhs);
const auto smallest = _mm_min_epi16(lhsInt16, rhsInt16);
return _mm_castsi128_ph(smallest);

}

1. For workloads and configurations visit www.Intel.com/PerformanceIndex. Results may vary.

www.Intel.com/PerformanceIndex

INTEL® ADVANCED VECTOR EXTENSIONS 512 - FP16 INSTRUCTION SET FOR INTEL® XEON® PROCESSORS

19-20

VSCALEF(a,b)=a*2floor(b) is used in exponential and power functions; other possible applications
include software division. This operation helps with correct overflow and underflow treatment in the main
path. It also includes support for special exp() cases, thus eliminating the need for branches or other
fixup code for this function family.

VFPCLASS is used to test for multiple special case categories (sNaN, negative finite, denormal, -Infinity,
+Infinity, -0, +0, qNAN). This helps when redirecting special inputs to a secondary path (for example, in
the pow() function), or to generate a fixup mask for setting special case results in the main path.

VRNDSCALE (round to specified number of fractional bits, using specified rounding mode) is used in
function argument reduction, and to help generate lookup table indices (also as part of argument reduc-
tion). VRNDSCALE is a generalized form of round-to-integral, so it provides ceil/floor/trunc functionality,
and also helps with floating-point remainder operations.

VREDUCE is closely related to VRNDSCALE: VREDUCE(x, imm) = x - VRNDSCALE(x,imm). This instruc-
tion helps further speed up argument reduction for certain functions (for example, exp2, pow).

The existing Intel AVX-512 permute operations (VPERM, VPERMT2, VPERMI2 for 16-bit and 32-bit data)
provide fast vector gather support for those implementations that need lookup tables (up to 32 16-bit
entries for VPERMW, up to 64 16-bit entries for VPERMT2W/VPERMI2Wn operations).

CHAPTER 20
INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

This document aims to help low-level DL programmers optimally code to the metal on Intel® Xeon®
Processors based on Sapphire Rapids SP microarchitecture. It extends the public documentation on Opti-
mizing DL code with DL Boost instructions in Section 20.8.

It explains how to detect processor support in Intel® AMX Architecture (Section 20.1). It provides an
Intel® AMX architectural overview (Section 20.2) and presents Intel AMX instruction throughput and
latency (Section 20.3). It also discusses software optimization opportunities for Intel® AMX (Section
20.5 through Section 20.17), TileConfig/TileRelease and compiler ABI (Section 20.18), Intel AMX state
management and system software aspects (Section 20.19), and the use of Intel AMX for higher precision
GEMMs (Section 20.20). Buildable and executable versions of most code examples may be found in a
public GitHub repository: https://github.com/intel/optimization-manual.

Table 20-1. Related Links

Description URL

Intel® AMX architecture definition in the Intel®
Architecture Instruction Set Extensions Pro-
gramming Reference Guide

https://software.intel.com/content/www/us/en/develop/down-
load/intel-architecture-instruction-set-extensions-programming-ref-
erence.html

Template Convolution C++ code for both ICC and
ICX Intel Compilers and makefile

https://intel.sharepoint.com/sites/MLPerformance/mlpc/SiteP-
ages/SPR%20Eagle%20Stream.aspx

Open VINO™ Optimization Guide
https://docs.openvino.ai/latest/openvino_docs_optimiza-
tion_guide_dldt_optimization_guide.html

oneDNN GitHub https://github.com/oneapi-src/oneDNN

oneDNN documentation https://oneapi-src.github.io/oneDNN/

Intel® Optimization TensorFlow Installation
Guide

https://www.intel.com/content/www/us/en/developer/arti-
cles/guide/optimization-for-tensorflow-installation-guide.html

PyTorch Landing Page https://pytorch.org/

PyTorch GitHub https://github.com/pytorch/pytorch

Low Precision Optimization Tool (LPOT) GitHub https://github.com/intel/neural-compressor

Tips for measuring the performance of matrix
multiplication using Intel® MKL

https://www.intel.com/content/www/us/en/developer/articles/tech-
nical/a-simple-example-to-measure-the-performance-of-an-intel-mkl-
function.html

Intel AMX ABI https://gitlab.com/x86-psABIs/x86-64-ABI/-/wikis/x86-64-psABI

GitHub Repository https://github.com/intel/optimization-manual

Using dynamically enabled XSTATE features in
Linux user space applications

https://www.kernel.org/doc/html/latest/x86/xstate.html

https://github.com/intel/optimization-manual
https://software.intel.com/content/www/us/en/develop/download/intel-architecture-instruction-set-extensions-programming-reference.html
https://intel.sharepoint.com/sites/MLPerformance/mlpc/SitePages/SPR%20Eagle%20Stream.aspx
https://docs.openvino.ai/latest/openvino_docs_optimization_guide_dldt_optimization_guide.html
https://github.com/oneapi-src/oneDNN
https://oneapi-src.github.io/oneDNN/
https://pytorch.org/
https://github.com/pytorch/pytorch
https://github.com/intel/neural-compressor
https://www.intel.com/content/www/us/en/developer/articles/technical/a-simple-example-to-measure-the-performance-of-an-intel-mkl-function.html
https://gitlab.com/x86-psABIs/x86-64-ABI/-/wikis/x86-64-psABI
https://github.com/intel/optimization-manual

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20-2

20.1 DETECTING INTEL® AMX SUPPORT
Use the CPUID instruction described in Chapter 1.5 of the Intel® Architecture Instruction Set Extensions
Programming Reference to find out whether the processor you are executing on supports Intel AMX at
the hardware level.

Specifically, when issuing the CPUID instruction with EAX register set to 7 and ECX register set to 0, the
instruction returns in the EDX register an indication on Intel AMX support in bits 22, 24, 25. They are all
set to 0 if AMX is not supported and all set to 1 if it is supported by the processor.

Next step is check whether the OS has enabled Intel AMX state. For that you first need to issue the CPUID
instruction again to check whether the OS supports the XGETBV instruction, then use it to check whether
the OS has enabled Intel® AMX state save/restore.

When issuing the CPUID instruction with EAX register set to 1, the instruction returns in the ECX register
an indication on XGETBV support in bit 26. If bit 26 is set, when issuing the XGETBV instruction with ECX
register set to 0, the instruction returns an indication on OS support in saving and restoring Intel AMX
state in bits 17 and 18 of the EAX register. Both bits should be set in order to use the Intel® AMX instruc-
tions. There’s additional CPUID information on Intel AMX which can be found in https://soft-
ware.intel.com/content/www/us/en/develop/download/intel-architecture-instruction-set-extensions-
programming-reference.html.

Operating systems may require calling an OS API to allocate Intel AMX state. See https://docs.micro-
soft.com/en-us/windows/win32/api/winbase/nf-winbase-getenabledxstatefeatures for Linux API and https://docs.micro-
soft.com/es-es/windows/win32/api/winbase/nf-winbase-enableprocessoptionalxstatefeatures for Windows API. More
on Intel AMX state management in Section 20.19 of this document.

20.2 INTEL® AMX MICROARCHITECTURE OVERVIEW
General AMX micro-architecture overview is available in Chapter 3 of the Intel® Architecture Instruction
Set Extensions Programming Reference.

20.2.1 INTEL AMX FREQUENCIES
Discussion on the connection between max frequency, frequency license, and Instruction Set Architec-
ture covering technologies up to AVX-512 Instruction Set, is available in section 2.4.3 of IA Optimization
Guide. Intel AMX adds yet another license level whose max frequency is usually lower than that of AVX-
512 license.
When the Intel AMX unit utilization is lower than 15%, the processor may exceed the nominal max
frequency associated with Intel AMX license.

Using dynamically enabled XSTATE features in
Windows user space applications

https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-
winbase-getenabledxstatefeatures

https://docs.microsoft.com/es-es/windows/win32/api/winbase/nf-
winbase-enableprocessoptionalxstatefeatures

https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-
winbase-getthreadenabledxstatefeaturesv

https://docs.microsoft.com/en-us/windows/win32/api/process-
threadsapi/nf-processthreadsapi-updateprocthreadattribute

Table 20-1. Related Links

Description URL

https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-getenabledxstatefeatures
https://software.intel.com/content/www/us/en/develop/download/intel-architecture-instruction-set-extensions-programming-reference.html
https://docs.microsoft.com/es-es/windows/win32/api/winbase/nf-winbase-enableprocessoptionalxstatefeatures
https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-getthreadenabledxstatefeatures
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-updateprocthreadattribute
https://software.intel.com/content/www/us/en/develop/download/intel-architecture-instruction-set-extensions-programming-reference.html
https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-getenabledxstatefeatures
https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-getenabledxstatefeatures
https://docs.microsoft.com/es-es/windows/win32/api/winbase/nf-winbase-enableprocessoptionalxstatefeatures
https://docs.microsoft.com/es-es/windows/win32/api/winbase/nf-winbase-enableprocessoptionalxstatefeatures

20-3

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20.3 INTEL® AMX INSTRUCTIONS THROUGHPUT AND LATENCY
Several Intel AMX instructions are available. Two instructions (TileLoad*) load data from the memory
hierarchy into the tile registers and one instruction (TileStore) stores the contents of a tile register into
the DCU (Data Cache Unit–first level cache). Other instructions (TDP*) execute the matrix multiplication,
operating on two input tile registers and writing the result into a third tile register. Additionally, there are
some less-frequently used instructions. The following table provides the instruction throughput and
latency counted in cycles.

NOTE
Due to the high latency of the LDTILECFG instruction we recommend issuing a single pair
of LDTILECFG and TILERELEASE operations per Intel AMX-based DL layer implemen-
tation.

20.4 DATA STRUCTURE ALIGNMENT
GEMM and Convolution input/output data structures must be 64-byte aligned for optimal performance
but should not be aligned to 128-byte, 256-byte, etc. For more details, see Tip 6 in Tips for Measuring the
Performance of Matrix Multiplication Using Intel® MKL.

Table 20-2. Intel® AMX Instruction Throughput and Latency

Instruction Throughput Latency

LDTILECFG 204

STTILECFG 19

TILETRELEASE 13

TDP/* 16 52

TILELOADD 8 45

TILELOADDT1 23 48

TILESTORED 16

TILEZERO 0 16

https://www.intel.com/content/www/us/en/developer/articles/technical/a-simple-example-to-measure-the-performance-of-an-intel-mkl-function.html
https://www.intel.com/content/www/us/en/developer/articles/technical/a-simple-example-to-measure-the-performance-of-an-intel-mkl-function.html

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20-4

20.5 GEMMS / CONVOLUTIONS

20.5.1 NOTATION
The following notation is used for the matrices (A, B, C) and the dimensions (M, K, N) in matrix multipli-
cation (GEMM).

Figure 20-1. Matrix Notation

20.5.2 TILES IN THE INTEL® AMX ARCHITECTURE
The Intel AMX instruction set operates on tiles: large two-dimensional registers with configurable dimen-
sions. The configuration is dependent on the type of tile.

• A-tiles can have between 1-16 rows and 1-MAX_TILE_K columns.
• B-tiles can have between 1-MAX_TILE_K rows and 1–16 columns.
• C-tiles can have between 1-16 rows and 1–16 columns.

MAX_TILE_K=64/sizeof(type_t), and type_t is the type of the data being operated on. Therefore,
MAX_TILE_K=64 for (u)int8 data, and MAX_TILE_K=32 for bfloat16 data. The dimensions here are mathe-
matical/logical. For mapping to tile register configuration parameters, see the Intel® Architecture
Instruction Set Extensions Programming Reference referenced in Section 20.2.

The type of data residing in the tiles also varies depending on the type of tile.

A tiles and B tiles contain data of type_t, which can be (u)int8 or bfloat16.

• C tiles contain data of type res_type_t:
• int32 if type_t=(u)int8
• float if type_t=bfloat16

Thus, a maximum-sized tile multiplication operation for (u)int8 data type looks this way:

20-5

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

Figure 20-2. Intel® AMX Multiplication with Max-sized int8 Tiles

TileLoad and TileStore Instructions

The tiles are loaded from memory with the TileLoad instruction and stored to memory with a TileStore
instruction. The TileLoad/TileStore instructions receive the following parameters:

• The destination/source tile of the TileLoad/TileStore.
• The source/destination location in memory for the TileLoad/TileStore.
• The stride (bytes) in memory between subsequent rows of the tile.

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20-6

Lines 6—10 in Example 20-1 illustrate how a tile is loaded from memory.

For the sake of readability, a tile template class abstraction is introduced. The number of rows in the tile
and the number of column bytes per row parametrizes the abstraction.

20.5.3 B MATRIX LAYOUT
Like the Intel® DL Boost use case, the B matrix must undergo a re-layout before it can be used within the
corresponding Intel AMX multiply instruction. The re-layout procedure is as follows:

Example 20-2. B Matrix Re-layout Procedure

Example 20-1. Pseudo-code for the Tilezero, TileLoad, and TileStore Instructions

template<size_t rows, size_t bytes_cols> class tile {
public:
 friend void tilezero(tile& t) {
 memset(t.v, 0, sizeof(v));
 }
 friend void tileload(tile& t, void* src, size_t bytes_stride) {
 for (size_t row = 0; row < rows; ++row)
 for (size_t bcol = 0; bcol < bytes_cols; ++bcol)
 t.v[row][bcol] = static_cast<int8_t*>(src)[row*bytes_stride + bcol];
 }
friend void tilestore(tile& t, void* dst, size_t bytes_stride) {
 for (size_t row = 0; row < rows; ++row)
 for (size_t bcol = 0; bcol < bytes_cols; ++bcol)
 static_cast<int8_t*>(dst)[row*bytes_stride + bcol] = t.v[row][bcol];
 }
template <class TC, class TA, class TB>
friend void tdp(TC &tC, TA &tA, TB &tB);
private:
 int8_t v[rows][bytes_cols];
};

// clang-format on

template <class TC, class TA, class TB> void tdp(TC &tC, TA &tA, TB &tB)
}

#define KPACK (4/sizeof(type_t)) // Vertical K packing into Dword

type_t B_mem_orig[K][N]; // Original B matrix
type_t B_mem[K/KPACK][N][KPACK]; // Re-laid B matrix

for (int k = 0; k < K; ++k)
 for (int n = 0; n < N; ++n)
 B_mem[k/KPACK][n][k%KPACK] = B_mem_orig[k][n];

20-7

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

The following figures illustrate the data re-layout process for a 64x16 int8 B matrix and a 32x16 bfloat16
B matrix (corresponding to the maximum-sized B-tile):

Figure 20-3. Re-layout of 64x16 int8 B Matrix

Figure 20-4. Re-layout of 32x16 bfloat16 B Matrix

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20-8

20.5.4 STRAIGHTFORWARD GEMM IMPLEMENTATION
This is GEMM reference code. Its performance is sub-optimal. Please refer to Section 20.5.5.3 for optimal
GEMM code. Begin implementation by defining the following:

Example 20-3. Common Defines

Data type_t is the type being operated upon, i.e., signed/unsigned int8 or bfloat16. For the description of
KPACK, see Section 20.5.5. The tile template class and the three functions that operate on it are the
same as the ones introduced inExample 20-3. tilezero (t) resets the contents of tile t to 0, tile-
load(t, src, stride) and loads tile t with the contents of data at src with a stride of stride between
consecutive rows. tilestore(t, dst, stride) stores the contents of tile t to dst with a stride of stride
between consecutive rows. Additionally, tdp(tC,tA,tB) performs a matrix multiplication equivalent of
tC=tC+tA×tB. In reality, tiles are defined by known compile-time integers, and the actual code operating
on tiles looks slightly different. See code templates for usage.

1 #define M ... // Number of rows in the A or C matrices
2 #define K ... // Number of columns in the A or rows in the B matrices
3 #define N ... // Number of columns in the B or C matrices
4 #define M_ACC ... // Number of C accumulators spanning the M dimension
5 #define N_ACC ... // Number of C accumulators spanning the N dimension
6 #define TILE_M ... // Number of rows in an A or C tile
7 #define TILE_K ... // Number of columns in an A tile or rows in a B tile
8 #define TILE_N ... // Number of columns in a B or C tile
9
10 typedef ... type_t; // The type of data being operated on
11 typedef ... res_type_t; // The data type of the result
12
13 #define KPACK (4/sizeof(type_t)) // Vertical K packing into Dword
14
15 type_t A_mem[M][K]; // A matrix
16 type_t B_mem[K/KPACK][N][KPACK]; // B matrix
17 res_type_t C_mem[M][N]; // C matrix
18
19 template<size_t rows, size_t bytes_cols> class tile;
20 template<class T> void tilezero (T& t);
21 template<class T> void tileload (T& t, void* src, size_t stride);
22 template<class T> void tilestore(T& t, void* dst, size_t stride);
23 template <class TC, class TA, class TB> void tdp(TC &tC, TA &tA, TB &tB) {
24 int32_t v;
25 for (size_t m = 0; m < TILE_M; m++) {
26 for (size_t k = 0; k < TILE_K / KPACK; k++) {
27 for (size_t n = 0; n < TILE_N; n++) {
28 memcpy(&v, &tC.v[m][n * 4], sizeof(v));
29 v += tA.v[m][k * 4] * tB.v[k][n * 4];
30 v += tA.v[m][k * 4 + 1] * tB.v[k][n * 4 + 1];
31 v += tA.v[m][k * 4 + 2] * tB.v[k][n * 4 + 2];
32 v += tA.v[m][k * 4 + 3] * tB.v[k][n * 4 + 3];
33 memcpy(&tC.v[m][n * 4], &v, sizeof(v));
34 }
35 }
36 }
37 }

20-9

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

The following is a simple implementation of GEMM of the matrices stored in A_mem and B_mem.

Example 20-4. Reference GEMM Implementation

This implementation is the reference point in the following discussions.

for (int n = 0; n < N; n += N_ACC*TILE_N) {
 for (int m = 0; m < M; m += M_ACC*TILE_M) {
 tile<TILE_M, TILE_N*sizeof(res_type_t)> tC[M_ACC][N_ACC];
 for (int n_acc = 0; n_acc < N_ACC; ++n_acc)
 for (int m_acc = 0; m_acc < M_ACC; ++m_acc)
 tilezero(tC[m_acc][n_acc]);

 for (int k = 0; k < K; k += TILE_K) {
 for (int n_acc = 0; n_acc < N_ACC; ++n_acc) {
 tile<TILE_K/KPACK, TILE_N*KPACK> tB;
 tileload(tB, B_mem[k/KPACK][n + n_acc*TILE_N], N*sizeof(type_t)*KPACK);
 for (int m_acc = 0; m_acc < M_ACC; ++m_acc) {
 tile<TILE_M, TILE_K*sizeof(type_t)> tA;
 tileload(tA, &A_mem[m + m_acc*TILE_M][k], K*sizeof(type_t));
 tdp(tC[m_acc][n_acc], tA, tB);
 }
 }
 }
 for (int n_acc = 0; n_acc < N_ACC; ++n_acc) {
 for (int m_acc = 0; m_acc < M_ACC; ++m_acc) {
 int mc = m + m_acc*TILE_M, nc = n + n_acc*TILE_N;
 tilestore(tC[m_acc][n_acc], &C_mem[mc][nc], N*sizeof(res_type_t));
 }
 }
 }
}

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20-10

20.5.5 OPTIMIZATIONS

20.5.5.1 Minimizing Tile Loads
Redundant tile loads may severely impact performance due to the large size of the data loaded into the
tiles, unnecessary cache evictions, etc. To minimize tile loads, it is essential to utilize the data as
completely as possible once it has been loaded into the tile.

Location of the K Loop: Outside of the M_ACC and N_ACC Loops

The three loops in lines 8–18 of Example 20-4 could also have been written this way:

Example 20-5. K-dimension Loop as Innermost Loop–A highly inefficient approach

While both approaches yield correct results, there are K/TILE_K×N_ACC B tile loads in the reference imple-
mentation. Additionally, K/TILE_K×N_ACC×M_ACC B tile loads in the implementation presented in this
section. The number of A tile loads is identical.

This approach is also characterized by excessive pressure on the memory along with an increased
number of tile loads.

Suppose the B_mem data resides in main memory. In the reference implementation, a new chunk of
TILE_K×TILE_N B data is read every M_ACC iteration of the inner loop. The inner loop then reuses the read
data. In the current implementation, when n_acc == m_acc == 0, a new chunk of TILE_K×TILE_N B data is
read every iteration of the inner loop. Then the same data is read (presumably from caches) on subse-
quent iterations of n_acc, m_acc. This burst access pattern of reads from main memory results in
increased data latency and decreased performance.

Hence, keeping the K-dimension loop outside the M_ACC and N_ACC loops is recommended.

Pre-loading Innermost Loop Tiles

Consider the following replacement code for the code in lines 8–18 of Example 20-4:

for (int n_acc = 0; n_acc < N_ACC; ++n_acc) {
 tile<TILE_K/KPACK, TILE_N*KPACK> tB;
 for (int m_acc = 0; m_acc < M_ACC; ++m_acc) {
 tile<TILE_M, TILE_K*sizeof(type_t)> tA;
 for (int k = 0; k < K; k += TILE_K) {
 tileload(tB, B_mem[k/KPACK][n + n_acc*TILE_N], N*sizeof(type_t)*KPACK);
 tileload(tA, &A_mem[m + m_acc*TILE_M][k], K*sizeof(type_t));
 tdp(tC[m_acc][n_acc], tA, tB);
 }
 }
}

20-11

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

Example 20-6. Innermost Loop Tile Pre-loading

The A-tile has been extended to an array of A-tiles (line 2) and pre-read the A tiles for the current K-loop
iteration (lines 3–4). A pre-read A-tile is used in the tile multiplication (line 9). There were
K/TILE_K×N_ACC×M_ACC A-tile reads in the reference implementation, while there are only K/TILE_K×M_ACC
A-tile reads in the current implementation.

Hence, pre-allocation and pre-reading the tiles of the innermost loop (tA[M_ACC] in this case) is recom-
mended. The maximum number of tiles used at any given time in this scenario is N_ACC×M_ACC+M_ACC+1 as
opposed to N_ACC×M_ACC+2 in the reference implementation. Since this optimization requires pre-alloca-
tion of an additional M_ACC-1 tiles, and since tiles are a scarce resource, if N_ACC<M_ACC, it might prove
beneficial to switch the order of the N_ACC and M_ACC loops. This way, it is possible to allocate N_ACC-
1<M_ACC-1 additional tiles:

Example 20-7. Switched Order of M_ACC and N_ACC Loops

2D Accumulator Array vs. 1D Accumulator Array

Consider Example 20-6 with the following scenarios:

• N_ACC=2,M_ACC=2

• N_ACC=4,M_ACC=1

As stated before, the number of A tile loads in lines 3–11 is M_ACC, and the number of B tile loads is N_ACC.
Thus, the total number of tile loads (M_ACC+N_ACC) is 4 in the first scenario vs. 5 in the second one (an
increase of 25%), even though both scenarios perform the same amount of work.

Hence, using 2D accumulator arrays is recommended. Selecting dimensions close to square is particu-
larly recommended (since x=y minimizes f(x,y)=x+y under the constraint x×y=const).

1 for (int k = 0; k < K; k += TILE_K) {
2 tile<TILE_M, TILE_K*sizeof(type_t)> tA[M_ACC];
3 for (int m_acc = 0; m_acc < M_ACC; ++m_acc)
4 tileload(tA[m_acc], &A_mem[m + m_acc*TILE_M][k], K*sizeof(type_t));
5 for (int n_acc = 0; n_acc < N_ACC; ++n_acc) {
6 tile<TILE_K/KPACK, TILE_N*KPACK> tB;
7 tileload(tB, B_mem[k/KPACK][n + n_acc*TILE_N], N*sizeof(type_t)*KPACK);
8 for (int m_acc = 0; m_acc < M_ACC; ++m_acc) {
9 tdp(tC[m_acc][n_acc], tA[m_acc], tB);
10 }
11 }
12 }

for (int k = 0; k < K; k += TILE_K) {
 tile<TILE_K/KPACK, TILE_N*KPACK> tB[N_ACC];
 for (int n_acc = 0; n_acc < N_ACC; ++n_acc)
 tileload(tB[n_acc], B_mem[k/KPACK][n + n_acc*TILE_N], N*sizeof(type_t)*KPACK);
 for (int m_acc = 0; m_acc < M_ACC; ++m_acc) {
 tile<TILE_M, TILE_K*sizeof(type_t)> tA;
 tileload(tA, &A_mem[m + m_acc*TILE_M][k], K*sizeof(type_t));
 for (int n_acc = 0; n_acc < N_ACC; ++n_acc) {
 tdp(tC[m_acc][n_acc], tA, tB[n_acc]);
 }
 }
}

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20-12

20.5.5.2 Software Pipelining of Tile Loads and Stores
It is a best practice to interleave instructions using different resources so they may be executed in
parallel, preventing a bottleneck involving a specific resource. Therefore, preventing sequential TileLoads
and TileStores (see lines 19–23 of Example 20-4 and lines 3–4 of Example 20-6) is recommended.
Instead, interleave them with the tdp instructions (see Example 20-8).

20.5.5.3 Optimized GEMM Implementation
Below is the original code from Example 20-4, augmented with the insights from Example 20-6, with tile
loads and stores interleaved with tdps:

Example 20-8. Optimized GEMM implementation

While placing the tile loads and stores under conditions inside the main loop (lines 13, 16, 20), conditions
can be eliminated by sufficiently unrolling the loops.

1 for (int n = 0; n < N; n += N_ACC*TILE_N) {
2 for (intm = 0; m < M; m += M_ACC*TILE_M) {
3 tile<TILE_M, TILE_N*sizeof(res_type_t)> tC[M_ACC][N_ACC];
4 tile<TILE_M, TILE_K*sizeof(type_t)> tA[M_ACC];
5 tile<TILE_K/KPACK, TILE_N*KPACK> tB;
6
7 for (int n_acc = 0; n_acc < N_ACC; ++n_acc)
8 for (int m_acc = 0; m_acc < M_ACC; ++m_acc)
9 tilezero(tC[m_acc][n_acc]);
10
11 for (int k = 0; k < K; k += TILE_K) {
12 for (int n_acc = 0; n_acc < N_ACC; ++n_acc) {
13 tileload(tB, B_mem[k/KPACK][n + n_acc*TILE_N], N*sizeof(type_t)*KPACK);
14 for (int m_acc = 0; m_acc < M_ACC; ++m_acc) {
15 if (n_acc == 0)
16 tileload(tA[m_acc], &A_mem[m + m_acc*TILE_M][k], K*sizeof(type_t));
17 tdp(tC[m_acc][n_acc], tA[m_acc], tB);
18 if (k == K - TILE_K) {
19 int mc = m + m_acc*TILE_M, nc = n + n_acc*TILE_N;
20 tilestore(tC[m_acc][n_acc], &C_mem[mc][nc], N*sizeof(res_type_t));
21 }
22 }
23 }
24 }
25 }
26}

20-13

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

The rest of this section presents a specific example of GEMM, implemented in low-level Intel AMX instruc-
tions. This is to show a full performance potential from using Intel AMX extensions.

Example 20-9. Dimension of matrices, data types and tile sizes

#define M 32
#define K 128
#define N 32
#define M_ACC 2
#define N_ACC 2
#define TILE_M 16
#define TILE_K 64
#define TILE_N 64

typedef int8_t type_t
typedef int32_t res_type_t

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20-14

The code below is a specific example of the algorithm outlined in Example 20-8.

Example 20-10. Optimized GEMM Assembly Language Implementation

1 typedef struct {
2 uint8_t palette_id;
3 uint8_t startRow;
4 uint8_t reserved[14];
5 uint16_t cols[16];
6 uint8_t rows[16];
7 } __attribute__ ((__packed__)) tileconfig_t;
8
9 static const tileconfig_t tc = {
10 1, // palette_id
11 0, // startRow
12 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // reserved - must be
13 64, 64, 64, 64, 64, 64, 64, 0, 0, 0, 0, 0, 0, 0, 0, 0, // calls for 7 tiles used
14 16, 16, 16, 16, 16, 16, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0 // rows for 7 tiles used
15 };
16
17 _amx_interleaved_gemm_ass:
18 amx_interleaved_gemm_ass:
19 ldtilecfg tc # Load tile config
20 mov r8, A_mem # Initialize register for A
21 mov r9, B_mem # Initialize register for B
22 mov r10, C_mem # Initialize register for C
23
24 mov r11, 128 # Initialize register for strides
25 tileloadd tmm6, [r9 + r11*1] # Load B for n_acc = 0, k_acc = 0
26 tileloadd tmm4, [r8 + r11*1] # Load A for m_acc = 0, k_acc = 0
27 tilezero tmm0 # Zero accumulator tile
28 tdpbssd tmm0, tmm4, tmm6 # Multiply-add tmm0 += tmm4 * tmm6
29 tileloadd tmm5, [r8 + r11*1 + 2048] # Load A for m_acc = 1, k_acc = 0
30 tilezero tmm1 # Zero accumulator tile
31 tdpbssd tmm1, tmm5, tmm6 # Multiply-add tmm1 += tmm5 * tmm6
32 tileloadd tmm6, [r9 + r11*1 + 64] # Load B for n_acc = 1, k_acc = 0
33 tilezero tmm2 # Zero accumulator tile
34 tdpbssd tmm2, tmm4, tmm6 # Multiply-add tmm2 += tmm4 * tmm6
35 tilezero tmm3 # Zero accumulator tile
36 tdpbssd tmm3, tmm5, tmm6 # Multiply-add tmm3 += tmm5 * tmm6
37 tileloadd tmm6, [r9 + r11*1 + 2048] # Load B for n_acc = 0, k_acc = 1
38 tileloadd tmm4, [r8 + r11*1 + 64] # Load A for m_acc = 0, k_acc = 1
39 tdpbssd tmm0, tmm4, tmm6 # Multiply-add tmm0 += tmm4 * tmm6
40 tilestored [r10 + r11*1], tmm0 # Store C for m_acc = 0, n_acc = 0
41 tileloadd tmm5, [r8 + r11*1 + 2112] # Load A for m_acc = 1, k_acc = 1
42 tdpbssd tmm1, tmm5, tmm6 # Multiply-add tmm1 += tmm5 * tmm6
43 tilestored [r10 + r11*1 + 2048], tmm1 # Store C for m_acc = 1, n_acc = 0
44 tileloadd tmm6, [r9 + r11*1 + 2112] # Load B for n_acc = 1, k_acc = 1
45 tdpbssd tmm2, tmm4, tmm6 # Multiply-add tmm2 += tmm4 * tmm6
46 tilestored [r10 + r11*1 + 64], tmm2 # Store C for m_acc = 0, n_acc = 1
47 tdpbssd tmm3, tmm5, tmm6 # Multiply-add tmm3 += tmm5 * tmm6
48 tilestored [r10 + r11*1 + 2112], tmm3 # Store C for m_acc = 1, n_acc = 1
49 }

20-15

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

Lines 1-12 in Example 20-10 define the tile configuration for this example, and contain information about
tile sizes. Tile configuration should be loaded prior to any execution of Intel AMX instructions (line 16).
Tile sizes are defined by the configuration at the load time and can’t be changed dynamically (unless
TileRelease is called). The ‘palette_id’ field in the configuration specifies the number of logical tiles avail-
able for use; palette_id == 1 means 8 logical tiles are available, named tmm0 through tmm7. This
particular example uses 7 logical tiles (tmm4, tmm5 for A, tmm6 for B, tmm0-tmm3 for C).

According to the dimensions specified, K-loop consists of 2 iterations (cf. code listing 8.1, line 11)
according to the dimensions specified in the example. Lines 23-34 implement the first iteration and lines
35-46 the second iteration. Note the interleaving of tdp and TileStore instructions to hide the high cost of
TileStore operation.

Variable Input Dimensions

The code in Example 20-8 and 20-10 process an entire matrix of inputs of size MxK. Sometimes, only
part of the input is significant, so it is beneficial to adapt the computation to the actual input size. Often,
topologies that use self-attention it is enough to process only the first m rows of the input that are signif-
icant, where m < M. For example, taking the GEMM dimensions described above with the choice of a 1D
accumulator array of N_ACC=2,M_ACC=1, when accepting data as input with at most sixteen significant
rows, we can degenerate the m loop (line 2 in Example 20-8) so as to effectively reduce the computation
by half.

It is worth noting that in variable M dimension use cases there is an advantage to 1D accumulators. Up
to N_ACC=6, M_ACC=1 dimensions are possible if N is 96 or larger, one tile for A, one tile for B and six
tiles for the accumulator.

20.5.5.4 Direct Convolution with Intel® AMX
Direct convolution is performed directly on the input data; no data replication is required. However, there
are some layout considerations.

Activations Layout

Similar to the Intel DL Boost use case, the activations are laid out in a layout obtained from the original
layout by the following procedure:

Example 20-11. Activations Layout Procedure

#define K C // K-dimension of the A matrix = channels
#define M H*W // M-dimension of the A matrix = spatial
type_t A_mem_orig[C][H][W]; // Original activations tensor
type_t A_mem[H][W][K]; // Re-laid A matrix7

for (int c = 0; c < C; ++c)
for (int h = 0; h < H; ++h)
for (int w = 0; w < W; ++w)

A_mem[h][w][c] = A_mem_orig[c][h][w];

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20-16

This procedure on the left side of the diagram below shows the conversion of a 3-dimensional tensor into
a 2-dimensional matrix:

Figure 20-5. Activations layout

The procedure shown on the right is identical for the outputs, e.g., the activations of the next layer in the
topology).

Weights Layout

Similar to the Intel DL Boost use case, the weights are re-laid by the following procedure:

Example 20-12. Weights Re-Layout Procedure

#define KH ... // Vertical dimension of the weights
#define KW ... // Horizontal dimension of the weights
#define KPACK (4/sizeof(type_t)) // Vertical K packing into Dword

type_t B_mem_orig[K][N][KH][KW]; // Original weights
type_t B_mem[KH][KW][K/KPACK][N][KPACK]; // Re-laid B matrices

for (int kh = 0; kh < KH; ++kh)
 for (int kw = 0; kw < KW; ++kw)
 for (int k = 0; k < K; ++k)
 for (int n = 0; n < N; ++n)
 B_mem[kh][kw][k/KPACK][n][k%KPACK] = B_mem_orig[k][n][kh][kw];

20-17

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

The procedure transforms the original 4-dimensional tensor into a series of 2-dimensional matrices (a
single matrix is highlighted in orange in Example 20-12) as illustrated in the following diagram for
KH=KW=3, resulting in a series of 9 B-matrices:

Figure 20-6. Weights Re-Layout

20.5.5.5 Convolution - Matrix-like Multiplications and Summations Equivalence
Figure 20-7 illustrates the equivalence between convolution and summation of a series of matrix-like
multiplications between subsets of the 2-dimensional A-matrix representing the 3-dimensional activa-
tions tensor. The 2-dimensional B-matrices correspond to the various spatial elements of the weights
filter.

Figure 20-7. Convolution - Matrix Multiplication and Summation Equivalence

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20-18

The A-matrix subset participating in the matrix-like multiplication depends on the spatial weight element
in question (i.e., the kh,kw coordinates, or the index in the range 0–8 in the previous example). For each
weight element, the A-matrix’s participating rows will interact with the weight element when the filter is
slid over the activations. For example, when sliding the filter over the activations in the previous
example, weight element 0 will only interact with activation elements 0, 1, 2, 5, 6, 7, 10, 11, and 12. For
example, it will not interact with activation element four because when the filter is applied in such a
manner (i.e., weight element 0 interacts with activation element 4), weight elements 2, 5, and 8 leave
the activation frame entirely. The A-matrix subsets for several weight elements are illustrated in the
following figure.

Figure 20-8. Matrix-Like Multiplications Part of a Convolution

20-19

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20.5.5.6 Optimized Convolution Implementation
Replace the common defines in Example 20-3 with the following:

Example 20-13. Common Defines for Convolution

#define H ... // The height of the activation frame
#define W ... // The width of the activation frame
#define MA (H*W) // The M dimension (rows) of the A matrix
#define K ... // Number of activation channels
#define N ... // Number of output channels
#define KH ... // The height of the weights kernel
#define KW ... // The width of the weights kernel
#define SH ... // The vertical stride of the convolution
#define SW ... // The horizontal stride of the convolution
#define M_ACC ... // Number of C accumulators spanning the M dimension
#define N_ACC ... // Number of C accumulators spanning the N dimension
#define TILE_M ... // Number of rows in an A or C tile
#define TILE_K ... // Number of columns in an A tile or rows in a B tile
#define TILE_N ... // Number of columns in a B or C tile

#define HC ((H-KH)/SH+1) // The height of the output frame
#define WC ((W-KW)/SW+1) // The width of the output frame
#define MC (HC*WC) // The M dimension (rows) of the C matrix

typedef ... type_t; // The type of the data being operated on
typedef... res_type_t; // The data type of the result

#define KPACK (4/sizeof(type_t)) // Vertical K packing into Dword

type_t A_mem[H][W][K]; // A matrix (equivalent to A_mem[H*W][K])
type_t B_mem[KH][KW][K/KPACK][N][KPACK]; // B matrices
res_type_t C_mem[MC][N]; // C matrix

template<size_t rows, size_t cols> class tile;

template<class T> void tilezero (T& t);
template<class T> void tileload (T& t, void* src, size_t stride);
template<class T> void tilestore(T& t, void* dst, size_t stride);
template<class TC, class TA, class TB> void tdp(TC& tC, TA& tA, TB& tB);

int mc_to_ha(int mc) {return mc / HC * SH;} // C matrix M -> A tensor h coord
int mc_to_wa(int mc) {return mc % HC * SW;} // C matrix M -> A tensor w coord

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20-20

Replace the implementation in Example 20-8 with the following:

Example 20-14. Optimized direct convolution implementation

The divergences highlighted in yellow in Example 20-8 include:

• The loop over M-dimension (line 2) references the M-dimension of the C-matrix (since the M-
dimensions of A and C no longer have to be the same). To get the corresponding A-matrix m index
from a C-matrix m index, one must employ the conversion functions mc_to_ha() and mc_to_wa() (line
20).

• There are additional loops over the weights kernel dimensions KH and KW (lines 12–13), which define
the B-matrix to be used (line 16), enter into the condition for accumulator tile storing (line 24) and
computation of A-matrix coordinates (line 20).

• The stride of the A tile load must account for the convolutional horizontal stride (line 21).

Note that care should be taken to define TILE_M*M_ACC in such a way that it cleanly divides WC (the width
of the output frame), i.e., WC%(TILE_M*M_ACC)==0. Otherwise, some tiles will end up loading data that
should not be multiplied by the corresponding weight element (see Figure 20-8). Possible mitigations of
this issue:

• An M_ACC loop with a dynamic upper limit depending on the current position in A.

1 for (int n = 0; n < N; n += N_ACC*TILE_N) {
2 for (int m = 0; m < MC; m += M_ACC*TILE_M) {
3 tile<TILE_M, TILE_N*sizeof(res_type_t)> tC[M_ACC][N_ACC];
4 tile<TILE_M, TILE_K*sizeof(type_t)> tA[M_ACC];
5 tile<TILE_K/KPACK, TILE_N*KPACK> tB;
6
7 for (int n_acc = 0; n_acc < N_ACC; ++n_acc)
8 for (int m_acc = 0; m_acc < M_ACC; ++m_acc)
9 tilezero(tC[m_acc][n_acc]);
10
11 for (int k = 0; k < K; k += TILE_K) {
12 for (int kh = 0; kh < KH; ++kh) {
13 for (int kw = 0; kw < KW; ++kw) {
14 for (int n_acc = 0; n_acc < N_ACC; ++n_acc) {
15 int nc = n + n_acc*TILE_N;
16 tileload(tB, B_mem[kh][kw][k/KPACK][nc], N*sizeof(type_t)*KPACK);
17 for (int m_acc = 0; m_acc < M_ACC; ++m_acc) {
18 int mc = m + m_acc*TILE_M;
19 if (n_acc == 0) {
20 int ha = mc_to_ha(mc)+kh, wa = mc_to_wa(mc)+kw;
21 tileload(tA[m_acc], &A_mem[ha][wa][k], K*SW*sizeof(type_t));
22 }
23 tdp(tC[m_acc][n_acc], tA[m_acc], tB);
24 if (k + kh + kw == K - TILE_K + KH + KW - 2)
25 tilestore(tC[m_acc][n_acc], &C_mem[mc][nc], N*sizeof(res_type_t));
26 }
27 }
28 }
29 }
30 }
31 }
32 }

20-21

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

• Use different sized A tiles (and correspondingly C tiles) depending on the current position in A (if
there are enough free tiles, performing TileConfig during the convolution is highly discouraged).

• Define TILE_M without consideration for WC and remove/disregard the “junk” data from the results at
the post-processing stage (code not shown). Care should be taken in this case concerning the
advancement of the m index (line 2) since the current assumption is that every row of every tile is
valid (corresponds to a row in the C matrix). If “junk” data is loaded, this is no longer the case: a C-
tile will have less than TILE_M rows of C.

Location of the KH, KW Loops

As shown in Example 20-5, it is ill-advised to put the loop over the K-dimension inside an inner M_ACC or
N_ACC loop. The same considerations hold in the case of the kh,kw loops. While there is no functional
obstacle precluding the positioning of the kh,kw loops further up (before lines 12-13), it is recommended
to keep them under the K loop and above the M_ACC, N_ACC loops because, during the traversal of kh,kw
with the same k value, the TileLoad of A-data (line 21) will have much overlap with A-data loaded for
previous values of kh,kw (with the same k value). This data will likely reside in the lowest-level cache.
Moving the kh,kw loops upward will reduce that likelihood.

20.6 CACHE BLOCKING

Data movement costs vary greatly depending on where the data lies in the cache hierarchy. When the
matrices involved in a GEMM or convolution are larger than the available cache, computations must
proceed in such a manner as to optimize data reuse from the cache. Here a simple cache-blocking
scheme is implemented to simultaneously process partial blocks of the A, B, and C matrices.

20.6.1 OPTIMIZED CONVOLUTION IMPLEMENTATION WITH CACHE BLOCKING
In the following example, the focus is on implementing cache blocking for the optimized convolution
implementation described in the Optimized Convolution Implementation <XREF> section. However, note
that similar changes can also be made to the optimized GEMM implementation. Alternatively, the GEMM
implementation can be derived as a special case of convolution with KH=KW=1 and SH=SW=1.

In addition to the common defines in Example 20-13, add the following:

Example 20-15. Additional Defines for Convolution with Cache Blocking

#define MC_CACHE ... // Extent of cache block along the M dimension of the C matrix
#define K_CACHE ... // Extent of cache block along the K dimension
#define N_CACHE ... // Extent of cache block along the N dimension
typedef ... acc_type_t; // The accumulation data type (either int32 or float)
acc_type_t aC_mem[M_ACC][N_ACC][TILE_M][TILE_N]; // Accumulator buffers of C

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20-22

Replace the implementation in Example 20-14 with the following example. The deviance from Example
20-14 is highlighted.

Example 20-16. Optimized Convolution Implementation with Cache Blocking

1 for (int nb = 0; nb < N; nb += N_CACHE) {
2 for (int mb = 0; mb < MC; mb += MC_CACHE) {
3 for (int kb = 0; kb < K; kb += K_CACHE) {
4 for (int n = nb; n < nb + N_CACHE; n += N_ACC*TILE_N) {
5 for (int m = mb; m < mb + MC_CACHE; m += M_ACC*TILE_M) {
6 tile<TILE_M, TILE_N*sizeof(res_type_t)> tC[M_ACC][N_ACC];
7 tile<TILE_M, TILE_K*sizeof(type_t)> tA[M_ACC];
8 tile<TILE_K/KPACK, TILE_N*KPACK> tB;
9
10 for (int n_acc = 0; n_acc < N_ACC; ++n_acc)
11 for (int m_acc = 0; m_acc < M_ACC; ++m_acc)
12 if (kb == 0)
13 tilezero(tC[m_acc][n_acc]);
14 else {
15 int m_aC = (m - mb) / TILE_M + m_acc;
16 int n_aC = (n - nb) / TILE_N + n_acc;
17 tileload(tC[m_acc][n_acc], &aC_mem[m_aC][n_aC],
18 TILE_N*sizeof(acc_type_t));
19 }
20
21 for (int k = kb; k < kb + K_CACHE; k += TILE_K) {
22 for (int kh = 0; kh < KH; ++kh) {
23 for (int kw = 0; kw < KW; ++kw) {
24 for (int n_acc = 0; n_acc < N_ACC; ++n_acc) {
25 int nc = n + n_acc*TILE_N;
26 tileload(tB, B_mem[kh][kw][k/KPACK][nc], N*sizeof(type_t)*KPACK);
27 for (int m_acc = 0; m_acc < M_ACC; ++m_acc) {
28 int mc = m + m_acc*TILE_M;
29 if (n_acc == 0) {
30 int ha = mc_to_ha(mc)+kh, wa = mc_to_wa(mc)+kw;
31 tileload(tA[m_acc], &A_mem[ha][wa][k], K*SW*sizeof(type_t));
32 }
33 tdp(tC[m_acc][n_acc], tA[m_acc], tB);
34 if (k + kh + kw == K - TILE_K + KH + KW - 2)
35 tilestore(tC[m_acc][n_acc], &C_mem[mc][nc],
36 N*sizeof(res_type_t));
37 else if (k + kh + kw == kb + K_CACHE - TILE_K + KH + KW - 2) {
38 int m_aC = (m - mb) / TILE_M + m_acc;
39 int n_aC = (n - nb) / TILE_N + n_acc;
40 tilestore(tC[m_acc][n_acc], &aC_mem[m_aC][n_aC],
41 TILE_N*sizeof(acc_type_t));
42 }
43 }
44 }
45 }
46 }
47 }
48 }
49 }
50 }
51 }
52 }

20-23

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

The loops over the N, MC, and K dimensions are replaced by loops over cache blocks of N, MC, and K.

Additional loops over the entire N, MC, and K-dimensions are added at the outermost level. These loops
have a step size equal to the cache blocks of N, MC, and K.

In the case of cache blocking along the K-dimension, additional calls to TileLoad and TileStore are
required to load and store intermediate accumulation results. Note that this adds additional memory
traffic, especially for int8 output data types (as Accumulation data type is either int32_t or float). For this
reason, it is generally not advisable to block along the K dimension.

For simplicity, assume the following relationships:

• N is an integer multiple of N_CACHE: an integer multiple of N_ACC*TILE_N.
• MC is an integer multiple of MC_CACHE: an integer multiple of M_ACC*TILE_M. As before, the condition

WC%(TILE_M*M_ACC)==0 still holds.
• K is an integer multiple of K_CACHE: an integer multiple of TILE_K.

Define the following set of operations as the compute kernel of the optimized convolution implementa-
tion. First, initialize the accumulation tiles to zero (line 13) for an M_ACC*TILE_M x N_ACC*TILE_N chunk of
the C-matrix. Next, for each of the KH*KW B-matrices, the matrix multiplication of the corresponding
M_ACC*TILE_M x K chunk of the A-matrix by a K x N_ACC*TILE_N chunk of the B-matrix is performed, each
time accumulating to the same set of accumulation tiles (lines 18–30). Finally, the results are stored in
the C-matrix (line 32).

Continue with the computation of a full cache block of C-matrix, ignoring any blocking along the K-
dimension. First, the kernel is performed for the first chunks of the A, B, and C cache blocks. Next, the
chunks of A and C advance along the M dimension, and the kernel is repeated with the same chunk set of
the B-matrices. The above step is repeated until the last chunks of A and C in the current cache block
have been accessed. Next, the chunks of B and C are advanced along the N-dimension by N_ACC*TILE_N
and the chunk of A returns to the beginning of its cache block.

Observe the following from the above description of the computation of a full cache block of the C-
matrix:

• For each kernel iteration, it is better if the current chunk of matrix A (roughly
KH*M_ACC*TILE_M*K*sizeof(type_t)) fits into the DCU. This allows for maximal data reuse between
the partially overlapping regions of A that need to be accessed by the different B matrices.

• Advancing from one chunk of matrix A to the next, it is better if the current chunk set of the B
matrices (in total, KH*KW*K*N_ACC*TILE_N*sizeof(type_t)) fits into the DCU.

• Advancing from one chunk set of the B matrices to the next, it is better if the current cache block of
matrix A fits into the MLC.

• Advancing from one cache block of matrix A to the next, it is better if the current cache block of the
B matrices (in total, KH*KW*K*N_CACHE*sizeof(type_t)) fits into the MLC.

From these observations, a general cache blocking strategy is choosing MC_CACHE and N_CACHE to be as
large as possible while keeping the A, B, and C cache blocks in the MLC.

Intel AMX-Specific Considerations

A specific feature of AMX-accelerated kernels to keep in mind when applying the previous cache-blocking
recommendations is any post-processing of results from the AMX unit (e.g., adding bias, dequantizing,
converting between data types) must occur by way of vector registers. Thus, a buffer is needed to store
results from the accumulation tiles and load them into vector registers for post-processing. Note that if
acc_type_t is the same as res_type_t, the C matrix itself can be used to store intermediate results.
However, the buffer is small (at most 4KB for the accumulation strategies described in vSection) and
easily fits into the DCU. While it should still be considered when determining the optimal cache block
partitioning, it is unlikely to influence kernel performance strongly.

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20-24

20.7 MINI-BATCHING IN LARGE BATCH INFERENCE
Layers have different sizes and shapes, which require different cache and memory-blocking strategies.
There are layers with a small spatial dimension (M) and relatively larger shared dimension (K) and SIMD
dimension (N). In such layers, the weights are significantly larger than the inputs. Therefore, most of the
load operations are weights matrix loads whose cost is high when the weights reside in memory or the
last level cache.

Running a large batch allows employing an optimization that amortizes the cost of loading the weight
matrix. The idea is to use the same weights for multiple inputs, e.g., execute the same layer with multiple
images. This optimization is highly applicable in CNNs where the inputs of the first layers are large while
the weights are relatively small but end with small input images and large weight matrices. Optimal
execution of the topology starts in the instance or image affinity, where a single input goes through one
layer after another before the next input is retrieved. At some point, the topology execution switches to
layer affinity, where the same layer processes several inputs (mini-batch) before moving forward to the
next layer.

For example, in ResNet-50, the conv-1 to conv-4 layers have relatively large IFMs and smaller weight
matrices. However, many weight matrices are larger than MLC size (mid-level cache) in the conv-5
layers. The switchover point from image affinity to layer affinity on a 4th Generation Intel® Xeon®
Processor microarchitecture is the first layer of conv-5.

The diagram below illustrates six layers with four instances per thread (mini-batch of four). Boxes with
identical colors identify the same layers in each column. Arrows flowing downward through each column’s
layers represent the data flow of a particular instance. Translucent red arrows identify the execution
order of layers with corresponding instances. The first four layers of the diagram have instance (aka
image) affinity, and the last two have layer affinity.

Figure 20-9. Batching Execution Using Six Layers with Four Instances Per Thread

On Resnet-50, this optimization can yield a 17% performance gain.

20-25

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20.8 NON-TEMPORAL TILE LOADS
When a regular tile load is issued, the data for the tile are placed in L2, L1, and then in the tile register
(DRAM/L3->L2->L1->tile register), as with any other register load. This has the well-known benefit of
reduced data read latency due to data proximity when recently accessed data are reaccessed after a
short time. However, indiscriminate application of this approach might sometimes prove detrimental.

Consider the code in Example 20-4, referring to the unoptimized, unblocked implementation for
simplicity. The five loops in the code listing alongside the total input (A) matrix data and weights (B)
matrix data accessed at each loop level is shown in the following table. The original row in the code listing
is provided for convenience:

Priority Inversion Scenarios with Temporal Loads

For the following discussion, assume:

• The data type is int8 (i.e., each element in the table above takes 1 byte).
• TILE_M=16, TILE_K=64, TILE_N=16 (i.e., all tiles are of size 1kB).
• L1 cache size is 32kB.
• M_AC=N_ACC=2.

Scenario 1:

Consider the following scenario, including M=256, K=1024, and N=256. The corresponding table of
accessed data sizes is given below.

At the k loop level, the combined sizes of A and B accessed data will overflow the L1 cache by a factor of
two. Proceeding to the m-level since m is progressing, new A-data are constantly read (a total of 256kB-
32kB=224kB new A data), while the same 32kB of B data are being accessed repeatedly. Thus, a priority
inversion occurs: new A-data placed in the L1 cache repeatedly are accessed only once. They evict the
32kB of B data that are accessed eight times. Placement of A data in the L1 cache is not beneficial: the

Table 20-3. Five loops in the Example 20-4 Code Listing

Row Var Variable Range A Data Size B Data Size

1 n [0:N:N_ACC×TILE_N] M×K K×N

2 m [0:M:M_ACC×TILE_M] M×K
K×N_ACC×TILE_N

8 k [0:K:TILE_K] M_ACC×TILE_M×K

9 n acc [0:N_ACC:1]
M_ACC×TILE_M×TILE_K TILE_K×N_ACC×TILE_N

12 m ac [0:M_ACC:1]

Table 20-4. Accessed Data Sizes

Row Var Variable Range A Data Size B Data Size

1 n [0:N:N_ACC×TILE_N]
256kB

256kB

2 m [0:M:M_ACC×TILE_M]
32kB

8 k [0:K:TILE_K] 32kB

9 n acc [0:N_ACC:1]
32kB 2kB

12 m ac [0:M_ACC:1]

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20-26

next time the same data are accessed will be in the n loop after 256kB (x8 L1 cache size) of A data has
been read. Additionally, it is detrimental because it causes repeated eviction of 32kB of B data that could
have been read from the L1 cache eight times.

Scenario 2:

Consider the following scenario, including M=32, K=1024, and N=256:

Here, the M-dimension is covered in the m_acc loop, and the loop over m is redundant. The priority
inversion is: as n advances, new B-data (accessed only once) repeatedly evict 32kB of A-data that
could have been read (8 times) from the L1 cache had it not been pushed out by B-data.
These two basic scenarios can be readily extended to the blocked code in Example 20-16:

**Note: due to the nature of convolution, the loops over kh, kw reuse most of the A-data.

The innermost loops m_acc, n_acc, kh,kw will access at most M_ACC kB of A data and KH×KW×N_ACC kB of
B-data, which, in some cases (e.g., KH=KW=3, N_ACC=4) might already overflow the L1 cache size. Thus,
several opportunities for priority inversions exist in this more complex loop structure, depending on the
parameters in the table above:

• B-data evicting reusable A-data at the kh,kw loops level.
• A data evicting reusable B-data at the m loop level.
• B data evicting reusable A-data at the n loop level.

Table 20-5. Accessed Data Sizes

Row Var Variable Range A Data Size B Data Size

1 n [0:N:N_ACC×TILE_N]

32kB

256kB

2 m [0:M:M_ACC×TILE_M]
32kB

8 k [0:K:TILE_K]

9 n acc [0:N_ACC:1]
2kB 2kB

12 m ac [0:M_ACC:1]

Table 20-6.

Row Var Variable Range A Data Size B Data Size

1 nb [0:N:N_CACHE] M×K

2 mb [0:MC:MC_CACHE] M×K

3 kb [0:K:K_CACHE] MC_CACHE×K

4 n [nb:nb+N_CACHE:N_ACC×TILE_N]

MC_CACHE×K_CACHE
K_CACHE×KH×KW×N_ACC×TILE_
N

5 m [mb:mb+MC_CACHE:M_ACC×TILE_M]

18 k [kb:kb+K_CACHE:TILE_K]

19 kh [0:KH:1] /*/*
TILE_K×KH×KW×N_ACC×TILE_N

20 kw [0:KW:1]

M_ACC×TILE_M×TILE_K21 n acc [0:N_ACC:1]
TILE_K×N_ACC×TILE_N

24 m ac [0:M_ACC:1]

20-27

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

• A data evicting reusable B-data at the mb loop level.
• B-data evicting reusable A-data at the nb loop level.

Solution to Priority Inversions: Non-temporal Loads

Intel AMX architecture introduces a way to load tile registers bypassing the L1 cache via non-temporal
tile loads (TILELOADDT1). This allows the user to deal with priority inversions such as those described
above by loading the large, non-reusable data chunk with non-temporal loads. Thus, the larger chunk is
prevented from evicting the smaller, frequently used data chunk. In Scenario 1 above, the user would
load the A-tiles with non-temporal loads while loading B-tiles with temporal loads, thus ensuring that the
B-tile loads at the m loop level will all come from the L1 cache. In Scenario 2 above, the user would load
the B-tiles with non-temporal loads while loading A-tiles with temporal loads, thus ensuring that the A-
tile loads at the n loop level will all come from the SL1 cache.

20.9 USING LARGE TILES IN SMALL CONVOLUTIONS TO MAXIMIZE DATA
REUSE

A convolution with a small-sized input frame can make the Intel AMX computation inefficient.

Consider the following example: a 7x7 input frame, with padding of 1 (size including padding is 9x9),
convolved with a 3x3 filter to produce a 7x7 output frame.

Figure 20-10 highlights the elements participating in the convolution interacting with the khaki=0,0
weight element.

Figure 20-10. An Example of a Convolution
Elements interacting with weight element kh,kw=0,0 are highlighted.

Thus, the highlighted elements of the input frame are the only ones that should be loaded into A tiles
when processing weight element kh,kw=0,0. The white elements of the input frame should be ignored.
This requires the number of tile rows to be set at seven, utilizing less than half of the A tile, which in turn
reduces B (weights) data reuse by a factor of two. This is because each A-tile is now half the size, and
seven tiles are required to cover the spatial dimension. Because there are not seven tiles, B tiles must be
loaded twice as many times, potentially leading to significant performance degradation, depending on
the size of the weights. This is usually inversely proportional to the spatial size of the input frame).

Figure 20-11 shows three A tiles with sixteen rows and one tile with seven rows to cover the entire spatial
dimension of the convolution.

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20-28

Figure 20-11. An Example of a Convolution with Large Tiles.
Elements going into each tile are highlighted differently.

Each tile is highlighted differently. The green, blue, and orange tiles now load those two “extra” elements
previously ignored. Those elements will waste compute resources and take up two rows in the accumu-
lator tiles. It is up to the user to ignore those rows in subsequent computations (e.g., int8-quantization,
RELU, etc.), complicating the implementation. The potential benefit of increased B data reuse could be
dramatic, however.

20.10 HANDLING INCONVENIENTLY SIZED ACTIVATIONS
Occasionally activations’ spatial dimensions might be ill-suited for efficient tiling with tiles altogether.
Consider a GEMM with activations’ M=100. This poses a challenge: while the M dimension can be neatly
tiled by ten tiles, each tile with ten rows, this approach is inefficient since a larger M dimension of 112
requires only seven tiles with sixteen rows. This means that the data reuse for M=100 is 30% worse than
for M=112.

The following solutions will be useful:

1. Define two types of A- and C-tiles – tiles with 16 rows and one tile with four. Use tiles of the first type
for M=0..9 and the second type tile for M=96..99.

2. Allocate extra space in A and C buffers, as if M=112, and use tiles with 16 rows exclusively. The extra
space need not be zeroed out or otherwise prepared in any way. In this case the last (seventh) tile
will load four meaningful rows (M=96..99) and twelve “garbage” rows (M=100..111). At the output,
tile C will have four meaningful rows (M=96..99) and twelve “garbage” rows (M=100..111) which the
user can then ignore.

The first solution does not require tampering with the A and C buffers, computes 100 tile rows and
produces a clean result, but it requires additional A and C tiles which are unused throughout the compu-
tation except for the very end. Since there are only 8 tiles available, this requirement can be costly, and
end up reducing the data reuse (e.g., you want to use a 2D accumulator array; you would need 3x2 C
tiles, 2 A tiles and 2 B tiles = 10 tiles). The second solution avoids this requirement by complicating buffer
handling, and by paying with compute and extra loads and stores (it loads, computes, and stores 112 tile
rows).

20-29

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20.11 POST-CONVOLUTION OPTIMIZATIONS
Most AMX-friendly applications are from the Deep Learning domain, where the data flows through
multiple layers. It is often necessary to process the convolution output before passing it as an input to the
next layer (processing operations depend on a specific application). This stage is called post-convolu-
tion.

20.11.1 POST-CONVOLUTION FUSION
As with Intel AVX-512 code, a critical optimization is the “fusion” of post-convolutional operations to the
convolutional data they operate upon. Fusion reduces the memory hierarchy thrashing. Additionally,
fusing the quantization step gains x2 (for bfloat16 data type) or x4 (for int8 data type) compute band-
width and reduces memory bandwidth by x2 or x4, respectively.

Consider the code in Example 20-8. Lines 7-24 contain the entire GEMM operation for any M, N coordi-
nate in the output. Thus, the optimal location to post-process the data computed in lines 7-24 is right
before line 24 while it is still in the low-level cache.

Below (highlighted in green) is a fully unrolled example of the code in lines 7-24, for int8 GEMM with
K=192, N_ACC=M_ACC=2, TILE_M=2, TILE_K=64, TILE_N=16. The convolution code is fused with
post-convolution code (highlighted in blue) that quantizes the output and ReLU. To keep the post-convo-
lution code in the example short, an unrealistically low value of TILE_M=2 was chosen.

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20-30

Example 20-17. Optimized Convolution Implementation with Cache Blocking

/*1 of 2*/
1 #define TILE_N_B (N)
2 #define A_OFFSET(m,k) ((m)*K*TILE_M + (k)*TILE_K)
3 #define B_OFFSET(k,n) ((k)*N*TILE_N*4 + (n)*TILE_N*4)
4 #define C_OFFSET(m,n) ((m)*N*TILE_M + (n)*TILE_N)
5 #define C_TMP_OFFSET(m,n) ((m)*N*TILE_M*4 + (n)*TILE_N*4)
6 #define Q_OFFSET(n) ((n)*TILE_N*4)
7 #define BIAS_OFFSET(n) ((n)*TILE_N*4 + N*4)
8
9 static const tileconfig_t tc = {
10 1, // Palette ID
11 0, // Start row
12 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // Reserved – must be 0
13 64, 64, 64, 64, 64, 64, 64, 0, 0, 0, 0, 0, 0, 0, 0, 0, // Cols for 7 tiles used
14 2, 2, 2, 2, 2, 16, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0 // Rows for tiles used: 2 for A, C,
15 // 16 for B
16 };
17
18 ldtilecfg tc // Load tile config
19 mov r12, 192 // A stride
20 mov r13, 128 // B, C_TMP stride
21 tileloadd tmm5, [r9 + r13*1 + B_OFFSET(0,0)] // Load B [k,n] = [0,0]
22 tileloadd tmm4, [r8 + r12*1 + A_OFFSET(0,0)] // Load A [m,k] = [0,0]
23 tilezero tmm0 // Zero acc [m,n] = [0,0]
24 tdpbusd tmm0, tmm4, tmm5
25 tileloadd tmm6, [r9 + r13*1 + B_OFFSET(0,1)] // Load B [k,n] = [0,1]
26 tilezero tmm2 // Zero acc [m,n] = [0,1]
27 tdpbusd tmm2, tmm4, tmm6
28 tileloadd tmm4, [r8 + r12*1 + A_OFFSET(1,0)] // Load A [m,k] = [1,0]
29 tilezero tmm1 // Zero acc [m,n] = [1,0]
30 tdpbusd tmm1, tmm4, tmm5
31 tilezero tmm3 // Zero acc [m,n] = [1,1]
32 tdpbusd tmm3, tmm4, tmm6
33 tileloadd tmm5, [r9 + r13*1 + B_OFFSET(1,0)] // Load B [k,n] = [1,0]
34 tileloadd tmm4, [r8 + r12*1 + A_OFFSET(0,1)] // Load A [m,k] = [0,1]
35 tdpbusd tmm0, tmm4, tmm5
36 tileloadd tmm6, [r9 + r13*1 + B_OFFSET(1,1)] // Load B [k,n] = [1,1]
37 tdpbusd tmm2, tmm4, tmm6
38 tileloadd tmm4, [r8 + r12*1 + A_OFFSET(1,1)] // Load A [m,k] = [1,1]
39 tdpbusd tmm1, tmm4, tmm5
40 tdpbusd tmm3, tmm4, tmm6
41 tileloadd tmm5, [r9 + r13*1 + B_OFFSET(2,0)] // Load B [k,n] = [2,0]
42 tileloadd tmm4, [r8 + r12*1 + A_OFFSET(0,2)] // Load A [m,k] = [0,2]
43 tdpbusd tmm0, tmm4, tmm5
44 tilestored [r11 + r13*1 + C_TMP_OFFSET(0,0)], tmm0 // Store C tmp [m,n] = [0,0]
45 tileloadd tmm6, [r9 + r13*1 + B_OFFSET(2,1)] // Load B [k,n] = [2,1]

20-31

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

/*2 of 2*/
46 tdpbusd tmm2, tmm4, tmm6
47 tilestored [r11 + r13*1 + C_TMP_OFFSET(0,1)], tmm2 // Store C tmp [m,n] = [0,1]
48 tileloadd tmm4, [r8 + r12*1 + A_OFFSET(1,2)] // Load A [m,k] = [1,2]
49 tdpbusd tmm1, tmm4, tmm5
50 tilestored [r11 + r13*1 + C_TMP_OFFSET(1,0)], tmm1 // Store C tmp [m,n] = [1,0]
51 tdpbusd tmm3, tmm4, tmm6
52 tilestored [r11 + r13*1 + C_TMP_OFFSET(1,1)], tmm3 // Store C tmp [m,n] = [1,1]
53
54 vcvtdq2ps zmm0 , [r11 + C_TMP_OFFSET(0,0) + 0*TILE_N_B] // int32 -> float
55 vmovups zmm1 , [r14 + Q_OFFSET(0)] // q-factors for N=0
56 vmovups zmm2 , [r14 + BIAS_OFFSET(0)] // biases for N=0
57 vfmadd213ps zmm0 , zmm1 , zmm2 // zmm0 = zmm0 * q + b
58 vcvtps2dq zmm0 , zmm0 // float -> int32
59 vpxord zmm3 , zmm3 , zmm3 // Prepare zero ZMM
60 vpmaxsd zmm0 , zmm0 , zmm3 // RELU (int32)
61 vpmovusdb [r10 + C_OFFSET(0,0) + 0*TILE_N_B], zmm0 // uint32 -> uint8
62 vcvtdq2ps zmm4 , [r11 + C_TMP_OFFSET(0,0) + 4*TILE_N_B] // int32 -> float
63 vfmadd213ps zmm4 , zmm1 , zmm2 // zmm4 = zmm4 * q + b
64 vcvtps2dq zmm4 , zmm4 // float -> int32
65 vpmaxsd zmm4 , zmm4 , zmm3 // RELU (int32)
66 vpmovusdb [r10 + C_OFFSET(0,0) + 1*TILE_N_B], zmm4 // uint32 -> uint8
67 vcvtdq2ps zmm5 , [r11 + C_TMP_OFFSET(1,0) + 0*TILE_N_B] // int32 -> float
68 vfmadd213ps zmm5 , zmm1 , zmm2 // zmm5 = zmm5 * q + b
69 vcvtps2dq zmm5 , zmm5 // float -> int32
70 vpmaxsd zmm5 , zmm5 , zmm3 // RELU (int32)
71 vpmovusdb [r10 + C_OFFSET(1,0) + 0*TILE_N_B], zmm5 // uint32 -> uint8
72 vcvtdq2ps zmm6 , [r11 + C_TMP_OFFSET(1,0) + 4*TILE_N_B] // int32 -> float
73 vfmadd213ps zmm6 , zmm1 , zmm2 // zmm6 = zmm6 * q + b
74 vcvtps2dq zmm6 , zmm6 // float -> int32
75 vpmaxsd zmm6 , zmm6 , zmm3 // RELU (int32)
76 vpmovusdb [r10 + C_OFFSET(1,0) + 1*TILE_N_B], zmm6 // uint32 -> uint8
77 vcvtdq2ps zmm7 , [r11 + C_TMP_OFFSET(0,1) + 0*TILE_N_B] // int32 -> float
78 vmovups zmm8 , [r14 + Q_OFFSET(1)] // q-factors for N=1
79 vmovups zmm9 , [r14 + BIAS_OFFSET(1)] // biases for N=1
80 vfmadd213ps zmm7 , zmm8 , zmm9 // zmm7 = zmm7 * q + b
81 vcvtps2dq zmm7 , zmm7 // float -> int32
82 vpmaxsd zmm7 , zmm7 , zmm3 // RELU (int32)
83 vpmovusdb [r10 + C_OFFSET(0,1) + 0*TILE_N_B], zmm7 // uint32 -> uint8
84 vcvtdq2ps zmm10, [r11 + C_TMP_OFFSET(0,1) + 4*TILE_N_B] // int32 -> float
85 vfmadd213ps zmm10, zmm8 , zmm9 // zmm10 = zmm10 * q + b
86 vcvtps2dq zmm10, zmm10 // float -> int32
87 vpmaxsd zmm10, zmm10, zmm3 // RELU (int32)
88 vpmovusdb [r10 + C_OFFSET(0,1) + 1*TILE_N_B], zmm10 // uint32 -> uint8
89 vcvtdq2ps zmm11, [r11 + C_TMP_OFFSET(1,1) + 0*TILE_N_B] // int32 -> float
90 vfmadd213ps zmm11, zmm8 , zmm9 // zmm11 = zmm11 * q + b
91 vcvtps2dq zmm11, zmm11 // float -> int32
92 vpmaxsd zmm11, zmm11, zmm3 // RELU (int32)
93 vpmovusdb [r10 + C_OFFSET(1,1) + 0*TILE_N_B], zmm11 // uint32 -> uint8
94 vcvtdq2ps zmm12, [r11 + C_TMP_OFFSET(1,1) + 4*TILE_N_B] // int32 -> float
95 vfmadd213ps zmm12, zmm8 , zmm9 // zmm12 = zmm12 * q + b
96 vcvtps2dq zmm12, zmm12 // float -> int32
97 vpmaxsd zmm12, zmm12, zmm3 // RELU (int32)
98 vpmovusdb [r10 + C_OFFSET(1,1) + 1*TILE_N_B], zmm12 // uint32 -> uint8

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20-32

In this example, an additional buffer, temporary_C, contains the convolutional results of M_ACCxN_ACC
tiles. The results are stored at the end of the convolutional part and loaded during the post-convolutional
part. A temporary buffer is required because the size of the post-processed data is four times smaller.
Hence, the convolutional output cannot be written directly to the output buffer.

The GPRs r8, r9, r10, r11, and r14 point to the current location in the A, B, C, temporary_C, and q_bias
(which holds the quantization factors and biases) buffers, respectively.

The macros A_OFFSET(m,k), B_OFFSET(k,n), C_OFFSET(m,n), C_TMP_OFFSET(m,n), Q_OFFSET(n) and
BIAS_OFFSET(n) receive as arguments m,k,n tile indices and return the offset of the data from r8,r9,r10,
r11, and r14, respectively.

20.11.2 INTEL® AMX AND INTEL® AVX-512 INTERLEAVING (SW PIPELINING)
A modern CPU has multiple functional units that can execute different instructions simultaneously. For
example, a load instruction and an arithmetic instruction can execute in parallel. A commonly used
approach for maximizing the utilization of various resources in parallel is the out-of-order execution,
where the CPU might alter the order of the instructions to achieve higher resource utilization.

Intel AMX compute instructions are prime candidates for optimization of this sort since they utilize
resources very lightly (1/2 of the available ALU ports, 1/TILE_M of the time).

Theoretically, the post-convolutional code (blue) of one iteration could execute in parallel to the code in
lines 3-25 (green, before the first TileStore) of the next iteration, where iteration is the execution of the
code in Example 20-17. Unfortunately, this cannot be done automatically and efficiently by the CPU:
since the convolution (green) and post-convolution (blue) parts of the code tend to be sizable; the CPU
can only overlap small portions of them efficiently before it runs out of resources in the out-of-order
machine. Thus, a manual (SW) solution is required.

As previously written, the blue code before the first TileStore can be run in parallel with the green code
of the next iteration. This would overwrite temporary_C memory, which the post-convolution code reads
from. To remove this dependency and maximize parallel execution, use double-buffering on tempo-
rary_C. Temporary_C would thus contain two buffers, interchanged every iteration.

Below, the content deviates from the previous example by interleaving the convolutional code of the
current iteration with the post-convolutional code of the previous iteration. Temporary_C is double-buff-
ered, with r11 pointing to the buffer of the current iteration and r12 pointing to the buffer of the previous
iteration. They are exchanged at the end of the iteration.

Example 20-18. Example of a Short GEMM Fused and Pipelined with Quantization and ReLU

/*1 of 3*/
1 ldtilecfg tc // Load tile config
2 mov r15, 192 // A stride
3 mov r13, 128 // B, C_TMP stride
4 tileloadd tmm5, [r9 + r13*1 + B_OFFSET(0,0)] // Load B [k,n] = [0,0]
5 tileloadd tmm4, [r8 + r15*1 + A_OFFSET(0,0)] // Load A [m,k] = [0,0]
6 tilezero tmm0 // Zero acc [m,n] = [0,0]
7 vcvtdq2ps zmm0, [r12 + C_TMP_OFFSET(0,0) + 0*TILE_N_B] // int32 -> float
8 vmovups zmm1, [r14 + Q_OFFSET(0)] // q-factors for N=0
9 vmovups zmm2, [r14 + BIAS_OFFSET(0)] // biases for N=0
10 vfmadd213ps zmm0, zmm1 , zmm2 // zmm0 = zmm0 * q + b
11 vcvtps2dq zmm0, zmm0 // float -> int32
12 vpxord zmm3, zmm3, zmm3 // Prepare zero ZMM
13 vpmaxsd zmm0, zmm0 , zmm3 // RELU (int32)
14 tdpbusd tmm0, tmm4, tmm5

20-33

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

/*2 of 3*/
15 tileloadd tmm6, [r9 + r13*1 + B_OFFSET(0,1)] // Load B [k,n] = [0,1]
16 tilezero tmm2 // Zero acc [m,n] = [0,1]
17 vpmovusdb [r10 + C_OFFSET(0,0) + 0*TILE_N_B], zmm0 // uint32 -> uint8
18 vcvtdq2ps zmm4 , [r12 + C_TMP_OFFSET(0,0) + 4*TILE_N_B] // int32 -> float
19 vfmadd213ps zmm4 , zmm1 , zmm2 // zmm4 = zmm4 * q + b
20 tdpbusd tmm2, tmm4, tmm6
21 tileloadd tmm4, [r8 + r15*1 + A_OFFSET(1,0)] // Load A [m,k] = [1,0]
22 tilezero tmm1 // Zero acc [m,n] = [1,0]
23 vcvtps2dq zmm4 , zmm4 // float -> int32
24 vpmaxsd zmm4 , zmm4 , zmm3 // RELU (int32)
25 vpmovusdb [r10 + C_OFFSET(0,0) + 1*TILE_N_B], zmm4 // uint32 -> uint8
26 tdpbusd tmm1, tmm4, tmm5
27 tilezero tmm3 // Zero acc [m,n] = [1,1]
28 vcvtdq2ps zmm5 , [r12 + C_TMP_OFFSET(1,0) + 0*TILE_N_B] // int32 -> float
29 vfmadd213ps zmm5 , zmm1 , zmm2 // zmm5 = zmm5 * q + b
30 vcvtps2dq zmm5 , zmm5 // float -> int32
31 vpmaxsd zmm5 , zmm5 , zmm3 // RELU (int32)
32 tdpbusd tmm3, tmm4, tmm6
33 tileloadd tmm5 , [r9 + r13*1 + B_OFFSET(1,0)] // Load B [k,n] = [1,0]
34 tileloadd tmm4 , [r8 + r15*1 + A_OFFSET(0,1)] // Load A [m,k] = [0,1]
35 vpmovusdb [r10 + C_OFFSET(1,0) + 0*TILE_N_B], zmm5 // uint32 -> uint8
36 vcvtdq2ps zmm6 , [r12 + C_TMP_OFFSET(1,0) + 4*TILE_N_B] // int32 -> float
37 vfmadd213ps zmm6 , zmm1 , zmm2 // zmm6 = zmm6 * q + b
38 tdpbusd tmm0, tmm4, tmm5
39 tileloadd tmm6, [r9 + r13*1 + B_OFFSET(1,1)] // Load B [k,n] = [1,1]
40 vcvtps2dq zmm6 , zmm6 // float -> int32
41 vpmaxsd zmm6 , zmm6 , zmm3 // RELU (int32)
42 vpmovusdb [r10 + C_OFFSET(1,0) + 1*TILE_N_B], zmm6 // uint32 -> uint8
43 tdpbusd tmm2 , tmm4, tmm6
44 tileloadd tmm4 , [r8 + r15*1 + A_OFFSET(1,1)] // Load A [m,k] = [1,1]
45 vcvtdq2ps zmm7 , [r12 + C_TMP_OFFSET(0,1) + 0*TILE_N_B] // int32 -> float
46 vmovups zmm8 , [r14 + Q_OFFSET(1)] // q-factors for N=1
47 vmovups zmm9 , [r14 + BIAS_OFFSET(1)] // biases for N=1
48 vfmadd213ps zmm7 , zmm8 , zmm9 // zmm7 = zmm7 * q + b
49 vcvtps2dq zmm7 , zmm7 // float -> int32
50 vpmaxsd zmm7 , zmm7 , zmm3 // RELU (int32)
51 tdpbusd tmm1 , tmm4, tmm5
52 vpmovusdb [r10 + C_OFFSET(0,1) + 0*TILE_N_B], zmm7 // uint32 -> uint8
53 vcvtdq2ps zmm10 , [r12 + C_TMP_OFFSET(0,1) + 4*TILE_N_B] // int32 -> float
54 vfmadd213ps zmm10 , zmm8 , zmm9 // zmm10 = zmm10 * q + b
55 tdpbusd tmm3 , tmm4, tmm6
56 tileloadd tmm5 , [r9 + r13*1 + B_OFFSET(2,0)] // Load B [k,n] = [2,0]
57 tileloadd tmm4 , [r8 + r15*1 + A_OFFSET(0,2)] // Load A [m,k] = [0,2]
58 vcvtps2dq zmm10 , zmm10 // float -> int32
59 vpmaxsd zmm10 , zmm10, zmm3 // RELU (int32)
60 vpmovusdb [r10 + C_OFFSET(0,1) + 1*TILE_N_B], zmm10 // uint32 -> uint8
61 tdpbusd tmm0, tmm4, tmm5
62 tilestored [r11 + r13*1 + C_TMP_OFFSET(0,0)], tmm0 // Store C tmp [m,n] = [0,0]
63 tileloadd tmm6, [r9 + r13*1 + B_OFFSET(2,1)] // Load B [k,n] = [2,1]
64 vcvtdq2ps zmm11, [r12 + C_TMP_OFFSET(1,1) + 0*TILE_N_B] // int32 -> float

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20-34

Application of this algorithm with the parameters laid out in section Section , except for a larger TILE_M
(N_ACC=M_ACC=2, TILE_M=16, TILE_K=64, TILE_N=16) on a [256x192] x [192x256] GEMM, yielded an
18.5% improvement in running time vs. the non-interleaved code described in Section 20.11.1.

20.11.3 AVOIDING THE H/W OVERHEAD OF PORT 5 FREQUENT OPEN/CLOSE
OPERATIONS

When the processor executes Intel AMX compute instructions (TDP*) it normally closes port 5 (one of
the two AVX-512 FMA ports) to conserve power. When the processor senses that there are no more
Intel AMX compute instructions in the pipeline it opens port 5. This open/close operation stalls the
pipeline for quite a few cycles. Up to 20% performance degradation may be observed when the AVX-
512 instruction block colored in green below contains 100 to 300 AVX-512 instructions.
We recommend to add 1 or 2 TileZero instructions, in the middle of the green block, ~100
AVX-512 instructions apart to ensure that port 5 is kept closed during blocks of up to 300 AVX-512
instructions. For longer blocks it is preferable not to insert TileZero since such longer blocks execute
faster on 2 open FMA ports. The processor does not open port 5 for blocks that are shorter than 100
AVX-512 instructions, so no special handling is necessary here as well.

NOTE

The TileZero instruction is considered an Intel AMX compute instruction for that matter.

Figure 20-12. Please provide Figure Description

/*3 of 3*/
65 vfmadd213ps zmm11, zmm8 , zmm9 // zmm11 = zmm11 * q + b
66 vcvtps2dq zmm11, zmm11 // float -> int32
67 vpmaxsd zmm11, zmm11, zmm3 // RELU (int32)
68 tdpbusd tmm2, tmm4, tmm6
69 tilestored [r11 + r13*1 + C_TMP_OFFSET(0,1)], tmm2 // Store C tmp [m,n] = [0,1]
70 tileloadd tmm4, [r8 + r15*1 + A_OFFSET(1,2)] // Load A [m,k] = [1,2]
71 vpmovusdb [r10 + C_OFFSET(1,1) + 0*TILE_N_B], zmm11 // uint32 -> uint8
72 vcvtdq2ps zmm12, [r12 + C_TMP_OFFSET(1,1) + 4*TILE_N_B] // int32 -> float
73 vfmadd213ps zmm12, zmm8 , zmm9 // zmm12 = zmm12 * q + b
74 tdpbusd tmm1, tmm4, tmm5
75 tilestored [r11 + r13*1 + C_TMP_OFFSET(1,0)], tmm1 // Store C tmp [m,n] = [1,0]
76 vcvtps2dq zmm12, zmm12 // float -> int32
77 vpmaxsd zmm12, zmm12, zmm3 // RELU (int32)
78 vpmovusdb [r10 + C_OFFSET(1,1) + 1*TILE_N_B], zmm12 // uint32 -> uint8
79 tdpbusd tmm3, tmm4, tmm6
80 tilestored [r11 + r13*1 + C_TMP_OFFSET(1,1)], tmm3 // Store C tmp [m,n] = [1,1]
81
82 xchg r11, r12 // Swap buffers for current/next iter

20-35

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20.11.4 POST-CONV MULTIPLE OFM ACCUMULATION AND EFFICIENT DOWN-
CONVERSION

An important question arises concerning fused post-convolution optimization. What is the optimal block
of accumulators processed in a single post-convolution iteration? As a post-processing unit, it is conve-
nient to consider the M_ACC * N_ACC block of tiles accumulated in loops starting at lines 7-8 and 10-11 in
Example 20-14 and Example 20-16, respectively. For simplicity, consider only multiples of these accumu-
lation blocks. There is a trade-off between using smaller and larger post-convolution blocks:

Using small post-convolution blocks may have a negative impact by interrupting the convolution flow too
often. Conversely, using big post-convolution blocks may also negatively impact by evicting part of the
accumulated tiles out of DCU.

The optimal size, therefore, depends very much on the DL network topology and convolution-blocking
parameters. Performance studies show that the number of iterations of M_ACC * N_ACC blocks before
proceeding to post-convolution iteration may vary from 1 to 7.

As AMX instructions generate a higher precision output (32-bit integers or 32-bit floats) from lower preci-
sion inputs (8-bit integers or 16-bit bfloats, respectively), there is a need to convert 32-bit outputs to 8-
or 16-bit inputs to be fed to the next DL network layer.

If a single high-precision cache line (512-bit) is processed for conversion at a time, there will be four or
two rounds of processing until a single low-precision cache line is generated for 8- or 16-bit inputs, corre-
spondingly. Potential problems include:

• the number of loads and stores of the same cache line increases 4X or 2X, respectively.
• the next round of processing of the same cache line may occur after this cache line is evicted from

DCU.

One of the optimizations mitigating these performance issues is to collect enough high-precision outputs,
so that conversion of the full low-precision cache line will be performed in a single round.

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20-36

The following drawing shows the conversion flow of 32-bit integers to 8-bit integers. Each colored block
at the top represents a single full TILE output (horizontal dimension is OFMs, vertical dimension is
spatial).

Figure 20-13. A Conversion Flow of 32-bit Integers to 8-bit Integers

To generate full 512-bit cache lines of 8-bit inputs (bottom), a multiple of 64 OFMs should be collected
before conversion. Accordingly, to generate full cache lines with 16-bit inputs, a multiple of 32 OFMs
should be collected. This may be viewed as a restriction to convolution blocking parameters (in particular,
N_ACC) which nevertheless often produces better performance results.

Below is an example of the conversion code for two blocks of sixteen cache lines of 32-bit floats
converted to a single block of sixteen cache lines of 16-bit bfloats. TMUL outputs are assumed to be
placed into a scratchpad spad, and the conversion result is placed in the next_inputs buffer.

Example 20-19. The conversion code for two blocks of sixteen cache lines of 32-bit floats converted to a
single block of sixteen cache lines of 16-bit bfloats

Converting 32-bit integers to 8-bit integers without compromising DL network accuracy is more involved
and uses a quantization step before packing. Below is presented a routine for efficient packing of four
cache lines of 32-bit integers into a single cache line of 8-bit integers, using unsigned saturation.

float* spad;
bfloat_16* next_inputs;
inline unsigned inputs_spatial_dim(void) {
 return /* number of pixels in map */
}
for (int i = 0; i < 16; i++)
{
__m512 f32_0 = _mm512_load_ps(spad);
 __m512 f32_1 = _mm512_load_ps(spad + 16*16);

__m512 bf16 = _mm512_castsi512_ps(_mm512_cvtne2ps_pbh(f32_1, f32_0));
_mm512_store_ps(next_inputs, bf16);

 spad += 16; /* Next TILE row */
 next_inputs += 32 * inputs_spatial_dim();
}

20-37

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

Example 20-20. Using Unsigned Saturation

20.12 INPUT AND OUTPUT BUFFERS REUSE (AKA DOUBLE BUFFERING)
Due to the significant computational speedup achieved by the Intel AMX instructions, the performance
bottleneck of Intel AMX-enabled applications is usually the memory accesses. A prominent way to
improve memory utilization is to reduce an application’s memory footprint. An application with a smaller
memory footprint will keep more of its essential data in the caches while reducing the number of costly
cache evictions, potentially improving performance considerably.

In the context of Deep Learning, a simple yet efficient way to reduce the memory footprint is to reuse the
input and output buffers of various layers in the topology.

The following simple topology illustrates where the previous layer feeds the next layer (left):

Figure 20-14. Trivial Deep Learning Topology with Naive Buffer Allocation

const int32_t db_sel[16] = { 0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15 };
inline __m512i Pack_DwordsToBytes(__m512i dwords[4])
{
 const __m512i sel_reg = _mm512_load_si512(db_sel);
 const __m512i words_0 = _mm512_packs_epi32(dwords[0], dwords[1]);
 const __m512i words_1 = _mm512_packs_epi32(dwords[2], dwords[3]);
 __m512i bytes = _mm512_packus_epi16(words_0, words_1);
 bytes = _mm512_permutexvar_epi32(sel_reg, bytes);

 return bytes;
}

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20-38

A straightforward buffer allocation scheme is illustrated on the right, in which the output of layer N is
placed into a dedicated memory buffer which is then consumed as input by layer N+1. In this scheme,
such topology with L-layers would require L+1 memory buffers, of which only the last is of value
(contains the final results). The rest of the L memory buffers are single-use and disposable, significantly
increasing the application’s memory footprint.

The allocation scheme below offers an improved scheme:

Figure 20-15. Minimal Memory Footprint Buffer Allocation Scheme for
the Trivial Deep Learning Topology

In this scheme, the entire topology only requires two reusable memory buffers. A more complex topology
would require more reusable buffers, but this number is significantly smaller than the naïve approach.
ResNet-50, for example, requires only three reusable buffers (instead of 55). Inception-ResNet-V2
requires only five reusable buffers (instead of over 250). This optimization resulted in a 25% improved
performance on the int8 end-to-end large batch throughput run of Resnet50 v1.5.

20.13 SOFTWARE PREFETCHES
The CPU employs sophisticated HW prefetchers that predict future access and provide relevant data. This
works best when most memory accesses are sequential. For more details on processor hardware
prefetchers, see Section 20.2.8.2.

20.13.1 SOFTWARE PREFETCH FOR CONVOLUTION AND GEMM LAYERS
Since the Conv/GEMM kernel is centered around loops over the M, K, and N dimensions of the involved
matrices, the access will often be sequential. However, memory blocking, also recommended in this
guide, causes the CPU to re-use the same block in the A or B matrices (or both) multiple times during the
kernel execution. This means that sometimes the HW prefetcher cannot predict the subsequent access
correctly. This opens the opportunity for an SW prefetch algorithm tightly integrated into the Conv/GEMM
kernel and can bring in cache lines from future blocks based on the blocking strategy.

While the SW prefetch instruction enables selecting the target cache hierarchy level for the prefetch, this
document assumes that the prefetch will go to the MLC. The DCU is too small to prevent the prefetched
lines from being evicted before they can be used, and prefetching to LLC may not yield significant
improvement.

20.13.1.1 The Prefetch Strategy
The prefetch strategy is highly dependent on the Conv/GEMM kernel method of operation. Assuming the
“loops and blocking” design discussed earlier, the kernel operation can probably be split into multiple
phases where each phase manages a different part of the matrices (corner, middle, etc.). To avoid over-
flowing the instruction cache, the developer is encouraged to reduce the program’s size by reusing
sections for repeatable matrix patterns. This can be done by having each section work on relative

20-39

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

addresses. The SW prefetch instruction can be integrated into these sections and work on relative
addresses. This means that while one section of the code is loading addresses for its use, it also
prefetches memory for a future section. The future section can be determined by looking at the future
indices of any of the M/K/N loop levels.

20.13.1.2 Prefetch Distance
One of the most important decisions when using SW prefetching is the distance between the current
address and the prefetched address. Supposing that some blocking strategy is employed, it is not as
simple as adding an offset to the current address. The prefetched address must be set based on the
target block of the matrix. If the target block is too close, the prefetched memory might still be in transit
when the memory is required, and the CPU will stall, waiting for it to arrive. The data might be evicted if
prefetched memory is too distant before it is used. The developer must tune the distance based on the
layer/blocking parameters.

As an example heuristic,

• one or two loads for each TMUL operation
• where one matrix is already in a register
• when two registers must be loaded
• the recommended range between the prefetch time and the consumption time is between 100 and

500 TMUL operations
• 100 TMUL operations should take about 1600 cycles
• the maximum number of bytes loaded between prefetch and consumption is 1MB (500 TMUL ops /*

2 loads per ops /* 1K per tile)
• the optimum is probably closer to 100 TMUL ops. At any rate, the developer must check the current

CPU architecture and make sure that the MLC will not overflow

20.13.1.3 To Prefetch A or Prefetch B?
Whether to prefetch A or B, or both depends on

The order of layer execution.

In general, the following approaches are available:

• Image affinity
• Execute the next layer of the same image
• Complete a single image end-to-end before continuing to the next image in the same mini-batch.

Layer affinity:

• Execute the same layer of the following image
• Complete a layer for all images in the mini-batch before continuing to the next layer

The activations (the result of the previous layer) in the CPU caches are seen when image affinity is used.
The weights in the caches are found when layer affinity is used. Generally, image affinity is recommended
when sizeof(A)>sizeof(B) and layer affinity otherwise. The developer should tune the switch point
between the two methods to maximize performance. The choice between these two methods is also
affected by the target matrix for prefetching. If the developer is confident that one of the matrices will
already be present in the cache when the Conv/GEMM kernel begins execution, the potential benefit of
SW prefetching decreases dramatically.

The size of the A-matrix, B-matrix, and cache.

The developer should sum up the memory requirements of the Conv/GEMM kernel for the current layer
and compare it to the size of the cache (MLC). Combined with the previous step, it can indicate whether

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20-40

SW prefetching can yield any performance benefit. When large matrices are involved, there is a greater
chance for improvement when prefetching both the A- and the B-matrices.

20.13.1.4 To Prefetch or not to Prefetch C?
Actually it is not the C-matrix itself that we might want to prefetch, but rather the final output matrix of
the layer, after its post-convolution or post-GEMM phase, including quantization to a lower precision data
type. Generally, prefetch those cache lines ahead of time, since with double buffering these might have
been read by previous layers, possibly executed in other cores.

Use the PREFETCHW instruction to read those cache lines into the DCU just in time for the store opera-
tions to find them in the DCU ready to be written, avoiding Read For Ownership latency that otherwise
delays store completion. The exact timing of issuing the PREFETCHW instruction depends on multiple
factors and requires careful tuning to get it right.

20.13.2 SOFTWARE PREFETCH FOR EMBEDDING LAYER
When the memory access pattern is semi-random, it is often impossible for the HW prefetcher to predict
since the pattern is based on application logic. In this case, the application may benefit from “proactive”
prefetching using the SW prefetch instructions of addresses the application knows it will access soon.

An excellent example is Deep Learning, wherein the recommendation systems often use the embedding
layer. The core loop of the embedding algorithm loads indices from an index buffer, and for each index it
loads the corresponding row from the embedding table for further processing. While the index buffer may
contain duplicate indices that may benefit from CPU caching, the pattern is still considered random or
semi-random in most cases. This can make the HW prefetcher less efficient. Since the entire content of
the index buffer is already known, rows soon to be encountered can be prefetched to the DCU.

Example 20-21. Prefetching Rows to the DCU

20.14 STORE TO LOAD FORWARDING
Store instructions copy data from general purpose, vector, or tile registers into store buffers before that
data gets written to the DCU (first level cache). All load instructions, other than TileLoad, can load the
data they are looking for from the store buffers in addition to the memory hierarchy.

1 void prefetched_embedding(uint32_t *a, float *e, float *c, size_t num_indices,
2 float scale, float bias, size_t lookahead)
3 {
4 __m512 s = _mm512_set1_ps(scale);
5 __m512 b = _mm512_set1_ps(bias);
6
7 for (size_t i = 0; i < num_indices; i++) {
8 _mm_prefetch(
9 (char const *)&e[a[i + lookahead] * FLOATS_PER_CACHE_LINE],
10 _MM_HINT_T0);
11 __m512 ereg =
12 _mm512_load_ps(&e[((size_t)a[i]) * FLOATS_PER_CACHE_LINE]);
13 __m512 creg = _mm512_fmadd_ps(ereg, s, b);
14 _mm512_store_ps(&c[i * FLOATS_PER_CACHE_LINE], creg);
15 }
16 }

20-41

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

The TileLoad instruction can’t load data from store buffers. It can only detect that the data is there and
needs to wait until it is written to the memory hierarchy. Once written, TileLoad can read it from the
memory hierarchy. This incurs a significant slowdown.

TileStore forwarding to non-TileLoad instructions via store buffers is supported under one restriction:
they both have to be of cache line size (64 bytes).

Generally speaking, forwarding is not advised since this mechanism has outliers. To avoid store-to-load
forwarding, ensure enough distance between those two operations in the order of 10s of cycles in time.

20.15 MATRIX TRANSPOSE
This section describes the best-known SW implementations for several matrix transformations of BF16
data.

Henceforth, “flat format” means normal (i.e., non-VNNI) and no blocking of rows (i.e., rows of matrices
occupy a consecutive region in memory). The first condition is essential; the second could be relaxed by
changing the below code accordingly. “VNNI format” implies only the second condition (non-blocking of
rows).

It is important to note that the MxN matrix in flat format will be represented by a (M/2)x(N/*2) matrix in
VNNI format under the definitions above.

20.15.1 FLAT-TO-FLAT TRANSPOSE OF BF16 DATA
The primitive block transposed in this algorithm is 32x8 (i.e., 32 rows, eight BF16 numbers each), which
is transformed into an 8x32 block (i.e., eight rows of 32 BF16 numbers each).

The implementation uses sixteen ZMM registers and three mask registers.

Input parameters: MxN, sizes of the rectangular block to be transposed; it is assumed that M is a multiple
of 32, and N is a multiple of eight. In the following illustration, assume:

• I_STRIDE is the row size of the input matrix in bytes.
• O_STRIDE is the row size of the output buffer in bytes.
• r8 contains starting address of the input matrix.
• r9 contains starting address of the output buffer.

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20-42

Example 20-22. BF16 Matrix Transpose (32x8 to 8x32)

/*1 of 3 */
1 mov r10, 0xf0
2 kmovd k1, r10d
3 mov r10, 0xf00
4 kmovd k2, r10d
5 mov r10, 0xf000
6 kmovd k3, r10d
7 mov rax, N / 8
L.N:
8 mov rdx, M / 32
L.M:
9 vbroadcasti32x4 zmm0, xmmword ptr [r8]
10 vbroadcasti32x4 zmm0{k1}, xmmword ptr [r8+I_STRIDE*8]
11 vbroadcasti32x4 zmm0{k2}, xmmword ptr [r8+I_STRIDE*16]
12 vbroadcasti32x4 zmm0{k3}, xmmword ptr [r8+I_STRIDE*24]
13 vbroadcasti32x4 zmm1, xmmword ptr [r8+I_STRIDE*1]
14 vbroadcasti32x4 zmm1{k1}, xmmword ptr [r8+I_STRIDE*9]
15 vbroadcasti32x4 zmm1{k2}, xmmword ptr [r8+I_STRIDE*17]
16 vbroadcasti32x4 zmm1{k3}, xmmword ptr [r8+I_STRIDE*25]
17 vbroadcasti32x4 zmm2, xmmword ptr [r8+I_STRIDE*2]
18 vbroadcasti32x4 zmm2{k1}, xmmword ptr [r8+I_STRIDE*10]
19 vbroadcasti32x4 zmm2{k2}, xmmword ptr [r8+I_STRIDE*18]
20 vbroadcasti32x4 zmm2{k3}, xmmword ptr [r8+I_STRIDE*26]

20-43

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

/*2 of 3 */
21 vbroadcasti32x4 zmm3, xmmword ptr [r8+I_STRIDE*3]
22 vbroadcasti32x4 zmm3{k1}, xmmword ptr [r8+I_STRIDE*11]
23 vbroadcasti32x4 zmm3{k2}, xmmword ptr [r8+I_STRIDE*19]
24 vbroadcasti32x4 zmm3{k3}, xmmword ptr [r8+I_STRIDE*27]
25 vbroadcasti32x4 zmm4, xmmword ptr [r8+I_STRIDE*4]
26 vbroadcasti32x4 zmm4{k1}, xmmword ptr [r8+I_STRIDE*12]
27 vbroadcasti32x4 zmm4{k2}, xmmword ptr [r8+I_STRIDE*20]
28 vbroadcasti32x4 zmm4{k3}, xmmword ptr [r8+I_STRIDE*28]
29 vbroadcasti32x4 zmm5, xmmword ptr [r8+I_STRIDE*5]
30 vbroadcasti32x4 zmm5{k1}, xmmword ptr [r8+I_STRIDE*13]
31 vbroadcasti32x4 zmm5{k2}, xmmword ptr [r8+I_STRIDE*21]
32 vbroadcasti32x4 zmm5{k3}, xmmword ptr [r8+I_STRIDE*29]
33 vbroadcasti32x4 zmm6, xmmword ptr [r8+I_STRIDE*6]
34 vbroadcasti32x4 zmm6{k1}, xmmword ptr [r8+I_STRIDE*14]
35 vbroadcasti32x4 zmm6{k2}, xmmword ptr [r8+I_STRIDE*22]
36 vbroadcasti32x4 zmm6{k3}, xmmword ptr [r8+I_STRIDE*30]
37 vbroadcasti32x4 zmm7, xmmword ptr [r8+I_STRIDE*7]
38 vbroadcasti32x4 zmm7{k1}, xmmword ptr [r8+I_STRIDE*15]
39 vbroadcasti32x4 zmm7{k2}, xmmword ptr [r8+I_STRIDE*23]
40 vbroadcasti32x4 zmm7{k3}, xmmword ptr [r8+I_STRIDE*31]
41 vpunpcklwd zmm8, zmm0, zmm1
42 vpunpckhwd zmm9, zmm0, zmm1
43 vpunpcklwd zmm10, zmm2, zmm3
44 vpunpckhwd zmm11, zmm2, zmm3
45 vpunpcklwd zmm12, zmm4, zmm5
46 vpunpckhwd zmm13, zmm4, zmm5
47 vpunpcklwd zmm14, zmm6, zmm7
48 vpunpckhwd zmm15, zmm6, zmm7
49 vpunpckldq zmm0, zmm8, zmm10
50 vpunpckhdq zmm1, zmm8, zmm10
51 vpunpckldq zmm2, zmm9, zmm11
52 vpunpckhdq zmm3, zmm9, zmm11
53 vpunpckldq zmm4, zmm12, zmm14
54 vpunpckhdq zmm5, zmm12, zmm14
55 vpunpckldq zmm6, zmm13, zmm15
56 vpunpckhdq zmm7, zmm13, zmm15
57 vpunpcklqdq zmm8, zmm0, zmm4
58 vpunpckhqdq zmm9, zmm0, zmm4
59 vpunpcklqdq zmm10, zmm1, zmm5
60 vpunpckhqdq zmm11, zmm1, zmm5
61 vpunpcklqdq zmm12, zmm2, zmm6
62 vpunpckhqdq zmm13, zmm2, zmm6
63 vpunpcklqdq zmm14, zmm3, zmm7
64 vpunpckhqdq zmm15, zmm3, zmm7

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20-44

/*3 of 3*/
65 vmovdqu16 zmmword ptr [r9], zmm8
66 vmovdqu16 zmmword ptr [r9+O_STRIDE], zmm9
67 vmovdqu16 zmmword ptr [r9+O_STRIDE*2], zmm10
68 vmovdqu16 zmmword ptr [r9+O_STRIDE*3], zmm11
69 vmovdqu16 zmmword ptr [r9+O_STRIDE*4], zmm12
70 vmovdqu16 zmmword ptr [r9+O_STRIDE*5], zmm13
71 vmovdqu16 zmmword ptr [r9+O_STRIDE*6], zmm14
72 vmovdqu16 zmmword ptr [r9+O_STRIDE*7], zmm15

73 add r9, 0x40
74 add r8, I_STRIDE*32
75 dec rdx
76 jnz L.M

77 add r9, (O_STRIDE*8 — (M/32) * 0X40)
78 sub r8, (I_STRIDE*M-0x10)
79 dec rax
80 jnz L.N

20-45

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

Implementation discussion:

• Lines 1-6 set mask registers k1, k2, k3.
• Lines 7 and 8 put trip counts for primitive blocks in N- and M-dimensions, respectively.
• Lines 9-72 implement the transpose of a primitive block 32x8. It uses 16 ZMM registers (zmm0-

zmm15).
• Lines 9-40 implement loading 32 quarter-cache lines into 8 ZMM registers, according to the following

picture (numbers are in bytes):

Figure 20-16. Loading 32 Quarter-Cache Lines into 8 ZMM Registers

• Lines 41-64 are transpose flow proper. It creates a transposed block 8x32 in registers zmm8-zmm15.
• Lines 65-72 store transposed block 8x32 to the output buffer.

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20-46

20.15.2 VNNI-TO-VNNI TRANSPOSE
The primitive block transposed in this algorithm is 8x8 (i.e., eight rows, eight BF16 numbers each), which
is transformed into a2x32 block (i.e., two rows of 32 BF16 numbers each).

The implementation uses five ZMM registers and three mask registers.

Input parameters:

• MxN, sizes of the rectangular block to be transposed (in VNNI format); it is assumed that M, N are
multiples of eight.

• I_STRIDE is the row size of the input matrix in bytes
• O_STRIDE is the row size of the output buffer in bytes
• r8 contains starting address to the input matrix
• r9 contains starting address to the output buffer
• zmm31 is preloading with four copies of the following constant: unsigned int shuflle_cntrl[4] =

{0x05040100, 0x07060302, 0x0d0c0908, 0x0f0e0b0a};

20-47

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

Example 20-23. BF16 VNNI to VNNI Transpose (8x8 to 2x32)

Implementation discussion:
• Lines 1–6 set mask registers k1, k2, k3.
• Lines 7 and 8 put trip counts for primitive blocks in N- and M-dimensions, respectively.
• Lines 9–22 implement the transpose of a primitive block 32x8. It uses five ZMM registers (zmm0-

zmm3, zmm31).
• Lines 9–16 implement loading eight quarter-cache lines into two ZMM registers, according to the

following picture (numbers are in bytes):

1 mov r10, 0xf0
2 kmovd k1, r10d
3 mov r10, 0xf00
4 kmovd k2, r10d
5 mov r10, 0xf000
6 kmovd k3, r10d
7 mov rax, N / 8
L.N:
8 mov rdx, M / 8
L.M:
9 vbroadcasti32x4 zmm0, xmmword ptr [r8]
10 vbroadcasti32x4 zmm0{k1}, xmmword ptr [r8+I_STRIDE*2]
11 vbroadcasti32x4 zmm0{k2}, xmmword ptr [r8+I_STRIDE*4]
12 vbroadcasti32x4 zmm0{k3}, xmmword ptr [r8+I_STRIDE*6]
13 vbroadcasti32x4 zmm1, xmmword ptr [r8+I_STRIDE*1]
14 vbroadcasti32x4 zmm1{k1}, xmmword ptr [r8+I_STRIDE*3]
15 vbroadcasti32x4 zmm1{k2}, xmmword ptr [r8+I_STRIDE*5]
16 vbroadcasti32x4 zmm1{k3}, xmmword ptr [r8+I_STRIDE*7]

17 vpshufb zmm2, zmm0, zmm31
18 vpshufb zmm3, zmm1, zmm31
19 vpunpcklqdq zmm0, zmm2, zmm3
20 vpunpckhqdq zmm1, zmm2, zmm3

21 vmovdqu16 zmmword ptr [r9], zmm0
22 vmovdqu16 zmmword ptr [r9+O_STRIDE], zmm1

23 add r9, 0x40
24 add r8, I_STRIDE*8
25 dec rdx
26 jnz L.M

27 add r9, (O_STRIDE*2 - (M/8) * 0x40)
28 sub r8, (I_STRIDE*M-0x10)
29 dec rax
30 jnz L.N

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20-48

Figure 20-17. The Implementation of loading eight quarter-cache lines int two ZMM registers

• Lines 17–20 implement simultaneous transpose of four 2x2 blocks of QWORDs (i.e., 2x8 blocks of
BF16). It creates a transposed block 2x32 in registers zmm2-zmm3.

• Lines 21–22 store transposed block 2x32 to the output buffer.

20.15.3 FLAT-TO-VNNI TRANSPOSE
The algorithm below is based on: Flat-to-VNNI transpose of WORDs is equivalent to Flat-to-Flat trans-
pose of DWORDs. This is illustrated below (the header numbers are bytes):

Figure 20-18. Flat-to-VNNI transpose of WORDs is equivalent to Flat-to-Flat transpose of DWORDs

The primitive block transposed in this algorithm is 16x8 (i.e., 16 rows, 8 BF16 numbers each), which is
transformed into a 4x32 block (i.e., four rows of 32 BF16 numbers each).

20-49

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

The implementation uses eight ZMM registers and three mask registers.

Input parameters:

• MxN, sizes of the rectangular block to be transposed; it is assumed that M multiple of 16, N multiple
of eight.

• I_STRIDE is the row size of the input matrix in bytes.
• O_STRIDE is the row size of the output buffer in bytes.
• r8 contains the starting address for the input matrix.
• r9 contains the starting address for the output buffer.

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20-50

Example 20-24. BF16 Flat to VNNI Transpose (16x8 to 4x32)

 1 mov r10, 0xf0
 2 kmovd k1, r10d
 3 mov r10, 0xf00
 4 kmovd k2, r10d
 5 mov r10, 0xf000
 6 kmovd k3, r10d
 7 mov rax, N / 8
L.N:
 8 mov rdx, M / 16
L.M:
 9 vbroadcasti32x4 zmm0, xmmword ptr [r8]
10 vbroadcasti32x4 zmm0{k1}, xmmword ptr [r8+I_STRIDE*4]
11 vbroadcasti32x4 zmm0{k2}, xmmword ptr [r8+I_STRIDE*8]
12 vbroadcasti32x4 zmm0{k3}, xmmword ptr [r8+I_STRIDE*12]
13 vbroadcasti32x4 zmm1, xmmword ptr [r8+I_STRIDE*1]
14 vbroadcasti32x4 zmm1{k1}, xmmword ptr [r8+I_STRIDE*5]
15 vbroadcasti32x4 zmm1{k2}, xmmword ptr [r8+I_STRIDE*9]
16 vbroadcasti32x4 zmm1{k3}, xmmword ptr [r8+I_STRIDE*13]
17 vbroadcasti32x4 zmm2, xmmword ptr [r8+I_STRIDE*2]
18 vbroadcasti32x4 zmm2{k1}, xmmword ptr [r8+I_STRIDE*6]
19 vbroadcasti32x4 zmm2{k2}, xmmword ptr [r8+I_STRIDE*10]
20 vbroadcasti32x4 zmm2{k3}, xmmword ptr [r8+I_STRIDE*14]
21 vbroadcasti32x4 zmm3, xmmword ptr [r8+I_STRIDE*3]
22 vbroadcasti32x4 zmm3{k1}, xmmword ptr [r8+I_STRIDE*7]
23 vbroadcasti32x4 zmm3{k2}, xmmword ptr [r8+ I_STRIDE*11]
24 vbroadcasti32x4 zmm3{k3}, xmmword ptr [r8+ I_STRIDE*15]

25 vpunpckldq zmm4, zmm0, zmm1
26 vpunpckhdq zmm5, zmm0, zmm1
27 vpunpckldq zmm6, zmm2, zmm3
28 vpunpckhdq zmm7, zmm2, zmm3
29 vpunpcklqdq zmm0, zmm4, zmm6
30 vpunpckhqdq zmm1, zmm4, zmm6
31 vpunpcklqdq zmm2, zmm5, zmm7
32 vpunpckhqdq zmm3, zmm5, zmm7

33 vmovups zmmword ptr [r9], zmm0
34 vmovups zmmword ptr [r9+O_STRIDE], zmm1
35 vmovups zmmword ptr [r9+O_STRIDE*2], zmm2
36 vmovups zmmword ptr [r9+O_STRIDE*3], zmm3

37 add r9, 0x40
38 add r8, I_STRIDE*16
39 dec rdx
40 jnz L.M

41 add r9, (O_STRIDE*4 - (M/16)*0x40)
42 sub r8, (I_STRIDE*M-0x10)
43 dec rax
44 jnz L.N

20-51

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

Implementation discussion:

• Lines 1–6 set mask registers k1, k2, k3.
• Lines 7 and 8 put trip counts for primitive blocks in N- and M-dimensions, respectively.
• Lines 9–36 implement the transpose of a primitive block 16x8. It uses eight ZMM registers (zmm0–

zmm7).
• Lines 9–24 implement loading 16 quarter-cache lines into four ZMM registers zmm0-zmm3,

according to the following picture (numbers are in bytes:

Figure 20-19. BF16 Flat-to-VNNI Transpose

• Lines 25–32 are the transpose flow proper. It creates a transposed block 4x32 in registers zmm0–
zmm3.

• Lines 33–36 store transposed block 4x32 to the output buffer.

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20-52

20.15.4 FLAT-TO-VNNI RE-LAYOUT
The primitive block which is being re-layout in this algorithm is 2x32 (i.e., 2 rows, 32 BF16 numbers
each), which is transformed into a 1x64 block (i.e., 1 rows of 64 BF16 numbers each).

The implementation uses 5 ZMM registers and no mask registers.

Input parameters:

• MxN, sizes of the rectangular block to be transposed; it is assumed that M multiple of 2, N multiple
of 32.

• I_STRIDE is the row size of input matrix in bytes.
• O_STRIDE is the row size of output buffer in bytes.
• r8 contains starting address to input matrix.
• r9 contains starting address to output buffer.
• zmm30, zmm31 are preloaded with following constants, respectively:
• const short perm_cntl_1[32] = {0x00, 0x20, 0x01, 0x21, 0x02, 0x22, 0x03, 0x23, 0x04, 0x24,

0x05, 0x25, 0x06, 0x26, 0x07, 0x27, 0x08, 0x28, 0x09, 0x29, 0x0a, 0x2a, 0x0b, 0x2b, 0x0c, 0x2c,
0x0d, 0x2d, 0x0e, 0x2e, 0x0f, 0x2f};

• const short perm_cntl_2[32] = {0x30, 0x10, 0x31, 0x11, 0x32, 0x12, 0x33, 0x13, 0x34, 0x14,
0x35, 0x15, 0x36, 0x16, 0x37, 0x17, 0x38, 0x18, 0x39, 0x19, 0x3a, 0x1a, 0x3b, 0x1b, 0x3c, 0x1c,
0x3d, 0x1d, 0x3e, 0x1e, 0x3f, 0x1f};

Example 20-25. BF16 Flat-to-VNNI Re-Layout

Implementation discussion:
• Lines 1, 2 put trip counts for primitive blocks in N- and M-dimensions, respectively.
• Lines 3, 4 implement loading 2 full cache lines into 2 ZMM registers zmm0-zmm1, from consecutive

rows of input matrix.

1 mov rdx, M / 2
L.M:
 2 mov rax, N / 32
L.N:
 3 vmovups zmm0, zmmword ptr [r8]
 4 vmovups zmm1, zmmword ptr [r8+I_STRIDE]

 5 vmovups zmm2, zmm0
 6 vpermt2w zmm2, zmm30, zmm1
 7 vpermt2w zmm1, zmm31, zmm0

 8 vmovups zmmword ptr [r9], zmm2
 9 vmovups zmmword ptr [r9+0x40], zmm1

10 add r9, 0x80
11 add r8, 0x40
12 dec rax
13 jnz L.N

14 add r9, (O_STRIDE - (N/32)*0x80)
15 add r8, (I_STRIDE*2 – (N/32)*0x40)
16 dec rdx
17 jnz L.M

20-53

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

• Lines 5–7 implement re-layout of a primitive block 2x32. It uses 5 ZMM registers (zmm0–zmm2,
zmm30-zmm31).

• Lines 8, 9 implement storing 2 full cache lines in 2 ZMM registers zmm1-zmm2, into consecutive
columns of output matrix.

20.16 MULTI-THREADING CONSIDERATIONS

20.16.1 THREAD AFFINITY
As with Intel AVX-512 code, it is advised to fully define thread affinity and object affinity to process a
single object in the same physical core, thus keeping the activations in core caches (unless larger than
the size of the caches). This advice becomes imperative with Intel AMX code since Intel AMX applications
are more sensitive to memory-related issues.

20.16.2 HYPER-THREADING
Running more than one Intel AMX thread on the same physical core may result in overall performance
loss due to the two threads competing for the same h/w resources. Scheduling a non AMX thread next to
an AMX thread on the same core may decrease the AMX thread performance more than one expects due
to normal competition on resources. For optimum performance, schedule one AMX thread per physical
core, if possible

20.16.3 WORK PARTITIONING BETWEEN CORES
Often, a Deep Learning application must adhere to latency requirements that cannot be fulfilled within a
single core. In these cases, a single object’s processing must be partitioned between multiple cores.

In Deep Learning applications, the output of one layer is the input of the next layer in most cases. Due to
the nature of the computations in Deep Learning applications, partitioning over different dimensions (N,
M, K) will have different implications on the data locality in the core’s caches. If possible, minimize
bringing data over from a different core’s caches, as this can harm performance.

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20-54

20.16.3.1 Partitioning over M
Partitioning a DL layer over the M dimension has the advantage of nearly complete data locality. The
layer’s output is also partitioned by M between the cores and is, therefore, already in the cache of the
corresponding core at the beginning of the next layer. Figure 20-20 shows this schematically.

Figure 20-20. GEMM Data Partitioning Between Three Cores in a Layer Partitioned by the M Dimension

In this figure, the data read and written by each of the three cores is bound by a black rectangle.
It should be noted that in the case of convolutions, limited overlap in the M dimension of the activations
occurs between neighboring cores; due to the convolutions, a finite-sized filter is slid over the activa-
tions. Thus, the M dimension overlaps (KH-1)/*W (refer to Example 20-13) between the two neighboring
cores.

• Advantages: When multiple layers in a chain are partitioned by the M dimension between the same
number of cores, each core has its data in its local cache.

• Disadvantages: The B matrix (or weights in convolutions) is read entirely by all of the cores, which
might pose a bandwidth problem if the B matrix is large.

20.16.3.2 Partitioning over N
Partitioning a DL layer over the N dimension reduces the read bandwidth in GEMMs with large B matrices
or large weights in convolutions. Each core reads a portion of the B matrix in this scenario:

Figure 20-21. GEMM Data Partitioning Between Three Cores in a Layer Partitioned by the N-Dimension

Unfortunately, the output of the layer is also partitioned by the N-dimension between the cores, which is
incompatible with M partitioning and N partitioning of the following layer (compare the right side of

20-55

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

Figure 20-21 to the left side of Figure 20-20 and Figure 20-21). In this scenario, a core in the following
layer is guaranteed to have most of its data from outside its local caches. This is not the case in K-dimen-
sion partitioning (see below), but it also comes at a price.

• Advantages: It may reduce read bandwidth significantly in case of large B / large weights.
• Disadvantages: If the next layer is partitioned by M or by N, most of the activations in the next layer

will not reside in the local caches of the corresponding cores.

20.16.3.3 Partitioning over K
Partitioning a DL layer over the K dimension reduces the read bandwidth in GEMMs with large K dimen-
sions by reducing the amount of data being read from A and B matrices (activations and weights in
convolutions). Each core reads a portion of the A and B matrices in this scenario, as illustrated in
Figure 20-22.

Figure 20-22. GEMM Data Partitioning Between Three Cores in a Layer Partitioned by the K Dimension

Additionally, if a layer is partitioned by the N dimension and the following layer is partitioned by the K
dimension, the activation data will reside in the local caches of the cores in the subsequent layer
(compare the right side of Figure 20-21 with the left side of Figure 20-22). Unfortunately, this comes at
a price: each core prepares partial results of the entire C matrix. To obtain final results, either a mutex
(or several mutexes) is required to guard the write operations into the C matrix, or a reduction operation
is needed at the end of the layer. The mutex solution is usually ill-advised due to blocked threads for a
long time. A reduction runs the risk of being costly since it entails the following:

• A synchronization barrier is required before the reduction.
• Reading a potentially large amount of data during the reduction:
• There are T copies of the C matrix, where T is the number of threads (3 in the example).
• The size of the matrices before the reduction is x2 (in case of a bfloat16 datatype) or x4 (in case of

int8 datatype) times larger than the output C matrix.
• During the reduction, most of the cores’ data will come outside their local cache hierarchy.

20.16.3.4 Memory Bandwidth Implications of Work Partitioning over Multiple Dimensions
OpenMP offers a convenient interface for nested loop parallelization. For example, one could partition the
N, M, and K dimensions in Example 20-26 automatically between threads with:

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20-56

Example 20-26. GEMM Parallelized with omp Parallel for with Collapse

The collapse clause specifies how many loops in a nested loop should be collapsed into a single iteration
space and divided between the threads. The order of the iterations in the collapsed iteration space is the
same as though they were executed sequentially.

OpenMP automatically uses schedule(static,1) if no schedule is already specified, resulting in the sequen-
tial assignment of loop iterations to threads.

Considering, for example, a situation where N=4*N_ACC*TILE_N and M=4*M_ACC*TILE_M where the K-
dimension are deliberately excluded from consideration due to its problematic nature. Thus, there are
4*4=16 iterations in the two nested loops. Now assume you want to divide these between three threads.
The code in Section 20-26 would result in the following partition of the iterations between threads:

Where every cell of the form n’,m’ contains the n’=n/N_ACC*TILE_N and m’=m/M_ACC*TILE_M indices from
the loops in Example 20-19.

From the table above, it is clear that each of the three threads executes at least one iteration with
n’=0,1,2,3 and at least one iteration with m’=0,1,2,3. This means that every thread reads all of A and all
of B.

By rearranging the work between threads in the following partitioning, the size of the B read is reduced
by each thread by 50%, which might be very significant in workloads where B is large. Similarly, the size
of A could have been reduced by 50% by simply swapping m’ and n’ indices for workloads with large A.

20.16.4 RECOMMENDATION SYSTEM EXAMPLE

Many recommendation systems are built from a few GEMM layers that follow each other, an Embedding
layer, and a layer that connects between them. They are generally split into four distinct tasks:

#pragma omp parallel for collapse(2)

for (int n = 0; n < N; n += N_ACC*TILE_N) {
for (int m = 0; m < M; m += M_ACC*TILE_M) {

 ...
 }
}

Table 20-7. Simple partition of work between three threads

A B C

Thread 0: 0,0 0,3 1,2 2,1 3,0 3,3 100% 100% 38%

Thread 1: 0,1 1,0 1,3 2,2 3,1 100% 100% 100%

Thread 2: 0,2 1,1 2,0 2,3 3,2 100% 100% 100%

Table 20-8. Optimized partition of work between three threads

A B C

Thread 0: 0,0 0,1 0,2 0,3 3,0 3,1 100% 50% 38%

Thread 1: 1,0 1,1 1,2 1,3 3,2 3,3 100% 50% 38%

Thread 2: 2,0 2,1 2,2 2,3 100% 25% 25%

20-57

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

1. Bottom GEMMs (MLPs)

2. Embedding

3. Bottom MLP + Embedding Concat, GEMM, Reshape

4. Top GEMMs (MLPs)

The first two are independent so that they can execute in parallel. Their output feeds the third task,
whose output, in turn, feeds into the fourth task.

A few notes:

• Recommendation systems usually use a large batch to rank a reasonably large set of options
• The GEMM layers are usually compute- or cache bandwidth limited, whereas the Embedding layer is

memory bandwidth limited
• Recommendation systems are real-time, so they are limited to a specific latency

When the latency requirement is a few milliseconds, the recommendation system topology has to be
multi-threaded across several cores. The previous section discussed GEMM partition across multiple
cores. This section deals with work partition between the four different tasks.

The chart below proposes one way to split the three tasks across machine cores. The block sizes in the
chart, regarding the number of cores and execution time, are for illustration purposes only and do not
represent any specific recommendation system.

Thanks to Bottom MLPs and Embedding independence, those are split into two tasks. As those two feed
the other tasks: Bottom MLP + Embedding Concat, GEMM, Reshape, and Top MLPs, the latter tasks are
merged into one. Choosing the number of cores for each task is a trial-and-error exercise. It can involve
an analytical phase that accounts for the time to execute each task across varying cores.

As there’s a dependency between the Bottom MLPs and Embedding tasks and the third task, there’s a
barrier between them which implies potential wait time immediately following the faster layers.

Figure 20-23. A recommendation system multi-threading model

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20-58

20.17 SPARSITY OPTIMIZATIONS FOR INTEL® AMX
This section describes how Intel AMX can be further optimized for operations on sparse matrices. An
example use case can be the inference of sparse neural networks, where the sparse weights are known
to initially reside in DRAM due to the “online” usage model or large model capacity. In those cases, the
primary performance bottleneck would be bringing the weights from DRAM. A helpful optimization tech-
nique for this case is to get the weights from DRAM in a compressed format, decompress them into the
local caches using Intel AVX-512 and then perform Intel AMX computations on the decompressed data.

The compressed matrix format can consist of the following components:

• compressed[]: array of non-zero matrix entries.
• mask[]: bit-per-element array for the full matrix. 0 signifies the corresponding element is 0, 1

signifies a non-zero value that exists in the compressed[] array mentioned above.

The compressed format can be computed off-line. The sparsity bitmask mask[] can be generated using
AVX-512 VPTESTMB instruction on the sparse data. The compressed[] array can be generated using
AVX-512 VPCOMPRESS instruction on the sparse data using the sparsity bitmask

The following code uses Intel AVX-512 to generate num rows of decompressed data, assuming 8-bit
elements and 64 elements per tile row:

Example 20-27. Byte Decompression code with Intel® AVX-512 Intrinsics

The matrix multiplication code will load the decompressed matrix to tiles from decompressed[], an
array containing the decompressed matrix data.

// uint8_t* compressed_ptr is a pointer to compressed data array
// __mmask64* compression_masks_ptr is a pointer to bitmask array
// uint8_t* decompressed_ptr is a pointer to decompressed data array

for (int i=0; i < num ; i++) {
 __m512i compressed = _mm512_loadu_epi32(compressed_ptr);
 __mmask64 mask = _load_mask64(compression_masks_ptr);
 __m512i decompressed_vec = _mm512_maskz_expand_epi8(mask, compressed);
 _mm512_store_epi32(decompressed_ptr, decompressed_vec);
 decompressed_ptr += 64; // 64 bytes per decompressed row
 compressed_ptr += _mm_countbits_64(mask); // advance compressed pointer by number of non-zero elements
 compression_masks_ptr ++; //64 bitmask bits per decompressed row
}

20-59

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

The decompression code makes use of the Intel AVX-512 date expand operation, as illustrated in the
following figure:

Figure 20-24. Data Expand Operation

Decompression code for 16-byte elements can be designed in the same manner.

For the best performance, apply the following optimizations:

• Interleaving: Fine-grained interleaving of decompression code and matrix multiplication to overlap
Intel AVX-512 decompression with Intel AMX computation.

• Decompress Early: Prepare the decompressed buffer before immediate Intel AMX use to avoid
store forwarding issues.

• Buffer Reuse: Decompressing the full sparse matrix could overflow the CPU caches. For best cache
reuse, it is recommended to have a decompressed buffer that can hold two decompressed panels of
the sparse matrix. While matrix is multiplying with one panel, decompress the next panel for the
subsequent iteration. In the subsequent iteration, decompress the next panel into the first half of the
decompressed buffer that is no longer used, and so on.

• Decompress Once: Coordinate the matrix multiplication blocking and loop structure with the
decompression scheme to minimize the number of times the same portion of the sparse matrix is
decompressed. For example, if matrix B is sparse, traversing the entire vertical (M) dimension will
compress every vertical panel of the B matrix only once.

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20-60

20.18 TILECONFIG/TILERELEASE, CORE C-STATE, AND COMPILER ABI
For a function to use Tile registers, it needs to configure them; see Section 20.2 for the LDTILECFG
instruction definition. LDTILECFG creates an Intel® AMX state which is kept valid until the TILERELEASE
instruction is issued. TILERELEASE resets the Intel AMX state back to INIT. When the Intel AMX state is
valid, and the OS issues the MWAIT instruction trying to move the physical processor, it executes on to
Core C6 State; the Sapphire Rapids SP processor does not enter Core C6, even if the sibling logical
processor is idle, since it lacks the dedicated backing store to keep the Intel AMX state until waking up.
The Core C-State is demoted to C1 instead.

This is not an issue in Linux and Windows where only the idle process tissues the MWAIT instruction. The
Idle Process in both operating systems does not use Intel AMX ISA, so its Intel AMX tile state is always
invalid (INIT). The Intel AMX tile state is saved long ago in OS-defined save area in memory, if still valid,
while context switching from a thread that uses Intel AMX to the Idle Process thread.

20.18.1 ABI
The tile data registers (tmm0 – tmm7) are volatile. Their contents are passed back and forth between
functions through memory. No tile register is saved and restored by the callee. Tile configuration is also
volatile. The compiler saves and restores tile configuration and tile register contents if the register(s)
need to live across the function call. The compiler eliminates the save instruction because its content
remains the same on the stack. The compiler reuses the configured content saved on the stack before the
call. Any function needs to take care of the tile register configuration by itself. Tile registers may not be
configured across functions.

Please download the System V Application Binary Interface: Intel386 Architecture Processor Supple-
ment, Version1.0.

20.18.2 INTRINSICS

Example 20-28. The Parameter m, n, k Identifies the Shape of the Tile

The parameter m, n, k identifies the shape of the tile.

typedef int _tile1024i __attribute__((__vector_size__(1024), __aligned__(64)));
_tile1024i _tile_loadd_internal(unsigned short m, unsigned short n, const void*base, __SIZE_TYPE__ stride);
_tile1024i _tile_loaddt1_internal(unsigned short m, uunsigned short n, const void*base, __SIZE_TYPE__ stride);
_tile1024i _tile_dpbssd_internal(unsigned short m, unsigned short n, unsigned short k, _tile1024i dst, _tile1024i
src1, _tile1024i src2);
_tile1024i _tile_dpbsud_internal(unsigned short m, unsigned short n, unsigned short k, _tile1024i dst, _tile1024i
src1, _tile1024i src2);
_tile1024i _tile_dpbusd_internal(unsigned short m, unsigned short n, unsigned short k, _tile1024i dst, _tile1024i
src1, _tile1024i src2);
_tile1024i _tile_dpbuud_internal(unsigned short m, unsigned short n, unsigned short k, _tile1024i dst, _tile1024i
src1, _tile1024i src2);
_tile1024i _tile_dpbf16ps_internal(unsigned short m, unsigned short n, unsigned short k, _tile1024i dst, _tile1024i
src1, _tile1024i src2);
void_tile_stored_internal(unsigned short m, unsigned short n, void*base, __SIZE_TYPE__ stride, _tile1024i tile);

https://01.org/sites/default/files/file_attach/intel386-psabi-1.0.pdf

20-61

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20.18.3 USER INTERFACE

Example 20-29. Intel® AMX Intrinsics header file

/* 1 of 3 */
typedef struct __tile1024i_str {
 const unsigned short row;
const unsigned short col;
 _tile1024i tile;
} __tile1024i;

/// Load tile rows from memory specified by "base" address and "stride" into
/// destination tile "dst".
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the <c> TILELOADD </c> instruction.
///
/// \param dst
/// A destination tile. Max size is 1024 Bytes.
/// \param base
/// A pointer to base address.
/// \param stride
/// The stride between the rows' data to be loaded in memory.
void __tile_loadd(__tile1024i *dst, const void *base, __SIZE_TYPE__ stride);
/// Load tile rows from memory specified by "base" address and "stride" into
/// destination tile "dst". This intrinsic provides a hint to the implementation
/// that the data will likely not be reused in the near future and the data
/// caching can be optimized accordingly.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the <c> TILELOADDT1 </c> instruction.
///
/// \param dst
/// A destination tile. Max size is 1024 Bytes.
/// \param base
/// A pointer to base address.
/// \param stride
/// The stride between the rows' data to be loaded in memory.
void __tile_stream_loadd(__tile1024i* dst, const void* base, __SIZE_TYPE__ stride);
/// Compute dot-product of bytes in tiles with a source/destination accumulator.
/// Multiply groups of 4 adjacent pairs of signed 8-bit integers in src0 with
/// corresponding signed 8-bit integers in src1, producing 4 intermediate 32-bit
/// results. Sum these 4 results with the corresponding 32-bit integer in "dst",
/// and store the 32-bit result back to tile "dst".
///
/// \headerfile <immintrin.h>
///

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20-62

/* 2 of 3 */
/// This intrinsic corresponds to the <c> TDPBSSD </c> instruction.
///
/// \param dst
/// The destination tile. Max size is 1024 Bytes.
/// \param src0
/// The 1st source tile. Max size is 1024 Bytes.
/// \param src1
/// The 2nd source tile. Max size is 1024 Bytes.
void __tile_dpbssd(__tile1024i *dst, __tile1024i src1, __tile1024i src2);
/// Compute dot-product of bytes in tiles with a source/destination accumulator.
/// Multiply groups of 4 adjacent pairs of signed 8-bit integers in src0 with
/// corresponding unsigned 8-bit integers in src1, producing 4 intermediate
/// 32-bit results. Sum these 4 results with the corresponding 32-bit integer
/// in "dst", and store the 32-bit result back to tile "dst".
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the <c> TDPBSUD </c> instruction.
///
/// \param dst
/// The destination tile. Max size is 1024 Bytes.
/// \param src0
/// The 1st source tile. Max size is 1024 Bytes.
/// \param src1
/// The 2nd source tile. Max size is 1024 Bytes.
void __tile_dpbsud(__tile1024i *dst, __tile1024i src1, __tile1024i src2);
/// Compute dot-product of bytes in tiles with a source/destination accumulator.
/// Multiply groups of 4 adjacent pairs of unsigned 8-bit integers in src0 with
/// corresponding signed 8-bit integers in src1, producing 4 intermediate 32-bit
/// results. Sum these 4 results with the corresponding 32-bit integer in "dst",
/// and store the 32-bit result back to tile "dst".
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the <c> TDPBUUD </c> instruction.
///
/// \param dst
/// The destination tile. Max size is 1024 Bytes.
/// \param src0
/// The 1st source tile. Max size is 1024 Bytes.
/// \param src1
/// The 2nd source tile. Max size is 1024 Bytes.
void __tile_dpbuud(__tile1024i *dst, __tile1024i src1, __tile1024i src2);
/// Zero the tile specified by "dst".
///
/// \headerfile <immintrin.h>
///

20-63

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20.18.4 EXAMPLE
In Example 20-30, function foo is called in line 18, and the tile variable ‘a’ written in line 17 needs to live
up to line 21 across the function call. The compiler needs to save the tile data register allocated to ‘a’
before calling foo and restore the tile configure register and tile data registers after calling foo. Lines 39,
42, and 46 in Figure 17-2 are the save/restore code. Since the configure register doesn’t change, the
configure register in the stack does not need to be saved.

Notice the ldtilecfg instruction at the beginning of the function (line 34 in Example 20-31), which sets the
Intel AMX registers configuration within the CPU, and the TileRelease instruction towards the end of the
function, which ensures that the Intel AMX state is initialized, thus avoiding the expensive Intel AMX
state save/restore in case of software thread context switch outside of the Intel AMX function.

/* 3 of 3 */
/// This intrinsic corresponds to the <c> TILEZERO </c> instruction.
///
/// \param dst
/// The destination tile to be zero. Max size is 1024 Bytes.
void __tile_zero(__tile1024i* dst);
/// Compute dot-product of BF16 (16-bit) floating-point pairs in tiles src0 and
/// src1, accumulating the intermediate single-precision (32-bit) floating-point
/// elements with elements in "dst", and store the 32-bit result back to tile
/// "dst".
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the <c> TDPBF16PS </c> instruction.
////// \param dst
/// The destination tile. Max size is 1024 Bytes.
/// \param src0
/// The 1st source tile. Max size is 1024 Bytes.
/// \param src1
/// The 2nd source tile. Max size is 1024 Bytes.
void __tile_dpbf16ps(__tile1024i* dst, __tile1024i src0, __tile1024i src1);
/// Store the tile specified by "src" to memory specified by "base" address and
/// "stride".
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the <c> TILESTORED </c> instruction.
///
/// \param dst
/// A destination tile. Max size is 1024 Bytes.
/// \param base
/// A pointer to base address.
/// \param stride
/// The stride between the rows' data to be stored in memory.
void __tile_stored(void *base, __SIZE_TYPE__ stride, __tile1024i src);

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20-64

Example 20-30. Intel® AMX Intrinsics usage

clang -O2 -S amx-across-func.c -mamx-int8 -mavx512f -fno-asynchronous-unwind-tables.

 1 #include <immintrin.h>
 2
 3 char buf[1024];
 4 #define STRIDE 32
 5
 6 int count = 0;
 7 __attribute__((noinline))
 8 void foo() {
 9 count++;
 10 }
 11
 12 void test_api(int cond, unsigned short row, unsigned short col) {
 13 __tile1024i a = {row, col};
 14 __tile1024i b = {row, col};
 15 __tile1024i c = {row, col};
 16
 17 __tile_loadd(&a, buf, STRIDE);
 18 foo();
 19 __tile_loadd(&b, buf, STRIDE);
 20 __tile_loadd(&c, buf, STRIDE);
 21 __tile_dpbssd(&c, a, b);
 22 __tile_stored(buf, STRIDE, c);
 23 }

20-65

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

Example 20-31. Compiler-generated assembly-level code out of example 20-30 Intrinsics code

20.18.5 COMPILATION OPTION
The save/restore is sometimes unnecessary, e.g., when foo does not clobber any tile register. To avoid
unnecessary save/restore, compile with “-mllvm -enable-ipra”, which does an IPO analysis to get the
information on what physical registers are clobbered during the function call. Example 20-32 shows no
tile register save/restore across calling foo.

clang -O2 -S amx-across-func.c -mamx-int8 -mavx512f -fno-asynchronous-unwind-tables -mllvm -
enable-ipra

 16 test_api: # @test_api
 17 # %bb.0: # %entry
 18 pushq %rbp
 19 pushq %r15
 20 pushq %r14
 21 pushq %rbx
 22 subq $1096, %rsp # imm = 0x448
 23 movl %edx, %ebx
 24 movl %esi, %ebp
 25 vpxord %zmm0, %zmm0, %zmm0
 26 vmovdqu64 %zmm0, (%rsp)
 27 movb $1, (%rsp)
 28 movw %bx, 20(%rsp)
 29 movb %bpl, 50(%rsp)
 30 movw %bx, 18(%rsp)
 31 movb %bpl, 49(%rsp)
 32 movw %bx, 16(%rsp)
 33 movb %bpl, 48(%rsp)
 34 ldtilecfg (%rsp)
 35 movl $buf, %r14d
 36 movl $32, %r15d
 37 tileloadd (%r14,%r15), %tmm0
 38 movabsq $64, %rax
 39 tilestored %tmm0, 64(%rsp,%rax) # 1024-byte Folded Spill
 40 vzeroupper
 41 callq foo
 42 ldtilecfg (%rsp)
 43 tileloadd (%r14,%r15), %tmm0
 44 tileloadd (%r14,%r15), %tmm1
 45 movabsq $64, %rax
 46 tileloadd 64(%rsp,%rax), %tmm2 # 1024-byte Folded Reload
 47 tdpbssd %tmm0, %tmm2, %tmm1
 48 tilestored %tmm1, (%r14,%r15)
 49 addq $1096, %rsp # imm = 0x448
 50 popq %rbx
 51 popq %r14
 52 popq %r15
 53 popq %rbp
 54 tilerelease
 55 retq

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20-66

Example 20-32. Compiler-generated assembly-level code where tile register save/restore is optimized away

20.19 INTEL® AMX STATE MANAGEMENT
Intel AMX is XSAVE supported, meaning that it defines processor registers that can be saved and
restored using instructions of the XSAVE feature set. Intel AMX is also XSAVE enabled, meaning that
system software must enable it before it can be used.

The XSAVE feature set operates on state components, each a discrete set of processor registers (or parts
of registers). Intel AMX is associated with two state components, XTILECFG and XTILEDATA. The XSAVE
feature set organizes state components using state-component bitmaps. A state-component bitmap
comprises 64 bits; each bit in such a bitmap corresponds to a single state component. Intel AMX defines
bits 18:17 for its state components (collectively, these are called AMX state):

• State component 17 is used for the 64-byte TILECFG register (XTILECFG state).
• State component 18 is used for the 8192 bytes of tile data (XTILEDATA state).

These are both user state components, meaning the entire XSAVE feature set can manage them. In addi-
tion, it implies that setting bits 18:17 of extended control register XCR0 by system software enables Intel
AMX. If those bits are zero, an Intel AMX instruction execution results in an invalid-opcode exception
(#UD).

About the XSAVE feature set’s INIT optimization, the Intel AMX state is in its initial configuration if the
TILECFG register is zero and all tile data are zero.

 15 .type test_api,@function
 16 test_api: # @test_api
 17 # %bb.0: # %entry
 18 subq $72, %rsp
 19 vpxord %zmm0, %zmm0, %zmm0
 20 vmovdqu64 %zmm0, 8(%rsp)
 21 movb $1, 8(%rsp)
 22 movw %dx, 28(%rsp)
 23 movb %sil, 58(%rsp)
 24 movw %dx, 26(%rsp)
 25 movb %sil, 57(%rsp)
 26 movw %dx, 24(%rsp)
 27 movb %sil, 56(%rsp)
 28 ldtilecfg 8(%rsp)
 29 movl $buf, %eax
 30 movl $32, %ecx
 31 tileloadd (%rax,%rcx), %tmm0
 32 callq foo
 33 tileloadd (%rax,%rcx), %tmm1
 34 tileloadd (%rax,%rcx), %tmm2
 35 tdpbssd %tmm1, %tmm0, %tmm2
 36 tilestored %tmm2, (%rax,%rcx)
 37 addq $72, %rsp
 38 tilerelease
 39 vzeroupper
 40 retq
 41 .Lfunc_end1:
 42 .size test_api, .Lfunc_end1-test_api

20-67

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

The enumeration and feature enabling documentation can be found in the Intel AMX Architecture Defini-
tion; see Section 20.2.

An execution of XRSTOR or XRSTORS initializes the TILECFG register (resulting in TILES_CONFIGURED =
0) in response to an attempt to load it with an illegal value. Moreover, an execution of XRSTOR or
XRSTORS that is not directed to load XTILEDATA leaves it unmodified, even if the execution is loading
XTILECFG.

It is highly recommended that developers execute TILERELEASE to initialize the tiles at the end of the
AMX instructions code region. More on this is in Section .

System software may disable the use of Intel AMX by clearing XCR0[18:17] by clearing CR4.OSXSAVE,
or by setting IA32_XFD[18]. It is recommended that system software initializes the AMX state (e.g., by
executing TILERELEASE) before doing so.

20.19.1 EXTENDED FEATURE DISABLE (XFD)
The XTILEDATA state component size is 8 KBytes, and an operating system may prefer not to allocate
memory for the XTILEDATA state by default for every user thread. Such an operating system that
enables Intel AMX might select a fault when user threads use the feature. That way, the operating system
can allocate a large enough state save area only for the user threads that use the feature. An operating
system may offer an API for the user threads to declare their intention to use Intel AMX and allow the OS
to pre-allocate the state and avoid an exception when Intel AMX is used for the first time. See
https://www.kernel.org/doc/html/latest/x86/xstate.html for Linux API and https://learn.micro-
soft.com/en-us/windows/win32/api/winbase/ for Windows API

Extended feature disable (XFD) is added to the XSAVE feature set to support such usage. XFD is docu-
mented in the Intel AMX Architecture Definition, see https://www.intel.com/content/www/us/en/devel-
oper/technical-library/installation-guides.html.

20.19.2 ALTERNATE SIGNAL HANDLER STACK IN LINUX OPERATING SYSTEM
When programs use an alternate signal handler stack, its size should be adjusted to accommodate the
additional Intel AMX state. See https://www.kernel.org/doc/html/latest/x86/xstate.html for more
details.

20.20 USING INTEL® AMX TO EMULATE HIGHER PRECISION GEMMS
AMX/TMUL has instructions that enable matrix-matrix operations such as multiplication on small preci-
sion elements. This section considers how to use the low-precision Intel AMX instructions to approximate
the answers of matrix-matrix multiplication of higher-precision terms. Even if the low-precision inputs
are Bfloat16 or Integer8, one can still combine the transforms to approximate matrix-matrix multiplica-
tion in higher precisions.

When approximating higher precision, pay attention to the exponent range and mantissa bits. There are
IEEE-754 double precision numbers (FP64) that aren’t representable as single precision (FP32) or lower
precisions. These are typically range-based issues in the exponent bits. FP64 has more exponent bits
than FP32. However, scaling factors can overcome most range-based problems. If A is a matrix of FP64
values, then A, as a sum of Bfloat16 matrices, cannot generally be represented; but scaling factors can
be used to get around most issues. A as s1*A1 + s2*A2 + … + sn*An can be written where each matrix
A_i is lower precision, and each si is a constant scaling factor.

For Bfloat16 decomposition of FP32, consider the following:

• Let A be a matrix of FP32 values
• Let A1 = bfloat16(A), a matrix containing RNE-rounded Bfloat16 conversions of A

https://www.kernel.org/doc/html/latest/x86/xstate.html
https://learn.microsoft.com/en-us/windows/win32/api/winbase/
https://learn.microsoft.com/en-us/windows/win32/api/winbase/
https://www.intel.com/content/www/us/en/developer/technical-library/installation-guides.html
https://www.intel.com/content/www/us/en/developer/technical-library/installation-guides.html
https://www.kernel.org/doc/html/latest/x86/xstate.html
https://www.kernel.org/doc/html/latest/x86/xstate.html

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20-68

• Let A2 = bfloat16(A – fp32(A1))
• Let A3 = bfloat16(A – fp32(A1) – fp32(A2))
• Now A is approximately A1 + A2 + A3.

Once one has written two matrices as a sum of lower precision matrices, one can run AMX/TMUL on the
product to approximate the higher precision. But to do this effectively, one needs to have higher precision
accumulation. There are tricks in the literature for doing higher precision all in a lower precision, such as
works on so-called double-double arithmetic. Still, these tend to vary too much from standard matrix-
matrix multiplication to be helpful with TMUL. In the case of Bfloat16, having 32-bit accumulation in the
product allows one to use Bfloat16 to approximate FP32 accuracy.

Therefore, if A = s1*A1 + s2*A2 + s3*A3 and B = t1*B1 + t2*B2 + t3*B3, then A*B can be computed
using AMX/TMUL on the projects Ai*Bj for 1<=i,j<=3, assuming scaling is done carefully to avoid denor-
mals. Assuming FP32 accumulation, the FP32 approximation of A*B can be made by writing out these
lower precision multiplies. Scaling factors can be chosen to avoid denormals at times, but they can also
be picked in a way that simplifies further steps in the algorithm. In some cases, scaling factors can be
chosen to be a power of two, for instance, without significantly reducing the accuracy of the resulting
matrix-matrix multiply.

The number of matrices for A or B are picked depending on the mantissa range to cover. If trying to
emulate FP32 which has 24 bits of mantissa (including the implicit mantissa bit), it is possible with 3
Bfloat16 matrices (because each of the triples has 8 bits of mantissa, including the implicit bit.). Here the
range is less important because Bfloat16 and FP32 have the same exponent range. Use three Bfloat16
matrices to approximate FP32 precision by BF16x3. Range issues may still come up for BF16x3 cases
where A has values close to the maximum or minimum exponent for FP32, but that too can be circum-
vented by scaling constants. Scaling factors of 2^24 or 2^(-24) suffice to push it far enough away from
the boundary to make the computation feasible again. This is dependent upon the closest end of the
spectrum.

A few terms from an expansion can also be dropped. For instance, in the BF16x3 case, where there are
three As and three Bs, nine products may result. That is:

A*B = (A1+A2+A3)*(B1+B2+B3) = (A1*B1) + (A1*B2 + A2*B1) + (A1*B3 + A2*B2 + A3*B1) +
(A2*B3 + A3*B2) +(A3*B3).

The parentheses in the last equation are intentionally derived so that all entries in the same “bin” are put
together, and there are nine entries of the form Ai*Bj. This example has five bins, each with its own set
of parentheses. In the Bfloat16 case, |Ai| <= |A_i-1}| / 256. This shows the last two bins (with
A2*B3,A3*B2,A3*B3) are too small to contribute significantly to the answer, which is why if there are Y
terms on each side of A*B, only (Y+1)*Y/2 multiplies are required, not Y*Y multiplies. In this case, drop-
ping the last three (also the difference between Y*Y – (Y+1)*Y/2 when Y=3.) from the nine multiplies.
The last three multiplies in the last two bins have terms less than 2^(-24) as big as the first term. So,
A*B can be approximated (ignoring the scaling terms for now) as the sum of the first three most signifi-
cant bins: A1*B1 + (A1*B2+A2*B1)+(A1*B3+A2*B2*A3*B1). In this case, adding from the least signif-
icant bin to the most significant bin (A1*B1) is recommended.

Whenever A and B are each expanded out to Y-terms, computing only Y*(Y+1)/2 products works under
the condition that each term has the same number of mantissa bits. If some terms have a different
number of bits, then this guideline no longer applies. But for BF16x3, each term covers eight mantissa
bits and Y=3, so six products are needed.

Regarding accuracy, the worst-case relative error for BF16x3 may be worse than FP32. However, BF16x3
tends to cover a larger mantissa range due to implicit bits, which can be more accurate in many cases.
Nevertheless, accuracy is not offered by matrix-matrix multiplication. Even FP64 or FP128 can be bad for
component-wise relative errors. Take A = [1, -1] and B = [1; 1]. A*B is zero. Let eps be a small pertur-
bation to A and/or B. The solution may now be arbitrarily bad in terms of relative error. In general,
assume that the same mantissa range and exponent range is covered as a given higher-precision floating
point format, and the accumulation is at least as good as the higher-precision format. With such an

20-69

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

assumption, the answer will be approximately the same as the higher-precision floating point format. It
may or may not be identical. Performing the same operation in the higher precision format but changing
the order of the computations could yield slightly different results. In terms of matrix-matrix multiplica-
tion, it could yield vast differences in relative error.

Things get slightly more complicated if low precision is used to approximate matrix-matrix at FP64 accu-
racy or FP128 precision. Here the scalars aren’t just for avoiding denormals but are necessary to do the
initial matrix conversion. Nevertheless, converting to an integer is recommended in this case because the
FP32-rounded errors in each of the seven or fewer bins may introduce too many errors. An integer is
easier to get right because there are no floating-point errors in each bin.

Conversion to Integer functions in the same way as all of the previous Bfloat16 examples. The quantiza-
tion literature explains how to map floating point numbers into integers. The only difference is that these
integers are further broken down into 8-bit pieces for the use of AMX. Constant factors are still needed,
but in this case they are primarily defined in the conversion itself.

One difficulty with quantization to integers is the notion of a shared exponent. All the numbers quantized
together with shared exponents must share the same range. The assumption is that all of A shares a joint
exponent range. Since this will also be true for B, each row of A and column of B can be quantized sepa-
rately.

Assuming that there is Integer32 accumulation with the Integer8 multiplies, a matrix may be broken
down into far more bits than required. This may significantly reduce the inaccuracy impact of picking a
shared exponent. Because Integer32 arithmetic will be precise, modulo overflow/underflow concerns,
then one can break up A or B into a huge number of 8-bit integer matrices, then do all the matrix-matrix
work with AMX, and then convert back all the results to even get accuracies up to quad-precision.

Considering an extreme case of trying to get over 100-bits of accuracy in a matrix-matrix multiply. All A-
values can be quantified into 128-bit integers. The same holds true with B. Once broken down into 8-bit
quantities, this will have a significant expansion like: A = s1*A1 + s2*A2 + … + s14*A14 for when
attempting 112-bits of mantissa. The same can be done with B = t1*B1 + t2*B2 + … + t14*B14. A*B is
potentially 14*14=196 products, but only 105 products are needed because the last few products may
have scaling factors less than 2^(-112) times the most important terms. Each product term should be
added separately and computing into C from the least significant bits forward.

C15 = (s1*t14)*A1*B14 + (s2*t13)*A2*B13 + … + (s14*t1)*A14*B1

C14 = (s1*t13)*A1*B13 + (s2*t12)*A2*B12 + … + (s13*t1)*A13*B1

C13 = (s1*t12)*A1*B12 + (s2*t11)*A2*B11 + … + (s12*t1)*A12*B1

…

C02 = (s1*t1)*A1*B1

Sometimes choosing scalers is possible such that all the products in a given row can be computed with
the same scratch array. The converted sum of C02 gives the final product through C15, where terms like
C15 should be computed first.

Writing matrix-matrix multiplies in terms of an expansion like (A1+A2+A3)*(B1+B2+B3) is referred to
as “cascading GEMM.” Performance will vary depending on the TMUL/AMX specification, and may vary
from generation to generation. Note that some computations may become bandwidth-bound. Since
there is no quad floating-point precision in hardware for Intel Architecture, the above algorithm may be
competitive performance-wise with other approaches like doing software double-double optimizations or
software-based quad precision.

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20-70

CHAPTER 21
CRYPTOGRAPHY & FINITE FIELD ARITHMETIC ENHANCEMENTS

Several instruction extensions designated for acceleration of cryptography flows and finite field arith-
metic are available, beginning with the Ice Lake Client microarchitecture. The ISA extensions include
Vector AES, VPCLMULQDQ, Galois Field New Instructions (GFNI), and AVX512_IMFA, also known as
VPMADD52. The following sections describe these extensions and provide examples and simple compar-
isons to previous implementation code.

See the Intel® 64 and IA-32 Architectures Software Developer’s Manual for the complete instruction definitions.

Intel implements support for the most common cryptography algorithms, supporting main public
libraries and commonly used software. The following sections describe the instructions briefly. For
further details on the proper usages of the new instructions with an exploration of their applications on
the system, refer to the following paper: http://goto.intel.com/cryptowp.

21.1 VECTOR AES
The Vector AES extension supports the vectorization of the previously announced Intel® Advanced
Encryption Standard New Instructions (Intel® AES-NI)1 . The new instructions support parallel execution
for up to four blocks of input within a single instruction. The extended ISA, namely VAESENC, VAESEN-
CLAST, VAESDEC, and VAESDECLAST, are intended for performance acceleration of the relevant AES
mode of operations and multi-buffer implementations. The new instructions accelerate AES modes by up
to 3.3x compared to previous code supported by Intel AES-NI.

Below is a snippet of AES-ECB mode of operation code, implemented on AT-T Assembly, emphasizing the
legacy Intel AES-NI vs. Vector AES.

1. https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf

Example 21-1. Legacy Intel® AES-NI vs. Vector AES

Legacy Intel® AES-NI - AES ECB Encryption Vector AES - AES ECB Encryption

// rcx = pointer to Key Expansion
 movdqa 16*1(%rcx), %xmm9
// xmm1 - xmm8 - 8 blocks of AES
// 1st round of AES for 8 blocks
 aesenc %xmm9, %xmm1
 aesenc %xmm9, %xmm2
 aesenc %xmm9, %xmm3
 aesenc %xmm9, %xmm4
 aesenc %xmm9, %xmm5
 aesenc %xmm9, %xmm6
 aesenc %xmm9, %xmm7
 aesenc %xmm9, %xmm8
 movdqa 16*2(%rcx), %xmm9

// rcx = pointer to Key Expansion
// broadcasting key to zmm0
 vbroadcasti64x2 1*16(%rcx), %zmm0
// 1st round of AES for 8 blocks
 vaesenc %zmm0, %zmm1, %zmm1
 vaesenc %zmm0, %zmm2, ,%zmm2
 vbroadcasti64x2 2*16(%rcx), %zmm0
// 2nd Round of AES for 8 Blocks
 vaesenc %zmm0, %zmm1, %zmm1
 vaesenc %zmm0, %zmm2, %zmm2

https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf
http://goto.intel.com/cryptowp
http://goto.intel.com/cryptowp

CRYPTOGRAPHY & FINITE FIELD ARITHMETIC ENHANCEMENTS

21-2

The code above demonstrates the ability of implementing AES in ECB mode of operation, using 8 parallel
buffers, implemented on legacy vs. Vector AES. The same acceleration can be applied to other modes of
operation, such as AES-CTR and AES-CBC, and also to more elaborate schemes such as AES-GCM. The
latter one requires fast computations of a hash function, namely GHASH, which can be accelerated using
the VPCLMULQDQ new instruction, which is described in Section 21.2.

21.2 VPCLMULQDQ
Carry-less multiplication, namely PCLMULQDQ, was previously introduced on the Intel® Core processor
family based on Westmere microarchitecture1. In newer architectures, beginning with Ice Lake Client
microarchitecture, Intel introduces the vectorization of PCLMULQDQ, namely VPCLMULQDQ, supporting
acceleration of up to 4x compared to its legacy. The new instruction is used for polynomial multiplication
over binary fields used on current cryptography algorithms such as AES-GCM. The new instruction may
also be useful for the upcoming Post-Quantum Cryptography project submissions, used for BIKE and
others. Such usages emphasizes the importance of the current use of VPCLMULQDQ. A common use case
for using the instruction can be seen on GHASH computation, with four different carry-less multiplica-
tions done within a single instruction, using the wide 512-bit registers. This use case elaborates the
performance of AES-GCM, which is the main mode of operation used on AES.

21.3 GALOIS FIELD NEW INSTRUCTIONS
Galois Field new instructions are recently introduced in newer architecture, beginning with Ice Lake
Client microarchitecture. The new instructions, namely VGF2P8MULB, VGF2P8AFFINEQB, and
VGF2P8AFFINEINVQB, allow software flows to perform vector and matrix multiplications over GF(2^8)
on the Intel AVX512 architectural registers. The wide usages of these instructions vary from Reed-
Solomon code implementation, to different encryption schemes such as the Chinese encryption scheme
- SM4 and others.

// 2nd Round of AES for 8 Blocks
 aesenc %xmm9, %xmm1
 aesenc %xmm9, %xmm2
 aesenc %xmm9, %xmm3
 aesenc %xmm9, %xmm4
 aesenc %xmm9, %xmm5
 aesenc %xmm9, %xmm6

aesenc %xmm9, %xmm7
 aesenc %xmm9, %xmm8

Baseline: 1x Speedup: 3.3x

1. https://software.intel.com/en-us/articles/intel-carry-less-multiplication-instruction-and-its-usage-for-computing-the-
gcm-mode

Example 21-1. Legacy Intel® AES-NI vs. Vector AES (Contd.)

https://software.intel.com/en-us/articles/intel-carry-less-multiplication-instruction-and-its-usage-for-computing-the-gcm-mode
https://software.intel.com/en-us/articles/intel-carry-less-multiplication-instruction-and-its-usage-for-computing-the-gcm-mode

21-3

CRYPTOGRAPHY & FINITE FIELD ARITHMETIC ENHANCEMENTS

21.4 INTEGER FUSED MULTIPLY ACCUMULATE OPERATIONS
(AVX512_IFMA - VPMADD52)

Beginning with Ice Lake Client microarchitecture, Intel introduces AVX512_IFMA, namely VPMADD52.
The new instructions, VPMADD52LUQ and VPMADD52HUQ, multiply 8x52-bit unsigned integers found in
the 512-bit wide registers, produce the high and low halves of the result, and add to the 64-bit accumu-
lators. The instructions are designated for big number multiplication, assuming the inputs are using radix
252. The new instructions can be used for accelerating modular exponent computation code, which is
widely used on RSA. Code usages can be already seen on OpenSSL1.

Example 21-2. SM4 GFNI Encryption Round Example

LAFFINE_IN:
.byte 0x52,0xBC,0x2D,0x02,0x9E,0x25,0xAC,0x34,0x52,0xBC,0x2D,0x02,0x9E,0x25,0xAC,0x34
.byte 0x52,0xBC,0x2D,0x02,0x9E,0x25,0xAC,0x34,0x52,0xBC,0x2D,0x02,0x9E,0x25,0xAC,0x34
.byte 0x52,0xBC,0x2D,0x02,0x9E,0x25,0xAC,0x34,0x52,0xBC,0x2D,0x02,0x9E,0x25,0xAC,0x34
.byte 0x52,0xBC,0x2D,0x02,0x9E,0x25,0xAC,0x34,0x52,0xBC,0x2D,0x02,0x9E,0x25,0xAC,0x34

.LAFFINE_OUT:

.byte 0x19,0x8b,0x6c,0x1e,0x51,0x8e,0x2d,0xd7,0x19,0x8b,0x6c,0x1e,0x51,0x8e,0x2d,0xd7

.byte 0x19,0x8b,0x6c,0x1e,0x51,0x8e,0x2d,0xd7,0x19,0x8b,0x6c,0x1e,0x51,0x8e,0x2d,0xd7

.byte 0x19,0x8b,0x6c,0x1e,0x51,0x8e,0x2d,0xd7,0x19,0x8b,0x6c,0x1e,0x51,0x8e,0x2d,0xd7

.byte 0x19,0x8b,0x6c,0x1e,0x51,0x8e,0x2d,0xd7,0x19,0x8b,0x6c,0x1e,0x51,0x8e,0x2d,0xd7

.globl SM4_ENC_ECB_AVX512_GFNI
SM4_ENC_ECB_AVX512_GFNI:
vmovdqa64 .LAFFINE_IN(%rip), %zmm10
 vmovdqa64 .LAFFINE_OUT(%rip), %zmm11
 …
 /* Load data swapped LE-BE in transposed way - each block's double word is found on
 different AVX512 register
 */

.Rounds:
 // Initial xor between the 2nd, 3rd, 4th double word to key
 vpbroadcastd 4*0(key), %zmm6
 vpternlogd $0x96, %zmm1, %zmm2, %zmm3
 vpxorq %zmm3, %zmm6, %zmm6
 /* Sbox phase */
 vgf2p8affineqb $0x65, %zmm10, %zmm6, %zmm6
 vgf2p8affineinvqb $0xd3, %zmm11, %zmm6, %zmm6
 /* Done Sbox , Linear rotations start xor with 1st double word input*/
 vprold $2, %zmm6, %zmm12
 vprold $10, %zmm6, %zmm13
 vprold $18, %zmm6, %zmm7
 vprold $24, %zmm6, %zmm14
 vpternlogd $0x96, %zmm6, %zmm12, %zmm0
 vpternlogd $0x96, %zmm13, %zmm7, %zmm14
 vpxord %zmm14, %zmm0, %zmm0
 /* Linear part done - round complete */

1. https://www.openssl.org/

https://www.openssl.org/

CRYPTOGRAPHY & FINITE FIELD ARITHMETIC ENHANCEMENTS

21-4

CHAPTER 22
INTEL® QUICKASSIST TECHNOLOGY

The Intel® QuickAssist Technology API supports two acceleration services:
• Cryptographic
• Data Compression.

The acceleration driver interfaces with the hardware via hardware-assisted rings. These rings are used
as request and response rings. The driver uses request rings to submit requests to the accelerator and
response rings to retrieve responses from the accelerator. The availability of responses can be indicated
to the driver using either interrupts or by having software poll the response rings.

At the Intel® QuickAssist Technology API, services are accessed via “instances.” A set of rings is assigned
to an instance, and any operations performed on a service instance will involve communication over the
rings assigned to that instance.

22.1 SOFTWARE DESIGN GUIDELINES
Key design decisions should be considered to achieve optimal performance when integrating with the
Intel QuickAssist Technology software. In many cases, the best Intel® QuickAssist Technology configura-
tion is dependent on the design of the application stack that is being used. Therefore, it is impossible to
have a “one configuration fits all” approach. The trade-offs between different approaches will be
discussed in this section to help the designer make informed decisions.

These guidelines focus on the following performance aspects:
• Maximizing throughput through the accelerator
• Minimizing the offload cost incurred when using the accelerator
• Minimizing latency

Each guideline will highlight its impact on performance. This document does not give specific perfor-
mance numbers since exact performance numbers depend on various factors and tend to be specific to
a given workload, software, and platform configuration. Further, such numbers tend to be specific to a
given workload, software, and platform configuration.

22.1.1 Polling vs. Interrupts (If Supported)

NOTE
Not all use cases support interrupt mode, and not all software packages support interrupt
mode.

Software can either periodically query the hardware accelerator for responses or enable the generation
of an interrupt when responses are available. Interrupts or polling mode can be configured per instance
via the platform-specific configuration settings.

The properties and performance characteristics of each mode are explained below followed by recom-
mendations on selecting a configuration.

22.1.1.1 Interrupt Mode
When operating in interrupt mode, the accelerator will generate an MSI-X interrupt when a response is
placed on a response ring. Each ring bank has a separate MSI-X interrupt which may be steered to a
particular CPU core via the CoreAffinity settings in the configuration file.

INTEL® QUICKASSIST TECHNOLOGY

22-2

To reduce the number of interrupts generated, and hence the number of CPU cycles spent processing
interrupts, multiple responses can coalesce together. The presence of the multiple responses can be indi-
cated via a single coalesced interrupt rather than having an interrupt per response. An interrupt
coalescing timer determines the number of responses associated with a coalesced interrupt. When the
accelerator places a response in a response ring, it starts an interrupt coalescing timer. While the timer
runs, additional responses may be placed in the response ring. When the timer expires, an interrupt is
generated to indicate that responses are available.

Since interrupt coalescing is based on a timer, there is some variability in the number of responses asso-
ciated with an interrupt. The arrival rate of responses is a function of the arrival rate of the associated
requests and of the request size. Hence, the timer configuration needed to coalesce X large requests
differs from the timer configuration needed to coalesce X small requests. Tuning the timer based on the
average expected request size is recommended.

The choice of timer configuration impacts throughput, latency, and offload cost:
• Configuring a very short time period maximizes the throughput through the accelerator, minimizing

latency, but will increase the offload cost since there will be a higher number of interrupts and hence
more CPU cycles spent processing the interrupts. If this interrupt processing becomes a performance
bottleneck for the CPU, the overall system throughput will be impacted.

• Configuring a very long timer period leads to reduced offload cost (due to the reduction in the number
of interrupts) but increased latency. If the timer period is very long and causes the response rings to
fill, the accelerator will stall, and throughput will be impacted.

The appropriate coalescing timer configuration will depend on the characteristics of the application. It is
recommended that the value chosen is tuned to achieve optimal performance.

Using interrupts to notify user-space applications is achieved using “epoll mode,” which utilizes the kernel
device drivers poll function to allow an application to get notified of interrupt events.

Because epoll mode has two parts, of which the kernel space part utilizes the interrupts, if there is a
delay in the kernel interrupt (for example, by changing the coalescing fields), there will be a corre-
sponding increase in latency in the delivery of the event to user space.

The thread waiting for an event in epoll mode does not consume CPU time, but the latency could impact
performance. For higher packet load where the wait time for the next packet is insignificant, polling mode
is recommended.

When using interrupts with the user space Intel QuickAssist Technology driver, there is significant over-
head in propagating the interrupt to the user space process that the driver is running in. This leads to an
increased offload cost. Hence, interrupts should not be used with the user-space Intel QuickAssist Tech-
nology driver.

22.1.1.2 Polling Mode
In polled mode, interrupts are fully disabled and the software application must periodically invoke the
polling API, provided by the Intel® QuickAssist Technology driver, to check for and process responses
from the hardware.

The frequency of polling is a key performance parameter that should be fine-tuned based on the applica-
tion. This parameter has an impact on throughput, latency, and on offload cost:
• If the polling frequency is too high, CPU cycles are wasted if no responses are available when the

polling routine is called. This leads to an increased offload cost.
• If the polling frequency is too low, latency is increased and throughput may be impacted if the

response rings fill causing the accelerator to stall.

The choice of threading model has an impact on performance when using a polling approach. There are
two main threading approaches when polling:
• Creating a polling thread that periodically calls the polling API. This model is often the simplest to

implement, allows for maximum throughput, but can lead to increased offload cost due to the
overhead associated with context switching to/from the polling thread.

22-3

INTEL® QUICKASSIST TECHNOLOGY

• Invoking the polling API and submitting new requests from within the same thread. This model is
characterized by having a “dispatch loop” that alternates between submitting new requests and
polling for responses. Additional steps are often included in the loop such as checking for received
network packets or transmitting network packets. This approach often leads to the best performance
since the polling rate can be easily tuned to match the submission rate so throughput is maximized
and offload cost is minimized.

22.1.1.3 Recommendations
Polling mode tends to be preferred in cases where traffic is steady (like packet processing applications)
and can result in a minimal offload cost. Epoll mode is preferred for cases where traffic is bursty, as the
application can sleep until there is a response to process.

Considerations when using polling mode:
• Fine-tuning the polling interval is critical to achieving optimal performance.
• The preference is for invoking the polling API and submitting new requests from within the same

thread rather than having a separate polling thread.

Considerations when using epoll mode:
• CPU usage will be at 0% in idle state in epoll mode versus a non-zero value in standard poll mode.

However, with a high load state, standard poll mode should out-perform epoll mode.

22.1.2 Use of Data Plane (DP) API vs. Traditional API
The cryptographic and compression services provide two flavors of API, known as the traditional API and
the Data Plane API. The traditional API provides a full set of functionality including thread safety that
allows many application threads to submit operations to the same service instance. The Data Plane API
is aimed at reducing offload cost by providing a “bare bones” API, with a set of constraints, which may
suit many applications. Refer to the Intel QuickAssist Technology Cryptographic API Reference Manual for
more details on the differences between the DP and traditional APIs for the crypto service.

From a throughput and latency perspective, there is no difference in performance between the Data
Plane API and the traditional API.

From an offload cost perspective, the Data Plane API uses significantly fewer CPU cycles per request
compared to the traditional API. For example, the cryptographic Data Plane API has an offload cost that
is lower than the cryptographic traditional API.

22.1.2.1 Batch Submission of Requests Using the Data Plane API
The Data Plane API provides the capability to submit batches of requests to the accelerator. The use of
the batch mode of operation leads to a reduction in the offload cost compared to submitting the requests
one at a time to the accelerator. This is due to CPU cycle savings arising from fewer writes to the hard-
ware ring registers in PCIe* memory space. However, it is important to note that optimized batch size
may be different, depending on the application.

Using the Data Plane API, batches of requests can be submitted to the accelerator using either the
cpaCySymDpEnqueueOp() or cpaCySymDpEnqueueOpBatch() API calls for the symmetric cryptographic
data plane API and using either the cpaDcDpEnqueueOp() or

cpaDcDpEnqueueOpBatch() API calls for the compression data plane API. In all cases, requests are only
submitted to the accelerator when the performOpNow parameter is set to CPA_TRUE.

It is recommended to use the batch submission mode of operation where possible to reduce offload cost.

INTEL® QUICKASSIST TECHNOLOGY

22-4

22.1.3 Synchronous (sync) vs. Asynchronous (async)
The Intel QuickAssist Technology traditional API supports both synchronous and asynchronous modes of
operation. The Intel QuickAssist Technology Data Plane API only supports the asynchronous mode of
operation.

With synchronous mode, the traditional Intel QuickAssist Technology API will block and not return to the
calling code until the acceleration operation has completed.

With asynchronous mode, the traditional or Data Plane Intel QuickAssist Technology API will return to the
calling code once the request has been submitted to the accelerator. When the accelerator has completed
the operation, the completion is signaled via the invocation of a callback function.

From a performance perspective, the accelerator requires multiple inflight requests per acceleration
engine to achieve maximum throughput. With synchronous mode of operation, multiple threads must be
used to ensure that multiple requests are inflight. The use of multiple threads introduces an overhead of
context switching between the threads which leads to an increase in offload cost.

Hence, the use of asynchronous mode is the recommended approach for optimal performance.

22.1.4 Buffer Lists
The symmetric cryptographic and compression Intel QuickAssist Technology APIs use buffer lists for
passing data to/from the hardware accelerator. The number and size of elements in a buffer list has an
impact on throughput; performance degrades as the number of elements in a buffer list increases. To
minimize this degradation in throughput performance, it is recommended to keep the number of buffers
in a buffer list to a minimum. Using a single buffer in a buffer list leads to optimal performance. See also
4.1.4Payload Alignment for additional considerations.

NOTE
Specific performance numbers are not given in this document since exact performance
numbers depend on a variety of factors and tend to be specific to a given workload,
software and platform configuration.

When using the Data Plane API, it is possible to pass a flat buffer to the API instead of a buffer list. This
is the most efficient usage of system resources (mainly PCIe bandwidth) and can lead to lower latencies
compared to using buffer lists.

In summary, the recommendations for using buffer lists are:
• If using the Data Plane API, use a flat buffer instead of a buffer list.
• If using a buffer list, a single buffer per buffer list leads to highest throughput performance.
• If using a buffer list, keep the number of buffers in the list to a minimum.

22.1.5 Maximum Number of Concurrent Requests
The depth of the hardware rings used by the Intel QuickAssist Technology driver for submitting requests
to, and retrieving responses from, the accelerator hardware can be controlled via the configuration file
using the CyXNumConcurrentSymRequests, CyXNumConcurrentAsymRequests and DcXNumConcurren-
tRequests parameters. These settings can have an impact on performance:
• As the maximum number of concurrent requests is increased in the configuration file, the memory

requirements required to support this also increases.
• If the number of concurrent requests is set too low, there may not be enough outstanding requests

to keep the accelerator busy and throughput will degrade. The minimum number of concurrent
requests required to keep the accelerator busy is a function of the size of the requests and of the rate
at which responses are processed via either polling or interrupts (see Section 22.1.1 for additional
details).

• If the number of concurrent requests is set too high, the maximum latency will increase.

22-5

INTEL® QUICKASSIST TECHNOLOGY

It is recommended that the maximum number of concurrent requests is tuned to achieve the correct
balance between memory usage, throughput and latency for a given application. As a guide the
maximum number configured should reflect the peak request rate that the accelerator must handle.

22.1.6 Symmetric Crypto Partial Operations
The symmetric cryptographic Intel QuickAssist Technology API supports partial operations for some cryp-
tographic algorithms. This allows a single payload to be processed in multiple fragments with each frag-
ment corresponding to a partial operation. The Intel QuickAssist Technology API implementation will
maintain sufficient state between each partial operation to allow a subsequent partial operation for the
same session to continue from where the previous operation finished.

From a performance perspective, the cost of maintaining the state and the serialization between the
partial requests in a session has a negative impact on offload cost and throughput. To maximize perfor-
mance when using partial operations, multiple symmetric cryptographic sessions must be used to ensure
that sufficient requests are provided to the hardware to keep it busy.

For optimal performance, it is recommended to avoid the use of partial requests if possible.

There are some situations where the use of partials cannot be avoided since the use of partials and the
need to maintain state is inherent in the higher level protocol (such as, the use of the RC4 cipher with an
SSL/TLS protocol stack).

22.1.7 Reusing Sessions in QAT Environment
The session is the entry point to perform symmetric cryptography with the QAT device. Every session has
assigned algorithm, state, instance, but also allocated memory space.

When limited the number of instances and want to run several different algorithms or change keys for
another session, de-initialize the session and create a new one. However, such an approach impacts
performance because it involves buffer disposal, deinitialization of the instance, etc..

Instead, the session can be reused with updating only a direction (encryption / decryption), key or
symmetric algorithm to be used. This method will not dispose buffers and can reduce the CPU cycles
significantly.

22.1.8 Maximizing QAT Device Utilization
The Intel QuickAssist device utilization and throughput are maximized when there are sufficient requests
outstanding to occupy the multiple internal acceleration engines with the device.

Assigning each Intel QuickAssist service instance to a separate CPU core to balance the load across the
CPU is recommended to ensure that there are sufficient CPU cycles to drive the accelerators at maximum
performance. In a CPU with sufficiently high frequency, multiple instances may share the same CPU core.

When using interrupts, the core affinity settings within the configuration file should be used to steer the
interrupts for a service instance to the appropriate core.

22.1.9 Best Known Method (BKM) for Avoiding Performance Bottlenecks
For optimal performance, ensure the following:
• All data buffers should be aligned on a 64-byte boundary.
• Transfer sizes that are multiples of 64 bytes are optimal.
• Small data transfers (less than 64 bytes) should be avoided. If a small data transfer is needed,

consider embedding this within a larger buffer so that the transfer size is a multiple of 64 bytes.
Offsets can then be used to identify the region of interest within the larger buffer.

• Each buffer entry within a Scatter-Gather-List (SGL) should be a multiple of 64bytes and should be
aligned on a 64-byte boundary.

INTEL® QUICKASSIST TECHNOLOGY

22-6

22.1.10 Avoid Data Copies By Using SVM and ATS
On CPUs and Intel QuickAssist devices that support shared virtual memory (SVM), virtual addresses to
virtually contiguous buffers can be supplied to the Intel QAT hardware. Without this support, physical
addresses to physically contiguous and DMAable memory buffers must be used. Using virtual addressed
memory avoids the need to copy payload data from user space memory allocated with malloc() to phys-
ically contiguous memory.

When SVM is enabled, the Intel QuickAssist device interacts with the IOMMU to fetch the virtual to phys-
ical address translations when accessing memory and this can result in increased latency and lower
throughput.

22.1.11 Avoid Page Faults When Using SVM
When using SVM to avoid data copies, there is a chance that after a request, that refers to a virtually
addressed buffer, has been submitted to the Intel QuickAssist device, the operating system may swap
out the memory pages associated with that buffer. This will result in a page fault when the Intel QAT
device tries to access the memory. The Intel QAT device will stall the processing of that request until the
page fault is resolved or times out. This can lead to an underutilization of the Intel QAT device. To avoid
page faults, the memory submitted to QAT should be pinned.

CHAPTER 23
KNIGHTS LANDING MICROARCHITECTURE AND SOFTWARE

OPTIMIZATION

Intel® Xeon PhiTM Processors 7200/5200/3200 Series are based on the Knights Landing microarchitec-
ture. Coding techniques for software targeting the Knights Landing microarchitecture are described in
this chapter. Processors based on the Knights Landing microarchitecture can be identified using CPUID’s
DisplayFamily_DisplayModel signature, which can be found in Table 2-1 of Chapter 2, “Intel® 64 and IA-
32 Processor Architectures” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
4.

This chapter begins with a high level description of the Knights Landing microarchitecture. The rest of the
chapter covers several topics that have the highest impact for software performance when running on
the Knights Landing microarchitecture: Intel® AVX-512 instructions, memory subsystems, microarchi-
tectural specific techniques, compiler switches and directives, numeric sequences, MCDRAM as cache,
and scalar versus vector coding.

Figure 23-1. Tile-Mesh Topology of the Knights Landing Microarchitecture

Tile

PCIe
Gen 3 DMI

Core

CHA

EDC EDC EDC EDC

EDC EDC EDC EDCMISC

DDR MC DDR MC

MCDRAM MCDRAM

MCDRAM MCDRAM

MCDRAM MCDRAM

MCDRAM MCDRAM

2 x 16
 x 4

x 4
DM

D
D
R

C
H
A
N
N
E
L
S

D
D
R

C
H
A
N
N
E
L
S

 Multiple Tiles
 Connected by
 2-D Mesh
 Interconnect

 Physical
 Package

Core
 1MB
 L 2

2 VPU 2 VPU

KNIGHTS LANDING MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

23-2

23.1 KNIGHTS LANDING MICROARCHITECTURE
The Knights Landing microarchitecture is designed for processors and co-processor product families that
target highly-parallel, high-performance applications. An Intel Xeon Phi processor based on the Knights
Landing microarchitecture is comprised of:
• A large number of tiles.
• A two-dimensional mesh interconnect connecting the tiles.
• An advanced memory sub-system supplying data to all the tiles containing IA-compatible processor

cores and cache hierarchy.

Figure 23-1 depicts a collection of “tile” units (or pairs of processor cores) connected by a two-dimen-
sional mesh network, offering I/O capabilities via PCIe and DMI interfaces, a memory sub-system
supporting high-bandwidth optimized MCDRAM, and capacity-optimized DDR memory channels.

Figure 23-2. Processor Core Pipeline Functionality of the Knights Landing Microarchitecture

ITLB

Fetch &
Instruction
Cache

branch
predict

Allocate
Rename

Integer Rename Buffer

 Integer RF .

ALU
 RS

FP

FP Register File

X87

Vec ALUVec ALU
ALUALU

L1 Data
Cache.

 MEM
 RS .

Decode

Retire

ALU
 RS

 Recycle
 Buffer.

 TLBs

RS
FP
RS

FP Rename Buffer

SHUFFLE
VECINTMUL

23-3

KNIGHTS LANDING MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

Figure 23-1 also illustrates each tile comprising:
• Two out-of-order IA processor cores supporting Intel® Hyper-Threading Technology with 4 logical

processors per core.
• A 1 MByte L2 cache shared between the two processor cores in the tile.
• A Caching Homing Agent (CHA) connecting each tile to the 2-D mesh interconnect.
• Each processor core also provides a dedicated vector processing unit (VPU) capable of executing 512-

bit, 256-bit, 128-bit and scalar SIMD instructions.

Figure 23-2 illustrates the microarchitectural pipelines of a processor core (including the VPU pipelines)
inside a tile.

The processor core in the Knights Landing microarchitecture provides the following features:
• An out-of-order (OOO) execution engine with 6-wide execution (2 VPU, 2 memory, 2 integer)

pipeline. Specifically, the out-of-order engine is supported by:

— The front end can decode two instructions per-cycle into micro-ops (uops).

— The allocate/rename stage is also two-wide.

— The out-of-order engine has distributed reservation stations (72-entry deep) feeding the integer,
memory, and VPU pipelines.

• The VPU can execute AVX-512F, AVX-512CD, AVX-512ER, AVX-512PF, AVX, and 128-bit SIMD/FP
instructions.

• The VPU can perform two 512-bit FMA operations per cycle; x87 and MMX instructions throughput is
limited to one per cycle.

• Each processor core supports 4 logical processors via Intel Hyper-Threading Technology.
• Two processor cores share a 1 MByte L2 cache and form a tile.

23.1.1 Front End
The front end can fetch 16 bytes of instructions per cycle. The decoders can decode up to two instructions
of not more than 24 bytes in a cycle. The decoders can only provide a single uop per instruction. If an
instruction decodes into multiple uops (e.g., VSCATTER*), the microcode sequencer (MS) will supply the
uop flow with a performance bubble of 3-7 cycles, depending on instruction alignment in the decoder and
length of the MS flow. The decoder will also have a small delay if a taken branch is encountered. If an
instruction has more than 3 prefixes, there will be a multi-cycle bubble.

The front end is connected to the OOO execution engine through the Allocation, Renaming and Retire-
ment cluster. Scheduling of uops is handled with distributed reservation stations across the integer,
memory and VPU pipelines.

23.1.2 Out-of-Order Engine
The reorder buffer (ROB) is 72 uops deep. There are 16 store buffers (for both address and data).
Distributed scheduling of uops include (see Figure 23-2):
• Two integer reservation stations (one per dispatch port) are 12 entries each.
• The single MEC reservation station has 12 entries, and dispatches up to 2 uops per cycle.
• The two VPU reservation stations (one per dispatch port) are 20 entries each.

The reservation stations, ROB, and store data buffers are hard partitioned per logical processor
(depending on the processor core operating with 1, 2, or 4 active logical processors). Hard partitioning of
resources changes as logical processors wake up and go to sleep. The store address buffers have two
entries reserved per logical processor, with the remaining entries shared among the logical processors.

KNIGHTS LANDING MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

23-4

The integer reservation stations can dispatch 2 uops per cycle each, and are able to do so out-of-order.
The memory execution reservation station dispatches 2 uops from its scheduler in-order, but uops can
complete in any order. The data cache can read two 64B cache lines and write one cache line per cycle.
The VPU reservation stations can dispatch 2 uops per cycle each and complete out-of-order.

The OOO engine in the Knights Landing microarchitecture is optimized to favor execution throughput
over latency. Loads to integer registers (e.g., RAX) are 4 cycles, and loads to VPU registers (e.g., XMM0,
YMM1, ZMM2, or MM0) are 5 cycles. Only one integer load is possible per cycle, but the other memory
operations (store address, vector load, and prefetch) can dispatch two per cycle. Stores commit post-
retirement, at a rate of 1 per cycle. The data cache and instruction caches are each 32 KB in size.

Most commonly-used integer math instructions (e.g. add, sub, cmp, test) have a throughput of 2 per
cycle with latency of a single cycle. The integer pipeline has only one integer multiplier with a latency of
3 or 5 cycles depending on the operand size. Latency of integer division will vary depending on the
operand size and input value; its throughput is expected to be not faster than one every ~20 cycles.
Store to load forwarding has a cost of 2 cycles and can forward one per cycle if the store-forwarding
restrictions are met. see Table 23-1.

Many VPU math operations can dispatch on either VPU port with a latency of either 2 cycles or 6 cycles;
see Table 23-2. The following instructions can only dispatch on a single port:
• All x87 math operations.
• FP divisions and square roots.
• AVX-512ER.
• Vector permute / shuffle operations.
• Vector to integer moves.
• AVX-512CD conflict instructions.
• AESNI.
• The store data operation of a vector instruction with store semantics.

The above operations are limited to one of the two VPU dispatch pipes. Vector store data and vector to
integer moves are on one dispatch pipe. The remaining single pipe instructions are on the other dispatch
pipe.

Table 23-1. Integer Pipeline Characteristics of the Knights Landing Microarchitecture

Integer Instruction/operations Latency (cycle) Throughput (cycles per instruction)

Simple Integer 1 0.5

Integer Multiply 3 or 5 1

Integer Divide Varies > 20

Store to Load Forward 2 1

Integer Loads 4 1

23-5

KNIGHTS LANDING MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

Additionally, some instructions in the Knights Landing microarchitecture will be decoded as one uop by
the front end but need to expand to two operations for execution. These complex uops will have an allo-
cation throughput of one per cycle. Examples of these instructions are:
• POP: integer load data + ESP update
• PUSH: integer store data + ESP update
• INC: add to register + update partial flags
• Gather: two VPU uops
• RET: JMP + ESP update
• CALL, DEC, LEA with 3 sources

Table 23-3 lists characteristics of the caching resources in the Knights Landing microarchitecture.

Table 23-2. Vector Pipeline Characteristics of the Knights Landing Microarchitecture

Vector Instructions Latency (cycle) Throughput (cycles per instruction)

Simple Integer 2 0.5

Most Vector Math (including FMA) 6 0.5

Mask Instructions (operating on opmask) 2 0.5

AVX-512ER (64-bit element) 7 2

AVX-512ER (32-bit element) 8 3

Vector Loads 5 0.5

Store to Load Forward 2 0.5

Gather (8 elements) 15 5

Gather (16 elements) 19 10

Register Move (GPR -> XMM/YMM/ZMM) 2 1

Register Move (XMM/YMM/ZMM -> GPR) 4 1

DIVSS/SQRTSS1

NOTES:
1. The physical units executing these instructions may experience additional scheduling delay due to the physical layout of

the units in the VPU.

25 ~20

DIVSD/SQRTSD1 40 ~33

DIVP*/SQRTP*1 38 ~10

Shuffle/Permute (1 source operand)1 2 1

Shuffle/Permute (2 source operands)1 3 2

Convert (from/to same width)1 2 1

Convert (from/to different width)1 6 5

Common x87/MMX Instructions1 6 1

KNIGHTS LANDING MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

23-6

23.1.3 UnTile
In the Knights Landing microarchitecture, many tiles are connected by a mesh interconnect into a phys-
ical package; see Figure 23-1. The mesh and associated on-package components are referred to as
“untile”. At each mesh stop, there is a connection to the tile and a tag directory that identifies which L2
cache (if any) holds a particular cache line. There is no shared L3 cache within a physical package.
Memory accesses that miss in the tile must go over the mesh to the tag directory to identify any cached
copies in another tile. Cache coherence uses the MESIF protocol. If the cache line is not cached in another
tile, then a request goes to memory.

MCDRAM is an on-package, high bandwidth memory subsystem that provides peak bandwidth for read
traffic, but lower bandwidth for write traffic (compared to reads). The aggregate bandwidth provided by
MCDRAM is higher than the off-package memory subsystem (i.e., DDR memory). DDR memory band-
width can potentially be saturated by writes or reads alone. The achievable memory bandwidth for
MCDRAM is approximately 4x - 6x of what DDR can do, depending on the mix of read and write traffic.

MCDRAM capacity supported by the Knights Landing microarchitecture is either 8 or 16 GB, depending on
product-specific features. The peak MCDRAM bandwidth will vary according to the size of the installed
MCDRAM. MCDRAM has higher bandwidth but lower capacity than DDR. The Maximum DDR capacity is
384 GB for the Knights Landing microarchitecture.

The physical memory in a platform comprises both MCDRAM and DDR memory; they can be partitioned
in a number of different modes of operation. The commonly-used modes are summarized below.
• Cache mode: MCDRAM as a direct mapped cache and DDR is used as system memory addressable by

software.
• Flat mode: MCDRAM and DDR map to disjoint addressable, system memory.
• Hybrid mode: MCDRAM is partitioned; parts of MCDRAM act as direct mapped cache, the rest of

MCDRAM is directly addressable. DDR map to addressable system memory.

Table 23-3. Characteristics of Caching Resources

Sets Ways Latency Capacity/Comments

uTLB 8 8 1 64 4KB pages (fractured)1

NOTES:
1. The uTLB and ITLB can only hold translations for 4 KB memory regions. If the relevant page is larger than 4 KB (such as

2MB or 1 GB), then the buffer holds the translation for the portion of the page that is being accessed. This smaller trans-
lation is referred to as a fractured page.

DTLB (4KB page) 32 8 4 256 4KB pages

DTLB (2M/4M page) 16 8 4 128 2MB/4MB pages

DTLB (1GB page) 1 16 4 16 1GB pages

ITLB 1 48 4 48 4KB pages (fractured)

PDE 8 4 1 Page descriptors

L1 Data Cache 64 8 4 or 5 32 KB

Instruction Cache 64 8 4 32 KB

Shared L2 Cache 1024 16 13+L1 latency 1 MB

23-7

KNIGHTS LANDING MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

The configuration between tiles, tag directories and the mesh support the following modes of clustering
operation for cache coherent traffic:
• All-to-All: the requesting core, tag directory and memory controller for a cache line can be anywhere

in the mesh.
• Quadrant: the tag directory and memory that it monitors are in the same quadrant of the mesh, but

the requesting core can be anywhere in the mesh.
• Sub-NUMA Clustering (SNC): In SNC mode, BIOS expose each quadrant as a NUMA node. This

requires software to recognize the NUMA domains and co-locate the requesting core, tag directory,
and memory controller in the same quadrant of the mesh to realize the benefit of optimal cache miss
latency.

If critical portions of an application working set fit in the capacity of MCDRAM, performance could benefit
greatly by allocating it into the MCDRAM and using flat or hybrid mode. Cache mode is generally best for
code that has not yet been optimized for the Knights Landing microarchitecture, and has a working set
that MCDRAM can cache.

In general, cache miss latency in All-to-All mode will be worse than it is in Quadrant mode; SNC mode
can achieve the best latency. Quadrant mode is the default mesh configuration. SNC clustering requires
some support from software to recognize the different NUMA nodes. If DDR is not populated evenly (e.g.,
missing DIMMs), the mesh will need to use the All-to-All clustering mode.

When multiple tiles read the same cache line, each tile might have a copy of the cache line. If both cores
in the same tile read a cache line, there will only be a single copy in the L2 cache of that tile.

If MCDRAM is configured as a cache, it can hold data or instructions accessed by the cores in a single
place. If multiple tiles request the same line, only one MCDRAM cacheline will be used.

L1 data cache has higher bandwidth and lower latency than L2 cache. Cache line access from L2 has
higher bandwidth and lower latency than access from memory.

MCDRAM and DDR memory have different latency and throughput profiles. This becomes important
when choosing between cache vs. flat or other memory modes. In most memory configurations, the DDR
capacity will be substantially larger than MCDRAM capacity. Likewise, MCDRAM capacity should be much
larger than the combined L2 cache.

Working sets that fit in MCDRAM capacity, but not in the L2 cache, should be in MCDRAM. Large or rarely
accessed structures should migrate to DDR. In Knights Landing microarchitecture, hardware will try to do
this dynamically if MCDRAM is put in cache or hybrid memory modes. If memory is in the flat memory
mode, data structures are bound to one memory or the other (MCDRAM or DDR) at allocation time. The
programmer should strive to maximize the number of memory access that go to MCDRAM. One possible
algorithm would allocate data structures into MCDRAM if they are frequently accessed, and have working
sets that do not fit into the tile caches.

In cache memory mode, the MCDRAM access is done first. If the cacheline is not in MCDRAM, the DDR
access begins. Because of this, the perceived memory access latency of DDR in cache memory mode is
higher than in flat memory mode.

23.2 INTEL® AVX-512 CODING RECOMMENDATIONS FOR KNIGHTS
LANDING MICROARCHITECTURE

The Intel AVX-512 family comprises a collection of instruction set extensions. For an overview and de-
tailed features (EVEX prefix encoding, opmask support, etc.) of the Intel AVX-512 family of instruc-
tions, see the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1. Intel Xeon
Phi processors (7200, 5200, 3100 series) based on the Knights Landing microarchitecture support AVX-
512 Foundation (AVX-512F), AVX-512 Exponential and Reciprocal (AVX-512ER), AVX-512 Conflict
(AVX-512CD), and AVX-512 Prefetch extensions. Intel AVX and Intel AVX2 instructions are also sup-
ported on processors based on the Knights Landing microarchitecture. Prior generation Intel Xeon Phi
processors (7100, 5100, 3100 series) do not support Intel AVX-512, Intel AVX2, nor Intel AVX instruc-
tions.

KNIGHTS LANDING MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

23-8

23.2.1 Using Gather and Scatter Instructions
Gather instructions in AVX-512F are enhanced over those in Intel AVX2, performing 512-bit operations
(either 16 elements of 32-bit data or 8 elements of 64-bit data) and using an opmask register as write-
mask for conditional updates of fetched elements to the destination ZMM register.

Scatter instructions in AVX-512F selectively store elements in a ZMM register to memory locations
expressed via an index vector. Conditional store to the destination location is selected using an opmask
register. Scatter instructions are not supported in Intel AVX or Intel AVX2.

Consider the following C code fragment:

for (uint32 i = 0; i < 16; i ++) {

b[i] = a[indirect[i]];

// vector compute sequence

}

When using VGATHER and VSCATTER, you often need to set a mask to all ones. An efficient instruction to
do this is KXNOR of a mask register with itself. Since VSCATTER and VGATHER clear their mask as the last
thing they do, a loop carried dependence from the VGATHER to KXNOR can be generated. Because of
this, it is wise to avoid using the same mask for source and destination in KXNOR. Since it is rare for the
k0 mask to be used as a destination, it is likely that “KXNORW k1, k0, k0” will be faster than “KXNOR k1,
k1, k1”.

Gather and Scatter instructions in AVX-512F are different from those in prior generation Intel Xeon Phi
processors (abbreviated by “Previous Generation” in Example 23-2).

23.2.2 Using Enhanced Reciprocal Instructions
The AVX-512ER instructions provide high precision approximations of exponential, reciprocal, and recip-
rocal square root functions. The approximate math instructions in AVX-512ER provide 28 bits of accu-
racy, compared to 11 bits in RCPSS or 14 bits with VRCP14SS. AVX-512ER can reduce execution time for
iterative algorithms like Newton-Raphson. Example 23-3 below contains sample code using the Newton-
Raphson algorithm to compute a single 32b float division with VRCP28SS. Both values are read off the
stack. Note the use of rounding mode overrides on some of the math operations.

Example 23-1. Gather Comparison Between AVX-512F and AVX2
AVX-512F AVX2
vmovdqu zmm0, [rsp+0x1000] ; load indirect[]
kxnor k1,k0, k0; prepare mask
vpgatherdd zmm2{k1}, [rax+zmm0*4]
; compute sequence using vector register

vmovdqu ymm0, [rsp+0x1000] ; load half of index vector
vmovdqu ymm3, [rsp+0x1020] ; 2nd half of indirect[]
vpcmpeqdd ymm4, ymm4, ymm4 ; prepare mask
vmovdqa ymm1, ymm4
vpgatherdd ymm2, [rax+ymm0*4], ymm1
vpgatherdd ymm5, [rax+ymm3*4], ymm4
; compute sequence using vector register

Example 23-2. Gather Comparison Between AVX-512F and Previous Generation Equivalent
AVX-512F Previous Generation Equivalent Sequence
vmovdqu zmm0, [rsp+0x1000] ; load indirect[]
kxnor k1,k0, k0; prepare mask
vpgatherdd zmm2{k1}, [rax+zmm0*4]
; compute sequence using vector register

vmovdqu zmm0, [rsp+0x1000] ; load indirect[]
kxnor k1,k1 ; prepare mask
g_loop: ; verify gathered elements are complete
vpgatherdd zmm2{k1}, [rax+zmm0*4]
jknzd k1, g_loop ; gather latency exposure
; compute sequence using vector register

23-9

KNIGHTS LANDING MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

23.2.3 Using AVX-512CD Instructions
Refer to Section 18.16, “Conflict Detection” for details on using the Intel AVX-512 Conflict Detection
instructions.

23.2.4 Using Intel® Hyper-Threading Technology
The Knights Landing microarchitecture supports 4 logical processors with each processor core. There are
choices that highly-threaded software may need to consider with respect to:
• Maximizing per-thread performance by providing maximum per-core resources to one logical

processor per core.
• Maximizing per-core throughput by allowing multiple logical processors to execute on a processor

core.

As thread count per core grows to 2 or 4, some applications will have higher per core performance, but
lower per thread performance. If an application can perfectly scale its performance to an arbitrary
number of threads, 4 threads per core is likely to have the highest instruction throughput. Practical
limitations on memory capacity or parallelism may limit the number of threads per core.

In Knights Landing microarchitecture, some per core resources (like the ROB or scheduler) are parti-
tioned to one for each of 4 logical processors. Because of this, a 3 thread configuration will have fewer
aggregate resources available than 1, 2, or 4 threads per core. Placing 3 threads on a processor core is
unlikely to perform better than 2 or 4 threads per core.

23.2.5 Front End Considerations
To ensure front end restrictions are not typically a performance limiter, software should consider the
following:
• MSROM instructions should be avoided if possible. A good example is the memory form of CALL near

indirect. It will often be better to perform a load into a register and then perform the register version
of CALL. Additional examples are shown in Table 23-4.

• The total length of the instruction bytes that can be decoded each cycle is at most 16 bytes per cycle
with instructions not more than 8 bytes in length. For instruction length exceeding 8 bytes, only one
instruction per cycle is decoded on decoder 0. Vector instructions which address memory using 32-bit
displacement can cause the decoder to limit performance.

• Instructions with multiple prefixes can restrict decode throughput. The restriction is on the length of
bytes combining prefixes and escape bytes. There is a 3 cycle penalty when the escape/prefix count

Example 23-3. Using VRCP28SS for 32-bit Floating-Point Division

vgetmantss xmm18, xmm18, [rsp+0x10], 0
vgetmantss xmm20, xmm20, [rsp+0x8], 0
vrcp28ss xmm19, xmm18, xmm18
vgetexpss xmm16, xmm16, [rsp+0x8]
vgetexpss xmm17, xmm17, [rsp+0x10]
vsubss xmm22, xmm16, xmm17
vmulss xmm21{rne-sae}, xmm19, xmm20
vfnmadd231ss xmm20{rne-sae}, xmm21, xmm18
vfmadd231ss xmm21, xmm19, xmm20
vscalefss xmm0, xmm21, xmm22

KNIGHTS LANDING MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

23-10

exceeds 3 with the Knights Landing microarchitecture. Only decoder 0 can decode an instruction
exceeding the limit of a prefix/escape byte restriction.

• Maximum number of branches that can be decoded each cycle is 1.

23.2.5.1 Instruction Decoder
Some IA instructions require a lookup in the microcode sequencer ROM (MSROM) to decode into a
multiple uop flow. Choosing an alternative sequence of instructions which does not require MSROM will
improve performance.

Table 23-4 provides alternate non-MSROM instruction sequences that can replace an instruction that
decodes from MSROM.

23.2.5.2 Branching Indirectly Across a 4GB Boundary
Another important performance consideration from a front end standpoint is branch prediction for indi-
rect branches (indirect branch or call, or ret). For 64-bit applications, indirect branch prediction fails
when the target of a branch is in a different 4GB chunk of the address space from the source. (I.e. the
top 32 bits of the virtual addresses of the source and target are different). This is more likely to happen
when the application is split into shared libraries. Developers can build statically to improve the locality
in their code, particularly for latency-sensitive library calls that are accessed frequently. Another option
is to use glibc 2.23 or later, and set the LD_PREFER_MAP_32BIT_EXEC environment variable which
requests that the dynamic linker place all shared libraries at the bottom of the address space.

23.2.6 Integer Execution Considerations

23.2.6.1 Flags usage
Many instructions have an implicit data result that is captured in a flags register. These results can be
consumed by a variety of instructions such as conditional moves (cmovs), branches, and even a variety
of logic/arithmetic operations (such as rcl). The most common instructions used in computing branch
conditions are compare instructions (CMP). Branches dependent on the CMP instruction can execute in
the next cycle. The same is true for branch instructions dependent on ADD or SUB instructions.

INC and DEC instructions require an additional uop to merge the flags as they are partial flag writers. As
a result, an INC or a DEC instruction should be replaced by “ADD reg, 1” or “SUB reg, 1” to avoid a partial
flag penalty.

Instructions that operate on 8-bit or 16-bit registers are not optimized in hardware in the Knights
Landing microarchitecture. In general, it is faster to use integer instructions operating on 32-bit or 64-bit
general purpose registers than 8-bit or 16-bit registers.

Table 23-4. Alternatives to MSROM Instructions

Instruction from MSROM Recommendation for Knights Landing

CALL m16/m32/m64 Load + CALL reg

PUSH m16/m32/m64 Store + RSP update

(I)MUL r/m16 (Result DX:AX) Use (I)MUL r16, r/m16 if extended precision not required, or (I)MUL r32, r/m32

(I)MUL r/m32 (Result EDX:EAX) Use (I)MUL r32, r/m32 if extended precision not required, or (I)MUL r64, r/m64

(I)MUL r/m64 (Result RDX:RAX) Use (I)MUL r64, r/m64 if extended precision not required

23-11

KNIGHTS LANDING MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

23.2.6.2 Integer Division
Integer division can be a common operation in some mathematical expressions. However, using hard-
ware integer divide instructions is often less than optimal in performance. If the divisor is known to be
relatively small (16 bits or less), there are fast SW sequences to emulate the division. If the divisor is
known to be a power of 2, use SHR (division) and/or AND (remainder) instead of DIV. Division by a
constant can be replaced by MUL with a constant. If the input values are highly constrained, a pre-
computed lookup table is likely to provide better performance. Some examples of the techniques can be
found in Section 13.2.4, “Replace 128-bit Integer Division with 128-bit Multiplication,” and Section 14.5,
“Numerical Data Conversion to ASCII Format.”

Division instructions should be aggressively minimized by the compiler, either using the techniques
mentioned earlier, or by hoisting redundant divisions out of inner loops.

23.2.7 Optimizing FP and Vector Execution

23.2.7.1 Instruction Selection Considerations
In general, using 512-bit instructions are more favorable to achieve higher throughput than 256-bit
instructions. The same applies relative to 256-bit vs. 128-bit vector instructions. 128-bit SSE instructions
are likely to achieve higher throughput than using X87 instruction equivalents. Often, X87 instruction
functionality (transcendental) not present in vector instruction extensions natively can be replaced by
library implementations using vector instructions.

In the Knights Landing microarchitecture, COMIS* and UCOMIS* instructions (legacy, VEX, or EVEX
encoding) that update EFLAGS are slow. These should be replaced by a more optimal sequence of the
AVX-512F version of VCMPS* and KORTEST.

Some instructions, like VCOMPRESS*, are single uop when writing a register, but an MS flow when
writing memory. Where possible, it is much better to do a VCOMPRESS to register and then store it.
Similar optimizations apply to all vector instructions that do some sort of operation followed by a store
(e.g., PEXTRACT).

In the Knights Landing microarchitecture, mixing SSE instructions and Intel AVX instructions require a
different set of considerations to avoid loss of performance due to intermixing of SSE and Intel AVX
instructions. Replace SSE code with AVX-128 equivalents, whenever possible.

Situations that can result in a performance penalty are:
• If an Intel AVX instruction encoded with a vector length of more than 128 bits is allocated before the

retirement of previous in-flight SSE instructions.
• VZEROUPPER instruction throughput is slow, and is not recommended to preface a transition to AVX

code after SEE code execution. The throughput of VZEROALL is also slow. Using either the
VZEROUPPER or the VZEROALL instruction is likely to result in performance loss.

Conditional packed load/store instructions, like MASKMOVDQU and VMASKMOV, use a vector register for
element selection. AVX-512F instructions provide alternatives using an opmask register for element
selection and are preferred over using a vector register for element selection.

Some vector math instructions require multiple uops to implement in the VPU. This increases the latency
of the individual instruction beyond the standard math latencies of 2 and 6. In general, instructions that
alter output/input element width (e.g., VCVTSD2SI) fall into this category. Many Intel AVX2 instructions

Example 23-4. Replace VCOMIS* with VCMPSS/KORTEST

vcmpss k1, xmm1, xmm2, imm8 ; specify imm8 according to desired primitive
kortest k1, k1

KNIGHTS LANDING MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

23-12

that operate on byte and word quantities have reduced performance compared to the equivalents that
operate on 32b or 64b quantities.

Some execution units in the VPU may incur scheduling delay if a sequence of dependent uop flow needs
to use these execution units, these outlier units are indicated by the footnote of Table 16 2. When this
happens, it will have an additional cost of a 2-cycle bubble. Code that frequently transition between the
outlier units with other units in the VPU can experience a performance issue due to these bubbles.

Most of the Intel AVX-512 instructions support using an opmask register to make conditional updates to
the destination. In general, using an opmask with all 1’s will be the fastest relative to using an opmask
with other non-zero values. Using a non-zero opmask value, the instruction will be similar in speed rela-
tive to an opmask with all 1s, if zeroing-the-non-updated element is selected. Using a non-zero opmask
value with merging (preserving) non-updated elements of the destination will likely be slower.

Horizontal add/subtraction instructions in Intel AVX2 do not have promoted equivalents in Intel AVX-512.
Horizontal reduction is best implemented using software sequences; see Example 23-5.

In situations where an algorithm needs to perform reduction, reduction can often be implemented
without horizontal addition.

Example 23-6 shows code fragment for the inner loop of a DGEMM matrix multiplication routine, which
computes the dense matrix operation of C = A * B.

In Example 23-6, there are 16 partial sums. The sequence of FMA instructions make use of the two VPU
capability of 2 FMAs per cycle throughput, 6 cycles latency. The FMA code snippet in Example 23-6 is
presented using uncompressed addressing form for the memory operand. It is important for code gener-
ators to ensure optimal code generation will make use of compressed disp8 addressing form, so that the
length of each FMA instruction will be less than 8 bytes. At the end of the inner loop, the partial sums will
need to be aggregated and store the result matrix C to memory.

Example 23-5. Using Software Sequence for Horizontal Reduction

vextractf64x4 ymm1, zmm6, 1; reduction of 16
elements

vaddps ymm1, ymm6, ymm1
vpermpd ymm4, ymm1,0xff
vpermpd ymm5, ymm1,0xaa
vpermpd ymm3, ymm1,0x44
vaddps xmm1, xmm1, xmm4
vaddps xmm3, xmm5, xmm3
vaddps xmm3, xmm1, xmm3
vpsrlq xmm1, xmm3, 32
vaddss xmm3, xmm1, xmm3

vextractf64x4 ymm1, zmm6, 1; reduction of 8
elements

vaddps ymm1, ymm6, ymm1
valignq ymm4, ymm1,0x3
valignq ymm5, ymm1,0x2
valignq ymm3, ymm1,0x1
vaddsd ymm1, ymm1, ymm4
vaddsd ymm3, ymm5, ymm3
vaddsd ymm3, ymm1, ymm3

23-13

KNIGHTS LANDING MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

23.2.7.2 Porting Intrinsics from Previous Generation
Most intrinsics map to individual instructions of the native hardware. Some 512-bit intrinsics may provide
syntax that hides the difference between AVX-512F and the 512-bit incompatible previous generation
instruction set.

However, intrinsic code that is optimized to run on previous generations will likely not run optimized on
the Knights Landing microarchitecture, due to differences in the underlying microarchitecture (e.g.,
unaligned memory access, cost differences of permutes, limitations of previous generations).

It is likely that coding an algorithm in a high level language (C/Fortran) to compile with Intel Compilers
supporting AVX-512F will generate more optimal code than using previous generation intrinsics.

23.2.7.3 Vectorization Trade-Off Estimation
Profitability of vectorization of loops written in a high-level language to use AVX-512 is an important part
of optimization for compilers as well as for hand coding assembly. Estimating this for the simplest type of
loop construct can be based on trip count alone. For example, a trip count of 4 or less may be difficult to
realize performance gain over scalar code. With Intel AVX-512, a trip count of 16 may be the minimum
to consider vectorization.

Estimation of vectorization trade-off for more elaborate loop construct requires more sophistication. The
rest of this section provides an analytic approach of examining the composition within the loop body and
makes use of a table of cost estimates of basic operations, Table 23-5,to derive the trade-off comparison
between vectorization versus scalar code.

Example 23-6. Optimized Inner Loop of DGEMM for Knights Landing Microarchitecture

;; matrix - matrix dense multiplication
prefetcht0 [rdi+0x400] ;; get A matrix element into L1$
vmovapd zmm30, [rdi]
prefetcht0 [rsi+0x400] ;; get B matrix element into L1$
vfmadd231pd zmm1, zmm30, [rsi+r12]{b} ;; broadcast B elements
vfmadd231pd zmm2, zmm30, [rsi+r12+0x08]{b} ;; displacement shown in un-compressed form
vfmadd231pd zmm3, zmm30, [rsi+r12+0x10]{b}
vfmadd231pd zmm4, zmm30, [rsi+r12+0x18]{b}
vfmadd231pd zmm5, zmm30, [rsi+r12+0x20]{b}
vfmadd231pd zmm6, zmm30, [rsi+r12+0x28]{b}
vfmadd231pd zmm7, zmm30, [rsi+r12+0x30]{b}
vfmadd231pd zmm8, zmm30, [rsi+r12+0x38]{b}

prefetcht0 [rsi+0x440] ;; pull line into the L1$
vfmadd231pd zmm9, zmm30, [rsi+r12+0x40]{b}
vfmadd231pd zmm10, zmm30, [rsi+r12+0x48]{b}
vfmadd231pd zmm11, zmm30, [rsi+r12+0x50]{b}
vfmadd231pd zmm12, zmm30, [rsi+r12+0x58]{b}
vfmadd231pd zmm13, zmm30, [rsi+r12+0x60]{b}
vfmadd231pd zmm14, zmm30, [rsi+r12+0x68]{b}
vfmadd231pd zmm15, zmm30, [rsi+r12+0x70]{b}
vfmadd231pd zmm16, zmm30, [rsi+r12+0x78]{b}

KNIGHTS LANDING MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

23-14

To illustrate the cost build-up approach, consider the simple loop:

for (i=0; i<N; i++) { sum += a[i]*K + b[i]; }

Within the loop body, the basic operations consist of:
• Two loads (a[i], b[i]) per iteration.
• An FMA per iteration.
• For scalar version: an accumulate per loop iteration; for vectorization: a horizontal reduction at the

end of the loop.

The total cost of N trips for scalar code is 4N. By comparison, the total cost for vectorized code using AVX-
512 on a 64-bit data element would be 3 * Ceiling(N/8) + 30, assuming both the main loop and
remainder loop (if N is not multiples of 8) are vectorized. Therefore, profitable vectorization will need a
trip count of at least 9.

Consider another example involving fetching data from irregular access patterns which might take
advantage of GATHER instructions:

for (i=0; i<N; i++) {c[i] = a[indir[i]] * K + b[i]; }

Within the loop body, the basic operations consist of:
• Two loads (indir[i], b[i]) per iteration.
• An FMA per iteration.
• A store per iteration.
• For scalar version: a 3rd load per loop iteration; for vectorization: one GATHER per 8 iteration.

The total cost of N trips for scalar code is 5N. By comparison, the total cost for vectorized code would be
19* Ceiling(N/8). Scalar would be faster if N < 4.

Table 23-5. Cycle Cost Building Blocks for Vectorization Estimate for Knights Landing Microarchitecture

Operation Cost (cycles) Example Code Construct

Simple scalar math 1 A*B+C, or A+B, or A*B

Load (split cacheline) 1 (2) A[i] /* load reference to an array element */

Store (split cacheline) 1(2) A[i] = 2;

Gather (Scatter) 8 elements 15 (20) A[key[i]]

Gather (Scatter) 16elements 20 (25) A[key[i]] ;

Horizontal reduction 30 sum += A[i]

Division or Square root 15 A/B

23-15

KNIGHTS LANDING MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

Consider an example involving fetching data from twice irregular access patterns than the previous
example:

for (i=0; i<N; i++) {c[i] = a[ind[i]]*K + b[ind[i]]; }

• One load (ind[i]) per iteration.
• An FMA per iteration.
• A store per iteration.
• For scalar version: two more loads per loop iteration; for vectorization: two GATHERs per 8 iteration.

The total cost of N trips for scalar code is still 5N. By comparison, the total cost for vectorized code would
be (15*2 + 3)* Ceiling(N/8) = 33* Ceiling(N/8). Even a relatively small profitability of vectorization will
require a significantly larger trip count.

Consider the next example involving fetching data from one irregular access pattern and horizontal
reduction:

for (i=0; i<N; i++) {sum += a[ind[i]]*K + b[i]; }

Scalar cost is still 5N. Cost of vectorization is now 19*Ceiling(N/8) + 30. Scalar code would be faster for
N <= 13.

Consider an example of scatter with division:

for (i=0; i<N; i++) {c[ind[i]] = a[i] / b[i]; }

The scalar cost is (15+4)*N. Cost of vectorization would be (15+20+3)*Ceiling(N/8). Vectorization
would be profitable for N > 2.

In the case of gather followed by scatter:

for (i=0; i<N; i++) {b[ind[i]] = a[ind[i]]; }

The cost of scalar code is 3*N, and vector code will cost (15+20+1)*Ceiling(N/8). Vectorization will not
be profitable.

KNIGHTS LANDING MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

23-16

For a loop body that is more complex, consider the code below from a workload known as miniMD:

for (int k = 0; k < numneigh; k++) {

 int j = neighs[k];

 double rsq = (xtmp - x[3*j])^2 +

 (ytmp - x[3*j+1])^2 +

 (ztmp - x[3*j+2])^2;

 if (rsq < cutforcesq) {

 double sr2 = 1.0/rsq;

 double sr6 = sr2*sr2*sr2;

 double force = sr6*(sr6-0.5)*sr2;

 res1 += delx*force;

 res2 += dely*force;

 res3 += delz*force;

 }

}

Before considering the IF clause, there is one load, 3 gathers (strided loads of x[]), 3 subtractions and 3
multiplies. Inside the IF clause, there is one division, 8 math operations, and 3 horizontal reductions. The
scalar cost is 10*numneigh + 23 * numneigh * percent_rsq_less_than_cutforcesq. The vector cost is
(52+23) * Ceiling(numneigh / 8) + 3 * 30. Scalar code makes sense if numneigh < 6 or if the compiler
is highly confident that the if clause is almost never taken.

For many compilers, a vectorized loop is generated, and a remainder loop is used to take care of the rest
of the operations. In other words, the vectorized loop is executed floor(N/8) times, and the remainder
loop is executed N mod 8 times. In that case, modify the equations above to use floor instead of ceiling
to determine whether the primary loop should be vectorized. For the remainder loop, the maximum value
of the loop trip count is known. If N is unknown, it is simplest to set N to half the maximum value (4 for
a ZMM vector of doubles).

More sophisticated analysis is possible. For example, the building block simple math operation of 1-cycle
cost in Table 23-5 covers common instruction sequences that are not blocked by a dependency chain or
long latency operations. Expanding entries of the cost table can cover more complex situations.

23.2.8 Memory Optimization

23.2.8.1 Data Alignment
Data access to address spanning a cache line boundary will experience a small performance hit. Access
patterns that stream through memory can avoid cache line splits to make sure each 64-byte access is
aligned to a cache line boundary. When loading 32-bytes of memory to YMM, do not access 64-bytes of
memory with an opmask value to mask off the high 32 bytes.

Memory references crossing a 4-Kbytes boundary will incur significant cost in performance. Access
patterns that stream throughput memory using 512-bit instructions have a higher rate of crossing a 4-
KBytes boundary. So alignment to 64 byte will also avoid the penalty of a page split.

23-17

KNIGHTS LANDING MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

If possible to predict the distance in code space of the next crossing of page boundary, it can be helpful
to insert a PREFETCHT1 (to L2) a few iterations ahead of the current read stream. This can also start the
page translation early and permit the L2 hardware prefetcher to start fetching on the next page.

Some access patterns which might intend to use gather and scatter will always have pairs of consecutive
addresses. One common example is complex numbers, where the real and imaginary parts are laid out
contiguously. It is also common when w, x, y, and z information is contiguous. If the values are 32b, it is
faster to gather and scatter the 32-bit elements as half as many 64-bit elements. If the numbers are 64
bits, then it is usually faster to load and insert a 128-bit element instead of gathering 64-bit elements.

23.2.8.2 Hardware Prefetcher
There are two types of HW prefetchers in a tile. The Instruction Pointer Prefetcher (IPP) resides in a
processor core and analyzes all the accesses in the data cache and the instructions that generated the
access. The prefetcher will then attempt to insert HW prefetches to the L1 cache if a strided access
pattern is detected on a cacheable page. The IPP will not cross a 4k page boundary. The IPP uses the
instruction address and logical processor to index into a table. For this reason, the compiler may insert
NOPs into large loops (>256 B) to make instructions that access memory go into different table entries.

The L2 HW prefetcher tries to identify streaming access patterns, and can track up to 48 access patterns.
A streaming access pattern touches consecutive cache lines in increasing or decreasing order - the stride
detected in the L2 is always +/-1 cacheline. The 48 detectors are allocated independently of the logical
processor that originated the request. Each detector looks at the accesses done within a 4 KB region. If
a stream is detected, HW prefetches for later elements of the stream will be sent to the L2 cache, and if
they miss, to memory. The HW prefetcher will not stream across a 4 KB boundary. If multiple access
patterns are done within the same 4 KB region, the detector can get confused, and fail to detect the
stream.

23.2.8.3 Software Prefetch
Knights Landing microarchitecture supports out-of-order execution. In general, it can hide cache miss
latency better than previous generation in-order microarchitecture. Hence, programmers should not use
the same aggressive approach to insert software prefetches.

With the two hardware prefetchers described in Section 23.2.8.2, most streaming and short stride access
patterns should be detected by the hardware prefetchers. If the access pattern is streaming, a
programmer might benefit from adding software prefetches beyond the current 4-KBytes page. If the
access pattern is known, but non-streaming, software prefetches can be beneficial in some situations.
This is especially true if the access pattern is a relatively large stride (>256 bytes), since the IPP will not
fetch across a 4 KB boundary. The software prefetch will do the PMH walk to fill the TLB, and to start the
memory reference early.

Generally, software prefetching into the L2 will show more benefit than L1 prefetches. A software
prefetch into L1 will consume critical hardware resources (fill buffer) until the cacheline fill completes. A
software prefetch into L2 does not hold those resources, and it is less likely to have a negative perfor-
mance impact. If you do use L1 software prefetches, it is best if the software prefetch is serviced by hits
in the L2 cache, so the length of time that the hardware resources are held is minimized.

Software prefetch instructions that are dropped will have a negative performance impact due to
consuming retirement slots from an invalid address. The performance penalty of prefetching an invalid
address or requiring OS privilege from user code can be very large. The performance monitoring event
NUKE.ALL provides an indication of when this might be affecting your code.

23.2.8.4 Memory Execution Cluster
The MEC has limited capability in executing uops out-of-order. Specifically, memory uops are dispatched
from the scheduler in-order, but can complete in any order. By re-arranging the order of memory instruc-
tions, performance may be improved if they make good use of the MEC’s capability.

Example 23-7 illustrates the effect of ordering the sequence of memory instructions of two read streams
accessing two arrays, a[] and b[]. The left side of Example 23-7 is the optimal sequence with the 2nd

KNIGHTS LANDING MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

23-18

vector load from b[] dispatched on cycle N+5, assuming an L1 cache hit. The right side of Example 23-7
is a naive ordering of the memory instructions, resulting in the 2nd vector load dispatched on cycle N+8.

The right side sequence uses one more register than the left side. If the pointer loads would miss L1, the
benefit of left side will be greater than what is shown in the comment.

If there are many loads in the machine, it might be possible to hoist up the pointer loads, so that there
are several memory references between the pointer load and de-reference, without requiring more
integer registers to be reserved.

23.2.8.5 Store Forwarding
Store forwarding restriction for integer execution and the MEC in the Knights Landing microarchitecture
is similar to those of the Silvermont microarchitecture. The following paragraphs describes the
forwarding restrictions with the VPU.

Vector, X87, and MMX loads and stores can forward (ZMM0, YMM1, XMM2, MM3, and ST4) if the stores
and loads have the same memory address and the load is not larger than the store. VPU stores cannot
forward to integer loads, and integer stores cannot forward to VPU loads. In either case, the load must
wait until the store is post-retirement to get the value from memory.

Vector stores that use an opmask cannot be forwarded from. If your algorithm requires such behavior,
you may benefit if you merge the value in a register, and then store to memory without a conditional
opmask. Later loads can then forward from the merged value.

23.2.8.6 Way, Set Conflicts
The memory hierarchy determines forwarding requirements based on the address of the access. The L1
data cache uses address bits 11:6 to identify which cache set to use. Forwarding logic uses bits 11:0 and
the size of the access to identify potential forwarding or conflicts between loads and stores. If there are
many conflicts, performance could be degraded.

Many dynamic memory allocation routines (may vary by OS and compiler) will start large memory
regions with the same pattern in the least significant 12 bits. If your access patterns touch many arrays
with identical shapes (element size and dimensions) and similar indices, performance could degrade
significantly due to set conflict. To void these set conflicts, it is beneficial for bits [11..6] of memory
accesses to be different. For example, consider:

a = malloc(sizeof(double) * 10000);

b = malloc(sizeof(double) * 10000);

for (i=0; i < 10000; i++) {

a[i] = b[i] + 0.5 * b[i-1]);

}

Very likely, in most OSes, the effective address of a[] and b[] will have identical lowest 12 bits, i.e., (a &
0xfff) == (b & 0xfff). Some intra-loop conflict may occur with:
• a[i] and b[i] of iteration N collide.
• a[i] of iteration N-1 and b[i-1] of iteration N collide.

Example 23-7. Ordering of Memory Instruction for MEC

movq r15, [rsp+0x40] ; cycle N (load &a[0])
movq r14, [rsp+0x48] ; cycle N+1 (load &b[0])
vmovups zmm1, [r15+rax*8] ; executes in cycle N+4
vmovups zmm2, [r14+rax*8] ; cycle N+5

movq r15, [rsp+0x40] ; cycle N (load &a[0])
vmovups zmm1, [r15+rax*8] ; executes in cycle N+4
movq r15, [rsp+0x48] ; cycle N+4 (load &b[0])
vmovups zmm2, [r15+rax*8] ; cycle N+8

23-19

KNIGHTS LANDING MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

There are multiple ways to offset dynamic arrays. Examples include:
• Offset the working base pointer from the malloc result by an amount of several cache lines,
• Use customized malloc() routine,
• Use posix_memalign() routine with alignment directives for each dynamic allocation to have different

alignments (powers of 2 bytes: 64, 128, 256, 512, etc.) .

The HPC workload known as Leslie3D can be affected by alignment issue.

23.2.8.7 Streaming Store Versus Regular Store
When writing to memory and data is not expected to be consumed by loads immediately, it may be desir-
able to choose between streaming stores or regular stores (writeback). On Knights Landing microarchi-
tecture, streaming stores may be preferable if in flat memory mode; see Section 23.1.3.

If MCDRAM is configured as cache mode, and the data being written fits in the MCDRAM cache, it is likely
that standard stores will perform better. Experimenting with both options may yield non-trivial perfor-
mance for your application.

23.2.8.8 Compiler Switches and Directives
When using Fortran 90 syntax, Fortran programmers should use the CONTIGUOUS attribute when appro-
priate. If not, the compiler may assume that incoming arrays are not contiguous, and will (potentially)
replace vector load and store instructions with VGATHER and VSCATTER instructions. This can have a
negative impact on performance.

Expert coders compiling with the Intel compiler can annotate their code with various pragmas. Some of
the more useful ones are LOOP_COUNT, SIMD, and UNROLL. Read the documentation for these pragmas,
and use them where appropriate. The compiler can produce better code when it is given more informa-
tion to evaluate the cost of vectorization.

When using the Intel compilers, the compiler switch “-xMIC-AVX512” targets Knights Landing microar-
chitecture.

23.2.8.9 Direct Mapped MCDRAM Cache
When MCDRAM is configured in cache mode, the MCDRAM cache is a convenient way to increase memory
bandwidth. As a memory side cache, it can automatically cache recently used data, and provide much
higher bandwidth than what DDR memory can achieve.

The MCDRAM cache is a direct mapped cache. This means that multiple memory locations can map to a
single place in the cache. Because of this, a simple optimization for a program to evaluate its memory
bandwidth sensitivity is to turn on the MCDRAM cache. Some applications that heavily utilize only a few
GBytes of memory footprint could see performance improvements of up to 4x. Because of the simplicity
of this - no source code changes, and the large possible performance benefits, moving from DDR only to
MCDRAM cache mode should be one of the first performance optimizations to try.

There are a few scenarios where enabling the cache could reduce performance. One case is when the
MCDRAM cache is not able to hold the accessed working set. If an application streams through 64 GB of
memory without reuse, the cost of memory access will increase due to checking the MCDRAM cache (and
missing), relative to accessing DDR memory.

The caching of data in the MCDRAM direct mapped cache uses the physical address, not the linear ad-
dress. Even if an address is contiguous in the linear/virtual address space, the physical addresses that
the OS allocates and manages are not required to be. This can cause cache contention when a significant
portion of the MCDRAM cache are used. These contentions are likely to reduce the peak memory band-
width achievable, and vary from run to run; as how the OS allocates pages can change from run to run.
The performance monitoring hardware in the Knights Landing microarchitecture provides the
UNC_E_EDC_ACCESS event to compute the MCDRAM cache hit rate. It can be instructive in diagnosing
this problem.

KNIGHTS LANDING MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

23-20

If MCDRAM cache is enabled, every modified line in the tile caches (L1 or L2 cache) must have an entry
in the MCDRAM cache. If a line is evicted from the MCDRAM cache, any modified version of that line in the
tile caches will writeback its data to memory, and transition to a shared state. There is a very small prob-
ability that a pair of lines that are frequently read and written will alias to the same MCDRAM set. This
could cause a pair of writes that would normally hit in the tile caches to generate extra mesh traffic when
using MCDRAM in cache mode. Due to this, a pair of threads could become substantially slower than the
other threads in the chip. Linear to physical mapping can vary from run to run, making it difficult to diag-
nose.

One case in point is when two threads read and write their private stacks. Conceptually, any data location
that is commonly read and written to would work, but register spills to the stack are the most frequent
case. If the stacks are offset by a multiple of 16 GB (or the total MCDRAM cache size) in physical memory,
they would collide into the same MCDRAM cache set. A run-time that forced all thread stacks to allocate
into a contiguous physical memory region would avoid this case from occurring.

There is hardware in the Knights Landing microarchitecture to reduce the frequency of set conflicts from
occurring. The probability of hitting this scenario on a given node is extremely small. The best clue to
detecting this, is that a pair of threads on the same chip are significantly slower than all other threads
during a program phase. Which exact threads cores in a package would experience set collision should
vary from run to run, happen rarely, and only when the cache memory mode is enabled. It is very likely
that a user may never encounter this on their system.

APPENDIX A
APPLICATION PERFORMANCE TOOLS

Intel offers an array of application performance tools that are optimized to take advantage of the Intel
architecture (IA)-based processors. This appendix introduces these tools and explains their capabilities
for developing the most efficient programs without having to write assembly code.

The following performance tools are available.
• Compilers

— Intel® C++ Compiler: a high-performance, optimized C and C++ cross compiler with the
capability of offloading compute-intensive code to Intel® Many Integrated Core Architecture
(Intel® MIC Architecture) as well as Intel® HD Graphics, and executing on multiple execution
units by using Intel® Cilk™ parallel extensions.

— Intel® Fortran Compiler: a high-performance, optimized Fortran compiler.
• Performance Libraries — a set of software libraries optimized for Intel architecture processors.

— Intel® Integrated Performance Primitives (Intel® IPP): performance building blocks to boost
embedded system performance.

— Intel® Math Kernel Library (Intel® MKL): a set of highly optimized linear algebra, Fast Fourier
Transform (FFT), vector math, and statistics functions.

— Intel® Threading Building Blocks (Intel® TBB): a C and C++ template library for creating high
performance, scalable parallel applications.

— Intel® Data Analytics Acceleration Library (Intel® DAAL): C++ and Java API library of optimized
analytics building blocks for all data analysis stages, from data acquisition to data mining and
machine learning. Essential for engineering high performance Big Data applications.

• Performance Profilers — performance profilers collect, analyze, and display software performance
data for tuning CPU, GPU, threading, vectorization and MPI parallelism from the system-wide view
down to a specific line of code.

— Intel® VTune™ Amplifier XE: performance profiler.

— Intel® Graphics Performance Analyzers (Intel® GPA) - a set of performance analyzers for
graphics applications.

— Intel® Advisor: vectorization optimization and thread prototyping.

— Intel® Trace Analyzer and Collector: MPI communications performance profiler and correctness
checker.

• Debuggers

— Intel® Inspector: memory and thread debugger.

— Intel® Application Debugger.

— Intel® JTAG Debugger.

— Intel® System Debugger.
• Cluster Tools

— Intel® MPI Library: high-performance MPI library.

— Intel® MPI Benchmarks: a set of MPI kernel tests to verify the performance of your cluster or MPI
implementation.

APPLICATION PERFORMANCE TOOLS

A-2

The performance tools listed above can be found in the following product suites.
• Intel® Parallel Studio XE1

— Intel® Media Server Studio.

— Intel® Systems Studio.

A.1 COMPILERS
Intel compilers support several general optimization settings, including /O1, /O2, /O3, and /fast. Each of
them enables a number of specific optimization options. In most cases, /O2 is recommended over /O1
because the /O2 option enables function expansion, which helps programs that have many calls to small
functions. The /O1 may sometimes be preferred when code size is a concern. The /O2 option is on by
default.

The /Od (-O0 on Linux) option disables all optimizations. The /O3 option enables more aggressive opti-
mizations, most of which are effective only in conjunction with processor-specific optimizations described
below.

The /fast option maximizes speed across the entire program. For most Intel 64 and IA-32 processors, the
“/fast” option is equivalent to “/O3 /Qipo /Qprec-div- /fp:fast=2 /QxHost” on Windows*, “-ipo -O3 -no-
prec-div -static -fp-model fast=2 -xHost” on Linux, and “-ipo -mdynamic-no-pic -O3 -no-prec-div -fp-
model fast=2 -xHost” on OS X*.

All the command-line options are described in Intel® C++ Compiler documentation.

A.1.1 Recommended Optimization Settings for Intel® 64 and IA-32 Processors
Table A-1 lists some examples of recommended compiler options for generating code for Intel proces-
sors. Table A-1 also applies to code targeted to run in compatibility mode on an Intel 64 processor, but
does not apply to running in 64-bit mode. For an up-to-date list see this article: https://soft-
ware.intel.com/en-us/articles/performance-tools-for-software-developers-intel-compiler-options-for-
sse-generation-and-processor-specific-optimizations/.

1 Details on versions and tools included can be found here: https://software.intel.com/en-us/intel-parallel-studio-xe.

Table A-1. Recommended Processor Optimization Options
Need Recommendation Comments

Best performance on Intel
processors utilizing Intel®
AVX2 instructions.

• /QxCORE-AVX2 (-x
CORE-AVX2 on Linux
and Mac OS)

• Single code path.

Best performance on Intel
processors utilizing Intel®
AVX2 instructions.

• /QaxCORE-AVX2 (-ax
CORE-AVX2 on Linux
and Mac OS)

• Multiple code paths are generated.
• Be sure to validate your application on all systems

where it may be deployed.
Best performance on Intel
processors utilizing Intel
SSE4.2 instructions.

• /QxSSE4.2 (-xSSE4.2
on Linux and Mac OS)

• Single code path.

Best performance on Intel
processors utilizing Intel
SSE4.2 instructions.

• /QaxSSE4.2 (-axSSE4.2
on Linux and Mac OS)

• Multiple code paths are generated.
• Be sure to validate your application on all systems

where it may be deployed.

https://software.intel.com/en-us/articles/performance-tools-for-software-developers-intel-compiler-options-for-sse-generation-and-processor-specific-optimizations/
https://software.intel.com/en-us/articles/performance-tools-for-software-developers-intel-compiler-options-for-sse-generation-and-processor-specific-optimizations/
https://software.intel.com/en-us/articles/performance-tools-for-software-developers-intel-compiler-options-for-sse-generation-and-processor-specific-optimizations/
https://software.intel.com/en-us/intel-parallel-studio-xe

A-3

APPLICATION PERFORMANCE TOOLS

A.1.2 Vectorization and Loop Optimization
The Intel C++ and Fortran Compiler’s vectorization feature can detect sequential data access by the
same instruction and transforms the code to use Intel SSE, Intel SSE2, Intel SSE3, Intel SSSE3 and Intel
SSE4, depending on the target processor platform. The vectorizer supports the following features:
• Multiple data types: Float/double, char/short/int/long (both signed and unsigned), _Complex

float/double are supported.
• Step by step diagnostics: Through the /Qopt-report /Qopt-report-phase (-qopt-report -qopt-report-

phase on Linux and Mac OS) switch, the vectorizer can identify, line-by-line and variable-by-variable,
what code was vectorized, what code was not vectorized, and more importantly, why it was not
vectorized. This feedback gives the developer the information necessary to slightly adjust or
restructure code, with dependency directives and restrict keywords, to allow vectorization to occur.

• Advanced dynamic data-alignment strategies: Alignment strategies include loop peeling and loop
unrolling. Loop peeling can generate aligned loads, enabling faster application performance. Loop
unrolling matches the prefetch of a full cache line and allows better scheduling.

• Portable code: By using appropriate Intel compiler switches to take advantage new processor
features, developers can avoid the need to rewrite source code.

The processor-specific vectorizer switch options are: /Qx<CODE> and /Qax<CODE> (-x<CODE> and
-xa<CODE> on Linux and Mac OS). The compiler provides a number of other vectorizer switch options
that allow you to control vectorization. The latter switches require one of these switches to be on. The
default is off.

A.1.2.1 Multithreading with OpenMP*
Both the Intel C++ and Fortran Compilers support shared memory parallelism using OpenMP compiler
directives, library functions and environment variables. OpenMP directives are activated by the compiler
switch /Qopenmp (-openmp on Linux and Mac OS). The available directives are described in the Compiler
User's Guides available with the Intel C++ and Fortran Compilers. For information about the OpenMP
standard, see http://www.openmp.org.

A.1.2.2 Automatic Multithreading
Both the Intel C++ and Fortran Compilers can generate multithreaded code automatically for simple
loops with no dependencies. This is activated by the compiler switch /Qparallel (-parallel in Linux and Mac
OS).

A.1.3 Inline Expansion of Library Functions (/Oi, /Oi-)
The compiler inlines a number of standard C, C++, and math library functions by default. This usually
results in faster execution. Sometimes, however, inline expansion of library functions can cause unex-
pected results. For explanation, see the Intel C++ Compiler documentation.

A.1.4 Interprocedural and Profile-Guided Optimizations
The following are two methods to improve the performance of your code based on its unique profile and
procedural dependencies.

A.1.4.1 Interprocedural Optimization (IPO)
You can use the /Qip (-ip in Linux and Mac OS) option to analyze your code and apply optimizations
between procedures within each source file. Use multifile IPO with /Qipo (-ipo in Linux and Mac OS) to
enable the optimizations between procedures in separate source files.

http://www.openmp.org
http://www.openmp.org

APPLICATION PERFORMANCE TOOLS

A-4

A.1.4.2 Profile-Guided Optimization (PGO)
Creates an instrumented program from your source code and special code from the compiler. Each time
this instrumented code is executed, the compiler generates a dynamic information file. When you
compile a second time, the dynamic information files are merged into a summary file. Using the profile
information in this file, the compiler attempts to optimize the execution of the most heavily travelled
paths in the program.

Profile-guided optimization is particularly beneficial for the Pentium 4 and Intel Xeon processor family. It
greatly enhances the optimization decisions the compiler makes regarding instruction cache utilization
and memory paging. Also, because PGO uses execution-time information to guide the optimizations,
branch-prediction can be significantly enhanced by reordering branches and basic blocks to keep the
most commonly used paths in the microarchitecture pipeline, as well as generating the appropriate
branch-hints for the processor.

When you use PGO, consider the following guidelines:
• Minimize the changes to your program after instrumented execution and before feedback compi-

lation. During feedback compilation, the compiler ignores dynamic information for functions modified
after that information was generated.

NOTE
The compiler issues a warning that the dynamic information corresponds to a modified
function.

• Repeat the instrumentation compilation if you make many changes to your source files after
execution and before feedback compilation.

For more on code optimization options, see the Intel C++ Compiler documentation.

A.1.5 Intel® Cilk™ Plus
Intel Cilk Plus is an Intel C/C++ compiler extension with only 3 keywords that simplifies implementing
simple loop and task parallel applications. It offers superior functionality by combining vectorization
features with high-level loop-type data parallelism and tasking.

A.2 PERFORMANCE LIBRARIES
The Intel Performance Libraries implement a number of optimizations that are discussed throughout this
manual. Examples include architecture-specific tuning such as loop unrolling, instruction pairing and
scheduling; and memory management with explicit and implicit data prefetching and cache tuning.

The Libraries take advantage of the parallelism in the SIMD instructions using MMX technology, Intel
Streaming SIMD Extensions (Intel SSE), Intel Streaming SIMD Extensions 2 (Intel SSE2), and Intel
Streaming SIMD Extensions 3 (Intel SSE3). These techniques improve the performance of computation-
ally intensive algorithms and deliver hand coded performance in a high level language development envi-
ronment.

For performance sensitive applications, the Intel Performance Libraries free the application developer
from the time consuming task of assembly-level programming for a multitude of frequently used func-
tions. The time required for prototyping and implementing new application features is substantially
reduced and most important, the time to market is substantially improved. Finally, applications devel-
oped with the Intel Performance Libraries benefit from new architectural features of future generations of
Intel processors simply by relinking the application with upgraded versions of the libraries.

The library set includes the Intel Integrated Performance Primitives (Intel IPP), Intel Math Kernel Library
(Intel MKL) and Intel Threading Building Blocks (Intel TBB).

A-5

APPLICATION PERFORMANCE TOOLS

A.2.1 Intel® Integrated Performance Primitives (Intel® IPP)
Intel Integrated Performance Primitives for Linux and Windows: IPP is a cross-platform software library
which provides a range of library functions for video decode/encode, audio decode/encode, image color
conversion, computer vision, data compression, string processing, signal processing, image processing,
JPEG decode/encode, speech recognition, speech decode/encode, cryptography plus math support
routines for such processing capabilities.

These ready-to-use functions are highly optimized using Intel® Streaming SIMD Extensions (Intel® SSE)
and Intel® Advanced Vector Extensions (Intel® AVX) instruction sets. With a single API across the range
of platforms, the users can have platform compatibility and reduced cost of development.

A.2.2 Intel® Math Kernel Library (Intel® MKL)
The Intel Math Kernel Library for Linux, Windows and OS X: MKL is composed of highly optimized math-
ematical functions for engineering, scientific and financial applications requiring high performance on
Intel platforms. The functional areas of the library include linear algebra consisting of LAPACK and BLAS,
Discrete Fourier Transforms (DFT), vector transcendental functions (vector math library/VML) and vector
statistical functions (VSL). Intel MKL is optimized for the latest features and capabilities of the Intel®
Itanium® , Intel® Xeon®, Intel® Pentium® 4, and Intel® Core2 Duo processor-based systems. Special
attention has been paid to optimizing multi-threaded performance for the new Quad-Core Intel® Xeon®
processor 5300 series.

A.2.3 Intel® Threading Building Blocks (Intel® TBB)
Intel TBB is a C++ template library for creating reliable, portable, and scalable parallel applications. Use
Intel TBB for a simple and rapid way of developing robust task-based parallel applications that scale to
available processor cores, are compatible with multiple environments, and are easier to maintain.

Intel TBB is validated and commercially supported on Windows, Linux and OS X* platforms. It is also
available on FreeBSD*, IA Solaris*, XBox* 360, and PowerPC-based systems via the open source
community.

A.2.4 Benefits Summary
The overall benefits the libraries provide to the application developers are as follows:
• Time-to-Market — Low-level building block functions that support rapid application development,

improving time to market.
• Performance — Highly-optimized routines with a C interface that give Assembly-level performance

in a C/C++ development environment (Intel MKL also supports a Fortran interface).
• Platform tuned — Processor-specific optimizations that yield the best performance for each Intel

processor.
• Compatibility — Processor-specific optimizations with a single application programming interface

(API) to reduce development costs while providing optimum performance.
• Threaded application support — Applications can be threaded with the assurance that the Intel

MKL and Intel IPP functions are safe for use in a threaded environment.

A.3 PERFORMANCE PROFILERS
Intel® serial and parallel processing profiling tools locate performance bottlenecks without recompilation
and with very low overhead, and provide quick access to scaling information for faster and improved
decision making. The profiling tools enable evaluation of all sizes of Intel® processor based systems,
from embedded systems through supercomputers, to help you improve application performance.

APPLICATION PERFORMANCE TOOLS

A-6

A.3.1 Intel® VTune™ Amplifier XE
Intel® VTune™ Amplifier XE1 is a powerful threading and performance optimization tool for Windows and
Linux. Use the VTune Amplifier to fine-tune for optimal performance, ensuring cores are fully exploited
and new processor capabilities are supported to the fullest.

The sections that follow briefly describe the major features of the VTune Amplifier. For more details on
these features, run the VTune Amplifier and see the online documentation.

A.3.1.1 Hardware Event-Based Sampling Analysis
VTune Amplifier introduces a set of microarchitecture analysis types based on the event-based sampling
data collection and targeted for the Intel® Core™ 2 processor family, processors based on the Intel
processors. Depending on the analysis type, the VTune Amplifier monitors a set of hardware events and
displays collected data as raw event count (for example, cache misses, clock ticks, and instructions
retired) and as performance metrics. Each metric is an event ratio with its own threshold values. As soon
as the performance of a program unit per metric exceeds the threshold, the VTune Amplifier marks this
value as a performance issue (in pink) and provides recommendations how to fix it.

Lists of available performance-monitoring events can be found at: https://perfmon-events.intel.com/.

A.3.1.2 Algorithm Analysis
VTune Amplifier introduces a set of algorithm analysis types based on the user-mode sampling and
tracing collection:
• Basic Hotspots analysis that helps understand the application execution flow and identify sections

of code that took a long time to execute (hotspots). A large number of samples collected at a spe-
cific process, thread, or module can imply high processor utilization and potential performance bot-
tlenecks. Some hotspots can be removed, while other hotspots are fundamental to the application
functionality and cannot be removed. VTune Amplifier creates a list of functions in your application
ordered by the amount of time spent in a function. It also detects the call stacks for each of these
functions so you can see how the hot functions are called.

• Locks and Waits analysis that helps identify the cause of the ineffective processor utilization. One
of the most common problems is threads waiting too long on synchronization objects (locks). Per-
formance suffers when waits occur while cores are under-utilized. During the Locks and Waits anal-
ysis you can estimate the impact each synchronization object introduces to the application and
understand how long the application was required to wait on each synchronization object, or in
blocking APIs, such as sleep and blocking I/O.

• Concurrency analysis that helps identify hotspot functions where processor utilization is poor.
When cores are idle at a hotspot, you have an opportunity to improve performance by getting those
cores working for you.

A.3.1.3 Platform Analysis
You may enable the VTune Amplifier to collect platform-wide metrics for applications that use a Graphics
Processing Unit (GPU) for rendering, video processing, and computations. Use the CPU/GPU Concurrency
analysis as a starting point to understand the code execution on the various CPU and GPU cores in your
system and identify whether your target application is GPU or CPU bound.

A.4 THREAD AND MEMORY CHECKERS
Intel® tools combine threading and memory error checking into one powerful error checking tool to help
increase the reliability, security, and accuracy of your applications.

1 For additional information, see: http://software.intel.com/en-us/articles/intel-vtune-amplifier-xe/?wapkw=vtune

https://perfmon-events.intel.com/
http://software.intel.com/en-us/articles/intel-vtune-amplifier-xe/?wapkw=vtune

A-7

APPLICATION PERFORMANCE TOOLS

A.4.1 Intel® Inspector
Intel® Inspector provides thread debugging analysis for higher performing parallel applications (find:
data races, deadlocks, thread and sync APIs used and memory accesses between threads) and memory
checking analysis for serial and parallel applications (find: memory leaks and memory corruption,
memory allocation and deallocation API mismatches, and inconsistent memory API usage).

Intel® Inspector enhances developer productivity and facilitates application reliability by effectively
finding crucial memory and threading defects early in the development cycle. It gives detailed insights
into application memory and threading behavior to improve application reliability. The powerful thread
checker and debugger makes it easier to find latent errors on the executed code path. It also finds inter-
mittent and non-deterministic errors, even if the error-causing timing scenario does not happen. In addi-
tion, developers can test their code more often, without the need to use special test builds or compilers.

A.5 VECTORIZATION ASSISTANT

A.5.1 Intel® Advisor
The Intel Advisor is the vectorization assistant and threading prototyping tool that simplifies threading,
parallelizing, and vectorizing your source code by identifying those areas in your applications where
vectorization and/or threading parallelism would have the greatest impact.

A.6 CLUSTER TOOLS
The Intel Parallel Studio XE, Cluster Edition helps you develop, analyze and optimize performance of
parallel applications for clusters using IA-32, IA-64, and Intel® 64 architectures. The Cluster Edition
includes the following tools for developing code for clusters: Intel® Trace Analyzer and Collector, Intel
MPI Library, and Intel MPI Benchmarks.

A.6.1 Intel® Trace Analyzer and Collector
The Intel® Trace Analyzer and Collector1 helps to provide information critical to understanding and opti-
mizing application performance on clusters by quickly finding performance bottlenecks in MPI communi-
cation. It supports Intel® architecture-based cluster systems, features a high degree of compatibility
with current standards, and includes trace file idealization and comparison, counter data displays, perfor-
mance assistant and an MPI correctness checking library. Analyze MPI performance, speed up parallel
application runs, locate hotspots and bottlenecks, and compare trace files with graphics providing exten-
sively detailed analysis and aligned timelines.

A.6.1.1 MPI Performance Snapshot
The MPI Performance Snapshot (MPS) is a scalable lightweight performance tool for MPI applications. It
collects a variety of MPI application statistics (such as communication, activity, and load balance) and
presents it in an easy-to-read format. MPS combines lightweight statistics from the Intel® MPI Library
with OS and hardware-level counters to provide you with high-level overview of your application. The tool
is provided as part of the Intel® Trace Analyzer and Collector installation.

A.6.2 Intel® MPI Library
The Intel MPI Library is a multi-fabric message passing library that implements the Message Passing
Interface, v2 (MPI-2) specification. It provides a standard library across Intel® platforms. The Intel MPI

1 Intel® Trace Analyzer and Collector is only available as part of Intel® Cluster Studio or Intel® Cluster Studio XE.

APPLICATION PERFORMANCE TOOLS

A-8

Library supports multiple hardware fabrics including InfiniBand, Myrinet*, and Intel® True Scale Fabric.
Intel® MPI Library covers all your configurations by providing an accelerated universal, multi-fabric layer
for fast interconnects via the Direct Access Programming Library (DAPL) methodology. Develop MPI code
independent of the fabric, knowing it will run efficiently on whatever fabric is chosen by the user at
runtime.

Intel MPI Library dynamically establishes the connection, but only when needed, which reduces the
memory footprint. It also automatically chooses the fastest transport available. The fallback to sockets at
job startup avoids the chance of execution failure even if the interconnect selection fails. This is espe-
cially helpful for batch computing. Any products developed with Intel MPI Library are assured run time
compatibility since your users can download Intel’s free runtime environment kit. Application perfor-
mance can also be increased via the large message bandwidth advantage from the optional use of DAPL
inside a multi-core or SMP node.

A.6.3 Intel® MPI Benchmarks
The Intel MPI Benchmarks will help enable an easy performance comparison of MPI functions and
patterns, the benchmark features improvements in usability, application performance, and interopera-
bility.

A.7 INTEL® ACADEMIC COMMUNITY
You can find information on classroom training offered by the Intel Academic Community at https://soft-
ware.intel.com/en-us/articles/intel-academic-community-showcase. Find general information for devel-
opers at http://software.intel.com/en-us/.

http://software.intel.com/en-us/articles/intel-academic-community/
http://software.intel.com/en-us/articles/intel-academic-community/
http://software.intel.com/en-us/articles/intel-academic-community/
http://software.intel.com/en-us/articles/intel-academic-community/
http://software.intel.com/en-us/

APPENDIX B
USING PERFORMANCE MONITORING EVENTS

Performance monitoring provides means to characterize the interaction between programmed
sequences of instructions and microarchitectural sub-systems. Performance monitoring facilities are
described in Chapter 19 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B. Performance-
monitoring events are described at https://perfmon-events.intel.com/.

The first section of this appendix (Top-Down Analysis Method) provides information on the Top-Down
Microarchitecture Analysis (TMA) method for analyzing performance bottlenecks when tuning for Intel
microarchitectures. Sections B.1.1 through B.1.7 present a generalized formalism that can adapt to
several recent Intel® microarchitectures. The remaining subsections have instantiations of TMA for the
Golden Cove, Ice Lake, Cascade Lake, and Skylake, including examples where it applies.

The rest of this chapter has performance monitoring information for previous generations of Intel
microarchitectures.

B.1 TOP-DOWN ANALYSIS METHOD
The section describes the Top-down Microarchitecture Analysis (TMA) method for identifying perfor-
mance bottlenecks in out-of-order cores. The method’s abstraction and the spirit of the hierar-
chical technique can apply to many out-of-order processors.

TMA simplifies cycle-accounting (the process of identifying costs of performance bottlenecks, also called
CPI breakdown) using microarchitecture-abstracted metrics organized in one hierarchy.

General TMAMTMA Hierarchy for Out-of-Order Microarchitectures depicts the hierarchical approach to
classify performance bottlenecks common to modern out-of-order microarchitectures. Using TMA, the
high-learning curve associated with each microarchitecture generation is replaced by a structured drill-
down that quickly guides the user to true performance limiters. This enables analyzing performance
without requiring knowledge of every detail of the microarchitecture.

The advantage of this top-down hierarchical framework is a structured approach to drill down and guide
you toward the likely area of microarchitecture to investigate. Weights are assigned to nodes in the tree
to enable a focus analysis efforts on issues that matter and disregard minor issues.

https://perfmon-events.intel.com/

USING PERFORMANCE MONITORING EVENTS

B-2

For example, if instruction fetch issues significantly hurt an application, TMA categorizes it as Frontend
Bound at the tree’s top level. A user/tool can drill down and focus only on the Frontend sub-tree. The drill
down is recursively performed until a tree-leaf is reached. A leaf can point to a specific stall of the work-
load or denote a subset of issues with a common micro-architectural symptom likely to limit the applica-
tion’s performance.

TMA was first developed1 in conjunction with the performance monitoring capability of the Sandy Bridge
microarchitecture. The methodology is refined with subsequent generations to support multiple microar-
chitecture generations and enhanced by subsequent PMU capabilities. Please refer to the TMA electronic
file at https://download.01.org/perfmon/ for details on the complete hierarchy and its nodes, additional
useful, informative metrics, metric descriptions, event ratios per generation, or specific events.

B.1.1 Top-Level
At the top-level, TMA classifies pipeline slots into four main categories:
• Frontend Bound
• Backend Bound
• Bad Speculation
• Retiring

The latter two denote non-stalled slots while the former two indicate stalls, as illustrated in Figure B-1
above. Figure B-2 depicts a simple decision tree to start the drill-down process.
• If some operation utilizes a slot, it will be classified as Retiring or Bad Speculation, depending on

whether it eventually gets retired (committed).

— Unused slots are classified as Backend Bound if the back end portion of the pipeline is unable to
accept more operations (a.k.a. back-end stall2), or

— Frontend Bound: indicating no operations (uops) delivered while there was no back-end stall.

Figure B-1. General TMA Hierarchy for Out-of-Order Microarchitectures

1. A Top-Down Method for Performance Analysis and Counters Architecture, Ahmad Yasin. In IEEE International
Symposium on Performance Analysis of Systems and Software, ISPASS 2014. http://bit.ly/tma-ispass14 .
2. ibid.

http://bit.ly/tma-ispass14
https://download.01.org/perfmon/

B-3

USING PERFORMANCE MONITORING EVENTS

The single entry point of division at a pipeline’s issue stage (allocation stage) makes the four categories
additive to the total possible slots. The classification at slots granularity (sub-cycle) makes the break-
down very accurate and robust for superscalar cores, which is necessary at the top level.

Retiring denotes slots utilized by “good operations.” Ideally, you want to see all slots attributed here
since it correlates with Instructions Per Cycle (IPC). Nevertheless, a high Retiring fraction does not
necessarily mean there is no room for speedup.

Bad Speculation denotes slots wasted due to all aspects of incorrect speculations. It includes: (a) slots
of operations that do not eventually retire and (b) slots where the issue pipeline was blocked due to
recovery from earlier mis-speculations. Note there is a third portion covered by Branch_Resteers1. This
category can be split per type of speculation. For example, Branch Mispredicts and Machine Clears cover
control-flow and data mis-speculation, respectively.

Frontend Bound denotes when the pipeline’s Frontend under-supplies the Backend. The Frontend is the
pipeline portion responsible for delivering operations to be executed later by the Backend. This category
is further classified into Fetch Latency (for example, ICache or ITLB misses) and Fetch Bandwidth (for
instance, sub-optimal decoding).

Backend Bound denotes remaining stalled slots due to a lack of required Backend resources. It is split
into Memory Bound, which reflects execution stalls due to the memory subsystem, and Core Bound,
which demonstrates either pressure on the execution units (compute bound) or lack of Instructions-
Level-Parallelism (ILP).

The following sections provide more details on these categories and nodes in subsequent levels of the
hierarchy.

Figure B-2. TMA’s Top Level Drill Down Flowchart

Uop
Allocate?

Uop Ever
Retires?

Back End
Stalls?

Front End
Bound

Back End
Bound

Retiring
Bad

Speculation

Yes

Yes

NoYes

No

No

USING PERFORMANCE MONITORING EVENTS

B-4

B.1.2 Frontend Bound
The Frontend denotes the pipeline portion where the branch predictor predicts the next address to fetch,
streams of code bytes are fetched from ICache, parsed into instructions, and decoded into micro-ops that
can be executed later by the back end. Frontend Bound denotes when the Frontend of the processor core
under-supplies the Backend. There were fetch bubbles when the Backend was ready to accept uops
(micro-ops).

Dealing with Frontend issues is tricky without TMA, as they occur at the beginning of the long and buff-
ered pipeline. This often means transient issues will not dominate the actual performance, and you
should investigate these issues only when Frontend Bound is flagged at the top level. In many cases, the
front-end supply bandwidth can dominate the performance, especially when high IPC applies. This has
led to the addition of dedicated units to hide the fetch pipeline latency and sustain required bandwidth,
such as the Loop Stream Detector (LSD) and Decoded ICache (DSB).

TMA further distinguishes between latency and bandwidth Frontend stalls:
• An ICache miss is classified under Fetch Latency.
• Inefficiency in the instruction decoders is classified under Fetch Bandwidth.

Note that these metrics are defined in the top-down approach: Fetch Latency accounts for cases that
lead to fetch starvation (the symptom of no uop delivery) regardless of what has caused that. Familiar i-
cache and i-TLB misses fit here, but not only these. Branch Resteers accounts for fetch delays following
pipeline flushes. Pipeline flushes can be caused by clear events such as branch misprediction or memory
nukes. Branch Resteers are tightly coupled with Bad Speculation.

The methodology further classifies bandwidth issues per fetch unit, inserting uops to the Micro-Op-
Queue (see Figure 2-6). Instruction decoders translate commonly-used x86 instructions into micro-ops
that the rest of the machine understands; that would be one fetch unit. Some x86 instructions require
sophisticated micro-op flows, like CPUID, relying on the MSROM to supply the long micro-op flows; that
would be the 2nd fetch unit, and so on. Different fetch units may have different supply bandwidths from
one generation to another. Figure 2-6 provides additional details for the Skylake microarchitecture.

All products do not support the LSD (^) node in Figure B-1.

B.1.3 Backend Bound
Backend Bound reflects slots where no micro-ops are being delivered at the issue pipeline, due to a lack
of required resources for accepting them in the back end. Examples of performance issues in this cate-
gory include data-cache misses or stalls due to the overloaded divider unit.

Backend Bound is split into Memory Bound and Core Bound. This is achieved by breaking down back-
end stalls based on execution units’ occupation at every cycle. To sustain a maximum IPC, it is necessary
to keep execution units busy. For example, in a four-slot-wide machine, if three or fewer micro-ops are
executed in a steady state of some code, this would prevent it from achieving an optimal IPC of 4. These
sub-optimal cycles are called ExecutionStalls.

B.1.4 Memory Bound
Memory Bound corresponds to execution stalls related to the cache and memory subsystems. These
stalls usually manifest with execution units starved after a short while, like in the case of a load missing
all caches. Many recent generations of Intel Core processors have three levels of cache hierarchy to hide
external memory latency. The first level has a data cache (L1D). L2 is the second level shared instruction
and data cache, which is private to each core. L3 is shared among all the processor cores within a phys-
ical package.

The out-of-order scheduler can dispatch micro-ops into multiple execution units for execution. While
these micro-ops were executing in-flight, some of the memory access latency exposure for data can be
hidden by keeping the execution units busy with useful micro-ops that do not depend on pending
memory accesses. Thus for common cases, the real penalty for memory access is when the scheduler

B-5

USING PERFORMANCE MONITORING EVENTS

has nothing ready to feed the execution units. It is likely that further micro-ops are either waiting for the
pending memory access or depend on other unready micro-ops.

ExecutionStalls span several sub-categories, each associated with a particular cache level and depending
on the demanded data satisfied by the respective cache level. In some situations, an ExecutionStall can
experience significant delay, greater than the nominal latency of the corresponding cache level, while no
demand-load is missing that cache level.

For example, the L1D cache often has short latency which is comparable to ALU stalls (or waiting for
completion of some commonly-used execution units like floating-point adds/multiplies or integer multi-
plies). Yet in certain scenarios, like a load blocked from forward data from an earlier store to an overlap-
ping address, this load might suffer a high effective latency while eventually being satisfied by L1D. In
such a scenario, the in-flight load will last a long time without missing L1D. Hence, it gets tagged under
L1 Bound. Load blocks due to 4K Aliasing is another scenario with the same symptom.

ExecutionStalls related to store operations are also treated in the Store Bound category. Store opera-
tions are buffered and executed post-retirement due to memory ordering requirements. Typically, store
operations have little impact on performance, but they cannot be neglected entirely. TMA defines Stores
Bound as a fraction of cycles with low execution ports utilization and a high number of stores consuming
resources needed to buff the stores.

Data TLB misses are categorized under various Memory Bound sub-nodes. For example, if a TLB transla-
tion is satisfied by L1D, it is tagged under L1 Bound.

A simple heuristic is used to distinguish MEM Bandwidth and MEM Latency under DRAM Bound. The
heuristic uses the occupancy of requests pending on data return from the memory controller. Whenever
the occupancy exceeds a high threshold, say 70% of the max number of requests, the memory controller
can serve simultaneously; TMA flags this as potentially limited by memory bandwidth. The remainder
fraction will be attributed to memory latency.

B.1.5 Core Bound
Core Bound corresponds to pressure on the execution units or lack of Instructions-Level-Parallelism (ILP)
in your program. Core bound stalls can either manifest with short execution starvation periods, or with
sub-optimal execution port utilization, which makes it more challenging to identify. For example, a long
latency divide operation might serialize execution. In contrast, pressure on an execution port that serves
specific varieties of micro-ops might manifest as a small number of ports utilized in a cycle.

Core Bound issues can often be mitigated with better code generation. For example, a sequence of
dependent arithmetic operations would be classified as Core Bound. A compiler may relieve this stall with
better instruction scheduling. Vectorization can mitigate Core Bound issues as well.

B.1.6 Bad Speculation
Bad Speculation reflects slots wasted due to incorrect speculations. These include two portions:
• Slots used to issue micro-ops that do not eventually retire.
• Slots in which the issue pipeline was blocked due to recovery from earlier mis-speculations.

For example, this category accounts for micro-ops issued in the shadow of a mispredicted branch. Note
the third portion of a misprediction penalty deals with how quick is the fetch from the correct target. This
is accounted for in Branch Resteers as it may overlap with other front-end stalls.

Having a Bad Speculation category at the Top Level is a crucial principle in TMA. It determines the fraction
of the workload under analysis that is affected by incorrect execution paths, which in turn dictates the
accuracy of observations listed in other categories. Furthermore, this permits nodes at lower levels to use
of some of the many traditional performance counter events, despite most of those counter events
counting speculatively. Hence, it would be best if you treated a high value in Bad Speculation as a “red
flag” that needs to be investigated before looking at other categories. In other words, minimizing Bad
Speculation improves the processor resource utilization and increases confidence in metrics
reported throughout the hierarchy.

USING PERFORMANCE MONITORING EVENTS

B-6

TMA further classifies Bad Speculation into Branch Mispredicts and Machine Clears, with similar
symptoms where the pipeline is flushed. Branch misprediction applies when the BPU incorrectly predicts
the branch direction and target. Memory Order Machine Clears (for example, due to memory disambigu-
ation) are a subset of Machine Clears. The next steps to the analysis of these issues can be completely
different—the first deals with making the program control flow friendlier to the branch predictor. The
latter often points to unexpected situations such as memory ordering machine clears or self-modifying
code.

B.1.7 Retiring
This category reflects slots utilized by “good micro-ops” – issued micro-ops that get retired expeditiously
without performance bottlenecks. Ideally, all slots attributed to the Retiring category should be seen;
that is, Retiring 100% of slots corresponds to hitting the maximal micro-ops retired per cycle of the given
microarchitecture. For example, assuming one instruction is decoded into one micro-op, Retiring of 50%
in one slot means an IPC of 2 was achieved in a four-wide machine. In other words, maximizing the
Retiring category increases the IPC of your program.

Nevertheless, a high Retiring value does not necessarily mean there is no room for more performance.
Heavy Operations, like Floating Point (FP) assists, typically hurt performance and can be avoided. They
are isolated under Microcode Sequencer in order to bring it to your attention.

A high Retiring value for non-vectorized code may be an excellent hint to vectorize the code. Doing so lets
more operations to be completed by single instruction/micro-op, hence improving performance. TMA
further breaks down the Retiring->Light Operations category into FP Arith, with FP Scalar and FP
Vector operations distinction in level 4 (omitted in Figure B-1). For more details see the Matrix-Multiply
use-case of the paper2.

B.1.8 Golden Cove Microarchitecture
All nodes with asterisks (*) in Figure B-1 are introduced by the Golden Cove Microarchitecture.

B.1.9 Ice Lake Microarchitecture
The Ice Lake Microarchitecture supports a single “Branch Instructions” node replacing “Fused Instruc-
tions” and “Non-fused Branches” in Figure B-1.

B.1.10 Optane Persistent Memory
The App Direct Mode the Intel® Optane™ DC Persistent Memory Modules introduced by the Cascade Lake
server products are supported through the PMM_Bound node (^) in Figure B-1.

B.1.11 Skylake Microarchitecture
The performance monitoring capabilities in the Skylake microarchitecture is significantly enhanced over
prior generations. TMA benefits directly from the enhancement in the breadth of available counter events
and in Processor-Event-Based Sampling (PEBS) capabilities. TMAMTMA hierarchy supported by the
Skylake microarchitecture’s support for TMA, where the boxes in green indicates Precise events are avail-
able.

The Intel Vtune Performance Analyzer allows users to apply TMA on many Intel microarchitectures. The
reader may wish to consult the white paper available at https://software.intel.com/en-us/articles/how-
to-tune-applications-using-a-top-down-characterization-of-microarchitectural-issues, and the use cases
in the white paper for additional details.

https://software.intel.com/en-us/articles/how-to-tune-applications-using-a-top-down-characterization-of-microarchitectural-issues
https://software.intel.com/en-us/articles/how-to-tune-applications-using-a-top-down-characterization-of-microarchitectural-issues

B-7

USING PERFORMANCE MONITORING EVENTS

B.1.11.1 TMA Use Case 1
Section 15.15.1 describes techniques for optimizing floating-point calculations involving latency and
throughput considerations of FP MUL, FP ADD and FMA instructions. There are no explicit performance
counter events that can directly detect exposures of latency issues of FP_ADD and FP_MUL instructions.

TMA may be used to figure out when this performance issue is likely to be a performance limiter.

If the primary bottleneck is Backend_Bound->Core_Bound->Ports_Utilization and there is a significant
measure in the GFLOPs metric, the user code may be hitting this issue. The user may consider optimiza-
tions listed in Section 15.15.1.

B.1.11.2 TMA Use Case 2
Section 15.3.1 describes possible performance issues of executing SSE code while the upper YMM state
is dirty in Skylake Microarchitecture. To detect the performance issue associated with partial register
dependence and associated blend cost on SSE code execution, TMA can be used to monitor the rate of
mixture of SSE operation and AVX operation on performance-critical SSE code whose source code did not
directly execute AVX instructions.

If the primary bottleneck is Backend_Bound->Core_Bound, and there is a significant measure in the
Mixing_Vectors metric, it is possible that the presence of Vector operation with mis-matched vector width
was due to the extra blend operation on the upper YMM registers.

The Mixing_Vectors metric requires the UOPS_ISSUED.VECTOR_WIDTH_MISMATCH event that is avail-
able in the Skylake Microarchitecture. This event count Blend Uops was inserted at the issue stage to
preserve upper bits of vector registers. Additionally, the metric uses the UOPS_ISSUED.ANY, which is
common in recent Intel microarchitectures, as the denominator. event counts the total number of Uops
at the issue stage.

The Mixing_Vectors metric gives the percentage of injected blend uops out of all uops issued. Usually, a
Mixing_Vectors over 5% is worth investigating.

Mixing_Vectors[%] = 100 * UOPS_ISSUED.VECTOR_WIDTH_MISMATCH / UOPS_ISSUED.ANY

Note that the actual penalty may vary as it stems from the additional data-dependency on the destina-
tion register the injected blend operations add.

USING PERFORMANCE MONITORING EVENTS

B-8

B.2 PERFORMANCE MONITORING AND MICROARCHITECTURE
This section provides information on performance monitoring hardware and terminology related to the
Silvermont, Airmont and Goldmont microarchitectures. The features described here may be specific to
individual microarchitecture, as indicated in Table B-1.

Figure B-3. TMA Hierarchy and Precise Events in Skylake

Pipeline Slots

Retiring Bad Speculation Front End Bound Back End Bound

Not Stalled Stalled

Base
Branch

Mispredict
Fetch
Latency

Memory BoundCore Bound
Fetch

Bandwidth
Machine
Clear

MS‐
ROM

Ext.
Memory
Bound

L3
 B
o
u
n
d

L2
 B
o
u
n
d

L1
 B
o
u
n
d

Sto
res B

o
u
n
d

D
ivid

e
r

Execution
ports

 Utilization

LSD

M
ITE

B
ran

ch

R
esteers

Icach
e M

iss

ITLB
 M

iss

O
th
er

FP
‐A
rith

D
SB

D
SB

 Sw
itch

e
s

M
S Sw

itch
e
s

Scalar
V
e
cto

r

3
+ p

o
rts

1
 o
r 2

 p
o
rts

0
 p
o
rts

M
e
m
 B
an

d
w
id
th

M
e
m
 Laten

cy

X
8
7

Sto
re
 M

iss

STLB
 H
it

STLB
 M

iss
L2
 H
it

L2 M
iss

False
 sh

arin
g

D
TLB

 Sto
re

Sto
re fw

d
 b
lk

4
K
 aliasin

g

C
o
n
te
sted

 access
D
ata sh

arin
g

L3
 late

n
cy

B-9

USING PERFORMANCE MONITORING EVENTS

Table B-1. Performance Monitoring Taxonomy

Name Description Applicable
Microarchitectures

L2Q, XQ When a memory reference misses the L1 data cache, the request goes to
the L2 Queue (L2Q). If the request also misses the L2 cache, it is sent to
the XQ, where it waits for an opportunity to be issued to memory across
the Intra-Die Interface (IDI) link. Note that since the L2 is shared between a
pair of processor cores, a single L2Q is shared between those two cores.
Similarly, a single XQ for a pair of processor cores is situated between the
L2Q and the IDI link.

The XQ will fill up when the response rate from the IDI link is lower, at
which new requests arrive at the XQ. The event L2_reject_XQ indicates
that a request cannot move from the L2 Queue to the XQ because the XQ
is full, signaling that the memory system is oversubscribed.

Silvermont, Airmont,
Goldmont

Core Reject The core_reject event indicates that a request from the core cannot be
accepted at the L2Q. However, there are several additional reasons why a
request might be rejected from the L2Q. Beyond rejecting a request
because the L2Q is full, a request from one core can be rejected to
maintain fairness to the other core. One core is not permitted to
monopolize the shared connection to the L2Q/cache/XQ/IDI links, and
might have its requests rejected even when room is available in the L2Q. In
addition, if the request from the core is a dirty L1 cache eviction, the
hardware must ensure that this eviction does not conflict with any
pending request in the L2Q. (pending requests can include an external
snoop). In a conflict event, the dirty eviction request might be rejected
even when there is room in the L2Q.

Thus, while the L2_reject_XQ event indicates that the request rate to
memory from both cores exceeds the response rate of the memory, the
core_reject event is more subtle. It can either indicate that the request
rate to the L2Q exceeds the response rate from the XQ, or that the
request rate to the L2Q exceeds the response rate from the L2. It can also
either indicate that one core is attempting to request more than its fair
share of response from the L2Q, or be an indicator of conflict between
dirty evictions and other pending requests.

In short, the L2_reject_XQ event indicates memory oversubscription. The
core_reject event can indicate memory oversubscription, L2
oversubscription, rejection of a core’s requests to insure fairness to the
other core, or a conflict between dirty evictions and other pending
requests.

Silvermont, Airmont,
Goldmont

Divider Busy The divide unit cannot accept a new divide uop when it is busy processing
a previously dispatched divide uop. The “CYCLES_DIV_BUSY.ANY” event
will count cycles that the divide unit is busy, irrespective of whether or not
another divide uop is waiting to enter the divide unit (from the RS). The
event will count cycles while a divide is in progress, even if the RS is
empty.

Silvermont, Airmont,
Goldmont

USING PERFORMANCE MONITORING EVENTS

B-10

BACLEAR Shortly after decoding an instruction and recognizing a
branch/call/jump/ret instruction, a Branch Address Calculator Clear
(BACLEAR) event can occur. Possible causes of a BACLEAR include
predicting the wrong target of a direct branch or not predicting a branch at
that instruction location.

A BACLEAR causes the Frontend to restart fetching from a different
location. While BACLEAR has similarities to a branch mispredict signaled
from the execute part of the pipeline, it is not counted as a
BR_MISP_RETIRED event or noted as a mispredict in the LBRs (where
LBRs report mispredict). Branch mispredicts and BACLEARS are similar in
that they restart the Frontend to begin instruction fetch at a new target
location and flush some speculative work. However, a branch mispredict
must flush partially completed instructions from both the Frontend and
back end. Since a BACLEAR occurs right at decode time, it flushes
instruction bytes and not yet fully decoded instructions. Recovery after a
BACLEAR is less complicated and faster than recovery after a branch
mispredict.

Silvermont, Airmont,
Goldmont

Front end
Bottleneck

The front-end is responsible for fetching the instruction, decoding it into
micro-ops (uops) and putting those uops into a micro-op queue to be
consumed by the back end. The back end then takes these micro-ops and
allocates the required resources. When all resources are ready, micro-ops
are executed. A front end bottleneck occurs when the front end of the
machine is not delivering uops to the back-end, and the back end is not
stalled. Cycles where the back end is not ready to accept micro-ops from
the front end should not be counted as front end bottlenecks even though
such back end bottlenecks will cause allocation unit stalls, eventually
forcing the front end to wait until the back end is ready to receive more
uops.

Silvermont, Airmont,
Goldmont

NO_ALLOC_CYCL
ES

Frontend issues can be analyzed using various sub-events within this
event class.

Silvermont, Airmont

UOPS_NOT_DELI
VERED.ANY

The UOPS_NOT_DELIVERED.ANY event measures front end inefficiencies
to identify if the machine is truly front end bound. Some examples of
Frontend inefficiencies are: ICache misses, ITLB misses, and decoder
restrictions that limit the Frontend bandwidth.

Goldmont

ICache Requests to Instruction Cache (ICache) are made in a fixed-size unit called
a chunk. There are multiple chunks in a cache line, and multiple accesses
might be made to a single cache line.

In the Goldmont microarchitecture, the event strives to count on a cache
line basis so that multiple fetches to a single cache line count as one
ICACHE.ACCESS and either one HIT or one MISS. The event counts
specifically when straight line code crosses the cache line boundary, or
when a branch target is on a new line. This event is highly speculative,
with bytes being fetched before being decoded, executed or retired. The
speculation occurs in straight line code and in the presence of branches.
Consequently, ICACHE statistics cannot be deduced by examining the
number of retired instructions.

In the Silvermont microarchitecture, ICACHE events (HIT, MISS) count at a
different granularity.

Goldmont

Table B-1. Performance Monitoring Taxonomy

Name Description Applicable
Microarchitectures

B-11

USING PERFORMANCE MONITORING EVENTS

ICache Access An ICache fetch accesses an fixed-size aligned chunk. A request to fetch

a specific chunk from the instruction cache might occur multiple times due
to speculative execution. It may be possible that the same chunks
requested multiple times while outstanding. However, an instruction fetch
miss is only counted once and is not counted every cycle while
outstanding.

After an ICache miss fetches the line, another request to the same cache
line is likely to be made and counted as a hit. The number “hits” plus
“misses” does therefore not equal to the number of accesses.

From a software perspective, the ICache miss count should be subtracted
from the ICache hit count to get her number of true ICache hits.

Silvermont, Airmont,
Goldmont

Last Level
Cache
References,
Misses

On processors that do not have L3, L2 is the last level cache. The
architectural performance event to count LLC references and misses are
also known as L2_REQUESTS.ANY and L2_REQUESTS.MISS.

Silvermont, Airmont,
Goldmont

Machine Clear Many conditions might cause a machine clear, including the receipt of an
interrupt, or a trap or a fault. All such conditions, including but not limited
to Memory Ordering (MO), Self or Cross Modifying Code (SMC) and Floating
Point assist (FP) are captured in the MACHINE_CLEAR.ANY event.
Additionally, some conditions can be specifically counted (i.e. SMC, MO, FP).
However, the sum of SMC, MO and FP machine clears will not necessarily
equal the number of ANY.

Silvermont, Airmont,
Goldmont

MACHINE_CLEAR.
FP_ASSIST

The floating point execute unit can properly produce the correct output
bits most of the time. On rare occasions it needs help. A machine clear is
asserted against the instruction to provide that help. After the machine
clear, the front end of the machine starts delivering instructions to
determine which FP operation was asked for. The instructions will perform
extra work to produce the correct FP result. For example, if the result was
a floating point denormal, sometimes the hardware asks the help to
produce the correctly rounded IEEE compliant result.

Silvermont, Airmont,
Goldmont

MACHINE_CLEAR.
SMC

Self Modifying Code (SMC) refers to a piece of code that wrote to the
instruction stream ahead of where the machine will execute. In the
Silvermont microarchitecture, the processor detects SMC in a 1K aligned
region. A detected SMC condition causes a machine clear assist and will
flush the pipeline.

Writing to memory within 1K of where the processor is executing can
trigger the SMC detection mechanism and cause a machine clear. Since the
machine clear allows the store pipeline to drain, when a front end restart
occurs, the correct instructions after the write will be executed.

Silvermont, Airmont,
Goldmont

Table B-1. Performance Monitoring Taxonomy

Name Description Applicable
Microarchitectures

USING PERFORMANCE MONITORING EVENTS

B-12

MACHINE_CLEAR.
MO

Memory order machine clear happens when a snoop request occurs and
the machine is uncertain if memory ordering will be preserved. For
instance, consider two loads: one to address X followed by another to
address Y in the program order. Both loads were issued; however, load to Y
completes first. and all the dependent ops and data on and by this load
continue together. Load to X waits for the data. Simultaneously, another
processor writes to the same address Y and causes a snoop to address Y.

This presents a problem. The load to Y received the old value, but X is not
finished loading. The other processor saw the loads in a different order by
not consuming the latest value from the store to address Y. Everything
from the load must be undone to address Y so the post-write data may be
seen.
Note: Without other pending reads, load Y does not require undoing. The
ordering problem is caused by the unfinished load to X.

Silvermont, Airmont,
Goldmont

MACHINE_CLEAR.
DISAMBIGUATION

Disambiguation machine clear is triggered due to a younger load passing
an older store to the same address, but whose address wasn't known
when the younger load executed speculatively.

Goldmont

Page Walk When a translation of linear address to physical address cannot be found in
the Translation Look-aside Buffer (TLB), dedicated hardware must retrieve
the physical address from the page table and other paging structures if
needed. After the page walk, the translation is stored in the TLB for future
use.

Since paging structures are stored in memory, the page walk can require
multiple memory accesses. These accesses are considered part of demand
data even if the page walk is to translate an instruction reference. The
number of cycles for a page walk is variable, depending on how many
memory accesses are required and the cache locality of those memory
accesses.

The PAGE_WALKS event can be used to count page walk durations with
EDGE triger bit cleared. Page walk duration divided by number of page
walks is the average duration of page-walks.

In the Goldmont microarchitecture, the number of page walks can be
determined by using the events MEM_UOPS_RETIRED.DTLB_MISS and
ITLB.MISS.

In the Silvermont microarchitecture, the combined number of page walks
for data and instruction can be counted with PAGE_WALKS.WALKS.

Silvermont, Airmont,
Goldmont

Table B-1. Performance Monitoring Taxonomy

Name Description Applicable
Microarchitectures

B-13

USING PERFORMANCE MONITORING EVENTS

RAT The allocation pipeline moves uops from the Frontend to the back end. At
the end of the allocated pipe, a uop must written into one of 6 reservation
stations (the RS). Each RS holds uops to be sent to a specific execution (or
memory) cluster. Each RS has a finite capacity and may accumulate uops
when it cannot send a uop to its execution cluster. Typical reasons an RS
may fill include, but are not limited to, the execution of long latency uops
like divide, the inability to schedule uops due to dependencies, or too many
outstanding memory references. When the RS becomes full, it cannot
accept more uops, and it will stall the allocation pipeline. The
RS_FULL_STALL.ANY event will be asserted on any cycle when the
allocation is stalled for any RSs being full and not for other reasons. (i.e.,
the allocated pipeline might be stalled for some other reason, but if RS is
not full, the RS_FULL_STALL.ANY will not count). The MEC sub-event
allows discovery of whether the MEC RS being full prevents further
allocation.

Silvermont, Airmont,
Goldmont

REHABQ An internal queue holds memory reference micro-ops that cannot
complete for one reason or another. The micro-ops remain in the REHABQ
until they can be re-issued and completed.

Examples of bottlenecks that cause micro-ops to go into REHABQ include,
but are not limited to: cache line splits, blocked store forward and data not
ready. Many other conditions that might cause a load or store to be sent to
the REHABQ. For instance, if an older store has an unknown address, all
subsequent stores must be sent to the REHABQ until that older store’s
address becomes known.

Silvermont, Airmont

LOAD_BLOCKS Loads can be blocked for multiple reasons, including UTLB misses, blocked
store forwards, 4-K aliases or other conditions. When a load needs data (in
whole or part) that a previous store produced, a forward progress of the
machine will face two scenarios. The first, wherein the machine waits until
the previous store is complete (forwarding restricted, loads blocked). In the
second, data can be forwarded to the load before the previous store is
complete. The restricted situations are described next.

When a load is checked against previous stores, not all of its address bits
are compared to the store addresses. This can cause a load to be blocked
because its address is similar (LD_BLOCKS.4K_ALIAS) to a pending store,
even though technically the load does not need to be blocked). When
conditions do not allow the load to receive data from the in-progress store,
then the load is blocked until the pending store operation is complete.
LD_BLOCKS.STORE_FORWARD counts times when a load was prohibited
from receiving forwarded data from the store because of address
mismatch (explained below). LD_BLOCKS.DATA_UNKOWN counts when a
load is blocked from using a store forward because the store data was not
available at the right time. A load block will not be counted as both
LD_BLOCKS.DATA_UNKNOWN and LD_BLOCK.STORE_FORWARD. The
conditions under which a load can receive data from an older store are
shown in Table F-17.

These are precise events and thus will not count speculative loads that do
not retire.

Goldmont

Table B-1. Performance Monitoring Taxonomy

Name Description Applicable
Microarchitectures

USING PERFORMANCE MONITORING EVENTS

B-14

B.3 INTEL® XEON® PROCESSOR 5500 SERIES
Intel Xeon processor 5500 series are based on the same microarchitecture as Intel Core i7 processors;
see Section 2.7, “Intel® Hyper-Threading Technology”. In addition, the Intel Xeon processor 5500 series
support non-uniform memory access (NUMA) in platforms with two physical processors; see Figure B-4.
Figure B-4 illustrates four-processor cores and an uncore sub-system in each physical processor. The
uncore sub-system consists of L3, an integrated memory controller (IMC), and Intel QuickPath Intercon-
nect (QPI) interfaces. The memory sub-system consists of three channels of DDR3 memory locally
connected to each IMC. Access to physical memory connected to a non-local IMC is often described as a
remote memory access.

Uops Retired The processor decodes complex macro instructions into a sequence of
simpler micro-ops. Most instructions are composed of one or two micro-
ops. Some instructions are decoded into longer sequences of uops; for
example, floating point transcendental instructions, assists, and rep string
instructions.

In some cases, micro-op sequences are fused, or whole instructions are
fused, into one micro-op. A sub-event within UOPS_RETIRED is available
for differentiating MSROM micro-ops on Goldmont. The available sub-
events differ from other microarchitectures.

Silvermont, Airmont,
Goldmont

HW_INTERRUP
TS

These Events provide information regarding Hardware (Vectored, Fixed)
interrupts. HW_INTERRUPTS.RECEIVED provides a count of the total
number of Hardware Interrupts received by the processor. This event is a
straightforward count of the number of interrupts the ROB recognizes.
HW_INTERRUPTS.PENDING_AND_MASKED counts the number of core
cycles that an interrupt is pending but cannot be delivered due to
EFLAGS.IF being 0. It will not count interrupts that TPR or ISR mask. These
events are not precise, but collecting non-precise PEBS records on these
events can help identify issues causing an unresponsive system.

Goldmont

MEM_UOPS_R
ETIRED

These events count when a uop reads (loads) or writes (stores) data if that
uop retired valid. Speculative loads and stores are not counted. The sub-
events can indicate conditions that generally require extra cycles to
complete the operation: specifically, if the address of memory uop misses
in the Data Translation Lookaside Buffer (DTLB), the data requested spans
a cache line (split), or the memory uop is a locked load: these are precise
events, so the EventingRIP field in the PEBS record indicates the
instruction which caused the event.

Silvermont, Airmont,
Goldmont

MEM_LOAD_U
OPS_RETIRED

These events count when an instruction produces a uop that reads (loads)
data if that uop is retired valid. Speculative loads are not counted. These
events report the various states of the memory hierarchy for the
requested data, which helps determine the source of latency stalls in
accessing data. These are precise events, so the EventingRIP field in the
PEBS record indicates the instruction which caused the event.

Goldmont

Table B-1. Performance Monitoring Taxonomy

Name Description Applicable
Microarchitectures

B-15

USING PERFORMANCE MONITORING EVENTS

The performance monitoring events on Intel Xeon processor 5500 series can be used to analyze the
interaction between software (code and data) and microarchitectural units hierarchically:
• Per-core PMU: Each processor core provides four programmable counters and three fixed counters.

The programmable per-core counters can be configured to investigate Frontend/micro-op flow issues
and stalls inside a processor core. Additionally, a subset of per-core PMU events supports precise
event-based sampling (PEBS). Load latency measurement facility is new in Intel Core i7 processor
and Intel Xeon processor 5500.

• Uncore PMU: The uncore PMU provides eight programmable counters and one fixed counter. The
programmable per-core counters can be configured to characterize L3 and Intel QPI operations and
local and remote data memory accesses.

The number and variety of performance counters and the breadth of programmable performance events
available in Intel Xeon processor 5500 offer software tuning engineers the ability to analyze performance
issues and achieve higher performance. Using performance events to analyze performance issues can be
grouped into the following subjects:
• Cycle Accounting and Uop Flow
• Stall Decomposition and Core Memory Access Events (non-PEBS)
• Precise Memory Access Events (PEBS)
• Precise Branch Events (PEBS, LBR)
• Core Memory Access Events (non-PEBS)
• Other Core Events (non-PEBS)
• Frontend Issues
• Uncore Events

B.4 PERFORMANCE ANALYSIS TECHNIQUES FOR INTEL® XEON®
PROCESSOR 5500 SERIES

The techniques covered in this chapter focus on identifying an opportunity to remove/reduce perfor-
mance bottlenecks that are measurable at runtime. Compile-time and source-code level techniques are
covered in other chapters in this document. Individual sub-sections describe specific methods to identify
tuning opportunities by examining various metrics that can be measured or derived directly from perfor-
mance monitoring events.

Figure B-4. System Topology Supported by Intel® Xeon® Processor 5500 Series

DDR3

IOH/PCH

QPI Link

Two-way

Core0 Core1

Core2 Core3

8MB L3
IMC QPI QPI

Core0 Core1

Core2 Core3

8MB L3
IMCQPI QPI

DDR3

USING PERFORMANCE MONITORING EVENTS

B-16

B.4.1 Cycle Accounting and Uop Flow Analysis
The objectives, performance metrics and component events of the basic cycle accounting technique are
summarized in Table B-2.

Cycle accounting of executed micro-ops is an effective technique to identify stalled cycles for perfor-
mance tuning. Within the microarchitecture pipeline, the meaning of micro-ops being “issued,”
“dispatched,” “executed,” “retired” has a precise definition. This is illustrated in Figure B-5.

Cycles are divided into those where micro-ops are dispatched to the execution units and those where no
micro-ops are dispatched, which are considered execution stalls.

“Total cycles” of execution for the code under test can be directly measured with CPU_CLK_UN-
HALTED.THREAD (event code 3CH, Umask= 1) and setting CMask = 2 and INV=1 in IA32_PERFEVT-
SELCn.

The signals used to count the memory access uops executed (ports 2, 3 and 4) are the only core events
that cannot be counted per-logical processor. Thus, Event code B1H with Umask=3FH only counts on a
per-core basis, and the entire execution stall cycles can only be evaluated on a per-core basis. If HT is
disabled, conducting a per-thread analysis of micro-op flow cycle accounting presents no difficulty.

Table B-2. Cycle Accounting and Micro-ops Flow Recipe

Summary

Objective Identify code/basic block that had significant stalls

Method Binary decomposition of cycles into “productive“ and “unproductive“ parts

PMU-Pipeline
Focus

Micro-ops issued to execute

Event code/Umask Event code B1H, Umask= 3FH for micro-op execution;
Event code 3CH, Umak= 1, CMask=2 for counting total cycles

EvtSelc Use CMask, Invert, Edge fields to count cycles and separate stalled vs. active cycles

Basic Equation “Total Cycles“ = UOPS_EXECUTED.CORE_STALLS_CYCLES +
UOPS_EXECUTED.CORE_ACTIVE_CYCLES

Metric UOPS_EXECUTED.CORE_STALLS_CYCLES /
UOPS_EXECUTED.CORE_STALLS_COUNT

Drill-down scope Counting: Workload; Sampling: basic block

Variations Port 0,1, 5 cycle counting for computational micro-ops execution.

B-17

USING PERFORMANCE MONITORING EVENTS

The PMU signals to count uops_executed in ports 0, 1, 5 can count on a per-thread basis even when HT
is active. This provides an alternate cycle accounting technique when the workload under test interacts
with HT.

The alternate metric is built from UOPS_EXECUTED.PORT015_STALL_CYCLES, using appropriate CMask,
Inv, and Edge settings. Details of performance events are shown in Table B-3.

B.4.1.1 Cycle Drill Down and Branch Mispredictions
While executed micro-ops are considered productive from the perspective of execution units being
subscribed, not all such micro-ops contribute to forward progress of the program. Branch mispredictions
can introduce execution inefficiencies in OOO processor that are typically decomposed into three compo-
nents:
• Wasted work associated with executing the uops of the incorrectly predicted path.
• Cycles lost when the pipeline is flushed of the incorrect uops.

Figure B-5. PMU Specific Event Logic Within the Pipeline

Table B-3. CMask/Inv/Edge/Thread Granularity of Events for Micro-op Flow

Event Name Umask Event
Code CMask Inv Edge All

Thread

CPU_CLK_UNHALTED.TOTAL_CYCLES 0H 3CH 2 1 0 0

UOPS_EXECUTED.CORE_STALLS_CYC
LES

3FH B1H 1 1 0 1

UOPS_EXECUTED.CORE_STALLS_CO
UNT

3FH B1H 1 1 ! 1

UOPS_EXECUTED.CORE_ACTIVE_CYC
LES

3FH B1H 1 0 0 1

UOPS_EXECUTED.PORT015_STALLS_
CYCLES

40H B1H 1 1 0 0

UOPS_RETIRED.STALL_CYCLES 1H C2H 1 1 0 0

UOPS_RETIRED.ACTIVE_CYCLES 1H C2H 1 0 0 0

Resource

“UOPS_ISSUED”
“UOPS_RETIRED”

IFetch/

Decoder

Dispatch
Execution

“UOPS_EXECUTED“

Retirement/

RS

ROB

“RESOURCE_STALLS”

BPU

Allocator

Writeback

Units

USING PERFORMANCE MONITORING EVENTS

B-18

• Cycles lost while waiting for the correct uops to arrive at the execution units.

In processors based on Nehalem microarchitecture, there are no execution stalls associated with clearing
the pipeline of mispredicted uops (component 2). These uops are simply removed from the pipeline
without stalling executions or dispatch. This typically lowers the penalty for mispredicted branches.
Further, the penalty associated with instruction starvation (component 3) can be measured.

The wasted work within executed uops are those uops that will never be retired. This is part of the cost
associated with mispredicted branches. It can be found through monitoring the flow of uops through the
pipeline. The uop flow can be measured at 3 points in Figure B-5, going into the RS with the event
UOPS_ISSUED, going into the execution units with UOPS_EXECUTED and at retirement with UOPS_RE-
TIRED. The differences of between the upstream measurements and at retirement measure the wasted
work associated with these mispredicted uops.

As UOPS_EXECUTED must be measured per core, rather than per thread, the wasted work per core is
evaluated as:

Wasted Work = UOPS_EXECUTED.PORT234_CORE + UOPS_EXECUTED.PORT015_All_Thread -
UOPS_RETIRED.ANY_ALL_THREAD.

The ratio above can be converted to cycles by dividing the average issue rate of uops. The events above
were designed to be used in this manner without corrections for micro fusion or macro fusion.

A “per thread” measurement can be made from the difference between the uops issued and uops retired
as the latter two of the above events can be counted per thread. It over counts slightly, by the mispre-
dicted uops that are eliminated in the RS before they can waste cycles being executed, but this is usually
a small correction:

Wasted Work/thread = (UOPS_ISSUED.ANY + UOPS_ISSUED.FUSED) - UOPS_RETIRED.ANY.

The third component of the misprediction penalty, instruction starvation, occurs when the instructions
associated with the correct path are far away from the core and execution is stalled due to lack of uops
in the RAT. Because the two primary cause of uops not being issued are either Frontend starvation or
resource not available in the back end. So the output of the resource allocation can be measured as
follows:
• Count the total number of cycles where no uops were issued to the OOO engine.

Table B-4. Cycle Accounting of Wasted Work Due to Misprediction

Summary

Objective Evaluate uops that executed but not retired due to misprediction

Method Examine uop flow differences between execution and retirement

PMU-Pipeline
Focus

Micro-ops execute and retirement

Event code/Umask Event code B1H, Umask= 3FH for micro-op execution;
Event code C2H, Umask= 1, AllThread=1 for per-core counting

EvtSelc Zero CMask, Invert, Edge fields to count uops

Basic Equation “Wasted work“ = UOPS_EXECUTED.PORT234_CORE +
UOPS_EXECUTED.PORT015_ALL_THREAD - UOPS_RETIRED.ANY_ALL_THREAD

Drill-down scope Counting: Branch misprediction cost

Variations Divide by average uop issue rate for cycle accounting.
Set AllThread=0 to estimate per-thread cost.

B-19

USING PERFORMANCE MONITORING EVENTS

• Count the cycles where resources (RS, ROB entries, load buffer, store buffer, etc.) are not available
for allocation.

If HT is not active, instruction starvation is simply the difference:

Instruction Starvation = UOPS_ISSUED.STALL_CYCLES - RESOURCE_STALLS.ANY.

When HT is enabled, the uop delivery to the RS alternates between the two threads. In an ideal case the
above condition would then over count, as 50% of the issuing stall cycles may be delivering uops for the
other thread. The expression can be modified by subtracting the cycles that the other thread is having
uops issued.

Instruction Starvation (per thread) = UOPS_ISSUED.STALL_CYCLES - RESOURCE_STALLS.ANY -
UOPS_ISSUED.ACTIVE_CYCLES_OTHER_THREAD.

The per-thread expression above will over count somewhat because the resource_stall condition could
exist on “this” thread while the other thread in the same core was issuing uops. An alternative might be:

CPU_CLK_UNHALTED.THREAD - UOPS_ISSUED.CORE_CYCLES_ACTIVE-RESOURCE_STALLS.ANY.

The above technique is summarized in Table B-5.

Details of performance events are shown in Table B-6.

Table B-5. Cycle Accounting of Instruction Starvation

Summary

Objective Evaluate cycles that uops issuing is starved after misprediction

Method Examine cycle differences between uops issuing and resource allocation

PMU-Pipeline
Focus

Micro-ops issue and resource allocation

Event code/Umask Event code 0EH, Umak= 1, for uops issued.
Event code A2H, Umask=1, for Resource allocation stall cycles

EvtSelc Set CMask=1, Inv=1, fields to count uops issue stall cycles.
Set CMask=1, Inv=0, fields to count uops issue active cycles.
Use AllThread = 0 and AllThread=1 on two counter to evaluate contribution from the other
thread for UOPS_ISSUED.ACTIVE_CYCLES_OTHER_THREAD

Basic Equation “Instruction Starvation“ (HT off) = UOPS_ISSUED.STALL_CYCLES -
RESOURCE_STALLS.ANY;

Drill-down scope Counting: Branch misprediction cost

Variations Evaluate per-thread contribution with
Instruction Starvation = UOPS_ISSUED.STALL_CYCLES - RESOURCE_STALLS.ANY -
UOPS_ISSUED.ACTIVE_CYCLES_OTHER_THREAD

USING PERFORMANCE MONITORING EVENTS

B-20

B.4.1.2 Basic Block Drill Down
The event INST_RETIRED.ANY (instructions retired) is commonly used to evaluate a cycles/instruction
ratio (CPI). Another important usage is to determine the performance-critical basic blocks by evaluating
basic block execution counts.

In a sampling tool (such as VTune Analyzer), the samples tend to cluster around certain IP values. This is
true when using INST_RETIRED.ANY or cycle counting events. Disassembly listing based on the hot
samples may associate some instructions with high sample counts and adjacent instructions with no
samples.

Because all instructions within a basic block are retired exactly the same number of times by the very
definition of a basic block. Drilling down the hot basic blocks will be more accurate by averaging the
sample counts over the instructions of the basic block.

Basic Block Execution Count = Sum (Sample counts of instructions within basic block) *
Sample_after_value / (number of instructions in basic block)

Inspection of disassembly listing to identify basic blocks associated with loop structure being a hot loop
or not can be done systematically by adapting the technique above to evaluate the trip count of each loop
construct. For a simple loop with no conditional branches, the trip count ends up being the ratio of the
basic block execution count of the loop block to the basic block execution count of the block immediately
before and/or after the loop block. Judicious use of averaging over multiple blocks can be used to
improve the accuracy.

This will allow the user to identify loops with high trip counts to focus on tuning efforts. This technique
can be implemented using fixed counters.

Chains of dependent long-latency instructions (fmul, fadd, imul, etc) can result in the dispatch being
stalled while the outputs of the long latency instructions become available. In general there are no events
that assist in counting such stalls with the exception of instructions using the divide/sqrt execution unit.
In such cases, the event ARITH can be used to count both the occurrences of these instructions and the
duration in cycles that they kept their execution units occupied. The event ARITH.CYCLES_DIV_BUSY
counts the cycles that either the divide/sqrt execution unit was occupied.

Table B-6. CMask/Inv/Edge/Thread Granularity of Events for Micro-op Flow

Event Name Umask Event
Code CMask Inv Edge All

Thread

UOPS_EXECUTED.PORT234_CORE 80H B1H 0 0 0 1

UOPS_EXECUTED.PORT015_ALL_THR
EAD

40H B1H 0 0 0 1

UOPS_RETIRED.ANY_ALL_THREAD 1H C2H 0 0 0 1

RESOURCE_STALLS.ANY 1H A2H 0 0 0 0

UOPS_ISSUED.ANY 1H 0EH 0 0 0 0

UOPS_ISSUED.STALL_CYCLES 1H 0EH 1 1 0 0

UOPS_ISSUED.ACTIVE_CYCLES 1H 0EH 1 0 0 0

UOPS_ISSUED.CORE_CYCLES_ACTIVE 1H 0EH 1 0 0 1

B-21

USING PERFORMANCE MONITORING EVENTS

B.4.2 Stall Cycle Decomposition and Core Memory Accesses
The decomposition of the stall cycles is accomplished through a standard approximation. It is assumed
that the penalties occur sequentially for each performance impacting event. Consequently, the total loss
of cycles available for useful work is then the number of events, Ni, times the average penalty for each
type of event, Pi

Counted_Stall_Cycles = Sum (Ni* Pi)

This only accounts for the performance impacting events that are or can be counted with a PMU event.
Ultimately there will be several sources of stalls that cannot be counted, however their total contribution
can be estimated:

Unaccounted stall cycles = Stall_Cycles - Counted_Stall_Cycles = UOPS_EXECUTED.CORE_STALLS_-
CYCLES - Sum (Ni* Pi)_both_threads

The unaccounted component can become negative as the sequential penalty model is overly simple and
usually over counts the contributions of the individual microarchitectural issues.

As noted in Section B.4.1.1, UOPS_EXECUTED.CORE_STALL_CYCLES counts on a per core basis rather
than on a per thread basis, the over counting can become severe. In such cases it may be preferable to
use the port 0,1,5 uop stalls, as that can be done on a per thread basis:

Unaccounted stall cycles (per thread) = UOPS_EXECUTED.PORT015_THREADED_STALLS_CYCLES -
Sum (Ni* Pi)

This unaccounted component is meant to represent the components that were either not counted due to
lack of performance events or simply neglected during the data collection.

One can also choose to use the “retirement” point as the basis for stalls. The PEBS event, UOPS_RE-
TIRED.STALL_CYCLES, has the advantage of being evaluated on a per thread basis and being having the
HW capture the IP associated with the retiring uop. This means that the IP distribution will not be effected
by STI/CLI deferral of interrupts in critical sections of OS kernels, thus producing a more accurate profile
of OS activity.

B.4.2.1 Measuring Costs of Microarchitectural Conditions
Decomposition of stalled cycles in this manner should start by first focusing on conditions that carry large
performance penalty, for example, events with penalties of greater than 10 cycles. Short penalty events
(P < 5 cycles) can frequently be hidden by the combined actions of the OOO execution and the compiler.
The OOO engine manages both types of situations in the instruction stream and strive to keep the execu-
tion units busy during stalls of either type due to instruction dependencies. Usually, the large penalty
operations are dominated by memory access and the very long latency instructions for divide and sqrt.

The largest penalty events are associated with load operations that require a cacheline which is not in L1
or L2 of the cache hierarchy. Occurrences must be counted, and the penalty to be assigned must be
known.

The standard approach to measuring latency is to measure the average number of cycles a request is in
a queue:

Latency = Sum (CYCLES_Queue_entries_outstanding) /Queue_inserts

where “queue_inserts“ refers to the total number of entries that caused the outstanding cycles in that
queue. However, the penalty associated with each queue insert (i.e. cachemiss), is the latency divided by
the average queue occupancy. This correction is needed to avoid over counting associated with overlap-
ping penalties.

Avg_Queue_Depth= Sum (CYCLES_Queue_entries_outstanding) / Cycles_Queue_not_empty

The the penalty (cost) of each occurrence is

Penalty = Latency / Avg_Queue_Depth = Cycles_Queue_not_empty / Queue_inserts

An alternative way of thinking about this is to realize that the sum of all the penalties, for an event that
occupies a queue for its duration, cannot exceed the time that the queue is not empty

Cycles_Queue_not_empty = Events * <Penalty>

USING PERFORMANCE MONITORING EVENTS

B-22

The standard techniques described above are simple conceptually. In practice, the large amount of
memory references in the workload and wide range of varying state/location-specific latencies made
standard sampling techniques less practical. Using precise-event-based sampling (PEBS) is the preferred
technique for processors based on Nehalem microarchitecture.

The profiling the penalty by sampling (to localize the measurement in IP) is likely to have accuracy diffi-
culties. Since the latencies for L2 misses can vary from 40 to 400 cycles, collecting the number of
required samples will tend to be invasive.

The use of the precise latency event, that will be discussed later, provides a more accurate and flexible
measurement technique when sampling is used. As each sample records both a load to use latency and
a data source, the average latency per data source can be evaluated. Further as the PEBS hardware
supports buffering the events without generating a PMI until the buffer is full, it is possible to make such
an evaluation efficient without perturbing the workload intrusively.

A number of performance events in core PMU can be used to measure the costs of memory accesses that
originated in the core and experienced delays due to various conditions, locality, or traffic due to cache
coherence requirements. The latency of memory accesses vary, depending on locality of L3, DRAM
attached to the local memory controller or remote controller, and cache coherency factors. Some exam-
ples of the approximate latency values are shown in Table B-7.

B.4.3 Core PMU Precise Events
The Precise Event Based Sampling (PEBS) mechanism enables the PMU to capture the architectural state
and IP at the completion of the instruction that caused the event. This provides two significant benefit for
profiling and tuning:
• The location of the eventing condition in the instruction space can be accurate profiled,
• Instruction arguments can be reconstructed in a post processing phase, using captured PEBS records

of the register states.

The PEBS capability has been greatly expanded in processors based on Nehalem microarchitecture,
covering a large number of and more types of precise events.

The mechanism works by using the counter overflow to arm the PEBS data acquisition. Then on the next
event, the data is captured and the interrupt is raised.

The captured IP value is sometimes referred to as IP +1, because at the completion of the instruction,
the IP value is that of the next instruction.

By their very nature precise events must be “at-retirement” events. For the purposes of this discussion
the precise events are divided into Memory Access events, associated with the retirement of loads and
stores, and Execution Events, associated with the retirement of all instructions or specific non memory
instructions (branches, FP assists, SSE uops).

Table B-7. Approximate Latency of L2 Misses of Intel Xeon Processor 5500

Data Source Latency

L3 hit, Line exclusive ~ 42 cycles

L3 Hit, Line shared ~ 63 cycles

L3 Hit, modified in another core ~ 73 cycles

Remote L3 100 - 150 cycles

Local DRAM ~ 50 ns

Remote DRAM ~ 90 ns

B-23

USING PERFORMANCE MONITORING EVENTS

B.4.3.1 Precise Memory Access Events
There are two important common properties to all precise memory access events:
• The exact instruction can be identified because the hardware captures the IP of the offending

instruction. Of course the captured IP is that of the following instruction but one simply moves the
samples up one instruction. This works even when the recorded IP points to the first instruction of a
basic block because n such a case the offending instruction has to be the last instruction of the
previous basic block, as branch instructions never load or store data, instruction arguments can be
reconstructed in a post processing phase, using captured PEBS records of the register states.

• The PEBS buffer contains the values of all 16 general registers, R1-R16, where R1 is also called RAX.
When coupled with the disassembly the address of the load or store can be reconstructed and used
for data access profiling. The Intel® Performance Tuning Utility does exactly this, providing a wide
variety of powerful analysis techniques

Precise memory access events mainly focus on loads as those are the events typically responsible for the
very long duration execution stalls. They are broken down by the data source, thereby indicating the
typical latency and the data locality in the intrinsically NUMA configurations. These precise load events
are the only L2, L3 and DRAM access events that only count loads. All others will also include the L1D
and/or L2 hardware prefetch requests. Many will also include RFO requests, both due to stores and to the
hardware prefetchers.

All four general counters can be programmed to collect data for precise events. The ability to reconstruct
the virtual addresses of the load and store instructions allows an analysis of the cacheline and page
usage efficiency. Even though cachelines and pages are defined by physical address the lower order bits
are identical, so the virtual address can be used.

As the PEBS mechanism captures the values of the register at completion of the instruction, one should
be aware that pointer-chasing type of load operation will not be captured because it is not possible to
infer the load instruction from the dereferenced address.

The basic PEBS memory access events falls into the following categories:
• MEM_INST_RETIRED: This category counts instruction retired which contain a load operation, it is

selected by event code 0BH.
• MEM_LOAD_RETIRED: This category counts retired load instructions that experienced specific

condition selected by the Umask value, the event code is 0CBH.
• MEM_UNCORE_RETIRED: This category counts memory instructions retired and received data from

the uncore sub-system, it is selected by event code 0FH.
• MEM_STORE_RETIRED: This category counts instruction retired which contain a store operation, it is

selected by event code 0CH.
• ITLE_MISS_RETIRED: This counts instruction retired which missed the ITLB, it is selected by event

code 0C8H

Umask values and associated name suffixes for the above PEBS memory events are listed at:
https://perfmon-events.intel.com/.

The precise events listed above allow load driven cache misses to be identified by data source. This does
not identify the “home” location of the cachelines with respect to the NUMA configuration. The exceptions
to this statement are the events

MEM_UNCORE_RETIRED.LOCAL_DRAM and MEM_UNCORE_RETIRED.NON_LOCAL_DRAM. These can be
used in conjunction with instrumented malloc invocations to identify the NUMA “home” for the critical
contiguous buffers used in an application.

The sum of all the MEM_LOAD_RETIRED events will equal the MEM_INST_RETIRED.LOADS count.

A count of L1D misses can be achieved with the use of all the MEM_LOAD_RETIRED

events, except MEM_LOAD_RETIRED.L1D_HIT. It is better to use all of the individual MEM_LOAD_RE-
TIRED events to do this, rather than the difference of MEM_INST_RETIRED.LOADS-MEM_LOAD_RE-
TIRED.L1D_HIT because while the total counts of precise events will be correct, and they will correctly
identify instructions that caused the event in question, the distribution of the events may not be correct
due to PEBS SHADOWING, discussed later in this section.

https://perfmon-events.intel.com/
https://perfmon-events.intel.com/

USING PERFORMANCE MONITORING EVENTS

B-24

L1D_MISSES = MEM_LOAD_RETIRED.HIT_LFB + MEM_LOAD_RETIRED.L2_HIT + MEM_LOAD_RE-
TIRED.L3_UNSHARED_HIT + MEM_LOAD_RETIRED.OTHER_CORE_HIT_HITM + MEM_LOAD_RE-
TIRED.L3_MISS

The MEM_LOAD_RETIRED.L3_UNSHARED_HIT event merits some explanation. The inclusive L3 has a bit
pattern to identify which core has a copy of the line. If the only bit set is for the requesting core
(unshared hit) then the line can be returned from the L3 with no snooping of the other cores. If multiple
bits are set, then the line is in a shared state and the copy in the L3 is current and can also be returned
without snooping the other cores.

If the line is read for ownership (RFO) by another core, this will put the copy in the L3 into an exclusive
state. If the line is then modified by that core and later evicted, the written back copy in the L3 will be in
a modified state and snooping will not be required. MEM_LOAD_RETIRED.L3_UNSHARED_HIT counts all
of these. The event should really have been called MEM_LOAD_RETIRED.L3_HIT_NO_SNOOP.

The event MEM_LOAD_RETIRED.L3_HIT_OTHER_CORE_HIT_HITM could have been named as MEM_-
LOAD_RETIRED.L3_HIT_SNOOP intuitively for similar reason.

When a modified line is retrieved from another socket it is also written back to memory. This causes
remote HITM access to appear as coming from the home dram. The MEM_UNCORE_RE-
TIRED.LOCAL_DRAM and MEM_UNCORE_RETIRED.REMOTE_DRAM evens thus also count the L3 misses
satisfied by modified lines in the caches of the remote socket.

There is a difference in the behavior of MEM_LOAD_RETIRED.DTLB_MISSES with respect to that on
Intel® Core™2 processors. Previously the event only counted the first miss to the page, as do the impre-
cise events. The event now counts all loads that result in a miss, thus it includes the secondary misses as
well.

B.4.3.2 Load Latency Event
Intel processors based on Nehalem microarchitecture provide support for “load-latency event”, MEM_IN-
ST_RETIRED with event code 0BH and Umask value of 10H (LATENCY_ABOVE_THRESHOLD). This event
samples loads, recording the number of cycles between the execution of the instruction and actual
deliver of the data. If the measured latency is larger than the minimum latency programmed into MSR
0x3f6, bits 15:0, then the counter is incremented.

Counter overflow arms the PEBS mechanism and on the next event satisfying the latency threshold, the
PMU writes the measured latency, the virtual or linear address, and the data source into a PEBS record
format in the PEBS buffer. Because the virtual address is captured into a known location, the sampling
driver could also execute a virtual to physical translation and capture the physical address. The physical
address identifies the NUMA home location and in principle allows an analysis of the details of the cache
occupancies.

Further, as the address is captured before retirement even the pointer chasing encoding “MOV RAX,
[RAX+const]” have their addresses captured. Because the MSR_PEBS_LD_LAT_THRESHOLD MSR is
required to specify the latency threshold value, only one minimum latency value can be sampled on a
core during a given period. To enable this, the Intel performance tools restrict the programming of this
event to counter 4 to simplify the scheduling. Table B-8 lists a few examples of event programming
configurations used by the Intel® PTU and Vtune™ Performance Analyzer for the load latency events.
Different threshold values for the minimum latencies are specified in MSR_PEBS_LD_LAT_THRESHOLD
(address 0x3f6).

B-25

USING PERFORMANCE MONITORING EVENTS

One of the three fields written to each PEBS record by the PEBS assist mechanism of the load latency
event, encodes the data source locality information.

Table B-8. Load Latency Event Programming

Load Latency Precise Events MSR
0x3F6 Umask Event

Code

MEM_INST_RETIRED.LATENCY_ABOVE_THRESHOLD_4 4 10H 0BH

MEM_INST_RETIRED.LATENCY_ABOVE_THRESHOLD_8 8 10H 0BH

MEM_INST_RETIRED.LATENCY_ABOVE_THRESHOLD_10 16 10H 0BH

MEM_INST_RETIRED.LATENCY_ABOVE_THRESHOLD_20 32 10H 0BH

MEM_INST_RETIRED.LATENCY_ABOVE_THRESHOLD_40 64 10H 0BH

MEM_INST_RETIRED.LATENCY_ABOVE_THRESHOLD_80 128 10H 0BH

MEM_INST_RETIRED.LATENCY_ABOVE_THRESHOLD_100 256 10H 0BH

MEM_INST_RETIRED.LATENCY_ABOVE_THRESHOLD_200 512 10H 0BH

MEM_INST_RETIRED.LATENCY_ABOVE_THRESHOLD_8000 32768 10H 0BH

Table B-9. Data Source Encoding for Load Latency PEBS Record

Encoding Description

0x0 Unknown L3 cache miss.

0x1 Minimal latency core cache hit. This request was satisfied by the L1 data cache.

0x2 Pending core cache HIT. Outstanding core cache miss to same cache-line address was already
underway. The data is not yet in the data cache, but is located in a fill buffer that will soon be
committed to cache.

0x3 This data request was satisfied by the L2.

0x4 L3 HIT. Local or Remote home requests that hit L3 cache in the uncore with no coherency actions
required (snooping).

0x5 L3 HIT (other core hit snoop). Local or Remote home requests that hit the L3 cache and was serviced
by another processor core with a cross core snoop where no modified copies were found. (Clean).

0x6 L3 HIT (other core HITM). Local or Remote home requests that hit the L3 cache and was serviced by
another processor core with a cross core snoop where modified copies were found. (HITM).

0x7 Reserved

0x8 L3 MISS (remote cache forwarding). Local homed requests that missed the L3 cache and was serviced
by forwarded data following a cross package snoop where no modified copies found. (Remote home
requests are not counted).

0x9 Reserved.

0xA L3 MISS (local DRMA go to S). Local home requests that missed the L3 cache and was serviced by local
DRAM (go to shared state).

0xB L3 MISS (remote DRMA go to S). Remote home requests that missed the L3 cache and was serviced by
remote DRAM (go to shared state).

0xC L3 MISS (local DRMA go to E). Local home requests that missed the L3 cache and was serviced by local
DRAM (go to exclusive state).

USING PERFORMANCE MONITORING EVENTS

B-26

The latency event is the recommended method to measure the penalties for a cycle accounting decom-
position. Each time a PMI is raised by this PEBS event a load to use latency and a data source for the
cacheline is recorded in the PEBS buffer. The data source for the cacheline can be deduced from the low
order 4 bits of the data source field and the table shown above. Thus an average latency for each of the
16 sources can be evaluated from the collected data. As only one minimum latency at a time can be
collected it may be awkward to evaluate the latency for an MLC hit and a remote socket dram. A
minimum latency of 32 cycles should give a reasonable distribution for all the off-core sources however.
The Intel® PTU version 3.2 performance tool can display the latency distribution in the data profiling
mode and allows sophisticated event filtering capabilities for this event.

B.4.3.3 Precise Execution Events
PEBS capability in core PMU goes beyond load and store instructions. Branches, near calls and conditional
branches can all be counted with precise events, for both retired and mispredicted (and retired) branches
of the type selected. For these events, the PEBS buffer will contain the target of the branch. If the Last
Branch Record (LBR) is also captured then the location of the branch instruction can also be determined.

When the branch is taken the IP value in the PEBS buffer will also appear as the last target in the LBR. If
the branch was not taken (conditional branches only) then it won’t and the branch that was not taken and
retired is the instruction before the IP in the PEBS buffer.

In the case of near calls retired, this means that Event Based Sampling (EBS) can be used to collect accu-
rate function call counts. As this is the primary measurement for driving the decision to inline a function,
this is an important improvement. In order to measure call counts, you must sample on calls. Any other
trigger introduces a bias that cannot be guaranteed to be corrected properly.

The precise branch events can be found under event code C4H at: https://perfmon-events.intel.com/.

There is one source of sampling artifact associated with precise events. It is due to the time delay
between the PMU counter overflow and the arming of the PEBS hardware. During this period events
cannot be detected due to the timing shadow. To illustrate the effect, consider a function call chain where
a long duration function, “foo”, which calls a chain of 3 very short duration functions, “foo1” calling “foo2”
which calls “foo3”, followed by a long duration function “foo4”. If the durations of foo1, foo2 and foo3 are
less than the shadow period the distribution of PEBS sampled calls will be severely distorted. For
example:
• If the overflow occurs on the call to foo, the PEBS mechanism is armed by the time the call to foo1 is

executed and samples will be taken showing the call to foo1 from foo.
• If the overflow occurs due to the call to foo1, foo2 or foo3 however, the PEBS mechanism will not be

armed until execution is in the body of foo4. Thus the calls to foo2, foo3 and foo4 cannot appear as
PEBS sampled calls.

Shadowing can effect the distribution of all PEBS events. It will also effect the distribution of basic block
execution counts identified by using the combination of a branch retired event (PEBS or not) and the last
entry in the LBR. If there were no delay between the PMU counter overflow and the LBR freeze, the last
LBR entry could be used to sample taken retired branches and from that the basic block execution
counts. All the instructions between the last taken branch and the previous target are executed once.

Such a sampling could be used to generate a “software” instruction retired event with uniform sampling,
which in turn can be used to identify basic block execution counts. Unfortunately the shadowing causes
the branches at the end of short basic blocks to not be the last entry in the LBR, distorting the measure-
ment. Since all the instructions in a basic block are by definition executed the same number of times.

0xD L3 MISS (remote DRMA go to E). Remote home requests that missed the L3 cache and was serviced by
remote DRAM (go to exclusive state).

0xE I/O, Request of input/output operation.

0xF The request was to uncacheable memory.

Table B-9. Data Source Encoding for Load Latency PEBS Record (Contd.)

Encoding Description

https://perfmon-events.intel.com/

B-27

USING PERFORMANCE MONITORING EVENTS

The shadowing effect on call counts and basic block execution counts can be alleviated to a large degree
by averaging over the entries in the LBR. This will be discussed in the section on LBRs.

Typically, branches account for more than 10% of all instructions in a workload, loop optimization must
focus on those loops with high tripcounts. For counted loops, it is very common for the induction variable
to be compared to the tripcount in the termination condition evaluation. This is particularly true if the
induction variable is used within the body of the loop, even in the face of heavy optimization. Thus a loop
sequence of unrolled operation by eight times may resemble:
add rcx, 8
cmp rcx, rax
jnge triad+0x27

In this case the two registers, rax and rcx are the tripcount and induction variable. If the PEBS buffer is
captured for the conditional branches retired event, the average values of the two registers in the
compare can be evaluated. The one with the larger average will be the tripcount. Thus the average, RMS,
min and max can be evaluated and even a distribution of the recorded values.

B.4.3.4 Last Branch Record (LBR)
The LBR captures the source and target of each retired taken branch. Processors based on Nehalem
microarchitecture can track 16 pairs of source/target addresses in a rotating buffer. Filtering of the
branch instructions by types and privilege levels are permitted using a dedicated facility, MSR_LBR_SE-
LECT. This means that the LBR mechanism can be programmed to capture branches occurring at ring 0
or ring 3 or both (default) privilege levels. Further the types of taken branches that are recorded can also
be filtered. The list of filtering options that can be specified using MSR_LBR_SELECT is described in
Chapter 18, “Debug, Branch Profile, TSC, and Intel® Resource Director Technology (Intel® RDT) Features”
of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

The default is to capture all branches at all privilege levels (all bits zero). Another reasonable program-
ming would set all bits to 1 except bit 1 (capture ring 3) and bit 3 (capture near calls) and bits 6 and 7.
This would leave only ring 3 calls and unconditional jumps in the LBR. Such a programming would result
in the LBR having the last 16 taken calls and unconditional jumps retired and their targets in the buffer.

A PMU sampling driver could then capture this restricted “call chain” with any event, thereby providing a
“call tree” context. The inclusion of the unconditional jumps will unfortunately cause problems, particu-
larly when there are if-else structures within loops.

In the case of frequent function calls at all levels, the inclusion of returns could be added to clarify the
context. However this would reduce the call chain depth that could be captured. A fairly obvious usage
would be to trigger the sampling on extremely long latency loads, to enrich the sample with accesses to
heavily contended locked variables, and then capture the call chain to identify the context of the lock
usage.

Call Counts and Function Arguments

If the LBRs are captured for PMIs triggered by the BR_INST_RETIRED.NEAR_CALL event, then the call
count per calling function can be determined by simply using the last entry in LBR. As the PEBS IP will
equal the last target IP in the LBR, it is the entry point of the calling function. Similarly, the last source in
the LBR buffer was the call site from within the calling function. If the full PEBS record is captured as well,
then for functions with limited numbers of arguments on 64-bit OS’s, you can sample both the call counts
and the function arguments.

LBRs and Basic Block Execution Counts

Another interesting usage is to use the BR_INST_RETIRED.ALL_BRANCHES event and the LBRs with no
filter to evaluate the execution rate of basic blocks. As the LBRs capture all taken branches, all the basic
blocks between a branch IP (source) and the previous target in the LBR buffer were executed one time.
Thus a simple way to evaluate the basic block execution counts for a given load module is to make a map
of the starting locations of every basic block. Then for each sample triggered by the PEBS collection of
BR_INST_RETIRED.ALL_BRANCHES, starting from the PEBS address (a target but perhaps for a not
taken branch and thus not necessarily in the LBR buffer) and walking backwards through the LBRs until

USING PERFORMANCE MONITORING EVENTS

B-28

finding an address not corresponding to the load module of interest, count all the basic blocks that were
executed. Calling this value “number_of_basic_blocks”, increment the execution counts for all of those
blocks by 1/(number_of_basic_blocks). This technique also yields the taken and not taken rates for the
active branches. All branch instructions between a source IP and the previous target IP (within the same
module) were not taken, while the branches listed in the LBR were taken. This is illustrated in the
graphics below.

The 16 sets LBR records can help rectify the artifact of PEBS samples aggregating disproportionately to
certain instructions in the sampling process. The situation of skewed distribution of PEBS sample is illus-
trated below in Figure B-7.

Consider a number of basic blocks in the flow of normal execution, some basic block takes 20 cycles to
execute, others taking 2 cycles, and shadowing takes 10 cycles. Each time an overflow condition occurs,
the delay of PEBS being armed is at least 10 cycles. Once the PEBS is armed, PEBS record is captured on
the next eventing condition. The skewed distribution of sampled instruction address using PEBS record
will be skewed as shown in the middle of Figure B-7. In this conceptual example, every branch is
assumed to be taken in these basic blocks.

In the skewed distribution of PEBS samples, the branch IP of the last basic block will be recorded 5 times
as much as the least sampled branch IP address (the 2nd basic block).

Figure B-6. LBR Records and Basic Blocks

Figure B-7. Using LBR Records to Rectify Skewed Sample Distribution

Branch_0

“All instructions between Target_0 and Branch_1 are retired 1 time for each event count”

Target_0

Target_1Branch_1

“LBR record”

“All basic blocks between Target_0 and Branch_1 are executed 1 time for each event count”
“All branch instructions between Target_0 and Branch_1 are not taken”

“To”“From”

20

O: overflow; P: PEBS armed; C: interrupt occurs

2
C

O

P

2

2

2

20

20

0

N

0

0

0

0

5NC

O

P

C

O

P

C

O

P

C

O

P

C

O

P

Cycle Flow PEBS Sample Distribution

16N

16N

18N

16N

17N

19N

20N

Branch IP Distribution
 in LBRTrajectory

B-29

USING PERFORMANCE MONITORING EVENTS

This situation where some basic blocks would appear to never get samples and some have many times
too many. Weighting each entry by 1/(num of basic blocks in the LBR trajectory), in this example would
result in dividing the numbers in the right most table by 16. Thus far more accurate execution counts are
achieved ((1.25-> 1.0) * N) in all of the basic blocks, even those that never directly caused a PEBS
sample.

As on Intel® Core™2 processors there is a precise instructions retired event that can be used in a wide
variety of ways. In addition there are precise events for uops_retired, various SSE instruction classes, FP
assists. It should be noted that the FP assist events only detect x87 FP assists, not those involving SSE
FP instructions. Detecting all assists will be discussed in the section on the pipeline Frontend.

The instructions retired event has a few special uses. While its distribution is not uniform, the totals are
correct. If the values recorded for all the instructions in a basic block are averaged, a measure of the
basic block execution count can be extracted. The ratios of basic block executions can be used to esti-
mate loop tripcounts when the counted loop technique discussed above cannot be applied.

The PEBS version (general counter) instructions retired event can further be used to profile OS execution
accurately even in the face of STI/CLI semantics, because the PEBS interrupt then occurs after the crit-
ical section has completed, but the data was frozen correctly. If the CMask value is set to some very high
value and the invert condition is applied, the result is always true, and the event will count core cycles
(halted + unhalted).

Consequently both cycles and instructions retired can be accurately profiled. The UOPS_RETIRED.ANY
event, which is also precise can also be used to profile Ring 0 execution and really gives a more accurate
display of execution. The precise events available for this purpose are listed under event code C0H, C2H,
C7H, F7H at: https://perfmon-events.intel.com/.

Measuring Core Memory Access Latency

Drilling down performance issues associated with locality or cache coherence issues will require using
performance monitoring events. In each processor core, there is a super queue that allocates entries to
buffer requests of memory access traffic due to an L2 miss to the uncore sub-system. Table B-10 lists
various performance events available in the core PMU that can drill down performance issues related to
L2 misses.

Table B-11 lists various performance events available in the core PMU that can drill down performance
issues related to super queue operation.

Table B-10. Core PMU Events to Drill Down L2 Misses

Core PMU Events Umask Event Code

OFFCORE_REQUESTS.DEMAND.READ_DATA1

NOTES:
1. The *DEMAND* events also include any requests made by the L1D cache hardware prefetchers.

01H B0H

OFFCORE_REQUESTS.DEMAND.READ_CODE1 02H B0H

OFFCORE_REQUESTS.DEMAND.RFO1 04H B0H

OFFCORE_REQUESTS.ANY.READ 08H B0H

OFFCORE_REQUESTS.ANY.RFO 10H B0H

OFFCORE_REQUESTS.UNCACHED_MEM 20H B0H

OFFCORE_REQUESTS.L1D.WRITEBACK 40H B0H

OFFCORE_REQUESTS.ANY 80H B0H

https://perfmon-events.intel.com/

USING PERFORMANCE MONITORING EVENTS

B-30

Additionally, L2 misses can be drilled down further by data origin attributes and response attributes. The
matrix to specify data origin and response type attributes is done by a dedicated MSR OFFCORE_RSP_0
at address 1A6H. See Table B-12 and Table B-13.

Table B-11. Core PMU Events for Super Queue Operation

Core PMU Events Umask Event Code

OFFCORE_REQUESTS_BUFFER_FULL 01H B2H

Table B-12. Core PMU Event to Drill Down OFFCore Responses

Core PMU Events OFFCORE_RSP_0 MSR Umask Event Code

OFFCORE_RESPONSE See Table B-13 01H B7H

Table B-13. OFFCORE_RSP_0 MSR Programming

Position Description Note

Request type 0 Demand Data Rd = DCU reads (includes
partials, DCU Prefetch)

1 Demand RFO = DCU RFOs

2 Demand IFetch = IFU Fetches

3 Writeback = L2_EVICT/DCUWB

4 PF Data Rd = L2 Prefetcher Reads

5 PF RFO= L2 Prefetcher RFO

6 PF IFetch= L2 Prefetcher Instruction
fetches

7 Other Include non-temporal
stores

8 L3_HIT_UNCORE_HIT exclusive line

9 L3_HIT_OTHER_CORE_HIT_SNP clean line

10 L3_HIT_OTHER_CORE_HITM modified line

11 L3_MISS_REMOTE_HIT_SCRUB Used by multiple cores

12 L3_MISS_REMOTE_FWD Clean line used by one core

13 L3_MISS_REMOTE_DRAM

14 L3_MISS_LOCAL_DRAM

15 Non-DRAM Non-DRAM requests

B-31

USING PERFORMANCE MONITORING EVENTS

Although Table B-13 allows 2^16 combinations of setting in MSR_OFFCORE_RSP_0 in theory, it is more
useful to consider combining the subsets of 8-bit values to specify “Request type” and “Response type”.
The more common 8-bit mask values are listed in Table B-14.

B.4.3.5 Measuring Per-Core Bandwidth
Measuring the bandwidth of all memory traffic for an individual core is complicated, the core PMU and
uncore PMU do provide capability to measure the important components of per-core bandwidth.

At the microarchitectural level, there is the buffering of L3 for writebacks/evictions from L2 (similarly to
some degree with the non temporal writes). The eviction of modified lines from the L2 causes a write of
the line back to the L3. The line in L3 is only written to memory when it is evicted from the L3 some time
later (if at all). And L3 is part of the uncore sub-system, not part of the core.

The writebacks to memory due to eviction of modified lines from L3 cannot be associated with an indi-
vidual core in the uncore PMU logic. The net result of this is that the total write bandwidth for all the cores
can be measured with events in the uncore PMU. The read bandwidth and the non-temporal write band-
width can be measured on a per core basis. In a system populated with two physical processor, the NUMA
nature of memory bandwidth implies the measurement for those 2 components has to be divided into
bandwidths for the core on a per-socket basis.

Table B-14. Common Request and Response Types for OFFCORE_RSP_0 MSR

Request Type Mask Response Type Mask

ANY_DATA xx11H ANY_CACHE_DRAM 7FxxH

ANY_IFETCH xx44H ANY_DRAM 60xxH

ANY_REQUEST xxFFH ANY_L3_MISS F8xxH

ANY_RFO xx22H ANY_LOCATION FFxxH

CORE_WB xx08H IO 80xxH

DATA_IFETCH xx77H L3_HIT_NO_OTHER_CORE 01xxH

DATA_IN xx33H L3_OTHER_CORE_HIT 02xxH

DEMAND_DATA xx03H L3_OTHER_CORE_HITM 04xxH

DEMAND_DATA_RD xx01H LOCAL_CACHE 07xxH

DEMAND_IFETCH xx04H LOCAL_CACHE_DRAM 47xxH

DEMAND_RFO xx02H LOCAL_DRAM 40xxH

OTHER1

NOTES:
1. The PMU may report incorrect counts with setting MSR_OFFCORE_RSP_0 to the value of 4080H. Non-temporal stores to

the local DRAM is not reported in the count.

xx80H REMOTE_CACHE 18xxH

PF_DATA xx30H REMOTE_CACHE_DRAM 38xxH

PF_DATA_RD xx10H REMOTE_CACHE_HIT 10xxH

PF_IFETCH xx40H REMOTE_CACHE_HITM 08xxH

PF_RFO xx20H REMOTE-DRAM 20xxH

PREFETCH xx70H

USING PERFORMANCE MONITORING EVENTS

B-32

The per-socket read bandwidth can be measured with the events:

OFFCORE_RESPONSE_0.DATA_IFETCH.L3_MISS_LOCAL_DRAM.

OFFCORE_RESPONSE_0.DATA_IFETCH.L3_MISS_REMOTE_DRAM.

The total read bandwidth for all sockets can be measured with the event:

OFFCORE_RESPONSE_0.DATA_IFETCH.ANY_DRAM.

The per-socket non-temporal store bandwidth can be measured with the events:

OFFCORE_RESPONSE_0.OTHER.L3_MISS_LOCAL_CACHE_DRAM.

OFFCORE_RESPONSE_0.OTHER.L3_MISS_REMOTE_DRAM.

The total non-temporal store bandwidth can be measured with the event:

OFFCORE_RESPONSE_0.OTHER.ANY.CACHE_DRAM.

The use of “CACHE_DRAM” encoding is to work around the defect in the footnote of Table B-14. Note that
none of the above includes the bandwidth associated with writebacks of modified cacheable lines.

B.4.3.6 Miscellaneous L1 and L2 Events for Cache Misses
In addition to the OFFCORE_RESPONSE_0 event and the precise events that will be discussed later, there
are several other events that can be used as well. There are additional events that can be used to supple-
ment the offcore_response_0 events, because the offcore_response_0 event code is supported on
counter 0 only.

L2 misses can also be counted with the architecturally defined event LONGEST_LAT_CACHE_ACCESS,
however as this event also includes requests due to the L1D and L2 hardware prefetchers, its utility may
be limited. Some of the L2 access events can be used for both drilling down L2 accesses and L2 misses
by type, in addition to the OFFCORE_REQUESTS events discussed earlier. The L2_RQSTS and
L2_DATA_RQSTS events can be used to discern assorted access types. In all of the L2 access events the
designation PREFETCH only refers to the L2 hardware prefetch. The designation DEMAND includes loads
and requests due to the L1D hardware prefetchers.

The L2_LINES_IN and L2_LINES_OUT events have been arranged slightly differently than the equivalent
events on Intel® Core™2 processors. The L2_LINES_OUT event can now be used to decompose the
evicted lines by clean and dirty (i.e. a Writeback) and whether they were evicted by an L1D request or an
L2 HW prefetch.

The event L2_TRANSACTIONS counts all interactions with the L2.

Writes and locked writes are counted with a combined event, L2_WRITE.

The details of the numerous derivatives of L2_RQSTS, L2_DATA_RQSTS, L2_LINES_IN, L2_LINES_OUT,
L2_TRANSACTIONS, L2_WRITE, can be found under event codes24H, 26H, F1H, F2H, F0H, and 27H at:
https://perfmon-events.intel.com/.

B.4.3.7 TLB Misses
The next largest set of memory access delays are associated with the TLBs when linear-to-physical
address translation is mapped with a finite number of entries in the TLBs. A miss in the first level TLBs
results in a very small penalty that can usually be hidden by the OOO execution and compiler's sched-
uling. A miss in the shared TLB results in the Page Walker being invoked and this penalty can be notice-
able in the execution.

The (non-PEBS) TLB miss events break down into three sets:
• DTLB misses and its derivatives are programmed with event code 49H.
• Load DTLB misses and its derivatives are programmed with event code 08H.
• ITLB misses and its derivatives are programmed with event code 85H.

https://perfmon-events.intel.com/
https://perfmon-events.intel.com/

B-33

USING PERFORMANCE MONITORING EVENTS

Store DTLB misses can be evaluated from the difference of the DTLB misses and the Load DTLB misses.
Each then has a set of sub events programmed with the Umask value. The Umask details of the
numerous derivatives of the above events are listed at: https://perfmon-events.intel.com/.

B.4.3.8 L1 Data Cache
There are PMU events that can be used to analyze L1 data cache operations. These events can only be
counted with the first 2 of the 4 general counters, i.e. IA32_PMC0 and IA32_PMC1. Most of the L1D
events are self explanatory.

The total number of references to the L1D can be counted with L1D_ALL_REF, either just cacheable refer-
ences or all. The cacheable references can be divided into loads and stores with L1D_CACHE_LOAD and
L1D_CACHE.STORE. These events are further subdivided by MESI states through their Umask values,
with the I state references indicating the cache misses.

The evictions of modified lines in the L1D result in writebacks to the L2. These are counted with the
L1D_WB_L2 events. The Umask values break these down by the MESI state of the version of the line in
the L2.

The locked references can be counted also with the L1D_CACHE_LOCK events. Again these are broken
down by MES states for the lines in L1D.

The total number of lines brought into L1D, the number that arrived in an M state and the number of
modified lines that get evicted due to receiving a snoop are counted with the L1D event and its Umask
variations.

The L1D events are listed under event codes28H, 40H, 41H, 42H, 43H, 48H, 4EH, 51H, 52H, 53H, 80H,
and 83H at: https://perfmon-events.intel.com/.

There are few cases of loads not being able to forward from active store buffers. The predominant situa-
tions have to do with larger loads overlapping smaller stores. There is not event that detects when this
occurs. There is also a “false store forwarding” case where the addresses only match in the lower 12
address bits. This is sometimes referred to as 4K aliasing. This can be detected with the event
“PARTIAL_ADDRESS_ALIAS“ which has event code 07H and Umask 01H.

B.4.4 Frontend Monitoring Events
Branch misprediction effects can sometimes be reduced through code changes and enhanced inlining.
Most other Frontend performance limitations have to be dealt with by the code generation. The analysis
of such issues is mostly of use by compiler developers.

B.4.4.1 Branch Mispredictions
In addition to branch retired events that was discussed in conjunction with PEBS in Section B.4.3.3.
These are enhanced by use of the LBR to identify the branch location to go along with the target location
captured in the PEBS buffer. Aside from those usage, many other PMU events (event code E6, E5, E0, 68,
69) associated with branch predictions are more relevant to hardware design than performance tuning.

Branch mispredictions are not in and of themselves an indication of a performance bottleneck. They have
to be associated with dispatch stalls and the instruction starvation condition, UOPS_ISSUED:C1:I1 –
RESOURCE_STALLS.ANY. Such stalls are likely to be associated with ICache misses and ITLB misses. The
precise ITLB miss event can be useful for such issues. The ICache and ITLB miss events are listed under
event code 80H, 81H, 82H, 85H, AEH.

B.4.4.2 Frontend Code Generation Metrics
The remaining Frontend events are mostly of use in identifying when details of the code generation
interact poorly with the instructions decoding and uop issue to the OOO engine. Examples are length
changing prefix issues associated with the use of 16 bit immediates, rob read port stalls, instruction
alignment interfering with the loop detection and instruction decoding bandwidth limitations. The activity

https://perfmon-events.intel.com/
https://perfmon-events.intel.com/

USING PERFORMANCE MONITORING EVENTS

B-34

of the LSD is monitored using CMASK values on a signal monitoring activity. Some of these events are
listed under event code 17H, 18H, 1EH, 1FH, 87H, A6H, A8H, D0H, D2H at:

https://perfmon-events.intel.com/.

Some instructions (FSIN, FCOS, and other transcendental instructions) are decoded with the assistance
of MS-ROM. Frequent occurrences of instructions that required assistance of MS-ROM to decode complex
uop flows are opportunity to improve instruction selection to reduce such occurrences. The UOPS_DE-
CODED.MS event can be used to identify code regions that could benefit from better instruction selection.

Other situations that can trigger this event are due to FP assists, like performing a numeric operation on
denormalized FP values or QNaNs. In such cases the penalty is essentially the uops required for the assist
plus the pipeline clearing required to ensure the correct state.

Consequently this situation has a very clear signature consisting of MACHINE_CLEAR.CYCLES and uops
being inserted by the microcode sequencer, UOPS_DECODED.MS. The execution penalty being the sum
of these two contributions. The event codes for these are listed under D1H and C3H.

B.4.5 Uncore Performance Monitoring Events
The uncore sub-system includes the L3, IMC and Intel QPI units in the diagram shown in Figure B-4.
Within the uncore sub-system, the uncore PMU consists of eight general-purpose counters and one fixed
counter. The fixed counter in uncore monitors the unhalted clock cycles in the uncore clock domain, which
runs at a different frequency than the core.

The uncore cannot by itself generate a PMI interrupt. While the core PMU can raise PMI at a per-logical-
processor specificity, the uncore PMU can cause PMI at a per-core specificity using the interrupt hardware
in the processor core. When an uncore counter overflows, a bit pattern is used to specify which cores
should be signaled to raise a PMI. The uncore PMU is unaware of the core, Processor ID or Thread ID that
caused the event that overflowed a counter. Consequently the most reasonable approach for sampling on
uncore events is to raise a PMI on all the logical processors in the package.

There are a wide variety of events that monitor queue occupancies and inserts. There are others that
count cacheline transfers, dram paging policy statistics, snoop types and responses, and so on. The
uncore is the only place the total bandwidth to memory can be measured. This will be discussed explicitly
after all the uncore components and their events are described.

B.4.5.1 Global Queue Occupancy
Each processor core has a super queue that buffers requests of memory access traffic due to an L2 miss.
The uncore has a global queue (GQ) to service transaction requests from the processor cores and buffers
data traffic that arrive from L3, IMC, or Intel QPI links.

Within the GQ, there are 3 “trackers” in the GQ for three types of transactions:
• On-package read requests, its tracker queue has 32 entries.
• On-package writeback requests, its tracker queue has 16 entries.
• Requests that arrive from a “peer”, its tracker queue has 12 entries.

A “peer” refers to any requests coming from the Intel® QuickPath Interconnect.

The occupancies, inserts, cycles full and cycles not empty for all three trackers can be monitored. Further
as load requests go through a series of stages the occupancy and inserts associated with the stages can
also be monitored, enabling a “cycle accounting” breakdown of the uncore memory accesses due to
loads.

When a uncore counter is first programmed to monitor a queue occupancy, for any of the uncore queues,
the queue must first be emptied. This is accomplished by the driver of the monitoring software tool
issuing a bus lock. This only needs to be done when the counter is first programmed. From that point on
the counter will correctly reflect the state of the queue, so it can be repeatedly sampled for example
without another bus lock being issued.

https://perfmon-events.intel.com/

B-35

USING PERFORMANCE MONITORING EVENTS

The uncore events that monitor GQ allocation (UNC_GQ_ALLOC) and GQ tracker occupancy (UNC_GQ-
_TRACKER_OCCUP) are listed under the event code 03H and 02H at: https://perfmon-events.intel.com/.
The selection between the three trackers is specified from the Umask value. The mnemonic of these
derivative events use the notation: “RT” signifying the read tracker, “WT”, the write tracker and “PPT” the
peer probe tracker.

Latency can measured by the average duration of the queue occupancy, if the occupancy stops as soon
as the data has been delivered. Thus the ratio of UNC_GQ_TRACKER_OCCUP.X/UNC_GQ_ALLOC.X
measures an average duration of queue occupancy, where ‘X’ represents a specific Umask value. The
total occupancy period of the read tracker as measured by:

Total Read Period = UNC_GQ_TRACKER_OCCUP.RT/UNC_GQ_ALLOC.RT

Is longer than the data delivery latency due to it including time for extra bookkeeping and cleanup. The
measurement:

LLC response Latency = UNC_GQ_TRACKER_OCCUP.RT_TO_LLC_RESP / UNC_GQ-
_ALLOC.RT_TO_LLC_RESP

is essentially a constant. It does not include the total time to snoop and retrieve a modified line from
another core for example, just the time to scan the L3 and see if the line is or is not present in this socket.

An overall latency for an L3 hit is the weighted average of three terms:
• The latency of a simple hit, where the line has only been used by the core making the request.
• The latencies for accessing clean lines by multiple cores.
• The latencies for accessing dirty lines that have been accessed by multiple cores.

These three components of the L3 hit for loads can be decomposed using the derivative events of
OFFCORE_RESPONSE:
• OFFCORE_RESPONSE_0.DEMAND_DATA.L3_HIT_NO_OTHER_CORE.
• OFFCORE_RESPONSE_0.DEMAND_DATA.L3_HIT_OTHER_CORE_HIT.
• OFFCORE_RESPONSE_0.DEMAND_DATA.L3_HIT_OTHER_CORE_HITM.

The event OFFCORE_RESPONSE_0.DEMAND_DATA.LOCAL_CACHE should be used as the denominator to
obtain latencies. The individual latencies could have to be measured with microbenchmarks, but the use
of the precise latency event will be far more effective as any bandwidth loading effects will be included.

The L3 miss component is the weighted average over three terms:
• The latencies of L3 hits in a cache on another socket (this is described in the previous paragraph).
• The latencies to local DRAM.
• The latencies to remote DRAM.

The local dram access and the remote socket access can be decomposed with more uncore events.

Miss to fill latency = UNC_GQ_TRACKER_OCCUP.RT_LLC_MISS / UNC_GQ_ALLOC.RT_LLC_MISS

The uncore GQ events using Umask value associated with *RTID* mnemonic allow the monitoring of a
sub component of the Miss to fill latency associated with the communications between the GQ and the
QHL.

There are uncore PMU events which monitor cycles when the three trackers are not empty (>= 1 entry)
or full. These events are listed under the event code 00H and 01H at: https://perfmon-events.intel.com/.

Because the uncore PMU generally does not differentiate which processor core causes a particular
eventing condition, the technique of dividing the latencies by the average queue occupancy in order to
determine a penalty does not work for the uncore. Overlapping entries from different cores do not result
in overlapping penalties and thus a reduction in stalled cycles. Each core suffers the full latency inde-
pendently.

To evaluate the correction on a per-core basis, the number of cycles is required for an entry from the core
in question. A *NOT_EMPTY_CORE_N type event is required, however, there is no such event. Conse-
quently, in the cycle decomposition one must use the full latency for the estimate of the penalty. As has
been stated before it is best to use the PEBS latency event as the data sources are also collected with the
latency for the individual sample.

https://perfmon-events.intel.com/
https://perfmon-events.intel.com/

USING PERFORMANCE MONITORING EVENTS

B-36

The individual components of the read tracker, discussed above, can also be monitored as busy or full by
setting the CMask value to 1 or 32 and applying it to the assorted read tracker occupancy events.

B.4.5.2 Global Queue Port Events
The GQ data buffer traffic controls the flow of data to and from different sub-systems via separate ports:
• Core traffic: two ports handles data traffic, each port dedicated to a pair of processor cores.
• L3 traffic: one port service L3 data traffic.
• Intel QPI traffic: one service traffic to QPI logic.
• IMC traffic: one service data traffic to integrated memory controller.

The ports for L3 and core traffic transfer a fixed number of bits per cycle. However the Intel® QuickPath
Interconnect protocols can result in either 8 or 16 bytes being transferred on the read Intel QPI and IMC
ports. Consequently these events cannot be used to measure total data transfers and bandwidths.

The uncore PMU events that can distinguish traffic flow are listed under the event code 04H and 05H at:
https://perfmon-events.intel.com/.

B.4.5.3 Global Queue Snoop Events
Cacheline requests from the cores or from a remote package or the I/O Hub are handled by the GQ.
When the uncore receives a cacheline request from one of the cores, the GQ first checks the L3 to see if
the line is on the package. Because the L3 is inclusive, this answer can be quickly ascertained. If the line
is in the L3 and was owned by the requesting core, data can be returned to the core from the L3 directly.
If the line is being used by multiple cores, the GQ will snoop the other cores to see if there is a modified
copy. If so the L3 is updated and the line is sent to the requesting core.

In the event of an L3 miss, the GQ must send out requests to the local memory controller (or over the
Intel QPI links) for the line. A request through the Intel QPI to a remote L3 (or remote DRAM) must be
made if data exists in a remote L3 or does not exist in local DRAM. As each physical package has its own
local integrated memory controller the GQ must identify the “home” location of the requested cacheline
from the physical address. If the address identifies home as being on the local package then the GQ
makes a simultaneous request to the local memory controller. If home is identified as belonging to the
remote package, the request sent over the Intel QPI will also access the remote IMC.

The GQ handles the snoop responses for the cacheline requests that come in from the Intel® QuickPath
Interconnect. These snoop traffic correspond to the queue entries in the peer probe tracker.

The snoop responses are divided into requests for locally homed data and remotely homed data. If the
line is in a modified state and the GQ is responding to a read request, the line also must be written back
to memory. This would be a wasted effort for a response to a RFO as the line will just be modified again,
so no Writeback is done for RFOs.

Table B-15. Uncore PMU Events for Occupancy Cycles

Uncore PMU Events CMask Umask Event Code

UNC_GQ_TRACKER_OCCUP.RT_L3_MISS_FULL 32 02H 02H

UNC_GQ_TRACKER_OCCUP.RT_TO_L3_RESP_FULL 32 04H 02H

UNC_GQ_TRACKER_OCCUP.RT_TO_RTID_ACCQUIRED_FULL 32 08H 02H

UNC_GQ_TRACKER_OCCUP.RT_L3_MISS_BUSY 1 02H 02H

UNC_GQ_TRACKER_OCCUP.RT_TO_L3_RESP_BUSY 1 04H 02H

UNC_GQ_TRACKER_OCCUP.RT_TO_RTID_ACCQUIRED_BUSY 1 08H 02H

https://perfmon-events.intel.com/
https://perfmon-events.intel.com/

B-37

USING PERFORMANCE MONITORING EVENTS

The snoop responses of local home events that can be monitored by an uncore PMU are listed under
event code 06H at: https://perfmon-events.intel.com/. The snoop responses of remotely home events
are listed under event code 07H.

Some related events count the MESI transitions in response to snoops from other caching agents
(processors or IOH). Some of these rely on programming MSR so they can only be measured one at a
time, as there is only one MSR. The Intel performance tools will schedule this correctly by restricting
these events to a single general uncore counter.

B.4.5.4 L3 Events
Although the number of L3 hits and misses can be determined from the GQ tracker allocation events,
Several uncore PMU event is simpler to use. They are listed under event code 08H and 09H in the uncore
event list at: https://perfmon-events.intel.com/.

The MESI states breakdown of lines allocated and victimized can also be monitored with LINES_IN,
LINES_OUT events in the uncore using event code 0AH and 0BH. Details are listed at:

https://perfmon-events.intel.com/.

B.4.6 Intel QuickPath Interconnect Home Logic (QHL)
When a data misses L3 and causing the GQ of the uncore to send out a transaction request, the Intel QPI
fabric will fulfill the request either from the local DRAM controller or from a remote DRAM controller in
another physical package. The GQ must identify the “home” location of the requested cacheline from the
physical address. If the address identifies home as being on the local package then the GQ makes a
simultaneous request to the local memory controller, the Integrated memory controller (IMC). If home is
identified as belonging to the remote package, the request is sent to the Intel QPI first and then to access
the remote IMC.

The Intel QPI logic and IMC are distinct units in the uncore sub-system. The Intel QPI logic distinguish the
local IMC relative to remote IMC using the concept of “caching agent” and “home agent“. Specifically, the
Intel QPI protocol considers each socket as having a “caching agent”: and a “home agent”:
• Caching Agent is the GQ and L3 in the uncore (or an IOH if present).
• Home Agent is the IMC.

An L3 miss result in simultaneous queries for the line from all the Caching Agents and the Home agent
(wherever it is).

QHL requests can be superseded when another source can supply the required line more quickly. L3
misses to locally homed lines, due to on package requests, are simultaneously directed to the QHL and
Intel QPI. If a remote caching agent supplies the line first then the request to the QHL is sent a signal that
the transaction is complete. If the remote caching agent returns a modified line in response to a read
request then the data in dram must be updated with a writeback of the new version of the line.

There is a similar flow of control signals when the Intel QPI simultaneously sends a snoop request for a
locally homed line to both the GQ and the QHL. If the L3 has the line, the QHL must be signaled that the
transaction was completely by the L3/GQ. If the line in L3 (or the cores) was modified and the snoop
request from the remote package was for a load, then a writeback must be completed by the QHL and the
QHL forwards the line to the Intel QPI to complete the transaction.

Uncore PMU provides events for monitoring these cacheline access and writeback traffic in the uncore by
using the QHL opcode matching capability. The uncore PMU event that uses the opcode matching capa-
bility is listed under event code 35H. Several of the more useful setting to program QHL opcode matching
is shown in Table B-16.

https://perfmon-events.intel.com/
https://perfmon-events.intel.com/
https://perfmon-events.intel.com/

USING PERFORMANCE MONITORING EVENTS

B-38

These predefined opcode match encodings can be used to monitor HITM accesses. It is the only event
that allows profiling the code requesting HITM transfers.

The diagrams Figure B-8 through Figure B-15 show a series of Intel QPI protocol exchanges associated
with Data Reads and Reads for Ownership (RFO), after an L3 miss, under a variety of combinations of the
local home of the cacheline, and the MESI state in the remote cache. Of particular note are the cases
where the data comes from the remote QHL even when the data was in the remote L3. These are the
Read Data with the remote L3 having the line in an M state.

Table B-16. Common QHL Opcode Matching Facility Programming

Load Latency Precise Events MSR 0x396 Umask Event
Code

UNC_ADDR_OPCODE_MATCH.IOH.NONE 0 1H 35H

UNC_ADDR_OPCODE_MATCH.IOH.RSPFWDI 40001900_00000000 1H 35H

UNC_ADDR_OPCODE_MATCH.IOH.RSPFWDS 40001A00_00000000 1H 35H

UNC_ADDR_OPCODE_MATCH.IOH.RSPIWB 40001D00_00000000 1H 35H

UNC_ADDR_OPCODE_MATCH.REMOTE.NONE 0 2H 35H

UNC_ADDR_OPCODE_MATCH.REMOTE.RSPFWDI 40001900_00000000 2H 35H

UNC_ADDR_OPCODE_MATCH.REMOTE.RSPFWDS 40001A00_00000000 2H 35H

UNC_ADDR_OPCODE_MATCH.REMOTE.RSPIWB 40001D00_00000000 2H 35H

UNC_ADDR_OPCODE_MATCH.LOCAL.NONE 0 4H 35H

UNC_ADDR_OPCODE_MATCH.LOCAL.RSPFWDI 40001900_00000000 1H 35H

UNC_ADDR_OPCODE_MATCH.LOCAL.RSPFWDS 40001A00_00000000 1H 35H

UNC_ADDR_OPCODE_MATCH.LOCAL.RSPIWB 40001D00_00000000 1H 35H

B-39

USING PERFORMANCE MONITORING EVENTS

Figure B-8. RdData Request after LLC Miss to Local Home (Clean Rsp)

Figure B-9. RdData Request after LLC Miss to Remote Home (Clean Rsp)

CoresCores

GQ

IMC QHL

P
L
L
C

GQ

IMCQHL

L
L
C

Q
P
I

Q

I

DRd

Cac
he

 L
oo

ku
p

Cac
he

 M
iss

[Send
Snoop
to LLC]

SnpDataRspl

Socket 1 Socket 2

SnpData

Rspl

Uncore Uncore
[Broadcast
snoops to all
other caching
agents]

[Sending Req
to Local Home
(socket 2 owns
this address)]

Data

Speculative
mem Rd

[Fill complete
to socket 2]

Cache Lookup

Cache M
iss

Allocate in E state

[I-> E]

D
at

aC
_E

_C
M

P

Rsp
l

Snp
Dat

a

R
dD

at
a

Rspl

CoresCores

GQ

IMC QHL

P
L
L
C

GQ

IMCQHL

L
L
C

Q
P
I

Q

I

DRd

Cac
he

 L
oo

ku
p

(7
)

Clea
n

Rsp
 (8

) [Send
Snoop
to LLC]

SnpData (6)

Socket 1 Socket 2

RdData (5)

DataC_E_cmp

Uncore Uncore

[Sending Req

Cache Lookup (2)

Cache M
iss (3)

Allocate in E state

[I-> E] (13)
Dat

aC
_E

_c
m

p
(1

2)

RdD
at

a
(4

)

(1)

(11) to Remote Home
(socket 1 owns
this address)]

R
sp

l (
9)

RdD
at

a
(6

)

Dat
aC

_E
_c

m
p

(1
0)

[Send
Request
to CHL]

[Send complete and
Data to socket 2 to
allocate in E state]

Speculative
mem Rd (7)

Data (9)

[Rspl indicates
clean snoop]

USING PERFORMANCE MONITORING EVENTS

B-40

Figure B-10. RdData Request after LLC Miss to Remote Home (Hitm Response)

Figure B-11. RdData Request after LLC Miss to Local Home (Hitm Response)

CoresCores

GQ

IMC QHL

P
L
L
C

GQ

IMCQHL

L
L
C

Q
P
I

Q

I

DRd

Cac
he

 L
oo

ku
p

(7
)

Hitm
 R

sp

[Send
Snoop
to LLC]

SnpData (6)

Socket 1 Socket 2

RdData (5)

DataC_E_cmp

Uncore Uncore

[Sending Req

Cache Lookup (2)

Cache M
iss (3)

Allocate in E state

[I-> E] (13)
Dat

aC
_E

_c
m

p
(1

2)

RdD
at

a
(4

)

(1)

(11) to Remote Home
(socket 1 owns
this address)]R

sp
lW

b,

RdD
at

a
(6

)

Dat
aC

_E
_c

m
p

(1
0)

[Send complete and
Data to socket 2 to
allocate in E state]

Speculative mem Rd (7)

Data (9)

[S
en

d

Req
ue

st

to
 C

HL]
W

bl
D

at
a

(9
)

M
->

 I,
 D

at
a

(8
)

[Data written back to
Home RsplWb is a
NDR response. Hint
to home that wb data
follows shortly which
is WblData.] WB

CoresCores

GQ

IMC QHL

P
L
L
C

GQ

IMCQHL

L
L
C

Q
P
I

Q

I

DRd

Cac
he

 L
oo

ku
p

Hitm
 R

sp

[Send
Snoop
to LLC]

SnpData

Socket 1 Socket 2

SnpData

RsplWb

Uncore Uncore

[Sending Req

Cache Lookup

Cache M
iss

Allocate in E state

[I-> E]Snp
Dat

a

WblData

to Remote Home
(socket 2 owns
this address)]

M
->

 I,
 D

at
a

[Data written back to
Home RsplWb is a
NDR response. Hint
to home that wb data
follows shortly which
is WblData.]

W
blData

RsplW
b

[Broadcast
snoops to all
other caching
agents]

D
at

aC
_E

_c
m

p

R
dD

at
a

W
blData

RsplW
b

[Send complete
to socket 2]

Speculative memRd
WB

Data

B-41

USING PERFORMANCE MONITORING EVENTS

Figure B-12. RdData Request after LLC Miss to Local Home (Hit Response)

Figure B-13. RdInvOwn Request after LLC Miss to Remote Home (Clean Res)

CoresCores

GQ

IMC QHL

P
L
L
C

GQ

IMCQHL

L
L
C

Q
P
I

Q

I

DRd

Cac
he

 L
oo

ku
p

Hit R
sp

[Send
Snoop
to LLC]

SnpData

Socket 1 Socket 2

SnpData

DataC_F

Uncore Uncore

[Sending Req

Cache Lookup

Cache M
iss

Allocate in F state

[I-> F]
Snp

Dat
a

RspFwdS

to Local Home
(socket 2 owns
this address)]

E,F
 ->

 S
, D

at
a

DataC_F
RspFwdS

[Broadcast
snoops to all
other caching
agents]

C
M

P

R
dD

at
a

RspFwdS

[Send complete
to socket 2]

Speculative memRd

Data

Dat
aC

_F

[RspFwdS indicates Hit
snoop response and data
forwarded to Peer agent]

[DataC_F indicates data
forwarded to Peer agent
in F state]

CoresCores

GQ

IMC QHL

P
L
L
C

GQ

IMCQHL

L
L
C

Q
P
I

Q

I

RFO

Cac
he

 L
oo

ku
p

[Send
Snoop
to LLC]

SnpInvOwn

Socket 1 Socket 2

RdInvOwn

DataC_E_cmp

Uncore Uncore

[Sending Req

Cache Lookup

Cache M
iss

Allocate in E state

[I-> E]

Dat
aC

_E
_c

m
pRdI

nv
Own

to Remote Home
(socket 1 owns
this address)]

RdI
nv

Own

Dat
aC

_E
_c

m
p

[Home sends cmp
Speculative mem Rd

Data

[Send
Request
to CHL]

and Data to socket
2 to allocate in E
state]

R
sp

l

Clea
n

(S
, F

, I
 ->

 I)

Rspl indicates
Clean snoop
Response

USING PERFORMANCE MONITORING EVENTS

B-42

Whether the line is locally or remotely “homed” it has to be written back to dram before the originating
GQ receives the line, so it always appears to come from a QHL. The RFO does not do this. However, when
responding to a remote RFO (SnpInvOwn) and the line is in an S or F state, the cacheline gets invalidated
and the line is sent from the QHL. The point is that the data source might not always be so obvious.

B.4.7 Measuring Bandwidth From the Uncore
Read bandwidth can be measured on a per core basis using events like OFFCORE_RESPON-
SE_0.DATA_IN.LOCAL_DRAM and OFFCORE_RESPONSE_0.DATA_IN.REMOTE_DRAM. The total band-
width includes writes and these cannot be monitored from the core as they are mostly caused by

Figure B-14. RdInvOwn Request after LLC Miss to Remote Home (Hitm Res)

Figure B-15. RdInvOwn Request after LLC Miss to Local Home (Hit Res)

CoresCores

GQ

IMC QHL

P
L
L
C

GQ

IMCQHL

L
L
C

Q
P
I

Q

I

RFO

Cac
he

 L
oo

ku
p

[Send
Snoop
to LLC]

SnpInvOwn

Socket 1 Socket 2

RdInvOwn
DataC_M

Uncore Uncore

[Sending Req

Cache Lookup

Cache M
iss

Allocate in M
 state

[I-> M
]Dat

aC
_M

RdI
nv

Own

to Remote Home
(socket 1 owns
this address)]

RdI
nv

Own

cm
p

Speculative mem Rd

Data

R
sp

lF
w

dI

cmp

cm
p

DataC_M

HIT
M

 (M
->

 I)
,

Dat
a

Indicates to Home
that Data has already
been forwarded to
socket 2

[Send
Data to
socket 2 to
allocate in
M state]

[S
en

d

Req
ue

st

to
 C

HL]

CoresCores

GQ

IMC QHL

P
L
L
C

GQ

IMCQHL

L
L
C

Q
P
I

Q

I

RFO

Cac
he

 L
oo

ku
p

[Send
Snoop
to LLC]

SnpInvOwn

Socket 1 Socket 2

SnpInvOwn
DataC_E

Uncore Uncore

[Sending Req

Cache Lookup

Cache M
iss

Allocate in E state

[I-> E]
Snp

In
vO

wn

RspFwdI

to Local Home
(socket 2 owns
this address)]

HIT
 (E

 ->
 I)

,

DataC_E
RspFwdI

[Broadcast
snoops to all
other caching
agents]

cm
p

R
dI

nv
O

w
n

RspFwdI

[Send complete
to socket 2]

Speculative memRd

Data

Dat
aC

_E

Dat
a

Indicates to
Home that
Data has
already been
forwarded to
socket 2

[Send Data to
socket 2 to
allocate in E
state]

B-43

USING PERFORMANCE MONITORING EVENTS

evictions of modified lines in the L3. Thus a line used and modified by one core can end up being written
back to dram when it is evicted due to a read on another core doing some completely unrelated task.
Modified cached lines and writebacks of uncached lines (e.g. written with non temporal streaming stores)
are handled differently in the uncore and their writebacks increment various events in different ways.

All full lines written to DRAM are counted by the UNC_IMC_WRITES.FULL.* events. This includes the
writebacks of modified cached lines and the writes of uncached lines, for example generated by non-
temporal SSE stores. The uncached line writebacks from a remote socket will be counted by
UNC_QHL_REQUESTS.REMOTE_WRITES. The uncached writebacks from the local cores are not counted
by UNC_QHL_REQUESTS.LOCAL_WRITES, as this event only counts writebacks of locally cached lines.

The UNC_IMC_NORMAL_READS.* events only count the reads. The UNC_QHL_RE-
QUESTS.LOCAL_READS and the UNC_QHL_REQUESTS.REMOTE_READS count the reads and the
“InvtoE” transactions, which are issued for the uncacheable writes, eg USWC/UC writes. This allows the
evaluation of the uncacheable writes, by computing the difference of UNC_QHL_RE-
QUESTS.LOCAL_READS +

UNC_QHL_REQUESTS.REMOTE_READS – UNC_IMC_NORMAL_READS.ANY.

These uncore PMU events that are useful for bandwidth evaluation are listed under event code 20H, 2CH,
2FH at: https://perfmon-events.intel.com/.

B.5 PERFORMANCE TUNING TECHNIQUES FOR SANDY BRIDGE
MICROARCHITECTURE

This section covers various performance tuning techniques using performance monitoring events. Some
techniques can be adapted in general to other microarchitectures, most of the performance events are
specific to Sandy Bridge microarchitecture.

B.5.1 Correlating Performance Bottleneck to Source Location
Performance analysis tools often sample events to identify hot spots of instruction pointer addresses to
help programmers identify source locations of potential performance bottlenecks.

The sampling technique requires a service routine to respond to the performance monitoring interrupt
(PMI) generated from an overflow condition of the performance counter. There is a finite delay between
the performance monitoring event detection of the eventing condition relative to the capture of the
instruction pointer address. This is known as “skid“. In other words, the event skid is the distance
between the instruction or instructions that caused the issue and the instruction where the event is
tagged. There are a few things to note in general on skid:
• Precise events have a defined event skid of 1 instruction to the next instruction retired. In the case

when the offending instruction is a branch, the event is tagged with the branch target, which can be
separated from the branch instruction. Thus sampling with precise events is likely to have less noise
in pin-pointing source locations of bottlenecks.

• Using a performance event with eventing condition that carries a larger performance impact
generally has a shorter skid and vice versa. The following examples illustrate this rule:

— A store forward block issue can cause a penalty of more than 10 cycles. Sampling a store forward
block event almost always tags to the next couple of instructions after the blocked load.

— On the other hand, sampling loads that forwarded successfully with no penalty will have much
larger skids, and less helpful for performance tuning.

• The closer the eventing condition is to the retirement of the instruction, the shorter the skid. The
events in the Frontend of the pipeline tend to tag to instructions further from the responsible
instruction than events that are taken at execution or retirement.

• Cycles counted with the event CPU_CLK_UNHALTED.THREAD often tag in greater counts on the
instruction after larger bottlenecks in the pipeline. If cycles are accumulated on an instruction this is
probably due to a bottleneck on the instruction at the previous instruction.

https://perfmon-events.intel.com/

USING PERFORMANCE MONITORING EVENTS

B-44

• It is very difficult to determine the source of issues with a low cost that occur in the Frontend.
Frontend events can also skid to IPs that precede the actual instructions that are causing the issue.

B.5.2 Hierarchical Top-Down Performance Characterization Methodology and
Locating Performance Bottlenecks

Sandy Bridge microarchitecture has introduced several performance events which help narrow down
which portion of the microarhcitecture pipeline is stalled. This starts with a hierarchical approach to char-
acterize a workload of where CPU cycles are spent in the microarchitecture pipelines. At the top level,
there are four areas to attribute CPU cycles; these are described below. To determine what portion of the
pipeline is stalled, the technique looks at a buffer that queues the micro-ops supplied by the front end
and feeds the out-of-order back end (see Section E.2.1). This buffer is called the micro-op queue. From
the micro-op queue viewpoint, there may be four different types of stalls:
• Front end stalls - The front end is delivering less than four micro-ops per cycle when the back end of

the pipeline is requesting micro-ops. When these stalls happen, the rename/allocate part of the OOO
engine will starved. Thus, execution is said to be front end bound.

• Back end stalls – No micro-ops are being delivered from the micro-op queue due to lack of required
resources for accepting more micro-ops in the back end of the pipeline. When these stalls happen,
execution is said to be back end bound.

• Bad speculation - The pipeline performs speculative execution of instructions that never successfully
retire. The most common case is a branch misprediction where the pipeline predicts a branch target
in order to keep the pipeline full instead of waiting for the branch to execute. If the processor
prediction is incorrect it has to flush the pipeline without retiring the speculated instructions.

• Retiring – The micro-op queue delivers micro-ops that eventually retire. In the common case, the
micro-ops originate from the program code. One exception is with assists where the microcode
sequencer generates micro-ops to deal with issues in the pipeline.

The following figure illustrates how the execution opportunities are logically divided.

B-45

USING PERFORMANCE MONITORING EVENTS

It is possible to estimate the amount of execution slots spent in each category using the following
formulas in conjunction with core PMU performance events in Sandy Bridge microarchitecture:
%FE_Bound =

100 * (IDQ_UOPS_NOT_DELIVERED.CORE / N);
%Bad_Speculation =

100 * ((UOPS_ISSUED.ANY – UOPS_RETIRED.RETIRE_SLOTS + 4 *
INT_MISC.RECOVERY_CYCLES) / N);

%Retiring = 100 * (UOPS_RETIRED.RETIRE_SLOTS/ N);
%BE_Bound = 100 * (1 – (FE_Bound + Retiring + Bad_Speculation));

N represents total execution slots opportunities. Execution opportunities are the number of cycles multi-
plied by four.
• N = 4*CPU_CLK_UNHALTED.THREAD

The following sections explain the source for penalty cycles in three categories: back end stalls, Frontend
stalls and bad speculation. They use formulas that can be applied to process, module, function, and
instruction granularity.

B.5.2.1 Back End Bound Characterization
Once the %BE_Bound metric raises concern, a user may need to drill down to the next level of possible
issues in the back end. Our methodology examines back end stalls based on execution unit occupation at
every cycle. Naturally, optimal performance may be achieved when all execution resources are kept busy.
Currently, this methodology splits back end bound issues into two categories: memory bound and
core bound.

“Memory bound” corresponds to stalls related to the memory subsystem. For example, cache misses
may eventually cause execution starvation. On the other hand, “core bound” which corresponds to stalls
due to either the Execution- or OOO-clusters, is a bit trickier. These stalls can manifest either with execu-
tion starvation or non-optimal execution ports utilization. For example, a long latency divide operation
may serialize the execution causing execution starvation for some period, while pressure on an execution
port that serves specific types of uops, might manifest as small number of ports utilized in a cycle.

Use performance monitoring events at the execution units to calculate:

%BE_Bound_at_EXE =
(CYCLE_ACTIVITY.CYCLES_NO_EXECUTE + UOPS_EXECUTED.THREAD:c1 -
UOPS_EXECUTED.THREAD:c2) / CLOCKS

CYCLE_ACTIVITY.CYCLES_NO_EXECUTE counts complete starvation cycles where no uop is executed
whatsoever.

UOPS_EXECUTED.THREAD:c1 and UOPS_EXECUTED.THREAD:c2 count cycles where at least 1- and 2-
uops were executed in a cycle, respectively. Hence the event count difference measures the cycles when
the OOO back end could execute only 1 uop.

The %BE_Bound_at_EXE metric is counted at execution unit pipestages so the number would not
match the Backend_Bound ratio which is done at the allocation stage. However, redundancy is good here
as one can use both counters to confirm the execution is indeed back end bound (both should be high).

B.5.2.2 Core Bound Characterization
A “back end bound” workload can be identified as “core bound” by the following metric:

%Core_Bound = %Backend_Bound_at_EXE - %Memory_Bound

The metric “%Memory_Bound” is described in Section B.5.2.3. Once a workload is identified as “core
bound”, the user may want to drill down into OOO or Execution related issues through their transitional
targeted performance counter, like, for example, execution ports pressure, or use of FP-chained long-
latency arithmetic operations.

USING PERFORMANCE MONITORING EVENTS

B-46

B.5.2.3 Memory Bound Characterization
More primitive methods of characterizing performance issues in the memory pipeline tend to use naïve
calculations to estimate the penalty of memory stalls. Usually the number of misses to a given cache
level access is multiplied by a predefined latency for that cache level per the CPU specifications, in order
to get an estimation for the penalty. While this might work for an in-order processor, it often over-esti-
mates the contribution of memory accesses on CPU cycles for highly out-of-order processors, because
memory accesses tend to overlap and the scheduler manages to hide a good portion of the latency. The
scheduler might be able to hide some of the memory access stalls by keeping the execution stalls busy
with uops that do not require the memory access data. Thus penalty for a memory access is when the
scheduler has nothing more ready to dispatch and the execution units get starved as a result. It is likely
that further uops are either waiting for memory access data, or depend on other non-dispatched uops.

In Ivy Bridge microarchitecture, a new performance monitoring event “CYCLE_ACTIVITY.STALLS_LD-
M_PENDING” is provided to estimate the exposure of memory accesses. It is used to define the
“memory bound” metric. This event measures the cycles when there is a non-completed in-flight
memory demand load coincident with execution starvation. Note that only demand load operations are
accounted for, as uops do not typically wait for (direct) completion of stores or HW prefetches:

%Memory_Bound = CYCLE_ACTIVITY.STALLS_LDM_PENDING / CLOCKS

If a workload is memory bound, it is possible to further characterize its performance characteristic with
respect to the contribution of the cache hierarchy and DRAM system memory.

L1 cache has typically the shortest latency which is comparable to ALU units' stalls that are the shortest
among all stalls. Yet in certain cases, like loads blocked on older stores, a load might suffer high latency
while eventually being satisfied by the L1. There are no fill-buffers allocated for L1 hits; use the LDM
stalls sub-event instead because it accounts for any non-completed load.

%L1 Bound = (CYCLE_ACTIVITY.STALLS_LDM_PENDING -CYCLE_ACTIVITY.STALLS_L1D_PENDING)/
CLOCKS

As explained above, L2 Bound is detected as:

%L2 Bound =(CYCLE_ACTIVITY.STALLS_L1D_PENDING - CYCLE_ACTIVITY.STALLS_L2_PENDING)/
CLOCKS

In principle, L3 Bound can be calculated similarly by subtracting out the L3 miss contribution. However
an equivalent event to measure L3_PENDING is not available. Nevertheless, it is possible to infer an esti-
mate using L3_HIT and L3_MISS load count events in conjunction with a correction factor. This estima-
tion could be tolerated as the latencies are longer on L3 and Memory. The correction factor
MEM_L3_WEIGHT is approximately the external memory to L3 cache latency ratio. A factor of 7 can be
used for the third generation Intel Core processor family. Note this correction factor has some depen-
dency on CPU and Memory frequencies.

%L3 Bound = CYCLE_ACTIVITY.STALLS_L2_PENDING * L3_Hit_fraction / CLOCKS

Where L3_Hit_fraction is:

MEM_LOAD_UOPS_RETIRED.LLC_HIT / (MEM_LOAD_UOPS_RETIRED.LLC_HIT+ MEM_L3_-
WEIGHT*MEM_LOAD_UOPS_MISC_RETIRED.LLC_MISS)

To estimate the exposure of DRAM traffic on third generation Intel Core processors, the remainder of
L2_PENDING is used for MEM Bound:

%MEM Bound = CYCLE_ACTIVITY.STALLS_L2_PENDING * L3_Miss_fraction / CLOCKS

Where L3_Miss_fraction is:

WEIGHT*MEM_LOAD_UOPS_MISC_RETIRED.LLC_MISS / (MEM_LOAD_UOPS_RETIRED.LLC_HIT+
WEIGHT*MEM_LOAD_UOPS_MISC_RETIRED.LLC_MISS)

Sometimes it is meaningful to refer to all memory stalls outside the core as Uncore Bound:

%Uncore Bound = CYCLE_ACTIVITY.STALLS_L2_PENDING / CLOCKS

B-47

USING PERFORMANCE MONITORING EVENTS

B.5.3 Back End Stalls
Back end stalls have two main sources: memory sub-system stalls and execution stalls. As a first step to
understanding the source of back end stalls, use the resource stall event.

Before putting micro-ops into the scheduler, the rename stage has to have certain resources allocated.
When an application encounters a significant bottleneck at the back end of the pipeline, it runs out of
these resources as the pipeline backs up. The RESOURCE_STALLS event tracks stall cycles when a
resource could not be allocated. The event breaks up each resource into a separate sub-event so you can
track which resource is not available for allocation. Counting these events can help identifying the reason
for issues in the back end of the pipeline.

The resource stall ratios described below can be accomplished at process, module, function and even
instruction granularities with the cycles, counted by CPU_CLK_UNHALTED.THREAD, representing the
penalty tagged at the same granularity.

Usages of Specific Events

RESOURCE_STALLS.ANY - Counts stall cycles that the rename stage is unable to put micro-ops into the
scheduler, due to lack of resources that have to be allocated at this stage. The event skid tends to be low
since it is close to the retirement of the blocking instruction. This event accounts for all stalls counted by
other RESOURCE_STALL sub events and also includes the sub-events of RESOURCE_STALLS2. If this
ratio is high, count the included sub-events to get a better isolation of the reason for the stall.
 %RESOURCE.STALLS.COST =

100 * RESOURCE_STALLS.ANY / CPU_CLK_UNHALTED.THREAD;

RESOURCE_STALLS.SB - Occurs when a store micro-op is ready for allocation and all store buffer entries
are in use, usually due to long latency stores in progress. Typically this event tags to the IP after the store
instruction that is stalled at allocation.
%RESOURCE.STALLS.SB.COST =

100 * RESOURCE_STALLS.SB / CPU_CLK_UNHALTED.THREAD;

RESOURCE_STALLS.LB - Counts cycles in which a load micro-op is ready for allocation and all load buffer
entries are taken, usually due to long latency loads in progress. In many cases the queue to the sched-
uler becomes full by micro-ops that depend on the long latency loads, before the load buffer gets full.
%RESOURCE.STALLS.LB.COST =

100 * RESOURCE_STALLS.LB / CPU_CLK_UNHALTED.THREAD;

In the above cases the event RESOURCE_STALLS.RS will often count in parallel. The best methodology to
further investigate loss in data locality is the high cache line replacement study described in Section
B.5.4.2, concentrating on L1 DCache replacements first

RESOURCE_STALLS.RS - Scheduler slots are typically the first resource that runs out when the pipeline
is backed up. However, this can be due to almost any bottleneck in the back end, including long latency
loads and instructions backed up at the execute stage. Thus it is recommended to investigate other
resource stalls, before digging into the stalls tagged to lack of scheduler entries. The skid tends to be low
on this event.
%RESOURCE.STALLS.RS.COST =

100 * RESOURCE_STALLS.RS/ CPU_CLK_UNHALTED.THREAD;

RESOURCE_STALLS.ROB - Counts cycles when allocation stalls because all the reorder buffer (ROB)
entries are taken. This event occurs less frequently than the RESOURCE_STALLS.RS and typically indi-
cates that the pipeline is being backed up by a micro-op that is holding all younger micro-ops from
retiring because they have to retire in order.
%RESOURCE.STALLS.ROB.COST =

100 * RESOURCE_STALLS.ROB/ CPU_CLK_UNHALTED.THREAD;

RESOURCE_STALLS2.BOB_FULL - Counts when allocation is stalled due to a branch micro-op that is
ready for allocation, but the number of branches in progress in the processor has reached the limit.
%RESOURCE.STALLS.BOB.COST =

100 * RESOURCE_STALLS2.BOB/ CPU_CLK_UNHALTED.THREAD;

USING PERFORMANCE MONITORING EVENTS

B-48

B.5.4 Memory Sub-System Stalls
The following subsections discusses using specific performance monitoring events in Sandy Bridge
microarchitecture to identify stalls in the memory sub-systems.

B.5.4.1 Accounting for Load Latency
The breakdown of load operation locality can be accomplished at any granularity including process,
module, function and instruction. When you find that a load instruction is a bottleneck, investigate it
further with the precise load breakdown. If this does not explain the bottleneck, check for other issues
which can impact loads.

You can use these events to estimate the costs of the load causing a bottleneck, and to obtain a
percentage breakdown of memory hierarchy level. Not all tools provide support for precise event
sampling. If the precise version (event name ends with a suffix PS) of these event is not supported in a
given tool, you can use the non-precise version.

The precise load events tag the event to the next instruction retired (IP+1). See the load latency at each
hierarchy level in Table E-13.

Required events

MEM_LOAD_UOPS_RETIRED.L1_HIT_PS - Counts demand loads that hit the first level of the data cache,
the L1 DCache. Demand loads are non speculative load micro-ops.

MEM_LOAD_UOPS_RETIRED.L2_HIT_PS - Counts demand loads that hit the 2nd level cache, the L2.

MEM_LOAD_UOPS_RETIRED.LLC_HIT_PS - Counts demand loads that hit the 3rd level shared cache, the
LLC.

MEM_LOAD_UOPS_LLC_HIT_RETIRED.XSNP_MISS - Counts demand loads that hit the 3rd level shared
cache and are assumed to be present also in a cache of another core but the cache line was already
evicted from there.

MEM_LOAD_UOPS_LLC_HIT_RETIRED.XSNP_HIT_PS - Counts demand loads that hit a cache line in a
cache of another core and the cache line has not been modified.

MEM_LOAD_UOPS_LLC_HIT_RETIRED.XSNP_HITM_PS - Counts demand loads that hit a cache line in the
cache of another core and the cache line has been written to by that other core. This event is important
for many performance bottlenecks that can occur in multi-threaded applications, such as lock contention
and false sharing.

MEM_LOAD_UOPS_MISC_RETIRED.LLC_MISS_PS - Counts demand loads that missed the LLC. This
means that the load is usually satisfied from memory in client system.

MEM_LOAD_UOPS_RETIRED.HIT_LFB_PS - Counts demand loads that hit in the line fill buffer (LFB). A
LFB entry is allocated every time a miss occurs in the L1 DCache. When a load hits at this location it
means that a previous load, store or hardware prefetch has already missed in the L1 DCache and the
data fetch is in progress. Therefore the cost of a hit in the LFB varies. This event may count cache-line
split loads that miss in the L1 DCache but do not miss the LLC.

On 32-byte Intel AVX loads, all loads that miss in the L1 DCache show up as hits in the L1 DCache or hits
in the LFB. They never show hits on any other level of memory hierarchy. Most loads arise from the line
fill buffer (LFB) when Intel AVX loads miss in the L1 DCache.

Precise Load Breakdown

The percentage breakdown of each load source can be tagged at any granularity including a single IP,
function, module, or process. This is particularly useful at a single instruction to determine the break-
down of where the load was found in the cache hierarchy. The following formula shows how to calculate
the percentage of time a load was satisfied by the LLC. Similar formulas can be used for all other hier-
archy levels.

%LocL3.HIT =
100 * MEM_LOAD_UOPS_RETIRED.LLC_HIT_PS / $SumOf_PRECISE_LOADS;

B-49

USING PERFORMANCE MONITORING EVENTS

$SumOf_PRECISE_LOADS =
MEM_LOAD_UOPS_RETIRED.HIT_LFB_PS +MEM_LOAD_UOPS_RETIRED.L1_HIT_PS +
MEM_LOAD_UOPS_RETIRED.L2_HIT_PS +MEM_LOAD_UOPS_RETIRED.LLC_HIT_PS +
MEM_LOAD_UOPS_LLC_HIT_RETIRED.XSNP_MISS +
MEM_LOAD_UOPS_LLC_HIT_RETIRED.XSNP_HIT_PS +
MEM_LOAD_UOPS_LLC_HIT_RETIRED.XSNP_HITM_PS +
MEM_LOAD_UOPS_MISC_RETIRED.LLC_MISS_PS;

Estimated Load Penalty

The formulas below help estimating to what degree loads from a certain memory hierarchy are respon-
sible for a slowdown. The CPU_CLK_UNHALTED.THREAD programmable event represents the penalty in
cycles tagged at the same granularity. At the instruction level, the cycle cost of an expensive load tends
to only skid one IP, similar to the precise event. The calculations below apply to any granularity process,
module, function or instruction, since the events are precise. Anything representing 10%, or higher, of
the total clocks in a granularity of interest should be investigated.

If the code has highly dependent loads you can use the MEM_LOAD_UOPS_RETIRED.L1_HIT_PS event to
determine if the loads are hit by the five cycle latency of the L1 DCache.

Estimated cost of L2 latency
%L2.COST =

12 * MEM_LOAD_UOPS_RETIRED.L2_HIT_PS / CPU_CLK_UNHALTED.THREAD;

Estimated cost of L3 hits
%L3.COST =

26 * MEM_LOAD_UOPS_RETIRED.L3_HIT_PS / CPU_CLK_UNHALTED.THREAD;

Estimated cost of hits in the cache of other cores
%HIT.COST =

43* MEM_LOAD_UOPS_LLC_HIT_RETIRED.XSNP_HIT_PS /
CPU_CLK_UNHALTED.THREAD;

Estimated cost of memory latency
%MEMORY.COST =

200 * MEM_LOAD_UOPS_MISC_RETIRED.LLC_MISS_PS /
CPU_CLK_UNHALTED.THREAD;

Actual memory latency can vary greatly depending on memory parameters. The amount of concurrent
memory traffic often reduces the effect cost of a given memory hierarchy. Typically, the estimates above
may be on the pessimistic side (like pointer-chasing situations).

Often, cache misses will manifest as delaying and bunching on the retirement of instructions. The precise
loads breakdown can provide estimates of the distribution of hierarchy levels where the load is satisfied.

Given a significant impact from a particular cache level, the first step is to find where heavy cache line
replacements are occurring in the code. This could coincide with your hot portions of code detected by
the memory hierarchy breakdown, but often does not. For instance, regular traversal of a large data
structure can unintentionally clear out levels of cache.

If hits of non modified or modified data in another core have high estimated cost and are hot at locations
in the code, it can be due to locking, sharing or false sharing issues between threads.

If load latency in memory hierarchy levels further from the L1 DCache does not justify the amount of
cycles spent on a load, try one of the following:
• Eliminate superfluous load operations such as spilling general purpose registers to XMM registers

rather than memory.
• Continue searching for issues impacting load instructions described in Section B.5.4.4.

USING PERFORMANCE MONITORING EVENTS

B-50

B.5.4.2 Cache-line Replacement Analysis
When an application has many cache misses, it is a good idea to determine where cache lines are being
replaced at the highest frequency. The instructions responsible for high amount of cache replacements
are not always where the application is spending the majority of its time, since replacements can be
driven by the hardware prefetchers and store operations which in the common case do not hold up the
pipeline. Typically traversing large arrays or data structures can cause heavy cache line replacements.

Required events:

L1D.REPLACEMENT - Replacements in the 1st level data cache.

L2_LINES_IN.ALL - Cache lines being brought into the L2 cache.

Usages of events:

Identifying the replacements that potentially cause performance loss can be done at process, module,
and function level. Do it in two steps:
• Use the precise load breakdown to identify the memory hierarchy level at which loads are satisfied

and cause the highest penalty.
• Identify, using the formulas below, which portion of code causes the majority of the replacements in

the level below the one that satisfies these high penalty loads.

For example, if there is high penalty due to loads hitting the LLC, check the code which is causing replace-
ments in the L2 and the L1. In the formulas below, the nominators are the replacements accounted for a
module or function. The sum of the replacements in the denominators is the sum of all replacements in a
cache level for all processes. This enables you to identify the portion of code that causes the majority of
the replacements.

L1D Cache Replacements
%L1D.REPLACEMENT =

L1D.REPLACEMENT / SumOverAllProcesses(L1D.REPLACEMENT);

L2 Cache Replacements
%L2.REPLACEMENT =

L2_LINES_IN.ALL / SumOverAllProcesses(L2_LINES_IN.ALL);

B.5.4.3 Lock Contention Analysis
The amount of contention on locks is critical in scalability analysis of multi-threaded applications. A
typical ring3 lock almost always results in the execution of an atomic instruction. An atomic instruction is
either an XCHG instruction involving a memory address or one of the following instructions with memory
destination and lock prefix: ADD, ADC, AND, BTC, BTR, BTS, CMPXCHG, CMPXCH8B, DEC, INC, NEG,
NOT, OR, SBB, SUB, XOR or XADD. Precise events enable you to get an idea of the contention on any lock.
Many locking APIs start by an atomic instruction in ring3 and back off a contended lock by jumping into
ring0. This means many locking APIs can be very costly in low contention scenarios. To estimate the
amount of contention on a locked instruction, you can measure the number of times the cache line
containing the memory destination of an atomic instruction is found modified in another core.

Required events:

MEM_UOPS_RETIRED.LOCK_LOADS_PS - Counts the number of atomic instructions which are retired
with a precise skid of IP+1.

MEM_LOAD_UOPS_LLC_HIT_RETIRED.XSNP_HITM_PS - Counts the occurrences that the load hits a
modified cache line in another core. This event is important for many performance bottlenecks that can
occur in multi-core systems, such as lock contention, and false sharing.

Usages of events:

The lock contention factor gives the percentage of locked operations executed that contend with another
core and therefore have a high penalty. Usually a lock contention factor over 5% is worth investigating on
a hot lock. A heavily contended lock may impact the performance of multiple threads.
%LOCK.CONTENTION =

B-51

USING PERFORMANCE MONITORING EVENTS

100 * MEM_LOAD_UOPS_LLC_HIT_RETIRED.XSNP_HITM_PS /
MEM_UOPS_RETIRED.LOCK_LOAD_PS;

B.5.4.4 Other Memory Access Issues
Store Forwarding Blocked

When store forwarding is not possible the dependent loads are blocked. The average penalty for store
forward block is 13 cycles. Since many cases of store forwarding blocked were fixed in prior architec-
tures, the most common case in code today involves storing to a smaller memory space than an ensuing
larger load.

Required events:

LD_BLOCKS.STORE_FORWARD - Counts the number of times a store forward opportunity is blocked due
to the inability of the architecture to forward a small store to a larger load and some rare alignment
cases.

Usages of Events:

Use the following formula to estimate the cost of the store forward block. The event
LD_BLOCKS.STORE_FORWARD tends to be tagged to the next IP after the attempted load, so it is recom-
mended to look at this issue at the instruction level. However it is possible to inspect the ratio at any
granularity: process, module, function or IP.
%STORE.FORWARD.BLOCK.COST =

100 *LD_BLOCKS.STORE_FORWARD * 13 / CPU_CLK_UNHALTED.THREAD;

After finding a load blocked from store-forwarding, the location of the store must also be found. Typically,
about 60% of all store forwarded blocked issue are caused by stores in the last 10 instructions executed
prior to the load.

The most common case in which store forward blocked is seen is a small store that is unable to forward
to a larger load. For example, the code below generated writes to a byte pointer address and then reads
from a four byte (dword) memory space:

and byte ptr [ebx],7f
and dword ptr [ebx], ecx

To fix a store forward block, it's best to fix the store operation and not the load.

Cache Line Splits

Beginning with Nehalem microarchitecture, the L1 DCache has split registers which enable it to handle
loads and stores that span two cache lines in a faster manner. This puts the cost of split loads at about
five cycles, as long as split registers are available, instead of the 20 cycles required in earlier microarchi-
tectures. Handling of split stores handling is usually hidden, but if there are many of them they can stall
allocation due to a full store buffer, or they can consume split registers that may be needed for handling
split loads. Getting quantifiable gains from eliminating cache line splits is still achievable.

Required events:

MEM_UOPS_RETIRED.SPLIT_LOADS_PS - Counts the number of demand loads that span two cache
lines. The event is precise.

MEM_UOPS_RETIRED.SPLIT_STORES_PS - Counts the number of stores that span two cache lines. The
event is precise.

Usages of events:

Finding split loads is fairly easy because they usually tag the majority of their cost to the next IP which is
executed. The ratio below can be used at any granularity: process, module, function, and IP after split.
%SPLIT.LOAD.COST =

100 * MEM_UOPS_RETIRED.SPLIT_STORES_PS * 5 / CPU_CLK_UNHALTED.THREAD;

USING PERFORMANCE MONITORING EVENTS

B-52

Split store penalty is more difficult to find using an estimated cost, because in typical cases stores do not
push out the retirement of instructions. To detect significant amount of split stores divide their number
by the total number of stores retired at that IP.
SPLIT.STORE.RATIO =

MEM_UOPS_RETIRED.SPLIT_STORES_PS / MEM_UOPS_RETIRED.ANY_STORES_PS;

4k Aliasing

A 4k aliasing conflict between loads and stores causes a reissue on the load. Five cycles is used as an
estimate in the model below.

Required Events:

LD_BLOCKS_PARTIAL.ADDRESS_ALIAS - Counts the number of loads that have partial address match
with preceding stores, causing the load to be reissued.

Usages of events:
%4KALIAS.COST =

100 * LD_BLOCK_PARTIAL.ADDRESS_ALIAS * 5 / CPU_CLK_UNHALTED.THREAD;

Load and Store Address Translation

There are two levels of translation look-aside buffer (TLB) for linear to physical address translation. A
miss in the DTLB, the first level TLB, that hits in the STLB, the second level TLB, incurs a seven cycle
penalty.

Missing in the STLB requires the processor to walk through page table entries that contain the address
translation. These walks have variable cost depending on the location of the page table entries. The walk
duration is a fairly good estimate of the cost of STLB misses.

Required events:

DTLB_LOAD_MISSES.STLB_HIT - Counts loads that miss the DTLB and hit in the STLB. This event has a
low skid and hence can be used at the IP level.

DTLB_LOAD_MISSES.WALK_DURATION - Duration of a page walks in cycles following STLB misses.
Event skid is typically one instruction, enabling you to detect the issue at instruction, function, module or
process granularities.

MEM_UOPS_RETIRED.STLB_MISS_LOADS_PS - Precise event for loads which have their translation miss
the STLB. The event counts only the first load from a page that initiates the page walk.

Usage of events:

Cost of STLB hits on loads:
%STLB.HIT.COST =

100 * DTLB_LOAD_MISSES.STLB_HIT * 7/ CPU_CLK_UNHALTED.THREAD;

Cost of page walks:
%STLB.LOAD.MISS.WALK.COST =

100 * DTLB_LOAD_MISSES.WALK_DURATION / CPU_CLK_UNHALTED.THREAD;

Use the precise STLB miss event at the IP level to determine exactly which instruction and source line
suffers from frequent STLB misses.
%STLB.LOAD.MISS =

100 * MEM_UOPS_RETIRED.STLB_MISS_LOADS_PS/
MEM_UOPS_RETIRED.ANY_LOADS_PS;

Large walk durations, of hundreds of cycles, are an indication that the page tables have been thrown out
of the LLC. To determine the average cost of a page walk use the following ratio:
STLB.LOAD.MISS.AVGCOST =

DTLB_LOAD_MISSES.WALK_DURATION /
DTLB_LOAD_MISSES.WALK_COMPLETED;

B-53

USING PERFORMANCE MONITORING EVENTS

To a lesser extent than loads, STLB misses on stores can be a bottleneck. If the store itself is a large
bottleneck, cycles will tag to the next IP after the store.
%STLB.STORE.MISS =

100 * MEM_UOPS_RETIRED.STLB_MISS_STORES_PS/
MEM_UOPS_RETIRED.ANY_STORES_PS;

Reducing DTLB/STLB misses increases data locality. One may consider using an commercial-grade
memory allocators to improve data locality. Compilers which offer profile guided optimizations may
reorder global variables to increase data locality, if the compiler can operate on the whole module. For
issues with a large amount of time spent in page walks, server and HPC applications may be able to use
large pages for data.

B.5.5 Execution Stalls
The following subsections discuss using specific performance monitoring events in Sandy Bridge microar-
chitecture to identify stalls in the out-of-order engine.

B.5.5.1 Longer Instruction Latencies
Some microarchitectural changes manifested in longer latency for some legacy instructions in existing
code. It is possible to detect some of these situations:
• Three-operand slow LEA instructions (see Section 3.5.1.2).
• Flags merge micro-op - These merges are primarily required by “shift cl” instructions (see Section

3.5.2.5).

These events tend to have a skid as high as a 10 instructions because the eventing condition is detected
early in the pipeline.

Event usage:

To use this event effectively without being distracted by the event skid, you can use it to locate perfor-
mance issue at the process, module and function granularities, but not at the instruction level. To identify
issue at the instruction IP granularity, one can perform static analysis on the functions identified by this
event. To estimate the contribution of these events to the code latency, divide them by the cycles at the
same granularity. To estimate the overall impact, start with the total cycles due to these issues and if
significant continue to search for the exact reason using the sub events.

Total cycles spent in the specified scenarios:

Flags Merge micro-op ratio:
%FLAGS.MERGE.UOP =

100 * PARTIAL_RAT_STALLS.FLAGS_MERGE_UOP_CYCLES /
CPU_CLK_UNHALTED.THREAD;

Slow LEA instructions allocated:
%SLOW.LEA.WINDOW =

100 * PARTIAL_RAT_STALLS.SLOW_LEA_WINDOW /
CPU_CLK_UNHALTED.THREAD;

B.5.5.2 Assists
Assists usually involve the microcode sequencer that helps handle the assist. Determining the number of
cycles where microcode is generated from the microcode sequencer is often a good methodology to
determine the total cost of the assist. If the overall cost of assists are high, a breakdown of assists into
specific types will be useful.

Estimating the total cost of assists using microcode sequencer cycles:
%ASSISTS.COST =

100 * IDQ.MS_CYCLES / CPU_CLK_UNHALTED.THREAD;

USING PERFORMANCE MONITORING EVENTS

B-54

Floating-point assists:

Denormal inputs for X87 instructions require an FP assist, potentially costing hundreds of cycles.
%FP.ASSISTS =

100 *FP_ASSIST.ANY / INST_RETIRED.ANY;

Transitions between Intel SSE and Intel AVX:

The transitions between SSE and AVX code are explained in detail in Section 15.3.1. The typical cost is
about 75 cycles.
%AVX2SSE.TRANSITION.COST =

75 * OTHER_ASSISTS.AVX_TO_SSE / CPU_CLK_UNHALTED.THREAD;
%SSE2AVX.TRANSITION.COST =

75 * OTHER_ASSISTS.SSE_TO_AVX / CPU_CLK_UNHALTED.THREAD;

32-byte AVX store instructions that span two pages require an assist that costs roughly 150 cycles. A
large amount of microcode tagged to the IP after a 32-byte AVX store is a good sign that an assist has
occurred.
%AVX.STORE.ASSIST.COST =

150 * OTHER_ASSISTS.AVX_STORE / CPU_CLK_UNHALTED.THREAD;

B.5.6 Bad Speculation
This section discusses mispredicted branch instructions resulting in a pipeline flush.

B.5.6.1 Branch Mispredicts
The largest challenge with mispredicted branches is finding the branch which caused them. Branch
mispredictions incur penalty of about 20 cycles. The cost varies based upon the misprediction, and
whether the correct path is found in the Decoded ICache or in the legacy decode pipeline.

Required Events:

BR_MISP_RETIRED.ALL_BRANCHES_PS is a precise event that counts branches that incorrectly
predicted the branch target. Since this is a precise event that skids to the next instruction, it tags to the
first instruction in the correct path after the branch misprediction. This study can be performed at the
process, module, function or instruction granularity.

Usages of Events:

Use the following ratio to estimate the cost of mispredicted branches:
%BR.MISP.COST =

20 * BR_MISP_RETIRED.ALL_BRANCHES_PS / CPU_CLK_UNHALTED.THREAD;

B.5.7 Frontend Stalls
Stalls in the Frontend should not be investigated unless the analysis in Section B.5.2 showed at least
30% of a granularity being bound in the front end. This section explains the main issues that can cause
delays in the front end of the pipeline. Events detected in the front end have unpredictable skid. There-
fore do not try and associate the penalty at the IP level. Stay at the function, module, and process level
for these events.

B.5.7.1 Understanding the Micro-op Delivery Rate
Usages of Counters

The event IDQ_UOPS_NOT_DELIVERED counts when the maximum of four micro-ops are not delivered
to the rename stage, while it is requesting micro-ops. When the pipeline is backed up the rename stage

B-55

USING PERFORMANCE MONITORING EVENTS

does not request any further micro-ops from the front end. The diagram above shows how this event
tracks micro-ops between the micro-op queue and the rename stage.

You can use the IDQ_UOPS_NOT_DELIVERED event to breakdown the distribution of cycles when 0, 1, 2,
3 micro-ops are delivered from the front end.

Percentage of cycles the front end is effective, or execution is back end bound:
%FE.DELIVERING =

100 * (CPU_CLK_UNHALTED.THREAD -
IDQ_UOPS_NOT_DELIVERED.CYCLES_LE_3_UOP_DELIV.CORE) /
CPU_CLK_UNHALTED.THREAD;

Percentage of cycles the front end is delivering three micro-ops per cycle:
%FE.DELIVER.3UOPS =

100 * (IDQ_UOPS_NOT_DELIVERED.CYCLES_LE_3_UOP_DELIV.CORE -
IDQ_UOPS_NOT_DELIVERED.CYCLES_LE_2_UOP_DELIV.CORE) /
CPU_CLK_UNHALTED.THREAD;

Percentage of cycles the front end is delivering two micro-ops per cycle:
%FE.DELIVER.2UOPS =

100 * (IDQ_UOPS_NOT_DELIVERED.CYCLES_LE_2_UOP_DELIV.CORE -
IDQ_UOPS_NOT_DELIVERED.CYCLES_LE_1_UOP_DELIV.CORE) /
CPU_CLK_UNHALTED.THREAD;

Percentage of cycles the front end is delivering one micro-ops per cycle:
%FE.DELIVER.1UOPS =

100 * (IDQ_UOPS_NOT_DELIVERED.CYCLES_LE_1_UOP_DELIV.CORE -
IDQ_UOPS_NOT_DELIVERED.CYCLES_0_UOPS_DELIV.CORE) /
CPU_CLK_UNHALTED.THREAD;

USING PERFORMANCE MONITORING EVENTS

B-56

Percentage of cycles the front end is delivering zero micro-ops per cycle:
%FE.DELIVER.0UOPS =

100 * (IDQ_UOPS_NOT_DELIVERED.CYCLES_0_UOPS_DELIV.CORE) /
CPU_CLK_UNHALTED.THREAD;

Average Micro-ops Delivered per Cycle: This ratio assumes that the front end could potentially deliver
four micro-ops per cycle when bound in the back end.
AVG.uops.per.cycle =

(4 * (%FE.DELIVERING) + 3 * (%FE.DELIVER.3UOPS) + 2 * (%FE.DELIVER.2UOPS) +
(%FE.DELIVER.1UOPS)) / 100

Seeing the distribution of the micro-ops being delivered in a cycle is a hint at the front end bottlenecks
that might be occurring. Issues such as LCPs and penalties from switching from the decoded ICache to
the legacy decode pipeline tend to result in zero micro-ops being delivered for several cycles. Fetch band-
width issues and decoder stalls result in less than four micro-ops delivered per cycle.

B.5.7.2 Understanding the Sources of the Micro-op Queue
The micro-op queue can get micro-ops from the following sources:
• Decoded ICache.
• Legacy decode pipeline.
• Microcode sequencer (MS).

A typical distribution is approximately 80% of the micro-ops coming from the Decoded ICache, 15%
coming from legacy decode pipeline and 5% coming from the microcode sequencer. Excessive micro-ops
coming from the legacy decode pipeline can be a warning sign that the Decoded ICache is not working
effectively. A large portion of micro-ops coming from the microcode sequencer may be benign, such as
complex instructions, or string operations, but can also be due to code assists handling undesired situa-
tions like Intel SSE to Intel AVX code transitions.

Description of Counters Required:

IDQ.DSB_UOPS - Micro-ops delivered to the micro-op queue from the Decoded ICache.

IDQ.MITE_UOPS - Micro-ops delivered to the micro-op queue from the legacy decode pipeline.

IDQ.MS_UOPS -Micro-ops delivered from the microcode sequencer.

Usage of Counters:

Percentage of micro-ops coming from Decoded ICache:
%UOPS.DSB =

IDQ.DSB_UOPS / ALL_IDQ_UOPS;

Percentage of micro-ops coming from legacy decoder pipeline:
%UOPS.MITE =

IDQ.MITE_UOPS / ALL_IDQ_UOPS;

Percentage of micro-ops coming from micro-sequencer:
%UOPS.MS =

IDQ.MS_UOPS / ALL_IDQ_UOPS;

ALL_IDQ_UOPS = (IDQ.DSB_UOPS + IDQ.MITE_UOPS + IDQ.MS_UOPS);

If your application is not bound in the front end then whether micro-ops are coming from the legacy
decode pipeline or Decoded ICache is of lesser importance. Excessive micro-ops coming from the micro-
code sequencer are worth investigating further to see if assists might be a problem.

Cases to investigate are listed below:
• (%FE_BOUND > 30%) and (%UOPS.DSB < 70%)

A threshold of 30% defines a “front end bound” case. This threshold may be applicable to many
situations, but may also vary somewhat across different workloads.

B-57

USING PERFORMANCE MONITORING EVENTS

— Investigate why micro-ops are not coming from the Decoded ICache.

— Investigate issues which can impact the legacy decode pipeline.
• (%FE_BOUND > 30%) and (%UOP_DSB > 70%)

— Investigate switches from Decoded ICache to legacy decode pipeline since it may be switching to
run portions of code that are too small to be effective.

— Look at the amount of bad speculation, since branch mispredictions still impact FE performance.

— Determine the average number of micro-ops being delivered per 32-byte chunk hit. If there are
many taken branches from one 32-byte chunk into another, it impacts the micro-ops being
delivered per cycle.

— Micro-op delivery from the Decoded ICache may be an issue which is not covered.
• (%FE_BOUND < 20%) and (%UOPS_MS>25%)

A threshold of 20% defines a “front end not bound” case. This threshold may be applicable to many
situations, but may also vary somewhat across different workloads.
The following steps can help determine why micro-ops came from the microcode, in order of most
common to least common.

— Long latency instructions - Any instruction over four micro-ops starts the microcode sequencer.
Some instructions such as transcendentals can generate many micro-ops from the microcode.

— String operations - string operations can produce a large amount of microcode. In some cases
there are assists which can occur due to string operations such as REP MOVSB with trip count
greater than 3, which costs 70+ cycles.

— Assists - See Section B.5.5.2.

B.5.7.3 The Decoded ICache
The Decoded ICache has many advantages over the legacy decode pipeline. It eliminates many bottle-
necks of the legacy decode pipeline such as instructions decoded into more than one micro-op and length
changing prefix (LCP) stalls.

A switch to the legacy decode pipeline from the Decoded ICache only occurs when a lookup in the
Decoded ICache fails and usually costs anywhere from zero to three cycles in the front end of the pipe-
line.

Required events:

The Decoded ICache events all have large skids and the exact instruction where they are tagged is
usually not the source of the problem so only look for this issue at the process, module and function gran-
ularities.

DSB2MITE_SWITCHES.PENALTY_CYCLES - Counts the cycles attributed to the switch from the Decoded
ICache to the legacy decode pipeline, excluding cycles when the micro-op queue cannot accept micro-
ops because it is back end bound.

DSB2MITE_SWITCHES.COUNT - Counts the number of switches between the Decoded ICache and the
legacy decode pipeline.

DSB_FILL.ALL_CANCEL - Counts when fills to the Decoded ICache are canceled.

DSB_FILL.EXCEED_DSB_LINES- Counts when a fill is canceled because the allocated lines for Decoded
ICache has exceeded three for the 32-byte chunk.

Usage of Events:

Since these studies involve front end events, do not try to tag the event to a specific instruction.

Determining cost of switches from the Decoded ICache to the legacy decode pipeline.
%DSB2MITE.SWITCH.COST =

100 * DSB2MITE_SWITCHES.PENALTY_CYCLES / CPU_CLK_UNHALTED.THREAD;

Determining the average cost per Decoded ICache switch to the legacy front end:

USING PERFORMANCE MONITORING EVENTS

B-58

AVG.DSB2MITE.SWITCH.COST =
 DSB2MITE_SWITCHES.PENALTY_CYCLES / DSB2MITE_SWITCHES.COUNT;

Determining causes of misses in the decoded ICache

There are no partial hits in the Decoded ICache. If any micro-op that is part of that lookup on the 32-byte
chunk is missing, a Decoded ICache miss occurs on all micro-ops for that transaction.

There are three primary reasons for missing micro-ops in the Decoded ICache:
• Portions of a 32-byte chunk of code were not able to fit within three ways of the Decoded ICache.
• A frequently run portion of your code section is too large for the Decoded ICache. This case is more

common on server applications since client applications tend to have a smaller set of code which is
“hot”.

• The Decoded ICache is getting flushed for example when an ITLB entry is evicted.

To determine if a portion of the 32-byte code is unable to fit into three lines within the Decoded ICache
use the DSB_FILL.EXCEED_DSB_LINESevent at the process, module or function granularities
%DSB.EXCEED.WAY.LIMIT =

100 * DSB_FILL.EXCEED_DSB_LINES/ DSB_FILL.ALL_CANCEL;

B.5.7.4 Issues in the Legacy Decode Pipeline
If a large percentage of the micro-ops going to the micro-op queue are being delivered from the legacy
decode pipeline, you should check to see if there are bottlenecks impacting that stage. The most
common bottlenecks in the legacy decode pipeline are:
• Fetch not providing enough instructions.

This happens when hot code is poorly aligned. For example if the hot code being fetched to be run
is on the 15th byte, then only one byte is fetched.

• Length changing prefix stalls in the instruction length decoder.
Instructions that are decoded into two to four micro-ops may introduce a bubble in the decoder
throughput. If the instruction queue, preceding the decoders, becomes full, this indicates that these
instructions may cause a penalty.

%ILD.STALL.COST =
100 * ILD_STALL.LCP * 3 / CPU_CLK_UNHALTED.THREAD;

B.5.7.5 Instruction Cache
Applications with large hot code sections tend to run into many issues with the instruction cache. This is
more typical in server applications.

Required events:

ICACHE.MISSES - Counts the number of instruction byte fetches that miss the ICache

Usage of events:

To determine whether ICache misses are causing the issue, compare them to the instructions retired
event count, using the same granularity (process, model, or function). Anything over 1% of instructions
retired can be a significant issue.
ICACHE.PER.INST.RET =

 ICACHE.MISSES / INST_RETIRED.ANY;

If ICache misses are causing a significant problem, try to reduce the size of your hot code section, using
the profile guided optimizations. Most compilers have options for text reordering which helps reduce the
number of pages and, to a lesser extent, the number of pages your application is covering.

If the application makes significant use of macros, try to either convert them to functions, or use intelli-
gent linking to eliminate repeated code.

B-59

USING PERFORMANCE MONITORING EVENTS

B.6 USING PERFORMANCE EVENTS OF INTEL® CORE™ SOLO AND INTEL®
CORE™ DUO PROCESSORS

There are performance events specific to the microarchitecture of Intel Core Solo and Intel Core Duo
processors. Lists of available performance-monitoring events can be found at:

https://perfmon-events.intel.com/.

B.6.1 Understanding the Results in a Performance Counter
Each performance event detects a well-defined microarchitectural condition occurring in the core while
the core is active. A core is active when:
• It’s running code (excluding the halt instruction).
• It’s being snooped by the other core or a logical processor on the platform. This can also happen

when the core is halted.

Some microarchitectural conditions are applicable to a sub-system shared by more than one core and
some performance events provide an event mask (or unit mask) that allows qualification at the physical
processor boundary or at bus agent boundary.

Some events allow qualifications that permit the counting of microarchitectural conditions associated
with a particular core versus counts from all cores in a physical processor (see L2 and bus related events
at: https://perfmon-events.intel.com/).

When a multi-threaded workload does not use all cores continuously, a performance counter counting a
core-specific condition may progress to some extent on the halted core and stop progressing or a unit
mask may be qualified to continue counting occurrences of the condition attributed to either processor
core. Typically, one can adjust the highest two bits (bits 15:14 of the IA32_PERFEVTSELx MSR) in the
unit mask field to distinguish such asymmetry (See Chapter 18, “Debug, Branch Profile, TSC, and Intel®
Resource Director Technology (Intel® RDT) Features,” of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3B).

There are three cycle-counting events which will not progress on a halted core, even if the halted core is
being snooped. These are: Unhalted core cycles, Unhalted reference cycles, and Unhalted bus cycles. All
three events are detected for the unit selected by event 3CH.

Some events detect microarchitectural conditions but are limited in their ability to identify the originating
core or physical processor. For example, bus_drdy_clocks may be programmed with a unit mask of 20H
to include all agents on a bus. In this case, the performance counter in each core will report nearly iden-
tical values. Performance tools interpreting counts must take into account that it is only necessary to
equate bus activity with the event count from one core (and not use not the sum from each core).

The above is also applicable when the core-specificity sub field (bits 15:14 of IA32_PERFEVTSELx MSR)
within an event mask is programmed with 11B. The result of reported by performance counter on each
core will be nearly identical.

B.6.2 Ratio Interpretation
Ratios of two events are useful for analyzing various characteristics of a workload. It may be possible to
acquire such ratios at multiple granularities, for example: (1) per-application thread, (2) per logical
processor, (3) per core, and (4) per physical processor.

The first ratio is most useful from a software development perspective, but requires multi-threaded
applications to manage processor affinity explicitly for each application thread. The other options provide
insights on hardware utilization.

In general, collect measurements (for all events in a ratio) in the same run. This should be done because:
• If measuring ratios for a multi-threaded workload, getting results for all events in the same run

enables you to understand which event counter values belongs to each thread.

https://perfmon-events.intel.com/
https://perfmon-events.intel.com/

USING PERFORMANCE MONITORING EVENTS

B-60

• Some events, such as writebacks, may have non-deterministic behavior for different runs. In such a
case, only measurements collected in the same run yield meaningful ratio values.

B.6.3 Notes on Selected Events
This section provides event-specific notes for interpreting performance events listed at:
https://perfmon-events.intel.com/.
• L2_Reject_Cycles, event number 30H — This event counts the cycles during which the L2 cache

rejected new access requests.
• L2_No_Request_Cycles, event number 32H — This event counts cycles during which no

requests from the L1 or prefetches to the L2 cache were issued.
• Unhalted_Core_Cycles, event number 3C, unit mask 00H — This event counts the smallest unit

of time recognized by an active core.
In many operating systems, the idle task is implemented using HLT instruction. In such operating
systems, clock ticks for the idle task are not counted. A transition due to Enhanced Intel SpeedStep
Technology may change the operating frequency of a core. Therefore, using this event to initiate
time-based sampling can create artifacts.

• Unhalted_Ref_Cycles, event number 3C, unit mask 01H — This event guarantees a uniform
interval for each cycle being counted. Specifically, counts increment at bus clock cycles while the core
is active. The cycles can be converted to core clock domain by multiplying the bus ratio which sets the
core clock frequency.

• Serial_Execution_Cycles, event number 3C, unit mask 02H — This event counts the bus cycles
during which the core is actively executing code (non-halted) while the other core in the physical
processor is halted.

• L1_Pref_Req, event number 4FH, unit mask 00H — This event counts the number of times the
Data Cache Unit (DCU) requests to prefetch a data cache line from the L2 cache. Requests can be
rejected when the L2 cache is busy. Rejected requests are re-submitted.

• DCU_Snoop_to_Share, event number 78H, unit mask 01H — This event counts the number of
times the DCU is snooped for a cache line needed by the other core. The cache line is missing in the
L1 instruction cache or data cache of the other core; or it is set for read-only, when the other core
wants to write to it. These snoops are done through the DCU store port. Frequent DCU snoops may
conflict with stores to the DCU, and this may increase store latency and impact performance.

• Bus_Not_In_Use, event number 7DH, unit mask 00H — This event counts the number of bus
cycles for which the core does not have a transaction waiting for completion on the bus.

• Bus_Snoops, event number 77H, unit mask 00H — This event counts the number of CLEAN, HIT,
or HITM responses to external snoops detected on the bus.
In a single-processor system, CLEAN and HIT responses are not likely to happen. In a multipro-
cessor system this event indicates an L2 miss in one processor that did not find the missed data on
other processors.
In a single-processor system, an HITM response indicates that an L1 miss (instruction or data)
found the missed cache line in the other core in a modified state. In a multiprocessor system, this
event also indicates that an L1 miss (instruction or data) found the missed cache line in another
core in a modified state.

B.7 DRILL-DOWN TECHNIQUES FOR PERFORMANCE ANALYSIS
Software performance intertwines code and microarchitectural characteristics of the processor. Perfor-
mance monitoring events provide insights to these interactions. Each microarchitecture often provides a
large set of performance events that target different sub-systems within the microarchitecture. Having a
methodical approach to select key performance events will likely improve a programmer’s understanding
of the performance bottlenecks and improve the efficiency of code-tuning effort.

https://perfmon-events.intel.com/
https://perfmon-events.intel.com/

B-61

USING PERFORMANCE MONITORING EVENTS

Recent generations of Intel 64 and IA-32 processors feature microarchitectures using an out-of-order
execution engine. They are also accompanied by an in-order front end and retirement logic that enforces
program order. Superscalar hardware, buffering and speculative execution often complicates the inter-
pretation of performance events and software-visible performance bottlenecks.

This section discusses a methodology of using performance events to drill down on likely areas of perfor-
mance bottleneck. By narrowed down to a small set of performance events, the programmer can take
advantage of Intel VTune Performance Analyzer to correlate performance bottlenecks with source code
locations and apply coding recommendations discussed in Chapter 3 through Chapter 11. Although the
general principles of our method can be applied to different microarchitectures, this section will use
performance events available in processors based on Intel Core microarchitecture for simplicity.

Performance tuning usually centers around reducing the time it takes to complete a well-defined work-
load. Performance events can be used to measure the elapsed time between the start and end of a work-
load. Thus, reducing elapsed time of completing a workload is equivalent to reducing measured
processor cycles.

The drill-down methodology can be summarized as four phases of performance event measurements to
help characterize interactions of the code with key pipe stages or sub-systems of the microarchitecture.
The relation of the performance event drill-down methodology to the software tuning feedback loop is
illustrated in Figure B-16.

Typically, the logic in performance monitoring hardware measures microarchitectural conditions that
varies across different counting domains, ranging from cycles, micro-ops, address references, instances,
etc. The drill-down methodology attempts to provide an intuitive, cycle-based view across different
phases by making suitable approximations that are described below:

Figure B-16. Performance Events Drill-Down and Software Tuning Feedback Loop

Total_Cycles_Completion
Start_to_Finish
View

Issuing_uops Not_Issuing_uopsRS View

StalledRetiring_uopsNon_retiring_uopsExecution
View

Stalls
Drill-down

Tuning Focus

Store
Fwd LCP Cache

Miss ...

Code Layout,
Branch

Misprediction

Vectorize w/
SIMD

Identify hot spot
code, apply fix

Tuning
Consistency Apply one fix at time; repeat

from the top OM19805

USING PERFORMANCE MONITORING EVENTS

B-62

• Total cycle measurement — This is the start to finish view of total number of cycle to complete the
workload of interest. In typical performance tuning situations, the metric Total_cycles can be
measured by the event CPU_CLK_UNHALTED.CORE. See: https://perfmon-events.intel.com/).

• Cycle composition at issue port — The reservation station (RS) dispatches micro-ops for
execution so that the program can make forward progress. Hence the metric Total_cycles can be
decomposed as consisting of two exclusive components: Cycles_not_issuing_uops representing
cycles that the RS is not issuing micro-ops for execution, and Cycles_issuing_uops cycles that the RS
is issuing micro-ops for execution. The latter component includes micro-ops in the architected code
path or in the speculative code path.

• Cycle composition of OOO execution — The out-of-order engine provides multiple execution units
that can execute micro-ops in parallel. If one execution unit stalls, it does not necessarily imply the
program execution is stalled. Our methodology attempts to construct a cycle-composition view that
approximates the progress of program execution. The three relevant metrics are: Cycles_stalled,
Cycles_not_retiring_uops, and Cycles_retiring_uops.

• Execution stall analysis — From the cycle compositions of overall program execution, the
programmer can narrow down the selection of performance events to further pin-point unproductive
interaction between the workload and a micro-architectural sub-system.

When cycles lost to a stalled microarchitectural sub-system, or to unproductive speculative execution are
identified, the programmer can use VTune Analyzer to correlate each significant performance impact to
source code location. If the performance impact of stalls or misprediction is insignificant, VTune can also
identify the source locations of hot functions, so the programmer can evaluate the benefits of vectoriza-
tion on those hot functions.

B.7.1 Cycle Composition at Issue Port
Recent processor microarchitectures employ out-of-order engines that execute streams of micro-ops
natively, while decoding program instructions into micro-ops in its front end. The metric Total_cycles
alone, is opaque with respect to decomposing cycles that are productive or non-productive for program
execution. To establish a consistent cycle-based decomposition, construct two metrics that can be
measured using performance events available in processors based on Intel Core microarchitecture.
These are:
• Cycles_not_issuing_uops — This can be measured by the event RS_UOPS_DISPATCHED, setting

the INV bit and specifying a counter mask (CMASK) value of 1 in the target performance event select
(IA32_PERFEVTSELx) MSR (See Chapter 19 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B). In VTune Analyzer, the special values for CMASK and INV is already configured for the
VTune event name RS_UOPS_DISPATCHED.CYCLES_NONE.

• Cycles_issuing_uops — This can be measured using the event RS_UOPS_DISPATCHED, clear the
INV bit and specifying a counter mask (CMASK) value of 1 in the target performance event select
MSR

Note the cycle decomposition view here is approximate in nature; it does not distinguish specificities,
such as whether the RS is full or empty, transient situations of RS being empty but some in-flight uops is
getting retired.

B.7.2 Cycle Composition of OOO Execution
In an OOO engine, part of making forward progress of the program. But speculative execution of micro-
ops in the shadow of mispredicted code path represent unproductive work that consumes execution
resources and execution bandwidth.

Cycles_not_issuing_uops, by definition, represents the cycles that the OOO engine is stalled
(Cycles_stalled). As an approximation, this can be interpreted as the cycles that the program is not
making forward progress.

https://perfmon-events.intel.com/

B-63

USING PERFORMANCE MONITORING EVENTS

The micro-ops that are issued for execution do not necessarily end in retirement. Those micro-ops that
do not reach retirement do not help forward progress of program execution. Hence, a further approxima-
tion is made in the formalism of decomposition of Cycles_issuing_uops into:
• Cycles_non_retiring_uops — Although there isn’t a direct event to measure the cycles associated

with non-retiring micro-ops, derive this metric from available performance events, and several
assumptions:

— A constant issue rate of micro-ops flowing through the issue port. Thus, define: uops_rate” =
“Dispatch_uops/Cycles_issuing_uops, where Dispatch_uops can be measured with
RS_UOPS_DISPATCHED, clearing the INV bit and the CMASK.

— Approximate the number of non-productive, non-retiring micro-ops by [non_productive_uops =
Dispatch_uops - executed_retired_uops], where executed_retired_uops represent productive
micro-ops contributing towards forward progress that consumed execution bandwidth.

— The executed_retired_uops can be approximated by the sum of two contributions: num_re-
tired_uops (measured by the event UOPS_RETIRED.ANY) and num_fused_uops (measured by
the event UOPS_RETIRED.FUSED).

Thus, Cycles_non_retiring_uops = non_productive_uops / uops_rate.
• Cycles_retiring_uops — This can be derived from Cycles_retiring_uops = num_retired_uops /

uops_rate.

The cycle-decomposition methodology here does not distinguish situations where productive uops and
non-productive micro-ops may be dispatched in the same cycle into the OOO engine. This approximation
may be reasonable because heuristically high contribution of non-retiring uops likely correlates to situa-
tions of congestions in the OOO engine and subsequently cause the program to stall.

Evaluations of these three components: Cycles_non_retiring_uops, Cycles_stalled, Cycles_retir-
ing_uops, relative to the Total_cycles, can help steer tuning effort in the following directions:
• If the contribution from Cycles_non_retiring_uops is high, focusing on code layout and reducing

branch mispredictions will be important.
• If both the contributions from Cycles_non_retiring_uops and Cycles_stalled are insignificant, the

focus for performance tuning should be directed to vectorization or other techniques to improve
retirement throughput of hot functions.

• If the contributions from Cycles_stalled is high, additional drill-down may be necessary to locate
bottlenecks that lies deeper in the microarchitecture pipeline.

B.7.3 Drill-Down on Performance Stalls
In some situations, it may be useful to evaluate cycles lost to stalls associated with various stress points
in the microarchitecture and sum up the contributions from each candidate stress points. This approach
implies a very gross simplification and introduce complications that may be difficult to reconcile with the
superscalar nature and buffering in an OOO engine.

Due to the variations of counting domains associated with different performance events, cycle-based
estimation of performance impact at each stress point may carry different degree of errors due to over-
estimation of exposures or under-estimations.

Over-estimation is likely to occur when overall performance impact for a given cause is estimated by
multiplying the per-instance-cost to an event count that measures the number of occurrences of that
microarchitectural condition. Consequently, the sum of multiple contributions of lost cycles due to
different stress points may exceed the more accurate metric Cycles_stalled.

However an approach that sums up lost cycles associated with individual stress point may still be bene-
ficial as an iterative indicator to measure the effectiveness of code tuning loop effort when tuning code to
fix the performance impact of each stress point. The remaining of this sub-section will discuss a few
common causes of performance bottlenecks that can be counted by performance events and fixed by
following coding recommendations described in this manual.

The following items discuss several common stress points of the microarchitecture:

USING PERFORMANCE MONITORING EVENTS

B-64

• L2 Miss Impact — An L2 load miss may expose the full latency of memory sub-system. The latency
of accessing system memory varies with different chipset, generally on the order of more than a
hundred cycles. Server chipset tend to exhibit longer latency than desktop chipsets. The number L2
cache miss references can be measured by MEM_LOAD_RETIRED.L2_LINE_MISS.

An estimation of overall L2 miss impact by multiplying system memory latency with the number of L2
misses ignores the OOO engine’s ability to handle multiple outstanding load misses. Multiplication of
latency and number of L2 misses imply each L2 miss occur serially.

To improve the accuracy of estimating L2 miss impact, an alternative technique should also be
considered, using the event BUS_REQUEST_OUTSTANDING with a CMASK value of 1. This alternative
technique effectively measures the cycles that the OOO engine is waiting for data from the
outstanding bus read requests. It can overcome the over-estimation of multiplying memory latency
with the number of L2 misses.

• L2 Hit Impact — Memory accesses from L2 will incur the cost of L2 latency (See Table E-23). The
number cache line references of L2 hit can be measured by the difference between two events:
MEM_LOAD_RETIRED.L1D_LINE_MISS - MEM_LOAD_RETIRED.L2_LINE_MISS.
An estimation of overall L2 hit impact by multiplying the L2 hit latency with the number of L2 hit
references ignores the OOO engine’s ability to handle multiple outstanding load misses.

• L1 DTLB Miss Impact — The cost of a DTLB lookup miss is about 10 cycles. The event
MEM_LOAD_RETIRED.DTLB_MISS measures the number of load micro-ops that experienced a DTLB
miss.

• LCP Impact — The overall impact of LCP stalls can be directly measured by the event ILD_STALLS.
The event ILD_STALLS measures the number of times the slow decoder was triggered, the cost of
each instance is 6 cycles

• Store forwarding stall Impact — When a store forwarding situation does not meet address or size
requirements imposed by hardware, a stall occurs. The delay varies for different store forwarding
stall situations. Consequently, there are several performance events that provide fine-grain
specificity to detect different store-forwarding stall conditions. These include:

— A load blocked by preceding store to unknown address: This situation can be measure by the
event Load_Blocks.Sta. The per-instance cost is about 5 cycles.

— Load partially overlaps with proceeding store or 4-KByte aliased address between a load and a
proceeding store: these two situations can be measured by the event Load_Blocks.Overlap_-
store.

— A load spanning across cache line boundary: This can be measured by Load_Blocks.Until_Retire.
The per-instance cost is about 20 cycles.

B.8 EVENT RATIOS FOR INTEL CORE MICROARCHITECTURE
Appendix B.8 provides examples of using performance events to quickly diagnose performance bottle-
necks. This section provides additional information on using performance events to evaluate metrics that
can help in wide range of performance analysis, workload characterization, and performance tuning.
Note that many performance event names in the Intel Core microarchitecture carry the format of
XXXX.YYY. This notation derives from the general convention that XXXX typically corresponds to a unique
event select code in the performance event select register (IA32_PERFEVSELx), while YYY corresponds
to a unique sub-event mask that uniquely defines a specific microarchitectural condition (See Chapter 19
of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B and event lists found at: https://perfmon-
events.intel.com/).

B.8.1 Clocks Per Instructions Retired Ratio (CPI)
1. Clocks Per Instruction Retired Ratio (CPI): CPU_CLK_UNHALTED.CORE / INST_RETIRED.ANY.

The Intel Core microarchitecture is capable of reaching CPI as low as 0.25 in ideal situations. But most of
the code has higher CPI The greater value of CPI for a given workload indicate it has more opportunity for

https://perfmon-events.intel.com/

B-65

USING PERFORMANCE MONITORING EVENTS

code tuning to improve performance. The CPI is an overall metric, it does not provide specificity of what
microarchitectural sub-system may be contributing to a high CPI value.

The following subsections defines a list of event ratios that are useful to characterize interactions with the
front end, execution, and memory.

B.8.2 Front End Ratios
2. RS Full Ratio: RESOURCE_STALLS.RS_FULL / CPU_CLK_UNHALTED.CORE * 100

3. ROB Full Ratio: RESOURCE_STALLS.ROB_FULL / CPU_CLK_UNHALTED.CORE * 100

4. Load or Store Buffer Full Ratio: RESOURCE_STALLS.LD_ST / CPU_CLK_UNHALTED.CORE * 100

When there is a low value for the ROB Full Ratio, RS Full Ratio, and Load Store Buffer Full Ratio, and high
CPI it is likely that the front end cannot provide instructions and micro-ops at a rate high enough to fill
the buffers in the out-of-order engine, and therefore it is starved waiting for micro-ops to execute. In this
case check further for other front end performance issues.

B.8.2.1 Code Locality
5. Instruction Fetch Stall: CYCLES_L1I_MEM_STALLED / CPU_CLK_UNHALTED.CORE * 100

The Instruction Fetch Stall ratio is the percentage of cycles during which the Instruction Fetch Unit (IFU)
cannot provide cache lines for decoding due to cache and Instruction TLB (ITLB) misses. A high value for
this ratio indicates potential opportunities to improve performance by reducing the working set size of
code pages and instructions being executed, hence improving code locality.

6. ITLB Miss Rate: ITLB_MISS_RETIRED / INST_RETIRED.ANY

A high ITLB Miss Rate indicates that the executed code is spread over too many pages and cause many
Instructions TLB misses. Retired ITLB misses cause the pipeline to naturally drain, while the miss stalls
fetching of more instructions.

7. L1 Instruction Cache Miss Rate: L1I_MISSES / INST_RETIRED.ANY

A high value for L1 Instruction Cache Miss Rate indicates that the code working set is bigger than the L1
instruction cache. Reducing the code working set may improve performance.

8. L2 Instruction Cache Line Miss Rate: L2_IFETCH.SELF.I_STATE / INST_RETIRED.ANY

L2 Instruction Cache Line Miss Rate higher than zero indicates instruction cache line misses from the L2
cache may have a noticeable performance impact of program performance.

B.8.2.2 Branching and Front End
9. BACLEAR Performance Impact: 7 * BACLEARS / CPU_CLK_UNHALTED.CORE

A high value for BACLEAR Performance Impact ratio usually indicates that the code has many branches
such that they cannot be consumed by the Branch Prediction Unit.

10. Taken Branch Bubble: (BR_TKN_BUBBLE_1+BR_TKN_BUBBLE_2) / CPU_CLK_UNHALTED.CORE

A high value for Taken Branch Bubble ratio indicates that the code contains many taken branches coming
one after the other and cause bubbles in the front end. This may affect performance only if it is not
covered by execution latencies and stalls later in the pipe.

B.8.2.3 Stack Pointer Tracker
11. ESP Synchronization: ESP.SYNCH / ESP.ADDITIONS

The ESP Synchronization ratio calculates the ratio of ESP explicit use (for example by load or store
instruction) and implicit uses (for example by PUSH or POP instruction). The expected ratio value is 0.2
or lower. If the ratio is higher, consider rearranging your code to avoid ESP synchronization events.

USING PERFORMANCE MONITORING EVENTS

B-66

B.8.2.4 Macro-fusion
12. Macro-Fusion: UOPS_RETIRED.MACRO_FUSION / INST_RETIRED.ANY

The Macro-Fusion ratio calculates how many of the retired instructions were fused to a single micro-op.
You may find this ratio is high for a 32-bit binary executable but significantly lower for the equivalent 64-
bit binary, and the 64-bit binary performs slower than the 32-bit binary. A possible reason is the 32-bit
binary benefited from macro-fusion significantly.

B.8.2.5 Length Changing Prefix (LCP) Stalls
13. LCP Delays Detected: ILD_STALL / CPU_CLK_UNHALTED.CORE

A high value of the LCP Delays Detected ratio indicates that many Length Changing Prefix (LCP) delays
occur in the measured code.

B.8.2.6 Self Modifying Code Detection
14. Self Modifying Code Clear Performance Impact: MACHINE_NUKES.SMC * 150 / CPU_CLK_UN-

HALTED.CORE * 100

A program that writes into code sections and shortly afterwards executes the generated code may incur
severe penalties. Self Modifying Code Performance Impact estimates the percentage of cycles that the
program spends on self-modifying code penalties.

B.8.3 Branch Prediction Ratios
Appendix B.8.2.2 discusses branching that impacts the front end performance. This section describes
event ratios that are commonly used to characterize branch mispredictions.

B.8.3.1 Branch Mispredictions
15. Branch Misprediction Performance Impact: RESOURCE_STALLS.BR_MISS_CLEAR / CPU_CLK_UN-

HALTED.CORE * 100

With the Branch Misprediction Performance Impact, you can tell the percentage of cycles that the
processor spends in recovering from branch mispredictions.

16. Branch Misprediction per Micro-Op Retired: BR_INST_RETIRED.MISPRED/UOPS_RETIRED.ANY

The ratio Branch Misprediction per Micro-Op Retired indicates if the code suffers from many branch
mispredictions. In this case, improving the predictability of branches can have a noticeable impact on the
performance of your code.

In addition, the performance impact of each branch misprediction might be high. This happens if the code
prior to the mispredicted branch has high CPI, such as cache misses, which cannot be parallelized with
following code due to the branch misprediction. Reducing the CPI of this code will reduce the mispredic-
tion performance impact. See other ratios to identify these cases.

You can use the precise event BR_INST_RETIRED.MISPRED to detect the actual targets of the mispre-
dicted branches. This may help you to identify the mispredicted branch.

B.8.3.2 Virtual Tables and Indirect Calls
17. Virtual Table Usage: BR_IND_CALL_EXEC / INST_RETIRED.ANY

A high value for the ratio Virtual Table Usage indicates that the code includes many indirect calls. The
destination address of an indirect call is hard to predict.

18. Virtual Table Misuse: BR_CALL_MISSP_EXEC / BR_INST_RETIRED.MISPRED

A high value of Branch Misprediction Performance Impact ratio (Ratio 15) together with high Virtual Table
Misuse ratio indicate that significant time is spent due to mispredicted indirect function calls.

B-67

USING PERFORMANCE MONITORING EVENTS

In addition to explicit use of function pointers in C code, indirect calls are used for implementing inheri-
tance, abstract classes, and virtual methods in C++.

B.8.3.3 Mispredicted Returns
19. Mispredicted Return Instruction Rate: BR_RET_MISSP_EXEC/BR_RET_EXEC

The processor has a special mechanism that tracks CALL-RETURN pairs. The processor assumes that
every CALL instruction has a matching RETURN instruction. If a RETURN instruction restores a return
address, which is not the one stored during the matching CALL, the code incurs a misprediction penalty.

B.8.4 Execution Ratios
This section covers event ratios that can provide insights to the interactions of micro-ops with RS, ROB,
execution units, and so forth.

B.8.4.1 Resource Stalls
A high value for the RS Full Ratio (Ratio 2) indicates that the Reservation Station (RS) often gets full with
micro-ops due to long dependency chains. The micro-ops that get into the RS cannot execute because
they wait for their operands to be computed by previous micro-ops, or they wait for a free execution unit
to be executed. This prevents exploiting the parallelism provided by the multiple execution units.

A high value for the ROB Full Ratio (Ratio 3) indicates that the reorder buffer (ROB) often gets full with
micro-ops. This usually implies on long latency operations, such as L2 cache demand misses.

B.8.4.2 ROB Read Port Stalls
20. ROB Read Port Stall Rate: RAT_STALLS.ROB_READ_PORT / CPU_CLK_UNHALTED.CORE

The ratio ROB Read Port Stall Rate identifies ROB read port stalls. However it should be used only if the
number of resource stalls, as indicated by Resource Stall Ratio, is low.

B.8.4.3 Partial Register Stalls
21. Partial Register Stalls Ratio: RAT_STALLS.PARTIAL_CYCLES / CPU_CLK_UNHALTED.CORE*100

Frequent accesses to registers that cause partial stalls increase access latency and decrease perfor-
mance. Partial Register Stalls Ratio is the percentage of cycles when partial stalls occur.

B.8.4.4 Partial Flag Stalls
22. Partial Flag Stalls Ratio:RAT_STALLS.FLAGS / CPU_CLK_UNHALTED.CORE

Partial flag stalls have high penalty and they can be easily avoided. However, in some cases, Partial Flag
Stalls Ratio might be high although there are no real flag stalls. There are a few instructions that partially
modify the RFLAGS register and may cause partial flag stalls. The most popular are the shift instructions
(SAR, SAL, SHR, and SHL) and the INC and DEC instructions.

B.8.4.5 Bypass Between Execution Domains
23. Delayed Bypass to FP Operation Rate: DELAYED_BYPASS.FP / CPU_CLK_UNHALTED.CORE

24. Delayed Bypass to SIMD Operation Rate: DELAYED_BYPASS.SIMD / CPU_CLK_UNHALTED.CORE

25. Delayed Bypass to Load Operation Rate: DELAYED_BYPASS.LOAD / CPU_CLK_UNHALTED.CORE

Domain bypass adds one cycle to instruction latency. To identify frequent domain bypasses in the code
you can use the above ratios.

USING PERFORMANCE MONITORING EVENTS

B-68

B.8.4.6 Floating-Point Performance Ratios
26. Floating-Point Instructions Ratio: X87_OPS_RETIRED.ANY / INST_RETIRED.ANY * 100

Significant floating-point activity indicates that specialized optimizations for floating-point algorithms
may be applicable.

27. FP Assist Performance Impact: FP_ASSIST * 80 / CPU_CLK_UNHALTED.CORE * 100

Floating-Point assist is activated for non-regular FP values like denormals and NANs. FP assist is
extremely slow compared to regular FP execution. Different assists incur different penalties. FP Assist
Performance Impact estimates the overall impact.

28. Divider Busy: IDLE_DURING_DIV / CPU_CLK_UNHALTED.CORE * 100

A high value for the Divider Busy ratio indicates that the divider is busy and no other execution unit or
load operation is in progress for many cycles. Using this ratio ignores L1 data cache misses and L2 cache
misses that can be executed in parallel and hide the divider penalty.

29. Floating-Point Control Word Stall Ratio: RESOURCE_STALLS.FPCW / CPU_CLK_UNHALTED.CORE *
100

Frequent modifications to the Floating-Point Control Word (FPCW) might significantly decrease perfor-
mance. The main reason for changing FPCW is for changing rounding mode when doing FP to integer
conversions.

B.8.5 Memory Sub-System - Access Conflicts Ratios
A high value for Load or Store Buffer Full Ratio (Ratio 4) indicates that the load buffer or store buffer are
frequently full, hence new micro-ops cannot enter the execution pipeline. This can reduce execution
parallelism and decrease performance.

30. Load Rate: L1D_CACHE_LD.MESI / CPU_CLK_UNHALTED.CORE

One memory read operation can be served by a core each cycle. A high “Load Rate” indicates that execu-
tion may be bound by memory read operations.

31. Store Order Block: STORE_BLOCK.ORDER / CPU_CLK_UNHALTED.CORE * 100

Store Order Block ratio is the percentage of cycles that store operations, which miss the L2 cache, block
committing data of later stores to the memory sub-system. This behavior can further cause the store
buffer to fill up (see Ratio 4).

B.8.5.1 Loads Blocked by the L1 Data Cache
32. Loads Blocked by L1 Data Cache Rate: LOAD_BLOCK.L1D/CPU_CLK_UNHALTED.CORE

A high value for “Loads Blocked by L1 Data Cache Rate” indicates that load operations are blocked by the
L1 data cache due to lack of resources, usually happening as a result of many simultaneous L1 data
cache misses.

B.8.5.2 4K Aliasing and Store Forwarding Block Detection
33. Loads Blocked by Overlapping Store Rate: LOAD_BLOCK.OVERLAP_STORE/CPU_CLK_UN-

HALTED.CORE

4K aliasing and store forwarding block are two different scenarios in which loads are blocked by
preceding stores due to different reasons. Both scenarios are detected by the same event: LOAD_-
BLOCK.OVERLAP_STORE. A high value for “Loads Blocked by Overlapping Store Rate” indicates that
either 4K aliasing or store forwarding block may affect performance.

B.8.5.3 Load Block by Preceding Stores
34. Loads Blocked by Unknown Store Address Rate: LOAD_BLOCK.STA / CPU_CLK_UNHALTED.CORE

B-69

USING PERFORMANCE MONITORING EVENTS

A high value for “Loads Blocked by Unknown Store Address Rate” indicates that loads are frequently
blocked by preceding stores with unknown address and implies performance penalty.

35. Loads Blocked by Unknown Store Data Rate: LOAD_BLOCK.STD / CPU_CLK_UNHALTED.CORE

A high value for “Loads Blocked by Unknown Store Data Rate” indicates that loads are frequently blocked
by preceding stores with unknown data and implies performance penalty.

B.8.5.4 Memory Disambiguation
The memory disambiguation feature of Intel Core microarchitecture uses a predictor to allow loads to
execute speculatively in the presence of older unknown stores. This eliminates most of the non-required
load blocks by stores with an unknown address. The LOAD_BLOCK.STA and MEMORY_DISAMBIGUA-
TION.RESET events can be used to measure the effectiveness of the feature.

B.8.5.5 Load Operation Address Translation
36. L0 DTLB Miss due to Loads - Performance Impact: DTLB_MISSES.L0_MISS_LD * 2 / CPU_CLK_UN-

HALTED.CORE

High number of DTLB0 misses indicates that the data set that the workload uses spans a number of
pages that is bigger than the DTLB0. The high number of misses is expected to impact workload perfor-
mance only if the CPI (Ratio 1) is low - around 0.8. Otherwise, it is likely that the DTLB0 miss cycles are
hidden by other latencies.

B.8.6 Memory Sub-System - Cache Misses Ratios

B.8.6.1 Locating Cache Misses in the Code
Intel Core microarchitecture provides you with precise events for retired load instructions that miss the
L1 data cache or the L2 cache. As precise events they provide the instruction pointer of the instruction
following the one that caused the event. Therefore the instruction that comes immediately prior to the
pointed instruction is the one that causes the cache miss. These events are most helpful to quickly iden-
tify on which loads to focus to fix a performance problem. The events are:

MEM_LOAD_RETIRE.L1D_MISS

MEM_LOAD_RETIRE.L1D_LINE_MISS

MEM_LOAD_RETIRE.L2_MISS

MEM_LOAD_RETIRE.L2_LINE_MISS

B.8.6.2 L1 Data Cache Misses
37. L1 Data Cache Miss Rate: L1D_REPL / INST_RETIRED.ANY

A high value for L1 Data Cache Miss Rate indicates that the code misses the L1 data cache too often and
pays the penalty of accessing the L2 cache. See also Loads Blocked by L1 Data Cache Rate (Ratio 32).

You can count separately cache misses due to loads, stores, and locked operations using the events
L1D_CACHE_LD.I_STATE, L1D_CACHE_ST.I_STATE, and L1D_CACHE_LOCK.I_STATE, accordingly.

B.8.6.3 L2 Cache Misses
38. L2 Cache Miss Rate: L2_LINES_IN.SELF.ANY / INST_RETIRED.ANY

A high L2 Cache Miss Rate indicates that the running workload has a data set larger than the L2 cache.
Some of the data might be evicted without being used. Unless all the required data is brought ahead of
time by the hardware prefetcher or software prefetching instructions, bringing data from memory has a
significant impact on the performance.

USING PERFORMANCE MONITORING EVENTS

B-70

39. L2 Cache Demand Miss Rate: L2_LINES_IN.SELF.DEMAND / INST_RETIRED.ANY

A high value for L2 Cache Demand Miss Rate indicates that the hardware prefetchers are not exploited to
bring the data this workload needs. Data is brought from memory when needed to be used and the work-
load bears memory latency for each such access.

B.8.7 Memory Sub-system - Prefetching

B.8.7.1 L1 Data Prefetching
The event L1D_PREFETCH.REQUESTS is counted whenever the DCU attempts to prefetch cache lines
from the L2 (or memory) to the DCU. If you expect the DCU prefetchers to work and to count this event,
but instead you detect the event MEM_LOAD_RETIRE.L1D_MISS, it might be that the IP prefetcher
suffers from load instruction address collision of several loads.

B.8.7.2 L2 Hardware Prefetching
With the event L2_LD.SELF.PREFETCH.MESI you can count the number of prefetch requests that were
made to the L2 by the L2 hardware prefetchers. The actual number of cache lines prefetched to the L2 is
counted by the event L2_LD.SELF.PREFETCH.I_STATE.

B.8.7.3 Software Prefetching
The events for software prefetching cover each level of prefetching separately.

40. Useful PrefetchT0 Ratio: SSE_PRE_MISS.L1 / SSE_PRE_EXEC.L1 * 100

41. Useful PrefetchT1 and PrefetchT2 Ratio: SSE_PRE_MISS.L2 / SSE_PRE_EXEC.L2 * 100

A low value for any of the prefetch usefulness ratios indicates that some of the SSE prefetch instructions
prefetch data that is already in the caches.

42. Late PrefetchT0 Ratio: LOAD_HIT_PRE / SSE_PRE_EXEC.L1

43. Late PrefetchT1 and PrefetchT2 Ratio: LOAD_HIT_PRE / SSE_PRE_EXEC.L2

A high value for any of the late prefetch ratios indicates that software prefetch instructions are issued too
late and the load operations that use the prefetched data are waiting for the cache line to arrive.

B.8.8 Memory Sub-system - TLB Miss Ratios
44. TLB miss penalty: PAGE_WALKS.CYCLES / CPU_CLK_UNHALTED.CORE * 100

A high value for the TLB miss penalty ratio indicates that many cycles are spent on TLB misses. Reducing
the number of TLB misses may improve performance. This ratio does not include DTLB0 miss penalties
(see Ratio 37).

The following ratios help to focus on the kind of memory accesses that cause TLB misses most frequently
See “ITLB Miss Rate” (Ratio 6) for TLB misses due to instruction fetch.

45. DTLB Miss Rate: DTLB_MISSES.ANY / INST_RETIRED.ANY

A high value for DTLB Miss Rate indicates that the code accesses too many data pages within a short
time, and causes many Data TLB misses.

46. DTLB Miss Rate due to Loads: DTLB_MISSES.MISS_LD / INST_RETIRED.ANY

A high value for DTLB Miss Rate due to Loads indicates that the code accesses loads data from too many
pages within a short time, and causes many Data TLB misses. DTLB misses due to load operations may
have a significant impact, since the DTLB miss increases the load operation latency. This ratio does not
include DTLB0 miss penalties (see Ratio 37).

B-71

USING PERFORMANCE MONITORING EVENTS

To precisely locate load instructions that caused DTLB misses you can use the precise event MEM_-
LOAD_RETIRE.DTLB_MISS.

47. DTLB Miss Rate due to Stores: DTLB_MISSES.MISS_ST / INST_RETIRED.ANY

A high value for DTLB Miss Rate due to Stores indicates that the code accesses too many data pages
within a short time, and causes many Data TLB misses due to store operations. These misses can impact
performance if they do not occur in parallel to other instructions. In addition, if there are many stores in
a row, some of them missing the DTLB, it may cause stalls due to full store buffer.

B.8.9 Memory Sub-system - Core Interaction

B.8.9.1 Modified Data Sharing
48. Modified Data Sharing Ratio: EXT_SNOOP.ALL_AGENTS.HITM / INST_RETIRED.ANY

Frequent occurrences of modified data sharing may be due to two threads using and modifying data laid
in one cache line. Modified data sharing causes L2 cache misses. When it happens unintentionally (aka
false sharing) it usually causes demand misses that have high penalty. When false sharing is removed
code performance can dramatically improve.

49. Local Modified Data Sharing Ratio: EXT_SNOOP.THIS_AGENT.HITM / INST_RETIRED.ANY

Modified Data Sharing Ratio indicates the amount of total modified data sharing observed in the system.
For systems with several processors you can use Local Modified Data Sharing Ratio to indicates the
amount of modified data sharing between two cores in the same processor. (In systems with one
processor the two ratios are similar).

B.8.9.2 Fast Synchronization Penalty
50. Locked Operations Impact: (L1D_CACHE_LOCK_DURATION + 20 * L1D_CACHE_LOCK.MESI) /

CPU_CLK_UNHALTED.CORE * 100

Fast synchronization is frequently implemented using locked memory accesses. A high value for Locked
Operations Impact indicates that locked operations used in the workload have high penalty. The latency
of a locked operation depends on the location of the data: L1 data cache, L2 cache, other core cache or
memory.

B.8.9.3 Simultaneous Extensive Stores and Load Misses
51. Store Block by Snoop Ratio: (STORE_BLOCK.SNOOP / CPU_CLK_UNHALTED.CORE) * 100

A high value for “Store Block by Snoop Ratio” indicates that store operations are frequently blocked and
performance is reduced. This happens when one core executes a dense stream of stores while the other
core in the processor frequently snoops it for cache lines missing in its L1 data cache.

B.8.10 Memory Sub-system - Bus Characterization

B.8.10.1 Bus Utilization
52. Bus Utilization: BUS_TRANS_ANY.ALL_AGENTS * 2 / CPU_CLK_UNHALTED.BUS * 100

Bus Utilization is the percentage of bus cycles used for transferring bus transactions of any type. In single
processor systems most of the bus transactions carry data. In multiprocessor systems some of the bus
transactions are used to coordinate cache states to keep data coherency.

53. Data Bus Utilization: BUS_DRDY_CLOCKS.ALL_AGENTS / CPU_CLK_UNHALTED.BUS * 100

Data Bus Utilization is the percentage of bus cycles used for transferring data among all bus agents in the
system, including processors and memory. High bus utilization indicates heavy traffic between the

USING PERFORMANCE MONITORING EVENTS

B-72

processor(s) and memory. Memory sub-system latency can impact the performance of the program. For
compute-intensive applications with high bus utilization, look for opportunities to improve data and code
locality. For other types of applications (for example, copying large amounts of data from one memory
area to another), try to maximize bus utilization.

54. Bus Not Ready Ratio: BUS_BNR_DRV.ALL_AGENTS * 2 / CPU_CLK_UNHALTED.BUS * 100

Bus Not Ready Ratio estimates the percentage of bus cycles during which new bus transactions cannot
start. A high value for Bus Not Ready Ratio indicates that the bus is highly loaded. As a result of the Bus
Not Ready (BNR) signal, new bus transactions might defer and their latency will have higher impact on
program performance.

55. Burst Read in Bus Utilization: BUS_TRANS_BRD.SELF * 2 / CPU_CLK_UNHALTED.BUS * 100

A high value for Burst Read in Bus Utilization indicates that bus and memory latency of burst read oper-
ations may impact the performance of the program.

56. RFO in Bus Utilization: BUS_TRANS_RFO.SELF * 2 / CPU_CLK_UNHALTED.BUS * 100

A high value for RFO in Bus Utilization indicates that latency of Read For Ownership (RFO) transactions
may impact the performance of the program. RFO transactions may have a higher impact on the program
performance compared to other burst read operations (for example, as a result of loads that missed the
L2). See also Ratio 31.

B.8.10.2 Modified Cache Lines Eviction
57. L2 Modified Lines Eviction Rate: L2_M_LINES_OUT.SELF.ANY / INST_RETIRED.ANY

When a new cache line is brought from memory, an existing cache line, possibly modified, is evicted from
the L2 cache to make space for the new line. Frequent evictions of modified lines from the L2 cache
increase the latency of the L2 cache misses and consume bus bandwidth.

58. Explicit WB in Bus Utilization: BUS_TRANS_WB.SELF * 2 / CPU_CLK_UNHALTED.BUS*100

Explicit Write-back in Bus Utilization considers modified cache line evictions not only from the L2 cache
but also from the L1 data cache. It represents the percentage of bus cycles used for explicit write-backs
from the processor to memory.

APPENDIX C
RUNTIME PERFORMANCE OPTIMIZATION BLUEPRINT: INTEL®

ARCHITECTURE OPTIMIZATION WITH LARGE CODE PAGES

This appendix provides a runtime optimization blueprint illustrating how the performance of runtimes
can be improved by using large code pages.

C.1 OVERVIEW
Modern microprocessors support multiple page sizes for program code. For example, the current gener-
ation server platform Intel® Xeon® 8280 processor (based on Cascade Lake microarchitecture) supports
4 KB, 2 MB, and 4 MB pages for instructions and 4 KB, 2 MB, 4 MB, and 1 GB for data. Intel platforms
have supported 4 KB and 2 MB pages for instructions as far back as 2011 in the Intel® Xeon® E5
processor (based on Ivy Bridge microarchitecture). Nevertheless, most programs use only one page
size, which is the default of 4 KB. On Linux*, all applications are loaded into 4 KB memory pages by
default. When examining performance bottlenecks for workloads on language runtimes, high stalls due
to ITLB misses are found. This is largely due to the runtimes using only 4 KB pages for instructions.

Figure C-1 shows the CPU stalls resulting from ITLB misses on an Intel® Xeon® 8180 processor across a
range of runtime workloads. On average, 7% of the cycles are stalled on ITLB misses. Benchmarks such
as SPECjbb2015*1 have low ITLB stalls (2.6%) compared to SPECjEnterprise*2 which has high ITLB
stalls (13%).

1. SPECjbb2015. (n.d.). SPECjbb2015 Design Document. Retrieved from SPEC - Standard Performance Evaluation Corpora-
tion: https://www.spec.org/jbb2015/docs/designdocument.pdf

2. SPECjEnterprise. (n.d.). SPECjEnterpise 2018 Web Profile. Retrieved from SPEC - Standard Performance Evaluation Cor-
poration: https://www.spec.org/jEnterprise2018web/

Figure C-1. ITLB Miss Stalls in Language Runtimes on Intel® Xeon® 8180 Processor

https://www.spec.org/jbb2015/docs/designdocument.pdf
https://www.spec.org/jbb2015/docs/designdocument.pdf
https://www.spec.org/jEnterprise2018web/

RUNTIME PERFORMANCE OPTIMIZATION BLUEPRINT: INTEL® ARCHITECTURE OPTIMIZATION WITH LARGE CODE PAGES

C-2

C.1.1 ITLBs and Stalls
Intel processors have a Translation Lookaside Buffer (TLB), which stores the most recently used page-
directory and page-table entries. TLBs speed up memory accesses when paging is enabled, by reducing
the number of memory accesses that are required to read the page tables stored in system memory.

The TLBs are divided into the following groups:
• Instruction TLBs for 4KB pages.
• Data TLBs for 4KB pages.
• Instruction TLBs for large pages (2MB, 4MB pages).
• Data TLBs for large pages (2MB, 4MB, or 1GB pages).

On the Intel® Xeon® Platinum 8180 processor (based on Skylake Server microarchitecture), each
processor TLB consists of dedicated L1 TLB for instruction cache (ITLB). Additionally, there is a unified L2
Second Level TLB (STLB) which is shared across both data and instructions, as shown below.

TLBs:
• ITLB

— 4 KB page translations:

• 128 entries; 8-way set associative.

• Dynamic partitioning.

— 2 MB / 4 MB page translations:

• 8 entries per thread; fully associative.

• Duplicated for each thread.
• STLB

— 4 KB + 2 MB page translations:

• 1536 entries; 12-way set associative, fixed partition.

When the processor does not find an entry in the ITLB, it has to do a page walk and populate the entry.
A miss in the L1 (first level) ITLBs results in a very small penalty that can usually be hidden by the Out of
Order (OOO) execution. A miss in the STLB results in the page walker being invoked; this penalty can be
noticeable in the execution. During this process, the processor is stalled. The following table lists the TLB
sizes across different Intel product generations.

From Table C-1 we can see that 2M page entries are shared in the L2 Unified TLB from Haswell microar-
chitecture onwards.

Table C-1. Core TLB Structure Size and Organization Across Multiple Intel Product Generations

TLB Sandy Bridge / Ivy Bridge
Microarchitecture

Haswell / Broadwell
Microarchitecture

Skylake / Cascade Lake
Microarchitecture

L1 Instruction TLB 4K – 128, 4-way
2M/4M – 8/thread

4K – 128,4 way
2M/4M – 8/thread

4K – 128, 8 way
2M/4M – 8/thread

L1 Data TLB 4K – 64, 4-way
2M/4M – 32 – 4-way
1G: 4, 4-way

4K – 64, 4-way
2M/4M – 32 – 4-way
1G: 4, 4-way

4K – 64, 4-way
2M/4M – 32 – 4-way
1G: 4, 4-way

L2 (Unified) STLB 4K – 512, 4-way 4K+2M shared:
Haswell:
1024, 8-way
Broadwell:
1536, 6-way
1G: 16, 4-way

4K+2M shared:
1536, 12-way
1G: 16, 4-way

C-3

RUNTIME PERFORMANCE OPTIMIZATION BLUEPRINT: INTEL® ARCHITECTURE OPTIMIZATION WITH LARGE CODE PAGES

C.1.2 Large Pages
Both Windows* and Linux allow server applications to establish large-page memory regions. Using large
2MB pages, 20MB of memory can be mapped with just 10 pages; whereas with 4KB pages, 5120 pages
are required. This means fewer TLB entries are needed, in turn reducing the number of TLB misses. Large
pages can be used for code or for data, or both. Large pages for data are good to try if your workload has
large heap. The blueprint described here focuses on using large pages for code.

C.2 DIAGNOSING THE PROBLEM

C.2.1 ITLB Misses
Intel has defined a Top-down Micro-architecture Analysis Method (TMAM) (see Appendix B, “Using Perfor-
mance Monitoring Events”), which proposes a hierarchical execution cycles breakdown based on a set of
new performance events. TMAM examines every instruction issue slot independently, and is therefore
able to provide an accurate slot-level breakdown.

One of the components of the front-end latency is the ITLB miss stall. This metric represents the fraction
of cycles the processor was stalled due to instruction TLB misses. On the Intel® Xeon® Scalable family of
processors (based on Skylake Server microarchitecture), ITLB miss stall can be computed through two
PMU counters, ICACHE_64B.IFTAG_STALL and CPU_CLK_UNHALTED.THREAD, using Equation 1.

Equation 1: Calculation of the ITLB Stall Metric

Let us look at a concrete example. The Ghost.js workload has an ITLB_miss stall % of 10.6 when run in
cluster mode across the whole system. A sampling of these two counters along with Equation 1 enables
us to determine the % of ITLB_miss stall. A 10.6% stall due to ITLB misses is significant for this work-
load.

Measuring ITLB miss stall is critical to determine if your workload on a runtime has an ITLB performance
issue.

In Section C.6, “Case Study”, we show that even while running in single instance mode, Ghost.js has a
6.47% stall due to ITLB misses. When large pages are implemented, the performance improves by 5%
and the ITLB misses are reduced by 30% and the ITLB Miss Stall is reduced from 6.47% to 2.87% .

Another key metric is the ITLB Misses Per Kilo Instructions (MPKI). This metric is a normalization of the
ITLB misses against number of instructions, and it allows comparison between different systems. This
metric is calculated using two PMU counters: ITLB_MISSES.WALK_COMPLETED and INST_RETIRED.ANY,
as described in Equation 2. There are distinct PMU counters for large pages and 4KB pages, so Equation
2 shows the calculation for each PMU counter, respectively.

Table C-2. Calculating ITLB Miss Stall for Ghost.js

CPU_CLK_UNHALTED.THREAD 69838983

ICACHE_64B.IFTAG_STALL 7412534

ITLB Miss Stall % 10.6

RUNTIME PERFORMANCE OPTIMIZATION BLUEPRINT: INTEL® ARCHITECTURE OPTIMIZATION WITH LARGE CODE PAGES

C-4

Equation 2: Calculating ITLB MPKI

Upon calculating the MPKI for the runtime workloads in Figure C-2, we find that the ITLB MPKI and the
ITLB 4K MPKI are very close to each other across the workloads. We can thus infer that most of the
misses are from 4KB page walks. Another observation is that the benchmarks have lower ITLB MPKI than
large real world software, which means that optimization decisions made on benchmarks might not
translate to open source software.

Having ITLB MPKI also enables us to do comparisons across different systems and workloads. Table C-3
compiles the ITLB MPKI across various workloads published1,2. We can observe that there is not a direct
correlation of binary size to ITLB MPKI. Some smaller binaries, such as MySQL, have one of the largest
ITLB MPKI. When multiple threads are active, the ITLB MPKI almost doubles for both Ghost.js (single
instance vs. multi instance) and Clang (-j1 vs -j4). The ITLB MPKI is much lower on newer servers (using

Figure C-2. ITLB and ITLB 4K MPKI Across Runtime Workloads

1. Ottoni, G., & Bertrand, M. (2017). Optimizing Function Placement for Large-Scale Data-Center Applications. CGO 2017.

2. Lavaee, R., Criswell, J., & Ding, C. (Oct 2018). Codestitcher: Inter-Procedural Basic Block Layout Optimization.
arXiv:1810.00905v1 [cs.PL].

C-5

RUNTIME PERFORMANCE OPTIMIZATION BLUEPRINT: INTEL® ARCHITECTURE OPTIMIZATION WITH LARGE CODE PAGES

Intel® Xeon® 8180 processors) as compared to older generation servers (using Intel® Xeon® E5 proces-
sors).

C.2.2 Measuring the ITLB Miss Stall
Intel has a number of tools to automate measuring ITLB miss stalls, including Intel® VTune™ Profiler,
EMON/EDP, and Linux PMU tools. This blueprint offers a convenient tool (measure-perf-metric.sh)
based on perf to collect and derive various stall metrics on Intel® Xeon® Scalable processors. The tool is
open sourced and available for download at http://github.com/intel/iodlr. Figure C-3 shows the
command line to collect and derive ITLB miss stalls for an application with process id=69772. The tool
output shows the application has a 3.09% ITLB miss stall.

Table C-3. ITLB MPKI and Executable Sizes Across Various Workloads

Workload Text (MB) ITLB MPKI System Details

AdIndexer
HHVM
Multifeed
TAO

186
133
199
70

0.48
1.28
0.40
3.08

Dual 2.8 GHz Intel® Xeon® E5-2680 v2
(based on Ivy Bridge microarchitecture)
server platform, with 10 cores and 25 MB
LLC per processor.

MySQL
Clang –j4
Clang –j1
Firefox
Apache PHP (w opcache)
Apache PHP (w/o opcache)
Python

15
50
50
81
16
16
2

9.35
2.23
1.01
1.54
0.33
0.96
0.19

Two dual core Intel® Core™ i5-4278U (based
on Haswell microarchitecture) processors
running at 2.60 GHz. 32 KB instruction
cache and a 256 KB second level unified
cache private to each core. Both caches are
8-way set associative. The last level cache
is 3 MB, 12-way set associative, and is
shared by all core.

SPECjEnterprise2018-WP-VM
SPECjEnterprise2018-WP-Native
SPECjbb2015
Wordpress/PHP
MediaWiki/HHVM
Ghost.js/Multi
Ghost.js/Single
Python Django (Instagram)

0.23
0.18
0.09
0.49
0.59
0.56
0.23
0.14

Intel® Xeon® Platinum 8180 (based on
Skylake Server microarchitecture) with
112 cores @ 2.5 GHz (except
MediaWiki/HHVM which is on a SKX-D with
18 cores).

Figure C-3. measure-perf-metric.sh Tool Usage for Process ID 69772 for 30 Seconds

http://github.com/intel/iodlr

RUNTIME PERFORMANCE OPTIMIZATION BLUEPRINT: INTEL® ARCHITECTURE OPTIMIZATION WITH LARGE CODE PAGES

C-6

Use the command “measure-perf-metric.sh –h” to display help messages for using the tool. Refer to
the README.md file, which describes how to add new metrics to the tool.

C.2.3 Source of ITLB Misses
The next task is to find where the ITLB misses are coming from. They could be coming from the .text
segment of the runtime, JITted code, some other dynamic library of the runtime, or native libraries in the
user code. Performance tools such as perf, are required to determine where the ITLB misses are coming
from.

In the case of Ghost.js that we examined earlier, most of the ITLB misses are coming from the .text
segment of the Node.js1 binary. We find this to be the case for several other Node.js workloads. Using the
current release of node.js (v12.8.0) and the measure-perf-metric.sh tool, we can determine it for a
Node.js workload. Figure C-4 shows that 65.23% of the stalls are in the node binary. The ‘-r’ option to
measure-perf-metric.sh uses perf record underneath to record the location in the source code that
is causing the itlb_stalls.

While Figure C-4 shows where the TLB miss overheads are coming from in terms of stalled cycles, we
further analyze the latest upstream node.js (14.0.0-pre) to find the overhead in terms of ITLB miss
counts using the “perf record -e frontend_retired.tlb_miss” command. We extract the report
using the perf script command and filtering it based on the ITLB miss addresses. We find that 17.6%
of ITLB misses are from JITted code and 72.8% from the node binary. We also find that “built-in” func-
tions, which are part of node binary, account for 19.5% of the total ITLB misses.

On Linux and Windows systems, applications are loaded into memory into 4KB pages, which is the
default on most systems. One way to reduce the ITLB misses is to use the larger page size, which has two
benefits. The first benefit is fewer translations are required leading to fewer page walks. The second
benefit is less space is used in the cache for storing translations, allowing more space to be available for
the application code. Some older systems, such as one using Intel® Xeon® E5-2680 v2 processors
(based on Ivy Bridge microarchitecture), have only 8 huge-page ITLB entries that are organized in a
single level, so mapping all the text to large pages could cause a regression. However on Intel® Xeon®
Platinum 8180 processors (based on Skylake Server microarchitecture), the STLB is shared by both 4KB
and 2MB pages and has 1536 entries.

C.3 SOLUTION

C.3.1 Linux* and Large Pages
On the Linux OS, there are two ways of using large pages in an application:

1. NodeJS Foundation. (2019,. August). Node.js JavaScript Runtime. Retrieved from Node.js JavaScript Runtime:
https://nodejs.org/en

Figure C-4. Using measure-perf-metric.sh with -r to Determine Where TLB Misses are Coming From

https://nodejs.org/en
https://nodejs.org/en

C-7

RUNTIME PERFORMANCE OPTIMIZATION BLUEPRINT: INTEL® ARCHITECTURE OPTIMIZATION WITH LARGE CODE PAGES

• Explicit Huge Pages (hugetlbfs). Part of the system memory is exposed as a file system that
applications can mmap from. You can check the system through cat /proc/meminfo and see if lines
like HugePages_Total are present.

• Transparent Huge Pages (THP). Linux also offers Transparent Hugepage Support which manages
large pages automatically and is transparent for applications. The application can tell Linux to use
large-pages-backed memory through madvise. You can check the system through cat
/sys/kernel/mm/transparent_hugepage/enabled. If the values are always or madvise, then THP
is available for the application. With madvise, THP is enabled only inside MADV_HUGEPAGE regions.
Figure C-5 shows how to check the distribution for THP.

C.3.2 Large Pages for .text
There are a few solutions on Linux for solving the ITLB miss issue for .text segments:
• Linking runtime with libhugetlbfs: There are a number of support utilities and a library packaged

collectively as libhugetlbfs. The library provides support for automatically backing text, data, heap,
and shared memory segments with huge pages. This relies on explicit huge pages that the system
administrator has to manage using tools like hugeadm.

• Using the Intel Reference Implementation: The reference implementations have both a C and a
C++ module that automates the process using Transparent Huge Pages. A couple of API calls
described below may be invoked at the beginning of the runtime to map a subset of the application’s
.text segment to 2MB pages.

• Using an explicit option or flag in the runtime: The Node.js runtime has an implementation that
is exposed using --enable-largepages=on when you run Node.js. The PHP runtime has a flag that
can be added to the .ini file. For details, see: https://www.php.net/manual/en/opcache.configu-
ration.php.

C.3.3 Reference Code
This blueprint offers a reference implementation that enables an application to utilize large pages for its
execution. The open source reference implementation is available for download at
http://github.com/intel/iodlr. Both a C and C++ implementation are provided.

The following is a high level description of the reference implementation and its APIs.

1. Find the .text region in memory.

a. Examine the /proc/self/maps to determine the currently mapped .text region and obtain the
start and end addresses.

b. Modify the start address to point to the very beginning of the .text segment.

c. Align the start and end addresses to large page boundaries.

2. Move the .text region to large pages.

a. Map a temporary area and copy the original code there.

b. Use mmap using the start address with MAP_FIXED so we get exactly the same virtual address.

c. Use madvise with MADV_HUGE_PAGE to use anonymous 2MB pages.

Figure C-5. Commands for Checking Linux* Distribution for THP

https://www.php.net/manual/en/opcache.configuration.php
https://www.php.net/manual/en/opcache.configuration.php
https://github.com/libhugetlbfs/libhugetlbfs
http://github.com/intel/iodlr

RUNTIME PERFORMANCE OPTIMIZATION BLUEPRINT: INTEL® ARCHITECTURE OPTIMIZATION WITH LARGE CODE PAGES

C-8

d. If successful, copy the code from the temporary area and unmap it.

There are five API calls provided in the reference implementation as shown in Figure C-6. Since the initial
release, the ability to map DSOs has been added.

C.3.4 Large Pages for the Heap
The Just-In-Time (JIT) compiler compiles methods on demand and the memory for the JITted code is
allocated from the heap and subject to garbage collection.

The runtime can allocate heap on large pages using mmap with the flags argument set as MAP_HUGETLB
(available since Linux 2.6.32) or MAP_HUGE_2MB/ MAP_HUGE_1GB (available since Linux 3.8). Alterna-
tively, the heap region can be set to use transparent huge pages on Linux by using the madvise system
call with MADV_HUGE_PAGES. When using madvise, the runtime must check that transparent_hugepage
is set appropriately in the OS as either madvise or always, and not set to never.

The Java* VM has several options for mapping the Java heap with large pages1. Since the JITted code is
also on the heap, it allocates both the code and the data to large pages.

-XX:+UseHugeTLBFS mmaps Java heap into hugetlbfs, which should be prepared separately.

-XX:+UseTransparentHugePages madvise-s that Java heap should use THP.

Figure C-6. API Calls Provided by the Intel Reference Implementation

1. Aleksey Shipilev, Redhat. (2019, 03 03). Transparent Huge Pages. Retrieved from JVM Anatomy Quarks: https://shipi-
lev.net/jvm/anatomy-quarks/2-transparent-huge-pages/.

https://shipilev.net/jvm/anatomy-quarks/2-transparent-huge-pages/

C-9

RUNTIME PERFORMANCE OPTIMIZATION BLUEPRINT: INTEL® ARCHITECTURE OPTIMIZATION WITH LARGE CODE PAGES

C.4 SOLUTION INTEGRATION
Integrating the solution into a new runtime requires the following changes:

1. Follow the style guide of the runtime and update the reference code.

2. Determine in the runtime where to make the API calls to remap the .text segment.

3. Change the build to link with the new files/library.

4. Provide a build time or runtime option to turn on this feature.

C.4.1 V8 Integration with the Reference Implementation
V81 is the Google* open source high-performance JavaScript* engine, written in C++. We integrated
Intel’s large pages reference implementation with V8 using the steps described above.

Here are the specific steps that we used to integrate the reference implementation within V8:

1. Check out, configure, and build v8 from: https://v8.dev/docs/build-gn.

2. Add call to MapStaticCodeToLargePages() at the beginning of Shell::Main() in d8.cc. Include
huge_page.h in the source file.

3. Generate build files with the command:
gn gen out/foo –args=’is_debug=false target_cpu="x64" is_clang=false’

4. Update the following build files:

a. Update out/foo/obj/d8.ninja
Add –Ipath/to/huge_page.h to include_dirs variable
Add -Wl,-T path/to/ld.implicit.script to ldflags variable

b. Update out/foo/toolchain.ninja
Add path/to/libhuge_page.a –lstdc++ to link command, before –Wl,–endgroup

5. Compile V8 with the command:
ninja -C out/bar/ d8

C.4.2 JAVA JVM Integration with the Reference Implementation
OpenJDK is a free and open-source implementation of the Java Platform, Standard Edition written in a
combination of C and C++. We determined that Java executable unlike v8 or nodejs is a thin ‘C’ wrapper
that uses dlopen to load the libjvm.

We integrated Intel’s C large pages reference implementation with OpenJDK. Here are the specific steps
that we used to integrate the reference implementation:

1. Check out, configure, and build OpenJDK using instructions at:
http://cr.openjdk.java.net/~ihse/demo-new-build-readme/common/doc/building.html

2. Modify the code in src/java.base/unix/native/libjli/java_md_solinux.c to load libjvm.so into
2M pages:

• Use the API to check if LargePages is supported.

• Use the API MapDSOToLargePages(const char* lib_regex) to load libjvm.so into 2M pages.

3. Compile and rebuild the Java wrapper.

1. Google V8 JavaScript. (2019, August). V8 JavaScript Engine. Retrieved from V8 JavaScript Engine: https://v8.dev/

https://v8.dev/
https://v8.dev/docs/build-gn
http://cr.openjdk.java.net/~ihse/demo-new-build-readme/common/doc/building.html

RUNTIME PERFORMANCE OPTIMIZATION BLUEPRINT: INTEL® ARCHITECTURE OPTIMIZATION WITH LARGE CODE PAGES

C-10

C.5 LIMITATIONS
There are several limitations to be aware of when using large pages:
• Fragmentation is an issue that is introduced when using large pages. If there is insufficient

contiguous memory to assemble the large page, the operating system tries to reorganize the
memory to satisfy the large page request, which can result in longer latencies. This can be mitigated
by allocating large pages explicitly ahead of time. The reference code does not have support for
explicit huge pages.

• Another issue is the additional execution time it takes to perform the algorithm in the Intel reference
code. For short running programs, it adds additional execution time and might result in a slowdown
rather than a speedup.

• We have recently encountered an issue when the current implementation is used with multiple
instances of the same application. We have a report that it increases the LLC misses. We think this is
due to the kernel not sharing the code after the remapping. We are investigating and working on a
solution.

Tools like perf are no longer able to follow the symbols after the .text is remapped (Figure C-7) and the
perf output will not have the symbols. You will need to provide the static symbols to perf in
/tmp/perf-PID.map at startup.

C.6 CASE STUDY
This section details how this optimization helps performance and reduces ITLB misses in three workloads
in three environments. The workloads are:
• Ghost1, a fully open source, adaptable platform for building and running a modern online publication.
• Web Tooling2, a suite designed to measure JavaScript-related workloads.
• MediaWiki3, a free and open-source wiki engine written in PHP.

This case study uses data running on the Intel® Xeon® Platinum 8180 processor (based on Skylake
Server microarchitecture) for Ghost.js and Web Tooling and uses the Intel® Xeon® D-2100 processor4 for
MediaWiki to showcase the benefits of large pages. The last case study demonstrates how to use Visual-
ization tools to identify patterns in the data.

Figure C-7. perf Output Will Not Have the Proper Symbols After Large Page Mapping

1. Ghost Team. (n.d.). Ghost: The professional publishing platform. Retrieved from Ghost Non Profit Web Site:
https://ghost.org/.

2. Google Web Tooling. (2019, August). Web Tooling Benchmark. Retrieved from Web Tooling Benchmark:
https://github.com/v8/web-tooling-benchmark.

3. WikiMedia Foundation. (2019, August). Mediawiki Software. Retrieved from Mediawiki Software:
http://mediawiki.org/wiki/MediaWiki.

4. Xeon-D, I. (n.d.). Xeon-D. Retrieved from intel.com:
https://www.intel.com/content/www/us/en/products/processors/xeon/d-processors.html.

https://ghost.org/
https://ghost.org/
https://github.com/v8/web-tooling-benchmark
https://github.com/v8/web-tooling-benchmark
http://mediawiki.org/wiki/MediaWiki
http://mediawiki.org/wiki/MediaWiki
https://www.intel.com/content/www/us/en/products/processors/xeon/d-processors.html

C-11

RUNTIME PERFORMANCE OPTIMIZATION BLUEPRINT: INTEL® ARCHITECTURE OPTIMIZATION WITH LARGE CODE PAGES

C.6.1 Ghost.js Workload
Ghost is an open source blogging platform written in JavaScript and running on Node.js. We created a
workload that has a single instance Ghost.js running on Node.js as a server and uses Apache Bench as a
client to make requests. The performance is measured by a metric called Requests Per Second (RPS).

Intel developed and contributed the 2MB for Code PR which is now merged into Node.js master. You can
turn on large pages at runtime with the switch --enable-largepages=on in recent builds of Node.js. In
older builds, you can enable large pages by building with --use-largepages. You can then compare the
default build of Node.js with a build configured to use large pages.

Table C-4 shows the key metrics with Node.js and Node.js with large pages. RPS improves by 5%. The
stalls due to the ITLB misses have reduced by 56%. The ITLB MPKI improved by 57%. The gains are
mostly coming from the ITLB walk reduction which reduces by 55%. Note that the number of 2MB walks
increases due to the use of 2MB pages.

C.6.2 Web Tooling Workload

C.6.2.1 Node Version
Clear Linux* OS distributes Node 10.16.0 compiled with large pages support. We installed official Node
10.16.0 (which does not have large page support) on Ubuntu* 18.04 so we can compare the same
version. Ubuntu only comes with Node 8.10.0 as part of the apt repository.

C.6.2.2 Web Tooling
This is a suite designed to measure the JavaScript-related workloads commonly used by web developers,
such as the core workloads in popular tools like Babel or TypeScript. It has a number of sub-components
and reports a throughput score.

C.6.2.3 Comparing Clear Linux* OS and Ubuntu*
Table C-5 shows the key metrics when running the Web Tooling workload. Although we observed small
improvements in the throughput and cycles on Clear Linux when compared to Ubuntu, the Clear Linux

Table C-4. Key Metrics for Ghost.js With and Without Large Pages

Metric Node.js With Large
Pages

Node.js Without Large
Pages (Default)

Large Pages/Default

Throughput: Requests Per Second (RPS) 134.32 127.23 1.05

metric_ITLB_Misses(%) 2.87 6.47 0.44

metric cycles per txn 30048182 31426008 0.95

metric instructions per txn 46703106 47153431 0.99

ITLB_MISSES.WALK_COMPLETED 36799580 82504511 0.45

ITLB_MISSES.WALK_COMPLETED_2M_4M 938969 250959 3.74

ITLB_MISSES.WALK_COMPLETED_4K 35842004 82166894 0.44

metric ITLB MPKI 0.098 0.230 0.43

metric ITLB 4K MPKI 0.096 0.229 0.43

metric ITLB 2M_4M MPKI 0.002 0.0007 3.55

https://github.com/nodejs/node/commit/bf7ed80475cfa7ae1ab6086c325f57557b75dffe#diff-c819704c105ba2c1712a03641f9b3bd2

RUNTIME PERFORMANCE OPTIMIZATION BLUEPRINT: INTEL® ARCHITECTURE OPTIMIZATION WITH LARGE CODE PAGES

C-12

reduces the ITLB miss stall by 59%, the ITLB MPKI by 51%, and the 4KB MPKI by 52%. This is due to
Clear Linux distributing Node.js compiled with the --use-largepages option. The throughput isn’t
impacted significantly, since the ITLB stalls were not as significant to begin with.

C.6.3 MediaWiki Workload
MediaWiki is a free and open-source wiki engine written in PHP. We used HHVM 3.25 to execute Medi-
aWiki. HHVM maps the hot text pages to 2MB pages1 and uses both the 4 KB and 2 MB pages. HHVM
provides command line options -vEval.MaxHotTextHugePages and -vEval.MapTCHuge to enable large
pages for the hot text pages and the Translation Cache pages (which holds the JIT generated code). In
addition, it relies on code ordering to reduce the TLB misses. Table C-6 shows the improvement in metrics
with large pages. There is a reduction of 16% for the ITLB miss stalls, a 29% reduction for the overall
walks completed, and a 66% reduction in the hits to the shared TLBs. Skylake Server microarchitecture
introduced new precise front-end events (e.g., FRONTEND_RETIRED.ITLB_MISS counts retired instruc-
tions that experienced ITLB (Instruction TLB) true miss) and we can see that all those are lower with
large pages with STLB_MISS reducing by 23%.

Table C-5. Key Metrics for Web Tooling across Clear Linux and Ubuntu 18.04

Metric Clear Linux Ubuntu 18.04 Clear Linux/Ubuntu

Throughput 10.91 10.80 1.01

metric_ITLB_Misses(%) 0.91 2.21 0.41

metric cycles per txn 531,821,553.08 537,631,089.06 0.98

metric instructions per txn 836,955,459.53 879,834,649.97 0.95

ITLB_MISSES.WALK_COMPLETED 8,145,008 17,230,161 0.47

ITLB_MISSES.WALK_COMPLETED_4K 7,909,985 17,070,769 0.46

ITLB_MISSES.WALK_COMPLETED_2M_4M 241,215 142,356 1.69

metric ITLB MPKI 0.0298 0.0604 0.49

metric ITLB 4K MPKI 0.0289 0.0598 0.48

metric ITLB 2M_4M MPKI 0.0009 0.0005 1.76

1. Ottoni, G., & Bertrand, M. (2017). Optimizing Function Placement for Large-Scale Data-Center Applications. CGO 2017.

Table C-6. Key Metrics for MediaWiki Workload on HHVM

Metric Large Pages No Large Pages Large/No Large

metric_ITLB_Misses(%) 2.86 3.42 0.84

metric cycles per txn 44339066 44372158 0.99

metric instructions per txn 39129166 39168226 0.99

ITLB_MISSES.WALK_COMPLETED 7735.06 10850.57 0.71

ITLB_MISSES.WALK_COMPLETED_2M_4M 281.39 243.89 1.15

ITLB_MISSES.WALK_COMPLETED_4K 7453.67 10606.68 0.70

FRONTEND_RETIRED.ITLB_MISS 160403.87 162401.23 0.99

FRONTEND_RETIRED.L1I_MISS 160403.87 162401.23 0.99

C-13

RUNTIME PERFORMANCE OPTIMIZATION BLUEPRINT: INTEL® ARCHITECTURE OPTIMIZATION WITH LARGE CODE PAGES

C.6.4 Visualization of Benefits

C.6.4.1 Precise Events
Intel PMU has Precise Event-Based Sampling (PEBS) which reports precise information, such as instruc-
tion address of cache misses. On the Intel® Xeon® Platinum 8180 (based on Skylake Server microarchi-
tecture), the PEBS events support additional front-end events which are hardest to locate in the source
code. Two of them are for ITLB misses as shown in Table C-7.

C.6.4.2 Visualizing Precise ITLB Miss
We can use Linux perf to record the frontend_retired.itlb_miss event and visualize the events with
FlameScope, an Open Source tool from Netflix*. FlameScope is a visualization tool for exploring time
ranges heatmaps and FlameGraphs. FlameScope starts by visualizing the input data as an interactive
subsecond-offset heat map.

FRONTEND_RETIRED.L2_MISS 19566.98 20075.91 0.97

FRONTEND_RETIRED.STLB_MISS 3820.17 4961.98 0.77

metric ITLB MPKI 0.2426 0.351 0.69

metric ITLB 4K MPKI 0.2310 0.341 0.67

metric ITLB 2M_4M MPKI 0.0116 0.009 1.18

Table C-7. Precise Front-end Events for ITLB Misses

Event Description

FRONTEND_RETIRED.ITLB_MISS (1st level) Retired instructions following a true ITLB miss.

FRONTEND_RETIRED.STLB_MISS (2nd level) Retired instructions following an ITLB and STLB miss (2nd
level).

Figure C-8. Using Perf Record with -e frontend_retired.itlb_miss to Determine ITLB Misses
and Running Perf Script to Obtain Data for Importing into FlameScope

Table C-6. Key Metrics for MediaWiki Workload on HHVM (Contd.)

Metric Large Pages No Large Pages Large/No Large

RUNTIME PERFORMANCE OPTIMIZATION BLUEPRINT: INTEL® ARCHITECTURE OPTIMIZATION WITH LARGE CODE PAGES

C-14

The output of perf script can be imported into FlameScope and we can visualize the ITLB misses. We can
see that some portions of the workload have much more ITLB misses than others. When we compare
Figure C-9 and Figure C-10 we can see that the heatmap is much sparser for the ITLB misses when we
are using large pages in Node.js.

Figure C-9. Using FlameScope to Visualize the ITLB Misses Heatmap from the WebTooling Workload

Figure C-10. Using FlameScope to Visualize the ITLB Misses Heatmap from the WebTooling Workload
when Run with Large Pages

C-15

RUNTIME PERFORMANCE OPTIMIZATION BLUEPRINT: INTEL® ARCHITECTURE OPTIMIZATION WITH LARGE CODE PAGES

We also visualize the ITLB miss counts for the v8 “Built-in” functions by extracting the ITLB misses asso-
ciated with the “Built-in” function from the perf script output. We plot the graph with the virtual
address of the “Built-in” functions on y-axis and time on the x-axis (Figure C-11 and Figure C-12).
Similar to FlameScope graphs, ITLB misses are sparser when we are using large pages in Node.js.

Figure C-11. Visualizing ITLB Miss Trends for “Built-in” Functions from the Ghost.js Workload

Figure C-12. Visualizing ITLB Miss Trends for “Built-in” Functions from the Ghost.js Workload
When Run With Large Pages

RUNTIME PERFORMANCE OPTIMIZATION BLUEPRINT: INTEL® ARCHITECTURE OPTIMIZATION WITH LARGE CODE PAGES

C-16

C.7 SUMMARY
This runtime optimization blueprint described the problem that runtimes have with high ITLB miss stalls,
and discussed how to diagnose the problem, as well as techniques and a reference implementation to
solve the problem. A case study showed the benefits of integrating the solution into a new runtime. The
three examples in the case study demonstrated that the use of 2M pages has the potential to improve
ITLB Miss Stalls by 43%, ITLB Walks by 45%, and ITLB MPKI by 46%.

C.8 TEST CONFIGURATION DETAILS
Test configuration details are provided in the tables below.

Table C-8. System Details

System Info DSLOHost011

Manufacturer Intel Corporation

Product Name S2600WFT

BIOS Version SE5C620.86B.0X.01.0115.012820180604

OS Ubuntu 18.04.3 LTS

Kernel 4.15.0-58-generic

Microcode 0x200005e

Table C-9. Processor Information

Model Name Intel® Xeon® Platinum 8180 CPU @ 2.50GHz

Sockets 2

Hyper-Threading Enabled Yes

Total CPU(s) 112

NUMA Nodes 2

NUMA cpulist 0-27,56-83 :: 28-55,84-111

L1d Cache 32K

L1i Cache 32K

L2 Cache 1024K

L3 Cache 39424K

Prefetchers Enabled DCU HW, DCU IP, L2 HW, L2 Adj.

Turbo Enabled True

Power & Perf Policy Balanced

CPU Freq Driver intel_pstate

CPU Freq Governor powersave

Current CPU Freq MHz 1000

C-17

RUNTIME PERFORMANCE OPTIMIZATION BLUEPRINT: INTEL® ARCHITECTURE OPTIMIZATION WITH LARGE CODE PAGES

C.9 ADDITIONAL REFERENCES
In addition to the references cited in this appendix, the following references were used:

Ahmad Yasin, Intel Corporation. (2014). A Top-Down method for performance analysis and counters
architecture. In IEEE International Symposium on Performance Analysis of Systems and Software,
ISPASS , (pp. 35-44).

Performance Monitoring Event List. Retrieved from 01.org: https://download.01.org/perfmon/SKX/.

Panchenko, M. (2017). Building Binary Optimizer with LLVM. Retrieved from LLVM.ORG:
https://llvm.org/devmtg/2016-03/Presentations/BOLT_EuroLLVM_2016.pdf.

Panchenko, M., Auler, R., Nell, B., Ottoni, & Guilherme. (n.d.). BOLT: A Practical Binary Optimizer for
Datacenters and Beyond.

AVX2 Available True

AVX512 Available True

AVX512 Test Passed

PPIN (CPU0) c6aa1d2bcbba4d86

Table C-10. Kernel Vulnerability Status

Vulnerabilities DSLOHost011

CVE-2017-5753 OK (Mitigation: usercopy/swapgs barriers and __user pointer sanitization)

CVE-2017-5715 OK (Full retpoline + IBPB are mitigating the vulnerability)

CVE-2017-5754 OK (Mitigation: PTI)

CVE-2018-3640 OK (your CPU microcode mitigates the vulnerability)

CVE-2018-3639 OK (Mitigation: Speculative Store Bypass disabled via prctl and seccomp)

CVE-2018-3615 OK (your CPU vendor reported your CPU model as not vulnerable)

CVE-2018-3620 OK (Mitigation: PTE Inversion)

CVE-2018-3646 OK (this system is not running a hypervisor)

CVE-2018-12126 OK (Mitigation: Clear CPU buffers; SMT vulnerable)

CVE-2018-12130 OK (Mitigation: Clear CPU buffers; SMT vulnerable)

CVE-2018-12127 OK (Mitigation: Clear CPU buffers; SMT vulnerable)

CVE-2019-11091 OK (Mitigation: Clear CPU buffers; SMT vulnerable)

Table C-9. Processor Information (Contd.)

https://llvm.org/devmtg/2016-03/Presentations/BOLT_EuroLLVM_2016.pdf

RUNTIME PERFORMANCE OPTIMIZATION BLUEPRINT: INTEL® ARCHITECTURE OPTIMIZATION WITH LARGE CODE PAGES

C-18

APPENDIX D
INSTRUCTION LATENCY AND THROUGHPUT

NOTE
Some recent processors have latency and throughput information posted here:
https://software.intel.com/en-us/articles/intel-sdm#optimization

This appendix contains tables showing the latency and throughput are associated with commonly used
instructions1. The instruction timing data varies across processors family/models. It contains the
following sections:
• Appendix D.1, “Overview” — Provides an overview of issues related to instruction selection and

scheduling.
• Appendix D.2, “Definitions” — Presents definitions.
• Appendix D.3, “Latency and Throughput” — Lists instruction throughput, latency associated

with commonly-used instructions.

D.1 OVERVIEW
This appendix provides information to assembly language programmers and compiler writers. The infor-
mation aids in the selection of instruction sequences (to minimize chain latency) and in the arrangement
of instructions (assists in hardware processing). The performance impact of applying the information has
been shown to be on the order of several percent. This is for applications not dominated by other perfor-
mance factors, such as:
• Cache miss latencies.
• Bus bandwidth.
• I/O bandwidth.

Instruction selection and scheduling matters when the programmer has already addressed the perfor-
mance issues discussed in Chapter 2:
• Observe store forwarding restrictions.
• Avoid cache line and memory order buffer splits.
• Do not inhibit branch prediction.
• Minimize the use of xchg instructions on memory locations.

While several items on the above list involve selecting the right instruction, this appendix focuses on the
following issues. These are listed in priority order, though which item contributes most to performance
varies by application:
• Maximize the flow of ops into the execution core. Instructions which consist of more than four ops

require additional steps from microcode ROM. Instructions with longer micro-op flows incur a delay
in the front end and reduce the supply of micro-ops to the execution core.
In Pentium 4 and Intel Xeon processors, transfers to microcode ROM often reduce how efficiently
ops can be packed into the trace cache. Where possible, it is advisable to select instructions with
four or fewer ops. For example, a 32-bit integer multiply with a memory operand fits in the trace
cache without going to microcode, while a 16-bit integer multiply to memory does not.

1. Although instruction latency may be useful in some limited situations (e.g., a tight loop with a dependency chain that
exposes instruction latency), software optimization on super-scalar, out-of-order microarchitecture, in general, will ben-
efit much more on increasing the effective throughput of the larger-scale code path. Coding techniques that rely on
instruction latency alone to influence the scheduling of instruction is likely to be sub-optimal as such coding technique is
likely to interfere with the out-of-order machine or restrict the amount of instruction-level parallelism.

https://software.intel.com/en-us/articles/intel-sdm#optimization

INSTRUCTION LATENCY AND THROUGHPUT

D-2

• Avoid resource conflicts. Interleaving instructions so that they don’t compete for the same port or
execution unit can increase throughput. For example, alternate PADDQ and PMULUDQ (each has a
throughput of one issue per two clock cycles). When interleaved, they can achieve an effective
throughput of one instruction per cycle because they use the same port but different execution units.
Selecting instructions with fast throughput also helps to preserve issue port bandwidth, hide latency
and allows for higher software performance.

• Minimize the latency of dependency chains that are on the critical path. For example, an operation to
shift left by two bits executes faster when encoded as two adds than when it is encoded as a shift. If
latency is not an issue, the shift results in a denser byte encoding.

In addition to the general and specific rules, coding guidelines and the instruction data provided in this
manual, you can take advantage of the software performance analysis and tuning toolset available at
http://developer.intel.com/software/products/index.htm. The tools include the Intel VTune Performance
Analyzer, with its performance-monitoring capabilities.

D.2 DEFINITIONS
The data is listed in several tables. The tables contain the following:
• Instruction Name — The assembly mnemonic of each instruction.
• Latency — The number of clock cycles that are required for the execution core to complete the

execution of all of the ops that form an instruction.
• Throughput — The number of clock cycles required to wait before the issue ports are free to accept

the same instruction again. For many instructions, the throughput of an instruction can be signifi-
cantly less than its latency.

• The case of RDRAND instruction latency and throughput is an exception to the definitions above,
because the hardware facility that executes the RDRAND instruction resides in the uncore and is
shared by all processor cores and logical processors in a physical package. The software observable
latency and throughput using the sequence of “rdrand followby jnc” in a single-thread scenario can
be as low as ~100 cycles. In third generation Intel Core processors based on Ivy Bridge microarchi-
tecture, the total bandwidth to deliver random numbers via RDRAND by the uncore is about 500
MBytes/sec. Within the same processor core microarchitecture and different uncore implementa-
tions, RDRAND latency/throughput can vary across Intel Core and Intel Xeon processors.

D.3 LATENCY AND THROUGHPUT
This section presents the latency and throughput information for commonly-used instructions including:
MMX technology, Streaming SIMD Extensions, subsequent generations of SIMD instruction extensions,
and most of the frequently used general-purpose integer and x87 floating-point instructions.

Due to the complexity of dynamic execution and out-of-order nature of the execution core, the instruc-
tion latency data may not be sufficient to accurately predict realistic performance of actual code
sequences based on adding instruction latency data.
• Instruction latency data is useful when tuning a dependency chain. However, dependency chains limit

the out-of-order core’s ability to execute micro-ops in parallel. Instruction throughput data are useful
when tuning parallel code unencumbered by dependency chains.

• Numeric data in the tables is:

— Approximate and subject to change in future implementations of the microarchitecture.

— Not meant to be used as reference for instruction-level performance benchmarks. Comparison of
instruction-level performance of microprocessors that are based on different microarchitectures
is a complex subject and requires information that is beyond the scope of this manual.

Comparisons of latency and throughput data between different microarchitectures can be misleading.

http://developer.intel.com/software/products/index.htm

D-3

INSTRUCTION LATENCY AND THROUGHPUT

Appendix D.3.1 provides latency and throughput data for the register-to-register instruction type.
Appendix D.3.3 discusses how to adjust latency and throughput specifications for the register-to-
memory and memory-to-register instructions.

In some cases, the latency or throughput figures given are just one half of a clock. This occurs only for
the double-speed ALUs.

D.3.1 Latency and Throughput with Register Operands
Instruction latency and throughput data are presented in Table D-4 through Table D-18. Tables include
AESNI, SSE4.2, SSE4.1, Supplemental Streaming SIMD Extension 3, Streaming SIMD Extension 3,
Streaming SIMD Extension 2, Streaming SIMD Extension, MMX technology and most common Intel 64
and IA-32 instructions. Instruction latency and throughput for different processor microarchitectures are
in separate columns.

Processor instruction timing data is implementation specific; it can vary between model encodings within
the same family encoding (e.g. model = 3 vs model < 2). Separate sets of instruction latency and
throughput are shown in the columns for CPUID signature 0xF2n and 0xF3n. The column represented by
0xF3n also applies to Intel processors with CPUID signature 0xF4n and 0xF6n. The notation 0xF2n repre-
sents the hex value of the lower 12 bits of the EAX register reported by CPUID instruction with input value
of EAX = 1; ‘F’ indicates the family encoding value is 15, ‘2’ indicates the model encoding is 2, ‘n’ indi-
cates it applies to any value in the stepping encoding.

Intel Core Solo and Intel Core Duo processors are represented by 06_0EH. Processors bases on 65 nm
Intel Core microarchitecture are represented by 06_0FH. Processors based on Enhanced Intel Core
microarchitecture are represented by 06_17H and 06_1DH. CPUID family/Model signatures of proces-
sors based on Nehalem microarchitecture are represented by 06_1AH, 06_1EH, 06_1FH, and 06_2EH.
Processors based on Westmere microarchitecture are represented by 06_25H, 06_2CH and 06_2FH.
Processors based on Sandy Bridge microarchitecture are represented by 06_2AH, 06_2DH. Processors
based on Ivy Bridge microarchitecture are represented by 06_3AH, 06_3EH. Processors based on
Haswell microarchitecture are represented by 06_3CH, 06_45H and 06_46H.

Instruction latency varies by microarchitectures. Table D-2 lists SIMD extensions introduction in recent
microarchitectures. Each microarchitecture may be associated with more than one signature value given
by the CPUID’s “display_family” and “display_model”. Not all instruction set extensions are enabled in all
processors associated with a particular family/model designation. To determine whether a given
instruction set extension is supported, software must use the appropriate CPUID feature flag as
described in Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A.

Table D-1. CPUID Signature Values of Of Recent Intel Microarchitectures
DisplayFamily_DisplayModel Recent Intel Microarchitectures

06_4EH, 06_5EH Skylake microarchitecture

06_3DH, 06_47H, 06_56H Broadwell microarchitecture

06_3CH, 06_45H, 06_46H, 06_3FH Haswell microarchitecture

06_3AH, 06_3EH Ivy Bridge microarchitecture

06_2AH, 06_2DH Sandy Bridge microarchitecture

06_25H, 06_2CH, 06_2FH Intel microarchitecture Westmere

06_1AH, 06_1EH, 06_1FH, 06_2EH Intel microarchitecture Nehalem

06_17H, 06_1DH Enhanced Intel Core microarchitecture

06_0FH Intel Core microarchitecture

INSTRUCTION LATENCY AND THROUGHPUT

D-4

.

Table D-2. Instruction Extensions Introduction by Microarchitectures (CPUID Signature)
SIMD Instruction
Extensions

DisplayFamily_DisplayModel

06_4EH,
06_5EH

06_3DH,
06_47H,
06_56H

06_3CH,
06_45H,
06_46H,
06_3FH

06_3AH,
06_3EH

06_2AH,
06_2DH

06_25H,
06_2CH,
06_2FH

06_1AH,
06_1EH,
06_1FH,
06_2EH

06_17H,
06_1DH

CLFLUSHOPT Yes No No No No No No No

ADX, RDSEED Yes Yes No No No No No No

AVX2, FMA, BMI1,
BMI2

Yes Yes Yes No No No No No

F16C, RDRAND,
RWFSGSBASE

Yes Yes Yes Yes No No No No

AVX Yes Yes Yes Yes Yes No No No

AESNI, PCLMULQDQ Yes Yes Yes Yes Yes Yes No No

SSE4.2, POPCNT Yes Yes Yes Yes Yes Yes Yes No

SSE4.1 Yes Yes Yes Yes Yes Yes Yes Yes

SSSE3 Yes Yes Yes Yes Yes Yes Yes Yes

SSE3 Yes Yes Yes Yes Yes Yes Yes Yes

SSE2 Yes Yes Yes Yes Yes Yes Yes Yes

SSE Yes Yes Yes Yes Yes Yes Yes Yes

MMX Yes Yes Yes Yes Yes Yes Yes Yes

Table D-3. BMI1, BMI2 and General Purpose Instructions

Instruction Latency 1 Throughput

DisplayFamily_DisplayModel 06_4E, 06_5E 06_3D,
06_47, 06_56

06_4E, 06_5E 06_3D, 06_47,
06_56

ADCX 1 1 1 1

ADOX 1 1 1 1

RESEED Similar to
RDRAND

Similar to
RDRAND

Similar to
RDRAND

Similar to
RDRAND

D-5

INSTRUCTION LATENCY AND THROUGHPUT

Table D-4. 256-bit AVX2 Instructions

Instruction Latency 1 Throughput

DisplayFamily_DisplayModel 06_4E,
06_5E

06_3D,
06_47,
06_56

06_3C,
06_45,
06_46,
06_3F

06_4E,
06_5E

06_3D,
06_47,
06_56

06_3C,
06_45,
06_46,
06_3F

VEXTRACTI128 xmm1, ymm2, imm 1 1 1 1 1 1

VMPSADBW 4 6 6 2 2 2

VPACKUSDW/SSWB 1 1 1 1 1 1

VPADDB/D/W/Q 1 1 1 0.33 0.5 0.5

VPADDSB 1 1 1 0.5 0.5 0.5

VPADDUSB 1 1 1 0.5 0.5 0.5

VPALIGNR 1 1 1 1 1 1

VPAVGB 1 1 1 0.5 0.5 0.5

VPBLENDD 1 1 1 0.33 0.33 0.33

VPBLENDW 1 1 1 1 1 1

VPBLENDVB 1 2 2 1 2 2

VPBROADCASTB/D/SS/SD 3 3 3 1 1 1

VPCMPEQB/W/D 1 1 1 0.5 0.5 0.5

VPCMPEQQ 1 1 1 0.5 0.5 0.5

VPCMPGTQ 3 5 5 1 1 1

VPHADDW/D/SW 3 3 3 2 2 2

VINSERTI128 ymm1, ymm2, xmm, imm 3 3 3 1 1 1

VPMADDWD 5b 5 5 0.5 1 1

VPMADDUBSW 5b 5 5 0.5 1 1

VPMAXSD 1 1 1 0.5 0.5 0.5

VPMAXUD 1 1 1 0.5 0.5 0.5

VPMOVSX 3 3 3 1 1 1

VPMOVZX 3 3 3 1 1 1

VPMULDQ/UDQ 5b 5 5 0.5 1 1

VPMULHRSW 5b 5 5 0.5 1 1

VPMULHW/LW 5b 5 5 0.5 1 1

VPMULLD 10b 10 10 1 2 2

VPOR/VPXOR 1 1 1 0.33 0.33 0.33

VPSADBW 3 5 5 1 1 1

VPSHUFB 1 1 1 1 1 1

VPSHUFD 1 1 1 1 1 1

VPSHUFLW/HW 1 1 1 1 1 1

VPSIGNB/D/W/Q 1 1 1 0.5 0.5 0.5

VPERMD/PS 3 3 3 1 1 1

VPSLLVD/Q 2 2 2 0.5 2 2

INSTRUCTION LATENCY AND THROUGHPUT

D-6

VPSRAVD 2 2 2 0.5 2 2

VPSRAD/W ymm1, ymm2, imm8 1 1 1 1 1 1

VPSLLDQ ymm1, ymm2, imm8 1 1 1 1 1 1

VPSLLQ/D/W ymm1, ymm2, imm8 1 1 1 1 1 1

VPSLLQ/D/W ymm, ymm, ymm 4 4 4 1 1 1

VPUNPCKHBW/WD/DQ/QDQ 1 1 1 1 1 1

VPUNPCKLBW/WD/DQ/QDQ 1 1 1 1 1 1

ALL VFMA 4 5 5 0.5 0.5 0.5

VPMASKMOVD/Q mem, ymmd, ymm 1 2 2

VPMASKMOVD/Q NUL, msk_0, ymm >200e 2 2

VPMASKMOVD/Q ymm, ymmd, mem 11 8 8 1 2 2

VPMASKMOVD/Q ymm, msk_0, [base+index]f >200 ~200 ~200 >200 ~200 ~200

b: includes 1-cycle bubble due to bypass.
c: includes two 1-cycle bubbles due to bypass
d: MASKMOV instruction timing measured with L1 reference and mask register selecting at least 1 or more elements.
e: MASKMOV store instruction with a mask value selecting 0 elements and illegal address (NUL or non-NUL) incurs delay
due to assist.
f: MASKMOV Load instruction with a mask value selecting 0 elements and certain addressing forms incur delay due to
assist.

Table D-5. Gather Timing Data from L1D*

Instruction Latency 1 Throughput

DisplayFamily_DisplayModel 06_4E,
06_5E

06_3D,
06_47,
06_56

06_3C/45/
46/3F

06_4E,
06_5E

06_3D,
06_47,
06_56

06_3C/45/
46/3F

VPGATHERDD/PS xmm, [vi128], xmm ~20 ~17 ~14 ~4 ~5 ~7

VPGATHERQQ/PD xmm, [vi128], xmm ~18 ~15 ~12 ~3 ~4 ~5

VPGATHERDD/PS ymm, [vi256], ymm ~22 ~19 ~20 ~5 ~6 ~10

VPGATHERQQ/PD ymm, [vi256], ymm ~20 ~16 ~15 ~4 ~5 ~7

* Gather Instructions fetch data elements via memory references. The timing data shown applies to memory references
that reside within the L1 data cache and all mask elements selected

Table D-4. 256-bit AVX2 Instructions (Contd.)

Instruction Latency 1 Throughput

DisplayFamily_DisplayModel 06_4E,
06_5E

06_3D,
06_47,
06_56

06_3C,
06_45,
06_46,
06_3F

06_4E,
06_5E

06_3D,
06_47,
06_56

06_3C,
06_45,
06_46,
06_3F

D-7

INSTRUCTION LATENCY AND THROUGHPUT

Table D-6. BMI1, BMI2 and General Purpose Instructions

Instruction Latency 1 Throughput

DisplayFamily_DisplayModel 06_4E,
06_5E

06_3D,
06_47,
06_56

06_3C/45
/46/3F

06_4E,
06_5E

06_3D,
06_47,
06_56

06_3C/45
/46/3F

ANDN 1 1 1 0.5 0.5 0.5

BEXTR 2 2 2 0.5 0.5 0.5

BLSI/BLSMSK/BLSR 1 1 1 0.5 0.5 0.5

BZHI 1 1 1 0.5 0.5 0.5

MULX r64, r64, r64 4 4 4 1 1 1

PDEP/PEXT r64, r64, r64 3 3 3 1 1 1

RORX r64, r64, r64 1 1 1 0.5 0.5 0.5

SALX/SARX/SHLX r64, r64, r64 1 1 1 0.5 0.5 0.5

LZCNT/TZCNT 3 3 3 1 1 1

Table D-7. F16C,RDRAND Instructions

Instruction Latency 1 Throughput

DisplayFamily_DisplayModel 06_4E,
06_5E

06_3D,
06_47,
06_56

06_3C/
45/46/
3F

06_3A/
3E

06_4E,
06_5E

06_3D,
06_47,
06_56

06_3C/
45/46/
3F

06_3A/
3E

RDRAND* r64 Varies Varies Varies <200 <300 ~250 ~250 <200

VCVTPH2PS ymm1, xmm2 7 6 6 7 1 1 1 1

VCVTPH2PS xmm1, xmm2 5 4 4 6 1 1 1 1

VCVTPS2PH ymm1, xmm2, imm 7 6 6 10 1 1 1 1

VCVTPS2PH xmm1, xmm2, imm 5 4 4 9 1 1 1 1

* See Section D.2

Table D-8. 256-bit AVX Instructions

Instruction Latency 1 Throughput

DisplayFamily_DisplayModel 06_4E,
06_5E

06_3D/
47/56

06_3C/4
5/46/3F

06_3A
/3E

06_4E,
06_5E

06_3D/
47/56

06_3C/4
5/46/3F

06_3A
/3E

VADDPD/PS ymm1, ymm2, ymm3 4 3 3 3 0.5 1 1 1

VADDSUBPD/PS ymm1, ymm2, ymm3 4 3 3 3 0.5 1 1 1

VANDNPD/PS ymm1, ymm2, ymm3 1 1 1 1 0.33 1 1 1

VANDPD/PS ymm1, ymm2, ymm3 1 1 1 1 0.33 1 1 1

VBLENDPD/PS ymm1, ymm2, ymm3,
imm

1 1 1 1 0.33 0.33 0.33 0.5

VBLENDVPD/PS ymm1, ymm2, ymm3,
ymm

1 2 2 1 1 2 2 1

VCMPPD/PS ymm1, ymm2, ymm3 4 3 3 3 0.5 1 1 1

INSTRUCTION LATENCY AND THROUGHPUT

D-8

VCVTDQ2PD ymm1, ymm2 7 6 6 4 1 1 1 1

VCVTDQ2PS ymm1, ymm2 4 3 3 3 0.5 1 1 1

VCVT(T)PD2DQ ymm1, ymm2 7 6 6 4 1 1 1 1

VCVTPD2PS ymm1, ymm2 7 6 6 4 1 1 1 1

VCVT(T)PS2DQ ymm1, ymm2 4 3 3 3 1 1 1 1

VCVTPS2PD ymm1, xmm2 7 4 4 2 1 1 1 1

VDIVPD ymm1, ymm2, ymm3 14 16-23 25-35 27-35 8 16 27 28

VDIVPS ymm1, ymm2, ymm3 11 13-17 17-21 18-21 5 10 13 14

VDPPS ymm1, ymm2, ymm3 13 12 14 12 1.5 2 2 2

VEXTRACTF128 xmm1, ymm2, imm 3 3 3 3 1 1 1 1

VINSERTF128 ymm1, xmm2, imm 3 3 3 3 1 1 1 1

VMAXPD/PS ymm1, ymm2, ymm3 4 3 3 3 0.5 1 1 1

VMINPD/PS ymm1, ymm2, ymm3 4 3 3 3 0.5 1 1 1

VMOVAPD/PS ymm1, ymm2 1 1 1 1 0.25 0.5 0.5 1

VMOVDDUP ymm1, ymm2 1 1 1 1 1 1 1 1

VMOVDQA/U ymm1, ymm2 1 1 1 1 0.25 0.25 0.25 0.5

VMOVMSKPD/PS ymm1, ymm2 2 2 2 1 1 1 1 1

VMOVQ xmm1, xmm2 1 1 1 1 0.33 0.33 0.33 0.33

VMOVD/Q xmm1, r32/r64 2 1 1 1 1 1 1 1

VMOVD/Q r32/r64, xmm 2 1 1 1 1 1 1 1

VMOVNTDQ/PS/PD 1 1 1 1

VMOVSHDUP ymm1, ymm2 1 1 1 1 1 1 1 1

VMOVSLDUP ymm1, ymm2 1 1 1 1 1 1 1 1

VMOVUPD/PS ymm1, ymm2 1 1 1 1 0.25 0.5 0.5 1

VMULPD/PS ymm1, ymm2, ymm3 4 3 5 5 0.5 0.5 0.5 1

VORPD/PS ymm1, ymm2, ymm3 1 1 1 1 0.33 1 1 1

VPERM2F128 ymm1, ymm2, ymm3,
imm

3 3 3 2 1 1 1 1

VPERMILPD/PS ymm1, ymm2, ymm3 1 1 1 1 1 1 1 1

VRCPPS ymm1, ymm2 4 7 7 7 1 2 2 2

VROUNDPD/PS ymm1, ymm2, imm 8 6 6 3 1 2 2 1

VRSQRTPS ymm1, ymm2 4 7 7 7 1 2 2 2

VSHUFPD/PS ymm1, ymm2, ymm3,
imm

1 1 1 1 1 1 1 1

VSQRTPD ymm1, ymm2 <18 19-35 19-35 19-35 <12 16-27 16-27 28

VSQRTPS ymm1, ymm2 12 18-21 18-21 18-21 <6 13 13 14

VSUBPD/PS ymm1, ymm2, imm 4 3 3 3 0.5 1 1 1

Table D-8. 256-bit AVX Instructions (Contd.)

Instruction Latency 1 Throughput

DisplayFamily_DisplayModel 06_4E,
06_5E

06_3D/
47/56

06_3C/4
5/46/3F

06_3A
/3E

06_4E,
06_5E

06_3D/
47/56

06_3C/4
5/46/3F

06_3A
/3E

D-9

INSTRUCTION LATENCY AND THROUGHPUT

Latency of VEX.128 encoded AVX instructions should refer to corresponding legacy 128-bit instructions.

VTESTPS ymm1, ymm2 3 2 2 2 1 1 1 1

VUNPCKHPD/PS ymm1, ymm2, ymm3 1 1 1 1 1 1 1 1

VUNPCKLPD/PS ymm1, ymm2, ymm3 1 1 1 1 1 1 1 1

VXORPD/PS ymm1, ymm2, ymm3 1 1 1 1 0.33 1 1 1

VZEROUPPER 0 0 0 0 1 1 1 1

VZEROALL 12 8 8 9

VEXTRACTPS reg, xmm2, imm 3 2 2 2 1 1 1 1

VINSERTPS xmm1, xmm2, reg, imm 1 1 1 1 1 1 1 1

VMASKMOVPD/PS mema, ymm, ymm 1 2 2 2

VMASKMOVPD/PS NUL, msk_0, ymm >200b 2 2 2

VMASKMOVPD/PS ymm, ymma, mem 11 8 8 9 1 2 2 2

VMASKMOVPD/PS ymm, msk_0,
[base+index]c

>200 ~200 ~200 ~200 >200 ~200 ~200 ~200

Latency and Throughput data for CPUID signature 06_3AH are generally the same as those of 06_2AH, only those that
differ from 06_2AH are shown in the 06_3AH column.
a: MASKMOV instruction timing measured with L1 reference and mask register selecting at least 1 or more elements.
b: MASKMOV store instruction with a mask value selecting 0 elements and illegal address (NUL or non-NUL) incurs delay due
to assist.
c: MASKMOV Load instruction with a mask value selecting 0 elements and certain addressing forms incur delay due to
assist.

Table D-9. AESNI and PCLMULQDQ Instructions

Instruction Latency 1 Throughput

DisplayFamily_DisplayModel 06_4E,
06_5E

06_3D/
47/56

06_3C/4
5/46/3F

06_3A
/3E

06_4E,
06_5E

06_3D/
47/56

06_3C/4
5/46/3F

06_3A
/3E

AESDEC/AESDECLAST xmm1, xmm2 4 7 7 8 1 1 1 1

AESENC/AESENCLAST xmm1, xmm2 4 7 7 8 1 1 1 1

AESIMC xmm1, xmm2 8 14 14 14 2 2 2 2

AESKEYGENASSIST xmm1, xmm2, imm 12 10 10 10 12 8 8 8

PCLMULQDQ xmm1, xmm2, imm 7b 5 7 14 1 1 2 8

b: includes 1-cycle bubble due to bypass.

Table D-8. 256-bit AVX Instructions (Contd.)

Instruction Latency 1 Throughput

DisplayFamily_DisplayModel 06_4E,
06_5E

06_3D/
47/56

06_3C/4
5/46/3F

06_3A
/3E

06_4E,
06_5E

06_3D/
47/56

06_3C/4
5/46/3F

06_3A
/3E

INSTRUCTION LATENCY AND THROUGHPUT

D-10

Table D-10. SSE4.2 Instructions

Instruction Latency 1 Throughput

DisplayFamily_DisplayModel 06_4E,
06_5E

06_3D
/47/56

06_3C
/45/46
/3F

06_3A
/3E/2A
/2D

06_4E,
06_5E

06_3D
/47/56

06_3C/
45/46/
3F

06_3A
/3E/2A
/2D

CRC32 r32, r32 3 3 3 3 1 1 1 1

PCMPESTRI xmm1, xmm2, imm 15 10 10 11 5 4 4 4

PCMPESTRM xmm1, xmm2, imm 10 10 10 11 6 5 5 4

PCMPISTRI xmm1, xmm2, imm 15 10 10 11 3 3 3 3

PCMPISTRM xmm1, xmm2, imm 15 11 11 11 3 3 3 3

PCMPGTQ xmm1, xmm2 3 5 5 5 0.33 1 1 1

POPCNT r32, r32 3 3 3 3 1 1 1 1

POPCNT r64, r64 3 3 3 3 1 1 1 1

Table D-11. SSE4.1 Instructions

Instruction Latency 1 Throughput

DisplayFamily_DisplayModel 06_4E,
06_5E

06_3D
/47/56

06_3C/
45/46/
3F

06_3A
/3E/2A
/2D

06_4E,
06_5E

06_3D/
47/56

06_3C/
45/46/
3F

06_3A
/3E/2A
/2D

BLENDPD/S xmm1, xmm2, imm 1 1 1 1 0.33 0.33 0.33 0.5

BLENDVPD/S xmm1, xmm2 1 2 2 2 1 2 2 1

DPPD xmm1, xmm2 9 7 9 9 1 1 1 1

DPPS xmm1, xmm2 13 12 14 13 2 2 2 2

EXTRACTPS xmm1, xmm2, imm 3 2 2 2 1 1 1 1

INSERTPS xmm1, xmm2, imm 1 1 1 1 1 1 1 1

MPSADBW xmm1, xmm2, imm 4 6 6 6 2 2 2 1

PACKUSDW xmm1, xmm2 1 1 1 1 1 1 1 0.5

PBLENVB xmm1, xmm2 2 2 2 2 2 2 2 1

PBLENDW xmm1, xmm2, imm 1 1 1 1 1 1 1 0.5

PCMPEQQ xmm1, xmm2 1 1 1 1 0.5 0.5 0.5 0.5

PEXTRB/W/D reg, xmm1, imm 3 3 3 3 1 1 1 1

PHMINPOSUW xmm1,xmm2 4 5 5 5 1 1 1 1

PINSRB/W/D xmm1,reg, imm 2 2 2 2 1 1 1 1

PMAXSB/SD xmm1, xmm2 1 1 1 1 0.5 0.5 0.5 0.5

PMAXUW/UD xmm1, xmm2 1 1 1 1 0.5 0.5 0.5 0.5

PMINSB/SD xmm1, xmm2 1 1 1 1 0.5 0.5 0.5 0.5

PMINUW/UD xmm1, xmm2 1 1 1 1 0.5 0.5 0.5 0.5

PMOVSXBD/BW/BQ xmm1, xmm2 1 1 1 1 1 1 1 0.5

PMOVSXWD/WQ/DQ xmm1, xmm2 1 1 1 1 1 1 1 0.5

D-11

INSTRUCTION LATENCY AND THROUGHPUT

PMOVZXBD/BW/BQ xmm1, xmm2 1 1 1 1 1 1 1 0.5

PMOVZXWD/WQ/DQ xmm1, xmm2 1 1 1 1 1 1 1 0.5

PMULDQ xmm1, xmm2 5b 5 5 5 0.5 1 1 1

PMULLD xmm1, xmm2 10c 10 10 5 2 2 2 1

PTEST xmm1, xmm2 3 2 2 2 1 1 1 1

ROUNDPD/PS xmm1, xmm2, imm 6 6 6 3 2 2 2 1

ROUNDSD/SS xmm1, xmm2, imm 6 6 6 3 2 2 2 1

b: includes 1-cycle bubble due to bypass
c: includes two 1-cycle bubbles due to bypass

Table D-12. Supplemental Streaming SIMD Extension 3 Instructions

Instruction Latency 1 Throughput

DisplayFamily_DisplayModel 06_4E,
06_5E

06_3D/
47/56

06_3C/
45/46/
3F

06_3A/
3E/2A/
2D

06_4E,
06_5E

06_3D/
47/56

06_3C/
45/46/
3F

06_3A/
3E/2A/
2D

PALIGNR xmm1, xmm2, imm 1 1 1 1 1 1 1 0.5

PHADDD xmm1, xmm2 3 3 3 3 2 2 2 1.5

PHADDW xmm1, xmm2 3 3 3 3 2 2 2 1.5

PHADDSW xmm1, xmm2 3 3 3 3 2 2 2 1.5

PHSUBD xmm1, xmm2 3 3 3 3 2 2 2 1.5

PHSUBW xmm1, xmm2 3 3 3 3 2 2 2 1.5

PHSUBSW xmm1, xmm2 3 3 3 3 2 2 2 1.5

PMADDUBSW xmm1, xmm2 5b 5 5 5 0.5 1 1 1

PMULHRSW xmm1, xmm2 5b 5 5 5 0.5 1 1 1

PSHUFB xmm1, xmm2 1 1 1 1 1 1 1 0.5

PSIGNB/D/W xmm1, xmm2 1 1 1 1 0.5 0.5 0.5 0.5

PABSB/D/W xmm1, xmm2 1 1 1 1 0.5 0.5 0.5 0.5

b: includes 1-cycle bubble due to bypass

Table D-11. SSE4.1 Instructions (Contd.)

Instruction Latency 1 Throughput

DisplayFamily_DisplayModel 06_4E,
06_5E

06_3D
/47/56

06_3C/
45/46/
3F

06_3A
/3E/2A
/2D

06_4E,
06_5E

06_3D/
47/56

06_3C/
45/46/
3F

06_3A
/3E/2A
/2D

INSTRUCTION LATENCY AND THROUGHPUT

D-12

Table D-13. Streaming SIMD Extension 3 SIMD Floating-point Instructions
Instruction Latency1 Throughput

DisplayFamily_DisplayMo
del

06_4E,06
_5E

06_3D/4
7/56

06_3C/4
5/46/3F

06_3A/3
E/2A/2D

06_4E,06
_5E

06_3D/4
7/56

06_3C/4
5/46/3F

06_3A/3
E/2A/2D

ADDSUBPD/ADDSUBPS 4 3 3 3 0.5 1 1 1

HADDPD xmm1, xmm2 6 5 5 5 2 2 2 2

HADDPS xmm1, xmm2 6 5 5 5 2 2 2 2

HSUBPD xmm1, xmm2 6 5 5 5 2 2 2 2

HSUBPS xmm1, xmm2 6 5 5 5 2 2 2 2

MOVDDUP xmm1, xmm2 1 1 1 1 1 1 1 1

MOVSHDUP xmm1, xmm2 1 1 1 1 1 1 1 1

MOVSLDUP xmm1, xmm2 1 1 1 1 1 1 1 1

Table D-14. Streaming SIMD Extension 2 128-bit Integer Instructions
Instruction Latency1 Throughput

CPUID
06_4E,
06_5E

06_3D/4
7/56

06_3C/4
5/46/3F

06_3A/3
E/2A/2D

06_4E,
06_5E

06_3D/4
7/56

06_3C/4
5/46/3F

06_3A/3
E/2A/2D

CVTPS2DQ xmm, xmm 3 3 3 3 1 1 1 1

CVTTPS2DQ xmm, xmm 3 3 3 3 1 1 1 1

MASKMOVDQU xmm, xmm 7 6 6 6

MOVD xmm, r64/r32 2 1 1 1 1 1 1 1

MOVD r64/r32, xmm 2 1 1 1 1 1 1 1

MOVDQA xmm, xmm 1 1 1 1 0.25 0.33 0.33 0.5

MOVDQU xmm, xmm 1 1 1 1 0.25 0.33 0.33 0.5

MOVQ xmm, xmm 1 1 1 1 0.33 0.33 0.33 0.33

PACKSSWB/PACKSSDW/
PACKUSWB xmm, xmm

1 1 1 1 1 1 1 0.5

PADDB/PADDW/PADDD
xmm, xmm

1 1 1 1 0.33 0.5 0.5 0.5

PADDSB/PADDSW/
PADDUSB/PADDUSW
xmm, xmm

1 1 1 1 0.5 0.5 0.5 0.5

PADDQ/ PSUBQ3 xmm, xmm 1 1 1 1 0.33 0.5 0.5 0.5

PAND xmm, xmm 1 1 1 1 0.33 0.33 0.33 0.33

PANDN xmm, xmm 1 1 1 1 0.33 0.33 0.33 0.33

PAVGB/PAVGW xmm, xmm 1 1 1 1 0.5 0.5 0.5 0.5

PCMPEQB/PCMPEQD/
PCMPEQW xmm, xmm

1 1 1 1 0.5 0.5 0.5 0.5

PCMPGTB/PCMPGTD/PCMP
GTW xmm, xmm

1 1 1 1 0.5 0.5 0.5 0.5

PEXTRW r32, xmm, imm8 3 3 3 3 1 1 1 1

D-13

INSTRUCTION LATENCY AND THROUGHPUT

PINSRW xmm, r32, imm8 2 2 2 2 2 2 2 1

PMADDWD xmm, xmm 5b 5 5 5 0.5 1 1 1

PMAX xmm, xmm 1 1 1 1 0.5 0.5 0.5 0.5

PMIN xmm, xmm 1 1 1 1 0.5 0.5 0.5 0.5

PMOVMSKB3 r32, xmm 2 2 2 2 1 1 1 1

PMULHUW/PMULHW/
PMULLW xmm, xmm

5b 5 5 5 0.5 1 1 1

PMULUDQ xmm, xmm 5b 5 5 5 0.5 1 1 1

POR xmm, xmm 1 1 1 1 0.33 0.33 0.33 0.33

PSADBW xmm, xmm 3 5 5 5 1 1 1 1

PSHUFD xmm, xmm, imm8 1 1 1 1 1 1 1 0.5

PSHUFHW xmm, xmm, imm8 1 1 1 1 1 1 1 0.5

PSHUFLW xmm, xmm, imm8 1 1 1 1 1 1 1 0.5

PSLLDQ xmm, imm8 1 1 1 1 1 1 1 0.5

PSLLW/PSLLD/PSLLQ xmm,
imm8

1 1 1 1 1 1 1 1

PSLL/PSRL xmm, xmm 2 2 2 2 1 1 1 1

PSRAW/PSRAD xmm, imm8 1 1 1 1 1 1 1 1

PSRAW/PSRAD xmm, xmm 2 2 2 2 1 1 1 1

PSRLDQ xmm, imm8 1 1 1 1 1 1 1 0.5

PSRLW/PSRLD/PSRLQ xmm,
imm8

1 1 1 1 1 1 1 1

PSUBB/PSUBW/PSUBD
xmm, xmm

1 1 1 1 0.33 0.5 0.5 0.5

PSUBSB/PSUBSW/PSUBUSB
/PSUBUSW xmm, xmm

1 1 1 1 0.5 0.5 0.5 0.5

PUNPCKHBW/PUNPCKHWD/
PUNPCKHDQ xmm, xmm

1 1 1 1 1 1 1 0.5

PUNPCKHQDQ xmm, xmm 1 1 1 1 1 1 1 0.5

PUNPCKLBW/PUNPCKLWD/
PUNPCKLDQ xmm, xmm

1 1 1 1 1 1 1 0.5

PUNPCKLQDQ xmm, xmm 1 1 1 1 1 1 1 0.5

PXOR xmm, xmm 1 1 1 1 0.33 0.33 0.33 0.33

b: includes 1-cycle bubble due to bypass

Table D-14. Streaming SIMD Extension 2 128-bit Integer Instructions (Contd.)
Instruction Latency1 Throughput

CPUID
06_4E,
06_5E

06_3D/4
7/56

06_3C/4
5/46/3F

06_3A/3
E/2A/2D

06_4E,
06_5E

06_3D/4
7/56

06_3C/4
5/46/3F

06_3A/3
E/2A/2D

INSTRUCTION LATENCY AND THROUGHPUT

D-14

Table D-15. Streaming SIMD Extension 2 Double-precision Floating-point Instructions
Instruction Latency1 Throughput

CPUID 06_4E,
06_5E

06_3D/4
7/56

06_3C/4
5/46/3F

06_2A/2
D(06_3A/
3E)

06_4E,
06_5E

06_3D/4
7/56

06_3C/4
5/46/3F

06_2A/2
D(06_3A/
3E)

ADDPD xmm, xmm 4 3 3 3 0.5 1 1 1

ADDSD xmm, xmm 4 3 3 3 0.5 1 1 1

ANDNPD xmm, xmm 1 1 1 1 0.33 1 1 1

ANDPD xmm, xmm 1 1 1 1 0.33 1 1 1

CMPPD xmm, xmm, imm8 4 3 3 3 0.5 1 1 1

CMPSD xmm, xmm, imm8 4 3 3 3 0.5 1 1 1

COMISD xmm, xmm 2 2 2 2 1 1 1 1

CVTDQ2PD xmm, xmm 5 4 4 4 1 1 1 1

CVTDQ2PS xmm, xmm 4 3 3 3 1 1 1 1

CVTPD2DQ xmm, xmm 5 4 4 4 1 1 1 1

CVTPD2PS xmm, xmm 5 4 4 4 1 1 1 1

CVT[T]PS2DQ xmm, xmm 4 3 3 3 1 1 1 1

CVTPS2PD xmm, xmm 5 2 2 2 1 1 1 1

CVT[T]SD2SI r64/r32, xmm 6 4 4 5 1 1 1 1

CVTSD2SS xmm, xmm 5 4 4 4 1 1 1 1

CVTSI2SD xmm, r64/r32 5 3 3 4 1 1 1 1

CVTSS2SD xmm, xmm 5 2 2 2 1 1 1 1

CVTTPD2DQ xmm, xmm 5 4 4 4 1 1 1 1

CVTTSD2SI r32, xmm 6 4 4 5 1 1 1 1

DIVPD xmm, xmm1 14 <14 14-20 16-22
(15-20)

4 8 13 22(14)

DIVSD xmm, xmm 14 <14 14-20 16-22
(15-20)

4 5 13 22(14)

MAXPD xmm, xmm 4 3 3 3 0.5 1 1 1

MAXSD xmm, xmm 4 3 3 3 0.5 1 1 1

MINPD xmm, xmm 4 3 3 3 0.5 1 1 1

MINSD xmm, xmm 4 3 3 3 0.5 1 1 1

MOVAPD xmm, xmm 1 1 1 1 0.33 0.5 0.5 1

MOVMSKPD r64/r32, xmm 2 2 2 2 1 1 1 1

MOVSD xmm, xmm 1 1 1 1 1 1 1 1

MOVUPD xmm, xmm 1 1 1 1 0.33 0.5 0.5 1

MULPD xmm, xmm 3 5 5 5 0.5 0.5 0.5 1

MULSD xmm, xmm 3 5 5 5 0.5 0.5 0.5 1

ORPD xmm, xmm 1 1 1 1 0.33 1 1 1

SHUFPD xmm, xmm, imm8 1 1 1 1 1 1 1 1

SQRTPD xmm, xmm2 18 20 20 22(21) 6 13 13 22(14)

SQRTSD xmm, xmm 18 20 20 22(21) 6 7 13 22(14)

SUBPD xmm, xmm 4 3 3 3 0.5 1 1 1

D-15

INSTRUCTION LATENCY AND THROUGHPUT

SUBSD xmm, xmm 4 3 3 3 0.5 1 1 1

UCOMISD xmm, xmm 2 2 2 2 1 1 1 1

UNPCKHPD xmm, xmm 1 1 1 1 1 1 1 1

UNPCKLPD xmm, xmm 1 1 1 1 1 1 1 1

XORPD3 xmm, xmm 1 1 1 1 0.33 1 1 1

NOTES:
1. The latency and throughput of DIVPD/DIVSD can vary with input values. For certain values, hardware can complete

quickly, throughput may be as low as ~ 6 cycles. Similarly, latency for certain input values may be as low as less than 10
cycles.

2. The latency throughput of SQRTPD/SQRTSD can vary with input value. For certain values, hardware can complete quickly,
throughput may be as low as ~ 6 cycles. Similarly, latency for certain input values may be as low as less than10 cycles.

Table D-16. Streaming SIMD Extension Single-precision Floating-point Instructions
Instruction Latency1 Throughput

CPUID

06_4E,
06_5E

06_3D/4
7/56

06_3C/4
5/46/3F

06_2A/2
D(06_3A/
3E)

06_4E,
06_5E

06_3D/4
7/56

06_3C/4
5/46/3F

06_2A/2
D(06_3A/
3E)

ADDPS xmm, xmm 4 3 3 3 0.5 1 1 1

ADDSS xmm, xmm 4 3 3 3 0.5 1 1 1

ANDNPS xmm, xmm 1 1 1 1 0.33 1 1 1

ANDPS xmm, xmm 1 1 1 1 0.33 1 1 1

CMPPS xmm, xmm 4 3 3 3 0.5 1 1 1

CMPSS xmm, xmm 4 3 3 3 0.5 1 1 1

COMISS xmm, xmm 2 2 2 2 1 1 1 1

CVTSI2SS xmm, r32 6 4 4 5 1 1 1 1

CVTSS2SI r32, xmm 6 4 4 5 1 1 1 1

CVT[T]SS2SI r64, xmm 6 4 4 5 1 1 1 1

CVTTSS2SI r32, xmm 6 4 4 5 1 1 1 1

DIVPS xmm, xmm1 11 <11 <13 10-14 3 4 6 14(6)

DIVSS xmm, xmm 11 <11 <13 10-14 3 2.5 6 14(6)

MAXPS xmm, xmm 4 3 3 3 0.5 1 1 1

MAXSS xmm, xmm 4 3 3 3 0.5 1 1 1

MINPS xmm, xmm 4 3 3 3 0.5 1 1 1

MINSS xmm, xmm 4 3 3 3 0.5 1 1 1

MOVAPS xmm, xmm 1 1 1 1 0.25 0.5 0.5 1

MOVHLPS xmm, xmm 1 1 1 1 1 1 1 1

MOVLHPS xmm, xmm 1 1 1 1 1 1 1 1

MOVMSKPS r64/r32, xmm 2 2 2 2 1 1 1 1

Table D-15. Streaming SIMD Extension 2 Double-precision Floating-point Instructions (Contd.)
Instruction Latency1 Throughput

CPUID 06_4E,
06_5E

06_3D/4
7/56

06_3C/4
5/46/3F

06_2A/2
D(06_3A/
3E)

06_4E,
06_5E

06_3D/4
7/56

06_3C/4
5/46/3F

06_2A/2
D(06_3A/
3E)

INSTRUCTION LATENCY AND THROUGHPUT

D-16

MOVSS xmm, xmm 1 1 1 1 1 1 1 1

MOVUPS xmm, xmm 1 1 1 1 0.25 0.5 0.5 1

MULPS xmm, xmm 4 3 5 5 0.5 0.5 0.5 1

MULSS xmm, xmm 4 3 5 5 0.5 0.5 0.5 1

ORPS xmm, xmm 1 1 1 1 0.33 1 1 1

RCPPS xmm, xmm 4 5 5 5 1 1 1 1

RCPSS xmm, xmm 4 5 5 5 1 1 1 1

RSQRTPS xmm, xmm 4 5 5 5 1 1 1 1

RSQRTSS xmm, xmm 4 5 5 5 1 1 1 1

SHUFPS xmm, xmm, imm8 1 1 1 1 1 1 1 1

SQRTPS xmm, xmm2 13 13 13 14 3 7 7 14(7)

SQRTSS xmm, xmm 13 13 13 14 3 4 7 14(7)

SUBPS xmm, xmm 4 3 3 3 0.5 1 1 1

SUBSS xmm, xmm 4 3 3 3 0.5 1 1 1

UCOMISS xmm, xmm 2 2 2 2 1 1 1 1

UNPCKHPS xmm, xmm 1 1 1 1 1 1 1 1

UNPCKLPS xmm, xmm 1 1 1 1 1 1 1 1

XORPS xmm, xmm 1 1 1 1 1 1 1 1

LFENCE3 6 5 5 4

MFENCE3 ~40 ~35 ~35 ~35

SFENCE3 7 6 6 5

STMXCSR3 1 1 1 1

FXSAVE3 ~90 ~71 ~75 ~78

NOTES:
1. The latency and throughput of DIVPS/DIVSS can vary with input values. For certain values, hardware can complete

quickly, throughput may be as low as ~ 6 cycles. Similarly, latency for certain input values may be as low as less than 10
cycles.

2. The latency and throughput of SQRTPS/SQRTSS can vary with input values. For certain values, hardware can complete
quickly, throughput may be as low as ~ 6 cycles. Similarly, latency for certain input values may be as low as less than 10
cycles

3. The throughputs of FXSAVE/LFENCE/MFENCE/SFENCE/STMXCSR are measured with the destination in L1 Data Cache.

Table D-16. Streaming SIMD Extension Single-precision Floating-point Instructions (Contd.)
Instruction Latency1 Throughput

CPUID

06_4E,
06_5E

06_3D/4
7/56

06_3C/4
5/46/3F

06_2A/2
D(06_3A/
3E)

06_4E,
06_5E

06_3D/4
7/56

06_3C/4
5/46/3F

06_2A/2
D(06_3A/
3E)

D-17

INSTRUCTION LATENCY AND THROUGHPUT

Table D-17. General Purpose Instructions
Instruction Latency1 Throughput

CPUID 06_4E,06
_5E

06_3D/4
7/56

06_3C/4
5/46/3F

06_3A,
06_3E

06_4E,06
_5E

06_3D/4
7/56

06_3C/4
5/46/3F

06_3A,
06_3E

ADC/SBB reg, reg 1 2 2 2 0.5 1 1 1

ADC/SBB reg, imm 1 2 2 2 0.5 1 1 1

ADD/SUB 1 1 1 1 0.25 0.25 0.25 0.33

AND/OR/XOR 1 1 1 1 0.25 0.25 0.25 0.33

BSF/BSR 3 3 3 3 1 1 1 1

BSWAP 2 2 2 2 0.5 0.5 0.5 1

BT 1 1 1 1 0.5 0.5 0.5 0.5

BTC/BTR/BTS 1 1 1 1 0.5 0.5 0.5 0.5

CBW/CWDE/CDQE 1 1 1 1 1 1 1 1

CDQ 1 1 1 1 1 1 1 1

CQO 1 1 1 1 0.5 0.5 0.5 0.5

CLC 0.25 0.33 0.33 0.33

CMC 0.25 0.33 0.33 0.33

STC 0.25 0.33 0.33 0.33

CLFLUSH12 ~2 to 50 ~3 to 50 ~3 to 50 ~5 to 50

CLFLUSHOPT13 ~2to 10 NA NA NA

CMOVE/CMOVcc 1 1 2 2 0.5 0.5 0.5 0.5

CMOVBE/NBE/A/NA 2 2 3 3 1 1 1 1

CMP/TEST 1 1 1 1 0.25 0.25 0.25 0.33

CPUID (EAX = 0) ~100 ~100 ~100 ~95

CPUID (EAX != 0) >200 >200 >200 >200

CMPXCHG r64, r64 5 5 5 5 5 5 5 5

CMPXCHG8B m64 15 8 8 8 15 8 8 8

CMPXCHG16B m128 19 10 10 10 19 10 10 10

Lock CMPXCHG8B m64 22 19 19 24 22 19 19 24

Lock CMPXCHG16B m128 32 28 28 29 32 28 28 29

DEC/INC 1 2 2 2 0.25 0.25 0.25 0.33

IMUL r64, r64 3 3 3 3 1 1 1 1

IMUL r6410 4, 5 3, 4 3, 4 3, 4 1 1 1 1

IMUL r32 5 4 4 4 1 1 1 1

IDIV r64 (RDX!= 0)8 ~85-100 ~85-100 ~85-100 ~85-100

IDIV r329 ~20-26 ~20-26 ~20-26 ~19-25

LEA 1 1 1 1 0.5 0.5 0.5 0.5

LEA [base+index]disp 3 3 3 3 1 1 1 1

MOVSB/MOVSW 1 1 1 1 0..25 0..25 0..25 0.33

MOVZB/MOVZW 1 1 1 1 0.25 0.25 0.25 0.33

DIV r64 (RDX!= 0)8 ~80-95 ~80-95 ~80-95 ~80-95

DIV r329 ~20-26 ~20-26 ~20-26 ~19-25

INSTRUCTION LATENCY AND THROUGHPUT

D-18

D.3.2 Table Footnotes
The following footnotes refer to all tables in this appendix.

1. Latency information for many instructions that are complex (> 4 ops) are estimates based on
conservative (worst-case) estimates. Actual performance of these instructions by the out-of-order
core execution unit can range from somewhat faster to significantly faster than the latency data
shown in these tables.

2. Latency and Throughput of transcendental instructions can vary substantially in a dynamic execution
environment. Only an approximate value or a range of values are given for these instructions.

3. It may be possible to construct repetitive calls to some Intel 64 and IA-32 instructions in code
sequences to achieve latency that is one or two clock cycles faster than the more realistic number
listed in this table.

4. The FXCH instruction has 0 latency in code sequences. However, it is limited to an issue rate of one
instruction per clock cycle.

5. The load constant instructions, FINCSTP, and FDECSTP have 0 latency in code sequences.

6. Selection of conditional jump instructions should be based on the recommendation of Section 3.4.1,
“Branch Prediction Optimization,” to improve the predictability of branches. When branches are
predicted successfully, the latency of jcc is effectively zero.

MUL r6410 4, 5 3, 4 3, 4 3, 4 1 1 1 1

NEG/NOT 1 2 2 2 0.25 0.25 0.25 0.33

PAUSE ~140 ~10 ~10 ~10

RCL/RCR reg, 1 2 2 2 2 2 1.5 1.5 1.5

RCL/RCR 6 6 6 6 6 6 6 6

RDTSC ~13 ~10 ~10 ~20

RDTSCP ~20 ~30 ~30 ~30

ROL/ROR reg 1 1 (2 flg) 1 (2 flg) 1 (2 flg) 1 (2 flg) 1 1 1 1

ROL/ROR reg imm 1 1 1 1 0.5 0.5 0.5 0.5

ROL/ROR reg, cl 2 2 2 2 1.5 1.5 1.5 1.5

LAHF/SAHF 3 2 2 2

SAL/SAR/SHL/SHR reg, imm 1 1 1 1 0.5 0.5 0.5 0.5

SAL/SAR/SHL/SHR reg, cl 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5

SETBE 2 2 2 2 1 1 1 1

SETE 1 1 1 1 0.5 0.5 0.5 0.5

SHLD/RD reg, reg, cl 6 4 4 2 (4 flg) 1.5 1 1 1.5

SHLD/RD reg, reg, imm 3 3 3 1 0.5 0.5 0.5 0.5

XSAVE11 ~98 ~100 ~100 ~100

XSAVEOPT11 ~86 ~90 ~90 ~90

XADD 2 2 2 2 1 1 1 1

XCHG reg, reg 1 1 1 2 1 1 1 1

XCHG reg, mem 22 19 19 19 22 19 19 19

Table D-17. General Purpose Instructions (Contd.)
Instruction Latency1 Throughput

CPUID 06_4E,06
_5E

06_3D/4
7/56

06_3C/4
5/46/3F

06_3A,
06_3E

06_4E,06
_5E

06_3D/4
7/56

06_3C/4
5/46/3F

06_3A,
06_3E

D-19

INSTRUCTION LATENCY AND THROUGHPUT

7. RCL/RCR with shift count of 1 are optimized. Using RCL/RCR with shift count other than 1 will be
executed more slowly. This applies to the Pentium 4 and Intel Xeon processors.

8. The throughput of “DIV/IDIV r64” varies with the number of significant digits in the input RDX:RAX.
The throughput is significantly higher if RDX input is 0, similar to those of “DIV/IDIV r32”. If RDX is
not zero, the throughput is significantly lower, as shown in the range. The throughput decreases
(increasing numerical value in cycles) with increasing number of significant bits in the input RDX:RAX
(relative to the number of significant bits of the divisor) or the output quotient. The latency of
“DIV/IDIV r64” also varies with the significant bits of input values. For a given set of input values, the
latency is about the same as the throughput in cycles.

9. The throughput of “DIV/IDIV r32” varies with the number of significant digits in the input EDX:EAX
and/or of the quotient of the division for a given size of significant bits in the divisor r32. The
throughput decreases (increasing numerical value in cycles) with increasing number of significant
bits in the input EDX:EAX or the output quotient. The latency of “DIV/IDIV r32” also varies with the
significant bits of the input values. For a given set of input values, the latency is about the same as
the throughput in cycles.

10. The latency of MUL r64 into 128-bit result has two sets of numbers, the read-to-use latency of the
low 64-bit result (RAX) is smaller. The latency of the high 64-bit of the 128 bit result (RDX) is larger.

11. The throughputs of XSAVE and XSAVEOPT are measured with the destination in L1 Data Cache and
includes the YMM states.

12. CLFLUSH throughput is representative from clean cache lines for a range of buffer sizes. CLFLUSH
throughput can decrease significantly by factors including: (a) the number of back-to-back CLFLUSH
being executed, (b) flushing modified cache lines incurs additional cost than cache lines in other
coherent state. See Section 9.4.6.

13. CLFLUSHOPT throughput is representative from clean cache lines for a range of buffer sizes.
CLFLUSHOPT throughput can decrease by factors including: (a) flushing modified cache lines incurs
additional cost than cache lines in other coherent state, (b) the number of cache lines back-to-back.
See Section 9.4.7.

D.3.3 Instructions with Memory Operands
The latency of an Instruction with memory operand can vary greatly due to a number of factors, including
data locality in the memory/cache hierarchy and characteristics that are unique to each
microarchitecture. Generally, software can approach tuning for locality and instruction selection
independently. Thus Table D-4 through Table D-18 can be used for the purpose of instruction selection.
Latency and throughput of data movement in the cache/memory hierarchy can be dealt with indepen-
dent of instruction latency and throughput. Load-to-use Latency of the cache hierarchy can be found in
Chapter 2.

D.3.3.1 Software Observable Latency of Memory References
When measuring latency of memory references of individual instructions, many factors can influence the
observed latency exposure. Aside from access patterns, cache locality, effect of the hardware
prefetchers, different microarchitectures may expose variability such register domains of the destination
or memory addressing form with respect to the instruction encoding.

The table below gives a few selected sampling of the variability of L1D cache hit latency that software
may observe using pointer-chasing constructs, due to memory reference encoding details, on recent
Intel microarchitectures.

INSTRUCTION LATENCY AND THROUGHPUT

D-20

Table D-18. Pointer-Chasing Variability of Software Measurable Latency of L1 Data Cache Latency

Pointer Chase Construct L1D latency Observation

MOV rax, [rax] 4

MOV rax, disp32[rax] , disp32 < 2048 4

MOV rax, [rcx+rax] 5

MOV rax, disp32[rcx+rax] , disp32 < 2048 5

APPENDIX E
EARLIER GENERATIONS OF INTEL® 64 AND IA-32

PROCESSOR ARCHITECTURES

E.1 HASWELL MICROARCHITECTURE
The Haswell microarchitecture builds on the successes of the Sandy Bridge and Ivy Bridge microarchitec-
tures. The basic pipeline functionality of the Haswell microarchitecture is depicted in Figure E-1. In
general, most of the features described in Section E.1.1 - Section E.1.4 also apply to the Broadwell
microarchitecture. Enhancements of the Broadwell microarchitecture are summarized in Section E.1.7.

The Haswell microarchitecture offers the following innovative features:
• Support for Intel Advanced Vector Extensions 2 (Intel AVX2), FMA.
• Support for general-purpose, new instructions to accelerate integer numeric encryption.
• Support for Intel® Transactional Synchronization Extensions (Intel® TSX).
• Each core can dispatch up to 8 micro-ops per cycle.
• 256-bit data path for memory operation, FMA, AVX floating-point and AVX2 integer execution units.
• Improved L1D and L2 cache bandwidth.
• Two FMA execution pipelines.
• Four arithmetic logical units (ALUs).

Figure E-1. CPU Core Pipeline Functionality of the Haswell Microarchitecture

32K L1 Instruction Cache Pre‐Decode Instruction Queue
MSROM

Decoder

Uop Cache (DSB)

Allocate/Rename/Retire/
MoveElimination/ZeroIdiom

Load Buffers, Store
Buffers, Reorder Buffers

Memory Control

32K L1 Data Cache

256K L2 Cache (Unified)

Line Fill Buffers

STD LD/STA LD/STA STA
ALU,
SHFT,

VEC LOG,
VEC SHFT,
FP mul,
FMA,
DIV,
STTNI,
Branch2

ALU,
Fast LEA,
VEC ALU,
VEC LOG,
FP mul,
FMA,
FP add,
Slow Int

ALU,
Fast LEA,
VEC ALU,
VEC LOG,
VEC SHUF,

ALU, Shft

Primary
Branch

Port 0 Port 5 Port 6 Port 4 Port 2 Port 3 Port 7Port 1

Scheduler

BPU

IDQ

EARLIER GENERATIONS OF INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

E-2

• Three store address ports.
• Two branch execution units.
• Advanced power management features for IA processor core and uncore sub-systems.
• Support for optional fourth level cache.

The microarchitecture supports flexible integration of multiple processor cores with a shared uncore sub-
system consisting of a number of components including a ring interconnect to multiple slices of L3 (an
off-die L4 is optional), processor graphics, integrated memory controller, interconnect fabrics, etc. An
example of the system integration view of four CPU cores with uncore components is illustrated in
Figure E-2.

E.1.1 The Front End
The front end of Haswell microarchitecture builds on that of the Sandy Bridge and Ivy Bridge microarchi-
tectures, see Section E.2.2 and Section E.2.7. Additional enhancements in the front end include:
• The uop cache (or decoded ICache) is partitioned equally between two logical processors.
• The instruction decoders will alternate between each active logical processor. If one sibling logical

processor is idle, the active logical processor will use the decoders continuously.
• The LSD in the micro-op queue (or IDQ) can detect small loops up to 56 micro-ops. The 56-entry

micro-op queue is shared by two logical processors if Hyper-Threading Technology is active (Sandy
Bridge microarchitecture provides duplicated 28-entry micro-op queue in each core).

E.1.2 The Out-of-Order Engine
The key components and significant improvements to the out-of-order engine are summarized below:

Renamer: The Renamer moves micro-ops from the micro-op queue to bind to the dispatch ports in the
Scheduler with execution resources. Zero-idiom, one-idiom and zero-latency register move operations
are performed by the Renamer to free up the Scheduler and execution core for improved performance.

Figure E-2. Four Core System Integration of the Haswell Microarchitecture

CPU Core

DMI

CPU Core

System Agent

Legend: Uncore

PCIe DMI
DRAM

Disp

CPU Core

CPU Core

CPU Core

Processor Graphics/
Media Engine

L3 Slice

L3 Slice

L3 Slice

L3 Slice

Eng
PEG PCIe

Brdg
IMc

E-3

EARLIER GENERATIONS OF INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Scheduler: The Scheduler controls the dispatch of micro-ops onto the dispatch ports. There are eight
dispatch ports to support the out-of-order execution core. Four of the eight ports provided execution
resources for computational operations. The other 4 ports support memory operations of up to two 256-
bit load and one 256-bit store operation in a cycle.

Execution Core: The scheduler can dispatch up to eight micro-ops every cycle, one on each port. Of the
four ports providing computational resources, each provides an ALU, two of these execution pipes
provided dedicated FMA units. With the exception of division/square-root, STTNI/AESNI units, most
floating-point and integer SIMD execution units are 256-bit wide. The four dispatch ports servicing
memory operations consist with two dual-use ports for load and store-address operation. Plus a dedi-
cated 3rd store-address port and one dedicated store-data port. All memory ports can handle 256-bit
memory micro-ops. Peak floating-point throughput, at 32 single-precision operations per cycle and 16
double-precision operations per cycle using FMA, is twice that of Sandy Bridge microarchitecture.

The out-of-order engine can handle 192 uops in flight compared to 168 in Sandy Bridge microarchitec-
ture.

E.1.3 Execution Engine
Table E-1 summarizes which operations can be dispatched on which port.

Table E-2 lists execution units and common representative instructions that rely on these units. Table E-2
also includes some instructions that are available only on processors based on the Broadwell microarchi-
tecture.

Table E-1. Dispatch Port and Execution Stacks of the Haswell Microarchitecture

Port 0 Port 1 Port 2, 3 Port 4 Port 5 Port 6 Port 7

ALU,

Shift

ALU,

Fast LEA,

BM

Load_Addr,

Store_addr

Store_data ALU,

Fast LEA,

BM

ALU,

Shift,

JEU

Store_addr,
Simple_AGU

SIMD_Log,
SIMD misc,
SIMD_Shifts

SIMD_ALU,
SIMD_Log

SIMD_ALU,
SIMD_Log,

FMA/FP_mul,
Divide

FMA/FP_mul,
FP_add

Shuffle

2nd_Jeu slow_int, FP mov,

AES

EARLIER GENERATIONS OF INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

E-4

The reservation station (RS) is expanded to 60 entries deep (compared to 54 entries in Sandy Bridge
microarchitecture). It can dispatch up to eight micro-ops in one cycle if the micro-ops are ready to
execute. The RS dispatch a micro-op through an issue port to a specific execution cluster, arranged in
several stacks to handle specific data types or granularity of data.

When a source of a micro-op executed in one stack comes from a micro-op executed in another stack, a
delay can occur. The delay occurs also for transitions between Intel SSE integer and Intel SSE floating-
point operations. In some of the cases the data transition is done using a micro-op that is added to the
instruction flow. Table E-25 describes how data, written back after execution, can bypass to micro-op
execution in the following cycles.

Table E-2. Haswell Microarchitecture Execution Units and Representative Instructions

Execution
Unit

of
Ports

Instructions

ALU 4 add, and, cmp, or, test, xor, movzx, movsx, mov, (v)movdqu, (v)movdqa

SHFT 2 sal, shl, rol, adc, sarx, (adcx, adox)1 etc.

NOTES:
1. Only available in processors based on the Broadwell microarchitecture and support CPUID ADX feature flag.

Slow Int 1 mul, imul, bsr, rcl, shld, mulx, pdep, etc.

BM 2 andn, bextr, blsi, blsmsk, bzhi, etc

SIMD Log 3 (v)pand, (v)por, (v)pxor, (v)movq, (v)movq, (v)blendp*, vpblendd

SIMD_Shft 1 (v)psl*, (v)psr*

SIMD ALU 2 (v)padd*, (v)psign, (v)pabs, (v)pavgb, (v)pcmpeq*, (v)pmax, (v)pcmpgt*

Shuffle 1 (v)shufp*, vperm*, (v)pack*, (v)unpck*, (v)punpck*, (v)pshuf*, (v)pslldq, (v)alignr, (v)pmovzx*,
vbroadcast*, (v)pslldq, (v)pblendw

SIMD Misc 1 (v)pmul*, (v)pmadd*, STTNI, (v)pclmulqdq, (v)psadw, (v)pcmpgtq, vpsllvd, (v)bendv*, (v)plendw,

FP Add 1 (v)addp*, (v)cmpp*, (v)max*, (v)min*,

FP Mov 1 (v)movap*, (v)movup*, (v)movsd/ss, (v)movd gpr, (v)andp*, (v)orp*

DIVIDE 1 divp*, divs*, vdiv*, sqrt*, vsqrt*, rcp*, vrcp*, rsqrt*, idiv

E-5

EARLIER GENERATIONS OF INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

E.1.4 Cache and Memory Subsystem
The cache hierarchy is similar to prior generations, including an instruction cache, a first-level data cache
and a second-level unified cache in each core, and a 3rd-level unified cache with size dependent on
specific product configuration. The 3rd-level cache is organized as multiple cache slices, the size of each
slice may depend on product configurations, connected by a ring interconnect. The exact details of the
cache topology is reported by CPUID leaf 4. The 3rd level cache resides in the “uncore” sub-system that
is shared by all the processor cores. In some product configurations, a fourth level cache is also
supported. Table E-23 provides more details of the cache hierarchy.

Table E-3. Bypass Delay Between Producer and Consumer Micro-ops (cycles)

From/To INT SSE-INT/
AVX-INT

SSE-FP/
AVX-FP_LOW

X87/
AVX-FP_High

INT • micro-op (port 5)
• micro-op (port 6) +

1 cycle

• micro-op (port 5)
• micro-op (port 6) + 1

cycle

micro-op (port 5) + 3
cycle delay

SSE-INT/
AVX-INT

micro-op (port 1) 1 cycle delay

SSE-FP/
AVX-FP_LOW

micro-op (port 1) 1 cycle delay micro-op (port 5) +
1cycle delay

X87/
AVX-FP_High

micro-op (port 1) + 3
cycle delay

micro-op (port 5) +
1cycle delay

Load 1 cycle delay 1 cycle delay 2 cycle delay

Table E-4. Cache Parameters of the Haswell Microarchitecture

Level
Capacity /
Associativity

Line Size
(bytes)

Fastest
Latency1

NOTES:
1. Software-visible latency will vary depending on access patterns and other factors. L3 latency can vary due to clock ratios

between the processor core and uncore.

Throughput
(clocks)

Peak Bandwidth
(bytes/cyc)

Update
Policy

First Level Data 32 KB/ 8 64 4 cycle 0.52

2. First level data cache supports two load micro-ops each cycle; each micro-op can fetch up to 32-bytes of data.

64 (Load) + 32
(Store)

Writeback

Instruction 32 KB/8 64 N/A N/A N/A N/A

Second Level 256KB/8 64 11 cycle Varies 64 Writeback

Third Level (Shared
L3)

Varies 64 ~34 Varies Writeback

EARLIER GENERATIONS OF INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

E-6

The TLB hierarchy consists of dedicated level one TLB for instruction cache, TLB for L1D, plus unified TLB
for L2.

E.1.4.1 Load and Store Operation Enhancements
The L1 data cache can handle two 256-bit load and one 256-bit store operations each cycle. The unified
L2 can service one cache line (64 bytes) each cycle. Additionally, there are 72 load buffers and 42 store
buffers available to support micro-ops execution in-flight.

E.1.5 Unlamination
Some micro-fused instructions cannot be allocated as a single uop, and therefore they break into two
uops in the micro-op queue. The process of breaking a fused instruction into its uops is called unlamina-
tion.

Unlamination will take place if the number of fused instruction sources is greater than three.

Instruction sources in the context of unlamination are considered to be one of the following: memory
address base, memory address index, source register, destination register (including flags), or a source
and destination register.

A memory operand in the context of unlamination can have up to two sources. A memory address in the
x86 instruction set is constructed from: base + index*scale + displacement.

Only a base and an index are counted as instruction sources. Notice that if an index exists, the base is
counted as a source even if it's not present.

In addition, source and destination registers are counted as two sources; this is also true in the case
where the source and destination register are the same.

The following table shows examples of micro-fused instructions and details of unlamination.

Table E-5. TLB Parameters of the Haswell Microarchitecture

Level Page Size Entries Associativity Partition

Instruction 4KB 128 4 ways dynamic

Instruction 2MB/4MB 8 per thread fixed

First Level Data 4KB 64 4 fixed

First Level Data 2MB/4MB 32 4 fixed

First Level Data 1GB 4 4 fixed

Second Level Shared by 4KB and 2/4MB pages 1024 8 fixed

Table E-6. Components of the Front End
Instruction Example Source Destination Source and

Destination
Index Base Number of

Sources1

NOTES:
1. Recommendation: to avoid unlamination, keep the number of micro-fused instruction sources under 4.

Unlaminated

mulss xmm1,
[4*rax+100]

- - xmm1 rax 0 3 no

vmulss xmm1, xmm1,
[rax +100]

xmm1 xmm1 - - rax 3 no

vmulss xmm1, xmm1,
[4*rax+100]

xmm1 xmm1 - rax 0 4 yes

cmp rax,
[rbx+4*rax+4]

rax flags - rax rbx 4 yes

cmp rax, [rbx+4] rax flags - - rbx 3 no

E-7

EARLIER GENERATIONS OF INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

E.1.6 Haswell-E Microarchitecture
Intel processors based on the Haswell-E microarchitecture comprises the same processor cores as
described in the Haswell microarchitecture, but provides more advanced uncore and integrated I/O capa-
bilities. Processors based on the Haswell-E microarchitecture support platforms with multiple sockets.

The Haswell-E microarchitecture supports versatile processor architectures and platform configurations
for scalability and high performance. Some of capabilities provided by the uncore and integrated I/O sub-
system of the Haswell-E microarchitecture include:
• Support for multiple Intel QPI interconnects in multi-socket configurations.
• Up to two integrated memory controllers per physical processor.
• Up to 40 lanes of PCI Express* 3.0 links per physical processor.
• Up to 18 processor cores connected by two ring interconnects to the L3 in each physical processor.

An example of a possible 12-core processor implementation using the Haswell-E microarchitecture is
illustrated in Figure E-3. The capabilities of the uncore and integrated I/O sub-system vary across the
processor family implementing the Haswell-E microarchitecture. For details, please consult the data
sheets of respective Intel Xeon E5 v3 processors.

E.1.7 Broadwell Microarchitecture
Intel Core M processors are based on the Broadwell microarchitecture. The Broadwell microarchitecture
builds from the Haswell microarchitecture and provides several enhancements. This section covers
enhanced features of the Broadwell microarchitecture.
• Floating-point multiply instruction latency is improved from 5 cycles in prior generation to 3 cycle in

the Broadwell microarchitecture. This applies to AVX, SSE and FP instruction sets.
• The throughput of gather instructions has been improved significantly, see Table D-5.
• The PCLMULQDQ instruction implementation is a single uop in the Broadwell microarchitecture with

improved latency and throughput.

Figure E-3. An Example of the Haswell-E Microarchitecture Supporting 12 Processor Cores

Core

QPII Links
CPU Core

Legend: Uncore
PCIe QPI

DRAMHome Agent
Memory Controller

L3 Slice

Integrated I/O

Sbox

Core L3 Slice

Core L3 Slice

Core L3 Slice

DRAM DRAMHome Agent
Memory Controller

DRAM

Core L3 Slice

Core L3 Slice

Core L3 Slice

Core L3 Slice

Core L3 Slice

Core L3 Slice

Core L3 Slice

Core L3 Slice

Sbox

EARLIER GENERATIONS OF INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

E-8

The TLB hierarchy consists of dedicated level one TLB for instruction cache, TLB for L1D, plus unified TLB
for L2.

E.2 SANDY BRIDGE MICROARCHITECTURE
Sandy Bridge microarchitecture builds on the successes of Intel® Core™ microarchitecture and Nehalem
microarchitecture. It offers the following innovative features:
• Intel Advanced Vector Extensions (Intel AVX)

— 256-bit floating-point instruction set extensions to the 128-bit Intel Streaming SIMD Extensions,
providing up to 2X performance benefits relative to 128-bit code.

— Non-destructive destination encoding offers more flexible coding techniques.

— Supports flexible migration and co-existence between 256-bit AVX code, 128-bit AVX code and
legacy 128-bit SSE code.

• Enhanced front end and execution engine

— New decoded ICache component that improves front end bandwidth and reduces branch mispre-
diction penalty.

— Advanced branch prediction.

— Additional macro-fusion support.

— Larger dynamic execution window.

— Multi-precision integer arithmetic enhancements (ADC/SBB, MUL/IMUL).

— LEA bandwidth improvement.

— Reduction of general execution stalls (read ports, writeback conflicts, bypass latency, partial
stalls).

— Fast floating-point exception handling.

— XSAVE/XRSTORE performance improvements and XSAVEOPT new instruction.
• Cache hierarchy improvements for wider data path

— Doubling of bandwidth enabled by two symmetric ports for memory operation.

— Simultaneous handling of more in-flight loads and stores enabled by increased buffers.

— Internal bandwidth of two loads and one store each cycle.

— Improved prefetching.

— High bandwidth low latency LLC architecture.

— High bandwidth ring architecture of on-die interconnect.
• System-on-a-chip support

Table E-7. TLB Parameters of the Broadwell Microarchitecture

Level Page Size Entries Associativity Partition

Instruction 4KB 128 4 ways dynamic

Instruction 2MB/4MB 8 per thread fixed

First Level Data 4KB 64 4 fixed

First Level Data 2MB/4MB 32 4 fixed

First Level Data 1GB 4 4 fixed

Second Level Shared by 4KB and 2MB pages 1536 6 fixed

Second Level 1GB pages 16 4 fixed

E-9

EARLIER GENERATIONS OF INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

— Integrated graphics and media engine in second generation Intel Core processors.

— Integrated PCIE controller.

— Integrated memory controller.
• Next generation Intel Turbo Boost Technology

— Leverage TDP headroom to boost performance of CPU cores and integrated graphic unit.

E.2.1 Sandy Bridge Microarchitecture Pipeline Overview
Figure E-4 depicts the pipeline and major components of a processor core that’s based on Sandy Bridge
microarchitecture. The pipeline consists of:
• An in-order issue front end that fetches instructions and decodes them into micro-ops (micro-opera-

tions). The front end feeds the next pipeline stages with a continuous stream of micro-ops from the
most likely path that the program will execute.

• An out-of-order, superscalar execution engine that dispatches up to six micro-ops to execution, per
cycle. The allocate/rename block reorders micro-ops to "dataflow" order so they can execute as soon
as their sources are ready and execution resources are available.

• An in-order retirement unit that ensures that the results of execution of the micro-ops, including any
exceptions they may have encountered, are visible according to the original program order.

The flow of an instruction in the pipeline can be summarized in the following progression:

1. The Branch Prediction Unit chooses the next block of code to execute from the program. The
processor searches for the code in the following resources, in this order:

a. Decoded ICache.

b. Instruction Cache, via activating the legacy decode pipeline.

c. L2 cache, last level cache (LLC) and memory, as necessary.

Figure E-4. Sandy Bridge Microarchitecture Pipeline Functionality

Port 0 Port 1 Port 5 Port 2 Port 3 Port 4

256- FP MUL

ALU

V-Shuffle

Scheduler

ALU ALU
JMPV-AddV-Mul

Fdiv
V-Shuffle

Load Load STD
StAddr StAddr

256- FP Add
256- FP Shuf

256- FP Blend

256- FP Bool

Memory Control

32K L1 Data Cache

Allocate/Rename/Retire

Branch Predictor
1.5K uOP Cache

256K L2 Cache (Unified)

32K L1 Instruction Cache Pre-decode
Decoders

Instr Queue

256- FP Blend

Load
Buffers

Store
Buffers

Reorder
Buffers

Line Fill
Buffers

In-order
out-of-order

48 bytes/cycle

EARLIER GENERATIONS OF INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

E-10

2. The micro-ops corresponding to this code are sent to the Rename/retirement block. They enter into
the scheduler in program order, but execute and are de-allocated from the scheduler according to
data-flow order. For simultaneously ready micro-ops, FIFO ordering is nearly always maintained.
Micro-op execution is executed using execution resources arranged in three stacks. The execution
units in each stack are associated with the data type of the instruction.
Branch mispredictions are signaled at branch execution. It re-steers the front end which delivers
micro-ops from the correct path. The processor can overlap work preceding the branch mispre-
diction with work from the following corrected path.

3. Memory operations are managed and reordered to achieve parallelism and maximum performance.
Misses to the L1 data cache go to the L2 cache. The data cache is non-blocking and can handle
multiple simultaneous misses.

4. Exceptions (Faults, Traps) are signaled at retirement (or attempted retirement) of the faulting
instruction.

Each processor core based on Sandy Bridge microarchitecture can support two logical processor if Intel
Hyper-Threading Technology is enabled.

E.2.2 The Front End
This section describes the key characteristics of the front end. Table E-8 lists the components of the front
end, their functions, and the problems they address.

E.2.2.1 Legacy Decode Pipeline
The Legacy Decode Pipeline comprises the instruction translation lookaside buffer (ITLB), the instruction
cache (ICache), instruction predecode, and instruction decode units.

Instruction Cache and ITLB

An instruction fetch is a 16-byte aligned lookup through the ITLB and into the instruction cache. The
instruction cache can deliver every cycle 16 bytes to the instruction pre-decoder. Table E-8 compares the
ICache and ITLB with prior generation.

Table E-8. Components of the Front End of Sandy Bridge Microarchitecture
Component Functions Performance Challenges

Instruction Cache 32-Kbyte backing store of instruction bytes Fast access to hot code instruction bytes

Legacy Decode Pipeline Decode instructions to micro-ops, delivered to
the micro-op queue and the Decoded ICache.

Provides the same decode latency and
bandwidth as prior Intel processors.

Decoded ICache warm-up

Decoded ICache Provide stream of micro-ops to the micro-op
queue.

Provides higher micro-op bandwidth at
lower latency and lower power than the
legacy decode pipeline

MSROM Complex instruction micro-op flow store,
accessible from both Legacy Decode Pipeline
and Decoded ICache

Branch Prediction Unit
(BPU)

Determine next block of code to be executed
and drive lookup of Decoded ICache and legacy
decode pipelines.

Improves performance and energy
efficiency through reduced branch
mispredictions.

Micro-op queue Queues micro-ops from the Decoded ICache
and the legacy decode pipeline.

Hide front end bubbles; provide execution
micro-ops at a constant rate.

E-11

EARLIER GENERATIONS OF INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Upon ITLB miss there is a lookup to the Second level TLB (STLB) that is common to the DTLB and the
ITLB. The penalty of an ITLB miss and a STLB hit is seven cycles.

Instruction PreDecode

The predecode unit accepts the 16 bytes from the instruction cache and determines the length of the
instructions.

The following length changing prefixes (LCPs) imply instruction length that is different from the default
length of instructions. Therefore they cause an additional penalty of three cycles per LCP during length
decoding. Previous processors incur a six-cycle penalty for each 16-byte chunk that has one or more
LCPs in it. Since usually there is no more than one LCP in a 16-byte chunk, in most cases, Sandy Bridge
microarchitecture introduces an improvement over previous processors.
• Operand Size Override (66H) preceding an instruction with a word/double immediate data. This

prefix might appear when the code uses 16 bit data types, unicode processing, and image
processing.

• Address Size Override (67H) preceding an instruction with a modr/m in real, big real, 16-bit
protected or 32-bit protected modes. This prefix may appear in boot code sequences.

• The REX prefix (4xh) in the Intel® 64 instruction set can change the size of two classes of instruc-
tions: MOV offset and MOV immediate. Despite this capability, it does not cause an LCP penalty and
hence is not considered an LCP.

Instruction Decode

There are four decoding units that decode instruction into micro-ops. The first can decode all IA-32 and
Intel 64 instructions up to four micro-ops in size. The remaining three decoding units handle single-
micro-op instructions. All four decoding units support the common cases of single micro-op flows
including micro-fusion and macro-fusion.

Micro-ops emitted by the decoders are directed to the micro-op queue and to the Decoded ICache.
Instructions longer than four micro-ops generate their micro-ops from the MSROM. The MSROM band-
width is four micro-ops per cycle. Instructions whose micro-ops come from the MSROM can start from
either the legacy decode pipeline or from the Decoded ICache.

MicroFusion

Micro-fusion fuses multiple micro-ops from the same instruction into a single complex micro-op. The
complex micro-op is dispatched in the out-of-order execution core as many times as it would if it were
not micro-fused.

Micro-fusion enables you to use memory-to-register operations, also known as the complex instruction
set computer (CISC) instruction set, to express the actual program operation without worrying about a
loss of decode bandwidth. Micro-fusion improves instruction bandwidth delivered from decode to retire-
ment and saves power.

Coding an instruction sequence by using single-uop instructions will increases the code size, which can
decrease fetch bandwidth from the legacy pipeline.

The following are examples of micro-fused micro-ops that can be handled by all decoders.
• All stores to memory, including store immediate. Stores execute internally as two separate functions,

store-address and store-data.

Table E-9. ICache and ITLB of Sandy Bridge Microarchitecture
Component Sandy Bridge Microarchitecture Nehalem Microarchitecture

ICache Size 32-Kbyte 32-Kbyte

ICache Ways 8 4

ITLB 4K page entries 128 128

ITLB large page (2M or
4M) entries

8 7

EARLIER GENERATIONS OF INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

E-12

• All instructions that combine load and computation operations (load+op), for example:

• ADDPS XMM9, OWORD PTR [RSP+40]

• FADD DOUBLE PTR [RDI+RSI*8]

• XOR RAX, QWORD PTR [RBP+32]
• All instructions of the form "load and jump," for example:

• JMP [RDI+200]

• RET
• CMP and TEST with immediate operand and memory

An instruction with RIP relative addressing is not micro-fused in the following cases:
• An additional immediate is needed, for example:

• CMP [RIP+400], 27

• MOV [RIP+3000], 142
• The instruction is a control flow instruction with an indirect target specified using RIP-relative

addressing, for example:

• JMP [RIP+5000000]

In these cases, an instruction that can not be micro-fused will require decoder 0 to issue two micro-ops,
resulting in a slight loss of decode bandwidth.

In 64-bit code, the usage of RIP Relative addressing is common for global data. Since there is no micro-
fusion in these cases, performance may be reduced when porting 32-bit code to 64-bit code.

Macro-Fusion

Macro-fusion merges two instructions into a single micro-op. In Intel Core microarchitecture, this hard-
ware optimization is limited to specific conditions specific to the first and second of the macro-fusable
instruction pair.
• The first instruction of the macro-fused pair modifies the flags. The following instructions can be

macro-fused:

— In Nehalem microarchitecture: CMP, TEST.

— In Sandy Bridge microarchitecture: CMP, TEST, ADD, SUB, AND, INC, DEC

— These instructions can fuse if

• The first source / destination operand is a register.

• The second source operand (if exists) is one of: immediate, register, or non RIP-relative
memory.

• The second instruction of the macro-fusable pair is a conditional branch. Table 3-1 describes, for each
instruction, what branches it can fuse with.

Macro fusion does not happen if the first instruction ends on byte 63 of a cache line, and the second
instruction is a conditional branch that starts at byte 0 of the next cache line.

Since these pairs are common in many types of applications, macro-fusion improves performance even
on non-recompiled binaries.

Each macro-fused instruction executes with a single dispatch. This reduces latency and frees execution
resources. You also gain increased rename and retire bandwidth, increased virtual storage, and power
savings from representing more work in fewer bits.

E.2.2.2 Decoded ICache
The Decoded ICache is essentially an accelerator of the legacy decode pipeline. By storing decoded
instructions, the Decoded ICache enables the following features:
• Reduced latency on branch mispredictions.

E-13

EARLIER GENERATIONS OF INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

• Increased micro-op delivery bandwidth to the out-of-order engine.
• Reduced front end power consumption.

The Decoded ICache caches the output of the instruction decoder. The next time the micro-ops are
consumed for execution the decoded micro-ops are taken from the Decoded ICache. This enables skip-
ping the fetch and decode stages for these micro-ops and reduces power and latency of the Front End.
The Decoded ICache provides average hit rates of above 80% of the micro-ops; furthermore, "hot spots"
typically have hit rates close to 100%.

Typical integer programs average less than four bytes per instruction, and the front end is able to race
ahead of the back end, filling in a large window for the scheduler to find instruction level parallelism.
However, for high performance code with a basic block consisting of many instructions, for example, Intel
SSE media algorithms or excessively unrolled loops, the 16 instruction bytes per cycle is occasionally a
limitation. The 32-byte orientation of the Decoded ICache helps such code to avoid this limitation.

The Decoded ICache automatically improves performance of programs with temporal and spatial locality.
However, to fully utilize the Decoded ICache potential, you might need to understand its internal organi-
zation.

The Decoded ICache consists of 32 sets. Each set contains eight Ways. Each Way can hold up to six
micro-ops. The Decoded ICache can ideally hold up to 1536 micro-ops.

The following are some of the rules how the Decoded ICache is filled with micro-ops:
• All micro-ops in a Way represent instructions which are statically contiguous in the code and have

their EIPs within the same aligned 32-byte region.
• Up to three Ways may be dedicated to the same 32-byte aligned chunk, allowing a total of 18 micro-

ops to be cached per 32-byte region of the original IA program.
• A multi micro-op instruction cannot be split across Ways.
• Up to two branches are allowed per Way.
• An instruction which turns on the MSROM consumes an entire Way.
• A non-conditional branch is the last micro-op in a Way.
• Micro-fused micro-ops (load+op and stores) are kept as one micro-op.
• A pair of macro-fused instructions is kept as one micro-op.
• Instructions with 64-bit immediate require two slots to hold the immediate.

When micro-ops cannot be stored in the Decoded ICache due to these restrictions, they are delivered
from the legacy decode pipeline. Once micro-ops are delivered from the legacy pipeline, fetching micro-
ops from the Decoded ICache can resume only after the next branch micro-op. Frequent switches can
incur a penalty.

The Decoded ICache is virtually included in the Instruction cache and ITLB. That is, any instruction with
micro-ops in the Decoded ICache has its original instruction bytes present in the instruction cache.
Instruction cache evictions must also be evicted from the Decoded ICache, which evicts only the neces-
sary lines.

There are cases where the entire Decoded ICache is flushed. One reason for this can be an ITLB entry
eviction. Other reasons are not usually visible to the application programmer, as they occur when
important controls are changed, for example, mapping in CR3, or feature and mode enabling in CR0 and
CR4. There are also cases where the Decoded ICache is disabled, for instance, when the CS base address
is NOT set to zero.

E.2.2.3 Branch Prediction
Branch prediction predicts the branch target and enables the processor to begin executing instructions
long before the branch true execution path is known. All branches utilize the branch prediction unit (BPU)
for prediction. This unit predicts the target address not only based on the EIP of the branch but also
based on the execution path through which execution reached this EIP. The BPU can efficiently predict the
following branch types:
• Conditional branches.

EARLIER GENERATIONS OF INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

E-14

• Direct calls and jumps.
• Indirect calls and jumps.
• Returns.

E.2.2.4 Micro-op Queue and the Loop Stream Detector (LSD)
The micro-op queue decouples the front end and the out-of order engine. It stays between the micro-op
generation and the renamer as shown in Figure E-4. This queue helps to hide bubbles which are intro-
duced between the various sources of micro-ops in the front end and ensures that four micro-ops are
delivered for execution, each cycle.

The micro-op queue provides post-decode functionality for certain instructions types. In particular, loads
combined with computational operations and all stores, when used with indexed addressing, are repre-
sented as a single micro-op in the decoder or Decoded ICache. In the micro-op queue they are frag-
mented into two micro-ops through a process called un-lamination, one does the load and the other does
the operation. A typical example is the following "load plus operation" instruction:

ADD RAX, [RBP+RSI]; rax := rax + LD(RBP+RSI)

Similarly, the following store instruction has three register sources and is broken into "generate store
address" and "generate store data" sub-components.

MOV [ESP+ECX*4+12345678], AL

The additional micro-ops generated by unlamination use the rename and retirement bandwidth.
However, it has an overall power benefit. For code that is dominated by indexed addressing (as often
happens with array processing), recoding algorithms to use base (or base+displacement) addressing can
sometimes improve performance by keeping the load plus operation and store instructions fused.

The Loop Stream Detector (LSD)

The Loop Stream Detector was introduced in Intel® Core microarchitectures. The LSD detects small loops
that fit in the micro-op queue and locks them down. The loop streams from the micro-op queue, with no
more fetching, decoding, or reading micro-ops from any of the caches, until a branch mis-prediction
inevitably ends it.

The loops with the following attributes qualify for LSD/micro-op queue replay:

• Up to eight chunk fetches of 32-instruction-bytes.

• Up to 28 micro-ops (~28 instructions).

• All micro-ops are also resident in the Decoded ICache.

• Can contain no more than eight taken branches and none of them can be a CALL or RET.

• Cannot have mismatched stack operations. For example, more PUSH than POP instructions.

Many calculation-intensive loops, searches and software string moves match these characteristics.

Use the loop cache functionality opportunistically. For high performance code, loop unrolling is generally
preferable for performance even when it overflows the LSD capability.

E.2.3 The Out-of-Order Engine
The Out-of-Order engine provides improved performance over prior generations with excellent power
characteristics. It detects dependency chains and sends them to execution out-of-order while main-
taining the correct data flow. When a dependency chain is waiting for a resource, such as a second-level
data cache line, it sends micro-ops from another chain to the execution core. This increases the overall
rate of instructions executed per cycle (IPC).

The out-of-order engine consists of two blocks, shown in Figure E-4: Core Functional Diagram, the
Rename/retirement block, and the Scheduler.

The Out-of-Order engine contains the following major components:

E-15

EARLIER GENERATIONS OF INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Renamer. The Renamer component moves micro-ops from the front end to the execution core. It elimi-
nates false dependencies among micro-ops, thereby enabling out-of-order execution of micro-ops.

Scheduler. The Scheduler component queues micro-ops until all source operands are ready. Schedules
and dispatches ready micro-ops to the available execution units in as close to a first in first out (FIFO)
order as possible.

Retirement. The Retirement component retires instructions and micro-ops in order and handles faults
and exceptions.

E.2.3.1 Renamer
The Renamer is the bridge between the in-order part in Figure E-4, and the dataflow world of the Sched-
uler. It moves up to four micro-ops every cycle from the micro-op queue to the out-of-order engine.
Although the renamer can send up to 4 micro-ops (unfused, micro-fused, or macro-fused) per cycle, this
is equivalent to the issue port can dispatch six micro-ops per cycle. In this process, the out-of-order core
carries out the following steps:
• Renames architectural sources and destinations of the micro-ops to micro-architectural sources and

destinations.
• Allocates resources to the micro-ops. For example, load or store buffers.
• Binds the micro-op to an appropriate dispatch port.

Some micro-ops can execute to completion during rename and are removed from the pipeline at that
point, effectively costing no execution bandwidth. These include:
• Zero idioms (dependency breaking idioms).
• NOP.
• VZEROUPPER.
• FXCHG.

The renamer can allocate two branches each cycle, compared to one branch each cycle in the previous
microarchitecture. This can eliminate some bubbles in execution.

Micro-fused load and store operations that use an index register are decomposed to two micro-ops,
hence consume two out of the four slots the Renamer can use every cycle.

Dependency Breaking Idioms

Instruction parallelism can be improved by using common instructions to clear register contents to zero.
The renamer can detect them on the zero evaluation of the destination register.

Use one of these dependency breaking idioms to clear a register when possible.
• XOR REG,REG
• SUB REG,REG
• PXOR/VPXOR XMMREG,XMMREG
• PSUBB/W/D/Q XMMREG,XMMREG
• VPSUBB/W/D/Q XMMREG,XMMREG
• XORPS/PD XMMREG,XMMREG
• VXORPS/PD YMMREG, YMMREG

Since zero idioms are detected and removed by the renamer, they have no execution latency.

There is another dependency breaking idiom - the "ones idiom".
• CMPEQ XMM1, XMM1; "ones idiom" set all elements to all "ones"

In this case, the micro-op must execute, however, since it is known that regardless of the input data the
output data is always "all ones" the micro-op dependency upon its sources does not exist as with the zero
idiom and it can execute as soon as it finds a free execution port.

EARLIER GENERATIONS OF INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

E-16

E.2.3.2 Scheduler
The scheduler controls the dispatch of micro-ops onto their execution ports. In order to do this, it must
identify which micro-ops are ready and where its sources come from: a register file entry, or a bypass
directly from an execution unit. Depending on the availability of dispatch ports and writeback buses, and
the priority of ready micro-ops, the scheduler selects which micro-ops are dispatched every cycle.

E.2.4 The Execution Core
The execution core is superscalar and can process instructions out of order. The execution core optimizes
overall performance by handling the most common operations efficiently, while minimizing potential
delays.

The out-of-order execution core improves execution unit organization over prior generation in the
following ways:
• Reduction in read port stalls.
• Reduction in writeback conflicts and delays.
• Reduction in power.
• Reduction of SIMD FP assists dealing with denormal inputs and underflow outputs.

Some high precision FP algorithms need to operate with FTZ=0 and DAZ=0, i.e. permitting underflow
intermediate results and denormal inputs to achieve higher numerical precision at the expense of
reduced performance on prior generation microarchitectures due to SIMD FP assists. The reduction of
SIMD FP assists in Sandy Bridge microarchitecture applies to the following SSE instructions (and AVX
variants): ADDPD/ADDPS, MULPD/MULPS, DIVPD/DIVPS, and CVTPD2PS.

The out-of-order core consist of three execution stacks, where each stack encapsulates a certain type of
data. The execution core contains the following execution stacks:
• General purpose integer.
• SIMD integer and floating-point.
• X87.

The execution core also contains connections to and from the cache hierarchy. The loaded data is fetched
from the caches and written back into one of the stacks.

The scheduler can dispatch up to six micro-ops every cycle, one on each port. The following table
summarizes which operations can be dispatched on which port.

Table E-10. Dispatch Port and Execution Stacks

Port 0 Port 1 Port 2 Port 3 Port 4 Port 5

Integer ALU, Shift ALU,

Fast LEA,

Slow LEA,

MUL

Load_Addr,

Store_addr

Load_Addr

Store_addr

Store_data ALU,

Shift,

Branch,

Fast LEA

SSE-Int,

AVX-Int,

MMX

Mul, Shift,
STTNI, Int-Div,

128b-Mov

ALU, Shuf,
Blend, 128b-
Mov

Store_data ALU, Shuf,
Shift, Blend,
128b-Mov

SSE-FP,

AVX-FP_low

Mul, Div, Blend,
256b-Mov

Add, CVT Store_data Shuf, Blend,
256b-Mov

X87,

AVX-FP_High

Mul, Div, Blend,
256b-Mov

Add, CVT Store_data Shuf, Blend,
256b-Mov

E-17

EARLIER GENERATIONS OF INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

After execution, the data is written back on a writeback bus corresponding to the dispatch port and the
data type of the result. Micro-ops that are dispatched on the same port but have different latencies may
need the write back bus at the same cycle. In these cases the execution of one of the micro-ops is
delayed until the writeback bus is available. For example, MULPS (five cycles) and BLENDPS (one cycle)
may collide if both are ready for execution on port 0: first the MULPS and four cycles later the BLENDPS.
Sandy Bridge microarchitecture eliminates such collisions as long as the micro-ops write the results to
different stacks. For example, integer ADD (one cycle) can be dispatched four cycles after MULPS (five
cycles) since the integer ADD uses the integer stack while the MULPS uses the FP stack.

When a source of a micro-op executed in one stack comes from a micro-op executed in another stack, a
one- or two-cycle delay can occur. The delay occurs also for transitions between Intel SSE integer and
Intel SSE floating-point operations. In some of the cases the data transition is done using a micro-op that
is added to the instruction flow. The following table describes how data, written back after execution, can
bypass to micro-op execution in the following cycles.

E.2.5 Cache Hierarchy
The cache hierarchy contains a first level instruction cache, a first level data cache (L1 DCache) and a
second level (L2) cache, in each core. The L1D cache may be shared by two logical processors if the
processor support Intel HyperThreading Technology. The L2 cache is shared by instructions and data. All
cores in a physical processor package connect to a shared last level cache (LLC) via a ring connection.

The caches use the services of the Instruction Translation Lookaside Buffer (ITLB), Data Translation
Lookaside Buffer (DTLB) and Shared Translation Lookaside Buffer (STLB) to translate linear addresses to
physical address. Data coherency in all cache levels is maintained using the MESI protocol. For more
information, see the Intel® 64 IA-32 Architectures Software Developer's Manual, Volume 3. Cache hier-
archy details can be obtained at run-time using the CPUID instruction. see the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A.

Table E-11. Execution Core Writeback Latency (cycles)

Integer SSE-Int, AVX-Int,

MMX

SSE-FP,

AVX-FP_low

X87,

AVX-FP_High

Integer 0 micro-op (port 0) micro-op (port 0) micro-op (port 0) +
1 cycle

SSE-Int, AVX-Int,
MMX

micro-op (port 5) or
micro-op (port 5) +1
cycle

0 1 cycle delay 0

SSE-FP,

AVX-FP_low

micro-op (port 5) or
micro-op (port 5) +1
cycle

1 cycle delay 0 micro-op (port 5) +1
cycle

X87,

AVX-FP_High

micro-op (port 5) +1
cycle

0 micro-op (port 5)
+1 cycle

0

Load 0 1 cycle delay 1 cycle delay 2 cycle delay

EARLIER GENERATIONS OF INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

E-18

E.2.5.1 Load and Store Operation Overview
This section provides an overview of the load and store operations.

Loads

When an instruction reads data from a memory location that has write-back (WB) type, the processor
looks for it in the caches and memory. Table E-13 shows the access lookup order and best case latency.
The actual latency can vary depending on the cache queue occupancy, LLC ring occupancy, memory
components, and their parameters.

The LLC is inclusive of all cache levels above it - data contained in the core caches must also reside in the
LLC. Each cache line in the LLC holds an indication of the cores that may have this line in their L2 and L1
caches. If there is an indication in the LLC that other cores may hold the line of interest and its state
might have to modify, there is a lookup into the L1 DCache and L2 of these cores too. The lookup is called
“clean” if it does not require fetching data from the other core caches. The lookup is called “dirty” if modi-
fied data has to be fetched from the other core caches and transferred to the loading core.

The latencies shown above are the best-case scenarios. Sometimes a modified cache line has to be
evicted to make space for a new cache line. The modified cache line is evicted in parallel to bringing the
new data and does not require additional latency. However, when data is written back to memory, the
eviction uses cache bandwidth and possibly memory bandwidth as well. Therefore, when multiple cache
misses require the eviction of modified lines within a short time, there is an overall degradation in cache
response time. Memory access latencies vary based on occupancy of the memory controller queues,
DRAM configuration, DDR parameters, and DDR paging behavior (if the requested page is a page-hit,
page-miss or page-empty).

Stores

When an instruction writes data to a memory location that has a write back memory type, the processor
first ensures that it has the line containing this memory location in its L1 DCache, in Exclusive or Modified
MESI state. If the cache line is not there, in the right state, the processor fetches it from the next levels

Table E-12. Cache Parameters

Level Capacity
Associativity
(ways)

Line Size
(bytes)

Write Update
Policy Inclusive

L1 Data 32 KB 8 64 Writeback -

Instruction 32 KB 8 N/A N/A -

L2 (Unified) 256 KB 8 64 Writeback No

Third Level (LLC) Varies, query
CPUID leaf 4

Varies with cache
size

64 Writeback Yes

Table E-13. Lookup Order and Load Latency

Level Latency (cycles) Bandwidth (per core per cycle)

L1 Data 41

NOTES:
1. Subject to execution core bypass restriction shown in Table E-11.

2 x16 bytes

L2 (Unified) 12 1 x 32 bytes

Third Level (LLC) 26-312

2. Latency of L3 varies with product segment and sku. The values apply to second generation Intel Core processor families.

1 x 32 bytes

L2 and L1 DCache in other cores
if applicable

43- clean hit;

60 - dirty hit

E-19

EARLIER GENERATIONS OF INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

of the memory hierarchy using a Read for Ownership request. The processor looks for the cache line in
the following locations, in the specified order:

1. L1 DCache

2. L2

3. Last Level Cache

4. L2 and L1 DCache in other cores, if applicable

5. Memory

Once the cache line is in the L1 DCache, the new data is written to it, and the line is marked as Modified.

Reading for ownership and storing the data happens after instruction retirement and follows the order of
store instruction retirement. Therefore, the store latency usually does not affect the store instruction
itself. However, several sequential stores that miss the L1 DCache may have cumulative latency that can
affect performance. As long as the store does not complete, its entry remains occupied in the store
buffer. When the store buffer becomes full, new micro-ops cannot enter the execution pipe and execution
might stall.

E.2.5.2 L1 DCache
The L1 DCache is the first level data cache. It manages all load and store requests from all types through
its internal data structures. The L1 DCache:
• Enables loads and stores to issue speculatively and out of order.
• Ensures that retired loads and stores have the correct data upon retirement.
• Ensures that loads and stores follow the memory ordering rules of the IA-32 and Intel 64 instruction

set architecture.

The DCU is organized as 32 KBytes, eight-way set associative. Cache line size is 64-bytes arranged in
eight banks.

Internally, accesses are up to 16 bytes, with 256-bit Intel AVX instructions utilizing two 16-byte
accesses. Two load operations and one store operation can be handled each cycle.

The L1 DCache maintains requests which cannot be serviced immediately to completion. Some reasons
for requests that are delayed: cache misses, unaligned access that splits across cache lines, data not
ready to be forwarded from a preceding store, loads experiencing bank collisions, and load block due to
cache line replacement.

The L1 DCache can maintain up to 64 load micro-ops from allocation until retirement. It can maintain up
to 36 store operations from allocation until the store value is committed to the cache, or written to the
line fill buffers (LFB) in the case of non-temporal stores.

The L1 DCache can handle multiple outstanding cache misses and continue to service incoming stores
and loads. Up to 10 requests of missing cache lines can be managed simultaneously using the LFB.

The L1 DCache is a write-back write-allocate cache. Stores that hit in the DCU do not update the lower
levels of the memory hierarchy. Stores that miss the DCU allocate a cache line.

Table E-14. L1 Data Cache Components

Component Sandy Bridge Microarchitecture Nehalem Microarchitecture

Data Cache Unit (DCU) 32KB, 8 ways 32KB, 8 ways

Load buffers 64 entries 48 entries

Store buffers 36 entries 32 entries

Line fill buffers (LFB) 10 entries 10 entries

EARLIER GENERATIONS OF INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

E-20

Loads

The L1 DCache architecture can service two loads per cycle, each of which can be up to 16 bytes. Up to
32 loads can be maintained at different stages of progress, from their allocation in the out of order engine
until the loaded value is returned to the execution core.

Loads can:
• Read data before preceding stores when the load address and store address ranges are known not to

conflict.
• Be carried out speculatively, before preceding branches are resolved.
• Take cache misses out of order and in an overlapped manner.

Loads cannot:
• Speculatively take any sort of fault or trap.
• Speculatively access uncacheable memory.

The common load latency is five cycles. When using a simple addressing mode, base plus offset that is
smaller than 2048, the load latency can be four cycles. This technique is especially useful for pointer-
chasing code. However, overall latency varies depending on the target register data type due to stack
bypass. See Section E.2.4 for more information.

The following table lists overall load latencies. These latencies assume the common case of flat segment,
that is, segment base address is zero. If segment base is not zero, load latency increases.

Stores

Stores to memory are executed in two phases:
• Execution phase. Fills the store buffers with linear and physical address and data. Once store address

and data are known, the store data can be forwarded to the following load operations that need it.
• Completion phase. After the store retires, the L1 DCache moves its data from the store buffers to the

DCU, up to 16 bytes per cycle.

Address Translation

The DTLB can perform three linear to physical address translations every cycle, two for load addresses
and one for a store address. If the address is missing in the DTLB, the processor looks for it in the STLB,
which holds data and instruction address translations. The penalty of a DTLB miss that hits the STLB is
seven cycles. Large page support include 1G byte pages, in addition to 4K and 2M/4M pages.

The DTLB and STLB are four way set associative. The following table specifies the number of entries in
the DTLB and STLB.

Table E-15. Effect of Addressing Modes on Load Latency

Data Type/Addressing Mode
Base + Offset > 2048;
Base + Index [+ Offset] Base + Offset < 2048

Integer 5 4

MMX, SSE, 128-bit AVX 6 5

X87 7 6

256-bit AVX 7 7

E-21

EARLIER GENERATIONS OF INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Store Forwarding

If a load follows a store and reloads the data that the store writes to memory, the data can forward
directly from the store operation to the load. This process, called store to load forwarding, saves cycles
by enabling the load to obtain the data directly from the store operation instead of through memory. You
can take advantage of store forwarding to quickly move complex structures without losing the ability to
forward the subfields. The memory control unit can handle store forwarding situations with less restric-
tions compared to previous micro-architectures.

The following rules must be met to enable store to load forwarding:
• The store must be the last store to that address, prior to the load.
• The store must contain all data being loaded.
• The load is from a write-back memory type and neither the load nor the store are non-temporal

accesses.

Stores cannot forward to loads in the following cases:
• Four byte and eight byte loads that cross eight byte boundary, relative to the preceding 16- or 32-

byte store.
• Any load that crosses a 16-byte boundary of a 32-byte store.

Table E-17 to Table E-20 detail the store to load forwarding behavior. For a given store size, all the loads
that may overlap are shown and specified by ‘F’. Forwarding from 32 byte store is similar to forwarding
from each of the 16 byte halves of the store. Cases that cannot forward are shown as ‘N’.

Table E-16. DTLB and STLB Parameters

TLB Page Size Entries

DTLB 4KB 64

2MB/4MB 32

1GB 4

STLB 4KB 512

Table E-17. Store Forwarding Conditions (1 and 2 byte stores)

Load Alignment

Store
Size

Load
Size

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 F

2 1 F F

2 F N

EARLIER GENERATIONS OF INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

E-22

Table E-18. Store Forwarding Conditions (4-16 byte stores)

Load Alignment

Store
Size

Load
Size

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

4 1 F F F F

2 F F F N

4 F N N N

8 1 F F F F F F F F

2 F F F F F F F N

4 F F F F F N N N

8 F N N N N N N N

16 1 F F F F F F F F F F F F F F F F

2 F F F F F F F F F F F F F F F N

4 F F F F F N N N F F F F F N N N

8 F N N N N N N N F N N N N N N N

16 F N N N N N N N N N N N N N N N

Table E-19. 32-byte Store Forwarding Conditions (0-15 byte alignment)

Load Alignment

Store
Size

Load
Size

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

32 1 F F F F F F F F F F F F F F F F

2 F F F F F F F F F F F F F F F N

4 F F F F F N N N F F F F F N N N

8 F N N N N N N N F N N N N N N N

16 F N N N N N N N N N N N N N N N

32 F N N N N N N N N N N N N N N N

Table E-20. 32-byte Store Forwarding Conditions (16-31 byte alignment)

Load Alignment

Store
Size

Load
Size

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

32 1 F F F F F F F F F F F F F F F F

2 F F F F F F F F F F F F F F F N

4 F F F F F N N N F F F F F N N N

8 F N N N N N N N F N N N N N N N

16 F N N N N N N N N N N N N N N N

32 N N N N N N N N N N N N N N N N

E-23

EARLIER GENERATIONS OF INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Memory Disambiguation

A load operation may depend on a preceding store. Many microarchitectures block loads until all
preceding store addresses are known. The memory disambiguator predicts which loads will not depend
on any previous stores whose addresses aren’t yet known. When the disambiguator predicts that a load
does not have such a dependency, the load takes its data from an earlier store to the same address. This
hides the load latency. Eventually, the prediction is verified. If the load did indeed depend on a store
whose address was unknown at the time the load executed, this conflict is detected and the load and all
succeeding instructions are re-executed.

The following loads are not disambiguated. The execution of these loads is stalled until addresses of all
previous stores are known.
• Loads that cross the 16-byte aligned boundary, other than 32-byte loads.
• 32-byte Intel AVX loads that are not 32-byte aligned.

Bank Conflict

Since 16-byte loads can cover up to three banks, and two loads can happen every cycle, it is possible that
six of the eight banks may be accessed per cycle, for loads. A bank conflict happens when two load
accesses need the same bank (their address has the same 2-4 bit value) in different sets, at the same
time. When a bank conflict occurs, one of the load accesses is recycled internally.

In many cases two loads access exactly the same bank in the same cache line, as may happen when
popping operands off the stack, or any sequential accesses. In these cases, conflict does not occur and
the loads are serviced simultaneously.

E.2.5.3 Ring Interconnect and Last Level Cache
The system-on-a-chip design provides a high bandwidth bi-directional ring bus to connect between the
IA cores and various sub-systems in the uncore. In the second generation Intel Core processor 2xxx
series, the uncore subsystem include a system agent, the graphics unit (GT) and the last level cache
(LLC).

The LLC consists of multiple cache slices. The number of slices is equal to the number of IA cores. Each
slice has logic portion and data array portion. The logic portion handles data coherency, memory
ordering, access to the data array portion, LLC misses and writeback to memory, and more. The data
array portion stores cache lines. Each slice contains a full cache port that can supply 32 bytes/cycle.

The physical addresses of data kept in the LLC data arrays are distributed among the cache slices by a
hash function, such that addresses are uniformly distributed. The data array in a cache block may have
4/8/12/16 ways corresponding to 0.5M/1M/1.5M/2M block size. However, due to the address distribution
among the cache blocks from the software point of view, this does not appear as a normal N-way cache.

From the processor cores and the GT view, the LLC act as one shared cache with multiple ports and band-
width that scales with the number of cores. The LLC hit latency, ranging between 26-31 cycles, depends
on the core location relative to the LLC block, and how far the request needs to travel on the ring.

The number of cache-slices increases with the number of cores, therefore the ring and LLC are not likely
to be a bandwidth limiter to core operation.

The GT sits on the same ring interconnect, and uses the LLC for its data operations as well. In this respect
it is very similar to an IA core. Therefore, high bandwidth graphic applications using cache bandwidth and
significant cache footprint, can interfere, to some extent, with core operations.

All the traffic that cannot be satisfied by the LLC, such as LLC misses, dirty line writeback, non-cacheable
operations, and MMIO/IO operations, still travels through the cache-slice logic portion and the ring, to
the system agent.

In the Intel Xeon Processor E5 Family, the uncore subsystem does not include the graphics unit (GT).
Instead, the uncore subsystem contains many more components, including an LLC with larger capacity
and snooping capabilities to support multiple processors, Intel® QuickPath Interconnect interfaces that
can support multi-socket platforms, power management control hardware, and a system agent capable
of supporting high-bandwidth traffic from memory and I/O devices.

EARLIER GENERATIONS OF INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

E-24

In the Intel Xeon processor E5 2xxx or 4xxx families, the LLC capacity generally scales with the number
of processor cores with 2.5 MBytes per core.

E.2.5.4 Data Prefetching
Data can be speculatively loaded to the L1 DCache using software prefetching, hardware prefetching, or
any combination of the two.

You can use the four Streaming SIMD Extensions (SSE) prefetch instructions to enable software-
controlled prefetching. These instructions are hints to bring a cache line of data into the desired levels of
the cache hierarchy. The software-controlled prefetch is intended for prefetching data, but not for
prefetching code.

The rest of this section describes the various hardware prefetching mechanisms provided by Sandy
Bridge microarchitecture and their improvement over previous processors. The goal of the prefetchers is
to automatically predict which data the program is about to consume. If this data is not close-by to the
execution core or inner cache, the prefetchers bring it from the next levels of cache hierarchy and
memory. Prefetching has the following effects:
• Improves performance if data is arranged sequentially in the order used in the program.
• May cause slight performance degradation due to bandwidth issues, if access patterns are sparse

instead of local.
• On rare occasions, if the algorithm's working set is tuned to occupy most of the cache and unneeded

prefetches evict lines required by the program, hardware prefetcher may cause severe performance
degradation due to cache capacity of L1.

Data Prefetch to L1 Data Cache

Data prefetching is triggered by load operations when the following conditions are met:
• Load is from writeback memory type.
• The prefetched data is within the same 4K byte page as the load instruction that triggered it.
• No fence is in progress in the pipeline.
• Not many other load misses are in progress.
• There is not a continuous stream of stores.

Two hardware prefetchers load data to the L1 DCache:
• Data cache unit (DCU) prefetcher. This prefetcher, also known as the streaming prefetcher, is

triggered by an ascending access to very recently loaded data. The processor assumes that this
access is part of a streaming algorithm and automatically fetches the next line.

• Instruction pointer (IP)-based stride prefetcher. This prefetcher keeps track of individual load
instructions. If a load instruction is detected to have a regular stride, then a prefetch is sent to the
next address which is the sum of the current address and the stride. This prefetcher can prefetch
forward or backward and can detect strides of up to 2K bytes.

Data Prefetch to the L2 and Last Level Cache

The following two hardware prefetchers fetched data from memory to the L2 cache and last level cache:

Spatial Prefetcher: This prefetcher strives to complete every cache line fetched to the L2 cache with
the pair line that completes it to a 128-byte aligned chunk.

Streamer: This prefetcher monitors read requests from the L1 cache for ascending and descending
sequences of addresses. Monitored read requests include L1 DCache requests initiated by load and store
operations and by the hardware prefetchers, and L1 ICache requests for code fetch. When a forward or
backward stream of requests is detected, the anticipated cache lines are prefetched. Prefetched cache
lines must be in the same 4K page.

The streamer and spatial prefetcher prefetch the data to the last level cache. Typically data is brought
also to the L2 unless the L2 cache is heavily loaded with missing demand requests.

E-25

EARLIER GENERATIONS OF INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Enhancement to the streamer includes the following features:
• The streamer may issue two prefetch requests on every L2 lookup. The streamer can run up to 20

lines ahead of the load request.
• Adjusts dynamically to the number of outstanding requests per core. If there are not many

outstanding requests, the streamer prefetches further ahead. If there are many outstanding
requests it prefetches to the LLC only and less far ahead.

• When cache lines are far ahead, it prefetches to the last level cache only and not to the L2. This
method avoids replacement of useful cache lines in the L2 cache.

• Detects and maintains up to 32 streams of data accesses. For each 4K byte page, you can maintain
one forward and one backward stream can be maintained.

E.2.6 System Agent
The system agent implemented in the second generation Intel Core processor family contains the
following components:
• An arbiter that handles all accesses from the ring domain and from I/O (PCIe* and DMI) and routes

the accesses to the right place.
• PCIe controllers connect to external PCIe devices. The PCIe controllers have different configuration

possibilities the varies with product segment specifics: x16+x4, x8+x8+x4, x8+x4+x4+x4.
• DMI controller connects to the PCH chipset.
• Integrated display engine, Flexible Display Interconnect, and Display Port, for the internal graphic

operations.
• Memory controller.

All main memory traffic is routed from the arbiter to the memory controller. The memory controller in the
second generation Intel Core processor 2xxx series support two channels of DDR, with data rates of
1066MHz, 1333MHz and 1600MHz, and 8 bytes per cycle, depending on the unit type, system configura-
tion and DRAMs. Addresses are distributed between memory channels based on a local hash function
that attempts to balance the load between the channels in order to achieve maximum bandwidth and
minimum hotspot collisions.

For best performance, populate both channels with equal amounts of memory, preferably the exact same
types of DIMMs. In addition, using more ranks for the same amount of memory, results in somewhat
better memory bandwidth, since more DRAM pages can be open simultaneously. For best performance,
populate the system with the highest supported speed DRAM (1333MHz or 1600MHz data rates,
depending on the max supported frequency) with the best DRAM timings.

The two channels have separate resources and handle memory requests independently. The memory
controller contains a high-performance out-of-order scheduler that attempts to maximize memory band-
width while minimizing latency. Each memory channel contains a 32 cache-line write-data-buffer. Writes
to the memory controller are considered completed when they are written to the write-data-buffer. The
write-data-buffer is flushed out to main memory at a later time, not impacting write latency.

Partial writes are not handled efficiently on the memory controller and may result in read-modify-write
operations on the DDR channel if the partial-writes do not complete a full cache-line in time. Software
should avoid creating partial write transactions whenever possible and consider alternative, such as buff-
ering the partial writes into full cache line writes.

The memory controller also supports high-priority isochronous requests (such as USB isochronous, and
Display isochronous requests). High bandwidth of memory requests from the integrated display engine
takes up some of the memory bandwidth and impacts core access latency to some degree.

EARLIER GENERATIONS OF INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

E-26

E.2.7 Ivy Bridge Microarchitecture
3rd generation Intel Core processors are based on Ivy Bridge microarchitecture. Most of the features
described in Section E.2.1 - Section E.2.6 also apply to Ivy Bridge microarchitecture. This section covers
feature differences in microarchitecture that can affect coding and performance.

Support for new instructions enabling include:
• Numeric conversion to and from half-precision floating-point values.
• Hardware-based random number generator compliant to NIST SP 800-90A.
• Reading and writing to FS/GS base registers in any ring to improve user-mode threading support.

For details about using the hardware based random number generator instruction RDRAND, please refer
to the article available from Intel Software Network at https://software.intel.com/en-us/articles/intel-
digital-random-number-generator-drng-software-implementation-guide/.

A small number of microarchitectural enhancements that can be beneficial to software:
• Hardware prefetch enhancement: A next-page prefetcher (NPP) is added in Ivy Bridge microarchi-

tecture. The NPP is triggered by sequential accesses to cache lines approaching the page boundary,
either upwards or downwards.

• Zero-latency register move operation: A subset of register-to-register MOV instructions are executed
at the front end, conserving scheduling and execution resource in the out-of-order engine.

• Front end enhancement: In Sandy Bridge microarchitecture, the micro-op queue is statically
partitioned to provide 28 entries for each logical processor, irrespective of software executing in
single thread or multiple threads. If one logical processor is not active in Ivy Bridge microarchi-
tecture, then a single thread executing on that processor core can use the 56 entries in the micro-op
queue. In this case, the LSD can handle larger loop structure that would require more than 28
entries.

• The latency and throughput of some instructions have been improved over those of Sandy Bridge
microarchitecture. For example, 256-bit packed floating-point divide and square root operations are
faster; ROL and ROR instructions are also improved.

E.3 INTEL® CORE™ MICROARCHITECTURE AND ENHANCED INTEL®
CORE™ MICROARCHITECTURE

Intel Core microarchitecture introduces the following features that enable high performance and power-
efficient performance for single-threaded as well as multi-threaded workloads:
• Intel® Wide Dynamic Execution enables each processor core to fetch, dispatch, execute with high

bandwidths and retire up to four instructions per cycle. Features include:

— Fourteen-stage efficient pipeline.

— Three arithmetic logical units.

— Four decoders to decode up to five instruction per cycle.

— Macro-fusion and micro-fusion to improve front end throughput.

— Peak issue rate of dispatching up to six micro-ops per cycle.

— Peak retirement bandwidth of up to four micro-ops per cycle.

— Advanced branch prediction.

— Stack pointer tracker to improve efficiency of executing function/procedure entries and exits.
• Intel® Advanced Smart Cache delivers higher bandwidth from the second level cache to the core,

optimal performance and flexibility for single-threaded and multi-threaded applications. Features
include:

— Optimized for multicore and single-threaded execution environments.

— 256 bit internal data path to improve bandwidth from L2 to first-level data cache.

https://software.intel.com/en-us/articles/intel-digital-random-number-generator-drng-software-implementation-guide/
https://software.intel.com/en-us/articles/intel-digital-random-number-generator-drng-software-implementation-guide/

E-27

EARLIER GENERATIONS OF INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

— Unified, shared second-level cache of 4 Mbyte, 16 way (or 2 MByte, 8 way).
• Intel® Smart Memory Access prefetches data from memory in response to data access patterns

and reduces cache-miss exposure of out-of-order execution. Features include:

— Hardware prefetchers to reduce effective latency of second-level cache misses.

— Hardware prefetchers to reduce effective latency of first-level data cache misses.

— Memory disambiguation to improve efficiency of speculative execution engine.
• Intel® Advanced Digital Media Boost improves most 128-bit SIMD instructions with single-cycle

throughput and floating-point operations. Features include:

— Single-cycle throughput of most 128-bit SIMD instructions (except 128-bit shuffle, pack, unpack
operations)

— Up to eight floating-point operations per cycle

— Three issue ports available to dispatching SIMD instructions for execution.

The Enhanced Intel Core microarchitecture supports all of the features of Intel Core microarchitecture
and provides a comprehensive set of enhancements.
• Intel® Wide Dynamic Execution includes several enhancements:

— A radix-16 divider replacing previous radix-4 based divider to speedup long-latency operations
such as divisions and square roots.

— Improved system primitives to speedup long-latency operations such as RDTSC, STI, CLI, and VM
exit transitions.

• Intel® Advanced Smart Cache provides up to 6 MBytes of second-level cache shared between two
processor cores (quad-core processors have up to 12 MBytes of L2); up to 24 way/set associativity.

• Intel® Smart Memory Access supports high-speed system bus up 1600 MHz and provides more
efficient handling of memory operations such as split cache line load and store-to-load forwarding
situations.

• Intel® Advanced Digital Media Boost provides 128-bit shuffler unit to speedup shuffle, pack,
unpack operations; adds support for 47 SSE4.1 instructions.

In the sub-sections of 2.1.x, most of the descriptions on Intel Core microarchitecture also applies to
Enhanced Intel Core microarchitecture. Differences between them are note explicitly.

E.3.1 Intel® Core™ Microarchitecture Pipeline Overview
The pipeline of the Intel Core microarchitecture contains:
• An in-order issue front end that fetches instruction streams from memory, with four instruction

decoders to supply decoded instruction (micro-ops) to the out-of-order execution core.
• An out-of-order superscalar execution core that can issue up to six micro-ops per cycle (see

Table E-22) and reorder micro-ops to execute as soon as sources are ready and execution resources
are available.

• An in-order retirement unit that ensures the results of execution of micro-ops are processed and
architectural states are updated according to the original program order.

Intel Core 2 Extreme processor X6800, Intel Core 2 Duo processors and Intel Xeon processor 3000, 5100
series implement two processor cores based on the Intel Core microarchitecture. Intel Core 2 Extreme
quad-core processor, Intel Core 2 Quad processors and Intel Xeon processor 3200 series, 5300 series
implement four processor cores. Each physical package of these quad-core processors contains two
processor dies, each die containing two processor cores. The functionality of the subsystems in each core
are depicted in Figure E-5.

EARLIER GENERATIONS OF INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

E-28

E.3.2 Front End
The front ends needs to supply decoded instructions (micro-ops) and sustain the stream to a six-issue
wide out-of-order engine. The components of the front end, their functions, and the performance chal-
lenges to microarchitectural design are described in Table E-21.

Figure E-5. Intel Core Microarchitecture Pipeline Functionality

Table E-21. Components of the Front End
Component Functions Performance Challenges

Branch Prediction Unit
(BPU)

• Helps the instruction fetch unit fetch the
most likely instruction to be executed by
predicting the various branch types:
conditional, indirect, direct, call, and
return. Uses dedicated hardware for each
type.

• Enables speculative execution.
• Improves speculative execution

efficiency by reducing the amount of
code in the “non-architected path”1
to be fetched into the pipeline.

Instruction Fetch Unit • Prefetches instructions that are likely to
be executed

• Caches frequently-used instructions
• Predecodes and buffers instructions,

maintaining a constant bandwidth despite
irregularities in the instruction stream

• Variable length instruction format
causes unevenness (bubbles) in
decode bandwidth.

• Taken branches and misaligned
targets causes disruptions in the
overall bandwidth delivered by the
fetch unit.

Decode

ALU
Branch

MMX/SSE/FP
Move

Load

Shared L2 Cache
Up to 10.7 GB/s

FSB

Retirement Unit
(Re-Order Buffer)

L1D Cache and DTLB

Instruction Fetch and PreDecode

Instruction Queue

Rename/Alloc

ALU
FAdd

MMX/SSE

ALU
FMul

MMX/SSE

Scheduler

Micro-
code
ROM

Store

OM19808

E-29

EARLIER GENERATIONS OF INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

E.3.2.1 Branch Prediction Unit
Branch prediction enables the processor to begin executing instructions long before the branch outcome
is decided. All branches utilize the BPU for prediction. The BPU contains the following features:
• 16-entry Return Stack Buffer (RSB). It enables the BPU to accurately predict RET instructions.
• Front end queuing of BPU lookups. The BPU makes branch predictions for 32 bytes at a time, twice

the width of the fetch engine. This enables taken branches to be predicted with no penalty.
Even though this BPU mechanism generally eliminates the penalty for taken branches, software
should still regard taken branches as consuming more resources than do not-taken branches.

The BPU makes the following types of predictions:
• Direct Calls and Jumps. Targets are read as a target array, without regarding the taken or not-taken

prediction.
• Indirect Calls and Jumps. These may either be predicted as having a monotonic target or as having

targets that vary in accordance with recent program behavior.
• Conditional branches. Predicts the branch target and whether or not the branch will be taken.

For information about optimizing software for the BPU, see Section 3.4, “Optimizing the Front End.”

E.3.2.2 Instruction Fetch Unit
The instruction fetch unit comprises the instruction translation lookaside buffer (ITLB), an instruction
prefetcher, the instruction cache and the predecode logic of the instruction queue (IQ).

Instruction Cache and ITLB

An instruction fetch is a 16-byte aligned lookup through the ITLB into the instruction cache and instruc-
tion prefetch buffers. A hit in the instruction cache causes 16 bytes to be delivered to the instruction
predecoder. Typical programs average slightly less than 4 bytes per instruction, depending on the code
being executed. Since most instructions can be decoded by all decoders, an entire fetch can often be
consumed by the decoders in one cycle.

A misaligned target reduces the number of instruction bytes by the amount of offset into the 16 byte
fetch quantity. A taken branch reduces the number of instruction bytes delivered to the decoders since
the bytes after the taken branch are not decoded. Branches are taken approximately every 10 instruc-
tions in typical integer code, which translates into a “partial” instruction fetch every 3 or 4 cycles.

Instruction Queue and
Decode Unit

• Decodes up to four instructions, or up to
five with macro-fusion

• Stack pointer tracker algorithm for
efficient procedure entry and exit

• Implements the Macro-Fusion feature,
providing higher performance and
efficiency

• The Instruction Queue is also used as a
loop cache, enabling some loops to be
executed with both higher bandwidth
and lower power

• Varying amounts of work per
instruction requires expansion into
variable numbers of micro-ops.

• Prefix adds a dimension of decoding
complexity.

• Length Changing Prefix (LCP) can
cause front end bubbles.

NOTES:
1. Code paths that the processor thought it should execute but then found out it should go in another path and therefore

reverted from its initial intention.

Table E-21. Components of the Front End (Contd.)
Component Functions Performance Challenges

EARLIER GENERATIONS OF INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

E-30

Due to stalls in the rest of the machine, front end starvation does not usually cause performance degra-
dation. For extremely fast code with larger instructions (such as SSE2 integer media kernels), it may be
beneficial to use targeted alignment to prevent instruction starvation.

Instruction PreDecode

The predecode unit accepts the sixteen bytes from the instruction cache or prefetch buffers and carries
out the following tasks:
• Determine the length of the instructions.
• Decode all prefixes associated with instructions.
• Mark various properties of instructions for the decoders (for example, “is branch.”).

The predecode unit can write up to six instructions per cycle into the instruction queue. If a fetch contains
more than six instructions, the predecoder continues to decode up to six instructions per cycle until all
instructions in the fetch are written to the instruction queue. Subsequent fetches can only enter prede-
coding after the current fetch completes.

For a fetch of seven instructions, the predecoder decodes the first six in one cycle, and then only one in
the next cycle. This process would support decoding 3.5 instructions per cycle. Even if the instruction per
cycle (IPC) rate is not fully optimized, it is higher than the performance seen in most applications. In
general, software usually does not have to take any extra measures to prevent instruction starvation.

The following instruction prefixes cause problems during length decoding. These prefixes can dynami-
cally change the length of instructions and are known as length changing prefixes (LCPs):
• Operand Size Override (66H) preceding an instruction with a word immediate data.
• Address Size Override (67H) preceding an instruction with a mod R/M in real, 16-bit protected or 32-

bit protected modes.

When the predecoder encounters an LCP in the fetch line, it must use a slower length decoding algorithm.
With the slower length decoding algorithm, the predecoder decodes the fetch in 6 cycles, instead of the
usual 1 cycle.

Normal queuing within the processor pipeline usually cannot hide LCP penalties.

The REX prefix (4xh) in the Intel 64 architecture instruction set can change the size of two classes of
instruction: MOV offset and MOV immediate. Nevertheless, it does not cause an LCP penalty and hence is
not considered an LCP.

E.3.2.3 Instruction Queue (IQ)
The instruction queue is 18 instructions deep. It sits between the instruction predecode unit and the
instruction decoders. It sends up to five instructions per cycle, and supports one macro-fusion per cycle.
It also serves as a loop cache for loops smaller than 18 instructions. The loop cache operates as described
below.

A Loop Stream Detector (LSD) resides in the BPU. The LSD attempts to detect loops which are candidates
for streaming from the instruction queue (IQ). When such a loop is detected, the instruction bytes are
locked down and the loop is allowed to stream from the IQ until a misprediction ends it. When the loop
plays back from the IQ, it provides higher bandwidth at reduced power (since much of the rest of the
front end pipeline is shut off).

The LSD provides the following benefits:
• No loss of bandwidth due to taken branches.
• No loss of bandwidth due to misaligned instructions.
• No LCP penalties, as the pre-decode stage has already been passed.
• Reduced front end power consumption, because the instruction cache, BPU and predecode unit can

be idle.

E-31

EARLIER GENERATIONS OF INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Software should use the loop cache functionality opportunistically. Loop unrolling and other code optimi-
zations may make the loop too big to fit into the LSD. For high performance code, loop unrolling is gener-
ally preferable for performance even when it overflows the loop cache capability.

E.3.2.4 Instruction Decode
The Intel Core microarchitecture contains four instruction decoders. The first, Decoder 0, can decode
Intel 64 and IA-32 instructions up to 4 micro-ops in size. Three other decoders handle single micro-op
instructions. The microsequencer can provide up to 3 micro-ops per cycle, and helps decode instructions
larger than 4 micro-ops.

All decoders support the common cases of single micro-op flows, including: micro-fusion, stack pointer
tracking and macro-fusion. Thus, the three simple decoders are not limited to decoding single micro-op
instructions. Packing instructions into a 4-1-1-1 template is not necessary and not recommended.

Macro-fusion merges two instructions into a single micro-op. Intel Core microarchitecture is capable of
one macro-fusion per cycle in 32-bit operation (including compatibility sub-mode of the Intel 64 architec-
ture), but not in 64-bit mode because code that uses longer instructions (length in bytes) more often is
less likely to take advantage of hardware support for macro-fusion.

E.3.2.5 Stack Pointer Tracker
The Intel 64 and IA-32 architectures have several commonly used instructions for parameter passing and
procedure entry and exit: PUSH, POP, CALL, LEAVE and RET. These instructions implicitly update the
stack pointer register (RSP), maintaining a combined control and parameter stack without software
intervention. These instructions are typically implemented by several micro-ops in previous microarchi-
tectures.

The Stack Pointer Tracker moves all these implicit RSP updates to logic contained in the decoders them-
selves. The feature provides the following benefits:
• Improves decode bandwidth, as PUSH, POP and RET are single micro-op instructions in Intel Core

microarchitecture.
• Conserves execution bandwidth as the RSP updates do not compete for execution resources.
• Improves parallelism in the out of order execution engine as the implicit serial dependencies between

micro-ops are removed.
• Improves power efficiency as the RSP updates are carried out on small, dedicated hardware.

E.3.2.6 Micro-fusion
Micro-fusion fuses multiple micro-ops from the same instruction into a single complex micro-op. The
complex micro-op is dispatched in the out-of-order execution core. Micro-fusion provides the following
performance advantages:
• Improves instruction bandwidth delivered from decode to retirement.
• Reduces power consumption as the complex micro-op represents more work in a smaller format (in

terms of bit density), reducing overall “bit-toggling” in the machine for a given amount of work and
virtually increasing the amount of storage in the out-of-order execution engine.

Many instructions provide register flavors and memory flavors. The flavor involving a memory operand
will decode into a longer flow of micro-ops than the register version. Micro-fusion enables software to use
memory to register operations to express the actual program behavior without worrying about a loss of
decode bandwidth.

E.3.3 Execution Core
The execution core of the Intel Core microarchitecture is superscalar and can process instructions out of
order. When a dependency chain causes the machine to wait for a resource (such as a second-level data

EARLIER GENERATIONS OF INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

E-32

cache line), the execution core executes other instructions. This increases the overall rate of instructions
executed per cycle (IPC).

The execution core contains the following three major components:
• Renamer — Moves micro-ops from the front end to the execution core. Architectural registers are

renamed to a larger set of microarchitectural registers. Renaming eliminates false dependencies
known as read-after-read and write-after-read hazards.

• Reorder buffer (ROB) — Holds micro-ops in various stages of completion, buffers completed micro-
ops, updates the architectural state in order, and manages ordering of exceptions. The ROB has 96
entries to handle instructions in flight.

• Reservation station (RS) — Queues micro-ops until all source operands are ready, schedules and
dispatches ready micro-ops to the available execution units. The RS has 32 entries.

The initial stages of the out of order core move the micro-ops from the front end to the ROB and RS. In
this process, the out of order core carries out the following steps:
• Allocates resources to micro-ops (for example: these resources could be load or store buffers).
• Binds the micro-op to an appropriate issue port.
• Renames sources and destinations of micro-ops, enabling out of order execution.
• Provides data to the micro-op when the data is either an immediate value or a register value that has

already been calculated.

The following list describes various types of common operations and how the core executes them effi-
ciently:
• Micro-ops with single-cycle latency — Most micro-ops with single-cycle latency can be executed

by multiple execution units, enabling multiple streams of dependent operations to be executed
quickly.

• Frequently-used ops with longer latency — These micro-ops have pipelined execution units so
that multiple micro-ops of these types may be executing in different parts of the pipeline simultane-
ously.

• Operations with data-dependent latencies — Some operations, such as division, have data
dependent latencies. Integer division parses the operands to perform the calculation only on
significant portions of the operands, thereby speeding up common cases of dividing by small
numbers.

• Floating-point operations with fixed latency for operands that meet certain restrictions —
Operands that do not fit these restrictions are considered exceptional cases and are executed with
higher latency and reduced throughput. The lower-throughput cases do not affect latency and
throughput for more common cases.

• Memory operands with variable latency, even in the case of an L1 cache hit — Loads that are
not known to be safe from forwarding may wait until a store-address is resolved before executing.
The memory order buffer (MOB) accepts and processes all memory operations. See Section E.3.4 for
more information about the MOB.

E.3.3.1 Issue Ports and Execution Units
The scheduler can dispatch up to six micro-ops per cycle through the issue ports. The issue ports of Intel
Core microarchitecture and Enhanced Intel Core microarchitecture are depicted in Table E-22, the former
is denoted by its CPUID signature of DisplayFamily_DisplayModel value of 06_0FH, the latter denoted by
the corresponding signature value of 06_17H. The table provides latency and throughput data of
common integer and floating-point (FP) operations for each issue port in cycles.

E-33

EARLIER GENERATIONS OF INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

In each cycle, the RS can dispatch up to six micro-ops. Each cycle, up to 4 results may be written back to
the RS and ROB, to be used as early as the next cycle by the RS. This high execution bandwidth enables
execution bursts to keep up with the functional expansion of the micro-fused micro-ops that are decoded
and retired.

The execution core contains the following three execution stacks:
• SIMD integer.
• Regular integer.
• x87/SIMD floating-point.

The execution core also contains connections to and from the memory cluster. See Figure E-6.

Table E-22. Issue Ports of Intel Core Microarchitecture and Enhanced Intel Core Microarchitecture
Executable operations Latency, Throughput Comment1

NOTES:
1. Mixing operations of different latencies that use the same port can result in writeback bus conflicts; this can reduce over-

all throughput.

Signature =
06_0FH

Signature =
06_17H

Integer ALU

Integer SIMD ALU

FP/SIMD/SSE2 Move and Logic

1, 1

1, 1

1, 1

1, 1

1, 1

1, 1

Includes 64-bit mode integer MUL;

Issue port 0; Writeback port 0;

Single-precision (SP) FP MUL

Double-precision FP MUL

4, 1

5, 1

4, 1

5, 1

Issue port 0; Writeback port 0

FP MUL (X87)

FP Shuffle

DIV/SQRT

5, 2

1, 1

5, 2

1, 1

Issue port 0; Writeback port 0

FP shuffle does not handle QW shuffle.

Integer ALU

Integer SIMD ALU

FP/SIMD/SSE2 Move and Logic

1, 1

1, 1

1, 1

1, 1

1, 1

1, 1

Excludes 64-bit mode integer MUL;

Issue port 1; Writeback port 1;

FP ADD

QW Shuffle

3, 1

1, 12

2. 128-bit instructions executes with longer latency and reduced throughput.

3, 1

1, 13

3. Uses 128-bit shuffle unit in port 5.

Issue port 1; Writeback port 1;

Integer loads

FP loads

3, 1

4, 1

3, 1

4, 1

Issue port 2; Writeback port 2;

Store address4

4. Prepares the store forwarding and store retirement logic with the address of the data being stored.

3, 1 3, 1 Issue port 3;

Store data5.

5. Prepares the store forwarding and store retirement logic with the data being stored.

Issue Port 4;

Integer ALU

Integer SIMD ALU

FP/SIMD/SSE2 Move and Logic

1, 1

1, 1

1, 1

1, 1

1, 1

1, 1

Issue port 5; Writeback port 5;

QW shuffles

128-bit Shuffle/Pack/Unpack

1, 12

2-4, 2-46

6. Varies with instructions; 128-bit instructions are executed using QW shuffle units.

1, 13

1-3, 17

7. Varies with instructions, 128-bit shuffle unit replaces QW shuffle units in Intel Core microarchitecture.

Issue port 5; Writeback port 5;

EARLIER GENERATIONS OF INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

E-34

Notice that the two dark squares inside the execution block (in grey color) and appear in the path
connecting the integer and SIMD integer stacks to the floating-point stack. This delay shows up as an
extra cycle called a bypass delay. Data from the L1 cache has one extra cycle of latency to the floating-
point unit. The dark-colored squares in Figure E-6 represent the extra cycle of latency.

E.3.4 Intel® Advanced Memory Access
The Intel Core microarchitecture contains an instruction cache and a first-level data cache in each core.
The two cores share a 2 or 4-MByte L2 cache. All caches are writeback and non-inclusive. Each core
contains:
• L1 data cache, known as the data cache unit (DCU) — The DCU can handle multiple outstanding

cache misses and continue to service incoming stores and loads. It supports maintaining cache
coherency. The DCU has the following specifications:

— 32-KBytes size.

— 8-way set associative.

— 64-bytes line size.
• Data translation lookaside buffer (DTLB) — The DTLB in Intel Core microarchitecture

implements two levels of hierarchy. Each level of the DTLB have multiple entries and can support
either 4-KByte pages or large pages. The entries of the inner level (DTLB0) is used for loads. The
entries in the outer level (DTLB1) support store operations and loads that missed DTLB0. All entries
are 4-way associative. Here is a list of entries in each DTLB:

— DTLB1 for large pages: 32 entries.

— DTLB1 for 4-KByte pages: 256 entries.

— DTLB0 for large pages: 16 entries.

— DTLB0 for 4-KByte pages: 16 entries.

Figure E-6. Execution Core of Intel Core Microarchitecture

Data Cache
Unit

dtlb
Memory ordering
store forwarding

0,1,5
SIMD
Integer

0,1,5

Integer

0,1,5
Floating
Point

Load 2
Store (address) 3
Store (data) 4

Integer/
SIMD
MUL

EXE

E-35

EARLIER GENERATIONS OF INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

An DTLB0 miss and DTLB1 hit causes a penalty of 2 cycles. Software only pays this penalty if the
DTLB0 is used in some dispatch cases. The delays associated with a miss to the DTLB1 and PMH are
largely non-blocking due to the design of Intel Smart Memory Access.

• Page miss handler (PMH)
• A memory ordering buffer (MOB) — Which:

— Enables loads and stores to issue speculatively and out of order.

— Ensures retired loads and stores have the correct data upon retirement.

— Ensures loads and stores follow memory ordering rules of the Intel 64 and IA-32 architectures.

The memory cluster of the Intel Core microarchitecture uses the following to speed up memory opera-
tions:
• 128-bit load and store operations.
• Data prefetching to L1 caches.
• Data prefetch logic for prefetching to the L2 cache.
• Store forwarding.
• Memory disambiguation.
• 8 fill buffer entries.
• 20 store buffer entries.
• Out of order execution of memory operations.
• Pipelined read-for-ownership operation (RFO).

For information on optimizing software for the memory cluster, see Section 3.6, “Optimizing Memory
Accesses.”

E.3.4.1 Loads and Stores
The Intel Core microarchitecture can execute up to one 128-bit load and up to one 128-bit store per
cycle, each to different memory locations. The microarchitecture enables execution of memory opera-
tions out of order with respect to other instructions and with respect to other memory operations.

Loads can:
• Issue before preceding stores when the load address and store address are known not to conflict.
• Be carried out speculatively, before preceding branches are resolved.
• Take cache misses out of order and in an overlapped manner.
• Issue before preceding stores, speculating that the store is not going to be to a conflicting address.

Loads cannot:
• Speculatively take any sort of fault or trap.
• Speculatively access the uncacheable memory type.

Faulting or uncacheable loads are detected and wait until retirement, when they update the programmer
visible state. x87 and floating-point SIMD loads add 1 additional clock latency.

Stores to memory are executed in two phases:
• Execution phase — Prepares the store buffers with address and data for store forwarding.

Consumes dispatch ports, which are ports 3 and 4.
• Completion phase — The store is retired to programmer-visible memory. It may compete for cache

banks with executing loads. Store retirement is maintained as a background task by the memory
order buffer, moving the data from the store buffers to the L1 cache.

EARLIER GENERATIONS OF INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

E-36

E.3.4.2 Data Prefetch to L1 caches
Intel Core microarchitecture provides two hardware prefetchers to speed up data accessed by a program
by prefetching to the L1 data cache:
• Data cache unit (DCU) prefetcher — This prefetcher, also known as the streaming prefetcher, is

triggered by an ascending access to very recently loaded data. The processor assumes that this
access is part of a streaming algorithm and automatically fetches the next line.

• Instruction pointer (IP)- based strided prefetcher — This prefetcher keeps track of individual
load instructions. If a load instruction is detected to have a regular stride, then a prefetch is sent to
the next address which is the sum of the current address and the stride. This prefetcher can prefetch
forward or backward and can detect strides of up to half of a 4KB-page, or 2 KBytes.

Data prefetching works on loads only when the following conditions are met:
• Load is from writeback memory type.
• Prefetch request is within the page boundary of 4 Kbytes.
• No fence or lock is in progress in the pipeline.
• Not many other load misses are in progress.
• The bus is not very busy.
• There is not a continuous stream of stores.

DCU Prefetching has the following effects:
• Improves performance if data in large structures is arranged sequentially in the order used in the

program.
• May cause slight performance degradation due to bandwidth issues if access patterns are sparse

instead of local.
• On rare occasions, if the algorithm's working set is tuned to occupy most of the cache and unneeded

prefetches evict lines required by the program, hardware prefetcher may cause severe performance
degradation due to cache capacity of L1.

In contrast to hardware prefetchers relying on hardware to anticipate data traffic, software prefetch
instructions relies on the programmer to anticipate cache miss traffic, software prefetch act as hints to
bring a cache line of data into the desired levels of the cache hierarchy. The software-controlled prefetch
is intended for prefetching data, but not for prefetching code.

E.3.4.3 Data Prefetch Logic
Data prefetch logic (DPL) prefetches data to the second-level (L2) cache based on past request patterns
of the DCU from the L2. The DPL maintains two independent arrays to store addresses from the DCU: one
for upstreams (12 entries) and one for down streams (4 entries). The DPL tracks accesses to one 4K byte
page in each entry. If an accessed page is not in any of these arrays, then an array entry is allocated.

The DPL monitors DCU reads for incremental sequences of requests, known as streams. Once the DPL
detects the second access of a stream, it prefetches the next cache line. For example, when the DCU
requests the cache lines A and A+1, the DPL assumes the DCU will need cache line A+2 in the near
future. If the DCU then reads A+2, the DPL prefetches cache line A+3. The DPL works similarly for
“downward” loops.

The Intel Pentium M processor introduced DPL. The Intel Core microarchitecture added the following
features to DPL:
• The DPL can detect more complicated streams, such as when the stream skips cache lines. DPL may

issue 2 prefetch requests on every L2 lookup. The DPL in the Intel Core microarchitecture can run up
to 8 lines ahead from the load request.

• DPL in the Intel Core microarchitecture adjusts dynamically to bus bandwidth and the number of
requests. DPL prefetches far ahead if the bus is not busy, and less far ahead if the bus is busy.

• DPL adjusts to various applications and system configurations.

Entries for each core in a multi-core processor are handled separately.

E-37

EARLIER GENERATIONS OF INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

E.3.4.4 Store Forwarding
If a load follows a store and reloads the data that the store writes to memory, the Intel Core microarchi-
tecture can forward the data directly from the store to the load. This process, called store to load
forwarding, saves cycles by enabling the load to obtain the data directly from the store operation instead
of through memory.

The following rules must be met for store to load forwarding to occur:
• The store must be the last store to that address prior to the load.
• The store must be equal or greater in size than the size of data being loaded.
• The load cannot cross a cache line boundary.
• The load cannot cross an 8-Byte boundary. 16-Byte loads are an exception to this rule.
• The load must be aligned to the start of the store address, except for the following exceptions:

— An aligned 64-bit store may forward either of its 32-bit halves.

— An aligned 128-bit store may forward any of its 32-bit quarters.

— An aligned 128-bit store may forward either of its 64-bit halves.

Software can use the exceptions to the last rule to move complex structures without losing the ability to
forward the subfields.

In Enhanced Intel Core microarchitecture, the alignment restrictions to permit store forwarding to
proceed have been relaxed. Enhanced Intel Core microarchitecture permits store-forwarding to proceed
in several situations that the succeeding load is not aligned to the preceding store. Figure E-7 shows six
situations (in gradient-filled background) of store-forwarding that are permitted in Enhanced Intel Core
microarchitecture but not in Intel Core microarchitecture. The cases with backward slash background
depicts store-forwarding that can proceed in both Intel Core microarchitecture and Enhanced Intel Core
microarchitecture.

Figure E-7. Store-Forwarding Enhancements in Enhanced Intel Core Microarchitecture

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

8 byte boundary8 byte boundary

Store 32 bit

Load 32 bit

Load 16 bit Load 16 bit

Load 8 Load 8 Load 8Load 8

Store 64 bit

Load 32 bit

Load 16 bit Load 16 bit

Load 32 bit

Load 64 bit

Load 16 bit Load 16 bit

Load 8 Load 8 Load 8Load 8 Load 8 Load 8Load 8 Load 8

Store 64 bit

Load 32 bit

Load 16 bit Load 16 bit

Load 32 bit

Load 64 bit

Load 16 bit Load 16 bit

Load 8 Load 8 Load 8Load 8 Load 8 Load 8Load 8 Load 8

Store-forwarding (SF) can not proceed

Store

Example: 7 byte misalignment

Example: 1 byte misalignment

SF proceed in Enhanced Intel Core microarchitectu

SF proceed

EARLIER GENERATIONS OF INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

E-38

E.3.4.5 Memory Disambiguation
Refer to the “Memory Disambiguation” details in Section E.2.5.2, “L1 DCache”.

E.3.5 Intel® Advanced Smart Cache
The Intel Core microarchitecture optimized a number of features for two processor cores on a single die.
The two cores share a second-level cache and a bus interface unit, collectively known as Intel Advanced
Smart Cache. This section describes the components of Intel Advanced Smart Cache. Figure E-8 illus-
trates the architecture of the Intel Advanced Smart Cache.

Table E-23 details the parameters of caches in the Intel Core microarchitecture. For information on
enumerating the cache hierarchy identification using the deterministic cache parameter leaf of CPUID
instruction, see the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A.

Figure E-8. Intel Advanced Smart Cache Architecture

Table E-23. Cache Parameters of Processors based on Intel Core Microarchitecture

Level Capacity
Associativity
(ways)

Line Size
(bytes)

Access
Latency
(clocks)

Access
Throughput
(clocks)

Write Update
Policy

First Level 32 KB 8 64 3 1 Writeback

Instruction 32 KB 8 N/A N/A N/A N/A

Second Level
(Shared L2)1

2, 4 MB 8 or 16 64 142 2 Writeback

Second Level
(Shared L2)3

3, 6MB 12 or 24 64 152 2 Writeback

Third Level4 8, 12, 16 MB 16 64 ~110 12 Writeback

Branch
Prediction

Retirement Execution
Fetch/
Decode

L1 Data
Cache

L1 Instr.
Cache

Core 1
Branch
Prediction

Retirement Execution
Fetch/
Decode

L1 Data
Cache

L1 Instr.
Cache

Core 0

L2 Cache

Bus Interface Unit

System Bus

E-39

EARLIER GENERATIONS OF INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

E.3.5.1 Loads
When an instruction reads data from a memory location that has write-back (WB) type, the processor
looks for the cache line that contains this data in the caches and memory in the following order:

1. DCU of the initiating core.

2. DCU of the other core and second-level cache.

3. System memory.

The cache line is taken from the DCU of the other core only if it is modified, ignoring the cache line avail-
ability or state in the L2 cache.

Table E-24 shows the characteristics of fetching the first four bytes of different localities from the
memory cluster. The latency column provides an estimate of access latency. However, the actual latency
can vary depending on the load of cache, memory components, and their parameters.

Sometimes a modified cache line has to be evicted to make space for a new cache line. The modified
cache line is evicted in parallel to bringing the new data and does not require additional latency. However,
when data is written back to memory, the eviction uses cache bandwidth and possibly bus bandwidth as
well. Therefore, when multiple cache misses require the eviction of modified lines within a short time,
there is an overall degradation in cache response time.

E.3.5.2 Stores
When an instruction writes data to a memory location that has WB memory type, the processor first
ensures that the line is in Exclusive or Modified state in its own DCU. The processor looks for the cache
line in the following locations, in the specified order:

1. DCU of initiating core.

2. DCU of the other core and L2 cache.

3. System memory.

The cache line is taken from the DCU of the other core only if it is modified, ignoring the cache line avail-
ability or state in the L2 cache. After reading for ownership is completed, the data is written to the first-
level data cache and the line is marked as modified.

Reading for ownership and storing the data happens after instruction retirement and follows the order of
retirement. Therefore, the store latency does not effect the store instruction itself. However, several

NOTES:
1. Intel Core microarchitecture (CPUID signature DisplayFamily = 06H, DisplayModel = 0FH).
2. Software-visible latency will vary depending on access patterns and other factors.
3. Enhanced Intel Core microarchitecture (CPUID signature DisplayFamily = 06H, DisplayModel = 17H or 1DH).
4. Enhanced Intel Core microarchitecture (CPUID signature DisplayFamily = 06H, DisplayModel = 1DH).

Table E-24. Characteristics of Load and Store Operations in Intel Core Microarchitecture

Data Locality Load Store

Latency Throughput Latency Throughput

DCU 3 1 2 1

DCU of the other core in
modified state

14 + 5.5 bus cycles 14 + 5.5 bus cycles 14 + 5.5 bus cycles

2nd-level cache 14 3 14 3

Memory 14 + 5.5 bus cycles +
memory

Depends on bus read
protocol

14 + 5.5 bus cycles +
memory

Depends on bus
write protocol

EARLIER GENERATIONS OF INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

E-40

sequential stores may have cumulative latency that can affect performance. Table E-24 presents store
latencies depending on the initial cache line location.

E.4 NEHALEM MICROARCHITECTURE
Nehalem microarchitecture provides the foundation for many innovative features of Intel Core i7 proces-
sors and Intel Xeon processor 3400, 5500, and 7500 series. It builds on the success of 45 nm enhanced
Intel Core microarchitecture and provides the following feature enhancements:
• Enhanced processor core

— Improved branch prediction and recovery from misprediction.

— Enhanced loop streaming to improve front end performance and reduce power consumption.

— Deeper buffering in out-of-order engine to extract parallelism.

— Enhanced execution units to provide acceleration in CRC, string/text processing and data
shuffling.

• Hyper-Threading Technology

— Provides two hardware threads (logical processors) per core.

— Takes advantage of 4-wide execution engine, large L3, and massive memory bandwidth.
• Smart Memory Access

— Integrated memory controller provides low-latency access to system memory and scalable
memory bandwidth.

— New cache hierarchy organization with shared, inclusive L3 to reduce snoop traffic.

— Two level TLBs and increased TLB size.

— Fast unaligned memory access.
• Dedicated Power management Innovations

— Integrated microcontroller with optimized embedded firmware to manage power consumption.

— Embedded real-time sensors for temperature, current, and power.

— Integrated power gate to turn off/on per-core power consumption.

— Versatility to reduce power consumption of memory, link subsystems.

Westmere microarchitecture is a 32 nm version of Nehalem microarchitecture. All of the features of latter
also apply to the former.

E.4.1 Microarchitecture Pipeline
Nehalem microarchitecture continues the four-wide microarchitecture pipeline pioneered by the 65nm
Intel Core microarchitecture. Figure E-9 illustrates the basic components of the pipeline of Nehalem
microarchitecture as implemented in Intel Core i7 processor, only two of the four cores are sketched in
the Figure E-9 pipeline diagram.

E-41

EARLIER GENERATIONS OF INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

The length of the pipeline in Nehalem microarchitecture is two cycles longer than its predecessor in the
45 nm Intel Core 2 processor family, as measured by branch misprediction delay. The front end can
decode up to 4 instructions in one cycle and supports two hardware threads by decoding the instruction
streams between two logical processors in alternate cycles. The front end includes enhancement in
branch handling, loop detection, MSROM throughput, etc. These are discussed in subsequent sections.

The scheduler (or reservation station) can dispatch up to six micro-ops in one cycle through six issue
ports (five issue ports are shown in Figure E-9; store operation involves separate ports for store address
and store data but is depicted as one in the diagram).

The out-of-order engine has many execution units that are arranged in three execution clusters shown in
Figure E-9. It can retire four micro-ops in one cycle, same as its predecessor.

Figure E-9. Nehalem Microarchitecture Pipeline Functionality

L2 Cache

OM19808p

Decode

EXE
Unit

Cluster
0

Load

Retirement Unit
(Re-Order Buffer)

L1D Cache and DTLB

Instruction Fetch and
PreDecode

Instruction Queue

Rename/Alloc

EXE
Unit

Cluster
1

EXE
Unit

Cluster
5

Scheduler

Micro-
code
ROM

Stor
e

Decode

EXE
Unit

Cluster
0

Load

Retirement Unit
(Re-Order Buffer)

L1D Cache and DTLB

Instruction Fetch and
PreDecode

Instruction Queue

Rename/Alloc

EXE
Unit

Cluster
1

EXE
Unit

Cluster
5

Scheduler

Micro-
code
ROM

Stor
e

Inclusive L3 Cache by all cores

Intel QPI Link Logic

Other L2

L2 Cache

EARLIER GENERATIONS OF INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

E-42

E.4.2 Front End Overview
Figure E-10 depicts the key components of the front end of the microarchitecture. The instruction fetch
unit (IFU) can fetch up to 16 bytes of aligned instruction bytes each cycle from the instruction cache to
the instruction length decoder (ILD). The instruction queue (IQ) buffers the ILD-processed instructions
and can deliver up to four instructions in one cycle to the instruction decoder.

The instruction decoder has three decoder units that can decode one simple instruction per cycle per
unit. The other decoder unit can decode one instruction every cycle, either simple instruction or complex
instruction made up of several micro-ops. Instructions made up of more than four micro-ops are deliv-
ered from the MSROM. Up to four micro-ops can be delivered each cycle to the instruction decoder queue
(IDQ).

The loop stream detector is located inside the IDQ to improve power consumption and front end effi-
ciency for loops with a short sequence of instructions.

The instruction decoder supports micro-fusion to improve front end throughput, increase the effective
size of queues in the scheduler and re-order buffer (ROB). The rules for micro-fusion are similar to those
of Intel Core microarchitecture.

The instruction queue also supports macro-fusion to combine adjacent instructions into one micro-ops
where possible. In previous generations of Intel Core microarchitecture, macro-fusion support for
CMP/Jcc sequence is limited to the CF and ZF flag, and macro-fusion is not supported in 64-bit mode.

In Nehalem microarchitecture, macro-fusion is supported in 64-bit mode, and the following instruction
sequences are supported:
• CMP or TEST can be fused when comparing (unchanged):

REG-REG. For example: CMP EAX,ECX; JZ label
REG-IMM. For example: CMP EAX,0x80; JZ label
REG-MEM. For example: CMP EAX,[ECX]; JZ label
MEM-REG. For example: CMP [EAX],ECX; JZ label

• TEST can fused with all conditional jumps (unchanged).

Figure E-10. Front End of Nehalem Microarchitecture

Instr. Decoder

ILD

Instr. Queue

Instr. Decoder

ICache

Instr.

I Fetch U

Br. Predict U

Length
Decoder

4

1

1

1
LSD

MSROM

Queue

IQ

IDQ
4 micro-ops
per cycle
max

4 micro-ops per cycle

E-43

EARLIER GENERATIONS OF INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

• CMP can be fused with the following conditional jumps. These conditional jumps check carry flag (CF)
or zero flag (ZF). The list of macro-fusion-capable conditional jumps are (unchanged):

JA or JNBE
JAE or JNB or JNC
JE or JZ
JNA or JBE
JNAE or JC or JB
JNE or JNZ

• CMP can be fused with the following conditional jumps in Nehalem microarchitecture (this is an
enhancement):

JL or JNGE
JGE or JNL
JLE or JNG
JG or JNLE

The hardware improves branch handling in several ways. Branch target buffer has increased to increase
the accuracy of branch predictions. Renaming is supported with return stack buffer to reduce mispredic-
tions of return instructions in the code. Furthermore, hardware enhancement improves the handling of
branch misprediction by expediting resource reclamation so that the front end would not be waiting to
decode instructions in an architected code path (the code path in which instructions will reach retire-
ment) while resources were allocated to executing mispredicted code path. Instead, new micro-ops
stream can start forward progress as soon as the front end decodes the instructions in the architected
code path.

E.4.3 Execution Engine
The IDQ (Figure E-10) delivers micro-op stream to the allocation/renaming stage (Figure E-9) of the
pipeline. The out-of-order engine supports up to 128 micro-ops in flight. Each micro-ops must be allo-
cated with the following resources: an entry in the re-order buffer (ROB), an entry in the reservation
station (RS), and a load/store buffer if a memory access is required.

The allocator also renames the register file entry of each micro-op in flight. The input data associated
with a micro-op are generally either read from the ROB or from the retired register file.

The RS is expanded to 36 entry deep (compared to 32 entries in previous generation). It can dispatch up
to six micro-ops in one cycle if the micro-ops are ready to execute. The RS dispatch a micro-op through
an issue port to a specific execution cluster, each cluster may contain a collection of integer/FP/SIMD
execution units.

The result from the execution unit executing a micro-op is written back to the register file, or forwarded
through a bypass network to a micro-op in-flight that needs the result. Nehalem microarchitecture can
support write back throughput of one register file write per cycle per port. The bypass network consists
of three domains of integer/FP/SIMD. Forwarding the result within the same bypass domain from a
producer micro-op to a consumer micro is done efficiently in hardware without delay. Forwarding the
result across different bypass domains may be subject to additional bypass delays. The bypass delays
may be visible to software in addition to the latency and throughput characteristics of individual execu-
tion units. The bypass delays between a producer micro-op and a consumer micro-op across different
bypass domains are shown in Table E-25.

EARLIER GENERATIONS OF INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

E-44

E.4.3.1 Issue Ports and Execution Units
Table E-26 summarizes the key characteristics of the issue ports and the execution unit latency/through-
puts for common operations in the microarchitecture.

Table E-25. Bypass Delay Between Producer and Consumer Micro-ops (cycles)

FP Integer SIMD

FP 0 2 2

Integer 2 0 1

SIMD 2 1 0

Table E-26. Issue Ports of Nehalem Microarchitecture
Port Executable

operations
Latency Throughput Domain Comment

Port 0 Integer ALU

Integer Shift

1

1

1

1

Integer

Port 0 Integer SIMD ALU

Integer SIMD Shuffle

1

1

1

1

SIMD

Port 0 Single-precision (SP)
FP MUL

Double-precision FP MUL

FP MUL (X87)

FP/SIMD/SSE2 Move and
Logic

FP Shuffle

DIV/SQRT

4

5

5

1

1

1

1

1

1

1

FP

Port 1 Integer ALU

Integer LEA

Integer Mul

1

1

3

1

1

1

Integer

Port 1 Integer SIMD MUL

Integer SIMD Shift

PSAD

StringCompare

1

1

3

1

1

1

SIMD

Port 1 FP ADD 3 1 FP

Port 2 Integer loads 4 1 Integer

Port 3 Store address 5 1 Integer

Port 4 Store data Integer

Port 5 Integer ALU

Integer Shift

Jmp

1

1

1

1

1

1

Integer

Port 5 Integer SIMD ALU

Integer SIMD Shuffle

1

1

1

1

SIMD

E-45

EARLIER GENERATIONS OF INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

E.4.4 Cache and Memory Subsystem
Nehalem microarchitecture contains an instruction cache, a first-level data cache and a second-level
unified cache in each core (see Figure E-9). Each physical processor may contain several processor cores
and a shared collection of sub-systems that are referred to as “uncore“. Specifically in Intel Core i7
processor, the uncore provides a unified third-level cache shared by all cores in the physical processor,
Intel QuickPath Interconnect links and associated logic. The L1 and L2 caches are writeback and non-
inclusive.

The shared L3 cache is writeback and inclusive, such that a cache line that exists in either L1 data cache,
L1 instruction cache, unified L2 cache also exists in L3. The L3 is designed to use the inclusive nature to
minimize snoop traffic between processor cores. Table E-27 lists characteristics of the cache hierarchy.
The latency of L3 access may vary as a function of the frequency ratio between the processor and the
uncore sub-system.

Nehalem microarchitecture implements two levels of translation lookaside buffer (TLB). The first level
consists of separate TLBs for data and code. DTLB0 handles address translation for data accesses, it
provides 64 entries to support 4KB pages and 32 entries for large pages. The ITLB provides 64 entries
(per thread) for 4KB pages and 7 entries (per thread) for large pages.

The second level TLB (STLB) handles both code and data accesses for 4KB pages. It support 4KB page
translation operation that missed DTLB0 or ITLB. All entries are 4-way associative. Here is a list of entries
in each DTLB:
• STLB for 4-KByte pages: 512 entries (services both data and instruction look-ups).
• DTLB0 for large pages: 32 entries.
• DTLB0 for 4-KByte pages: 64 entries.

An DTLB0 miss and STLB hit causes a penalty of 7cycles. Software only pays this penalty if the DTLB0 is
used in some dispatch cases. The delays associated with a miss to the STLB and PMH are largely non-
blocking.

Port 5 FP/SIMD/SSE2 Move and
Logic

1 1 FP

Table E-27. Cache Parameters of Intel Core i7 Processors

Level Capacity
Associativity
(ways)

Line Size
(bytes)

Access
Latency
(clocks)

Access
Throughput
(clocks)

Write Update
Policy

First Level Data 32 KB 8 64 4 1 Writeback

Instruction 32 KB 4 N/A N/A N/A N/A

Second Level 256KB 8 64 101

NOTES:
1. Software-visible latency will vary depending on access patterns and other factors.

Varies Writeback

Third Level
(Shared L3)2

2. Minimal L3 latency is 35 cycles if the frequency ratio between core and uncore is unity.

8MB 16 64 35-40+2 Varies Writeback

Table E-26. Issue Ports of Nehalem Microarchitecture (Contd.)
Port Executable

operations
Latency Throughput Domain Comment

EARLIER GENERATIONS OF INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

E-46

E.4.5 Load and Store Operation Enhancements
The memory cluster of Nehalem microarchitecture provides the following enhancements to speed up
memory operations:
• Peak issue rate of one 128-bit load and one 128-bit store operation per cycle.
• Deeper buffers for load and store operations: 48 load buffers, 32 store buffers and 10 fill buffers.
• Fast unaligned memory access and robust handling of memory alignment hazards.
• Improved store-forwarding for aligned and non-aligned scenarios.
• Store forwarding for most address alignments.

E.4.5.1 Efficient Handling of Alignment Hazards
The cache and memory subsystems handles a significant percentage of instructions in every workload.
Different address alignment scenarios will produce varying performance impact for memory and cache
operations. For example, 1-cycle throughput of L1 (see Table E-28) generally applies to naturally-aligned
loads from L1 cache. But using unaligned load instructions (e.g. MOVUPS, MOVUPD, MOVDQU, etc.) to
access data from L1 will experience varying amount of delays depending on specific microarchitectures
and alignment scenarios.

Table E-28 lists approximate throughput of issuing MOVDQU instructions with different address align-
ment scenarios to load data from the L1 cache. If a 16-byte load spans across cache line boundary,
previous microarchitecture generations will experience significant software-visible delays.

Nehalem microarchitecture provides hardware enhancements to reduce the delays of handling different
address alignment scenarios including cache line splits.

E.4.5.2 Store Forwarding Enhancement
When a load follows a store and reloads the data that the store writes to memory, the microarchitecture
can forward the data directly from the store to the load in many cases. This situation, called store to load
forwarding, saves several cycles by enabling the load to obtain the data directly from the store operation
instead of through the memory system.

Several general rules must be met for store to load forwarding to proceed without delay:
• The store must be the last store to that address prior to the load.
• The store must be equal or greater in size than the size of data being loaded.
• The load data must be completely contained in the preceding store.

Specific address alignment and data sizes between the store and load operations will determine whether
a store-forward situation may proceed with data forwarding or experience a delay via the cache/memory
sub-system. The 45 nm Enhanced Intel Core microarchitecture offers more flexible address alignment
and data sizes requirement than previous microarchitectures. Nehalem microarchitecture offers addi-
tional enhancement with allowing more situations to forward data expeditiously.

Table E-28. Performance Impact of Address Alignments of MOVDQU from L1

Throughput (cycle)
Intel Core i7
Processor

45 nm Intel Core
Microarchitecture

65 nm Intel Core
Microarchitecture

Alignment Scenario 06_1AH 06_17H 06_0FH

16B aligned 1 2 2

Not-16B aligned, not cache split 1 ~2 ~2

Split cache line boundary ~4.5 ~20 ~20

E-47

EARLIER GENERATIONS OF INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

The store-forwarding situations for with respect to store operations of 16 bytes are illustrated in
Figure E-11.

Figure E-11. Store-Forwarding Scenarios of 16-Byte Store Operations

Nehalem microarchitecture allows store-to-load forwarding to proceed regardless of store address align-
ment (The white space in the diagram does not correspond to an applicable store-to-load scenario).
Figure E-12 illustrates situations for store operation of 8 bytes or less.

EARLIER GENERATIONS OF INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

E-48

Figure E-12. Store-Forwarding Enhancement in Nehalem Microarchitecture

E.4.6 REP String Enhancement
REP prefix in conjunction with MOVS/STOS instruction and a count value in ECX are frequently used to
implement library functions such as memcpy()/memset(). These are referred to as "REP string" instruc-
tions. Each iteration of these instruction can copy/write constant a value in byte/word/dword/qword
granularity The performance characteristics of using REP string can be attributed to two components:
startup overhead and data transfer throughput.

The two components of performance characteristics of REP String varies further depending on granu-
larity, alignment, and/or count values. Generally, MOVSB is used to handle very small chunks of data.
Therefore, processor implementation of REP MOVSB is optimized to handle ECX < 4. Using REP MOVSB
with ECX > 3 will achieve low data throughput due to not only byte-granular data transfer but also addi-
tional startup overhead. The latency for MOVSB, is 9 cycles if ECX < 4; otherwise REP MOVSB with ECX
>9 have a 50-cycle startup cost.

For REP string of larger granularity data transfer, as ECX value increases, the startup overhead of REP
String exhibit step-wise increase:
• Short string (ECX <= 12): the latency of REP MOVSW/MOVSD/MOVSQ is about 20 cycles.
• Fast string (ECX >= 76: excluding REP MOVSB): the processor implementation provides hardware

optimization by moving as many pieces of data in 16 bytes as possible. The latency of REP string
latency will vary if one of the 16-byte data transfer spans across cache line boundary:

— Split-free: the latency consists of a startup cost of about 40 cycles and each 64 bytes of data adds
4 cycles.

— Cache splits: the latency consists of a startup cost of about 35 cycles and each 64 bytes of data
adds 6cycles.

• Intermediate string lengths: the latency of REP MOVSW/MOVSD/MOVSQ has a startup cost of about
15 cycles plus one cycle for each iteration of the data movement in word/dword/qword.

Nehalem microarchitecture improves the performance of REP strings significantly over previous microar-
chitectures in several ways:
• Startup overhead have been reduced in most cases relative to previous microarchitecture.
• Data transfer throughput are improved over previous generation.

E-49

EARLIER GENERATIONS OF INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

• In order for REP string to operate in “fast string” mode, previous microarchitectures requires address
alignment. In Nehalem microarchitecture, REP string can operate in “fast string” mode even if the
address is not aligned to 16 bytes.

E.4.7 Enhancements for System Software
In addition to microarchitectural enhancements that can benefit both application-level and system-level
software, Nehalem microarchitecture enhances several operations that primarily benefit system soft-
ware.

Lock primitives: Synchronization primitives using the Lock prefix (e.g. XCHG, CMPXCHG8B) executes
with significantly reduced latency than previous microarchitectures.

VMM overhead improvements: VMX transitions between a Virtual Machine (VM) and its supervisor (the
VMM) can take thousands of cycle each time on previous microarchitectures. The latency of VMX transi-
tions has been reduced in processors based on Nehalem microarchitecture.

E.4.8 Efficiency Enhancements for Power Consumption
Nehalem microarchitecture is not only designed for high performance and power-efficient performance
under wide range of loading situations, it also features enhancement for low power consumption while
the system idles. Nehalem microarchitecture supports processor-specific C6 states, which have the
lowest leakage power consumption that OS can manage through ACPI and OS power management
mechanisms.

E.4.9 Hyper-Threading Technology Support in Nehalem Microarchitecture
Nehalem microarchitecture supports Hyper-Threading Technology (HT). Its implementation of HT
provides two logical processors sharing most execution/cache resources in each core. The HT implemen-
tation in Nehalem microarchitecture differs from previous generations of HT implementations using Intel
NetBurst microarchitecture in several areas:
• Nehalem microarchitecture provides four-wide execution engine, more functional execution units

coupled to three issue ports capable of issuing computational operations.
• Nehalem microarchitecture supports integrated memory controller that can provide peak memory

bandwidth of up to 25.6 GB/sec in Intel Core i7 processor.
• Deeper buffering and enhanced resource sharing/partition policies:

— Replicated resource for HT operation: register state, renamed return stack buffer, large-page
ITLB.

— Partitioned resources for HT operation: load buffers, store buffers, re-order buffers, small-page
ITLB are statically allocated between two logical processors.

— Competitively-shared resource during HT operation: the reservation station, cache hierarchy, fill
buffers, both DTLB0 and STLB.

— Alternating during HT operation: front end operation generally alternates between two logical
processors to ensure fairness.

— HT unaware resources: execution units.

EARLIER GENERATIONS OF INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

E-50

APPENDIX F
EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE

AND SOFTWARE OPTIMIZATION

F.1 OVERVIEW
45 nm Intel Atom processors introduced Intel Atom microarchitecture. The same microarchitecture also
used in 32 nm Intel Atom processors. This chapter covers a brief overview the Intel Atom microarchitec-
ture, and specific coding techniques for software whose primary targets are processors based on the
Intel Atom microarchitecture. The key features of Intel Atom processors to support low power consump-
tion and efficient performance include:
• Enhanced Intel SpeedStep® Technology enables operating system (OS) to program a processor to

transition to lower frequency and/or voltage levels while executing a workload.
• Support deep power down technology to reduces static power consumption by turning off power to

cache and other sub-systems in the processor.
• Intel Hyper-Threading Technology providing two logical processor for multi-tasking and multi-

threading workloads.
• Support Single-instruction multiple-data extensions up to SSE3 and SSSE3.
• Support for Intel 64 and IA-32 architecture.

The Intel Atom microarchitecture is designed to support the general performance requirements of
modern workloads within the power-consumption envelop of small form-factor and/or thermally-
constrained environments.

F.2 INTEL ATOM® MICROARCHITECTURE
Intel Atom microarchitecture achieves efficient performance and low power operation with a two-issue
wide, in-order pipeline that support Hyper-Threading Technology. The in-order pipeline differs from out-
of-order pipelines by treating an IA-32 instruction with a memory operand as a single pipeline operation
instead of multiple micro-operations.

The basic block diagram of the Intel Atom microarchitecture pipeline is shown in Figure F-1.

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

F-2

The front end features a power-optimized pipeline, including:
• 32KB, 8-way set associative, first-level instruction cache.
• Branch prediction units and ITLB.
• Two instruction decoders, each can decode up to one instruction per cycle.

The front end can deliver up to two instructions per cycle to the instruction queue for scheduling. The
scheduler can issue up to two instructions per cycle to the integer or SIMD/FP execution clusters via two
issue ports.

Each of the two issue ports can dispatch an instruction per cycle to the integer cluster or the SIMD/FP
cluster to execute. The port-bindings of the integer and SIMD/FP clusters have the following features:
• Integer execution cluster:

— Port 0: ALU0, Shift/Rotate unit, Load/Store.

— Port 1: ALU1, Bit processing unit, jump unite and LEA.

— Effective “load-to-use” latency of 0 cycle.
• SIMD/FP execution cluster:

— Port 0: SIMD ALU, Shuffle unit, SIMD/FP multiply unit, Divide unit, (support IMUL, IDIV).

— Port 1: SIMD ALU, FP Adder.

— The two SIMD ALUs and the shuffle unit in the SIMD/FP cluster are 128-bit wide, but 64-bit
integer SIMD computation is restricted to port 0 only.

— FP adder can execute ADDPS/SUBPS in 128-bit data path, data path for other FP add operations
are 64-bit wide.

Figure F-1. Intel Atom® Microarchitecture Pipeline

PMH

Per thread
Integer

Register File

Data
Cache

Data
TLBs

Fill +
Write combining

buffers

JEU

ALU

SIMD
multiplier

FP adder

FP store

ALU

Shuffle

FP
multiplier

FP move

FP ROM

FP divider

Per thread
FP

Register File

Fault/
Retire

2- wide ILD
Per - thread
Instruction
Queues

Instruction
Cache

Branch
Prediction UnitMS

P
er

Th
re

ad
Pr

ef
et

ch
Bu

ffe
rs

Inst.
TLB

XLAT/
FL

AGU AGU

L2
Cache

DL1
prefetcher

Front - End Cluster

FP/ SIMD execution cluster

Integer Execution Cluster

Memory Execution
Cluster

ALU

Shifter

XLAT/
FL

FSB
BIU

Bus Cluster

APIC

ALU

PMH

Per thread
Integer

Register File

Data
Cache

Data
TLBs

Fill +
Write combining

buffers

JEU

ALU

SIMD
multiplier

FP adder

FP store

ALU

Shuffle

FP
multiplier

FP move

FP ROM

FP divider

Per thread
FP

Register File

Fault/
Retire

2- wide ILD
Per - thread
Instruction
Queues

Instruction
Cache

Branch
Prediction UnitMS

P
er

Th
re

ad
Pr

ef
et

ch
Bu

ffe
rs

Inst.
TLB

XLAT/
FL

AGU AGU

L2
Cache

DL1
prefetcher

Front

PMH

Per thread
Integer

Register File

Data
Cache

Data
TLBs

Fill +
Write combining

buffers

JEU

ALU

SIMD
multiplier

FP adder

FP store

ALU

Shuffle

FP
multiplier

FP move

FP ROM

FP divider

Per thread
FP

Register File

Fault/
Retire

2- wide ILD
Per - thread
Instruction
Queues

Instruction
Cache

Branch
Prediction UnitMS

P
er

Th
re

ad
Pr

ef
et

ch
Bu

ffe
rs

Inst.
TLB

XLAT/
FL

AGU AGU

L2
Cache

DL1
prefetcher

Front - End Cluster

FP/ SIMD execution cluster

Integer Execution Cluster

Memory Execution
Cluster

ALU

Shifter

XLAT/
FL

FSB
BIU

Bus Cluster

APIC

ALU

F-3

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

— Safe Instruction Recognition algorithm for FP/SIMD execution allow younger, short-latency
integer instruction to execute without being blocked by older FP/SIMD instruction that might
cause exception.

— FP multiply pipe also supports memory loads.

— FP ADD instructions with memory load reference can use both ports to dispatch.

The memory execution sub-system (MEU) can support 48-bit linear address for Intel 64 Architecture,
either 32-bit or 36-bit physical addressing modes. The MEU provides:
• 24KB first level data cache.
• Hardware prefetching for L1 data cache.
• Two levels of DTLB for 4KByte and larger paging structure.
• Hardware pagewalker to service DTLB and ITLB misses.
• Two address generation units (port 0 supports loads and stores, port 1 supports LEA and stack opera-

tions).
• Store-forwarding support for integer operations.
• 8 write combining buffers.

The bus logic sub-system provides:
• 512KB, 8-way set associative, unified L2 cache.
• Hardware prefetching for L2 and interface logic to the front side bus.

F.2.1 Hyper-Threading Technology Support in Intel Atom® Microarchitecture
The instruction queue is statically partitioned for scheduling instruction execution from two threads. The
scheduler is able to pick one instruction from either thread and dispatch to either of port 0 or port 1 for
execution. The hardware makes selection choice on fetching/decoding/dispatching instructions between
two threads based on criteria of fairness as well as each thread’s readiness to make forward progress.

F.3 CODING RECOMMENDATIONS FOR INTEL ATOM®
MICROARCHITECTURE

Instruction scheduling heuristics and coding techniques that apply to out-of-order microarchitectures
may not deliver optimal performance on an in-order microarchitecture. Likewise instruction scheduling
heuristics and coding techniques for an in-order pipeline like Intel Atom microarchitecture may not
achieve optimal performance on out-of-order microarchitectures. This section covers specific coding
recommendations for software whose primary deployment targets are processors based on Intel Atom
microarchitecture.

F.3.1 Optimization for Front End of Intel Atom® Microarchitecture
The two decoders in the front end of Intel Atom microarchitecture can handle most instructions in the
Intel 64 and IA-32 architecture. Some instructions dealing with complicated operations require the use of
an MSROM in the front end. Instructions that go through the two decoders generally can be decoded by
either decoder unit of the front end in most cases. Instructions the must use the MSROM or conditions
that cause the front end to re-arrange decoder assignments will experience a delay in the front end.

Software can use specific performance monitoring events to detect instruction sequences and/or condi-
tions that cause front end to re-arrange decoder assignment.

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

F-4

Assembly/Compiler Coding Rule 1. (MH impact, ML generality) For Intel Atom processors,
minimize the presence of complex instructions requiring MSROM to take advantage the optimal decode
bandwidth provided by the two decode units.

Using the performance monitoring events “MACRO_INSTS.NON_CISC_DECODED” and
“MACRO_INSTS.CISC_DECODED” can be used to evaluate the percentage instructions in a workload that
required MSROM.
Assembly/Compiler Coding Rule 2. (M impact, H generality) For Intel Atom processors, keeping
the instruction working set footprint small will help the front end to take advantage the optimal decode
bandwidth provided by the two decode units.
Assembly/Compiler Coding Rule 3. (MH impact, ML generality) For Intel Atom processors,
avoiding back-to-back X87 instructions will help the front end to take advantage the optimal decode
bandwidth provided by the two decode units.

Using the performance monitoring events “DECODE_RESTRICTION“ can count the number of occur-
rences in a workload that encountered delays causing reduction of decode throughput.

In general the front end restrictions are not typical a performance limiter until the retired “cycle per
instruction” becomes less than unity (maximum theoretical retirement throughput corresponds to CPI of
0.5). To reach CPI below unity, it is important to generate instruction sequences that go through the front
end as instruction pairs decodes in parallel by the two decoders. After the front end, the scheduler and
execution hardware do not need to dispatch the decode pairings through port 0 and port 1 in the same
order.

The decoders cannot decode past a jump instruction, so jumps should be paired as the second instruction
in a decoder-optimized pairing. The front end can only handle one X87 instruction per cycle, and only
decoder unit 0 can request a transfer to use MSROM. Instructions that are longer than 8 bytes or having
more than three prefixes will results in a MSROM transfer, experiencing two cycles of delay in the front
end.

Instruction lengths and alignment can impact decode throughput. The prefetching buffers inside the
front end imposes a throughput limit that if the number of bytes being decoded in any 7-cycle window
exceeds 48 bytes, the front end will experience a delay to wait for a buffer. Additionally, every time an
instruction pair crosses 16 byte boundary, it requires the front end buffer to be held on for at least one
more cycle. So instruction alignment crossing 16 byte boundary is highly problematic.

Instruction alignment can be improved using a combination of an ignore prefix and an instruction.

Example F-1. Instruction Pairing and Alignment to Optimize Decode Throughput on Intel Atom® Microarchitecture

Address Instruction Bytes Disassembly

7FFFFDF0 0F594301 mulps xmm0, [ebx+ 01h]

7FFFFDF4 8341FFFF add dword ptr [ecx-01h], -1

7FFFFDF8 83C2FF add edx, , -1

7FFFFDFB 64 ; FS prefix override is ignored, improves code alignment

7FFFFDFC F20f58E4 add xmm4, xmm4

7FFFFE00 0F594B11 mulps xmm1, [ebx+ 11h]

7FFFFE04 8369EFFF sub dword ptr [ecx- 11h], -1

7FFFFE08 83EAFF sub edx, -1

7FFFFE0B 64 ; FS prefix override is ignored, improves code alignment

7FFFFE0C F20F58ED addsd xmm5, xmm5

7FFFFE10 0F595301 mulps xmm2, [ebx +1]

F-5

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

When a small loop contains some long-latency operation inside, loop unrolling may be considered as a
technique to find adjacent instruction that could be paired with the long-latency instruction to enable that
adjacent instruction to make forward progress. However, loop unrolling must also be evaluated on its
impact to increased code size and pressure to the branch target buffer.

The performance monitoring event “BACLEARS” can provide a means to evaluate whether loop unrolling
is helping or hurting front end performance. Another event “ICACHE_MISSES” can help evaluate if loop
unrolling is increasing the instruction footprint.

Branch predictors in Intel Atom processor do not distinguish different branch types. Sometimes mixing
different branch types can cause confusion in the branch prediction hardware.

The performance monitoring event “BR_MISSP_TYPE_RETIRED“ can provide a means to evaluate branch
prediction issues due to branch types.

F.3.2 Optimizing the Execution Core
This section covers several items that can help software use the two-issue-wide execution core to make
forward progress with two instructions more frequently.

F.3.2.1 Integer Instruction Selection
In an in-order machine, instruction selection and pairing can have an impact on the machine’s ability to
discover instruction-level-parallelism for instructions that have data ready to execute. Some examples
are:
• EFLAG: The consumer instruction of any EFLAG flag bit can not be issued in the same cycle as the

producer instruction of the EFLAG register. For example, ADD could modify the carry bit, so it is a
producer; JC (or ADC) reads the carry bit and is a consumer.

— Conditional jumps are able to issue in the following cycle after the consumer.

— A consumer instruction of other EFLAG bits must wait one cycle to issue after the producer (two
cycle delay).

Assembly/Compiler Coding Rule 4. (M impact, H generality) For Intel Atom processors, place a
MOV instruction between a flag producer instruction and a flag consumer instruction that would have
incurred a two-cycle delay. This will prevent partial flag dependency.
• Long-latency Integer Instructions: They will block shorter latency instruction on the same thread

from issuing (required by program order). Additionally, they will also block shorter-latency
instruction on both threads for one cycle to resolve writeback resource.

• Common Destination: Two instructions that produce results to the same destination can not issue
in the same cycle.

7FFFFE14 8341DFFF add dword ptr [ecx-21H], -1

7FFFFE18 83C2FF add edx, -1

7FFFFE1B 64 ; FS prefix override is ignored, improves code alignment

7FFFFE1C F20F58F6 addssd xmm6, xmm6

7FFFFE20 0F595B11 mulps xmm3, [ebx+ 11h]

7FFFFE24 8369CFFF sub dword ptr [ecx- 31h], -1

7FFFFE28 83EAFF sub edx, -1

Example F-1. Instruction Pairing and Alignment to Optimize Decode Throughput on Intel Atom® Microarchitecture

Address Instruction Bytes Disassembly

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

F-6

• Expensive Instructions: Some instructions have special requirements and become expensive in
consuming hardware resources for an extended period during execution. It may be delayed in
execution until it is the oldest in the instruction queue; it may delay the issuing of other younger
instructions. Examples of these include FDIV, instructions requiring execution units from both ports,
etc.

F.3.2.2 Address Generation
The hardware optimizes the general case of instruction ready to execute must have data ready, and
address generation precedes data being ready. If address generation encounters a dependency that
needs data from another instruction, this dependency in address generation will incur a delay of 3 cycles.

The address generation unit (AGU) may be used directly in three situations that affect execution
throughput of the two-wide machine. The situations are:
• Implicit ESP updates: When the ESP register is not used as the destination of an instruction

(explicit ESP updates), an implicit ESP update will occur with instructions like PUSH, POP, CALL,
RETURN. Mixing explicit ESP updates and implicit ESP updates will also lead to dependency between
address generation and data execution.

• LEA: The LEA instruction uses the AGU instead of the ALU. If one of the source register of LEA must
come from an execution unit. This dependency will also cause a 3 cycle delay. Thus, LEA should not
be used in the technique of adding two values and produce the result in a third register. LEA should
be used for address computation.

• Integer-FP/SIMD transfer: Instructions that transfer integer data to the FP/SIMD side of the
machine also uses AGU. Examples of these instructions include MOVD, PINSRW. If one of the source
register of these instructions depends on the result of an execution unit, this dependency will also
cause a delay of 3 cycles.

Assembly/Compiler Coding Rule 5. (MH impact, H generality) For Intel Atom processors, LEA
should be used for address manipulation; but software should avoid the following situations which
creates dependencies from ALU to AGU: an ALU instruction (instead of LEA) for address manipulation or
ESP updates; a LEA for ternary addition or non-destructive writes which do not feed address
generation. Alternatively, hoist producer instruction more than 3 cycles above the consumer instruction
that uses the AGU.

F.3.2.3 Integer Multiply
Integer multiply instruction takes several cycles to execute. They are pipelined such that an integer
multiply instruction and another long-latency instruction can make forward progress in the execution
phase. However, integer multiply instructions will block other single-cycle integer instructions from
issuing due to requirement of program order.

Example F-2. Alternative to Prevent AGU and Execution Unit Dependency

a) Three cycle delay when using LEA in ternary operations
mov eax, 0x01
lea eax, 0x8000[eax+ebp]; values in eax comes from execution of previous instruction
; 3 cycle delay due to lea and execution dependency

b) Dependency handled in execution, avoiding AGU and execution dependency
mov eax, 0x01
add eax, 0x8000
add eax, ebp

F-7

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

Assembly/Compiler Coding Rule 6. (M impact, M generality) For Intel Atom processors,
sequence an independent FP or integer multiply after an integer multiply instruction to take advantage
of pipelined IMUL execution.

F.3.2.4 Integer Shift Instructions
Integer shift instructions that encodes shift count in the immediate byte have one-cycle latency. In
contrast, shift instructions using shift count in the ECX register may need to wait for the register count
are updated. Thus shift instruction using register count has 3-cycle latency.
Assembly/Compiler Coding Rule 7. (M impact, M generality) For Intel Atom processors, hoist the
producer instruction for the implicit register count of an integer shift instruction before the shift
instruction by at least two cycles.

F.3.2.5 Partial Register Access
Although partial register access does not cause additional delay, the in-order hardware tracks depen-
dency on the full register. Thus 8-bit registers like AL and AH are not treated as independent registers.
Additionally some instructions like LEA, vanilla loads, and pop are slower when the input is smaller than
4 bytes.
Assembly/Compiler Coding Rule 8. (M impact, MH generality) For Intel Atom processors, LEA,
simple loads and POP are slower if the input is smaller than 4 bytes.

F.3.2.6 FP/SIMD Instruction Selection
Table F-1 summarizes the characteristics of various execution units in Intel Atom microarchitecture that
are likely used most frequently by software.

Example F-3. Pipeling Instruction Execution in Integer Computation

a) Multi-cycle Imul instruction can block 1-cycle integer instruction
imul eax, eax
add ecx, ecx ; 1 cycle int instruction blocked by imul for 4 cycles
imul ebx, ebx ; instruction blocked by in-orer issue

b) Back-to-back issue of independent imul are pipelined
imul eax, eax
imul ebx, ebx ; 2nd imul can issue 1 cycle later
add ecx, ecx ; 1 cycle int instruction blocked by imul

Table F-1. Instruction Latency/Throughput Summary of Intel Atom® Microarchitecture

Instruction Category Latency (cycles) Throughput # of Execution Unit

SIMD Integer ALU

128-bit ALU/logical/move 1 1 2

64-bit ALU/logical/move 1 1 2

SIMD Integer Shift

128-bit 1 1 1

64-bit 1 1 1

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

F-8

SIMD/FP instruction selection generally should favor shorter latency first, then favor faster throughput
alternatives whenever possible. Note that packed double-precision instructions are not pipelined, using
two scalar double-precision instead can achieve higher performance in the execution cluster.
Assembly/Compiler Coding Rule 9. (MH impact, H generality) For Intel Atom processors, prefer
SIMD instructions operating on XMM register over X87 instructions using FP stack. Use Packed single-
precision instructions where possible. Replace packed double-precision instruction with scalar double-
precision instructions.
Assembly/Compiler Coding Rule 10. (M impact, ML generality) For Intel Atom processors, library
software performing sophisticated math operations like transcendental functions should use SIMD
instructions operating on XMM register instead of native X87 instructions.
Assembly/Compiler Coding Rule 11. (M impact, M generality) For Intel Atom processors, enable
DAZ and FTZ whenever possible.

Several performance monitoring events may be useful for SIMD/FP instruction selection tuning:
“SIMD_INST_RETIRED.{PACKED_SINGLE, SCALAR_SINGLE, PACKED_DOUBLE, SCALAR_DOUBLE}” can
be used to determine the instruction selection in the program. “FP_ASSIST” and “SIR” can be used to see
if floating exceptions (or false alarms) are impacting program performance.

The latency and throughput of divide instructions vary with input values and data size. Intel Atom
microarchitecture implements a radix-2 based divider unit. So, divide/sqrt latency will be significantly
longer than other FP operations. The issue throughput rate of divide/sqrt will be correspondingly lower.

SIMD Shuffle

128-bit 1 1 1

64-bit 1 1 1

SIMD Integer Multiply

128-bit 5 2 1

64-bit 4 1 1

FP Adder

X87 Ops (FADD) 5 1 1

Scalar SIMD (addsd, addss) 5 1 1

Packed single (addps) 5 1 1

Packed double (addpd) 6 5 1

FP Multiplier

X87 Ops (FMUL) 5 2 1

Scalar single (mulss) 4 1 1

Scalar double (mulsd) 5 2 1

Packed single (mulps) 5 2 1

Packed double (mulpd) 9 9 1

IMUL

IMUL r32, r/m32 5 1 1

IMUL r12, r/m16 6 1 1

Table F-1. Instruction Latency/Throughput Summary of Intel Atom® Microarchitecture (Contd.)

Instruction Category Latency (cycles) Throughput # of Execution Unit

F-9

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

The divide unit is shared between two logical processors, so software should consider all alternatives to
using the divide instructions.
Assembly/Compiler Coding Rule 12. (H impact, L generality) For Intel Atom processors, use
divide instruction only when it is absolutely necessary, and pay attention to use the smallest data size
operand.

The performance monitoring events “DIV” and “CYCLES_DIV_BUSY” can be used to see if the divides are
a bottleneck in the program.

FP operations generally have longer latency than integer instructions. Writeback of results from FP oper-
ation generally occur later in the pipe stages than integer pipeline. Consequently, if an instruction has
dependency on the result of some FP operation, there will be a two-cycle delay. Examples of these type
of instructions are FP-to-integer conversions CVTxx2xx, MOVD from XMM to general purpose registers.

In situations where software needs to do computation with consecutive groups 4 single-precision data
elements, PALIGNR+MOVAPS is preferred over MOVUPS. Loading 4 data elements with unconstrained
array index k, such as MOVUPS xmm1, _pArray[k], where the memory address _pArray is aligned on 16-
byte boundary, will periodically causing cache line split, incurring a 14-cycle delay.

The optimal approach is for each k that is not a multiple of 4, round down k to multiples of 4 with j =
4*(k/4), do a MOVAPS MOVAPS xmm1, _pArray[j] and MOVAPS xmm1, _pArray[j+4], and use PALIGNR
to splice together the four data elements needed for computation.
Assembly/Compiler Coding Rule 13. (MH impact, M generality) For Intel Atom processors, prefer
a sequence MOVAPS+PALIGN over MOVUPS. Similarly, MOVDQA+PALIGNR is preferred over MOVDQU.

F.3.3 Optimizing Memory Access
This section covers several items that can help software optimize the performance of the memory sub-
system.

Memory access to system memory of cache access that encounter certain hazards can cause the memory
access to become an expensive operation, blocking short-latency instructions to issue even when they
have data ready to execute.

The performance monitoring events “REISSUE” can be used to assess the impact of re-issued memory
instructions in the program.

F.3.3.1 Store Forwarding
In a few limited situations, Intel Atom microarchitecture can forward data from a preceding store opera-
tion to a subsequent load instruction. The situations are:
• Store-forwarding is supported only in the integer pipeline, and does not apply to FP nor SIMD data.

Furthermore, the following conditions must be met:

a. The store and load operations must be of the same size and to the same address.

b. Data size larger than 8 bytes do not forward from a store operation.
• When data forwarding proceeds, data is forwarded base on the least significant 12 bits of the

address. So software must avoid the address aliasing situation of storing to an address and then
loading from another address that aliases in the lowest 12-bits with the store address.

F.3.3.2 First-level Data Cache
Intel Atom microarchitecture handles each 64-byte cache line of the first-level data cache in 16 4-byte
chunks. This implementation characteristic has a performance impact to data alignment and some data
access patterns.

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

F-10

Assembly/Compiler Coding Rule 14. (MH impact, H generality) For Intel Atom processors,
ensure data are aligned in memory to its natural size. For example, 4-byte data should be aligned to 4-
byte boundary, etc. Additionally, smaller access (less than 4 bytes) within a chunk may experience
delay if they touch different bytes.

F.3.3.3 Segment Base
In Intel Atom microarchitecture, the address generation unit assumes that the segment base will be 0 by
default. Non-zero segment base will cause load and store operations to experience a delay.
• If the segment base isn’t aligned to a cache line boundary, the max throughput of memory operations

is reduced to one very 9 cycles.

If the segment base is non-zero but cache line aligned the penalty varies by segment base.
• DS will have a max throughput of one every two cycles.
• FS, and GS will have a max throughput of one every two cycles. However, FS and GS are anticipated

to be used only with non-zero bases and therefore have a max throughput of one every two cycles
even if the segment base is zero.

• ES:

— If used as the implicit segment base for the destination of string operation, will have a max
throughput of one every two cycles for non-zero but cacheline aligned bases.

— Otherwise, only do one operation every nine cycles.
• CS and SS will always have a max throughput of one every nine cycles if its segment base is non-zero

but cache line aligned.
Assembly/Compiler Coding Rule 15. (H impact, ML generality) For Intel Atom processors, use
segments with base set to 0 whenever possible; avoid non-zero segment base address that is not
aligned to cache line boundary at all cost.
Assembly/Compiler Coding Rule 16. (H impact, L generality) For Intel Atom processors, when
using non-zero segment bases, Use DS, FS, GS; string operation should use implicit ES.
Assembly/Compiler Coding Rule 17. (M impact, ML generality) For Intel Atom processors, favor
using ES, DS, SS over FS, GS with zero segment base.

F.3.3.4 String Moves
Using MOVS/STOS instruction and REP prefix on Intel Atom processor should recognize the following
items:
• For small count values, using REP prefix is less efficient than not using REP prefix. This is because the

hardware does have small REP count optimization.
• For small count values, using REP prefix is less efficient than not using REP prefix. This is because the

hardware does have small REP count optimization.
• For large count values, using REP prefix will be less efficient than using 16-byte SIMD instructions.
• Incrementing address in loop iterations should favor LEA instruction over explicit ADD instruction.
• If data footprint is such that memory operation is accessing L2, use of software prefetch to bring data

to L1 can avoid memory operation from being re-issued.
• If string/memory operation is accessing system memory, using non-temporal hints of streaming

store instructions can avoid cache pollution.

F-11

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

F.3.3.5 Parameter Passing
Due to the limited situations of load-to-store forwarding support in Intel Atom microarchitecture, param-
eter passing via the stack places restrictions on optimal usage by the callee function. For example, “bool”
and “char” data usually are pushed onto the stack as 32-bit data, a callee function that reads “bool” or
“char” data off the stack will face store-forwarding delay and causing the memory operation to be re-
issued.

Compiler should recognize this limitation and generate prolog for callee function to read 32-bit data
instead of smaller sizes.
Assembly/Compiler Coding Rule 18. (MH impact, M generality) For Intel Atom processors, “bool”
and “char” value should be passed onto and read off the stack as 32-bit data.

F.3.3.6 Function Calls
In Intel Atom microarchitecture, using PUSH/POP instructions to manage stack space and address
adjustment between function calls/returns will be more optimal than using ENTER/LEAVE alternatives.
This is because PUSH/POP will not need MSROM flows and stack pointer address update is done at AGU.

When a callee function need to return to the caller, the callee could issue POP instruction to restore data
and restore the stack pointer from the EBP.
Assembly/Compiler Coding Rule 19. (MH impact, M generality) For Intel Atom processors, favor
register form of PUSH/POP and avoid using LEAVE; Use LEA to adjust ESP instead of ADD/SUB.

F.3.3.7 Optimization of Multiply/Add Dependent Chains
Computations of dependent multiply and add operations can illustrate the usage of several coding tech-
niques to optimize for the front end and in-order execution pipeline of the Intel Atom microarchitecture.

Example F-5a shows a code sequence that may be used on out-of-order microarchitectures. This
sequence is far from optimal on Intel Atom microarchitecture. The full latency of multiply and add oper-
ations are exposed and it is not very successful at taking advantage of the two-issue pipeline.

Example F-5b shows an improved code sequence that takes advantage of the two-issue in-order pipeline
of Intel Atom microarchitecture. Because the dependency between multiply and add operations are
present, the exposure of latency are only partially covered.

Example F-4. Memory Copy of 64-byte

T1: prefetcht0 [eax+edx+0x80] ; prefetch ahead by two iterations
movdqa xmm0, [eax+ edx] ; load data from source (in L1 by prefetch)
movdqa xmm1, [eax+ edx+0x10]
movdqa xmm2, [eax+ edx+0x20]
movdqa xmm3, [eax+ edx+0x30]
movdqa [ebx+ edx], xmm0; store data to destination
movdqa [ebx+ edx+0x10], xmm1
movdqa [ebx+ edx+0x30], xmm2
movdqa [ebx+ edx+0x30], xmm3
lea edx, 0x40 ; use LEA to adjust offset address for next iteration
dec ecx
jnz T1

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

F-12

Example F-5. Examples of Dependent Multiply and Add Computation

a) Instruction sequence that encounters stalls
; accumulator xmm2 initialized
Top: movaps xmm0, [esi] ; vector stored in 16-byte aligned memory

movaps xmm1, [edi] ; vector stored in 16-byte aligned memory
mulps xmm0, xmm1
addps xmm2, xmm0 ; dependency and branch exposes latency of mul and add
add esi, 16 ;
add edi, 16
sub ecx, 1
jnz top

b) Improved instruction sequence to increase execution throughput
; accumulator xmm4 initialized
Top: movaps xmm0, [esi] ; vector stored in 16-byte aligned memory

lea esi, [esi+16] ; can schedule in parallel with load
mulps xmm0, [edi] ;
lea edi, [edi+16] ; can schedule in parallel with multiply
addps xmm4, xmm0 ; latency exposures partially covered by independent instructions
dec ecx ;
jnz top

c) Improving instruction sequence further by unrolling and interleaving
; accumulator xmm0, xmm1, xmm2, xmm3 initialized
Top: movaps xmm0, [esi] ; vector stored in 16-byte aligned memory

lea esi, [esi+16] ; can schedule in parallel with load
mulps xmm0, [edi] ;
lea edi, [edi+16] ; can schedule in parallel with multiply
addps xmm5, xmm1 ; dependent multiply hoisted by unrolling and interleaving
movaps xmm1, [esi] ; vector stored in 16-byte aligned memory
lea esi, [esi+16] ; can schedule in parallel with load
mulps xmm1, [edi] ;
lea edi, [edi+16] ; can schedule in parallel with multiply
addps xmm6, xmm2 ; dependent multiply hoisted by unrolling and interleaving

(continue)

movaps xmm2, [esi] ; vector stored in 16-byte aligned memory
lea esi, [esi+16] ; can schedule in parallel with load
mulps xmm2, [edi] ;
lea edi, [edi+16] ; can schedule in parallel with multiply
addps xmm7, xmm3 ; dependent multiply hoisted by unrolling and interleaving
movaps xmm3, [esi] ; vector stored in 16-byte aligned memory
lea esi, [esi+16] ; can schedule in parallel with load
mulps xmm3, [edi] ;
lea edi, [edi+16] ; can schedule in parallel with multiply
addps xmm4, xmm0 ; dependent multiply hoisted by unrolling and interleaving
sub ecx, 4;
jnz top
; sum up accumulators xmm0, xmm1, xmm2, xmm3 to reduce dependency inside the loop

F-13

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

Example F-5c illustrates a technique that increases instruction-level parallelism and further reduces
latency exposures of the multiply and add operations. By unrolling four times, each ADDPS instruction
can be hoisted far from its dependent producer instruction MULPS. Using an interleaving technique, non-
dependent ADDPS and MULPS can be placed in close proximity. Because the hardware that executes
MULPS and ADDPS is pipelined, the associated latency can be covered much more effectively by this
technique relative to Example F-5b.

F.3.3.8 Position Independent Code
Position independent code often needs to obtain the value of the instruction pointer. Example F-5a show
one technique to put the value of IP into the ECX register by issuing a CALL without a matching RET.
Example F-5b show an alternative technique to put the value of IP into the ECX register using a matched
pair of CALL/RET.

F.4 INSTRUCTION LATENCY
This section lists the port-binding and latency information of Intel Atom microarchitecture. The port-
binding information for each instruction may show one of 3 situations:
• ‘Single digit’ - the specific port that must be issued.
• (0, 1) - either port 0 or port 1.
• ‘B’ - both ports are required.

In the “Instruction” column:
• If different operand syntax of the same instruction have the same port-binding and latency, operand

syntax is omitted.
• When different operand syntax may produce different latency or port binding, the operand syntax is

listed; but instruction syntax of different operand sizes may be compacted and abbreviated with a
footnote.

Instruction that required decoder assistance from MSROM are marked in the “Comment” column (should
be used minimally if more decode-efficient alternatives are available).

Example F-6. Instruction Pointer Query Techniques

a) Using call without return to obtain IP
call _label; return address pushed is the IP of next instruction

_label:
pop ECX; IP of this instruction is now put into ECX

b) Using matched call/ret pair

call _lblcx;
... ; ECX now contains IP of this instruction
...

_lblcx
mov ecx, [esp];
ret

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

F-14

Table F-2. Intel Atom® Microarchitecture Instructions Latency Data

Instruction Ports Latency Throughput

DisplayFamily_DisplayModel 06_1CH,
06_26H,
06_27H

06_1CH,
06_26H,
06_27H

06_1CH,
06_26H,
06_27H

ADD/AND/CMP/OR/SUB/XOR/TEST1 (E)AX/AL, imm; (0, 1) 1 0.5

ADD/AND/CMP/OR/SUB/XOR2 mem, Imm8;
ADD/AND/CMP/OR/SUB/XOR/TEST4 mem, imm; TEST m8, imm8

0 1 1

ADD/AND/CMP/OR/SUB/XOR/TEST2 mem, reg; ADD/AND/CMP/OR/SUB/XOR2
reg, mem;

0 1 1

ADD/AND/CMP/OR/SUB/XOR2 reg, Imm8; ADD/AND/CMP/OR/SUB/XOR4 reg,
imm

(0, 1) 1 0.5

ADDPD/ADDSUBPD/MAXPD/MAXPS/MINPD/MINPS/SUBPD xmm, mem B 7 6

ADDPD/ADDSUBPD/MAXPD/MAXPS/MINPD/MINPS/SUBPD xmm, xmm B 6 5

ADDPS/ADDSD/ADDSS/ADDSUBPS/SUBPS/SUBSD/SUBSS xmm, mem B 5 1

ADDPS/ADDSD/ADDSS/ADDSUBPS/SUBPS/SUBSD/SUBSS xmm, xmm 1 5 1

ANDNPD/ANDNPS/ANDPD/ANDPS/ORPD/ORPS/XORPD/XORPS xmm, mem 0 1 1

ANDNPD/ANDNPS/ANDPD/ANDPS/ORPD/ORPS/XORPD/XORPS xmm, xmm (0, 1) 1 1

BSF/BSR r16, m16 B 17 16

BSF/BSR3 reg, mem B 16 15

BSF/BSR4 reg, reg B 16 15

BT m16, imm8; BT3 mem, imm8 (0, 1) 2; 1 1

BT m16, r16; BT3 mem, reg B 10, 9 8

BT4 reg, imm8; BT4 reg, reg 1 1 1

BTC m16, imm8; BTC3 mem, imm8 B 3; 2 2

BTC/BTR/BTS m16; r16 B 12 11

 BTC/BTR/BTS3 mem, reg B 11 10

BTC/BTR/BTS4 reg, imm8; BTC/BTR/BTS4 reg, reg 1 1 1

CALL mem (0, 1) 2 2

CALL reg; CALL rel16; CALL rel32 B 1 1

CMOV4 reg, mem; MOV1 (E)AX/AL, MOFFS; MOV2 mem, imm 0 1 1

CMOV4 reg, reg; MOV2 reg, imm; MOV2 reg, reg; ; SETcc r8 (0, 1) 1 0.5

CMPPD/CMPPS xmm, mem, imm; CVTTPS2DQ xmm, mem B 7 6

CMPPD/CMPPS xmm, xmm, imm; CVTTPS2DQ xmm, xmm B 6 5

CMPSD/CMPSS xmm, mem, imm B 5 1

CMPSD/CMPSS xmm, xmm, imm 1 5 1

(U)COMISD/(U)COMISS xmm, mem; B 10 9

(U)COMISD/(U)COMISS xmm, xmm; B 9 8

CVTDQ2PD/CVTPD2DQ/CVTPD2PS xmm, mem B 8 7

CVTDQ2PD/CVTPD2DQ/CVTPD2PS xmm, xmm B 7 6

CVTDQ2PS/CVTSD2SS/CVTSI2SS/CVTSS2SD xmm, mem B 7 6

F-15

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

CVTDQ2PS/CVTSD2SS/CVTSS2SD xmm, xmm B 6 5

CVT(T)PD2PI mm, mem; CVTPI2PD xmm, mem B 8 7

CVT(T)PD2PI mm, xmm; CVTPI2PD xmm, mm B 7 6

CVTPI2PS/CVTSI2SD xmm, mem; B 5 4

CVTPI2PS xmm, mm; 1 5 1

CVTPS2DQ xmm, mem; B 7 6

CVTPS2DQ xmm, xmm; B 6 5

CVT(T)PS2PI mm, mem; B 5 5

CVT(T)PS2PI mm, xmm; 1 5 1

CVT(T)SD2SI3 reg, mem; CVT(T)SS2SI r32, mem B 9 8

CVT(T)SD2SI3 reg, xmm; CVT(T)SS2SI r32, xmm B 8 7

CVTSI2SD xmm, r32; CVTSI2SS xmm, r32 B 7; 6 5

CVTSI2SD xmm, r64; CVTSI2SS xmm, r64 B 6; 7 5

CVT(T)SS2SI r64, mem; RCPPS xmm, mem B 10 9

CVT(T)SS2SI r64, xmm; RCPPS xmm, xmm B 9 8

CVTTPD2DQ xmm, mem B 8 7

CVTTPD2DQ xmm, xmm B 7 6

DEC/INC2 mem; MASKMOVQ; MOVAPD/MOVAPS mem, xmm 0 1 1

DEC/INC2 reg; FLD ST; FST/FSTP ST; MOVDQ2Q mm, xmm (0, 1) 1 0.5

DIVPD; DIVPS B 125; 70 124; 69

DIVSD; DIVSS B 62; 34 61; 33

EMMS; LDMXCSR B 5 4

FABS/FCHS/FXCH; MOVQ2DQ xmm, mm; MOVSX/MOVZX r16, r16 (0, 1) 1 0.5

FADD/FSUB/FSUBR3 mem B 5 4

FADD/FADDP/FSUB/FSUBP/FSUBR/FSUBRP ST; 1 5 1

FCMOV B 6 5

FCOM/FCOMP3 mem B 1 1

FCOM/FCOMP/FCOMPP/FUCOM/FUCOMP ST; FTST 1 1 1

FCOMI/FCOMIP/FUCOMI/FUCOMIP ST B 9 8

FDIV/FSQRT3 mem; FDIV/FSQRT ST 0 25-65 24-64

FIADD/FIMUL5 mem B 11 10

FICOM/FICOMP mem B 7 6

FILD4 mem B 5 4

FLD3 mem; FXAM; MOVAPD/MOVAPS/MOVD xmm, mem 0 1 1

FLDCW B 5 4

FMUL/FMULP ST; FMUL3 mem 0 5 1

Table F-2. Intel Atom® Microarchitecture Instructions Latency Data (Contd.)

Instruction Ports Latency Throughput

DisplayFamily_DisplayModel 06_1CH,
06_26H,
06_27H

06_1CH,
06_26H,
06_27H

06_1CH,
06_26H,
06_27H

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

F-16

FNSTSW AX; FNSTSW m16 B 10; 14 9; 13

FST/FSTP3 mem B 2 1

HADDPD/HADDPS/HSUBPD/HSUBPS xmm, mem B 9 8

HADDPD/HADDPS/HSUBPD/HSUBPS xmm, xmm B 8 7

IDIV r/m8; IDIV r/m16; IDIV r/m32; IDIV r/m64; B 33;42;57;1
97

32;41;56;19
6

IMUL/MUL6 EAX/AL, mem; IMUL/MUL AX, m16 B 7; 8 6; 7

IMUL/MUL7 AX/AL, reg; IMUL/MUL EAX, r32 B 7; 6 6; 5

IMUL m16, imm8/imm16; IMUL r16, m16 B 7; 6

IMUL r/m32, imm8/imm32; IMUL r32, r/m32 0 5 1

IMUL r/m64, imm8/imm32; B 14 13

IMUL r16, r16; IMUL r16, imm8/imm16 B 6 5

IMUL r64, r/m64; IMUL/MUL RAX, r/m64 B 11; 12 10; 11

JCC1; JMP4 reg; JMP1 1 1 1

JCXZ; JECXZ; JRCXZ B 4 1

JMP mem4; B 2 1

LDDQU; MOVDQU/MOVUPD/MOVUPS xmm, mem; B 3 2

LEA r16, mem; MASKMOVDQU; SETcc m8 (0, 1) 2 1

LEA, reg, mem 1 1 1

LEAVE; B 2; 2

MAXSD/MAXSS/MINSD/MINSS xmm, mem B 5 1

MAXSD/MAXSS/MINSD/MINSS xmm, xmm 1 5 1

MOV2 MOFFS, (E)AX/AL; MOV2 reg, mem; MOV2 mem, reg 0 1 1

MOVD mem3, mm; MOVD xmm, reg3; MOVD mm, mem3 0 1 1

MOVD reg3, mm; MOVD reg3, xmm; PMOVMSK reg3, mm 0 3 1

MOVDQA/MOVQ xmm, mem; MOVDQA/MOVD mem, xmm; 0 1 1

MOVDQA/MOVDQU/MOVUPD xmm, xmm; MOVQ mm, mm (0, 1) 1 0.5

MOVDQU/MOVUPD/MOVUPS mem, xmm; B 2 2

MOVHLPS;MOVLHPS;MOVHPD/MOVHPS/MOVLPD/MOVLPS 0 1 1

MOVMSKPD/MOVSKPS/PMOVMSKB reg3, xmm 0 3 1

MOVNTI3 mem, reg; MOVNTPD/MOVNTPS; MOVNTQ 0 1 1

MOVQ mem, mm; MOVQ mm, mem; MOVDDUP 0 1 1

MOVSD/MOVSS xmm, xmm; MOVSXD5 reg, reg (0, 1) 1 0.5

MOVSD/MOVSS xmm, mem; PALIGNR 0 1 1

MOVSD/MOVSS mem, xmm; PINSRW 0 1 1

MOVSHDUP/MOVSLDUP xmm, mem 0 1 1

Table F-2. Intel Atom® Microarchitecture Instructions Latency Data (Contd.)

Instruction Ports Latency Throughput

DisplayFamily_DisplayModel 06_1CH,
06_26H,
06_27H

06_1CH,
06_26H,
06_27H

06_1CH,
06_26H,
06_27H

F-17

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

MOVSHDUP/MOVSLDUP/MOVUPS xmm, xmm (0, 1) 1 0.5

MOVSX/MOVZX r16, m8; MOVSX/MOVZX r16, r8 0 3; 2 1

MOVSX/MOVZX reg3, r/m8; MOVSX/MOVZX reg3, r/m16 0 1 1

MOVSXD5 reg, mem; MOVSXD r64, r/m32 0 1 1

MULPS/MULSD xmm, mem; MULSS xmm, mem; 0 5; 4 2

MULPS/MULSD xmm, xmm; MULSS xmm, xmm 0 5; 4 2

MULPD B 5; 4 2

NEG/NOT2 mem; PREFETCHNTA; PREFETCHTx 0 10 9

NEG/NOT2 reg; NOP (0, 1) 1 0.5

PABSB/D/W mm, mem; PABSB/D/W xmm, mem 0 1 1

PABSB/D/W mm, mm; PABSB/D/W xmm, xmm (0, 1) 1 0.5

PACKSSDW/WB mm, mem; PACKSSDW/WB xmm, mem 0 1 1

PACKSSDW/WB mm, mm; PACKSSDW/WB xmm, xmm 0 1 1

PACKUSWB mm, mem; PACKUSWB xmm, mem 0 1 1

PACKUSWB mm, mm; PACKUSWB xmm, xmm 0 1 1

PADDB/D/W/Q mm, mem; PADDB/D/W/Q xmm, mem 0 1 1

PADDB/D/W/Q mm, mm; PADDB/D/W/Q xmm, xmm (0, 1) 1 0.5

PADDSB/W mm, mem; PADDSB/W xmm, mem 0 1 1

PADDSB/W mm, mm; PADDSB/W xmm, xmm (0, 1) 1 0.5

PADDUSB/W mm, mem; PADDUSB/W xmm, mem 0 1 1

PADDUSB/W mm, mm; PADDUSB/W xmm, xmm (0, 1) 1 0.5

PAND/PANDN/POR/PXOR mm, mem; PAND/PANDN/POR/PXOR xmm, mem 0 1 1

PAND/PANDN/POR/PXOR mm, mm; PAND/PANDN/POR/PXOR xmm, xmm (0, 1) 1 0.5

PAVGB/W mm, mem; PAVGB/W xmm, mem 0 1 1

PAVGB/W mm, mm; PAVGB/W xmm, xmm (0, 1) 1 0.5

PCMPEQB/D/W mm, mem; PCMPEQB/D/W xmm, mem 0 1 1

PCMPEQB/D/W mm, mm; PCMPEQB/D/W xmm, xmm (0, 1) 1 0.5

PCMPGTB/D/W mm, mem; PCMPGTB/D/W xmm, mem 0 1 1

PCMPGTB/D/W mm, mm; PCMPGTB/D/W xmm, xmm (0, 1) 1 0.5

PEXTRW; B 4 1

PHADDD/PHSUBD mm, mem; PHADDD/PHSUBD xmm, mem B 4 3

PHADDD/PHSUBD mm, mm; PHADDD/PHSUBD xmm, xmm B 3 2

PHADDW/PHADDSW mm, mem; PHADDW/PHADDSW xmm, mem B 6; 8 5;7

PHADDW/PHADDSW mm, mm; PHADDW/PHADDSW xmm, xmm B 5; 7 M

PHSUBW/PHSUBSW mm, mem; PHSUBW/PHSUBSW xmm, mem B 6; 8 M

PHSUBW/PHSUBSW mm, mm; PHSUBW/PHSUBSW xmm, xmm B 5; 7 M

Table F-2. Intel Atom® Microarchitecture Instructions Latency Data (Contd.)

Instruction Ports Latency Throughput

DisplayFamily_DisplayModel 06_1CH,
06_26H,
06_27H

06_1CH,
06_26H,
06_27H

06_1CH,
06_26H,
06_27H

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

F-18

PMADDUBSW/PMADDWD/PMULHRSW/PSADBW mm, mm;
PMADDUBSW/PMADDWD/PMULHRSW/PSADBW mm, mem

0 4 1

PMADDUBSW/PMADDWD/PMULHRSW/PSADBW xmm, xmm;
PMADDUBSW/PMADDWD/PMULHRSW/PSADBW xmm, mem

0 5 1

PMAXSW/UB mm, mem; PMAXSW/UB xmm, mem 0 1 1

PMAXSW/UB mm, mm; PMAXSW/UB xmm, xmm (0, 1) 1 0.5

PMINSW/UB mm, mem; PMINSW/UB xmm, mem 0 1 1

PMINSW/UB mm, mm; PMINSW/UB xmm, xmm (0, 1) 1 0.5

PMULHUW/PMULHW/PMULLW/PMULUDQ mm, mm;
PMULHUW/PMULHW/PMULLW/PMULUDQ mm, mem

0 4 1

PMULHUW/PMULHW/PMULLW/PMULUDQ xmm, xmm;
PMULHUW/PMULHW/PMULLW/PMULUDQ xmm, mem

0 5 1

POP mem5; PSLLD/Q/W mm, mem; PSLLD/Q/W xmm, mem B 3 2

POP r16; PUSH mem4; PSLLD/Q/W mm, mm; PSLLD/Q/W xmm, xmm B 2 1

POP reg3; PUSH reg4; PUSH imm B 1 1

POPA ; POPAD B 9 8

PSHUFB mm, mem; PSHUFD; PSHUFHW; PSHUFLW; PSHUFW 0 1 1

PSHUFB mm, mm; PSLLD/Q/W mm, imm; PSLLD/Q/W xmm, imm 0 1 1

PSHUFB xmm, mem B 5 4

PSHUFB xmm, xmm B 4 3

PSIGNB/D/W mm, mem; PSIGNB/D/W xmm, mem 0 1 1

PSIGNB/D/W mm, mm; PSIGNB/D/W xmm, xmm (0, 1) 1 0.5

PSRAD/W mm, imm; PSRAD/W xmm, imm; 0 1 1

PSRLD/Q/W mm, mem; PSRLD/Q/W xmm, mem B 3 2

PSRLD/Q/W mm, mm; PSRLD/Q/W xmm, xmm B 2 1

PSRLD/Q/W mm, imm; PSRLD/Q/W xmm, imm; 0 1 1

PSLLDQ/PSRLDQ xmm, imm; SHUFPD/SHUFPS 0 1 1

PSUBB/D/W/Q mm, mem; PSUBB/D/W/Q xmm, mem 0 1 1

PSUBB/D/W/Q mm, mm; PSUBB/D/W/Q xmm, xmm (0, 1) 1 0.5

PSUBSB/W mm, mem; PSUBSB/W xmm, mem 0 1 1

PSUBSB/W mm, mm; PSUBSB/W xmm, xmm (0, 1) 1 0.5

PSUBUSB/W mm, mem; PSUBUSB/W xmm, mem 0 1 1

PSUBUSB/W mm, mm; PSUBUSB/W xmm, xmm (0, 1) 1 0.5

PUNPCKHBW/DQ/WD; PUNPCKLBW/DQ/WD 0 1 1

PUNPCKHQDQ; PUNPCKLQDQ 0 1 1

PUSHA ; PUSHAD B 8 7

RCL mem2, 1; RCL reg2, 1 0 1 1

Table F-2. Intel Atom® Microarchitecture Instructions Latency Data (Contd.)

Instruction Ports Latency Throughput

DisplayFamily_DisplayModel 06_1CH,
06_26H,
06_27H

06_1CH,
06_26H,
06_27H

06_1CH,
06_26H,
06_27H

F-19

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

F.5 SILVERMONT MICROARCHITECTURE
The Intel Atom processor E3000 and C2000 Series are based on the Silvermont microarchitecture. The
Silvermont microarchitecture spans a wide range of computing devices from tablets, phones, and PCs to
microservers. In addition to support for Intel 64 and IA-32 architecture, major enhancements of the
Silvermont microarchitecture include:

RCL m8, CL; RCL m16, CL; RCL mem3, CL; B 18;16; 14 17;15;13

RCL m8, imm; RCL m16, imm; RCL mem3, imm; B 18; 17; 14 17;16;13

RCL r8, CL; RCL r16, CL; RCL reg3, CL; B 17; 16; 14 16;15;14

RCL r8, imm; RCL r16, imm; RCL reg3, imm; B 18;16; 14 17;15;13

RCPSS 0 4 1

RCR mem2, 1; RCR reg2, 1 B 7; 5 6;4

RCR m8, CL; RCR m16, CL; RCR mem3, CL; B 15; 13; 12 14;12;11

RCR m8, imm; RCR m16, imm; RCR mem3, imm; B 16,;14; 12 15;13;11

RCR r8, CL; RCR r16, CL; RCR reg3, CL; B 14; 13; 12 13;12;11

RCR r8, imm; RCR r16, imm; RCR reg3, imm; B 15, 14, 12 14;13;11

RET imm16 B 1 1

RET (far) B 79

ROL; ROR; SAL; SAR; SHL; SHR 0 1 1

SETcc 1 1

SHLD8 mem, reg, imm; SHLD r64, r64, imm; SHLD m64, r64, CL B 11 10

SHLD m32, r32; SHLD r32, r32 B 4; 2 3; 1

SHLD m16, r16, CL; SHLD r16, r16, imm; SHLD r64, r64, CL B 10 9

SHLD r16, r16, CL; SHRD m64, r64; SHRD r64, r64, imm B 9 8

SHRD m32, r32; SHRD r32, r32 B 4; 2 3; 1

SHRD m16, r16; SHRD r16, r16 B 6 5

SHRD r64, r64, CL B 8 7

STMXCSR B 15 14

TEST2 reg, reg; TEST4 reg, imm (0, 1) 1 0.5

UNPCKHPD; UNPCKHPS; UNPCKLPD, UNPCKLPS 0 1 1

Notes on operand size (osize) and address size (asize):
1. osize = 8, 16, 32 or asize = 8, 16, 32
2. osize = 8, 16, 32, 64
3. osize = 32, 64
4. osize = 16, 32, 64 or asize = 16, 32, 64
5. osize = 16, 32
6. osize = 8, 32
7. osize = 8, 16
8. osize = 16, 64

Table F-2. Intel Atom® Microarchitecture Instructions Latency Data (Contd.)

Instruction Ports Latency Throughput

DisplayFamily_DisplayModel 06_1CH,
06_26H,
06_27H

06_1CH,
06_26H,
06_27H

06_1CH,
06_26H,
06_27H

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

F-20

• Out-of-order execution for integer instructions and de-coupled ordering between non-integer and
memory instructions. In contrast, the 45nm and 32nm Intel Atom microarchitecture (see Appendix
F) was strictly in-order with limited ability to exploit available instruction-level parallelism.

• Non-blocking memory instructions allowing multiple (8) outstanding misses. In previous generation
processors, problems in a single memory instruction (for example, a cache miss) caused all
subsequent instructions to stall until the problem was resolved. The new microarchitecture allows up
to 8 unique outstanding references.

• Modular system design with two cores sharing an L2 cache connected to a new integrated memory
controller using a point-to-point interface instead of the Front Side Bus.

• Instruction set enhancements to include SSE 4.1, SSE 4.2, AESNI and PCLMULQDQ.

The block diagram for the Silvermont microarchitecture is depicted in Figure F-1. While the memory and
execute clusters were significantly redesigned for improved single thread performance, the primary
focus is still a highly efficient design in a small form factor power envelope. Each pipeline is accompanied
with a dedicated scheduling queue called a reservation station. While floating-point and memory
instructions schedule from their respective queues in program order, integer execution instructions
schedule from their respective queues out of order.

Integer instructions can be scheduled from their queues out of order in contrast to in-order execution in
previous generations. Out of order scheduling allows these instructions to tolerate stalls caused by
unavailable (re)sources. Memory instructions must generate their addresses (AGEN) in-order and
schedule from the scheduling queue in-order but they may complete out-of-order.

Non-integer instructions (including SIMD integer, SIMD floating-point, and x87 floating-point) also
schedule from their respective scheduling queue in program order. However, these separate scheduling
queues allow their execution to be decoupled from instructions in other scheduling queues.

Figure F-2. Silvermont Microarchitecture Pipeline

F-21

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

The design of the microarchitecture takes into account maximizing platform performance of multiple
form factors (e.g. phones, tablets, to micro-servers) and minimizing the power and area cost due to out
of order scheduling (i.e. maximizing performance/power/cost efficiency). Intel Hyper-Threading
Technology is not supported in favor of a multi-core architecture with a shared L2 cache. The rest of this
section will cover some of the cluster-level features in more detail.

The front end cluster (FEC), shown in yellow in Figure F-1, features a power optimized 2-wide decode
pipeline. FEC is responsible for fetching and decoding instructions from instruction memory. FEC utilizes
predecode hints from the icache to avoid costly on-the-fly instruction length determination. The front end
contains a Branch Target Buffer (BTB), plus advanced branch predictor hardware.

The front end is connected to the execution units through the Allocation, Renaming and Retirement
(ARR) cluster (lavender color in Figure F-1). ARR receives uops from the FEC and is responsible for
resource checks. The Register Alias Table (RAT) renames the logical registers to the physical registers.
The Reorder Buffer (ROB) puts the operations back into program order and completes (retires) them. It
also stops execution at interrupts, exceptions and assists and runs program control over microcode.

Scheduling in the Silvermont microarchitecture is distributed, so after renaming, uops are sent to various
clusters (IEC: integer execution cluster; MEC: memory execution cluster; FPC: floating-point cluster) for
scheduling (shown as RSV for FP, IEC, and MEC in Figure F-1).

There are 2 sets of reservation stations for FPC and IEC (one for each port) and a single set of reservation
stations for MEC. Each reservation station is responsible for receiving up to 2 ops from the ARR cluster in
a cycle and selecting one ready op for dispatching to execution as soon as the op becomes ready.

To support the distributed reservation station concept, load-op and load-op-store macro-instructions
requiring integer execution must be split into a memory sub-op that is sent to the MEC and resides in the
memory reservation station and an integer execution sub-op that is sent to the integer reservation
station. The IEC schedulers pick the oldest ready instruction from each of its RSVs while the MEC and the
FPC schedulers only look at the oldest instruction in their respective RSVs. Even though the MEC and FPC
clusters employ in-order schedulers, a younger instruction from a particular FPC RSV can execute before
an older instruction in the other FPC RSV for example (or the IEC or MEC RSVs).

Each execution port has specific functional units available. Table F-3 shows the mapping of functional
units to ports for IEC (the orange units in Figure F-1), MEC (the green units in Figure F-1), and the FPC
(the red units in Figure F-1). Compared to the previous Intel Atom microarchitecture, the Silvermont
microarchitecture adds an integer multiply unit (IMUL) in IEC.

Table F-3. Function Unit Mapping of the Silvermont Microarchitecture

Cluster Port 0 Port 1

IEC ALU0, Shift/Rotate Unit, LEA with no index ALU1, Bit processing unit, Jump unit, IMUL, POPCNT,
CRC32, LEA1

NOTES:
1. LEAs with valid index and displacement are split into multiple UOPs and use both ports. LEAs with valid index execute on

port 1.

FPC SIMD ALU, SIMD shift/Shuffle unit, SIMD FP
mul/div/cvt unit, STTNI/AESNI/PCLMULQDQ
unit, RCP/RSQRT unit, F2I convert unit

SIMD ALU, SIMD FPadd unit, F2I convert unit

MEC Load/Store

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

F-22

The Memory Execution Cluster (MEC) (shown in green in Figure F-1) can support both 32-bit and 36-bit
physical addressing modes. The Silvermont microarchitecture has a 2 level Data TLB hierarchy with
support for both large (2MB or 4MB) and small page structures. A small micro TLB (referred to as uTLB)
is backed up by a larger 2nd level TLB (referred to as DTLB). A hardware page walker services misses
from both the Instruction and Data TLBs.

The MEC also owns the MEC RSV, which is responsible for scheduling of all loads and stores. Load and
store instructions go through addresses generation phase in program order to avoid on-the-fly memory
ordering later in the pipeline. Therefore, an unknown address will stall younger memory instructions.
Memory operations that incur problems (e.g. uTLB misses, unavailable resources, etc.) are put in a
separate queue called the RehabQ. This allows younger instructions (that do not incur problems) to
continue execution rather than stalling all younger instructions. The problematic instruction is later
reissued from the RehabQ when the problem is resolved. Note that load misses are not considered
problematic as the Silvermont microarchitecture features a non-blocking data cache that can sustain 8
outstanding misses.

The Bus Cluster (BIU) includes the second-level cache (L2) and is responsible for all communication with
components outside the processor core. The L2 cache supports up to 1MB with an optimized latency less
than the previous Intel Atom microarchitecture. The Front-Side Bus from earlier Intel Atom processors
has been replaced by an intra-die interconnect (IDI) fabric connecting to a newly optimized memory
controller. The BIU also houses the L2 data prefetcher.

The new core level multi-processing (or CMP) system configuration features two processor cores making
requests to a single BIU, which will handle the multiplexing between cores. This basic CMP module can be
replicated to create a quad-core configuration, or one core chopped off to create a single-core
configuration.

F.5.1 Integer Pipeline
Load pipeline stages are no longer inlined with the rest of the integer pipeline. As a result, non-load ops
can reach execute faster, and the branch misprediction penalty is effectively 3 cycles less compared to
earlier Intel Atom processors. Front end pipe stages are the same as earlier Intel Atom processors
(3 cycles for fetch, 3 cycles for decode). ARR pipestages perform out-of-order allocation and register
renaming, split the uop into parts if necessary, and send them to the distributed reservation stations.
RSV stage is where the distributed reservation station performs its scheduling. The execution pipelines
are very similar to earlier Intel Atom processors. When all parts of a uop are marked as finished, the ROB
handles final completion in-order.

F.5.2 Floating-Point Pipeline
Compared to the INT pipeline, the FP pipeline is longer. The execution stages can vary between one and
five depending on the instruction. Like other Intel microarchitectures, the Silvermont microarchitecture
needs to limit the number of FP assists (when certain floating-point operations cannot be handled
natively by the execution pipeline, and must be performed by microcode) to the bare minimum to
achieve high performance. To do this the processor should be run with exceptions masked and the DAZ
(denormal as zero) and FTZ (flush to zero) flags set whenever possible.

As mentioned, while each FPC RSV schedules instructions in-order, the RSVs can get out of order with
respect to each other.

F-23

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

F.6 GOLDMONT MICROARCHITECTURE
The Goldmont microarchitecture builds on the success of the Silvermont microarchitecture (see Section
F.5), and provides the following enhancements:
• An out-of-order execution engine with a 3-wide superscalar pipeline. Specifically:

— The decoder can decode 3 instructions per cycle.

— The microcode sequencer can send 3 uops per cycle for allocation into the reservation stations.

— Retirement supports a peak rate of 3 per cycle.
• Enhancement in branch prediction which de-couples the fetch pipeline from the instruction decoder.
• Larger out-of-order execution window and buffers that enable deeper out-of-order execution across

integer, FP/SIMD, and memory instruction types.
• Fully out-of-order memory execution and disambiguation. The Goldmont microarchitecture can

execute one load and one store per cycle (compared to one load or one store per cycle in the
Silvermont microarchitecture). The memory execution pipeline also includes a second level TLB
enhancement with 512 entries for 4KB pages.

• Integer execution cluster in the Goldmont microarchitecture provides three pipelines and can execute
up to three simple integer ALU operations per cycle.

• SIMD integer and floating-point instructions execute in a 128-bit wide engine. Throughput and
latency of many instructions have improved, including PSHUFB with 1-cycle throughput (versus 5
cycles for Silvermont microarchitecture) and many other SIMD instructions with doubled throughput;
see Table F-19 for details.

• Throughput and latency of instructions for accelerating encryption/description (AES) and carry-less
multiplication (PCLMULQDQ) have been improved significantly in the Goldmont microarchitecture.

• The Goldmont microarchitecture provides new instructions with hardware accelerated secure hashing
algorithm, SHA1 and SHA256.

• The Goldmont microarchitecture also adds support for the RDSEED instruction for random number
generation meeting the NIST SP800-90C standard.

• PAUSE instruction latency is optimized to enable better power efficiency.

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

F-24

The front end cluster (FEC) of the Goldmont microarchitecture provides a number of enhancements over
the FEC of the Silvermont microarchitecture. The enhancements are summarized in Table F-4.

Figure F-3. CPU Core Pipeline Functionality of the Goldmont Microarchitecture

1st Level Branch
Predict

Instruction Cache

ITLB
2nd Level Branch

Predict

Decode MSROM

Allocate RenameInstruction Queue

Ld/St
Sched

ALU
Sched

ALU
Sched

ALU
Sched

Ld/St
Buffers

TLB
L1 Data
Cache

FP/SIMD Sched

Phy Register File

Addr
Gen

ALU ALUALU

L2 Cache XQ Queue

Phy Register File

FP ALUFP ALU

IDI

F-25

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

The FEC is connected to the execution units through the Allocation, Renaming and Retirement (ARR)
cluster. Scheduling of uops is handled with distributed reservation stations across different clusters
(IEC, FPC, MEC). Each cluster has its own reservations for receiving multiple uops from the ARR. Table
F-5 compares the out-of-order scheduling characteristics between the Goldmont microarchitecture and
Silvermont microarchitecture.

An instruction that references memory and requires integer/FP resources will have the memory uop sent
to the MEC cluster and the integer/FP uop sent to the IEC/FPC cluster. Then out-of-order execution can
commence according to the heuristic described in Table F-5 and when resources are available. Table F-6
shows the mapping of execution units across each port for respective clusters.

Table F-4. Comparison of Front End Cluster Features

Feature Goldmont Microarchitecture Silvermont Microarchitecture

Number of Decoders 3 2

Max Throughput of Decoders 20 Bytes per cycle 16 Bytes per cycle

Fetch and Icache Pipeline Decoupled Coupled

ITLB 48 entries, large page support 48 entries

Branch Mispredict Penalty 12 cycles 10 cycles

L2 Predecode Cache 16K NA

Table F-5. Comparison of Distributed Reservation Stations on Scheduling Uops

Cluster Goldmont Microarchitecture Silvermont Microarchitecture

IEC Reservation 3x distributed for each port 2x distributed for each port

Out-of-order within each IEC RSV and
between IEC, across FPC, MEC

Out-of-order within each IEC RSV and between IEC,
across FPC, MEC

FPC Reservation 1x unified to ports 0, 1 2x distributed for each port

Out-of-order within FPC RSV and across
IEC, MEC

In order within each FPC RSV; out-of-order between
FPC, across IEC, MEC

MEC Reservation 1x unified to ports 0, 1 1x to port 0

Out-of-order within MEC RSV and across
IEC, FPC

In order within each MEC RSV; out-of-order across
IEC, FPC

Table F-6. Function Unit Mapping of the Goldmont Microarchitecture

Cluster Port 0 Port 1 Port 2

IEC ALU0, Shift/Rotate, LEA with no
index, F2I, converts/cmp, store_data

ALU1, Bit processing, JEU, IMUL,
IDIV,POPCNT, CRC32, LEA, I2F, store_data

ALU2, LEA1, I2F,
flag_merge

NOTES:
1. LEAs without index can execute on port 0, 1, or 2. LEA with valid index and displacement are split into multiple UOPs and

use both port 1 and 2. LEAs with valid index execute on port 1.

FPC SIMD ALU, SIMD shift/Shuffle, SIMD
mul, STTNI/AESNI/PCLMULQDQ/SHA ;
FP_mul, Converts, F2I convert

SIMD ALU, SIMD shuffle,
FP_add, F2I compare

MEC Load_addr Store_addr

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

F-26

The MEC owns the MEC RSV and is responsible for scheduling all load and stores via ports 0 and 1. Load
and store instructions can go through the address generation phase in order or out-of-order. When
out-of-order address generation scheduling is available, memory execution pipeline is de-coupled from
the address generation pipeline using the load buffers and store buffers.

With out-of-order execution, situations where loads can pass an unknown store may cause memory
order issues if the load eventually depended on the unknown store and would require a pipeline flush
when the store ad-dress is known. The Goldmont microarchitecture keeps track of and minimizes such
potentially problematic load executions.

Memory operations that experienced problems (for example, uTLB misses and unavailable resources) go
back to load or store buffer for re-execution. This allows younger instructions (that do not incur
problems) to continue execution rather than stalling all younger instructions. The problematic instruction
is later re-issued (in some cases, re-issued at retirement) from the load/store buffer when the problem
is resolved. Note that load misses are considered problematic as the data cache is non-blocking and can
sustain multiple outstanding misses using write-combining buffers (WCB).

F.7 GOLDMONT PLUS MICROARCHITECTURE
The Goldmont Plus microarchitecture builds on the success of the Goldmont microarchitecture (see
Section F.6), and provides the following enhancements:
• Widen previous generation Intel Atom processor back-end pipeline to 4-wide allocation to 4-wide

retire, while maintaining 3-wide fetch and decode pipeline.
• Enhanced branch prediction unit.
• 64KB shared second level pre-decode cache (16KB in Goldmont microarchitecture).
• Larger reservation station and ROB entries to support large out-of-order window.
• Wider integer execution unit. New dedicated JEU port with support for faster branch redirection.
• Radix-1024 floating point divider for fast scalar/packed single, double and extended precision

floating point divides.
• Improved AES-NI instruction latency and throughput.
• Larger load and store buffers. Improved store-to-load forwarding latency store data from register.
• Shared instruction and data second level TLB. Paging Cache Enhancements (PxE/ePxE caches).
• Modular system design with four cores sharing up to 4MB L2 cache.

Table F-7. Comparison of MEC Resources

MEC Resource Goldmont Microarchitecture Silvermont Microarchitecture

L1 Data Cache 24KB 24 KB

uTLB 32 entries 32 entries

DTLB (4KB page) 512 entries 128 entries

DTLB (2M/4M page) 32 entries 16 entries

Load-use Latency 3 cycles 3 cycles

Pipeline 1x load + 1x store 1x share by load/store

AGEN Out-of-order In order

WCBs 8 8

Addressing 39-bit physical, 48-bit linear 36-bit physical, 48-bit linear

F-27

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

• Support for Read Processor ID (RDP) new instruction.

The front end cluster (FEC) of the Goldmont Plus microarchitecture provides a number of enhancements
over the FEC of the Goldmont microarchitecture. The enhancements are summarized in Table F-8.

Figure F-4. CPU Core Pipeline Functionality of the Goldmont Plus Microarchitecture

Table F-8. Comparison of Front End Cluster Features

Feature Goldmont Plus Microarchitecture Goldmont Microarchitecture

Number of Decoders 3 3

Max. Throughput Decoders 20 Bytes per cycle 20 Bytes per cycle

Fetch and Icache Pipeline Decoupled Decoupled

ITLB 48 entries, large page support 48 entries, large page support

2nd Level ITLB Shared with DTLB

Branch Mispredict Penalty 13 cycles (12 cycles for certain Jcc) 12 cycles

L2 Predecode Cache 64K 16K

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

F-28

The FEC is connected to the execution units through the Allocation, Renaming and Retirement (ARR)
cluster. Scheduling of uops is handled with distributed reservation stations across different clusters
(IEC, FPC, MEC). Each cluster has its own reservations for receiving multiple uops from the ARR.
Table F-9 compares the out-of-order scheduling characteristics between the Goldmont Plus
microarchitecture and Goldmont microarchitecture.

An instruction that references memory and requires integer/FP resources will have the memory uop sent
to the MEC cluster and the integer/FP uop sent to the IEC/FPC cluster. Then out-of-order execution can
commence according to the heuristic described in Table F-9 when resources are available. Table F-10
shows the mapping of execution units across each port for respective clusters.

The MEC owns the MEC RSV and is responsible for scheduling all load and stores via ports 0 and 1. Load
and store instructions can go through the address generation phase in order or out-of-order. When
out-of-order address generation scheduling is available, memory execution pipeline is de-coupled from
the address generation pipeline using the load buffers and store buffers.

With out-of-order execution, situations where loads can pass an unknown store may cause memory
order issues if the load eventually depended on the unknown store and would require a pipeline flush
when the store address is known. The Goldmont Plus microarchitecture keeps track of and minimizes
such potentially problematic load executions.

Table F-9. Comparison of Distributed Reservation Stations on Scheduling Uops

Cluster Goldmont Plus Microarchitecture Goldmont Microarchitecture

IEC Reservation 4x distributed for each port 3x distributed for each port

Out-of-order within each IEC RSV and
between IEC, across FPC, MEC

Out-of-order within each IEC RSV and between IEC,
across FPC, MEC

FPC Reservation 1x unified to ports 0, 1 1x unified to ports 0, 1

Out-of-order within FPC RSV and across
IEC, MEC

Out-of-order within FPC RSV and across IEC, MEC

MEC Reservation 1x unified to ports 0, 1 1x unified to ports 0, 1

Out-of-order within MEC RSV and across
IEC, FPC

Out-of-order within MEC RSV and across IEC, FPC

Table F-10. Function Unit Mapping of the Goldmont Plus Microarchitecture

Cluster Port 0 Port 1 Port 2 Port 3

IEC ALU0, Shift/Rotate, LEA
with no index, F2I,
converts/cmp, store_data

ALU1, Bit processing, IMUL,
IDIV,POPCNT, CRC32, LEA,
I2F, store_data

ALU2, LEA1, I2F,
flag_merge

NOTES:
1. LEAs without index can execute on port 0, 1, or 2. LEA with a valid index and displacement are split into multiple UOPs

and use both port 1 and 2. LEAs with a valid index execute on port 1.

 JEU

FPC SIMD ALU, SIMD
shift/Shuffle, SIMD mul,
STTNI/AESNI/PCLMULQDQ/
SHA ;
FP_mul, Converts, F2I
convert

SIMD ALU, SIMD shuffle,
FP_add, F2I compare

MEC Load_addr Store_addr

F-29

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

Memory operations that experienced problems (for example, uTLB misses and unavailable resources) go
back to the load or store buffer for re-execution. This allows younger instructions (that do not incur
problems) to continue execution rather than stalling all younger instructions. The problematic instruction
is later re-issued from the load/store buffer when the problem is resolved. Note that load misses are
considered problematic as the data cache is non-blocking and can sustain multiple outstanding misses
using write-combining buffers (WCB).

Goldmont Plus microarchitecture includes secondary level TLB changes to support both data and instruc-
tion side translations (Goldmont microarchitecture secondary level TLB only supports data).

F.8 CODING RECOMMENDATIONS
Most of the general coding recommendations described in Chapter 3, “General Optimization Guidelines”
also apply to the Intel Atom microarchitectures. The rest of this chapter describes techniques that
supplement the general recommendations and are specific to the Intel Atom microarchitectures.

F.8.1 Optimizing The Front End

F.8.1.1 Instruction Decoder
Some IA instructions that perform complex tasks require a lookup in the microcode sequencer ROM
(MSROM) to decode them into a multiple uop flow. To determine which instructions require an MSROM
lookup, see the instruction latency/bandwidth table in Section F.9.

Fewer instructions require MSROM lookup in the Goldmont Plus and Goldmont microarchitecture than in
the Silvermont microarchitecture, though the Silvermont microarchitecture also improved significantly
over prior generations in this area; Section F.9 provides more details. It is advisable to avoid ucode flows
where possible. Table F-11 provides alternate non-MSROM instruction sequences that can replace an
instruction that decodes from MSROM.

Table F-11. Alternatives to MSROM Instructions

Instruction from MSROM Recommendation for Silvermont Recommendation for Goldmont Plus and
Goldmont

CALL m16/m32/m64 Load + CALL reg Load + CALL reg

PUSH m16/m32/m64 Load + PUSH reg Use as is (non MSROM)

LEAVE No recommended replacement Use as is (non MSROM)

FLD/FST/FSTP m80fp No recommended replacement Use as is (non MSROM)

FCOM+FNSTSW FCOMI FCOMI

(I)MUL r/m16 (Result DX:AX) Use (I)MUL r16, r/m16 if extended precision
not required, or (I)MUL r32, r/m32

Use (I)MUL r16, r/m16 if extended precision
not required, or (I)MUL r32, r/m32

(I)MUL r/m32 (Result EDX:EAX) Use (I)MUL r32, r/m32 if extended precision
not required, or (I)MUL r64, r/m64

Use as is (non MSROM)

(I)MUL r/m64 (Result RDX:RAX) Use (I)MUL r64, r/m64 if extended precision
not required

Use as is (non MSROM)

PEXTRB/D/Q No recommended replacement Use as is (non MSROM)

PMULLD No recommended replacement Use as is (non MSROM)

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

F-30

Tuning Suggestion 1. Use the perfmon counter MS_DECODED.MS_ENTRY to find the number of
instructions that need the MSROM (the count will include any assist or fault that occurred).
Assembly/Compiler Coding Rule 1. (M impact, M generality) Try to keep the I-footprint small to
get the best reuse of the predecode bits.

Avoid I-cache aliasing/thrashing since the incorrect predecode bits result in reduction of decode
throughput in one instruction every 3 cycles.
Tuning Suggestion 2. Use the perfmon counter DECODE_RESTRICTION.PREDECODE_WRONG to
count the number of times that a decode restriction reduced instruction decode throughput because
predecoded bits are incorrect.

F.8.1.2 Front End High IPC Considerations
In general front end restrictions are not typically a performance limiter until you reach higher (>1)
Instructions Per Cycle (IPC) levels.

The decode restrictions that must be followed to get full decode bandwidth per cycle through the
decoders include:
• MSROM instructions should be avoided if possible. A good example is the memory form of CALL near

indirect. It will often be better to perform a load into a register and then perform the register version
of CALL.

• The total length of the instruction bytes that can be decoded each cycle varies by microarchitecture.

— Silvermont microarchitecture: up to 16 bytes per cycle with instruction not more than 8 bytes in
length. For an instruction length exceeding 8 bytes, only one instruction per cycle is decoded on
decoder 0.

— Goldmont and later microarchitecture: up to 20 bytes per cycle depending on alignment
(for example, if the first instruction of three consecutive instructions is aligned on 4-Byte
boundary and the 3 instruction sequence meets decode restrictions. For an instruction length
exceeding 8 bytes, it is not restricted to decoder 0 or one per cycle.

• An instruction with multiple prefixes can restrict decode throughput. The restriction is on the length
of bytes combining prefixes and escape bytes. There is a 3 cycle penalty when the escape/prefix
count exceeds the following limits as specified per microarchitectures.

— Silvermont microarchitecture: the limit is 3 bytes.

— Goldmont and later microarchitecture: the limit is 4 bytes. Thus, SSE4 or AES instruction that
accesses one of the upper 8 registers do not incur a penalty.

— Only decoder 0 can decode an instruction exceeding the limit of prefix/escape byte restriction on
the Silvermont and Goldmont microarchitectures.

• The maximum number of branches that can be decoded each cycle is 1 for the Silvermont
microarchitecture and 2 for the Goldmont microarchitecture. Prevent a re-steer penalty by avoiding
back-to-back conditional branches.

Unlike the previous generation, the Silvermont and later microarchitectures can decode two x87
instructions in the same cycle without incurring a 2-cycle penalty. Branch decoder restrictions are also
relaxed. In earlier Intel Atom processors, decoding past a conditional or indirect branch in decoder 0
resulted in a 2-cycle penalty.

The Silvermont microarchitecture can decode past conditional and indirect branch instructions in decoder
0. However, if the next instruction (on decoder 1) is also a branch, there is a 3-cycle penalty for the
second branch instruction.

The Goldmont and later microarchitecture can decode one predicted not-taken branches in decoder 0 or
decoder 1, plus another branch in decoder 2 without the 3-cycle re-steer penalty. However, if there are
two predicted not-taken branches at decoder 0 and 1, the second branch at decoder 1 will incur a 3-cycle
penalty.

For a branch target that is a predicted taken conditional branch or unconditional branch, it is decoded
with a one cycle bubble across all generations of Intel Atom processors.

F-31

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

Assembly/Compiler Coding Rule 2. (MH impact, H generality) Minimize the use of instructions
that have the following characteristics to achieve more than one instruction per cycle throughput:
(i) using the MSROM, (ii) exceeding the limit of escape/prefix bytes, (iii) more than 8 bytes long, or
(iv) have back to back branches.

For example, an instruction with 3 bytes of prefix/escape and accessing the lower 8 registers can decode
normally in the Silvermont, Goldmont and later microarchitectures. For instance:

PCLMULQDQ 66 0F 3A 44 C7 01 pclmulqdq xmm0, xmm7, 0x1

To access any of the upper 8 XMM registers, XMM8-15, an additional byte with REX prefix is necessary.
Consequently, it will decode normally in the Goldmont and later microarchitecture, but incur a decode
penalty in the Silvermont microarchitecture. For instance:

PCLMULQDQ 66 41 0F 3A 44 C0 01 pclmulqdq xmm0, xmm8, 0x1

(Note the REX byte 41, in between the 66 and the 0F 3A.)

The 3-cycle penalty applies whenever the combined prefix/escape bytes exceed the decode restriction
limit. Also, it forces the instruction to be decoded on decoder 0. Additionally, when decoding an
instruction exceeding the prefix/escape length limit, not on decoder 0, there is an extra delay to re-steer
to decoder 0 (for a total of a 6 cycle penalty for the decoder). Therefore, when hand writing high
performance assembly, be aware of these cases. It would be beneficial to pre-align these cases to
decoder 0 if they occur infrequently using a taken branch target or MS entry point as a decoder 0
alignment vehicle. NOP insertion should be used only as a last resort as NOP instructions consume
resources in other parts of the pipeline. Similar alignment is necessary for MS entry points which suffer
the additional 3 cycle penalty if they align originally to decoder 1. The penalty associated with a
prefix/escape length limit and re-steer apply to both Silvermont, Goldmont and later microarchitectures.

Table F-12 compares decoder capabilities between microarchitectures.

F.8.1.3 Branching Across 4GB Boundary
Another important performance consideration from a front end standpoint is branch prediction. For
64-bit applications, branch prediction performance can be negatively impacted when the target of a
branch is more than 4GB away from the branch. This is more likely to happen when the application is split
into shared libraries. Newer glibc versions can put the shared libraries into the first 2GB to avoid this
problem (since 2.23). The environment variable LD_PREFER_MAP_32BIT_EXEC=1 has to be set.
Developers can build statically to improve the locality in their code. Building with LTO should further
improve performance.

F.8.1.4 Loop Unrolling and Loop Stream Detector
The Silvermont and later microarchitectures include a Loop Stream Detector (LSD) that provides the
back end with uops that are already decoded. This provides performance and power benefits. When the
LSD is engaged, front end decode restrictions, such as number of prefix/escape bytes and instruction
length, no longer apply.

Table F-12. Comparison of Decoder Capabilities

Goldmont Plus and Goldmont
Microarchitecture

Silvermont Microarchitecture

Width 3 2

Max Throughput 20 bytes per cycle (1st instr. aligned to 4B
boundary and decoder 1 and 2 restrictions)

16 bytes per cycle (1st instr. <= 8 bytes))

Prefix/Escape Limit 4 bytes 3 bytes

Branch 2 1

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

F-32

One way to reduce the overhead of loop maintenance code and increase the amount of independent work
in a loop is software loop unrolling. Unfortunately care must be taken on where it is utilized because loop
unrolling has both positive and negative performance effects. The negative performance effects are
caused by the increased code size and increased BTB and register pressure. Furthermore, loop unrolling
can increase the loop size beyond the limits of the LSD. The LSD loop size limit varies with
microarchitecture; it is 27 for the Goldmont and later microarchitecture with a three-wide decoder, and
28 for the Silvermont microarchitecture. Care must be taken to keep the loop size under the LSD limit.
User/Source Coding Rule 1. (M impact, M generality) Keep per-iteration instruction count below
28 when considering loop unrolling technique on short loops with high iteration count.
Tuning Suggestion 3. Use the BACLEARS.ANY perfmon counter to see if the loop unrolling is causing
too much pressure. Use the ICACHE.MISSES perfmon counter to see if loop unrolling is having an
excessive negative effect on the instruction footprint.

F.8.1.5 Mixing Code and Data
Intel Atom processors perform best when code and data are on different pages. Software should avoid
sharing code and data in the same page to avoid false SMC conditions. This recommendation applies to
all page sizes.

F.8.2 Optimizing The Execution Core

F.8.2.1 Scheduling
The Silvermont microarchitecture is less sensitive to instruction ordering than its predecessors due to the
introduction of out-of-order execution for integer instructions. FP instructions have their own reservation
stations but still execute in order with respect to each other. Memory instructions also issue in order but
with the addition of the Rehab Queue, they can complete out of order and memory system delays are no
longer blocking.

The Goldmont and later microarchitecture features fully out-of-order execution across the IEC, FPC, and
MEC pipelines, and is supported by enhancements ranging from 3 ports for IEC, 128-bit data path of FPC
units, dedicated load address and store address pipelines.
Tuning Suggestion 4. Use the perfmon counter UOPS_NOT_DELIVERED.ANY (NO_ALLOC_CYCLE.ANY
on Silvermont microarchitecture) as an indicator of performance bottlenecks in the back end. This
includes delays in the memory system and execution delays.

F.8.2.2 Address Generation
The Silvermont microarchitecture eliminated address generation limitations in previous generations. As
such, using LEA or ADD instructions to generate addresses are equally effective on the Silvermont and
later microarchitectures.

The rule of thumb for ADDs and LEAs is that it is justified to use LEA with a valid index and/or
displacement for non-destructive destination purposes (especially useful for stack offset cases), or to use
a SCALE. Otherwise, ADD(s) are preferable.

F.8.2.3 FP Multiply-Accumulate-Store Execution
With Goldmont and later microarchitectures, a unified FPC reservation station eliminates the
performance issue that can happen in the Silvermont microarchitecture due to intra-port dependence of
in-order scheduling of FPC uops. The paragraphs below and Example F-7 illustrate the problem.

FP arithmetic instructions executing on different ports can execute out-of-order with respect to each
other in the Silvermont microarchitecture. As a result, in unrolled loops with multiplication results feeding
into add instructions which in turn produce results for store instructions, grouping the store instructions
at the end of the loop will improve performance. This allows it to overlap the execution of the multiplies
and the adds. Consider the example shown in Example F-7.

F-33

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

Due to the data dependence, the add instructions cannot start executing until the corresponding multiply
instruction is executed. Because multiplies and stores use the same port, they have to execute in
program order. This means the second multiply instruction cannot start execution even though it is
independent from the first multiply and add instructions. If you group the store instructions together at
the end of the loop as shown below, the second multiply instruction can execute in parallel with the first
multiply instruction (note the 1 cycle bubble when multiplies are overlapped).

F.8.2.4 Integer Multiply Execution
The Silvermont and later microarchitectures have a dedicated integer multiplier to accelerate
commonly-used forms of integer multiply flows. Table F-13 shows the latency and instruction forms of
mul/imul instructions that are accelerated and not using MSROM.

Example F-7. Unrolled Loop Executes In-Order Due to Multiply-Store Port Conflict

Instruction 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

mulps, xmm1, xmm1 E
X
1

E
X
2

E
X
3

E
X
4

E
X
5

addps xmm1, xmm1 E
X
1

E
X
2

E
X
3

movaps mem, xmm1 E
X
1

mulps, xmm2, xmm2 E
X
1

E
X
2

E
X
3

E
X
4

E
X
5

addps xmm2, xmm2 E
X
1

E
X
2

E
X
3

movaps mem, xmm2 E
X
1

Example F-8. Grouping Store Instructions Eliminates Bubbles and Improves IPC

Instruction 1 2 3 4 5 6 7 8 9 10 11

mulps, xmm1, xmm1 EX1 EX2 EX3 EX4 EX5

addps xmm1, xmm1 EX1 EX2 EX3

mulps, xmm2, xmm2 bubble EX1 EX2 EX3 EX4 EX5

addps xmm2, xmm2 EX1 EX2 EX3

movaps mem, xmm1 EX1

movaps mem, xmm2 EX1

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

F-34

The multiply forms with microcode flows should be avoided.

F.8.2.5 Zeroing Idioms
XOR / PXOR / XORPS / XORPD instructions are commonly used to force register values to zero when the
source and the destination register are the same (e.g. XOR eax, eax).

This method of zeroing is preferred by compilers instead of the equivalent MOV eax, 0x0 instructions as
the MOV encoding is larger than the XOR in code bytes.

The Silvermont and later microarchitectures have special hardware support to recognize these cases and
mark both the sources as valid in the architectural register file. This helps the XOR execute faster since
any value XORed with itself will accomplish the necessary zeroing.

The logic will also support PXOR, XORPS, and XORPD idioms.

In Silvermont microarchitecture, zero-idiom, a 64-bit general purpose operand using REX.W, will
experience delay. However, zero-idiom is supported with XMM8-XMM15 or the upper 8 general purpose
registers without REX.W. To clear r8, it is sufficient to use XOR r8d, r8d.

Goldmont and later microarchitecture supports these zero-idioms for 64-bit operands.

F.8.2.6 NOP Idioms
NOP instruction is often used for padding or alignment purposes. The Goldmont and later
microarchitecture has hardware support for NOP handling by marking the NOP as completed without
allocating it into the reservation station. This saves execution resources and bandwidth. Retirement
resource is still needed for the eliminated NOP.

F.8.2.7 Move Elimination and ESP Folding
Move elimination is supported in Goldmont and later microarchitecture. When move elimination is in
effect, these instructions can execute with higher throughput in addition to 0 cycle latency. Specifically,
32-bit and 64-bit operand size of MOV, and MOVAPS/MOVAPD/MOVDQA/MOVDQU/MOVUPS/MOVUPD
with XMM are supported and have throughput of 0.33 cycle if move elimination is in effect. MOVSX and
MOVZX do not support move elimination.

Stack operation using PUSH/POP/CALL/RET is more efficient with the Goldmont and later
microarchitecture than with the Silvermont microarchitecture. Computing the stack pointer address does

Table F-13. Integer Multiply Operation Latency

Integer Multiply Operations Output
Goldmont Plus and
Goldmont Latency Silvermont Latency

imul/mul r/m8 16 4u 5u

imul/mul r/m16 32 4u 5u

imul/mul r/32 64 3 4u

imul/mul r/m64 128 5 7u

imul/mul r16, r/m16; r16, r/m16, imm 16 4u 4u

imul/mul r32, r/m32; r32, r/m32, imm 32 3 3

imul/mul r64, r/m64; r64, r/m64, imm8 64 5 5

u: ucode flow from MSROM

F-35

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

not consume allocation and execution resources in the Goldmont and later microarchitecture.
Additionally, throughput of PUSH/POP is increased from 1 to 3 per cycle.

F.8.2.8 Stack Manipulation Instruction
The memory forms of indirect CALL m16/m32/m64 are decoded into a uop flow from MSROM. Indirect
CALL with target specified in a register can avoid the delays. Thus, loading the target address to a
register, followed by an indirect CALL via register operand is recommended.

In the Goldmont and later microarchitecture, PUSH m16/m32/m64 do not require MSROM to decode.
The same is also true with the LEAVE instruction.

In the Silvermont microarchitecture, PUSH m16/m32/m64 and LEAVE require MSROM to decode.

F.8.2.9 Flags usage
Many instructions have an implicit data result that is captured in a flags register. These results can be
consumed by a variety of instructions such as conditional moves (cmovs), branches and even a variety of
logic/arithmetic operations (such as rcl). The most common instructions used in computing branch
conditions are compare instructions (CMP). Branches dependent on the CMP instruction can execute in
the next cycle. The same is true for branch instructions dependent on ADD or SUB instructions.

INC and DEC instructions require an additional uop to merge the flags as they are partial flag writers. As
a result, a branch instruction depending on an INC or a DEC instruction incurs a 1 cycle penalty.
Note that this penalty only applies to branches that are directly dependent on the INC or DEC instruction.
Assembly/Compiler Coding Rule 3. (M impact, M generality) Use CMP/ADD/SUB instructions to
compute branch conditions instead of INC/DEC instructions whenever possible.

F.8.2.10 SIMD Floating-Point and X87 Instructions
In the Silvermont microarchitecture, only a subset of the SIMD FP execution units are implemented with
a 128-bit wide data path. In Goldmont and later microarchitecture, SIMD FP units are implemented with
a 128-bit data path. In general, packed SIMD instructions complete with one cycle less in latency and
twice the throughput in the Goldmont and later microarchitecture, compared to the Silvermont
microarchitecture.

In particular, MULPD latency is accelerated from 7 to 4 cycles, with 4-fold throughput from every 4 cycles
to 1 per cycle.

Latency and throughput of X87 extended precision load and store, FLD m80fp, and FST/FSTP m80fp are
also improved in the Goldmont and later microarchitecture. See Table F-19 for more details.

In the Goldmont Plus microarchitecture, Floating point divider is upgraded to radix-1024 based design.
Floating point divide and square root latency and bandwidth are significantly improved. See Table 15-14
for more details.

F.8.2.11 SIMD Integer Instructions
In the Silvermont microarchitecture, a relatively small subset of the SIMD integer instructions can
execute with throughput of two instructions per cycle. In the Goldmont and later microarchitecture,
many more SIMD integer instructions can complete at a rate of two instructions per cycle.

Latency and/or throughput improvements in the Goldmont and later microarchitecture include other
SIMD integer instructions that execute only one port. For example, PMULLD has an 11 cycle latency and
throughput of one every 11 cycles in the Silvermont microarchitecture. It has 5 cycle latency and
throughput of one every 2 cycles in the Goldmont and later microarchitectures.

In general, SIMD integer multiply hardware is significantly faster (4 cycle latency) and higher throughput
(1 cycle throughput) than in the Silvermont microarchitecture. Additionally, PADDQ/PSUBQ has 2 cycle
latency and throughput of every 2 cycles, compared to 4 cycle latency and throughput every 4 cycles in
the Silvermont microarchitecture. PSHUFB has 1 cycle latency and throughput in the Goldmont and later

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

F-36

microarchitectures, compared to 5 cycle latency and throughput of every 5 cycles. See Table F-19 for
more details.

F.8.2.12 Vectorization Considerations
In the Silvermont microarchitecture, opportunity for profitable vectorization may be limited by the
availability of high-throughput implementation SIMD execution units or SIMD instructions that require
MSROM to decode into longer flows.

The Goldmont and later microarchitectures allows compiler, as well as direct programming, to profit from
vectorization due to improvement in latency and throughput across a wide variety of SIMD instructions.
Assembly/Compiler Coding Rule 4. (M impact, M generality) Avoid MSROM instructions for code
vectorization.

F.8.2.13 Other SIMD Instructions
The Silvermont microarchitecture supports AESNI and PCLMULQDQ to accelerate performance of various
cryptographic algorithms like AES and AES-GCM for block encryption/decryption.

In the Goldmont and later microarchitectures, the execution hardware is improved from execution
latency, throughput to decode throughput. For example, PCLMULQDQ has latency of 6 cycles with
throughput of every 4 cycles in the Goldmont microarchitecture, compared to 10 cycle latency and
throughput of every 10 cycles in the Silvermont microarchitecture.

Additionally, the Goldmont and later microarchitecture supports SHANI to accelerate the performance of
secure hashing algorithms like SHA1 and SHA256. More details about the secure hashing algorithms and
SHANI can be found at

https://software.intel.com/en-us/articles/intel-sha-extensions.

Examples and reference implementation of using the Intel SHA extensions can be found at:

https://software.intel.com/en-us/articles/intel-sha-extensions-implementations.

F.8.2.14 Instruction Selection
Table F-14 summarizes the latency for floating-point and SIMD integer operations in the Silvermont
microarchitecture. The throughput column is expressed in number of cycles per instruction that
execution can complete with all available execution units employed (for example, 4 indicates the same
instruction can complete execution every 4 cycles; 0.33 indicates 3 identical instructions can complete
execution each cycle).

https://software.intel.com/en-us/articles/intel-sha-extensions
https://software.intel.com/en-us/articles/intel-sha-extensions-implementations

F-37

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

Table F-14. Floating-Point and SIMD Integer Latency

Goldmont Plus Goldmont Silvermont

Latency
Through
put Latency

Through
put Latency

Throughp
ut

SIMD integer ALU

128-bit ALU/logical/move 1 0.5 1 0.5 1 0.5

64-bit ALU/logical/move 1 0.5 1 0.5 1 0.5

SIMD integer shift

128-bit 1 0.5 1 0.5 1 1

64-bit 1 0.5 1 0.5 1 1

SIMD shuffle

128-bit 1 0.5 1 0.5 1 1

64-bit 1 0.5 1 0.5 1 1

SIMD integer multiplier

128-bit 4 1 4 1 5 2

64-bit 4 1 4 1 4 1

FP Adder

x87 (fadd) 3 1 3 1 3 1

scalar (addsd, addss) 3 1 3 1 3 1

packed (addpd, addps) 3 1 3 1 4 2

FP Multiplier

x87 (fmul) 5 2 5 2 5 2

scalar single-precision (mulss) 4 1 4 1 4 1

scalar double-precision (mulsd) 4 1 4 1 5 2

packed single-precision (mulps) 4 1 4 1 5 2

packed double-precision (mulpd) 4 1 4 1 7 4

Converts

CVTDQ2PD, CVTDQ2PS, CVTPD2DQ,
CVTPD2PI, CVTPD2PS, CVTPI2PD,

CVTPS2DQ, CVTPS2PD, CVTTPD2DQ,
CVTPD2PI, CVTPS2DQ

4 1 4 1 5 2

CVTPI2PS, CVTPS2PI, CVTSD2SI,
CVTSD2SS, CVTSI2SD,

CVTSI2SS, CVTSS2SD, CVTSS2SI,
CVTTPS2PI, CVTTSD2SI, CVTTSS2SI

4 1 4 1 4 1

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

F-38

Note that scalar SSE single precision multiples are one cycle faster than most FP operations. From
inspection of the table you can also see that packed SSE doubles have a slightly larger latency and
smaller throughput compared to their scalar counterparts.
Assembly/Compiler Coding Rule 5. (M impact, M generality) Favor SSE floating-point
instructions over x87 floating point instructions.
Assembly/Compiler Coding Rule 6. (MH impact, M generality) Run with exceptions masked and
the DAZ and FTZ flags set (whenever possible).
Tuning Suggestion 5. Use the perfmon counters MACHINE_CLEARS.FP_ASSIST to see if floating
exceptions are impacting program performance.

F.8.2.15 Integer Division
In Silvermont microarchitecture, integer division requires microcode flows that are relatively long and
slow. Its latency can vary profoundly on the input value and data sizes. In Goldmont and later
microarchitecture, there is hardware enhancement for short-precision forms of DIV/IDIV without using
MSROM. DIV/IDIV forms needing higher precision do use MSROM, but are also accelerated from the
hardware enhancement. Table F-15 and Table 6-16 show the latency range for divide instructions, and
the instructions that require MSROM are noted with the superscript ‘u’.

FP Divider

x87 fdiv (extended-precision) 15 11 39 39 39 39

x87 fdiv (double-precision) 14 10 34 34 34 34

x87 fdiv (single-precision) 11 7 19 19 19 19

scalar single-precision (divss) 11 7 19 18 19 17

scalar double-precision (divsd) 14 10 34 33 34 32

packed single-precision (divps) 16 12 36 35 39 39

packed double-precision (divpd) 22 18 66 65 69 69

Table F-15. Unsigned Integer Division Operation Latency

Dividend Divisor Quotient Remainder Silvermontu
Goldmont
Plus/Goldmont

DIV r8 AX r8 AL AH 25 11-12

DIV r16 DX:AX r16 AX DX 26-30 12-17u

DIV r32 EDX:EAX r32 EAX EDX 26-38 12-25u

DIV r64 RDX:RAX r64 RAX RDX 38-123 12-41u

Table F-14. Floating-Point and SIMD Integer Latency (Contd.)

Goldmont Plus Goldmont Silvermont

Latency
Through
put Latency

Through
put Latency

Throughp
ut

F-39

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

User/Source Coding Rule 2. (M impact, L generality) Use divides only when really needed and
take care to use the correct data size and sign so that you get the most efficient execution.
Tuning Suggestion 6. Use the perfmon counter CYCLES_DIV_BUSY.ANY to see if the divides are a
bottleneck in the program.

If one needs unaligned groups of packed singles where the whole array is aligned, the use of PALIGNR is
recommend over MOVUPS. For instance, load A[x+y+3:x+y] where x and y are loop variables; it is
better to calculate x+y, round down to a multiple of 4 and use a MOVAPS and PALIGNR to get the
elements (rather than a MOVUPS at x+y). While this may look longer, the integer operations can execute
in parallel to FP ones. This will also avoid the periodic MOVUPS that splits a line at the cost of
approximately 6 cycles.
User/Source Coding Rule 3. (M impact, M generality) Use PALIGNR when stepping through
packed single elements

F.8.2.16 Integer Shift
When using an integer shift instruction with shift count in a register (i.e., CL), there is a one cycle bubble
for scheduling if the count register is produced by the preceding instruction in the execution pipeline.
Thus, the instruction producing the shift count should be hoisted whenever possible.

Additionally, double shift instructions (SHLD/SHRD) operating on 64-bit input data require long MSROM
flows. In the Silvermont microarchitecture, SHRD with a 32-bit destination register and immediate shift
count is decoded from the MSROM but the corresponding SHLD is not. In the Goldmont and later
microarchitecture, SHLD/SHRD with 32-bit destination register and immediate shift count are not
decoded from the MSROM. SHLD/SHRD with 32-bit destination memory operand or with CL shift count
are decoded from the MSROM on both Silvermont and Goldmont.

F.8.2.17 Pause Instruction
In the Goldmont and later microarchitecture, the latency of the PAUSE instruction is similar to that of the
Skylake microarchitecture to achieve better power saving with thread synchronization primitives.

F.8.3 Optimizing Memory Accesses

F.8.3.1 Reduce Unaligned Memory Access with PALIGNR
When working with single-precision FP or dword data arrays, loading 4 consecutive elements often
encounter memory accesses that are not 16-Byte aligned. For example, a nested loop iteration with an
array using two iterating indices, ‘i’, ‘j’ in A[i + j]. When loading 16 bytes from memory using “i+j” as the
effective index that increments by 1 in an inner loop, unaligned access will occur 3 of 4 accesses.

These unaligned memory access can be avoided. Assuming the base of the array is 16-Bytes aligned,
loading 16 bytes should be done with an effective index that is a multiple of 4, followed by PALIGNR with
two consecutive 16-byte chunks already loaded in XMM, with the imm8 constant derived from 4*
remainder of the original “i+j”.

Table 6-16. Signed Integer Division Operation Latency

Dividend Divisor Quotient Remainder Silvermontu
Goldmont
Plus/Goldmont

IDIV r8 AX r8 AL AH 34 11-12

IDIV r16 DX:AX r16 AX DX 35-40 12-17u

IDIV r32 EDX:EAX r32 EAX EDX 35-47 12-25u

IDIV r64 RDX:RAX r64 RAX RDX 49-135 12-41u

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

F-40

Assembly/Compiler Coding Rule 7. (M impact, M generality) Use PALIGNR when stepping
through packed single-precision FP or dword elements.

F.8.3.2 Minimize Memory Execution Issues
In the Goldmont and later microarchitecture, fully out-of-order execution in the MEC allows loads to pass
older stores which have not yet resolved their address. If the load did depend on the older store, the
hardware detects this situation and the load and subsequent operations need to be re-executed. The
programmer can use a performance counter event to assess and locate the cause of such re-execution.

In the Silvermont microarchitecture, its RehabQ needs to deal with several types of execution problems
in the MEC. The issues include: load blocks, load/store splits, locks, TLB misses, unknown addresses, and
too many stores. The perfmon counter’s REHABQ in the Silvermont microarchitecture can be used to
assess problems specific to the Silvermont microarchitecture.
Tuning Suggestion 7. Use the perfmon counters MACHINE_CLEAR.DISAMBIGUATION to assess the
impact of loads passing older unknown stores on application performance with the Goldmont
microarchitecture and its descendants.

F.8.3.3 Store Forwarding
Forwarding is significantly improved in the Silvermont and later microarchitectures compared to prior
generations. A store instruction will forward its data to a receiving load instruction if the following are
true:
• The forwarding store and the receiving load start at the same address.
• The receiving load is smaller than or equal to the forwarding store in terms of width.
• The forwarding store or the receiving load do not incur cache line splits.

Table F-17 and Table F-18 illustrate various situations of successful forwarding versus situations where
preceding stores cannot be forwarded.

Table F-17. Store Forwarding Conditions (1 and 2 Byte Stores)

Load Alignment

Store
Size

Load
Size

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 F

2 1 F N

2 F N

Table F-18. Store Forwarding Conditions (4-16 Byte Stores)

Load Alignment

Store
Size

Load
Size

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

4 1 F N F N

2 F N F N

4 F N N N

F-41

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

If one (or more) of these conditions is not satisfied, the load is blocked and put into the RehabQ to reissue
again.

To eliminate/avoid store forwarding problems, use the guidelines below (in order of preference):
• Use registers instead of memory.
• Hoist the store as early as possible (stores happen later in the pipeline than loads, so the store needs

to be hoisted many instructions earlier than the load).

The cost of a successful forwarding varies with microarchitectures. The cost is 3 cycles in the Silvermont
microarchitecture (that is, if the store executes at cycle n, the load will execute at cycle n+3). The cost is
4 cycles in the Goldmont microarchitecture. Intel Goldmont Plus microarchitecture optimizes certain
store data from register operation to reduce store to load forwarding latency to 3 cycle.

F.8.3.4 PrefetchW Instruction
The Silvermont and later microarchitectures support the PrefetchW instruction (0f 0d /1). This instruction
is a hint to the hardware to prefetch the specified line into the cache with a read-for-ownership request.
This can allow later stores to that line to complete faster than they would if the line was not prefetched
or was prefetched with a different instruction. All prefetch instructions may cause performance loss if
misused. Care should be used to ensure that prefetch instructions, including PrefetchW, actually improve
performance. The instruction opcode 0f 0d /0 continues to be a NOP. It does not prefetch the indicated
line.

F.8.3.5 Cache Line Splits and Alignment
Cache line splits cause load and store instructions to operate at reduced bandwidth. As a result, they
should be avoided where possible.
Tuning Suggestion 8. Use the REHABQ.ST_SPLIT and REHABQ.LD_SPLIT perfmon counters to locate
splits, and to count the number of split operations.

While aligned accesses are preferred, the Silvermont microarchitecture has hardware support for
unaligned references. As such, MOVUPS/MOVUPD/MOVDQU instructions are all single UOP instructions in
contrast to previous generation Intel Atom processors.

F.8.3.6 Segment Base
For simplicity, the AGU in the Silvermont microarchitecture assumes that the segment base will be zero.
However, while studies have shown that this is overwhelmingly true, there are times when a non-zero
segment base (NZB) must be used. When using NZBs, keep the segment base cache line (0x40) aligned
if at all possible. NZB address generation involves a 1 cycle penalty in the Silvermont microarchitecture.
In Goldmont and later microarchitecture, NZB address generation can maintain one per cycle.

8 1 F N N N N N N N

2 F N N N N N N N

4 F N N N N N N N

8 F N N N N N N N

16 1 F N N N N N N N N N N N N N N N

2 F N N N N N N N N N N N N N N N

4 F N N N N N N N N N N N N N N N

8 F N N N N N N N N N N N N N N N

16 F N N N N N N N N N N N N N N N

Table F-18. Store Forwarding Conditions (4-16 Byte Stores)

Load Alignment

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

F-42

F.8.3.7 Copy and String Copy
Compilers typically provide libraries with memcpy/memset routines that provide good performance while
managing code size and alignment issues.

Memcpy and memset operation can be accomplished using REP MOVS/STOS instructions with length of
operation decomposed for optimized byte/dword granular operations and alignment considerations. This
usually provides a decent copy/set solution for the general case. The REP MOVS/STOS instructions have
a fixed overhead. REP STOS should be able to cope with line splits for long strings; but REP MOVS cannot
due to the complexity of the possible alignment matches between source and destination.

For specific copy/set needs, macro code sequence using SIMD instruction can provide modest gains
(on the order of a dozen clocks or so), depending on the alignment, buffer length, and cache residency of
the buffers. Large memory copies with cache line splits are a notable exception to this rule, where careful
macrocode might avoid the cache lines splits and substantially improve on REP MOV.

Processors based on the Silvermont microarchitecture support the Enhanced REP MOVSB and STOSB
operation feature. REP string operations using MOVSB and STOSB can provide the smallest code size with
both flexible and high performance REP string operations for software in common situations like memory
copy and set operations. Processors that provide enhanced MOVSB/STOSB operations are enumerated
by the CPUID feature flag: CPUID:(EAX=7H, ECX=0H):EBX.[bit 9] = 1.

Software wishing to have a simple default string copy or store routine that will work well on a range of
implementations (including future implementations) should consider using REP MOVSB or REP STOSB on
implementations that support Enhanced REP MOVSB and STOSB. Although these instructions may not be
as fast on a specific implementation as a more specialized copy/store routine, such specialized routines
may not perform as well on future processors and may not take advantage of future enhancements.
REP MOVSB and REP STOSB will continue to perform reasonably well on future processors.

F.9 INSTRUCTION LATENCY AND THROUGHPUT
This section lists the throughput and latency information of recent microarchitectures for Intel Atom
processor generations. Instructions that require decoder assistance from MSROM are marked in the
“Comment” column (instructions marked with ‘Y’ should be used minimally if more decode-efficient
alternatives are available). Throughput and latency values for various instructions are grouped by the
respective microarchitecture according to its CPUID DisplayFamily_DisplayModel. When a large number
of DisplayModels of the same DisplayFamily have the same time timing characteristics, the DisplayFamily
may be listed only once.

The microarchitectures and corresponding DisplayFamily_DisplayModel signature covered in this section
are:
• Goldmont Plus microarchitecture: 06_7AH. Note that if Goldmont Plus microarchitecture differs from

Goldmont in value, this will be indicated by the addition of “(GLP)” next to the value in the table
below.

• Goldmont microarchitecture: 06_5CH, 06_5FH.
• Silvermont or Airmont microarchitecture: 06_37H, 06_4AH, 06_4CH, 06_4DH, 06_5AH, 06_5DH

Table F-19. Instructions Latency and Throughput Recent Microarchitectures for Intel Atom® Processors

Instruction Throughput Latency MSROM

06_5CH,
5FH,
7AH

06_37H,
4AH,4CH
,4DH,5A
H,5DH

06_5CH,
5FH,
7AH

06_37H,
4AH,4CH,
4DH,5AH,
5DH

06_5CH
,5FH,
7AH

06_37H,
4AH,4C
H,4DH,5
AH,5DH

ADC/SBB r32, imm8 1 2 2 2 N N

ADC/SBB r32, r32 1 2 2 2 N N

ADC/SBB r64, r64 1 2 2 2 N N

F-43

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

ADD/AND/CMP/OR/SUB/XOR/TEST r32, r32 0.33 0.5 1 1 N N

ADD/AND/CMP/OR/SUB/XOR/TEST r64, r64 0.33 0.5 1 1 N N

ADDPD/ADDSUBPD/MAXPD/MINPD/SUBPD xmm,
xmm

1 2 3 4 N N

ADDPS/ADDSD/ADDSS/ADDSUBPS/SUBPS/SUBSD/
SUBSS

1 1 3 3 N N

MAXPS/MAXSD/MAXSS/MINPS/MINSD/MINSS
xmm, xmm

1 1 3 3 N N

ANDNPD/ANDNPS/ANDPD/ANDPS/ORPD/ORPS/XO
RPD/XORPS

0.5 0.5 1 1 N N

AESDEC/AESDECLAST/AESENC/AESENCLAST 2
1 (GLP)

5 6
4 (GLP)

8 N Y

AESIMC/AESKEYGEN 2
1 (GLP)

5 5
4 (GLP)

8 N Y

BLENDPD/BLENDPS xmm, xmm, imm8 0.5 1 1 1 N N

BLENDVPD/BLENDVPS xmm, xmm 4 4 4 4 Y Y

BSF/BSR r32, r32 8 10 10 10 Y Y

BSWAP r32 1 1 1 1 N N

BT/BTC/BTR/BTS r32, r32 1 1 1 1 N N

CBW 4 4 4 4 Y Y

CDQ/CLC/CMC 1 1 1 1 N N

CMOVxx r32; r32 1 1 2 2 N N

CMPPD xmm, xmm, imm 1 2 3 4 N N

CMPSD/CMPPS/CMPSS xmm, xmm, imm 1 1 3 3 N N

CMPXCHG r32, r32 5 6 5 6 Y Y

CMPXCHG r64, r64 5 6 5 6 Y Y

(U)COMISD/(U)COMISS xmm, xmm; 1 1 4 4 N N

CPUID 58 60 58 60 Y Y

CRC32 r32, r32 1 1 3 3 N N

CRC32 r64, r64 1 1 3 3 N N

CVTDQ2PD/CVTDQ2PS/CVTPD2DQ/CVTPD2PS
xmm, xmm

1 2 4 5 N N

CVT(T)PD2PI/CVT(T)PI2PD 1 2 4 5 N N

CVT(T)PS2DQ/CVTPS2PD xmm, xmm; 1 2 4 5 N N

CVT(T)SD2SS/CVTSS2SD xmm, xmm 1 1 4 4 N N

CVTSI2SD/SS xmm, r32 1 1 7 6 N N

CVTSD2SI/SS2SI r32, xmm 1 1 4 4 N N

DEC/INC r32 1 1 1 1 N N

Table F-19. Instructions Latency and Throughput Recent Microarchitectures for Intel Atom® Processors (Contd.)

Instruction Throughput Latency MSROM

06_5CH,
5FH,
7AH

06_37H,
4AH,4CH
,4DH,5A
H,5DH

06_5CH,
5FH,
7AH

06_37H,
4AH,4CH,
4DH,5AH,
5DH

06_5CH
,5FH,
7AH

06_37H,
4AH,4C
H,4DH,5
AH,5DH

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

F-44

DIV r8 11-12 25 11-12 25 N Y

DIV r16 12-17 26-30 12-17 26-30 Y Y

DIV r32 12-25 26-38 12-25 26-38 Y Y

DIV r64 12-41 38-123 12-41 38-123 Y Y

DIVPD1 12, 65
18 (GLP)

27-69 13, 66
22 (GLP)

27-69 N Y

DIVPS1 12,35
12 (GLP)

27-39 13, 36
16 (GLP)

27-39 N Y

DIVSD1 12,33
10 (GLP)

11-32 13,34
14 (GLP)

13-34 N N

DIVSS1 12,18
7 (GLP)

11-17 13,19
11 (GLP)

13-19 N N

DPPD xmm, xmm, imm 5 8 8 12 Y Y

DPPS xmm, xmm, imm 11 12 14 15 Y Y

EMMS 23 10 23 10 Y Y

EXTRACTPS 1 4 4 5 N Y

F2XM1 87 88 87 88 Y Y

FABS/FCHS 0.5 1 1 1 N N

FCOM 1 1 4 4 N N

FADD/FSUB 1 1 3 3 N N

FCOS 154 168 154 168 Y Y

FDECSTP/FINCSTP 0.5 0.5 1 1 N N

FDIV 39
11 (EP
GLP)

39 39
15 (EP
GLP)

39 N N

FLDZ 280 277 280 277 Y Y

FMUL 2 2 5 5 N N

FPATAN/FYL2X/FYL2XP1 303 296 303 296 Y Y

FPTAN/FSINCOS 287 281 287 281 Y Y

FRNDINT 41 25 41 25 Y Y

FSCALE 32 74 32 74 Y Y

FSIN 140 150 140 150 Y Y

FSQRT 40 40 40 40 N N

HADDPD/HSUBPD xmm, xmm 5 5 5 6 Y Y

HADDPS/HSUBPS xmm, xmm 6 6 6 6 Y Y

IDIV r8 11-12 34 11-12 34 N Y

IDIV r16 12-17 35-40 12-17 35-40 Y Y

Table F-19. Instructions Latency and Throughput Recent Microarchitectures for Intel Atom® Processors (Contd.)

Instruction Throughput Latency MSROM

06_5CH,
5FH,
7AH

06_37H,
4AH,4CH
,4DH,5A
H,5DH

06_5CH,
5FH,
7AH

06_37H,
4AH,4CH,
4DH,5AH,
5DH

06_5CH
,5FH,
7AH

06_37H,
4AH,4C
H,4DH,5
AH,5DH

F-45

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

IDIV r32 12-25 35-47 12-25 35-47 Y Y

IDIV r64 12-41 49-135 12-41 49-135 Y Y

IMUL r32, r32 (single dest) 1 1 3 3 N N

IMUL r32 (dual dest) 2 5 3 (4, EDX) 4 N Y

IMUL r64, r64 (single dest) 2 2 5 5 N N

IMUL r64 (dual dest) 2 4 5 (6,RDX) 5 (7,RDX) N Y

INSERTPS 0.5 1 1 1 N N

MASKMOVDQU 4 5 4 5 Y Y

MOVAPD/MOVAPS/MOVDQA/MOVDQU/MOVUPD/M
OVUPS xmm, xmm;

0.332/0.
5

0.5 0/1 1 N N

MOVD r32, xmm; MOVQ r64, xmm 1 1 4 4 N N

MOVD xmm, r32 ; MOVQ xmm, r64 1 1 4 3 N N

MOVDDUP/MOVHLPS/MOVLHPS/MOVSHDUP/MOV
SLDUP

0.5 1 1 1 N N

MOVDQ2Q/MOVQ/MOVQ2DQ 0.5 0.5 1 1 N N

MOVSD/MOVSS xmm, xmm; 0.5 0.5 1 1 N N

MPSADBW 4 5 5 7 Y Y

MULPD 1 4 4 7 N N

MULPS; MULSD 1 2 4 5 N N

MULSS 1 1 4 4 N N

NEG/NOT r32 0.33 0.5 1 1 N N

PACKSSDW/WB xmm, xmm; PACKUSWB xmm, xmm 0.5 1 1 1 N N

PABSB/D/W xmm, xmm 0.5 0.5 1 1 N N

PADDB/D/W xmm, xmm; PSUBB/D/W xmm, xmm 0.5 0.5 1 1 N N

PADDQ/PSUBQ/PCMPEQQ xmm, xmm 1 4 2 4 N Y

PADDSB/W; PADDUSB/W; PSUBSB/W; PSUBUSB/W 0.5 0.5 1 1 N N

PALIGNR xmm, xmm 0.5 1 1 1 N N

PAND/PANDN/POR/PXOR xmm, xmm 0.5 0.5 1 1 N N

PAVGB/W xmm, xmm 0.5 0.5 1 1 N N

PBLENDW xmm, xmm, imm 0.5 0.5 1 1 N N

PBLENDVB xmm, xmm 4 4 4 4 Y Y

PCLMULQDQ xmm, xmm, imm 4 10 6 10 Y Y

PCMPEQB/D/W xmm, xmm 0.5 0.5 1 1 N N

PCMPESTRI xmm, xmm, imm 13 21 19(C)/
26(F)3

21(C)/
28(F)

Y Y

PCMPESTRM xmm, xmm, imm 14 17 15(X)/
25(F)1

17(X)/
24(F)

Y Y

Table F-19. Instructions Latency and Throughput Recent Microarchitectures for Intel Atom® Processors (Contd.)

Instruction Throughput Latency MSROM

06_5CH,
5FH,
7AH

06_37H,
4AH,4CH
,4DH,5A
H,5DH

06_5CH,
5FH,
7AH

06_37H,
4AH,4CH,
4DH,5AH,
5DH

06_5CH
,5FH,
7AH

06_37H,
4AH,4C
H,4DH,5
AH,5DH

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

F-46

PCMPGTB/D/W xmm, xmm 0.5 0.5 1 1 N N

PCMPGTQ/PHMINPOSUW xmm, xmm 2 2 5 5 N N

PCMPISTRI xmm, xmm, imm 8 17 14(C)/
21(F)1

17(C)/
24(F)

Y Y

PCMPISTRM xmm, xmm, imm 7 13 10(X)/
20(F)1

13(X)/
20(F)

Y Y

PEXTRB/WD r32, xmm, imm 1 4 4 5 N Y

PINSRB/WD xmm, r32, imm 1 1 4 3 N N

PHADDD/PHSUBD xmm, xmm 4 6 4 6 Y Y

PHADDW/PHADDSW xmm, xmm 6 9 6 9 Y Y

PHSUBW/PHSUBSW xmm, xmm 6 9 6 9 Y Y

PMADDUBSW/PMADDWD/PMULHRSW/PSADBW
xmm, xmm

1 2 4 5 N N

PMAXSB/W/D xmm, xmm; PMAXUB/W/D xmm,
xmm

0.5 0.5 1 1 N N

PMINSB/W/D xmm, xmm; PMINUB/W/D xmm, xmm 0.5 0.5 1 1 N N

PMOVMSKB r32, xmm 1 1 4 4 N N

PMOVSXBW/BD/BQ/WD/WQ/DQ xmm, xmm 0.5 1 1 1 N N

PMOVZXBW/BD/BQ/WD/WQ/DQ xmm, xmm 0.5 1 1 1 N N

PMULDQ/PMULUDQ xmm, xmm 1 2 4 5 N N

PMULHUW/PMULHW/PMULLW xmm, xmm 1 2 4 5 N N

PMULLD xmm, xmm 2 11 5 11 N Y

POPCNT r32, r32 1 1 3 3 N N

POPCNT r64, r64 1 1 3 3 N N

PSHUFB xmm, xmm 1 5 1 5 N Y

PSHUFD xmm, mem, imm 0.5 1 1 1 N N

PSHUFHW; PSHUFLW; PSHUFW 0.5 1 1 1 N N

PSIGNB/D/W xmm, xmm 0.5 1 1 1 N N

PSLLDQ/PSRLDQ xmm, imm; SHUFPD/SHUFPS 0.5 1 1 1 N N

PSLLD/Q/W xmm, xmm 1 2 2 2 N N

PSRAD/W xmm, imm; 0.5 1 1 1 N N

PSRAD/W xmm, xmm; 1 2 2 2 N N

PSRLD/Q/W xmm, imm; 0.5 1 1 1 N N

PSRLD/Q/W xmm, xmm 1 2 2 2 N N

PTEST xmm, xmm 1 1 4 4 N N

PUNPCKHBW/DQ/WD; PUNPCKLBW/DQ/WD 0.5 1 1 1 N N

PUNPCKHQDQ; PUNPCKLQDQ 0.5 1 1 1 N N

Table F-19. Instructions Latency and Throughput Recent Microarchitectures for Intel Atom® Processors (Contd.)

Instruction Throughput Latency MSROM

06_5CH,
5FH,
7AH

06_37H,
4AH,4CH
,4DH,5A
H,5DH

06_5CH,
5FH,
7AH

06_37H,
4AH,4CH,
4DH,5AH,
5DH

06_5CH
,5FH,
7AH

06_37H,
4AH,4C
H,4DH,5
AH,5DH

F-47

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

RCPPS/RSQRTPS 6 8 9 9 Y Y

RCPSS/RSQRTSS 1 1 4 4 N N

RDTSC 20 30 20 30 Y Y

ROUNDPD/PS 1 2 4 5 N N

ROUNDSD/SS 1 1 4 4 N N

ROL; ROR; SAL; SAR; SHL; SHR (count in CL) 1 1 1 (2 for
CL
source)

1 (2 for CL
source)

N N

ROL; ROR; SAL; SAR; SHL; SHR (count in imm8) 1 1 1 1 N N

SAHF 1 1 1 1 N N

SHLD r32, r32, imm 2 2 2 2 N N

SHRD r32, r32, imm 2 4 2 4 N Y

SHLD/SHRD r64, r64, imm 12 10 12 10 Y Y

SHLD/SHRD r64, r64, CL 14 10 14 10 Y Y

SHLD/SHRD r32, r32, CL 4 4 4 4 Y Y

SHUFPD/SHUFPS xmm, xmm, imm 0.5 1 1 1 N N

SQRTPD 67
26 (GLP)

70 68
30 (GLP)

71 N Y

SQRTPS 37
14 (GLP)

40 38
18 (GLP)

41 N Y

SQRTSD 34
14 (GLP)

35 35
18 (GLP)

35 N Y

SQRTSS 19
8 (GLP)

20 20
12 (GLP)

20 N Y

TEST r32, r32 0.33 0.5 1 1 N N

UNPCKHPD; UNPCKHPS; UNPCKLPD, UNPCKLPS 0.5 1 1 1 N N

XADD r32, r32 2 5 4 5 Y Y

XCHG r32, r32 2 5 4 5 Y Y

XCHG r64, r64 2 5 4 5 Y Y

SHA1MSG1/SHA1MSG2/SHA1NEXTE 1 NA 3 NA N NA

SHA1RNDS4 xmm, xmm, imm 2 NA 5 NA N NA

SHA256MSG1/SHA256MSG2 1 NA 3 NA N NA

SHA256RNDS2 4 NA 7 NA N NA

NOTES:
1. DIVPD/DIVPS/DIVSD/DIVSS list early-exit value first and common-case value second. Early-exit case applies to a special

input value such as QNAN. Common case applies to normal numeric values.
2. Throughput is 0.33 cycles if move elimination is effect, otherwise 0.5 cycle.
3. Latency values are for ECX/EFLAGS/XMM0 dependency: (C/F/X)

Table F-19. Instructions Latency and Throughput Recent Microarchitectures for Intel Atom® Processors (Contd.)

Instruction Throughput Latency MSROM

06_5CH,
5FH,
7AH

06_37H,
4AH,4CH
,4DH,5A
H,5DH

06_5CH,
5FH,
7AH

06_37H,
4AH,4CH,
4DH,5AH,
5DH

06_5CH
,5FH,
7AH

06_37H,
4AH,4C
H,4DH,5
AH,5DH

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

F-48

Index-1

INDEX

Numerics
64-bit mode

arithmetic, 13-5
coding guidelines, 13-1
compiler settings, A-2
CVTSI2SD instruction, 13-6
CVTSI2SS instruction, 13-6
default operand size, 13-1
legacy instructions, 13-1
multiplication notes, 13-2
register usage, 13-1, 13-5
REX prefix, 13-1
sign-extension, 13-4
software prefetch, 13-6

A
absolute difference of signed numbers, 6-16
absolute difference of unsigned numbers, 6-15
absolute value, 6-16
active power, 17-1
ADDSUBPD instruction, 7-11
ADDSUBPS instruction, 7-11, 7-13
algorithm to avoid changing the rounding mode, 3-68
alignment

arrays, 3-49
code, 3-8
stack, 3-51
structures, 3-49

Amdahl’s law, 11-1
AoS format, 5-22
application performance tools, A-1
arrays

aligning, 3-49
automatic vectorization, 5-16

B
battery life

guidelines for extending, 17-6
mobile optimization, 17-1
OS APIs, 17-7
quality trade-offs, 17-6

branch prediction
choosing types, 3-8
code examples, 3-5
eliminating branches, 3-4
optimizing, 3-4
unrolling loops, 3-10

C
C4-state, 17-4
cache management

blocking techniques, 9-19
cache level, 9-3
CLFLUSH instruction, 9-9
coding guidelines, 8-3, 8-5, 8-10, 8-14, 8-16, 8-17, 8-18, 8-20,

8-21, 8-22, 8-23, 8-25, 9-1, 15-2, 18-3
CPUID instruction, 3-3, 9-30
function leaf, 3-3
optimizing, 9-1
simple memory copy, 9-27
video decoder, 9-26
video encoder, 9-26
See also: optimizing cache utilization

CD/DVD, 17-7
changing the rounding mode, 3-67

classes (C/C++), 5-15
CLFLUSH instruction, 9-9
clipping to an arbitrary signed range, 6-19
clipping to an arbitrary unsigned range, 6-21
coding techniques, 5-12, 11-16

64-bit guidelines, 13-1
absolute difference of signed numbers, 6-16
absolute difference of unsigned numbers, 6-15
absolute value, 6-16
clipping to an arbitrary signed range, 6-19
clipping to an arbitrary unsigned range, 6-21
conserving power, 17-7
data in segment, 3-52
generating constants, 6-14
interleaved pack with saturation, 6-6
interleaved pack without saturation, 6-7
latency and throughput, D-1
methodologies, 5-13
non-interleaved unpack, 6-8
optimization options, A-2
rules, 3-3
signed unpack, 6-5
simplified clip to arbitrary signed range, 6-20
sleep transitions, 17-8
suggestions, 3-3
tuning hints, 3-3
unsigned unpack, 6-5
See also: floating-point code

coherent requests, 9-7
command-line options

inline expansion of library functions, A-3
vectorizer switch, A-3

comparing register values, 3-25, 3-26
compatibility mode, 13-1
compiler intrinsics

_mm_load, 9-26
_mm_prefetch, 9-26
_mm_stream, 9-26

compilers
documentation, 1-4
general recommendations, 3-2
plug-ins, A-2
supported alignment options, 5-19
See also: Intel C++ Compiler & Intel Fortran Compiler

computation
intensive code, 5-12

converting 64-bit to 128-bit SIMD integers, 6-33
converting code to MMX technology, 5-10
CPUID instruction

cache paramaters, 9-30
function leaf, 9-30
function leaf 4, 3-3
Intel compilers, 3-2
MMX support, 5-2
SSE support, 5-2
SSE2 support, 5-2
SSE3 support, 5-3
SSSE3 support, 5-3, 5-4
strategy for use, 3-2

C-states, 17-1, 17-3
CVTSI2SD instruction, 13-6
CVTSI2SS instruction, 13-6
CVTTPS2PI instruction, 7-10
CVTTSS2SI instruction, 7-10

D
data

INDEX

Index-2

access pattern of array, 3-50
aligning arrays, 3-49
aligning structures, 3-49
alignment, 5-17
arrangement, 7-2
code segment and, 3-52
deswizzling, 7-7
swizzling, 7-5
swizzling using intrinsics, 7-6

deeper sleep, 17-4
denormals-are-zero (DAZ), 7-10
deterministic cache parameters

cache sharing, 9-30, 9-31
multicore, 9-32
overview, 9-30
prefetch stride, 9-32

domain decomposition, 11-4
Dynamic execution, E-40

E
eliminating branches, 3-6, 17-14
EMMS instruction, 6-2, 6-3

guidelines for using, 6-2
Enhanced Intel SpeedStep Technology

description of, 17-8
multicore processors, 17-10
usage scenario, 17-1

extract word instruction, 6-9

F
fencing operations, 9-5

LFENCE instruction, 9-8
MFENCE instruction, 9-9

FIST instruction, 3-67
FLDCW instruction, 3-67
floating-point code

arithmetic precision options, A-3
data arrangement, 7-2
data deswizzling, 7-7
data swizzling using intrinsics, 7-6
guidelines for optimizing, 3-64
horizontal ADD, 7-8
improving parallelism, 3-69
memory access stall information, 3-47
operations, integer operands, 3-69
optimizing, 3-64
planning considerations, 7-1, 8-1
rules and suggestions, 7-1, 8-1
scalar code, 7-2
transcendental functions, 3-69
unrolling loops, 3-10
vertical versus horizontal computation, 7-3
See also: coding techniques

flush-to-zero (FTZ), 7-10
front end

branching ratios, B-65
characterizing mispredictions, B-66
loop unrolling, 11-21
optimization, 3-4

functional decomposition, 11-4
FXCH instruction, 3-69, 7-2

G
generating constants, 6-14
GetActivePwrScheme, 17-7
GetSystemPowerStatus, 17-7

H
HADDPD instruction, 7-11

HADDPS instruction, 7-11, 7-14
hardware multithreading

support for, 3-3
hardware prefetch

cache blocking techniques, 9-23
latency reduction, 9-13
memory optimization, 9-12
operation, 9-12

horizontal computations, 7-8
hotspots

definition of, 5-12
identifying, 5-12
VTune analyzer, 5-12

HSUBPD instruction, 7-11
HSUBPS instruction, 7-11, 7-14
Hyper-Threading Technology

avoid excessive software prefetches, 11-17
bus optimization, 11-9
cache blocking technique, 11-19
conserve bus command bandwidth, 11-17
eliminate 64-K-aliased data accesses, 11-21
excessive loop unrolling, 11-21
front-end optimization, 11-21
full write transactions, 11-18
functional decomposition, 11-4
improve effective latency of cache misses, 11-18
memory optimization, 11-19
minimize data sharing between physical processors, 11-19
multitasking environment, 11-2
optimization, 11-1
optimization guidelines, 11-8
optimization with spin-locks, 11-13
overview, 2-34
parallel programming models, 11-4
pipeline, 2-36
placement of shared synchronization variable, 11-15
prevent false-sharing of data, 11-14
processor resources, 2-35
shared execution resources, 11-25
shared-memory optimization, 11-19
synchronization for longer periods, 11-13
synchronization for short periods, 11-11
system bus optimization, 11-16
thread sync practices, 11-8
thread synchronization, 11-10
tools for creating multithreaded applications, 11-7

I
IA32_PERFEVSELx MSR, B-64
increasing bandwidth

memory fills, 6-29
video fills, 6-29

Indefinite
description of, 2-42, 2-43

indirect branch, 3-8
inline assembly, 6-3
inline expansion library functions option, A-3
inlined-asm, 5-14
insert word instruction, 6-10
instruction latency/throughput

overview, D-1
instruction scheduling, 3-52
Intel 64 and IA-32 processors, 2-1
Intel Advanced Digital Media Boost, E-27
Intel Advanced Memory Access, E-34
Intel Advanced Smart Cache, E-26, E-38
Intel Core Duo processors

128-bit integers, 6-33
packed FP performance, 7-14
performance events, B-59
SIMD support, 5-1

Index-3

INDEX

special programming models, 11-4
static prediction, 3-6

Intel Core microarchitecture, E-26
advanced smart cache, E-38
branch prediction unit, E-29
event ratios, B-64
execution core, E-31

execution units, E-32
issue ports, E-32

front end, E-28
instruction decode, E-31
instruction fetch unit, E-29
instruction queue, E-30

advanced memory access, E-34
micro-fusion, E-31
pipeline overview, E-9, E-27
special programming models, 11-4
stack pointer tracker, E-31
static prediction, 3-7

Intel Core Solo processors
128-bit SIMD integers, 6-33
performance events, B-59
SIMD support, 5-1
static prediction, 3-6

Intel C++ Compiler, 3-1
64-bit mode settings, A-2
description, A-1
IA-32 settings, A-2
multithreading support, A-3
OpenMP, A-3
optimization settings, A-2
related Information, 1-4

Intel Debugger
description, A-1

Intel developer link, 1-4
Intel Enhanced Deeper Sleep

C-state numbers, 17-3
enabling, 17-9
multiple-cores, 17-12

Intel Fortran Compiler
description, A-1
multithreading support, A-3
OpenMP, A-3
optimization settings, A-2
related information, 1-4

Intel Integrated Performance Primitives
for Linux, A-5
for Windows, A-5

Intel Math Kernel Library for Linux, A-5
Intel Math Kernel Library for Windows, A-5
Intel Mobile Platform SDK, 17-7
Intel NetBurst microarchitecture

introduction, 2-34, E-8
Intel Performance Libraries

benefits, A-5
optimizations, A-5

Intel performance libraries
description, A-1

Intel Performance Tools, 3-1
Intel Smart Memory Access, E-27
Intel Thread Checker

example output, A-5, A-7, A-8
Intel Threading Tools, A-7
Intel VTune Amplifier

related information, 1-4
Intel VTune Performance Analyzer

code coach, 5-12
coverage, 3-2

Intel Wide Dynamic Execution, E-26, E-27, E-40
interleaved pack with saturation, 6-6
interleaved pack without saturation, 6-7
interprocedural optimization, A-3

introduction
chapter summaries, 1-1
optimization features, 2-1
processors covered, 1-1
references, 1-4

IPO. See interprocedural optimization

L
large load stalls, 3-47
latency, 9-2, 9-14
legacy mode, 13-1
LFENCE Instruction, 9-8
links to web data, 1-4
load instructions and prefetch, 9-4
loading-storing to-from same DRAM page, 6-29
loop

blocking, 5-24
unrolling, 9-17, A-3

M
MASKMOVDQU instruction, 9-5
memory bank conflicts, 9-2
memory optimizations

loading-storing to-from same DRAM page, 6-29
overview, 6-27
partial memory accesses, 6-28, 6-30
performance, 5-20
reference instructions, 3-24
using aligned stores, 6-30
using prefetch, 9-12

MFENCE instruction, 9-9
misaligned data access, 5-17
misalignment in the FIR filter, 5-18
mobile computing

ACPI standard, 17-1, 17-3
active power, 17-1
battery life, 17-1, 17-6, 17-7
C4-state, 17-4
CD/DVD, WLAN, WiFi, 17-7
C-states, 17-1, 17-3
deep sleep transitions, 17-8
deeper sleep, 17-4, 17-9
Intel Mobile Platform SDK, 17-7
OS APIs, 17-7
OS changes processor frequency, 17-2
OS synchronization APIs, 17-7
overview, 17-1, F-1
performance options, 17-6
platform optimizations, 17-7
P-states, 17-1
Speedstep technology, 17-8
spin-loops, 17-7
state transitions, 17-2
static power, 17-1
WM_POWERBROADCAST message, 17-8

MOVAPD instruction, 7-2
MOVAPS instruction, 7-2
MOVDDUP instruction, 7-11
move byte mask to integer, 6-12
MOVHLPS instruction, 7-8
MOVLHPS instruction, 7-8
MOVNTDQ instruction, 9-5
MOVNTI instruction, 9-5
MOVNTPD instruction, 9-5
MOVNTPS instruction, 9-5
MOVNTQ instruction, 9-5
MOVQ Instruction, 6-29
MOVSHDUP instruction, 7-11, 7-13
MOVSLDUP instruction, 7-11, 7-13
MOVUPD instruction, 7-2

INDEX

Index-4

MOVUPS instruction, 7-2
multicore processors

architecture, 2-1
C-state considerations, 17-11
energy considerations, 17-10
SpeedStep technology, 17-10
thread migration, 17-10

multiprocessor systems
dual-core processors, 11-1
HT Technology, 11-1
optimization techniques, 11-1
See also: multithreading & Hyper-Threading Technology

multithreading
Amdahl’s law, 11-1
application tools, 11-7
bus optimization, 11-9
compiler support, A-3
dual-core technology, 3-3
environment description, 11-1
guidelines, 11-8
hardware support, 3-3
HT technology, 3-3
Intel Core microarchitecture, 11-4
parallel & sequential tasks, 11-1
programming models, 11-3
shared execution resources, 11-25
specialized models, 11-4
thread sync practices, 11-8
See Hyper-Threading Technology

N
Newton-Raphson iteration, 7-1
non-coherent requests, 9-7
non-interleaved unpack, 6-8
non-temporal stores, 9-6, 9-25
NOP, 3-27

O
OpenMP compiler directives, 11-7, A-3
optimization

branch prediction, 3-4
branch type selection, 3-8
eliminating branches, 3-4
features, 2-1
general techniques, 3-1
static prediction, 3-6
unrolling loops, 3-10

optimizing cache utilization
cache management, 9-26
examples, 9-8
non-temporal store instructions, 9-5, 9-8
prefetch and load, 9-5
prefetch instructions, 9-3
prefetching, 9-3
SFENCE instruction, 9-8, 9-9
streaming, non-temporal stores, 9-5
See also: cache management

OS APIs, 17-7

P
pack instructions, 6-6
packed average byte or word), 6-22
packed multiply high unsigned, 6-21
packed shuffle word, 6-12
packed signed integer word maximum, 6-21
packed sum of absolute differences, 6-22
parallelism, 5-12, 11-4
partial memory accesses, 6-28
PAUSE instruction, 11-8

PAVGB instruction, 6-22
PAVGW instruction, 6-22
PeekMessage(), 17-7
Pentium 4 processors

static prediction, 3-6
Pentium M processors

static prediction, 3-6
performance models

Amdahl’s law, 11-1
multithreading, 11-1
parallelism, 11-1
usage, 11-1

performance monitoring events
analysis techniques, B-60
Bus_Not_In_Use, B-60
Bus_Snoops, B-60
DCU_Snoop_to_Share, B-60
drill-down techniques, B-60
event ratios, B-64
Intel Core Duo processors, B-59
Intel Core Solo processors, B-59
Intel Netburst architecture, B-1
Intel Xeon processors, B-1
L1_Pref_Req, B-60
L2_No_Request_Cycles, B-60
L2_Reject_Cycles, B-60
Pentium 4 processor, B-1
performance counter, B-59
ratio interpretation, B-59
See also: clock ticks
Serial_Execution_Cycles, B-60
Unhalted_Core_Cycles, B-60
Unhalted_Ref_Cycles, B-60

performance tools, 3-1
PEXTRW instruction, 6-9
PGO. See profile-guided optimization
PINSRW instruction, 6-10
PMINSW instruction, 6-21
PMINUB instruction, 6-21
PMOVMSKB instruction, 6-12
PMULHUW instruction, 6-21
predictable memory access patterns, 9-3
prefetch

64-bit mode, 13-6
coding guidelines, 9-1
concatenation, 9-17
deterministic cache parameters, 9-30
hardware mechanism, 9-2

characteristics, 9-12
latency, 9-13

how instructions designed, 9-3
innermost loops, 9-3
instruction considerations

cache block techniques, 9-19
checklist, 9-15
concatenation, 9-16
hint mechanism, 9-2
minimizing number, 9-17
scheduling distance, 9-16
single-pass execution, 9-1, 9-24
spread with computations, 9-19
strip-mining, 9-21
summary of, 9-2

instruction variants, 9-3
latency hiding/reduction, 9-14
load Instructions, 9-4
memory access patterns, 9-3
memory optimization with, 9-12
minimizing number of, 9-17
scheduling distance, 9-2, 9-16
software data, 9-2
spreading, 9-19

Index-5

INDEX

when introduced, 9-1
PREFETCHNTA instruction, 9-21

usage guideline, 9-2
PREFETCHT0 instruction, 9-21

usage guideline, 9-2
producer-consumer model, 11-4
profile-guided optimization, A-4
PSADBW instruction, 6-22
PSHUF instruction, 6-12
P-states, 17-1

Q
-Qparallel, 11-8

R
ratios, B-64

branching and front end, B-65
references, 1-4
releases of, 2-39

S
sampling

event-based, A-6
scheduling distance (PSD), 9-16
Self-modifying code, 3-52
SFENCE Instruction, 9-8
SHUFPS instruction, 7-3
signed unpack, 6-5
SIMD

auto-vectorization, 5-16
cache instructions, 9-1
classes, 5-15
coding techniques, 5-12
data alignment for 128-bits, 5-19
data alignment for MMX, 5-18
data and stack alignment, 5-17
example computation, 2-37
history, 2-37
identifying hotspots, 5-12
instruction selection, 5-26
loop blocking, 5-24
memory utilization, 5-20
MMX technology support, 5-2
padding to align data, 5-17
parallelism, 5-12
SSE support, 5-2
SSE2 support, 5-2
SSE3 support, 5-3
SSSE3 support, 5-3, 5-4
stack alignment for 128-bits, 5-18
strip-mining, 5-23
using arrays, 5-17
vectorization, 5-12
VTune capabilities, 5-12

SIMD floating-point instructions
data arrangement, 7-2
data deswizzling, 7-7
data swizzling, 7-5
different microarchitectures, 7-11
general rules, 7-1
horizontal ADD, 7-8
Intel Core Duo processors, 7-14
Intel Core Solo processors, 7-14
planning considerations, 7-1, 8-1
reciprocal instructions, 7-1
scalar code, 7-2
SSE3 complex math, 7-12
SSE3 FP programming, 7-11
using

ADDSUBPS, 7-13
CVTTPS2PI, 7-10
CVTTSS2SI, 7-10
FXCH, 7-2
HADDPS, 7-14
HSUBPS, 7-14
MOVAPD, 7-2
MOVAPS, 7-2
MOVHLPS, 7-8
MOVLHPS, 7-8
MOVSHDUP, 7-13
MOVSLDUP, 7-13
MOVUPD, 7-2
MOVUPS, 7-2
SHUFPS, 7-3

vertical vs horizontal computation, 7-3
with x87 FP instructions, 7-2

SIMD technology, 2-39
SIMD-integer instructions

64-bits to 128-bits, 6-33
data alignment, 6-3
data movement techniques, 6-5
extract word, 6-9
integer intensive, 6-1
memory optimizations, 6-27
move byte mask to integer, 6-12
optimization by architecture, 6-33
packed average byte or word), 6-22
packed multiply high unsigned, 6-21
packed shuffle word, 6-12
packed signed integer word maximum, 6-21
packed sum of absolute differences, 6-22
rules, 6-1
signed unpack, 6-5
unsigned unpack, 6-5
using

EMMS, 6-2
MOVDQ, 6-29
MOVQ2DQ, 6-14
PABSW, 6-16
PACKSSDW, 6-6
PADDQ, 6-23
PALIGNR, 6-4
PAVGB, 6-22
PAVGW, 6-22
PEXTRW, 6-9
PINSRW, 6-10
PMADDWD, 6-22
PMAXSW, 6-21
PMAXUB, 6-21
PMINSW, 6-21
PMINUB, 6-21
PMOVMSKB, 6-12
PMULHUW, 6-21
PMULHW, 6-21
PMULUDQ, 6-21
PSADBW, 6-22
PSHUF, 6-12
PSHUFB, 6-17, 6-18
PSHUFLW, 6-13
PSLLDQ, 6-23
PSRLDQ, 6-23
PSUBQ, 6-23
PUNPCHQDQ, 6-14
PUNPCKLQDQ, 6-14

simplified 3D geometry pipeline, 9-14
simplified clipping to an arbitrary signed range, 6-20
single vs multi-pass execution, 9-24
sleep transitions, 17-8
SoA format, 5-22
software write-combining, 9-25
spin-loops, 17-7

INDEX

Index-6

related information, 1-4
SSE, 2-39
SSE2, 2-39
SSE3, 2-40
SSSE3, 2-40, 2-41
stack

alignment 128-bit SIMD, 5-18
alignment stack, 3-51
dynamic alignment, 3-51

state transitions, 17-2
static power, 17-1
static prediction, 3-6
streaming stores, 9-5

coherent requests, 9-7
improving performance, 9-6
non-coherent requests, 9-7

strip-mining, 5-23, 5-24, 9-21, 9-22
prefetch considerations, 9-23

structures
aligning, 3-49

system bus optimization, 11-16

T
time-consuming innermost loops, 9-3
transaction lookaside buffer, 9-27
transcendental functions, 3-69

U
unpack instructions, 6-8
unrolling loops

benefits of, 3-10
code examples, 3-11

unsigned unpack, 6-5
using MMX code for copy, shuffling, 7-8

V
vector class library, 5-16
vectorized code

auto generation, A-4
automatic vectorization, 5-16
high-level examples, A-4
parallelism, 5-12
SIMD architecture, 5-12
switch options, A-3

vertical vs horizontal computation, 7-3

W
WaitForSingleObject(), 17-7
WaitMessage(), 17-7
weakly ordered stores, 9-5
WiFi, 17-7
WLAN, 17-7
write-combining

buffer, 9-26
memory, 9-26
semantics, 9-6

X
XCHG EAX,EAX, support for, 3-27
XFEATURE_ENALBED_MASK, 5-5
XRSTOR, 5-5
XSAVE, 5-5, 5-8, 5-9

Z
, A-1

iii

CONTENTS

PAGE

CHAPTER 1
INTRODUCTION
1.1 TUNING YOUR APPLICATION . 1-1
1.2 ABOUT THIS MANUAL. 1-1
1.3 RELATED INFORMATION . 1-4

CHAPTER 2
INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
2.1 SAPPHIRE RAPIDS ARCHITECTURE. 2-1
2.1.1 Intel® 4th generation Intel® Xeon® Scalable Family of Processors.2-1
2.2 ALDER LAKE PERFORMANCE HYBRID ARCHITECTURE. 2-2
2.2.1 12th Generation Intel® Core™ Processors Supporting Performance Hybrid Architecture2-2
2.2.2 Hybrid Scheduling. .2-2
2.2.2.1 Intel® Thread Director .2-2
2.2.2.2 Scheduling with Intel Hyper-Threading Technology Enabled on Processors Supporting x86 Hybrid

Architecture. .2-6
2.2.2.3 Scheduling with a Multi-E-Core Module .2-6
2.2.2.4 Scheduling Background Threads on x86 Hybrid Architecture .2-6
2.2.3 Recommendations for Application Developers .2-6
2.3 GOLDEN COVE MICROARCHITECTURE . 2-7
2.3.1 Golden Cove Microarchitecture Overview .2-8
2.3.1.1 The Front End .2-9
2.3.1.2 The Out-of-Order and Execution Engines. .2-9
2.3.1.3 Cache Subsystem and Memory Subsystem . 2-12
2.3.1.4 Avoiding Destination False Dependency. 2-12
2.4 ICE LAKE CLIENT MICROARCHITECTURE . 2-14
2.4.1 Ice Lake Client Microarchitecture Overview. 2-14
2.4.1.1 The Front End . 2-15
2.4.1.2 The Out of Order and Execution Engines . 2-15
2.4.1.3 Cache and Memory Subsystem . 2-17

Paired Stores . 2-18
2.4.1.4 New Instructions . 2-19
2.4.1.5 Ice Lake Client Microarchitecture Power Management . 2-20
2.5 SKYLAKE SERVER MICROARCHITECTURE. 2-21
2.5.1 Skylake Server Microarchitecture Cache. 2-22
2.5.1.1 Larger Mid-Level Cache . 2-22
2.5.1.2 Non-Inclusive Last Level Cache . 2-22
2.5.1.3 Skylake Server Microarchitecture Cache Recommendations 2-23
2.5.2 Non-Temporal Stores on Skylake Server Microarchitecture. 2-24
2.5.3 Skylake Server Power Management . 2-25
2.6 SKYLAKE CLIENT MICROARCHITECTURE. 2-28
2.6.1 The Front End . 2-29
2.6.2 The Out-of-Order Execution Engine . 2-29
2.6.3 Cache and Memory Subsystem . 2-31
2.6.4 Pause Latency in Skylake Client Microarchitecture . 2-32
2.7 INTEL® HYPER-THREADING TECHNOLOGY . 2-34
2.7.1 Processor Resources and HT Technology . 2-35
2.7.1.1 Replicated Resources . 2-36
2.7.1.2 Partitioned Resources . 2-36
2.7.1.3 Shared Resources . 2-36
2.7.2 Microarchitecture Pipeline and HT Technology . 2-36
2.7.3 Execution Core . 2-37
2.7.4 Retirement . 2-37
2.8 SIMD TECHNOLOGY . 2-37
2.9 SUMMARY OF SIMD TECHNOLOGIES AND APPLICATION LEVEL EXTENSIONS 2-39
2.9.1 MMX™ Technology . 2-39
2.9.2 Streaming SIMD Extensions . 2-39
2.9.3 Streaming SIMD Extensions 2 . 2-39
2.9.4 Streaming SIMD Extensions 3 . 2-40
2.9.5 Supplemental Streaming SIMD Extensions 3 . 2-40
2.9.6 SSE4.1 . 2-40
2.9.7 SSE4.2 . 2-41
2.9.8 AESNI and PCLMULQDQ . 2-41

CONTENTS

iv

PAGE

2.9.9 Intel® Advanced Vector Extensions . 2-41
2.9.10 Half-Precision Floating-Point Conversion (F16C) . 2-42
2.9.11 RDRAND . 2-42
2.9.12 Fused-Multiply-ADD (FMA) Extensions . 2-42
2.9.13 Intel AVX2 . 2-42
2.9.14 General-Purpose Bit-Processing Instructions . 2-42
2.9.15 Intel® Transactional Synchronization Extensions . 2-42
2.9.16 RDSEED . 2-43
2.9.17 ADCX and ADOX Instructions . 2-43

CHAPTER 3
GENERAL OPTIMIZATION GUIDELINES
3.1 PERFORMANCE TOOLS . 3-1
3.1.1 Intel® C++ and Fortran Compilers .3-1
3.1.2 General Compiler Recommendations .3-2
3.1.3 VTune™ Performance Analyzer .3-2
3.2 PROCESSOR PERSPECTIVES . 3-2
3.2.1 CPUID Dispatch Strategy and Compatible Code Strategy .3-2
3.2.2 Transparent Cache-Parameter Strategy. .3-3
3.2.3 Threading Strategy and Hardware Multithreading Support .3-3
3.3 CODING RULES, SUGGESTIONS AND TUNING HINTS . 3-3
3.4 OPTIMIZING THE FRONT END . 3-4
3.4.1 Branch Prediction Optimization .3-4
3.4.1.1 Eliminating Branches .3-4
3.4.1.2 Static Prediction .3-6
3.4.1.3 Inlining, Calls and Returns .3-7
3.4.1.4 Code Alignment. .3-8
3.4.1.5 Branch Type Selection .3-8
3.4.1.6 Loop Unrolling . 3-10
3.4.2 Fetch and Decode Optimization . 3-11
3.4.2.1 Optimizing for Micro-fusion. 3-11
3.4.2.2 Optimizing for Macrofusion . 3-12
3.4.2.3 Length-Changing Prefixes (LCP) . 3-16
3.4.2.4 Optimizing the Loop Stream Detector (LSD) . 3-17
3.4.2.5 Optimization for Decoded ICache . 3-18
3.4.2.6 Other Decoding Guidelines . 3-19
3.5 OPTIMIZING THE EXECUTION CORE . 3-19
3.5.1 Instruction Selection . 3-20
3.5.1.1 Integer Divide . 3-20
3.5.1.2 Using LEA . 3-21
3.5.1.3 ADC and SBB in Sandy Bridge Microarchitecture . 3-22
3.5.1.4 Bitwise Rotation . 3-23
3.5.1.5 Variable Bit Count Rotation and Shift . 3-24
3.5.1.6 Address Calculations . 3-24
3.5.1.7 Clearing Registers and Dependency Breaking Idioms . 3-25
3.5.1.8 Compares . 3-26
3.5.1.9 Using NOPs. 3-27
3.5.1.10 Mixing SIMD Data Types. 3-28
3.5.1.11 Spill Scheduling . 3-28
3.5.1.12 Zero-Latency MOV Instructions. 3-28
3.5.2 Avoiding Stalls in Execution Core . 3-30
3.5.2.1 Writeback Bus Conflicts . 3-30
3.5.2.2 Bypass between Execution Domains . 3-31
3.5.2.3 Partial Register Stalls . 3-31
3.5.2.4 Partial XMM Register Stalls . 3-32
3.5.2.5 Partial Flag Register Stalls. 3-33
3.5.2.6 Floating-Point/SIMD Operands . 3-34
3.5.3 Vectorization . 3-34
3.5.4 Optimization of Partially Vectorizable Code. 3-35
3.5.4.1 Alternate Packing Techniques . 3-37
3.5.4.2 Simplifying Result Passing. 3-37
3.5.4.3 Stack Optimization . 3-38
3.5.4.4 Tuning Considerations . 3-38
3.6 OPTIMIZING MEMORY ACCESSES . 3-40

v

CONTENTS

PAGE

3.6.1 Load and Store Execution Bandwidth . 3-40
3.6.1.1 Making Use of Load Bandwidth in Sandy Bridge Microarchitecture 3-40
3.6.1.2 L1D Cache Latency in Sandy Bridge Microarchitecture . 3-41
3.6.1.3 Handling L1D Cache Bank Conflict . 3-42
3.6.2 Minimize Register Spills . 3-43
3.6.3 Enhance Speculative Execution and Memory Disambiguation . 3-44
3.6.4 Store Forwarding . 3-45
3.6.4.1 Store-to-Load-Forwarding Restriction on Size and Alignment 3-46
3.6.4.2 Store-forwarding Restriction on Data Availability . 3-48
3.6.5 Data Layout Optimizations . 3-49
3.6.6 Stack Alignment . 3-51
3.6.7 Capacity Limits and Aliasing in Caches. 3-52
3.6.8 Mixing Code and Data . 3-52
3.6.8.1 Self-modifying Code . 3-52
3.6.8.2 Position Independent Code . 3-53
3.6.9 Write Combining . 3-53
3.6.10 Locality Enhancement. 3-54
3.6.11 Non-Temporal Store Bus Traffic . 3-55
3.7 PREFETCHING . 3-56
3.7.1 Hardware Instruction Fetching and Software Prefetching . 3-56
3.7.2 Hardware Prefetching for First-Level Data Cache. 3-56
3.7.3 Hardware Prefetching for Second-Level Cache . 3-58
3.7.4 Cacheability Instructions . 3-59
3.7.5 REP Prefix and Data Movement . 3-59
3.7.6 Enhanced REP MOVSB and STOSB Operation . 3-61
3.7.6.1 Fast Short REP MOVSB. 3-61
3.7.6.2 Memcpy Considerations . 3-61
3.7.6.3 Memmove Considerations . 3-63
3.7.6.4 Memset Considerations . 3-63
3.8 REP STRING OPERATIONS . 3-63
3.8.1 Fast Zero Length REP MOVSB . 3-64
3.8.2 Fast Short REP STOSB . 3-64
3.8.3 Fast Short REP CMPSB and SCASB . 3-64
3.9 FLOATING-POINT CONSIDERATIONS . 3-64
3.9.1 Guidelines for Optimizing Floating-point Code . 3-64
3.9.2 Floating-point Modes and Exceptions . 3-65
3.9.2.1 Floating-point Exceptions . 3-65
3.9.2.2 Dealing with floating-point exceptions in x87 FPU code. 3-66
3.9.2.3 Floating-point Exceptions in SSE/SSE2/SSE3 Code . 3-66
3.9.3 Floating-point Modes. 3-66
3.9.3.1 Rounding Mode . 3-67
3.9.3.2 Precision . 3-68
3.9.4 x87 vs. Scalar SIMD Floating-point Trade-offs . 3-69
3.9.4.1 Scalar SSE/SSE2 . 3-69
3.9.4.2 Transcendental Functions . 3-69
3.10 MAXIMIZING PCIE PERFORMANCE. 3-70
3.10.1 Optimizing PCIe Performance for Accesses Toward Coherent Memory and Toward MMIO Regions (P2P)3-70
3.11 SCALABILITY WITH CONTENDED LINE ACCESS IN INTEL® 4TH GENERATION INTEL® XEON® SCALABLE PROCESSORS

3-71
3.11.1 Why it Happens. 3-71
3.11.2 How to Detect it . 3-71
3.11.3 How to Fix it . 3-72
3.11.4 Case Study: SysBench/MariaDB Metric CHA % Cycles Fast Asserted 3-73
3.11.5 Instruction Sequence Slowdowns . 3-74
3.11.5.1 Why it Happens. 3-74
3.11.5.2 How to Detect it . 3-74
3.11.5.3 How to Fix it . 3-74
3.11.6 Misprediction for Branches >2GB . 3-75
3.11.6.1 Why it Happens. 3-75
3.11.6.2 How to Detect it . 3-75
3.11.6.3 How to Fix it . 3-76
3.12 OPTIMIZING COMMUNICATION WITH PCI DEVICES ON INTEL® 4TH GENERATION INTEL® XEON® SCALABLE

PROCESSORS . 3-77
3.12.1 Signaling Devices with Direct Move . 3-77
3.12.1.1 MOVDIR64B – Additional considerations . 3-77

CONTENTS

vi

PAGE

3.12.1.2 Streaming Data . 3-78
3.13 SYNCHRONIZATION . 3-78
3.13.1 User-Level Monitor, User-Level MWAIT, and TPAUSE. 3-78
3.13.1.1 Checking for User-Level Monitor, MWAIT, and TPAUSE support 3-78
3.13.1.2 User-Level Monitor, User-Level MWAIT, and TPAUSE Operations 3-78
3.13.1.3 Recommended usage. 3-79

CHAPTER 4
INTEL ATOM® PROCESSOR ARCHITECTURES
4.1 GRACEMONT MICROARCHITECTURE. 4-1
4.1.1 Gracemont Microarchitecture Overview .4-1
4.1.2 Predict and Fetch .4-2
4.1.3 Dynamic Load Balancing. .4-4
4.1.4 Decode and the On-Demand Instruction Length Decoder .4-4
4.1.5 Allocation and Retirement .4-5
4.1.6 The Out-of-Order and Execution Engines .4-5
4.1.7 Cache and Memory Subsystem .4-7
4.1.8 Intel® AVX and Intel® AVX2 Instruction Support .4-8
4.1.8.1 256-bit Permute Operations .4-8
4.1.8.2 256-bit Broadcast with 128-bit Memory Operand .4-8
4.1.8.3 256-bit Insertion, Up-Conversion Instructions with 128-bit Memory Operand 4-8
4.1.8.4 256-bit Variable Blend Instructions .4-9
4.1.8.5 256-bit Vector TEST Instructions .4-9
4.1.8.6 GATHER Instructions. .4-9
4.1.8.7 Masked Load and Store Instructions .4-9
4.1.8.8 ADX Instructions. .4-9
4.1.8.9 BMI1, BMI2, and LZCNT Instructions . 4-10
4.2 TREMONT MICROARCHITECTURE . 4-10
4.2.1 Tremont Microarchitecture Overview . 4-10
4.2.2 The Front End . 4-11
4.2.3 The Out of Order and Execution Engines . 4-12
4.2.4 Cache and Memory Subsystem . 4-13
4.2.5 New Instructions . 4-13
4.2.6 Tremont Microarchitecture Power Management . 4-14

CHAPTER 5
CODING FOR SIMD ARCHITECTURES
5.1 CHECKING FOR PROCESSOR SUPPORT OF SIMD TECHNOLOGIES . 5-1
5.1.1 Checking for MMX Technology Support .5-2
5.1.2 Checking for Streaming SIMD Extensions Support. .5-2
5.1.3 Checking for Streaming SIMD Extensions 2 Support. .5-2
5.1.4 Checking for Streaming SIMD Extensions 3 Support. .5-3
5.1.5 Checking for Supplemental Streaming SIMD Extensions 3 Support5-3
5.1.6 Checking for SSE4.1 Support .5-4
5.1.7 Checking for SSE4.2 Support .5-4
5.1.8 DetectiON of PCLMULQDQ and AESNI Instructions .5-4
5.1.9 Detection of AVX Instructions .5-5
5.1.10 Detection of VEX-Encoded AES and VPCLMULQDQ. .5-7
5.1.11 Detection of F16C Instructions .5-7
5.1.12 Detection of FMA .5-8
5.1.13 Detection of AVX2. .5-9
5.2 CONSIDERATIONS FOR CODE CONVERSION TO SIMD PROGRAMMING 5-10
5.2.1 Identifying Hot Spots . 5-12
5.2.2 Determine If Code Benefits by Conversion to SIMD Execution . 5-12
5.3 CODING TECHNIQUES . 5-12
5.3.1 Coding Methodologies . 5-13
5.3.1.1 Assembly. 5-14
5.3.1.2 Intrinsics . 5-14
5.3.1.3 Classes . 5-15
5.3.1.4 Automatic Vectorization . 5-16
5.4 STACK AND DATA ALIGNMENT . 5-17
5.4.1 Alignment and Contiguity of Data Access Patterns. 5-17

vii

CONTENTS

PAGE

5.4.1.1 Using Padding to Align Data . 5-17
5.4.1.2 Using Arrays to Make Data Contiguous. 5-17
5.4.2 Stack Alignment For 128-bit SIMD Technologies . 5-18
5.4.3 Data Alignment for MMX Technology . 5-18
5.4.4 Data Alignment for 128-bit data . 5-19
5.4.4.1 Compiler-Supported Alignment . 5-19
5.5 IMPROVING MEMORY UTILIZATION . 5-20
5.5.1 Data Structure Layout . 5-20
5.5.2 Strip-Mining . 5-23
5.5.3 Loop Blocking. 5-24
5.6 INSTRUCTION SELECTION . 5-26
5.7 TUNING THE FINAL APPLICATION. 5-27

CHAPTER 6
OPTIMIZING FOR SIMD INTEGER APPLICATIONS
6.1 GENERAL RULES ON SIMD INTEGER CODE . 6-1
6.2 USING SIMD INTEGER WITH X87 FLOATING-POINT . 6-2
6.2.1 Using the EMMS Instruction .6-2
6.2.2 Guidelines for Using EMMS Instruction .6-2
6.3 DATA ALIGNMENT . 6-3
6.4 DATA MOVEMENT CODING TECHNIQUES . 6-5
6.4.1 Unsigned Unpack .6-5
6.4.2 Signed Unpack .6-5
6.4.3 Interleaved Pack with Saturation .6-6
6.4.4 Interleaved Pack without Saturation .6-7
6.4.5 Non-Interleaved Unpack. .6-8
6.4.6 Extract Data Element .6-9
6.4.7 Insert Data Element. 6-10
6.4.8 Non-Unit Stride Data Movement . 6-11
6.4.9 Move Byte Mask to Integer . 6-12
6.4.10 Packed Shuffle Word for 64-bit Registers . 6-12
6.4.11 Packed Shuffle Word for 128-bit Registers. 6-13
6.4.12 Shuffle Bytes. 6-13
6.4.13 Conditional Data Movement . 6-14
6.4.14 Unpacking/interleaving 64-bit Data in 128-bit Registers . 6-14
6.4.15 Data Movement . 6-14
6.4.16 Conversion Instructions . 6-14
6.5 GENERATING CONSTANTS. 6-14
6.6 BUILDING BLOCKS . 6-15
6.6.1 Absolute Difference of Unsigned Numbers . 6-15
6.6.2 Absolute Difference of Signed Numbers. 6-16
6.6.3 Absolute Value . 6-16
6.6.4 Pixel Format Conversion . 6-17
6.6.5 Endian Conversion . 6-18
6.6.6 Clipping to an Arbitrary Range [High, Low] . 6-19
6.6.6.1 Highly Efficient Clipping . 6-19
6.6.6.2 Clipping to an Arbitrary Unsigned Range [High, Low] . 6-21
6.6.7 Packed Max/Min of Byte, Word and Dword . 6-21
6.6.8 Packed Multiply Integers . 6-21
6.6.9 Packed Sum of Absolute Differences. 6-22
6.6.10 MPSADBW and PHMINPOSUW . 6-22
6.6.11 Packed Average (Byte/Word) . 6-22
6.6.12 Complex Multiply by a Constant. 6-22
6.6.13 Packed 64-bit Add/Subtract . 6-23
6.6.14 128-bit Shifts . 6-23
6.6.15 PTEST and Conditional Branch . 6-23
6.6.16 Vectorization of Heterogeneous Computations across Loop Iterations 6-24
6.6.17 Vectorization of Control Flows in Nested Loops . 6-25
6.7 MEMORY OPTIMIZATIONS . 6-27
6.7.1 Partial Memory Accesses . 6-28
6.7.2 Increasing Bandwidth of Memory Fills and Video Fills . 6-29
6.7.2.1 Increasing Memory Bandwidth Using the MOVDQ Instruction 6-29
6.7.2.2 Increasing Memory Bandwidth by Loading and Storing to and from the Same DRAM Page6-29
6.7.2.3 Increasing UC and WC Store Bandwidth by Using Aligned Stores. 6-30

CONTENTS

viii

PAGE

6.7.3 Reverse Memory Copy . 6-30
6.8 CONVERTING FROM 64-BIT TO 128-BIT SIMD INTEGERS . 6-33
6.8.1 SIMD Optimizations and Microarchitectures. 6-33
6.8.1.1 Packed SSE2 Integer versus MMX Instructions . 6-33
6.8.1.2 Work-around for False Dependency Issue . 6-34
6.9 TUNING PARTIALLY VECTORIZABLE CODE . 6-34
6.10 PARALLEL MODE AES ENCRYPTION AND DECRYPTION . 6-37
6.10.1 AES Counter Mode of Operation . 6-37
6.10.2 AES Key Expansion Alternative . 6-45
6.10.3 Enhancement in Haswell Microarchitecture. 6-47
6.10.3.1 AES and Multi-Buffer Cryptographic Throughput. 6-47
6.10.3.2 PCLMULQDQ Improvement . 6-47
6.11 LIGHT-WEIGHT DECOMPRESSION AND DATABASE PROCESSING . 6-47
6.11.1 Reduced Dynamic Range Datasets . 6-48
6.11.2 Compression and Decompression Using SIMD Instructions . 6-48

CHAPTER 7
OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS
7.1 GENERAL RULES FOR SIMD FLOATING-POINT CODE. 7-1
7.2 PLANNING CONSIDERATIONS . 7-1
7.3 USING SIMD FLOATING-POINT WITH X87 FLOATING-POINT. 7-2
7.4 SCALAR FLOATING-POINT CODE . 7-2
7.5 DATA ALIGNMENT . 7-2
7.5.1 Data Arrangement .7-2
7.5.1.1 Vertical versus Horizontal Computation .7-3
7.5.1.2 Data Swizzling .7-5
7.5.1.3 Data Deswizzling .7-7
7.5.1.4 Horizontal ADD Using SSE .7-8
7.5.2 Use of CVTTPS2PI/CVTTSS2SI Instructions . 7-10
7.5.3 Flush-to-Zero and Denormals-are-Zero Modes . 7-10
7.6 SIMD OPTIMIZATIONS AND MICROARCHITECTURES . 7-11
7.6.1 SIMD Floating-point Programming Using SSE3 . 7-11
7.6.1.1 SSE3 and Complex Arithmetics . 7-12
7.6.1.2 Packed Floating-Point Performance in Intel Core Duo Processor 7-14
7.6.2 Dot Product and Horizontal SIMD Instructions . 7-14
7.6.3 Vector Normalization . 7-16
7.6.4 Using Horizontal SIMD Instruction Sets and Data Layout . 7-18
7.6.4.1 SOA and Vector Matrix Multiplication . 7-20

CHAPTER 8
INT8 DEEP LEARNING INFERENCE
8.1 INTRODUCING INT8 AS DATA TYPE FOR DEEP LEARNING INFERENCE 8-1
8.2 INTRODUCING INTEL® DL BOOST . 8-1
8.2.1 Multiply and Add Unsigned and Signed Bytes (VPDPBUSD Instruction)8-2
8.2.2 Multiply and Add Signed Word Integers (VPDPWSSD Instruction).8-4
8.3 GENERAL OPTIMIZATIONS. 8-4
8.3.1 Memory Layout .8-4
8.3.2 Quantization. .8-4
8.3.2.1 Quantization of Weights .8-5
8.3.2.2 Quantization of Activations .8-5
8.3.2.3 Quantizing Negative Activations .8-6
8.3.3 Multicore Considerations .8-6
8.3.3.1 Large Batch (Throughput Workload) .8-6
8.3.3.2 Small Batch (Throughput at Latency Workload) .8-6
8.3.3.3 NUMA .8-6
8.4 CNNS. 8-7
8.4.1 Convolutional Layers .8-7
8.4.1.1 Direct Convolution .8-7

Memory Layout .8-7
Matrix Multiplication .8-9
Blocking .8-9
Direct Convolution Example . 8-10

ix

CONTENTS

PAGE

8.4.1.2 Convolutional Layers with Low OFM Count . 8-13
8.4.2 Post Convolution . 8-15
8.4.2.1 Fused Quantization/Dequantization. 8-15
8.4.2.2 ReLu . 8-16
8.4.2.3 EltWise. 8-17
8.4.2.4 Pooling. 8-17
8.4.2.5 Pixel Shuffler. 8-19
8.5 LSTM NETWORKS . 8-21
8.5.1 Fused LSTM Embedding . 8-21
8.5.2 Fused post GEMM. 8-21
8.5.3 Dynamic Batch Size . 8-24
8.5.4 NMT Example: Beam Search Decoder Get Top K . 8-24

CHAPTER 9
OPTIMIZING CACHE USAGE
9.1 GENERAL PREFETCH CODING GUIDELINES . 9-1
9.2 PREFETCH AND CACHEABILITY INSTRUCTIONS . 9-2
9.3 PREFETCH. 9-2
9.3.1 Software Data Prefetch. .9-2
9.3.2 Prefetch Instructions .9-3
9.3.3 Prefetch and Load Instructions .9-4
9.4 CACHEABILITY CONTROL . 9-5
9.4.1 The Non-temporal Store Instructions .9-5
9.4.1.1 Fencing .9-5
9.4.1.2 Streaming Non-temporal Stores .9-6
9.4.1.3 Memory Type and Non-temporal Stores. .9-6
9.4.1.4 Write-Combining .9-6
9.4.2 Streaming Store Usage Models .9-7
9.4.2.1 Coherent Requests .9-7
9.4.2.2 Non-coherent requests .9-7
9.4.3 Streaming Store Instruction Descriptions. .9-7
9.4.4 The Streaming Load Instruction .9-8
9.4.5 FENCE Instructions. .9-8
9.4.5.1 SFENCE Instruction .9-8
9.4.5.2 LFENCE Instruction .9-8
9.4.5.3 MFENCE Instruction .9-9
9.4.6 CLFLUSH Instruction .9-9
9.4.7 CLFLUSHOPT Instruction . 9-10
9.5 MEMORY OPTIMIZATION USING PREFETCH . 9-12
9.5.1 Software-Controlled Prefetch . 9-12
9.5.2 Hardware Prefetch . 9-12
9.5.3 Example of Effective Latency Reduction with Hardware Prefetch 9-13
9.5.4 Example of Latency Hiding with S/W Prefetch Instruction . 9-14
9.5.5 Software Prefetching Usage Checklist . 9-15
9.5.6 Software Prefetch Scheduling Distance . 9-16
9.5.7 Software Prefetch Concatenation . 9-16
9.5.8 Minimize Number of Software Prefetches . 9-17
9.5.9 Mix Software Prefetch with Computation Instructions . 9-19
9.5.10 Software Prefetch and Cache Blocking Techniques . 9-19
9.5.11 Hardware Prefetching and Cache Blocking Techniques . 9-23
9.5.12 Single-pass versus Multi-pass Execution . 9-24
9.6 MEMORY OPTIMIZATION USING NON-TEMPORAL STORES . 9-25
9.6.1 Non-temporal Stores and Software Write-Combining . 9-25
9.6.2 Cache Management . 9-26
9.6.2.1 Video Encoder . 9-26
9.6.2.2 Video Decoder. 9-26
9.6.2.3 Conclusions from Video Encoder and Decoder Implementation 9-27
9.6.2.4 Optimizing Memory Copy Routines. 9-27
9.6.2.5 Using the 8-byte Streaming Stores and Software Prefetch 9-28
9.6.2.6 Using 16-byte Streaming Stores and Hardware Prefetch . 9-29
9.6.2.7 Performance Comparisons of Memory Copy Routines . 9-30
9.6.3 Deterministic Cache Parameters . 9-30
9.6.3.1 Cache Sharing Using Deterministic Cache Parameters . 9-31
9.6.3.2 Cache Sharing in Single-Core or Multicore . 9-32

CONTENTS

x

PAGE

9.6.3.3 Determine Prefetch Stride . 9-32

CHAPTER 10
SUB-NUMA CLUSTERING
10.1 SUB-NUMA CLUSTERING . 10-1
10.2 COMPARISON WITH CLUSTER-ON-DIE . 10-1
10.3 SNC USAGE . 10-2
10.3.1 How to Check NUMA Configuration . 10-2
10.3.2 MPI Optimizations for SNC. 10-7
10.3.3 SNC Performance Comparison . 10-8

CHAPTER 11
MULTICORE AND HYPER-THREADING TECHNOLOGY
11.1 PERFORMANCE AND USAGE MODELS . 11-1
11.1.1 Multithreading . 11-1
11.1.2 Multitasking Environment . 11-2
11.2 PROGRAMMING MODELS AND MULTITHREADING . 11-3
11.2.1 Parallel Programming Models . 11-4
11.2.1.1 Domain Decomposition . 11-4
11.2.2 Functional Decomposition . 11-4
11.2.3 Specialized Programming Models . 11-4
11.2.3.1 Producer-Consumer Threading Models . 11-5
11.2.4 Tools for Creating Multithreaded Applications . 11-7
11.2.4.1 Programming with OpenMP Directives . 11-8
11.2.4.2 Automatic Parallelization of Code . 11-8
11.2.4.3 Supporting Development Tools . 11-8
11.3 OPTIMIZATION GUIDELINES. 11-8
11.3.1 Key Practices of Thread Synchronization. 11-8
11.3.2 Key Practices of System Bus Optimization . 11-9
11.3.3 Key Practices of Memory Optimization . 11-9
11.3.4 Key Practices of Execution Resource Optimization. 11-9
11.3.5 Generality and Performance Impact . 11-10
11.4 THREAD SYNCHRONIZATION . 11-10
11.4.1 Choice of Synchronization Primitives. 11-10
11.4.2 Synchronization for Short Periods . 11-11
11.4.3 Optimization with Spin-Locks . 11-13
11.4.4 Synchronization for Longer Periods . 11-13
11.4.4.1 Avoid Coding Pitfalls in Thread Synchronization . 11-14
11.4.5 Prevent Sharing of Modified Data and False-Sharing . 11-14
11.4.6 Placement of Shared Synchronization Variable . 11-15
11.5 SYSTEM BUS OPTIMIZATION. 11-16
11.5.1 Conserve Bus Bandwidth . 11-17
11.5.2 Understand the Bus and Cache Interactions . 11-17
11.5.3 Avoid Excessive Software Prefetches . 11-17
11.5.4 Improve Effective Latency of Cache Misses . 11-18
11.5.5 Use Full Write Transactions to Achieve Higher Data Rate . 11-18
11.6 MEMORY OPTIMIZATION . 11-19
11.6.1 Cache Blocking Technique . 11-19
11.6.2 Shared-Memory Optimization . 11-19
11.6.2.1 Minimize Sharing of Data between Physical Processors . 11-19
11.6.2.2 Batched Producer-Consumer Model . 11-20
11.6.3 Eliminate 64-KByte Aliased Data Accesses . 11-21
11.7 FRONT END OPTIMIZATION. 11-21
11.7.1 Avoid Excessive Loop Unrolling . 11-21
11.8 AFFINITIES AND MANAGING SHARED PLATFORM RESOURCES. 11-22
11.8.1 Topology Enumeration of Shared Resources . 11-23
11.8.2 Non-Uniform Memory Access . 11-23
11.9 OPTIMIZATION OF OTHER SHARED RESOURCES . 11-25
11.9.1 Expanded Opportunity for HT Optimization. 11-25

xi

CONTENTS

PAGE

CHAPTER 12
INTEL® OPTANE™ DC PERSISTENT MEMORY
12.1 MEMORY MODE AND APP-DIRECT MODE . 12-1
12.1.1 Memory Mode . 12-1
12.1.2 App Direct Mode . 12-1
12.1.3 Selecting a Mode . 12-2
12.2 DEVICE CHARACTERISTICS OF INTEL® OPTANE™ DC PERSISTENT MEMORY MODULE . . 12-3
12.2.1 Intel® Optane™ DC Persistent Memory Module Latency . 12-4
12.2.2 Read vs. Write Bandwidth . 12-4
12.2.3 Number of Threads for Optimal Bandwidth. 12-5
12.3 PLATFORM IMPLICATIONS OF HANDLING A SECOND TYPE OF MEMORY 12-8
12.3.1 Multi-Processor Cache Coherence. 12-8
12.3.2 Shared Queues in the Memory Hierarchy. 12-9
12.4 IMPLEMENTING PERSISTENCE FOR MEMORY . 12-9
12.5 POWER CONSUMPTION. 12-10
12.5.1 Read-Write Equivalence . 12-10
12.5.2 Spatial and Temporal Locality . 12-12

CHAPTER 13
64-BIT MODE CODING GUIDELINES
13.1 INTRODUCTION . 13-1
13.2 CODING RULES AFFECTING 64-BIT MODE. 13-1
13.2.1 Use Legacy 32-Bit Instructions When Data Size Is 32 Bits . 13-1
13.2.2 Use Extra Registers to Reduce Register Pressure . 13-1
13.2.3 Effective Use of 64-Bit by 64-Bit Multiplication. 13-2
13.2.4 Replace 128-bit Integer Division with 128-bit Multiplication. 13-2
13.2.5 Sign Extension to Full 64-Bits . 13-4
13.3 ALTERNATE CODING RULES FOR 64-BIT MODE . 13-5
13.3.1 Use 64-Bit Registers Instead of Two 32-Bit Registers

for 64-Bit Arithmetic Result . 13-5
13.3.2 Using Software Prefetch . 13-6

CHAPTER 14
SSE4.2 AND SIMD PROGRAMMING FOR TEXT-PROCESSING/LEXING/PARSING
14.1 SSE4.2 STRING AND TEXT INSTRUCTIONS . 14-1
14.1.1 CRC32 . 14-4
14.2 USING SSE4.2 STRING AND TEXT INSTRUCTIONS . 14-5
14.2.1 Unaligned Memory Access and Buffer Size Management . 14-5
14.2.2 Unaligned Memory Access and String Library . 14-6
14.3 SSE4.2 APPLICATION CODING GUIDELINE AND EXAMPLES. 14-6
14.3.1 Null Character Identification (Strlen equivalent) . 14-6
14.3.2 White-Space-Like Character Identification . 14-9
14.3.3 Substring Searches . 14-11
14.3.4 String Token Extraction and Case Handling. 14-18
14.3.5 Unicode Processing and PCMPxSTRy. 14-22
14.3.6 Replacement String Library Function Using SSE4.2 . 14-26
14.4 SSE4.2 ENABLED NUMERICAL AND LEXICAL COMPUTATION. 14-28
14.5 NUMERICAL DATA CONVERSION TO ASCII FORMAT . 14-34
14.5.1 Large Integer Numeric Computation . 14-48
14.5.1.1 MULX Instruction and Large Integer Numeric Computation 14-48

CHAPTER 15
OPTIMIZATIONS FOR INTEL® AVX, FMA AND AVX2
15.1 INTEL® AVX INTRINSICS CODING . 15-2
15.1.1 Intel® AVX Assembly Coding . 15-4
15.2 NON-DESTRUCTIVE SOURCE (NDS). 15-6
15.3 MIXING AVX CODE WITH SSE CODE . 15-7
15.3.1 Mixing Intel® AVX and Intel SSE in Function Calls . 15-9
15.4 128-BIT LANE OPERATION AND AVX . 15-10
15.4.1 Programming With the Lane Concept . 15-11
15.4.2 Strided Load Technique . 15-11

CONTENTS

xii

PAGE

15.4.3 The Register Overlap Technique . 15-14
15.5 DATA GATHER AND SCATTER . 15-15
15.5.1 Data Gather . 15-15
15.5.2 Data Scatter . 15-17
15.6 DATA ALIGNMENT FOR INTEL® AVX. 15-19
15.6.1 Align Data to 32 Bytes . 15-19
15.6.2 Consider 16-Byte Memory Access when Memory is Unaligned 15-20
15.6.3 Prefer Aligned Stores Over Aligned Loads . 15-22
15.7 L1D CACHE LINE REPLACEMENTS . 15-22
15.8 4K ALIASING. 15-23
15.9 CONDITIONAL SIMD PACKED LOADS AND STORES . 15-23
15.9.1 Conditional Loops . 15-24
15.10 MIXING INTEGER AND FLOATING-POINT CODE . 15-26
15.11 HANDLING PORT 5 PRESSURE . 15-29
15.11.1 Replace Shuffles with Blends . 15-29
15.11.2 Design Algorithm With Fewer Shuffles . 15-31
15.11.3 Perform Basic Shuffles on Load Ports . 15-34
15.12 DIVIDE AND SQUARE ROOT OPERATIONS . 15-35
15.12.1 Single-Precision Divide . 15-37
15.12.2 Single-Precision Reciprocal Square Root. 15-38
15.12.3 Single-Precision Square Root . 15-40
15.13 OPTIMIZATION OF ARRAY SUB SUM EXAMPLE . 15-42
15.14 HALF-PRECISION FLOATING-POINT CONVERSIONS . 15-44
15.14.1 Packed Single-Precision to Half-Precision Conversion . 15-45
15.14.2 Packed Half-Precision to Single-Precision Conversion . 15-46
15.14.3 Locality Consideration for using Half-Precision FP to Conserve Bandwidth 15-46
15.15 FUSED MULTIPLY-ADD (FMA) INSTRUCTIONS GUIDELINES. 15-47
15.15.1 Optimizing Throughput with FMA and Floating-Point Add/MUL 15-48
15.15.2 Optimizing Throughput with Vector Shifts . 15-50
15.16 AVX2 OPTIMIZATION GUIDELINES . 15-51
15.16.1 Multi-Buffering and AVX2 . 15-55
15.16.2 Modular Multiplication and AVX2 . 15-55
15.16.3 Data Movement Considerations. 15-56
15.16.3.1 SIMD Heuristics to implement Memcpy(). 15-56
15.16.3.2 Memcpy() Implementation Using Enhanced REP MOVSB . 15-57
15.16.3.3 Memset() Implementation Considerations . 15-57
15.16.3.4 Hoisting Memcpy/Memset Ahead of Consuming Code . 15-58
15.16.3.5 256-bit Fetch versus Two 128-bit Fetches. 15-59
15.16.3.6 Mixing MULX and AVX2 Instructions . 15-59
15.16.4 Considerations for Gather Instructions . 15-65
15.16.4.1 Strided Loads. 15-68
15.16.4.2 Adjacent Loads . 15-69
15.16.5 AVX2 Conversion Remedy to MMX Instruction Throughput Limitation 15-71

CHAPTER 16
INTEL® TSX RECOMMENDATIONS
16.1 INTRODUCTION . 16-1
16.1.1 Optimization Outline . 16-2
16.2 APPLICATION-LEVEL TUNING AND OPTIMIZATIONS . 16-2
16.2.1 Existing TSX-enabled Locking Libraries. 16-3
16.2.1.1 Libraries allowing lock elision for unmodified programs . 16-3
16.2.1.2 Libraries requiring program modifications . 16-3
16.2.2 Initial Checks . 16-3
16.2.3 Run and Profile the Application . 16-3
16.2.4 Minimize Transactional Aborts . 16-4
16.2.4.1 Transactional Aborts due to Data Conflicts . 16-5
16.2.4.2 Transactional Aborts due to Limited Transactional Resources 16-6
16.2.4.3 Lock Elision Specific Transactional Aborts . 16-7
16.2.4.4 HLE Specific Transactional Aborts . 16-7
16.2.4.5 Miscellaneous Transactional Aborts . 16-8
16.2.5 Using Transactional-Only Code Paths . 16-9
16.2.6 Dealing with Transactional Regions or Paths that Abort at a High Rate 16-9
16.2.6.1 Transitioning to Non-Elided Execution without Aborting . 16-9
16.2.6.2 Forcing an Early Abort . 16-10

xiii

CONTENTS

PAGE

16.2.6.3 Not Eliding Selected Locks. 16-10
16.3 DEVELOPING AN INTEL TSX ENABLED SYNCHRONIZATION LIBRARY. 16-10
16.3.1 Adding HLE Prefixes . 16-10
16.3.2 Elision Friendly Critical Section Locks. 16-10
16.3.3 Using HLE or RTM for Lock Elision . 16-11
16.3.4 An example wrapper for lock elision using RTM. 16-11
16.3.5 Guidelines for the RTM fallback handler . 16-12
16.3.6 Implementing Elision-Friendly Locks using Intel® TSX. 16-13
16.3.6.1 Implementing a Simple Spinlock using HLE. 16-13
16.3.6.2 Implementing Reader-Writer Locks using Intel TSX . 16-15
16.3.6.3 Implementing Ticket Locks using Intel® TSX . 16-15
16.3.6.4 Implementing Queue-Based Locks using Intel® TSX . 16-15
16.3.7 Eliding Application-Specific Meta-Locks using Intel® TSX. 16-16
16.3.8 Avoiding Persistent Non-Elided Execution . 16-17
16.3.9 Reading the Value of an Elided Lock in RTM-based libraries . 16-19
16.3.10 Intermixing HLE and RTM . 16-19
16.4 USING THE PERFORMANCE MONITORING SUPPORT FOR INTEL® TSX 16-20
16.4.1 Measuring Transactional Success . 16-21
16.4.2 Finding locks to elide and verifying all locks are elided. 16-21
16.4.3 Sampling Transactional Aborts . 16-21
16.4.4 Classifying Aborts using a Profiling Tool. 16-21
16.4.5 XABORT Arguments for RTM fallback handlers . 16-22
16.4.6 Call Graphs for Transactional Aborts . 16-23
16.4.7 Last Branch Records and Transactional Aborts . 16-23
16.4.8 Profiling and Testing Intel TSX Software using the Intel® SDE 16-23
16.4.9 HLE Specific Performance Monitoring Events . 16-24
16.4.10 Computing Useful Metrics for Intel® TSX . 16-25
16.5 PERFORMANCE GUIDELINES . 16-25
16.6 DEBUGGING GUIDELINES . 16-26
16.7 COMMON INTRINSICS FOR INTEL® TSX . 16-26
16.7.1 RTM C Intrinsics . 16-26
16.7.1.1 Emulated RTM intrinsics on older gcc compatible compilers. 16-27
16.7.2 HLE Intrinsics on gcc and Other Linux Compatible Compilers . 16-28
16.7.2.1 Generating HLE intrinsics with gcc4.8 . 16-28
16.7.2.2 C++11 atomic support . 16-29
16.7.2.3 Emulating HLE intrinsics with older gcc-compatible compilers. 16-29
16.7.3 HLE intrinsics on Windows C/C++ compilers . 16-29

CHAPTER 17
POWER OPTIMIZATION FOR MOBILE USAGES
17.1 OVERVIEW . 17-1
17.2 MOBILE USAGE SCENARIOS. 17-1
17.2.1 Intelligent Energy Efficient Software . 17-2
17.3 ACPI C-STATES . 17-3
17.3.1 Processor-Specific C4 and Deep C4 States . 17-4
17.3.2 Processor-Specific Deep C-States and Intel® Turbo Boost Technology 17-4
17.3.3 Processor-Specific Deep C-States for Sandy Bridge Microarchitecture 17-5
17.3.4 Intel® Turbo Boost Technology 2.0 . 17-6
17.4 GUIDELINES FOR EXTENDING BATTERY LIFE . 17-6
17.4.1 Adjust Performance to Meet Quality of Features . 17-6
17.4.2 Reducing Amount of Work. 17-7
17.4.3 Platform-Level Optimizations. 17-7
17.4.4 Handling Sleep State Transitions . 17-8
17.4.5 Using Enhanced Intel SpeedStep® Technology . 17-8
17.4.6 Enabling Intel® Enhanced Deeper Sleep. 17-9
17.4.7 Multicore Considerations . 17-10
17.4.7.1 Enhanced Intel SpeedStep® Technology . 17-10
17.4.7.2 Thread Migration Considerations . 17-10
17.4.7.3 Multicore Considerations for C-States . 17-11
17.5 TUNING SOFTWARE FOR INTELLIGENT POWER CONSUMPTION . 17-12
17.5.1 Reduction of Active Cycles . 17-12
17.5.1.1 Multi-threading to reduce Active Cycles . 17-12
17.5.1.2 Vectorization . 17-13
17.5.2 PAUSE and Sleep(0) Loop Optimization. 17-14

CONTENTS

xiv

PAGE

17.5.3 Spin-Wait Loops . 17-15
17.5.4 Using Event Driven Service Instead of Polling in Code . 17-15
17.5.5 Reducing Interrupt Rate. 17-15
17.5.6 Reducing Privileged Time. 17-15
17.5.7 Setting Context Awareness in the Code. 17-16
17.5.8 Saving Energy by Optimizing for Performance . 17-17
17.6 PROCESSOR SPECIFIC POWER MANAGEMENT OPTIMIZATION FOR SYSTEM SOFTWARE 17-17
17.6.1 Power Management Recommendation of Processor-Specific Inactive State Configurations17-17
17.6.1.1 Balancing Power Management and Responsiveness of Inactive To Active State Transitions17-19

CHAPTER 18
SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS
18.1 BASIC INTEL® AVX-512 VS. INTEL® AVX2 CODING. 18-2
18.1.1 Intrinsic Coding . 18-2
18.1.2 Assembly Coding. 18-4
18.2 MASKING . 18-6
18.2.1 Masking Example . 18-7
18.2.2 Masking Cost . 18-11
18.2.3 Masking vs. Blending . 18-11
18.2.4 Nested Conditions / Mask Aggregation . 18-13
18.2.5 Memory Masking Microarchitecture Improvements. 18-14
18.2.6 Peeling and Remainder Masking . 18-15
18.3 FORWARDING AND UNMASKED OPERATIONS. 18-16
18.4 FORWARDING AND MEMORY MASKING . 18-17
18.5 DATA COMPRESS . 18-17
18.5.1 Data Compress Example. 18-18
18.6 DATA EXPAND. 18-22
18.6.1 Data Expand Example . 18-23
18.7 TERNARY LOGIC . 18-25
18.7.1 Ternary Logic Example 1 . 18-25
18.7.2 Ternary Logic Example 2 . 18-27
18.8 NEW SHUFFLE INSTRUCTIONS . 18-28
18.8.1 Two Source Permute Example. 18-29
18.9 BROADCAST . 18-32
18.9.1 Embedded Broadcast. 18-32
18.9.2 Broadcast Executed on Load Ports. 18-32
18.10 EMBEDDED ROUNDING . 18-33
18.10.1 Static Rounding Mode . 18-33
18.11 SCATTER INSTRUCTION . 18-35
18.11.1 Data Scatter Example . 18-35
18.12 STATIC ROUNDING MODES, SUPPRESS-ALL-EXCEPTIONS (SAE) . 18-38
18.13 QWORD INSTRUCTION SUPPORT . 18-38
18.13.1 QUADWORD Support in Arithmetic Instructions . 18-39
18.13.2 QUADWORD Support in Convert Instructions . 18-42
18.13.3 QUADWORD Support for Convert with Truncation Instructions 18-43
18.14 VECTOR LENGTH ORTHOGONALITY . 18-43
18.15 INTEL® AVX-512 INSTRUCTIONS FOR TRANSCENDENTAL SUPPORT 18-43
18.15.1 VRCP14, VRSQRT14 - Software Sequences for 1/x, x/y, sqrt(x) 18-43
18.15.1.1 Application Examples . 18-43
18.15.2 VGETMANT VGETEXP - Vector Get Mantissa and Vector Get Exponent 18-44
18.15.2.1 Application Examples . 18-44
18.15.3 VRNDSCALE - Vector Round Scale . 18-44
18.15.3.1 Application Examples . 18-44
18.15.4 VREDUCE - Vector Reduce. 18-45
18.15.4.1 Application Examples . 18-45
18.15.5 VSCALEF - Vector Scale . 18-45
18.15.5.1 Application Examples . 18-45
18.15.6 VFPCLASS - Vector Floating Point Class . 18-46
18.15.6.1 Application Examples . 18-46
18.15.7 VPERM, VPERMI2, VPERMT2 - Small Table Lookup Implementation 18-46
18.15.7.1 Application Examples . 18-46
18.16 CONFLICT DETECTION. 18-46
18.16.1 Vectorization with Conflict Detection . 18-47
18.16.2 Sparse Dot Product with VPCONFLICT . 18-51

xv

CONTENTS

PAGE

18.17 INTEL® AVX-512 VECTOR BYTE MANIPULATION INSTRUCTIONS (VBMI) 18-53
18.17.1 Permute Packet Bytes Elements Across Lanes (VPERMB) . 18-54
18.17.2 Two-Source Byte Permute Across Lanes (VPERMI2B, VPERMT2B). 18-55
18.17.3 Select Packed Unaligned Bytes from Quadword Sources (VPMULTISHIFTQB) 18-58
18.18 FMA LATENCY . 18-60
18.19 MIXING INTEL® AVX EXTENSIONS OR INTEL® AVX-512 EXTENSIONS WITH INTEL® STREAMING SIMD EXTENSIONS

(INTEL® SSE) CODE . 18-61
18.20 MIXING ZMM VECTOR CODE WITH XMM/YMM. 18-62
18.21 SERVERS WITH A SINGLE FMA UNIT . 18-63
18.22 GATHER/SCATTER TO SHUFFLE (G2S/STS) . 18-68
18.22.1 Gather to Shuffle in Strided Loads . 18-68
18.22.2 Scatter to Shuffle in Strided Stores . 18-69
18.22.3 Gather to Shuffle in Adjacent Loads . 18-70
18.23 DATA ALIGNMENT . 18-71
18.23.1 Align Data to 64 Bytes . 18-71
18.24 DYNAMIC MEMORY ALLOCATION AND MEMORY ALIGNMENT . 18-73
18.25 DIVISION AND SQUARE ROOT OPERATIONS . 18-73
18.25.1 Divide and Square Root Approximation Methods. 18-74
18.25.2 Divide and Square Root Performance . 18-75
18.25.3 Approximation Latencies . 18-75
18.25.4 Code Snippets . 18-78
18.26 CLDEMOTE . 18-84
18.26.1 Producer-Consumer Communication in Software. 18-84
18.27 TIPS ON COMPILER USAGE . 18-85

CHAPTER 19
INTEL® ADVANCED VECTOR EXTENSIONS 512 - FP16 INSTRUCTION SET FOR INTEL®
XEON® PROCESSORS
19.1 INTRODUCTION . 19-1
19.1.1 Terminology . 19-1
19.2 OVERVIEW . 19-2
19.3 FP16 NUMERIC INSTRUCTIONS . 19-3
19.3.1 Data Type Support. 19-3
19.3.2 Overview of Intrinsics. 19-4
19.3.3 Fundamental Complex-Valued Support . 19-5
19.3.4 Using Intel® AVX-512 Bit Masks for Real-Valued Operations. 19-6
19.3.5 Using Intel® AVX-512 Bit Masks for Complex-Valued Operations. 19-7
19.4 NUMERICS . 19-9
19.4.1 Introduction to FP16 Number Format . 19-10
19.4.2 Observations on Representing Numbers in FP16 Format. 19-10
19.4.3 Numeric Accuracy Guarantees . 19-12
19.4.4 Handling Denormal Values. 19-13
19.4.5 Embedded Rounding . 19-13
19.4.6 Legacy FP16 Data Type Conversion . 19-14
19.4.7 FP16 Conversions to and from Other Data Types. 19-14
19.4.8 Approximation Instructions and Their Uses. 19-15
19.4.8.1 Approximate Reciprocal . 19-15
19.4.8.2 Approximate Division . 19-15
19.4.8.3 Approximate Reciprocal Square Root . 19-16
19.4.9 Approximate Square Root . 19-17
19.5 USING EXISTING INTEL® AVX-512 INSTRUCTIONS TO AUGMENT FP16 SUPPORT . . . 19-17
19.5.1 Using Existing Instructions to Extend Intel® AVX-512 FP16 Intrinsics 19-17
19.5.2 Common Convenience Intrinsics . 19-18
19.5.3 Using Integer Comparisons for Fast Floating-Point Comparison 19-18
19.6 MATH LIBRARY SUPPORT . 19-19

CHAPTER 20
INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)
20.1 DETECTING INTEL® AMX SUPPORT . 20-2
20.2 INTEL® AMX MICROARCHITECTURE OVERVIEW . 20-2
20.2.1 Intel AMX Frequencies . 20-2
20.3 INTEL® AMX INSTRUCTIONS THROUGHPUT AND LATENCY . 20-3

CONTENTS

xvi

PAGE

20.4 DATA STRUCTURE ALIGNMENT. 20-3
20.5 GEMMS / CONVOLUTIONS . 20-4
20.5.1 Notation . 20-4
20.5.2 Tiles in the Intel® AMX Architecture . 20-4

TileLoad and TileStore Instructions . 20-5
20.5.3 B Matrix Layout . 20-6
20.5.4 Straightforward GEMM Implementation . 20-8
20.5.5 Optimizations. 20-10
20.5.5.1 Minimizing Tile Loads . 20-10

Location of the K Loop: Outside of the M_ACC and N_ACC Loops 20-10
Pre-loading Innermost Loop Tiles . 20-10
2D Accumulator Array vs. 1D Accumulator Array . 20-11

20.5.5.2 Software Pipelining of Tile Loads and Stores . 20-12
20.5.5.3 Optimized GEMM Implementation . 20-12

Variable Input Dimensions . 20-15
20.5.5.4 Direct Convolution with Intel® AMX . 20-15

Activations Layout . 20-15
Weights Layout . 20-16

20.5.5.5 Convolution - Matrix-like Multiplications and Summations Equivalence 20-17
20.5.5.6 Optimized Convolution Implementation . 20-19

Location of the KH, KW Loops . 20-21
20.6 CACHE BLOCKING . 20-21
20.6.1 Optimized Convolution Implementation with Cache Blocking. 20-21

Intel AMX-Specific Considerations. 20-23
20.7 MINI-BATCHING IN LARGE BATCH INFERENCE . 20-24
20.8 NON-TEMPORAL TILE LOADS . 20-25

Priority Inversion Scenarios with Temporal Loads. 20-25
Scenario 1: . 20-25
Scenario 2: . 20-26
Solution to Priority Inversions: Non-temporal Loads. 20-27

20.9 USING LARGE TILES IN SMALL CONVOLUTIONS TO MAXIMIZE DATA REUSE 20-27
20.10 HANDLING INCONVENIENTLY SIZED ACTIVATIONS. 20-28
20.11 POST-CONVOLUTION OPTIMIZATIONS . 20-29
20.11.1 Post-convolution Fusion. 20-29
20.11.2 Intel® AMX and Intel® AVX-512 Interleaving (SW Pipelining) . 20-32
20.11.3 AVOIDING THE H/W OVERHEAD OF PORT 5 FREQUENT OPEN/CLOSE OPERATIONS20-34
20.11.4 Post-Conv Multiple OFM Accumulation and Efficient Down-Conversion 20-35
20.12 INPUT AND OUTPUT BUFFERS REUSE (AKA DOUBLE BUFFERING) 20-37
20.13 SOFTWARE PREFETCHES. 20-38
20.13.1 Software Prefetch for Convolution and GEMM Layers . 20-38
20.13.1.1 The Prefetch Strategy . 20-38
20.13.1.2 Prefetch Distance. 20-39
20.13.1.3 To Prefetch A or Prefetch B? . 20-39
20.13.1.4 To Prefetch or not to Prefetch C? . 20-40
20.13.2 Software Prefetch for Embedding Layer . 20-40
20.14 STORE TO LOAD FORWARDING . 20-40
20.15 MATRIX TRANSPOSE. 20-41
20.15.1 Flat-to-Flat Transpose of BF16 Data . 20-41
20.15.2 VNNI-to-VNNI Transpose . 20-46
20.15.3 Flat-to-VNNI Transpose . 20-48
20.15.4 Flat-to-VNNI Re-layout . 20-52
20.16 MULTI-THREADING CONSIDERATIONS. 20-53
20.16.1 Thread Affinity . 20-53
20.16.2 Hyper-Threading. 20-53
20.16.3 Work Partitioning Between Cores. 20-53
20.16.3.1 Partitioning over M . 20-54
20.16.3.2 Partitioning over N. 20-54
20.16.3.3 Partitioning over K. 20-55
20.16.3.4 Memory Bandwidth Implications of Work Partitioning over Multiple Dimensions20-55
20.16.4 Recommendation System Example. 20-56
20.17 SPARSITY OPTIMIZATIONS FOR INTEL® AMX . 20-58
20.18 TILECONFIG/TILERELEASE, CORE C-STATE, AND COMPILER ABI . 20-60
20.18.1 ABI. 20-60

xvii

CONTENTS

PAGE

20.18.2 Intrinsics . 20-60
20.18.3 User Interface . 20-61
20.18.4 Example. 20-63
20.18.5 Compilation Option. 20-65
20.19 INTEL® AMX STATE MANAGEMENT. 20-66
20.19.1 Extended Feature Disable (XFD) . 20-67
20.19.2 Alternate Signal Handler Stack in Linux Operating System . 20-67
20.20 USING INTEL® AMX TO EMULATE HIGHER PRECISION GEMMS . 20-67

CHAPTER 21
CRYPTOGRAPHY & FINITE FIELD ARITHMETIC ENHANCEMENTS
21.1 VECTOR AES. 21-1
21.2 VPCLMULQDQ . 21-2
21.3 GALOIS FIELD NEW INSTRUCTIONS. 21-2
21.4 INTEGER FUSED MULTIPLY ACCUMULATE OPERATIONS (AVX512_IFMA - VPMADD52) 21-3

CHAPTER 22
INTEL® QUICKASSIST TECHNOLOGY
22.1 SOFTWARE DESIGN GUIDELINES . 22-1
22.1.1 Polling vs. Interrupts (If Supported) . 22-1
22.1.1.1 Interrupt Mode . 22-1
22.1.1.2 Polling Mode. 22-2
22.1.1.3 Recommendations . 22-3
22.1.2 Use of Data Plane (DP) API vs. Traditional API . 22-3
22.1.2.1 Batch Submission of Requests Using the Data Plane API . 22-3
22.1.3 Synchronous (sync) vs. Asynchronous (async) . 22-3
22.1.4 Buffer Lists . 22-4
22.1.5 Maximum Number of Concurrent Requests . 22-4
22.1.6 Symmetric Crypto Partial Operations. 22-5
22.1.7 Reusing Sessions in QAT Environment . 22-5
22.1.8 Maximizing QAT Device Utilization . 22-5
22.1.9 Best Known Method (BKM) for Avoiding Performance Bottlenecks 22-5
22.1.10 Avoid Data Copies By Using SVM and ATS . 22-6
22.1.11 Avoid Page Faults When Using SVM. 22-6

CHAPTER 23
KNIGHTS LANDING MICROARCHITECTURE AND SOFTWARE OPTIMIZATION
23.1 KNIGHTS LANDING MICROARCHITECTURE . 23-2
23.1.1 Front End . 23-3
23.1.2 Out-of-Order Engine . 23-3
23.1.3 UnTile . 23-6
23.2 INTEL® AVX-512 CODING RECOMMENDATIONS FOR KNIGHTS LANDING MICROARCHITECTURE 23-7
23.2.1 Using Gather and Scatter Instructions. 23-8
23.2.2 Using Enhanced Reciprocal Instructions . 23-8
23.2.3 Using AVX-512CD Instructions . 23-9
23.2.4 Using Intel® Hyper-Threading Technology . 23-9
23.2.5 Front End Considerations. 23-9
23.2.5.1 Instruction Decoder . 23-10
23.2.5.2 Branching Indirectly Across a 4GB Boundary . 23-10
23.2.6 Integer Execution Considerations . 23-10
23.2.6.1 Flags usage . 23-10
23.2.6.2 Integer Division. 23-11
23.2.7 Optimizing FP and Vector Execution . 23-11
23.2.7.1 Instruction Selection Considerations . 23-11
23.2.7.2 Porting Intrinsics from Previous Generation . 23-13
23.2.7.3 Vectorization Trade-Off Estimation . 23-13
23.2.8 Memory Optimization . 23-16
23.2.8.1 Data Alignment . 23-16
23.2.8.2 Hardware Prefetcher . 23-17
23.2.8.3 Software Prefetch . 23-17
23.2.8.4 Memory Execution Cluster . 23-17

CONTENTS

xviii

PAGE

23.2.8.5 Store Forwarding . 23-18
23.2.8.6 Way, Set Conflicts . 23-18
23.2.8.7 Streaming Store Versus Regular Store . 23-19
23.2.8.8 Compiler Switches and Directives . 23-19
23.2.8.9 Direct Mapped MCDRAM Cache . 23-19

APPENDIX A
APPLICATION PERFORMANCE TOOLS
A.1 COMPILERS . A-2
A.1.1 Recommended Optimization Settings for Intel® 64 and IA-32 Processors. A-2
A.1.2 Vectorization and Loop Optimization . A-3
A.1.2.1 Multithreading with OpenMP* . A-3
A.1.2.2 Automatic Multithreading . A-3
A.1.3 Inline Expansion of Library Functions (/Oi, /Oi-) . A-3
A.1.4 Interprocedural and Profile-Guided Optimizations . A-3
A.1.4.1 Interprocedural Optimization (IPO) . A-3
A.1.4.2 Profile-Guided Optimization (PGO) . A-4
A.1.5 Intel® Cilk™ Plus . A-4
A.2 PERFORMANCE LIBRARIES . A-4
A.2.1 Intel® Integrated Performance Primitives (Intel® IPP) . A-5
A.2.2 Intel® Math Kernel Library (Intel® MKL) . A-5
A.2.3 Intel® Threading Building Blocks (Intel® TBB) . A-5
A.2.4 Benefits Summary . A-5
A.3 PERFORMANCE PROFILERS. A-5
A.3.1 Intel® VTune™ Amplifier XE . A-6
A.3.1.1 Hardware Event-Based Sampling Analysis. A-6
A.3.1.2 Algorithm Analysis . A-6
A.3.1.3 Platform Analysis . A-6
A.4 THREAD AND MEMORY CHECKERS . A-6
A.4.1 Intel® Inspector . A-7
A.5 VECTORIZATION ASSISTANT . A-7
A.5.1 Intel® Advisor . A-7
A.6 CLUSTER TOOLS . A-7
A.6.1 Intel® Trace Analyzer and Collector. A-7
A.6.1.1 MPI Performance Snapshot. A-7
A.6.2 Intel® MPI Library . A-7
A.6.3 Intel® MPI Benchmarks . A-8
A.7 INTEL® ACADEMIC COMMUNITY . A-8

APPENDIX B
USING PERFORMANCE MONITORING EVENTS
B.1 TOP-DOWN ANALYSIS METHOD. B-1
B.1.1 Top-Level .B-2
B.1.2 Frontend Bound .B-4
B.1.3 Backend Bound .B-4
B.1.4 Memory Bound .B-4
B.1.5 Core Bound .B-5
B.1.6 Bad Speculation .B-5
B.1.7 Retiring .B-6
B.1.8 Golden Cove Microarchitecture .B-6
B.1.9 Ice Lake Microarchitecture .B-6
B.1.10 Optane Persistent Memory .B-6
B.1.11 Skylake Microarchitecture .B-6
B.1.11.1 TMA Use Case 1 .B-7
B.1.11.2 TMA Use Case 2 .B-7
B.2 PERFORMANCE MONITORING AND MICROARCHITECTURE . B-8
B.3 INTEL® XEON® PROCESSOR 5500 SERIES . B-14
B.4 PERFORMANCE ANALYSIS TECHNIQUES FOR INTEL® XEON® PROCESSOR 5500 SERIES B-15
B.4.1 Cycle Accounting and Uop Flow Analysis . B-16
B.4.1.1 Cycle Drill Down and Branch Mispredictions. B-17
B.4.1.2 Basic Block Drill Down. B-20
B.4.2 Stall Cycle Decomposition and Core Memory Accesses . B-21

xix

CONTENTS

PAGE

B.4.2.1 Measuring Costs of Microarchitectural Conditions. B-21
B.4.3 Core PMU Precise Events. B-22
B.4.3.1 Precise Memory Access Events . B-23
B.4.3.2 Load Latency Event. B-24
B.4.3.3 Precise Execution Events . B-26
B.4.3.4 Last Branch Record (LBR) . B-27
B.4.3.5 Measuring Per-Core Bandwidth . B-31
B.4.3.6 Miscellaneous L1 and L2 Events for Cache Misses . B-32
B.4.3.7 TLB Misses . B-32
B.4.3.8 L1 Data Cache . B-33
B.4.4 Frontend Monitoring Events . B-33
B.4.4.1 Branch Mispredictions. B-33
B.4.4.2 Frontend Code Generation Metrics. B-33
B.4.5 Uncore Performance Monitoring Events. B-34
B.4.5.1 Global Queue Occupancy . B-34
B.4.5.2 Global Queue Port Events . B-36
B.4.5.3 Global Queue Snoop Events . B-36
B.4.5.4 L3 Events . B-37
B.4.6 Intel QuickPath Interconnect Home Logic (QHL). B-37
B.4.7 Measuring Bandwidth From the Uncore . B-42
B.5 PERFORMANCE TUNING TECHNIQUES FOR SANDY BRIDGE MICROARCHITECTURE B-43
B.5.1 Correlating Performance Bottleneck to Source Location . B-43
B.5.2 Hierarchical Top-Down Performance Characterization Methodology and Locating Performance BottlenecksB-

44
B.5.2.1 Back End Bound Characterization . B-45
B.5.2.2 Core Bound Characterization . B-45
B.5.2.3 Memory Bound Characterization . B-46
B.5.3 Back End Stalls . B-47
B.5.4 Memory Sub-System Stalls . B-48
B.5.4.1 Accounting for Load Latency . B-48
B.5.4.2 Cache-line Replacement Analysis . B-50
B.5.4.3 Lock Contention Analysis. B-50
B.5.4.4 Other Memory Access Issues . B-51
B.5.5 Execution Stalls. B-53
B.5.5.1 Longer Instruction Latencies . B-53
B.5.5.2 Assists . B-53
B.5.6 Bad Speculation . B-54
B.5.6.1 Branch Mispredicts. B-54
B.5.7 Frontend Stalls . B-54
B.5.7.1 Understanding the Micro-op Delivery Rate . B-54
B.5.7.2 Understanding the Sources of the Micro-op Queue . B-56
B.5.7.3 The Decoded ICache . B-57
B.5.7.4 Issues in the Legacy Decode Pipeline . B-58
B.5.7.5 Instruction Cache . B-58
B.6 USING PERFORMANCE EVENTS OF INTEL® CORE™ SOLO AND INTEL® CORE™ DUO PROCESSORS B-59
B.6.1 Understanding the Results in a Performance Counter . B-59
B.6.2 Ratio Interpretation. B-59
B.6.3 Notes on Selected Events . B-60
B.7 DRILL-DOWN TECHNIQUES FOR PERFORMANCE ANALYSIS . B-60
B.7.1 Cycle Composition at Issue Port. B-62
B.7.2 Cycle Composition of OOO Execution. B-62
B.7.3 Drill-Down on Performance Stalls . B-63
B.8 EVENT RATIOS FOR INTEL CORE MICROARCHITECTURE . B-64
B.8.1 Clocks Per Instructions Retired Ratio (CPI) . B-64
B.8.2 Front End Ratios . B-65
B.8.2.1 Code Locality . B-65
B.8.2.2 Branching and Front End . B-65
B.8.2.3 Stack Pointer Tracker . B-65
B.8.2.4 Macro-fusion . B-66
B.8.2.5 Length Changing Prefix (LCP) Stalls . B-66
B.8.2.6 Self Modifying Code Detection. B-66
B.8.3 Branch Prediction Ratios . B-66
B.8.3.1 Branch Mispredictions. B-66
B.8.3.2 Virtual Tables and Indirect Calls. B-66
B.8.3.3 Mispredicted Returns . B-67

CONTENTS

xx

PAGE

B.8.4 Execution Ratios. B-67
B.8.4.1 Resource Stalls . B-67
B.8.4.2 ROB Read Port Stalls. B-67
B.8.4.3 Partial Register Stalls . B-67
B.8.4.4 Partial Flag Stalls . B-67
B.8.4.5 Bypass Between Execution Domains. B-67
B.8.4.6 Floating-Point Performance Ratios. B-68
B.8.5 Memory Sub-System - Access Conflicts Ratios . B-68
B.8.5.1 Loads Blocked by the L1 Data Cache . B-68
B.8.5.2 4K Aliasing and Store Forwarding Block Detection . B-68
B.8.5.3 Load Block by Preceding Stores. B-68
B.8.5.4 Memory Disambiguation. B-69
B.8.5.5 Load Operation Address Translation . B-69
B.8.6 Memory Sub-System - Cache Misses Ratios. B-69
B.8.6.1 Locating Cache Misses in the Code . B-69
B.8.6.2 L1 Data Cache Misses . B-69
B.8.6.3 L2 Cache Misses . B-69
B.8.7 Memory Sub-system - Prefetching . B-70
B.8.7.1 L1 Data Prefetching . B-70
B.8.7.2 L2 Hardware Prefetching . B-70
B.8.7.3 Software Prefetching . B-70
B.8.8 Memory Sub-system - TLB Miss Ratios . B-70
B.8.9 Memory Sub-system - Core Interaction. B-71
B.8.9.1 Modified Data Sharing. B-71
B.8.9.2 Fast Synchronization Penalty. B-71
B.8.9.3 Simultaneous Extensive Stores and Load Misses . B-71
B.8.10 Memory Sub-system - Bus Characterization . B-71
B.8.10.1 Bus Utilization . B-71
B.8.10.2 Modified Cache Lines Eviction . B-72

APPENDIX C
RUNTIME PERFORMANCE OPTIMIZATION BLUEPRINT: INTEL® ARCHITECTURE
OPTIMIZATION WITH LARGE CODE PAGES
C.1 OVERVIEW . C-1
C.1.1 ITLBs and Stalls. .C-2
C.1.2 Large Pages .C-3
C.2 DIAGNOSING THE PROBLEM . C-3
C.2.1 ITLB Misses. .C-3
C.2.2 Measuring the ITLB Miss Stall .C-5
C.2.3 Source of ITLB Misses .C-6
C.3 SOLUTION . C-6
C.3.1 Linux* and Large Pages .C-6
C.3.2 Large Pages for .text .C-7
C.3.3 Reference Code .C-7
C.3.4 Large Pages for the Heap .C-8
C.4 SOLUTION INTEGRATION . C-9
C.4.1 V8 Integration with the Reference Implementation .C-9
C.4.2 JAVA JVM Integration with the Reference Implementation .C-9
C.5 LIMITATIONS . C-10
C.6 CASE STUDY. C-10
C.6.1 Ghost.js Workload . C-11
C.6.2 Web Tooling Workload . C-11
C.6.2.1 Node Version . C-11
C.6.2.2 Web Tooling . C-11
C.6.2.3 Comparing Clear Linux* OS and Ubuntu* . C-11
C.6.3 MediaWiki Workload. C-12
C.6.4 Visualization of Benefits . C-13
C.6.4.1 Precise Events. C-13
C.6.4.2 Visualizing Precise ITLB Miss . C-13
C.7 SUMMARY . C-16
C.8 TEST CONFIGURATION DETAILS . C-16
C.9 ADDITIONAL REFERENCES. C-17

xxi

CONTENTS

PAGE

APPENDIX D
INSTRUCTION LATENCY AND THROUGHPUT
D.1 OVERVIEW . D-1
D.2 DEFINITIONS. D-2
D.3 LATENCY AND THROUGHPUT . D-2
D.3.1 Latency and Throughput with Register Operands .D-3
D.3.2 Table Footnotes . D-18
D.3.3 Instructions with Memory Operands . D-19
D.3.3.1 Software Observable Latency of Memory References . D-19

APPENDIX E
EARLIER GENERATIONS OF INTEL® 64 AND IA-32
PROCESSOR ARCHITECTURES
E.1 HASWELL MICROARCHITECTURE. E-1
E.1.1 The Front End .E-2
E.1.2 The Out-of-Order Engine .E-2
E.1.3 Execution Engine .E-3
E.1.4 Cache and Memory Subsystem .E-5
E.1.4.1 Load and Store Operation Enhancements .E-6
E.1.5 Unlamination .E-6
E.1.6 Haswell-E Microarchitecture .E-7
E.1.7 Broadwell Microarchitecture. .E-7
E.2 SANDY BRIDGE MICROARCHITECTURE . E-8
E.2.1 Sandy Bridge Microarchitecture Pipeline Overview. .E-9
E.2.2 The Front End . E-10
E.2.2.1 Legacy Decode Pipeline . E-10
E.2.2.2 Decoded ICache. E-12
E.2.2.3 Branch Prediction . E-13
E.2.2.4 Micro-op Queue and the Loop Stream Detector (LSD) . E-14
E.2.3 The Out-of-Order Engine . E-14
E.2.3.1 Renamer . E-15
E.2.3.2 Scheduler . E-16
E.2.4 The Execution Core . E-16
E.2.5 Cache Hierarchy . E-17
E.2.5.1 Load and Store Operation Overview . E-18
E.2.5.2 L1 DCache. E-19
E.2.5.3 Ring Interconnect and Last Level Cache . E-23
E.2.5.4 Data Prefetching . E-24
E.2.6 System Agent . E-25
E.2.7 Ivy Bridge Microarchitecture. E-26
E.3 INTEL® CORE™ MICROARCHITECTURE AND ENHANCED INTEL® CORE™ MICROARCHITECTURE E-26
E.3.1 Intel® Core™ Microarchitecture Pipeline Overview . E-27
E.3.2 Front End . E-28
E.3.2.1 Branch Prediction Unit . E-29
E.3.2.2 Instruction Fetch Unit . E-29
E.3.2.3 Instruction Queue (IQ). E-30
E.3.2.4 Instruction Decode. E-31
E.3.2.5 Stack Pointer Tracker . E-31
E.3.2.6 Micro-fusion . E-31
E.3.3 Execution Core . E-31
E.3.3.1 Issue Ports and Execution Units . E-32
E.3.4 Intel® Advanced Memory Access . E-34
E.3.4.1 Loads and Stores . E-35
E.3.4.2 Data Prefetch to L1 caches . E-36
E.3.4.3 Data Prefetch Logic. E-36
E.3.4.4 Store Forwarding . E-37
E.3.4.5 Memory Disambiguation. E-38
E.3.5 Intel® Advanced Smart Cache . E-38
E.3.5.1 Loads . E-39
E.3.5.2 Stores . E-39
E.4 NEHALEM MICROARCHITECTURE . E-40
E.4.1 Microarchitecture Pipeline. E-40
E.4.2 Front End Overview. E-42

CONTENTS

xxii

PAGE

E.4.3 Execution Engine . E-43
E.4.3.1 Issue Ports and Execution Units . E-44
E.4.4 Cache and Memory Subsystem . E-45
E.4.5 Load and Store Operation Enhancements . E-46
E.4.5.1 Efficient Handling of Alignment Hazards . E-46
E.4.5.2 Store Forwarding Enhancement . E-46
E.4.6 REP String Enhancement . E-48
E.4.7 Enhancements for System Software . E-49
E.4.8 Efficiency Enhancements for Power Consumption . E-49
E.4.9 Hyper-Threading Technology Support in Nehalem Microarchitecture. E-49

APPENDIX F
EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE
OPTIMIZATION
F.1 OVERVIEW . F-1
F.2 INTEL ATOM® MICROARCHITECTURE . F-1
F.2.1 Hyper-Threading Technology Support in Intel Atom® MicroarchitectureF-3
F.3 CODING RECOMMENDATIONS FOR INTEL ATOM® MICROARCHITECTURE F-3
F.3.1 Optimization for Front End of Intel Atom® Microarchitecture. .F-3
F.3.2 Optimizing the Execution Core. .F-5
F.3.2.1 Integer Instruction Selection .F-5
F.3.2.2 Address Generation .F-6
F.3.2.3 Integer Multiply. .F-6
F.3.2.4 Integer Shift Instructions. .F-7
F.3.2.5 Partial Register Access. .F-7
F.3.2.6 FP/SIMD Instruction Selection .F-7
F.3.3 Optimizing Memory Access .F-9
F.3.3.1 Store Forwarding .F-9
F.3.3.2 First-level Data Cache .F-9
F.3.3.3 Segment Base . F-10
F.3.3.4 String Moves . F-10
F.3.3.5 Parameter Passing. F-11
F.3.3.6 Function Calls. F-11
F.3.3.7 Optimization of Multiply/Add Dependent Chains . F-11
F.3.3.8 Position Independent Code . F-13
F.4 INSTRUCTION LATENCY . F-13
F.5 SILVERMONT MICROARCHITECTURE . F-19
F.5.1 Integer Pipeline . F-22
F.5.2 Floating-Point Pipeline . F-22
F.6 GOLDMONT MICROARCHITECTURE . F-23
F.7 GOLDMONT PLUS MICROARCHITECTURE . F-26
F.8 CODING RECOMMENDATIONS . F-29
F.8.1 Optimizing The Front End . F-29
F.8.1.1 Instruction Decoder . F-29
F.8.1.2 Front End High IPC Considerations . F-30
F.8.1.3 Branching Across 4GB Boundary. F-31
F.8.1.4 Loop Unrolling and Loop Stream Detector . F-31
F.8.1.5 Mixing Code and Data . F-32
F.8.2 Optimizing The Execution Core . F-32
F.8.2.1 Scheduling . F-32
F.8.2.2 Address Generation . F-32
F.8.2.3 FP Multiply-Accumulate-Store Execution . F-32
F.8.2.4 Integer Multiply Execution. F-33
F.8.2.5 Zeroing Idioms. F-34
F.8.2.6 NOP Idioms . F-34
F.8.2.7 Move Elimination and ESP Folding. F-34
F.8.2.8 Stack Manipulation Instruction. F-35
F.8.2.9 Flags usage. F-35
F.8.2.10 SIMD Floating-Point and X87 Instructions . F-35
F.8.2.11 SIMD Integer Instructions . F-35
F.8.2.12 Vectorization Considerations . F-36
F.8.2.13 Other SIMD Instructions . F-36
F.8.2.14 Instruction Selection . F-36

xxiii

CONTENTS

PAGE

F.8.2.15 Integer Division. F-38
F.8.2.16 Integer Shift. F-39
F.8.2.17 Pause Instruction . F-39
F.8.3 Optimizing Memory Accesses . F-39
F.8.3.1 Reduce Unaligned Memory Access with PALIGNR . F-39
F.8.3.2 Minimize Memory Execution Issues . F-40
F.8.3.3 Store Forwarding . F-40
F.8.3.4 PrefetchW Instruction. F-41
F.8.3.5 Cache Line Splits and Alignment . F-41
F.8.3.6 Segment Base . F-41
F.8.3.7 Copy and String Copy . F-42
F.9 INSTRUCTION LATENCY AND THROUGHPUT . F-42

Example 2-1. Class 0 Pseudo-code Snippet 2-4
Example 2-2. Class 1 Pseudo-code Snippet 2-4
Example 2-3. Class 2 Pseudo-code Snippet 2-5
Example 2-4. Class 3 Pseudo-code Snippet 2-5
Example 2-5. Breaking False Dependency through Zero Idiom 2-13
Example 2-6. Considering Stores 2-19
Example 2-7. Rearranging Code to Achieve Store Pairing 2-19
Example 2-8. Dynamic Pause Loop Example 2-33
Example 2-9. Contended Locks with Increasing Back-off Example 2-34
Example 3-1. Assembly Code with an Unpredictable Branch 3-5
Example 3-2. Code Optimization to Eliminate Branches 3-5
Example 3-3. Eliminating Branch with CMOV Instruction 3-6
Example 3-4. Static Branch Prediction Algorithm 3-6
Example 3-5. Static Taken Prediction 3-7
Example 3-6. Static Not-Taken Prediction 3-7
Example 3-7. Indirect Branch With Two Favored Targets 3-9
Example 3-8. A Peeling Technique to Reduce Indirect Branch Misprediction 3-10
Example 3-9. Loop Unrolling 3-11
Example 3-10. Macrofusion, Unsigned Iteration Count 3-14
Example 3-11. Macrofusion, If Statement 3-14
Example 3-12. Macrofusion, Signed Variable 3-15
Example 3-13. Macrofusion, Signed Comparison 3-15
Example 3-14. Additional Macrofusion Benefit in Sandy Bridge Microarchitecture 3-16
Example 3-15. Avoiding False LCP Delays with 0xF7 Group Instructions 3-17
Example 3-16. Independent Two-Operand LEA Example 3-21
Example 3-17. Alternative to Three-Operand LEA 3-22
Example 3-18. Examples of 512-bit Additions 3-23
Example 3-19. Clearing Register to Break Dependency While Negating Array Elements 3-26
Example 3-20. Spill Scheduling Code 3-28
Example 3-21. Zero-Latency MOV Instructions 3-29
Example 3-22. Byte-Granular Data Computation Technique 3-29
Example 3-23. Re-ordering Sequence to Improve Effectiveness of Zero-Latency MOV Instructions 3-30
Example 3-24. Avoiding Partial Register Stalls in Integer Code 3-32
Example 3-25. Avoiding Partial Register Stalls in SIMD Code 3-33
Example 3-26. Avoiding Partial Flag Register Stalls 3-33
Example 3-27. Partial Flag Register Accesses in Sandy Bridge Microarchitecture 3-34
Example 3-28. Reference Code Template for Partially Vectorizable Program 3-36
Example 3-29. Three Alternate Packing Methods for Avoiding Store Forwarding Difficulty 3-37
Example 3-30. Using Four Registers to Reduce Memory Spills and Simplify Result Passing 3-37
Example 3-31. Stack Optimization Technique to Simplify Parameter Passing 3-38
Example 3-32. Base Line Code Sequence to Estimate Loop Overhead 3-39
Example 3-33. Optimizing for Load Port Bandwidth in Sandy Bridge Microarchitecture 3-41
Example 3-34. Index versus Pointers in Pointer-Chasing Code 3-42
Example 3-35. Example of Bank Conflicts in L1D Cache and Remedy 3-43
Example 3-36. Using XMM Register in Lieu of Memory for Register Spills 3-44
Example 3-37. Loads Blocked by Stores of Unknown Address 3-45
Example 3-38. Situations Showing Small Loads After Large Store 3-46
Example 3-39. Non-forwarding Example of Large Load After Small Store 3-46
Example 3-40. A Non-forwarding Situation in Compiler Generated Code 3-47
Example 3-41. Two Ways to Avoid Non-forwarding Situation in Example 3-40 3-47
Example 3-42. Large and Small Load Stalls 3-47
Example 3-43. Loop-carried Dependence Chain 3-49
Example 3-44. Rearranging a Data Structure 3-49
Example 3-45. Decomposing an Array 3-50
Example 3-46. Examples of Dynamical Stack Alignment 3-51
Example 3-47. Instruction Pointer Query Techniques 3-53
Example 3-48. Using Non-temporal Stores and 64-byte Bus Write Transactions 3-55
Example 3-49. On-temporal Stores and Partial Bus Write Transactions 3-55
Example 3-50. Using DCU Hardware Prefetch 3-56

CONTENTS

xxvi

PAGE

Example 3-51. Avoid Causing DCU Hardware Prefetch to Fetch Un-needed Lines 3-57
Example 3-52. Technique For Using L1 Hardware Prefetch 3-58
Example 3-53. REP STOSD with Arbitrary Count Size and 4-Byte-Aligned Destination 3-60
Example 3-54. Algorithm to Avoid Changing Rounding Mode 3-68
Example 3-55. Locking Algorithm for Sapphire Rapids 3-72
Example 3-56. Fixed Instruction Sequence with Improved Performance on Sapphire Rapids 3-75
Example 3-57. WordPress/PHP Case Study: with and without 2GB Fix for Branch Misprediction 3-76
Example 3-58. Identification of WAITPKG with CPUID 3-78
Example 3-59. Code Snippet in an Asynchronous Example 3-80
Example 5-1. Identification of MMX Technology with CPUID 5-2
Example 5-2. Identification of SSE with CPUID 5-2
Example 5-3. Identification of SSE2 with cpuid 5-3
Example 5-4. Identification of SSE3 with CPUID 5-3
Example 5-5. Identification of SSSE3 with cpuid 5-3
Example 5-6. Identification of SSE4.1 with cpuid 5-4
Example 5-7. Identification of SSE4.2 with cpuid 5-4
Example 5-8. Detection of AESNI Instructions 5-5
Example 5-9. Detection of PCLMULQDQ Instruction 5-5
Example 5-10. Detection of AVX Instruction 5-6
Example 5-11. Detection of VEX-Encoded AESNI Instructions 5-7
Example 5-12. Detection of VEX-Encoded AESNI Instructions 5-7
Example 5-13. Simple Four-Iteration Loop 5-14
Example 5-14. Streaming SIMD Extensions Using Inlined Assembly Encoding 5-14
Example 5-15. Simple Four-Iteration Loop Coded with Intrinsics 5-15
Example 5-16. C++ Code Using the Vector Classes 5-16
Example 5-17. Automatic Vectorization for a Simple Loop 5-16
Example 5-18. C Algorithm for 64-bit Data Alignment 5-18
Example 5-19. AoS Data Structure 5-21
Example 5-20. SoA Data Structure 5-21
Example 5-21. AoS and SoA Code Samples 5-21
Example 5-22. Hybrid SoA Data Structure 5-22
Example 5-23. Pseudo-code Before Strip Mining 5-23
Example 5-24. Strip Mined Code 5-24
Example 5-25. Loop Blocking 5-24
Example 5-26. Emulation of Conditional Moves 5-26
Example 6-1. Resetting Register Between __m64 and FP Data Types Code 6-3
Example 6-2. FIR Processing Example in C language Code 6-4
Example 6-3. SSE2 and SSSE3 Implementation of FIR Processing Code 6-4
Example 6-4. Zero Extend 16-bit Values into 32 Bits Using Unsigned Unpack Instructions Code 6-5
Example 6-5. Signed Unpack Code 6-5
Example 6-6. Interleaved Pack with Saturation Code 6-7
Example 6-7. Interleaved Pack without Saturation Code 6-7
Example 6-8. Unpacking Two Packed-word Sources in Non-interleaved Way Code 6-9
Example 6-9. PEXTRW Instruction Code 6-10
Example 6-10. PINSRW Instruction Code 6-10
Example 6-11. Repeated PINSRW Instruction Code 6-11
Example 6-12. Non-Unit Stride Load/Store Using SSE4.1 Instructions 6-11
Example 6-13. Scatter and Gather Operations Using SSE4.1 Instructions 6-11
Example 6-14. PMOVMSKB Instruction Code 6-12
Example 6-15. Broadcast a Word Across XMM, Using 2 SSE2 Instructions 6-13
Example 6-16. Swap/Reverse words in an XMM, Using 3 SSE2 Instructions 6-13
Example 6-17. Generating Constants 6-15
Example 6-18. Absolute Difference of Two Unsigned Numbers 6-15
Example 6-19. Absolute Difference of Signed Numbers 6-16
Example 6-20. Computing Absolute Value 6-16
Example 6-21. Basic C Implementation of RGBA to BGRA Conversion 6-17
Example 6-22. Color Pixel Format Conversion Using SSE2 6-17
Example 6-23. Color Pixel Format Conversion Using SSSE3 6-18
Example 6-24. Big-Endian to Little-Endian Conversion 6-19

xxvii

CONTENTS

PAGE

Example 6-25. Clipping to a Signed Range of Words [High, Low] 6-20
Example 6-26. Clipping to an Arbitrary Signed Range [High, Low] 6-20
Example 6-27. Simplified Clipping to an Arbitrary Signed Range 6-20
Example 6-28. Clipping to an Arbitrary Unsigned Range [High, Low] 6-21
Example 6-29. Complex Multiply by a Constant 6-23
Example 6-30. Using PTEST to Separate Vectorizable and non-Vectorizable Loop Iterations 6-24
Example 6-31. Using Variable BLEND to Vectorize Heterogeneous Loops 6-24
Example 6-32. Baseline C Code for Mandelbrot Set Map Evaluation 6-25
Example 6-33. Vectorized Mandelbrot Set Map Evaluation Using SSE4.1 Intrinsics 6-26
Example 6-34. A Large Load after a Series of Small Stores (Penalty) 6-28
Example 6-35. Accessing Data Without Delay 6-28
Example 6-36. A Series of Small Loads After a Large Store 6-28
Example 6-37. Eliminating Delay for a Series of Small Loads after a Large Store 6-29
Example 6-38. Un-optimized Reverse Memory Copy in C 6-30
Example 6-39. Using PSHUFB to Reverse Byte Ordering 16 Bytes at a Time 6-32
Example 6-40. PMOVSX/PMOVZX Work-around to Avoid False Dependency 6-34
Example 6-41. Table Look-up Operations in C Code 6-34
Example 6-42. Shift Techniques on Non-Vectorizable Table Look-up 6-35
Example 6-43. PEXTRD Techniques on Non-Vectorizable Table Look-up 6-36
Example 6-44. Pseudo-Code Flow of AES Counter Mode Operation 6-37
Example 6-45. AES128-CTR Implementation with Eight Block in Parallel 6-38
Example 6-46. AES128 Key Expansion 6-45
Example 6-47. Compress 32-bit Integers into 5-bit Buckets 6-48
Example 6-48. Decompression of a Stream of 5-bit Integers into 32-bit Elements 6-50
Example 7-1. Pseudocode for Horizontal (xyz, AoS) Computation 7-4
Example 7-2. Pseudocode for Vertical (xxxx, yyyy, zzzz, SoA) Computation 7-5
Example 7-3. Swizzling Data Using SHUFPS, MOVLHPS, MOVHLPS 7-5
Example 7-4. Swizzling Data Using UNPCKxxx Instructions 7-6
Example 7-5. Deswizzling Single-Precision SIMD Data 7-7
Example 7-6. Deswizzling Data Using SIMD Integer Instructions 7-8
Example 7-7. Horizontal Add Using MOVHLPS/MOVLHPS 7-9
Example 7-8. Horizontal Add Using Intrinsics with MOVHLPS/MOVLHPS 7-10
Example 7-9. Multiplication of Two Pairs of Single-Precision Complex Number 7-12
Example 7-10. Division of Two Pairs of Single-Precision Complex Numbers 7-12
Example 7-11. Double-Precision Complex Multiplication of Two Pairs 7-13
Example 7-12. Double-Precision Complex Multiplication Using Scalar SSE2 7-13
Example 7-13. Dot Product of Vector Length 4 Using SSE/SSE2 7-14
Example 7-14. Dot Product of Vector Length 4 Using SSE3 7-15
Example 7-15. Dot Product of Vector Length 4 Using SSE4.1 7-15
Example 7-16. Unrolled Implementation of Four Dot Products 7-15
Example 7-17. Normalization of an Array of Vectors 7-16
Example 7-18. Normalize (x, y, z) Components of an Array of Vectors Using SSE2 7-17
Example 7-19. Normalize (x, y, z) Components of an Array of Vectors Using SSE4.1 7-18
Example 7-20. Data Organization in Memory for AOS Vector-Matrix Multiplication 7-19
Example 7-21. AOS Vector-Matrix Multiplication with HADDPS 7-19
Example 7-22. AOS Vector-Matrix Multiplication with DPPS 7-20
Example 7-23. Data Organization in Memory for SOA Vector-Matrix Multiplication 7-21
Example 7-24. Vector-Matrix Multiplication with Native SOA Data Layout 7-22
Example 8-1. VPDPBUSD Implementation 8-3
Example 8-2. Quantization of Activations 8-5
Example 8-3. Direct Convolution 8-10
Example 8-4. Convolution for Layers with Low OFM Count 8-14
Example 8-5. Basic PostConv 8-16
Example 8-6. Uint8 Residual Input 8-17
Example 8-7. 8x8 Average Pooling with Stride 1 of 8x8 Layers 8-18
Example 8-8. Unfused Vectorized Pooling 8-18
Example 8-9. Caffe Scalar Code for Pixel Shuffler 8-20
Example 8-10. Computing Output Offset for Fused Pixel Shuffler 8-21
Example 8-11. Sigmoid Approximation with Minimax Polynomials 8-22

CONTENTS

xxviii

PAGE

Example 8-12. Sigmoid Approximation with scalef 8-23
Example 8-13. Pseudocode for Finding Top K 8-25
Example 9-1. Pseudo-code Using CLFLUSH 9-9
Example 9-2. Flushing Cache Lines Using CLFLUSH or CLFLUSHOPT 9-12
Example 9-3. Populating an Array for Circular Pointer Chasing with Constant Stride 9-13
Example 9-4. Prefetch Scheduling Distance 9-16
Example 9-5. Using Prefetch Concatenation 9-17
Example 9-6. Concatenation and Unrolling the Last Iteration of Inner Loop 9-17
Example 9-8. Data Access of a 3D Geometry Engine with Strip-mining 9-22
Example 9-7. Data Access of a 3D Geometry Engine without Strip-mining 9-22
Example 9-9. Using HW Prefetch to Improve Read-Once Memory Traffic 9-23
Example 9-10. Basic Algorithm of a Simple Memory Copy 9-27
Example 9-11. A Memory Copy Routine Using Software Prefetch 9-28
Example 9-12. Memory Copy Using Hardware Prefetch and Bus Segmentation 9-29
Example 11-1. Serial Execution of Producer and Consumer Work Items 11-5
Example 11-2. Basic Structure of Implementing Producer Consumer Threads 11-6
Example 11-3. Thread Function for an Interlaced Producer Consumer Model 11-7
Example 11-4. Spin-wait Loop and PAUSE Instructions 11-12
Example 11-5. Coding Pitfall using Spin Wait Loop 11-14
Example 11-6. Placement of Synchronization and Regular Variables 11-15
Example 11-7. Declaring Synchronization Variables without Sharing a Cache Line 11-16
Example 11-8. Batched Implementation of the Producer Consumer Threads 11-20
Example 11-9. Parallel Memory Initialization Technique Using OpenMP and NUMA 11-24
Example 13-1. Compute 64-bit Quotient and Remainder with 64-bit Divisor 13-3
Example 13-2. Quotient and Remainder of 128-bit Dividend with 64-bit Divisor 13-4
Example 14-1. A Hash Function Examples 14-4
Example 14-2. Hash Function Using CRC32 14-4
Example 14-3. Strlen() Using General-Purpose Instructions 14-6
Example 14-4. Sub-optimal PCMPISTRI Implementation of EOS handling 14-8
Example 14-5. Strlen() Using PCMPISTRI without Loop-Carry Dependency 14-8
Example 14-6. WordCnt() Using C and Byte-Scanning Technique 14-9
Example 14-7. WordCnt() Using PCMPISTRM 14-10
Example 14-8. KMP Substring Search in C 14-12
Example 14-9. Brute-Force Substring Search Using PCMPISTRI Intrinsic 14-13
Example 14-10. Substring Search Using PCMPISTRI and KMP Overlap Table 14-15
Example 14-11. I Equivalent Strtok_s() Using PCMPISTRI Intrinsic 14-19
Example 14-12. I Equivalent Strupr() Using PCMPISTRM Intrinsic 14-21
Example 14-13. UTF16 VerStrlen() Using C and Table Lookup Technique 14-22
Example 14-14. Assembly Listings of UTF16 VerStrlen() Using PCMPISTRI 14-23
Example 14-15. Intrinsic Listings of UTF16 VerStrlen() Using PCMPISTRI 14-25
Example 14-16. Replacement String Library Strcmp Using SSE4.2 14-27
Example 14-17. High-level flow of Character Subset Validation for String Conversion 14-29
Example 14-18. Intrinsic Listings of atol() Replacement Using PCMPISTRI 14-29
Example 14-19. Auxiliary Routines and Data Constants Used in sse4i_atol() listing 14-31
Example 14-20. Conversion of 64-bit Integer to ASCII 14-34
Example 14-21. Conversion of 64-bit Integer to ASCII without Integer Division 14-35
Example 14-22. Conversion of 64-bit Integer to ASCII Using SSE4 14-37
Example 14-23. Conversion of 64-bit Integer to Wide Character String Using SSE4 14-43
Example 14-24. MULX and Carry Chain in Large Integer Numeric 14-48
Example 14-25. Building-block Macro Used in Binary Decimal Floating-point Operations 14-49
Example 15-1. Cartesian Coordinate Transformation with Intrinsics 15-3
Example 15-2. Cartesian Coordinate Transformation with Assembly 15-4
Example 15-3. Direct Polynomial Calculation 15-6
Example 15-4. Function Calls and AVX/SSE transitions 15-10
Example 15-5. AoS to SoA Conversion of Complex Numbers in C Code 15-12
Example 15-6. Aos to SoA Conversion of Complex Numbers Using AVX 15-13
Example 15-7. Register Overlap Method for Median of 3 Numbers 15-15
Example 15-8. Data Gather - AVX versus Scalar Code 15-17
Example 15-9. Scatter Operation Using AVX 15-18

xxix

CONTENTS

PAGE

Example 15-10. SAXPY using Intel AVX 15-20
Example 15-11. Using 16-Byte Memory Operations for Unaligned 32-Byte Memory Operation 15-21
Example 15-12. SAXPY Implementations for Unaligned Data Addresses 15-21
Example 15-13. Loop with Conditional Expression 15-25
Example 15-14. Handling Loop Conditional with VMASKMOV 15-25
Example 15-15. Three-Tap Filter in C Code 15-26
Example 15-16. Three-Tap Filter with 128-bit Mixed Integer and FP SIMD 15-26
Example 15-17. 256-bit AVX Three-Tap Filter Code with VSHUFPS 15-27
Example 15-18. Three-Tap Filter Code with Mixed 256-bit AVX and 128-bit AVX Code 15-28
Example 15-19. 8x8 Matrix Transpose - Replace Shuffles with Blends 15-30
Example 15-20. 8x8 Matrix Transpose Using VINSERTPS 15-33
Example 15-21. Port 5 versus Load Port Shuffles 15-35
Example 15-22. Divide Using DIVPS for 24-bit Accuracy 15-37
Example 15-23. Divide Using RCPPS 11-bit Approximation 15-38
Example 15-24. Divide Using RCPPS and Newton-Raphson Iteration 15-38
Example 15-25. Reciprocal Square Root Using DIVPS+SQRTPS for 24-bit Accuracy 15-39
Example 15-26. Reciprocal Square Root Using RSQRTPS 11-bit Approximation 15-39
Example 15-27. Reciprocal Square Root Using RSQRTPS and Newton-Raphson Iteration 15-40
Example 15-28. Square Root Using SQRTPS for 24-bit Accuracy 15-41
Example 15-29. Square Root Using RSQRTPS 11-bit Approximation 15-41
Example 15-30. Square Root Using RSQRTPS and One Taylor Series Expansion 15-42
Example 15-31. Array Sub Sums Algorithm 15-44
Example 15-32. Single-Precision to Half-Precision Conversion 15-45
Example 15-33. Half-Precision to Single-Precision Conversion 15-46
Example 15-34. Performance Comparison of Median3 using Half-Precision vs. Single-Precision 15-47
Example 15-35. FP Mul/FP Add Versus FMA 15-48
Example 15-36. Unrolling to Hide Dependent FP Add Latency 15-49
Example 15-37. FP Mul/FP Add Versus FMA 15-50
Example 15-38. Macros for Separable KLT Intra-block Transformation Using AVX2 15-51
Example 15-39. Separable KLT Intra-block Transformation Using AVX2 15-53
Example 15-40. Macros for Parallel Moduli/Remainder Calculation 15-59
Example 15-41. Signed 64-bit Integer Conversion Utility 15-60
Example 15-42. Unsigned 63-bit Integer Conversion Utility 15-61
Example 15-43. Access Patterns Favoring Non-VGATHER Techniques 15-65
Example 15-44. Access Patterns Likely to Favor VGATHER Techniques 15-66
Example 15-45. Software AVX Sequence Equivalent to Full-Mask VPGATHERD 15-67
Example 15-46. AOS to SOA Transformation Alternatives 15-69
Example 15-47. Non-Strided AOS to SOA 15-70
Example 15-48. Conversion to Throughput-Reduced MMX sequence to AVX2 Alternative 15-72
Example 16-1. Reduce Data Conflict with Conditional Updates 16-6
Example 16-2. Transition from Non-Elided Execution without Aborting 16-10
Example 16-3. Exemplary Wrapper Using RTM for Lock/Unlock Primitives 16-12
Example 16-4. Spin Lock Example Using HLE in GCC 4.8 and Later 16-14
Example 16-5. Spin Lock Example Using HLE in Intel and Microsoft Compiler Intrinsic 16-14
Example 16-6. A Meta Lock Example 16-16
Example 16-7. A Meta Lock Example Using RTM 16-17
Example 16-8. HLE-enabled Lock-Acquire/ Lock-Release Sequence 16-18
Example 16-9. A Spin Wait Example Using HLE 16-19
Example 16-10. A Conceptual Example of Intermixed HLE and RTM 16-20
Example 16-11. Emulated RTM intrinsic for Older GCC compilers 16-27
Example 16-12. C++ Example of HLE Intrinsic 16-29
Example 16-13. Emulated HLE Intrinsic with Older GCC compiler 16-29
Example 16-14. HLE Intrinsic Supported by Intel and Microsoft Compilers 16-30
Example 17-1. Unoptimized Sleep Loop 17-14
Example 17-2. Power Consumption Friendly Sleep Loop Using PAUSE 17-14
Example 18-1. Cartesian Coordinate System Rotation with Intrinsics 18-3
Example 18-2. Cartesian Coordinate System Rotation with Assembly 18-5
Example 18-3. Masking with Intrinsics 18-9
Example 18-4. Masking with Assembly 18-9

CONTENTS

xxx

PAGE

Example 18-5. Masking Example 18-11
Example 18-6. Masking vs. Blending Example 1 18-12
Example 18-7. Masking vs. Blending Example 2 18-13
Example 18-8. Multiple Condition Execution 18-14
Example 18-9. Peeling and Remainder Masking 18-15
Example 18-10. Comparing Intel® AVX-512 Data Compress with Other Alternatives 18-19
Example 18-11. Comparing Intel® AVX-512 Data Expand Operation with Other Alternatives 18-24
Example 18-12. Comparing Ternary Logic to Other Alternatives 18-26
Example 18-13. Matrix Transpose Alternatives 18-31
Example 18-14. Broadcast Executed on Load Ports Alternatives 18-32
Example 18-15. 16-bit Broadcast Executed on Port 5 18-33
Example 18-16. Embedded vs Non-embedded Rounding 18-34
Example 18-17. Scatter 18-36
Example 18-18. QWORD Example, Intel® AVX2 vs. Intel® AVX-512 18-39
Example 18-19. Scatter Implementation Alternatives 18-50
Example 18-20. Scalar vs. Vector Update Using AVX-512CD 18-53
Example 18-21. Improvement with VPERMB Implementation 18-55
Example 18-22. Improvement with VPERMI2B Implementation 18-57
Example 18-23. Improvement with VPMULTISHIFTQB Implementation 18-59
Example 18-24. 256-bit Code vs. 256-bit Code Mixed with 512-bit Code 18-63
Example 18-25. Identifying One or Two FMA Units in a Processor Based on Skylake Microarchitecture 18-64
Example 18-26. Gather to Shuffle in Strided Loads Example 18-68
Example 18-27. Gather to Shuffle in Strided Stores Example 18-69
Example 18-28. Gather to Shuffle in Adjacent Loads Example 18-71
Example 18-29. Data Alignment 18-72
Example 18-30. Vectorized 32-bit Float Division 18-78
Example 18-31. Reciprocal Square Root 18-79
Example 18-32. Square Root 18-80
Example 18-33. Dividing Packed Doubles 18-81
Example 18-34. Reciprocal Square Root of Doubles 18-82
Example 18-35. Square Root of Packed Doubles 18-83
Example 19-1. Function for Converting from a Complex-Valued Mask To a Real-Valued Mask by Duplicating Adjacent Bits
19-8
Example 19-2. Function for Converting from a Real-Valued Mask to a Complex-Valued Mask By AND-Combining Adjacent
Bits 19-9
Example 19-3. Function for Converting from a Real-Valued Mask To a Complex-Valued Mask By OR-Combining Adjacent Bits
19-9
Example 19-4. Function to Implement the 16-Bit Compress Operation on FP16 Vector Elements 19-17
Example 19-5. Function That Performs Fast Floating-Point Minimum Using Integer Instructions 19-19
Example 20-1. Pseudo-code for the Tilezero, TileLoad, and TileStore Instructions 20-6
Example 20-2. B Matrix Re-layout Procedure 20-6
Example 20-3. Common Defines 20-8
Example 20-4. Reference GEMM Implementation 20-9
Example 20-5. K-dimension Loop as Innermost Loop–A highly inefficient approach 20-10
Example 20-6. Innermost Loop Tile Pre-loading 20-11
Example 20-7. Switched Order of M_ACC and N_ACC Loops 20-11
Example 20-8. Optimized GEMM implementation 20-12
Example 20-9. Dimension of matrices, data types and tile sizes 20-13
Example 20-10. Optimized GEMM Assembly Language Implementation 20-14
Example 20-11. Activations Layout Procedure 20-15
Example 20-12. Weights Re-Layout Procedure 20-16
Example 20-13. Common Defines for Convolution 20-19
Example 20-14. Optimized direct convolution implementation 20-20
Example 20-15. Additional Defines for Convolution with Cache Blocking 20-21
Example 20-16. Optimized Convolution Implementation with Cache Blocking 20-22
Example 20-17. Optimized Convolution Implementation with Cache Blocking 20-30
Example 20-18. Example of a Short GEMM Fused and Pipelined with Quantization and ReLU 20-32
Example 20-19. The conversion code for two blocks of sixteen cache lines of 32-bit floats converted to a
single block of sixteen cache lines of 16-bit bfloats 20-36

xxxi

CONTENTS

PAGE

Example 20-20. Using Unsigned Saturation 20-37
Example 20-21. Prefetching Rows to the DCU 20-40
Example 20-22. BF16 Matrix Transpose (32x8 to 8x32) 20-42
Example 20-23. BF16 VNNI to VNNI Transpose (8x8 to 2x32) 20-47
Example 20-24. BF16 Flat to VNNI Transpose (16x8 to 4x32) 20-50
Example 20-25. BF16 Flat-to-VNNI Re-Layout 20-52
Example 20-26. GEMM Parallelized with omp Parallel for with Collapse 20-56
Example 20-27. Byte Decompression code with Intel® AVX-512 Intrinsics 20-58
Example 20-28. The Parameter m, n, k Identifies the Shape of the Tile 20-60
Example 20-29. Intel® AMX Intrinsics header file 20-61
Example 20-30. Intel® AMX Intrinsics usage 20-64
Example 20-31. Compiler-generated assembly-level code out of example 20-30 Intrinsics code 20-65
Example 20-32. Compiler-generated assembly-level code where tile register save/restore is optimized away 20-66
Example 21-1. Legacy Intel® AES-NI vs. Vector AES 21-1
Example 21-2. SM4 GFNI Encryption Round Example 21-3
Example 23-1. Gather Comparison Between AVX-512F and AVX2 23-8
Example 23-2. Gather Comparison Between AVX-512F and Previous Generation Equivalent 23-8
Example 23-3. Using VRCP28SS for 32-bit Floating-Point Division 23-9
Example 23-4. Replace VCOMIS* with VCMPSS/KORTEST 23-11
Example 23-5. Using Software Sequence for Horizontal Reduction 23-12
Example 23-6. Optimized Inner Loop of DGEMM for Knights Landing Microarchitecture 23-13
Example 23-7. Ordering of Memory Instruction for MEC 23-18
Example F-1. Instruction Pairing and Alignment to Optimize Decode Throughput on Intel Atom® Microarchitecture F-4
Example F-2. Alternative to Prevent AGU and Execution Unit Dependency F-6
Example F-3. Pipeling Instruction Execution in Integer Computation F-7
Example F-4. Memory Copy of 64-byte F-11
Example F-5. Examples of Dependent Multiply and Add Computation F-12
Example F-6. Instruction Pointer Query Techniques F-13
Example F-7. Unrolled Loop Executes In-Order Due to Multiply-Store Port Conflict F-33
Example F-8. Grouping Store Instructions Eliminates Bubbles and Improves IPC F-33

CONTENTS

xxxii

PAGE

Figure 2-1. Processor Core Pipeline Functionality of the Golden Cove Microarchitecture . 2-8
Figure 2-2. Processor Front End of the Golden Cove Microarchitecture . 2-9
Figure 2-3. Processor Core Pipeline Functionality of the Ice Lake Client Microarchitecture 2-14
Figure 2-4. Processor Core Pipeline Functionality of the Skylake Server Microarchitecture. 2-22
Figure 2-5. Broadwell Microarchitecture and Skylake Server Microarchitecture Cache Structures. 2-24
Figure 2-6. Mixed Workloads . 2-26
Figure 2-7. LINPACK Performance . 2-27
Figure 2-8. CPU Core Pipeline Functionality of the Skylake Client Microarchitecture . 2-28
Figure 2-9. Hyper-Threading Technology on an SMP . 2-35
Figure 2-10. Typical SIMD Operations . 2-37
Figure 2-11. SIMD Instruction Register Usage . 2-38
Figure 3-1. Generic Program Flow of Partially Vectorized Code . 3-35
Figure 3-2. Memcpy Performance Comparison for Lengths up to 2KB. 3-62
Figure 3-3. MariaDB - CHA % Cycles Fast Asserted. 3-73
Figure 3-4. Identifying >2GB Branches . 3-75
Figure 4-1. Processor Core Pipeline Functionality of the Gracemont Microarchitecture. 4-2
Figure 4-2. Front-End Pipeline Functionality of the Gracemont Microarchitecture. 4-3
Figure 4-3. Execution Pipeline Functionality of the Gracemont Microarchitecture. 4-6
Figure 4-4. Processor Core Pipeline Functionality of the Tremont Microarchitecture . 4-11
Figure 5-1. General Procedural Flow of Application Detection of AVX. 5-6
Figure 5-2. General Procedural Flow of Application Detection of Float-16. 5-8
Figure 5-3. Converting to Streaming SIMD Extensions Chart. 5-11
Figure 5-4. Hand-Coded Assembly and High-Level Compiler Performance Trade-offs . 5-13
Figure 5-5. Loop Blocking Access Pattern . 5-26
Figure 6-1. PACKSSDW mm, mm/mm64 Instruction . 6-6
Figure 6-2. Interleaved Pack with Saturation . 6-7
Figure 6-3. Result of Non-Interleaved Unpack Low in MM0 . 6-8
Figure 6-4. Result of Non-Interleaved Unpack High in MM1. 6-8
Figure 6-5. PEXTRW Instruction . 6-9
Figure 6-6. PINSRW Instruction . 6-10
Figure 6-7. PMOVSMKB Instruction . 6-12
Figure 6-8. Data Alignment of Loads and Stores in Reverse Memory Copy . 6-31
Figure 6-9. A Technique to Avoid Cacheline Split Loads in Reverse Memory Copy Using Two

Aligned Loads . 6-32
Figure 7-1. Homogeneous Operation on Parallel Data Elements . 7-3
Figure 7-2. Horizontal Computation Model . 7-3
Figure 7-3. Dot Product Operation . 7-4
Figure 7-4. Horizontal Add Using MOVHLPS/MOVLHPS. 7-9
Figure 7-5. Asymmetric Arithmetic Operation of the SSE3 Instruction . 7-11
Figure 7-6. Horizontal Arithmetic Operation of the SSE3 Instruction HADDPD . 7-11
Figure 8-1. Matrix Layout, Inputs and Outputs. 8-7
Figure 8-2. Transformed Weights. 8-8
Figure 8-3. Convolution Operation . 8-8
Figure 8-4. Matrix Multiplications and Summations . 8-8
Figure 8-5. 3-Tier Flexible 2D Blocking . 8-9
Figure 8-6. 3-Tier Flexible 2D Blocking Loops . 8-10
Figure 8-7. Standard vs Optimized vs. Low OFM Optimized Data Layouts . 8-13
Figure 8-8. Dynamic Batch Size . 8-24
Figure 8-9. Find Top 16 Values in Some Input . 8-24
Figure 9-1. CLFLUSHOPT versus CLFLUSH In SkyLake Microarchitecture . 9-11
Figure 9-2. Effective Latency Reduction as a Function of Access Stride. 9-14
Figure 9-3. Memory Access Latency and Execution Without Prefetch. 9-14
Figure 9-4. Memory Access Latency and Execution With Prefetch . 9-15
Figure 9-5. Prefetch and Loop Unrolling. 9-18
Figure 9-6. Memory Access Latency and Execution With Prefetch . 9-18
Figure 9-7. Spread Prefetch Instructions . 9-19
Figure 9-8. Cache Blocking – Temporally Adjacent and Non-adjacent Passes . 9-20
Figure 9-9. Examples of Prefetch and Strip-mining for Temporally Adjacent and Non-Adjacent Passes Loops9-21
Figure 9-10. Single-Pass Vs. Multi-Pass 3D Geometry Engines . 9-25

CONTENTS

xxxiv

PAGE

Figure 10-1. Example of SNC Configuration . 10-1
Figure 10-2. NUMA Disabled .10-5
Figure 10-3. SNC Off .10-6
Figure 10-4. SNC On. .10-7
Figure 10-5. Domain Example with One MPI Process Per Domain. 10-8
Figure 11-1. Amdahl’s Law and MP Speed-up . 11-2
Figure 11-2. Single-threaded Execution of Producer-consumer Threading Model. 11-5
Figure 11-3. Execution of Producer-consumer Threading Model

on a Multicore Processor .11-5
Figure 11-4. Interlaced Variation of the Producer Consumer Model. 11-6
Figure 11-5. Batched Approach of Producer Consumer Model . 11-20
Figure 12-1. In App Direct Mode, Data on the Intel® Optane™ DC Persistent Memory Module is

Accessed Directly with Loads and Stores. 12-2
Figure 12-2. Decision Flow for Determining When to Use

Intel® Optane™ DC Persistent Memory Module vs. DRAM. 12-3
Figure 12-3. Loaded Latency Curves for One Intel® Optane™ DC Persistent Memory Module DIMM:

Sequential Traffic (Left) and Random Traffic (Right) . 12-5
Figure 12-4. Number of Threads vs. Bandwidth . 12-6
Figure 12-5. Combining with Two Cores .12-6
Figure 12-6. Combining with Four Cores .12-7
Figure 12-7. Combining with Eight Cores . 12-8
Figure 12-8. PMDK vs. MSYNC Flushing Times. 12-9
Figure 12-9. Bandwidth vs. Power Consumption . 12-10
Figure 12-10. Read-Write Equivalence for Intel® Optane™ DC Persistent Memory Module

DIMMs within Different Power Budgets . 12-11
Figure 12-11. Bandwidth Available to Software when There is No Locality at 256B Granularity 12-12
Figure 14-1. SSE4.2 String/Text Instruction Immediate Operand Control . 14-2
Figure 14-2. Retrace Inefficiency of Byte-Granular, Brute-Force Search . 14-12
Figure 14-3. SSE4.2 Speedup of SubString Searches . 14-18
Figure 14-4. Compute Four Remainders of Unsigned Short Integer in Parallel . 14-37
Figure 15-1. AVX-SSE Transitions in the Broadwell, and Prior Generation Microarchitectures 15-8
Figure 15-2. AVX-SSE Transitions in the Skylake Microarchitecture . 15-8
Figure 15-3. 4x4 Image Block Transformation. 15-51
Figure 15-4. Throughput Comparison of Gather Instructions . 15-67
Figure 15-5. Comparison of HW GATHER Versus Software Sequence in Skylake Microarchitecture. 15-68
Figure 17-1. Performance History and State Transitions . 17-2
Figure 17-2. Active Time Versus Halted Time of a Processor . 17-3
Figure 17-3. Application of C-states to Idle Time . 17-4
Figure 17-4. Profiles of Coarse Task Scheduling and Power Consumption . 17-9
Figure 17-5. Thread Migration in a Multicore Processor. 17-11
Figure 17-6. Progression to Deeper Sleep . 17-11
Figure 17-7. Energy Saving due to Performance Optimization . 17-13
Figure 17-8. Energy Saving due to Vectorization. 17-13
Figure 17-9. Energy Saving Comparison of Synchronization Primitives . 17-16
Figure 17-10. Power Saving Comparison of Power-Source-Aware Frame Rate Configurations 17-17
Figure 18-1. Intel® AVX-512 Extensions Supported by Skylake Server Microarchitecture and Knights Landing

Microarchitecture .18-1
Figure 18-2. Cartesian Rotation .18-2
Figure 18-3. Data Forwarding Cases. 18-16
Figure 18-4. Data Compress Operation . 18-18
Figure 18-5. Data Expand Operation . 18-23
Figure 18-6. Ternary Logic Example 1 Truth Table . 18-25
Figure 18-7. Ternary Logic Example 2 Truth Table . 18-28
Figure 18-8. VPERMI2PS Instruction Operation . 18-29
Figure 18-9. VSCATTERDPD Instruction Operation . 18-35
Figure 18-10. VPCONFLICTD Instruction Execution . 18-48
Figure 18-11. VPCONFLICTD Merging Process. 18-49
Figure 18-12. VPCONFLICTD Permute Control. 18-49
Figure 18-13. VPCONFLICTD ZMM2 Result . 18-51

xxxv

CONTENTS

PAGE

Figure 18-14. Sparse Vector Example .18-51
Figure 18-15. VPERMB Instruction Operation .18-54
Figure 18-16. VPERMI2B Instruction Operation .18-55
Figure 18-17. VPERMT2B Instruction Operation. .18-56
Figure 18-18. VPMULTISHIFTQB Instruction Operation .18-58
Figure 18-19. Fast Bypass When All Sources Come from FMA Unit .18-61
Figure 18-20. Mixing Intel AVX Instructions or Intel AVX-512 Instructions with Intel SSE Instructions.18-62
Figure 19-1. Layout of a 128-Bit Register Representing Four Complex FP16 (CFP16) Values. 19-4
Figure 19-2. Illustration of a Zero-Masked FP16 Add On Two 128-Bit Vectors. 19-6
Figure 19-3. Illustration of a Masked Complex Multiplication . 19-7
Figure 19-4. Illustration of Using a Real-Valued FP16 Vector Operation for Implementing a Masked

Complex Addition . 19-7
Figure 19-5. Comparison Operation Between Two Complex-Valued Vectors.

The mask bits are generated using a real-valued comparison, then adjacent bits combined
using AND . 19-8

Figure 19-6. Bit Layout of Three Types of Floating-Point Formats .19-10
Figure 19-7. Landmark Numbers on the Real-Valued FP16 Axis. .19-11
Figure 19-8. Heat-map Showing Relative ULP Error for Different Combinations of Divisor and Dividend

Value Ranges. .19-16
Figure 20-1. Matrix Notation. 20-4
Figure 20-2. Intel® AMX Multiplication with Max-sized int8 Tiles. 20-5
Figure 20-3. Re-layout of 64x16 int8 B Matrix. 20-7
Figure 20-4. Re-layout of 32x16 bfloat16 B Matrix . 20-7
Figure 20-5. Activations layout .20-16
Figure 20-6. Weights Re-Layout .20-17
Figure 20-7. Convolution - Matrix Multiplication and Summation Equivalence .20-17
Figure 20-8. Matrix-Like Multiplications Part of a Convolution. .20-18
Figure 20-9. Batching Execution Using Six Layers with Four Instances Per Thread. .20-24
Figure 20-10. An Example of a Convolution

Elements interacting with weight element kh,kw=0,0 are highlighted. .20-27
Figure 20-11. An Example of a Convolution with Large Tiles.

Elements going into each tile are highlighted differently.. .20-28
Figure 20-12. Please provide Figure Description .20-34
Figure 20-13. A Conversion Flow of 32-bit Integers to 8-bit Integers. .20-36
Figure 20-14. Trivial Deep Learning Topology with Naive Buffer Allocation .20-37
Figure 20-15. Minimal Memory Footprint Buffer Allocation Scheme for

the Trivial Deep Learning Topology .20-38
Figure 20-16. Loading 32 Quarter-Cache Lines into 8 ZMM Registers. .20-45
Figure 20-17. The Implementation of loading eight quarter-cache lines int two ZMM registers20-48
Figure 20-18. Flat-to-VNNI transpose of WORDs is equivalent to Flat-to-Flat transpose of DWORDs20-48
Figure 20-19. BF16 Flat-to-VNNI Transpose .20-51
Figure 20-20. GEMM Data Partitioning Between Three Cores in a Layer Partitioned by the M Dimension20-54
Figure 20-21. GEMM Data Partitioning Between Three Cores in a Layer Partitioned by the N-Dimension20-54
Figure 20-22. GEMM Data Partitioning Between Three Cores in a Layer Partitioned by the K Dimension.20-55
Figure 20-23. A recommendation system multi-threading model .20-57
Figure 20-24. Data Expand Operation .20-59
Figure 23-1. Tile-Mesh Topology of the Knights Landing Microarchitecture . 23-1
Figure 23-2. Processor Core Pipeline Functionality of the Knights Landing Microarchitecture 23-2
Figure B-1. General TMA Hierarchy for Out-of-Order Microarchitectures . B-2
Figure B-2. TMA’s Top Level Drill Down Flowchart . B-3
Figure B-3. TMA Hierarchy and Precise Events in Skylake . B-8
Figure B-4. System Topology Supported by Intel® Xeon® Processor 5500 Series . B-15
Figure B-5. PMU Specific Event Logic Within the Pipeline . B-17
Figure B-6. LBR Records and Basic Blocks. B-28
Figure B-7. Using LBR Records to Rectify Skewed Sample Distribution . B-28
Figure B-8. RdData Request after LLC Miss to Local Home (Clean Rsp). B-39
Figure B-9. RdData Request after LLC Miss to Remote Home (Clean Rsp) . B-39
Figure B-11. RdData Request after LLC Miss to Local Home (Hitm Response) . B-40
Figure B-10. RdData Request after LLC Miss to Remote Home (Hitm Response) . B-40

CONTENTS

xxxvi

PAGE

Figure B-12. RdData Request after LLC Miss to Local Home (Hit Response) . B-41
Figure B-13. RdInvOwn Request after LLC Miss to Remote Home (Clean Res) . B-41
Figure B-15. RdInvOwn Request after LLC Miss to Local Home (Hit Res) . B-42
Figure B-14. RdInvOwn Request after LLC Miss to Remote Home (Hitm Res) . B-42
Figure B-16. Performance Events Drill-Down and Software Tuning Feedback Loop. B-61
Figure C-1. ITLB Miss Stalls in Language Runtimes on Intel® Xeon® 8180 Processor . C-1
Figure C-2. ITLB and ITLB 4K MPKI Across Runtime Workloads. C-4
Figure C-3. measure-perf-metric.sh Tool Usage for Process ID 69772 for 30 Seconds . C-5
Figure C-4. Using measure-perf-metric.sh with -r to Determine Where TLB Misses are Coming From. C-6
Figure C-5. Commands for Checking Linux* Distribution for THP . C-7
Figure C-6. API Calls Provided by the Intel Reference Implementation. C-8
Figure C-7. perf Output Will Not Have the Proper Symbols After Large Page Mapping . C-10
Figure C-8. Using Perf Record with -e frontend_retired.itlb_miss to Determine ITLB Misses

and Running Perf Script to Obtain Data for Importing into FlameScope. C-13
Figure C-9. Using FlameScope to Visualize the ITLB Misses Heatmap from the WebTooling Workload C-14
Figure C-10. Using FlameScope to Visualize the ITLB Misses Heatmap from the WebTooling Workload

when Run with Large Pages. C-14
Figure C-11. Visualizing ITLB Miss Trends for “Built-in” Functions from the Ghost.js Workload C-15
Figure C-12. Visualizing ITLB Miss Trends for “Built-in” Functions from the Ghost.js Workload

When Run With Large Pages. C-15
Figure E-1. CPU Core Pipeline Functionality of the Haswell Microarchitecture . E-1
Figure E-2. Four Core System Integration of the Haswell Microarchitecture. E-2
Figure E-3. An Example of the Haswell-E Microarchitecture Supporting 12 Processor Cores E-7
Figure E-4. Sandy Bridge Microarchitecture Pipeline Functionality . E-9
Figure E-5. Intel Core Microarchitecture Pipeline Functionality. E-28
Figure E-6. Execution Core of Intel Core Microarchitecture . E-34
Figure E-7. Store-Forwarding Enhancements in Enhanced Intel Core Microarchitecture . E-37
Figure E-8. Intel Advanced Smart Cache Architecture . E-38
Figure E-9. Nehalem Microarchitecture Pipeline Functionality . E-41
Figure E-10. Front End of Nehalem Microarchitecture. E-42
Figure E-11. Store-Forwarding Scenarios of 16-Byte Store Operations. E-47
Figure E-12. Store-Forwarding Enhancement in Nehalem Microarchitecture . E-48
Figure F-1. Intel Atom® Microarchitecture Pipeline . F-2
Figure F-2. Silvermont Microarchitecture Pipeline. F-20
Figure F-3. CPU Core Pipeline Functionality of the Goldmont Microarchitecture . F-24
Figure F-4. CPU Core Pipeline Functionality of the Goldmont Plus Microarchitecture . F-27

TABLES

Table 2-2. Golden Cove Microarchitecture Execution Units and Representative
Instructions .2-10

Table 2-1. Dispatch Port and Execution Stacks of the Golden Cove Microarchitecture .2-10
Table 2-3. Bypass Delay Between Producer and Consumer Micro-ops .2-11
Table 2-4. Dispatch Port and Execution Stacks of the Ice Lake Client Microarchitecture .2-16
Table 2-5. Ice Lake Client Microarchitecture Execution Units and Representative Instructions2-16
Table 2-6. Bypass Delay Between Producer and Consumer Micro-ops .2-17
Table 2-7. Cache Parameters of the Ice Lake Client Microarchitecture. .2-18
Table 2-8. TLB Parameters of the Ice Lake Client Microarchitecture .2-18
Table 2-9. Cache Comparison Between Skylake Microarchitecture and Broadwell Microarchitecture2-23
Table 2-10. Maximum Intel® Turbo Boost Technology Core Frequency Levels .2-25
Table 2-11. Dispatch Port and Execution Stacks of the Skylake Client Microarchitecture .2-30
Table 2-12. Skylake Client Microarchitecture Execution Units and Representative Instructions2-30
Table 2-13. Bypass Delay Between Producer and Consumer Micro-ops .2-31
Table 2-14. Cache Parameters of the Skylake Client Microarchitecture .2-32
Table 2-15. TLB Parameters of the Skylake Client Microarchitecture .2-32
Table 3-1. Macro-Fusible Instructions in Sandy Bridge Microarchitecture .3-13
Table 3-2. Macro-Fusible Instructions in Haswell Microarchitecture .3-13
Table 3-3. Recommended Multi-Byte Sequence of NOP Instruction .3-27
Table 3-4. Store Forwarding Restrictions of Processors Based on Intel Core Microarchitecture3-48
Table 3-5. Relative Performance of Memcpy() Using Enhanced REP MOVSB and STOSB Vs. 128-bit AVX. . . .3-62
Table 3-6. Effect of Address Misalignment on Memcpy() Performance .3-63
Table 3-7. Intel Processor CPU RP Device IDs for Processors Optimizing PCIe Performance.3-71
Table 3-8. Samples: 365K of events ‘anon group{cpu/mem-loads-aux/,cpu/mem-loads,ldat=128/pp}’,

Event count (a--r0x): 67900852 .3-72
Table 3-9. Instruction Sequence Mixing VEX and Legacy on Sapphire Rapids and ICX .3-74
Table 4-1. Paging Cache Parameters of the Gracemont Microarchitecture . 4-7
Table 4-2. Dispatch Port and Execution Stacks of the Tremont Microarchitecture .4-12
Table 4-3. Cache Parameters of the Tremont Microarchitecture .4-13
Table 6-1. PSHUF Encoding. .6-13
Table 7-1. SoA Form of Representing Vertices Data . 7-4
Table 9-1. Implementation Details of Prefetch Hint Instructions . 9-4
Table 9-2. Software Prefetching Considerations into Strip-mining Code .9-23
Table 9-3. Deterministic Cache Parameters Leaf .9-31
Table 11-1. Properties of Synchronization Objects . 11-11
Table 11-2. Design-Time Resource Management Choices . 11-22
Table 11-3. Microarchitectural Resources Comparisons of HT Implementations . 11-25
Table 12-1. Latencies for Accessing Intel® Optane™ DC Persistent Memory Modules. .12-4
Table 12-2. Bandwidths per DIMM for Intel® Optane™ DC Persistent Memory Modules and DRAM 12-4
Table 14-1. SSE4.2 String/Text Instructions Compare Operation on N-elements .14-2
Table 14-2. SSE4.2 String/Text Instructions Unary Transformation on IntRes1 .14-3
Table 14-3. SSE4.2 String/Text Instructions Output Selection Imm[6] .14-3
Table 14-4. SSE4.2 String/Text Instructions Element-Pair Comparison Definition .14-3
Table 14-5. SSE4.2 String/Text Instructions Eflags Behavior .14-3
Table 15-1. Features between 256-bit AVX, 128-bit AVX and Legacy SSE Extensions .15-2
Table 15-2. State Transitions of Mixing AVX and SSE Code .15-9
Table 15-3. Approximate Magnitude of AVX-SSE Transition Penalties in Different Microarchitectures 15-9
Table 15-4. Effect of VZEROUPPER with Inter-Function Calls Between AVX and SSE Code 15-10
Table 15-5. Comparison of Numeric Alternatives of Selected Linear Algebra in Skylake Microarchitecture . . 15-36
Table 15-6. Single-Precision Divide and Square Root Alternatives. 15-36
Table 15-7. Comparison of AOS to SOA with Strided Access Pattern . 15-69
Table 15-8. Comparison of Indexed AOS to SOA Transformation . 15-71
Table 16-1. RTM Abort Status Definition . 16-23
Table 17-1. ACPI C-State Type Mappings to Processor Specific C-State for Mobile Processors Based on Nehalem

Microarchitecture17-5
Table 17-2. ACPI C-State Type Mappings to Processor Specific C-State of Sandy Bridge Microarchitecture. . .17-5
Table 17-3. C-State Total Processor Exit Latency for Client Systems (Core+ Package Exit Latency) with Slow VR17-18

CONTENTS

xxxviii

PAGE

Table 17-4. C-State Total Processor Exit Latency for Client Systems (Core+ Package Exit Latency)
with Fast VR . 17-18

Table 17-5. C-State Core-Only Exit Latency for Client Systems with Slow VR. 17-19
Table 17-6. POWER_CTL MSR in Processors Based on Sandy Bridge Microarchitecture . 17-19
Table 18-1. Cache Comparison Between Skylake Server Microarchitecture and Broadwell

Microarchitecture . 18-14
Table 18-2. Static Rounding Mode Functions . 18-34
Table 18-3. Vector Quadword Extensions. 18-42
Table 18-4. Scalar Quadword Extensions . 18-42
Table 18-5. Vector Quadword Extensions. 18-43
Table 18-6. Scalar Quadword Extensions . 18-43
Table 18-7. FMA Unit Latency. 18-61
Table 18-8. Data Alignment Effects on SAXPY Performance vs. Speedup Value . 18-72
Table 18-9. Skylake Microarchitecture Recommendations for DIV/SQRT Based Operations

(Single Precision) . 18-74
Table 18-10. Skylake Microarchitecture Recommendations for DIV/SQRT Based Operations

(Double Precision). 18-74
Table 18-11. 256-bit Intel AVX2 Divide and Square Root Instruction Performance . 18-75
Table 18-12. 512-bit Intel AVX-512 Divide and Square Root Instruction Performance . 18-75
Table 18-13. Latency/Throughput of Different Methods of Computing Divide and Square Root on Skylake

Microarchitecture for Different Vector Widths, on Single Precision . 18-76
Table 18-14. Latency/Throughput of Different Methods of Computing Divide and Square Root on Skylake

Microarchitecture for Different Vector Widths, on Double Precision. 18-77
Table 19-1. Terminology . 19-1
Table 19-2. Supported FP16 Data Types . 19-3
Table 19-3. Example Intrinsic Names . 19-4
Table 19-4. Conjugation Instructions . 19-5
Table 19-5. Useful or Interesting FP16 Numbers . 19-11
Table 19-6. Conjugation Instructions . 19-13
Table 19-7. Conjugation Instructions . 19-18
Table 20-1. Related Links . 20-1
Table 20-2. Intel® AMX Instruction Throughput and Latency . 20-3
Table 20-3. Five loops in the Example 20-4 Code Listing. 20-25
Table 20-4. Accessed Data Sizes . 20-25
Table 20-5. Accessed Data Sizes . 20-26
Table 20-6. 20-26
Table 20-7. Simple partition of work between three threads. 20-56
Table 20-8. Optimized partition of work between three threads . 20-56
Table 23-1. Integer Pipeline Characteristics of the Knights Landing Microarchitecture . 23-4
Table 23-2. Vector Pipeline Characteristics of the Knights Landing Microarchitecture . 23-5
Table 23-3. Characteristics of Caching Resources . 23-6
Table 23-4. Alternatives to MSROM Instructions . 23-10
Table 23-5. Cycle Cost Building Blocks for Vectorization Estimate for Knights Landing Microarchitecture . . . 23-14
Table A-1. Recommended Processor Optimization Options. .A-2
Table B-1. Performance Monitoring Taxonomy .B-9
Table B-2. Cycle Accounting and Micro-ops Flow Recipe. B-16
Table B-3. CMask/Inv/Edge/Thread Granularity of Events for Micro-op Flow . B-17
Table B-4. Cycle Accounting of Wasted Work Due to Misprediction . B-18
Table B-5. Cycle Accounting of Instruction Starvation. B-19
Table B-6. CMask/Inv/Edge/Thread Granularity of Events for Micro-op Flow . B-20
Table B-7. Approximate Latency of L2 Misses of Intel Xeon Processor 5500. B-22
Table B-8. Load Latency Event Programming . B-25
Table B-9. Data Source Encoding for Load Latency PEBS Record . B-25
Table B-10. Core PMU Events to Drill Down L2 Misses . B-29
Table B-11. Core PMU Events for Super Queue Operation. B-30
Table B-12. Core PMU Event to Drill Down OFFCore Responses . B-30
Table B-13. OFFCORE_RSP_0 MSR Programming . B-30
Table B-14. Common Request and Response Types for OFFCORE_RSP_0 MSR . B-31
Table B-15. Uncore PMU Events for Occupancy Cycles. B-36

xxxix

CONTENTS

PAGE

Table B-16. Common QHL Opcode Matching Facility Programming . B-38
Table C-1. Core TLB Structure Size and Organization Across Multiple Intel Product Generations C-2
Table C-2. Calculating ITLB Miss Stall for Ghost.js . C-3
Table C-3. ITLB MPKI and Executable Sizes Across Various Workloads. C-5
Table C-4. Key Metrics for Ghost.js With and Without Large Pages .C-11
Table C-5. Key Metrics for Web Tooling across Clear Linux and Ubuntu 18.04 .C-12
Table C-6. Key Metrics for MediaWiki Workload on HHVM. .C-12
Table C-7. Precise Front-end Events for ITLB Misses .C-13
Table C-8. System Details .C-16
Table C-9. Processor Information .C-16
Table C-10. Kernel Vulnerability Status .C-17
Table D-1. CPUID Signature Values of Of Recent Intel Microarchitectures. .D-3
Table D-2. Instruction Extensions Introduction by Microarchitectures (CPUID Signature). .D-4
Table D-3. BMI1, BMI2 and General Purpose Instructions .D-4
Table D-4. 256-bit AVX2 Instructions .D-5
Table D-5. Gather Timing Data from L1D* .D-6
Table D-6. BMI1, BMI2 and General Purpose Instructions .D-7
Table D-7. F16C,RDRAND Instructions .D-7
Table D-8. 256-bit AVX Instructions. .D-7
Table D-9. AESNI and PCLMULQDQ Instructions .D-9
Table D-10. SSE4.2 Instructions . D-10
Table D-11. SSE4.1 Instructions . D-10
Table D-12. Supplemental Streaming SIMD Extension 3 Instructions. D-11
Table D-13. Streaming SIMD Extension 3 SIMD Floating-point Instructions . D-12
Table D-14. Streaming SIMD Extension 2 128-bit Integer Instructions . D-12
Table D-15. Streaming SIMD Extension 2 Double-precision Floating-point Instructions . D-14
Table D-16. Streaming SIMD Extension Single-precision Floating-point Instructions. D-15
Table D-17. General Purpose Instructions . D-17
Table D-18. Pointer-Chasing Variability of Software Measurable Latency of L1 Data Cache Latency. D-20
Table E-1. Dispatch Port and Execution Stacks of the Haswell Microarchitecture . E-3
Table E-2. Haswell Microarchitecture Execution Units and Representative Instructions . E-4
Table E-3. Bypass Delay Between Producer and Consumer Micro-ops (cycles) . E-5
Table E-4. Cache Parameters of the Haswell Microarchitecture . E-5
Table E-5. TLB Parameters of the Haswell Microarchitecture . E-6
Table E-6. Components of the Front End . E-6
Table E-7. TLB Parameters of the Broadwell Microarchitecture . E-8
Table E-8. Components of the Front End of Sandy Bridge Microarchitecture. .E-10
Table E-9. ICache and ITLB of Sandy Bridge Microarchitecture .E-11
Table E-10. Dispatch Port and Execution Stacks. .E-16
Table E-11. Execution Core Writeback Latency (cycles) .E-17
Table E-12. Cache Parameters .E-18
Table E-13. Lookup Order and Load Latency .E-18
Table E-14. L1 Data Cache Components .E-19
Table E-15. Effect of Addressing Modes on Load Latency. .E-20
Table E-16. DTLB and STLB Parameters .E-21
Table E-17. Store Forwarding Conditions (1 and 2 byte stores) .E-21
Table E-18. Store Forwarding Conditions (4-16 byte stores) .E-22
Table E-19. 32-byte Store Forwarding Conditions (0-15 byte alignment) .E-22
Table E-20. 32-byte Store Forwarding Conditions (16-31 byte alignment) .E-22
Table E-21. Components of the Front End .E-28
Table E-22. Issue Ports of Intel Core Microarchitecture and Enhanced Intel Core Microarchitecture.E-33
Table E-23. Cache Parameters of Processors based on Intel Core Microarchitecture. .E-38
Table E-24. Characteristics of Load and Store Operations in Intel Core Microarchitecture .E-39
Table E-25. Bypass Delay Between Producer and Consumer Micro-ops (cycles) .E-44
Table E-26. Issue Ports of Nehalem Microarchitecture .E-44
Table E-27. Cache Parameters of Intel Core i7 Processors .E-45
Table E-28. Performance Impact of Address Alignments of MOVDQU from L1 .E-46
Table F-1. Instruction Latency/Throughput Summary of Intel Atom® Microarchitecture . F-7
Table F-2. Intel Atom® Microarchitecture Instructions Latency Data .F-14

CONTENTS

xl

PAGE

Table F-3. Function Unit Mapping of the Silvermont Microarchitecture .F-21
Table F-5. Comparison of Distributed Reservation Stations on Scheduling Uops .F-25
Table F-6. Function Unit Mapping of the Goldmont Microarchitecture .F-25
Table F-4. Comparison of Front End Cluster Features .F-25
Table F-7. Comparison of MEC Resources .F-26
Table F-8. Comparison of Front End Cluster Features .F-27
Table F-9. Comparison of Distributed Reservation Stations on Scheduling Uops .F-28
Table F-10. Function Unit Mapping of the Goldmont Plus Microarchitecture .F-28
Table F-11. Alternatives to MSROM Instructions .F-29
Table F-12. Comparison of Decoder Capabilities .F-31
Table F-13. Integer Multiply Operation Latency .F-34
Table F-14. Floating-Point and SIMD Integer Latency .F-37
Table F-15. Unsigned Integer Division Operation Latency .F-38
Table 6-16. Signed Integer Division Operation Latency .F-39
Table F-17. Store Forwarding Conditions (1 and 2 Byte Stores) .F-40
Table F-18. Store Forwarding Conditions (4-16 Byte Stores). .F-40
Table F-19. Instructions Latency and Throughput Recent Microarchitectures for Intel Atom® Processors F-42

1

User/Source Coding Rule 1. (M impact, L generality) If an indirect branch has two or more common
taken targets and at least one of those targets is correlated with branch history leading up to the
branch, then convert the indirect branch to a tree where one or more indirect branches are preceded
by conditional branches to those targets. Apply this “peeling” procedure to the common target of an
indirect branch that correlates to branch history ...3-9

User/Source Coding Rule 2. (H impact, M generality) Use the smallest possible floating-point or
SIMD data type, to enable more parallelism with the use of a (longer) SIMD vector. For example, use
single precision instead of double precision where possible ..3-35

User/Source Coding Rule 3. (M impact, ML generality) Arrange the nesting of loops so that the
innermost nesting level is free of inter-iteration dependencies. Especially avoid the case where the
store of data in an earlier iteration happens lexically after the load of that data in a future iteration,
something which is called a lexically backward dependence ...3-35

User/Source Coding Rule 4. (M impact, ML generality) Avoid the use of conditional branches inside
loops and consider using SSE instructions to eliminate branches3-35

User/Source Coding Rule 5. (M impact, ML generality) Keep induction (loop) variable expressions
simple ..3-35

User/Source Coding Rule 6. (H impact, M generality) Pad data structures defined in the source
code so that every data element is aligned to a natural operand size address boundary3-51

User/Source Coding Rule 7. (M impact, L generality) Beware of false sharing within a cache line
(64 bytes) ...3-53

User/Source Coding Rule 8. (H impact, ML generality) Consider using a special memory allocation
library with address offset capability to avoid aliasing. ..3-54

User/Source Coding Rule 9. (M impact, M generality) When padding variable declarations to avoid
aliasing, the greatest benefit comes from avoiding aliasing on second-level cache lines, suggesting
an offset of 128 bytes or more ...3-54

User/Source Coding Rule 10. (H impact, H generality) Optimization techniques such as blocking,
loop interchange, loop skewing, and packing are best done by the compiler. Optimize data structures
either to fit in one-half of the first-level cache or in the second-level cache; turn on loop optimizations
in the compiler to enhance locality for nested loops ..3-57

User/Source Coding Rule 11. (M impact, ML generality) If there is a blend of reads and writes on
the bus, changing the code to separate these bus transactions into read phases and write phases can
help performance ...3-58

User/Source Coding Rule 12. (H impact, H generality) To achieve effective amortization of bus
latency, software should favor data access patterns that result in higher concentrations of cache miss
patterns, with cache miss strides that are significantly smaller than half the hardware prefetch trigger
threshold ..3-58

User/Source Coding Rule 13. (M impact, M generality) Enable the compiler’s use of SSE, SSE2,
AVX, AVX2, and possibly more advanced SIMD instruction sets (AVX-512) with appropriate switches.
Favor scalar SIMD code generation to replace x87 code generation3-67

User/Source Coding Rule 14. (H impact, ML generality) Make sure your application stays in range
to avoid denormal values, underflows ...3-67

User/Source Coding Rule 15. (M impact, ML generality) Usually, math libraries take advantage of
the transcendental instructions (for example, FSIN) when evaluating elementary functions. If there
is no critical need to evaluate the transcendental functions using the extended precision of 80 bits,
applications should consider an alternate, software-based approach, such as a look-up-table-based
algorithm using interpolation techniques. It is possible to improve transcendental performance with

2

these techniques by choosing the desired numeric precision and the size of the look-up table, and by
taking advantage of the parallelism of the SSE and the SSE2 instructions.3-68

User/Source Coding Rule 16. (H impact, ML generality) Denormalized floating-point constants
should be avoided as much as possible ...3-68

User/Source Coding Rule 17. If CLFLUSHOPT is available, use CLFLUSHOPT over CLFLUSH and use
SFENCE to guard CLFLUSHOPT to ensure write order is globally observed. If CLUSHOPT is not
available, consider flushing large buffers with CLFLUSH in smaller chunks of less than 4KB. 8-11

User/Source Coding Rule 18. (M impact, H generality) Insert the PAUSE instruction in fast spin
loops and keep the number of loop repetitions to a minimum to improve overall system performance.
10-12

User/Source Coding Rule 19. (M impact, L generality) Replace a spin lock that may be acquired by
multiple threads with pipelined locks such that no more than two threads have write accesses to one
lock. If only one thread needs to write to a variable shared by two threads, there is no need to use a
lock. ... 10-13

User/Source Coding Rule 20. (H impact, M generality) Use a thread-blocking API in a long idle loop
to free up the processor .. 10-13

User/Source Coding Rule 21. (H impact, M generality) Beware of false sharing within a cache line
or within a sector. Allocate critical data or locks separately using alignment granularity not smaller
than the “false-sharing threshold” .. 10-15

User/Source Coding Rule 22. (M impact, ML generality) Place each synchronization variable alone,
separated by 128 bytes or in a separate cache line. .. 10-16

User/Source Coding Rule 23. (H impact, L generality) Do not place any spin lock variable to span
a cache line boundary ... 10-16

User/Source Coding Rule 24. (M impact, H generality) Improve data and code locality to conserve
bus command bandwidth. ... 10-17

User/Source Coding Rule 25. (M impact, L generality) Avoid excessive use of software prefetch
instructions and allow automatic hardware prefetcher to work. Excessive use of software prefetches
can significantly and unnecessarily increase bus utilization if used inappropriately. 10-18

User/Source Coding Rule 26. (M impact, M generality) Consider using overlapping multiple back-
to-back memory reads to improve effective cache miss latencies. 10-18

User/Source Coding Rule 27. (M impact, M generality) Consider adjusting the sequencing of
memory references such that the distribution of distances of successive cache misses of the last level
cache peaks towards 64 bytes. .. 10-18

User/Source Coding Rule 28. (M impact, M generality) Use full write transactions to achieve higher
data throughput. .. 10-18

User/Source Coding Rule 29. (H impact, H generality) Use cache blocking to improve locality of
data access. Target one quarter to one half of the cache size when targeting Intel processors
supporting HT Technology or target a block size that allow all the logical processors serviced by a
cache to share that cache simultaneously. ... 10-19

User/Source Coding Rule 30. (H impact, M generality) Minimize the sharing of data between
threads that execute on different bus agents sharing a common bus. The situation of a platform
consisting of multiple bus domains should also minimize data sharing across bus domains 10-20

User/Source Coding Rule 31. (H impact, H generality) Minimize data access patterns that are
offset by multiples of 64 KBytes in each thread. ... 10-21

User/Source Coding Rule 32. (M impact, L generality) Avoid excessive loop unrolling to ensure the
LSD is operating efficiently .. 10-22

User/Source Coding Rule 33. Factor in precision and rounding characteristics of FMA instructions
when replacing multiply/add operations executing non-FMA instructions. 14-48

User/Source Coding Rule 34. Factor in result-dependency, latency of FP add vs. FMA instructions
when replacing FP add operations with FMA instructions .. 14-48

User/Source Coding Rule 35. Consider using unrolling technique for loops containing back-to-back
dependent FMA, FP Add or Vector MUL operations, The unrolling factor can be chosen by considering

3

the latency of the critical instruction of the dependency chain and the number of pipes available to
execute that instruction .. 14-50

User/Source Coding Rule 36. When using RTM for implementing lock elision, always test for lock
inside the transactional region. .. 15-11

User/Source Coding Rule 37. RTM abort handlers must provide a valid tested non transactional
fallback path. .. 15-13

4

1

Assembler/Compiler Coding Rule 1. (MH impact, M generality) Arrange code to make basic blocks
contiguous and eliminate unnecessary branches..3-5

Assembler/Compiler Coding Rule 2. (M impact, ML generality) Use the SETCC and CMOV
instructions to eliminate unpredictable conditional branches where possible. Do not do this for
predictable branches. Do not use these instructions to eliminate all unpredictable conditional
branches (because using these instructions will incur execution overhead due to the requirement for
executing both paths of a conditional branch). In addition, converting a conditional branch to SETCC
or CMOV trades off control flow dependence for data dependence and restricts the capability of the
out-of-order engine. When tuning, note that all Intel 64 and IA-32 processors usually have very high
branch prediction rates. Consistently mispredicted branches are generally rare. Use these instructions
only if the increase in computation time is less than the expected cost of a mispredicted branch.3-5

Assembler/Compiler Coding Rule 3. (M impact, H generality) Arrange code to be consistent with
the static branch prediction algorithm: make the fall-through code following a conditional branch be
the likely target for a branch with a forward target, and make the fall-through code following a
conditional branch be the unlikely target for a branch with a backward target.3-6

Assembler/Compiler Coding Rule 4. (MH impact, MH generality) Near calls must be matched with
near returns, and far calls must be matched with far returns. Pushing the return address on the stack
and jumping to the routine to be called is not recommended since it creates a mismatch in calls and
returns. ...3-7

Assembler/Compiler Coding Rule 5. (MH impact, MH generality) Selectively inline a function if
doing so decreases code size or if the function is small and the call site is frequently executed.3-8

Assembler/Compiler Coding Rule 6. (ML impact, ML generality) If there are more than 16 nested
calls and returns in rapid succession; consider transforming the program with inline to reduce the call
depth. ...3-8

Assembler/Compiler Coding Rule 7. (ML impact, ML generality) Favor inlining small functions that
contain branches with poor prediction rates. If a branch misprediction results in a RETURN being
prematurely predicted as taken, a performance penalty may be incurred............................3-8

Assembler/Compiler Coding Rule 8. (L impact, L generality) If the last statement in a function is
a call to another function, consider converting the call to a jump. This will save the call/return
overhead as well as an entry in the return stack buffer. ...3-8

Assembler/Compiler Coding Rule 9. (M impact, L generality) Do not put more than four branches
in a 16-byte chunk. ...3-8

Assembler/Compiler Coding Rule 10. (M impact, L generality) Do not put more than two end loop
branches in a 16-byte chunk. ...3-8

Assembler/Compiler Coding Rule 11. (M impact, H generality) When executing code from the
Decoded Icache, direct branches that are mostly taken should have all their instruction bytes in a 64B
cache line and nearer the end of that cache line. Their targets should be at or near the beginning of
a 64B cache line. ..3-8

Assembler/Compiler Coding Rule 12. (M impact, H generality) If the body of a conditional is not
likely to be executed, it should be placed in another part of the program. If it is highly unlikely to be
executed and code locality is an issue, it should be placed on a different code page.3-8

Assembler/Compiler Coding Rule 13. (M impact, L generality) When indirect branches are
present, try to put the most likely target of an indirect branch immediately following the indirect
branch. Alternatively, if indirect branches are common but they cannot be predicted by branch
prediction hardware, then follow the indirect branch with a UD2 instruction, which will stop the
processor from decoding down the fall-through path..3-8

Assembler/Compiler Coding Rule 14. (H impact, M generality) Unroll small loops until the
overhead of the branch and induction variable accounts (generally) for less than 10% of the execution
time of the loop. ...3-11

Assembler/Compiler Coding Rule 15. (M impact, M generality) Unroll loops that are frequently
executed and have a predictable number of iterations to reduce the number of iterations to 16 or
fewer. Do this unless it increases code size so that the working set no longer fits in the instruction

2

cache. If the loop body contains more than one conditional branch, then unroll so that the number of
iterations is 16/(# conditional branches). ...3-11

Assembler/Compiler Coding Rule 16. (ML impact, M generality) For improving fetch/decode
throughput, Give preference to memory flavor of an instruction over the register-only flavor of the
same instruction, if such instruction can benefit from micro-fusion...................................3-11

Assembler/Compiler Coding Rule 17. (M impact, ML generality) Employ macrofusion where
possible using instruction pairs that support macrofusion. Prefer TEST over CMP if possible. Use
unsigned variables and unsigned jumps when possible. Try to logically verify that a variable is non-
negative at the time of comparison. Avoid CMP or TEST of MEM-IMM flavor when possible. However,
do not add other instructions to avoid using the MEM-IMM flavor.3-14

Assembler/Compiler Coding Rule 18. (M impact, ML generality) Software can enable macro fusion
when it can be logically determined that a variable is non-negative at the time of comparison; use
TEST appropriately to enable macrofusion when comparing a variable with 0.3-15

Assembler/Compiler Coding Rule 19. (MH impact, MH generality) Favor generating code using
imm8 or imm32 values instead of imm16 values. ..3-16

Assembler/Compiler Coding Rule 20. (M impact, ML generality) Ensure instructions using 0xF7
opcode byte does not start at offset 14 of a fetch line; and avoid using these instruction to operate
on 16-bit data, upcast short data to 32 bits. ...3-17

Assembler/Compiler Coding Rule 21. (MH impact, MH generality) Break up a loop body with a
long sequence of instructions into loops of shorter instruction blocks of no more than the size of the
LSD...3-18

Assembler/Compiler Coding Rule 22. (M impact, M generality) Avoid putting explicit references
to ESP in a sequence of stack operations (POP, PUSH, CALL, RET).3-19

Assembler/Compiler Coding Rule 23. (ML impact, L generality) Use simple instructions that are
less than eight bytes in length. ...3-19

Assembler/Compiler Coding Rule 24. (M impact, MH generality) Avoid using prefixes to change
the size of immediate and displacement. ..3-19

Assembler/Compiler Coding Rule 25. (M impact, H generality) Favor single-micro-operation
instructions. Also favor instruction with shorter latencies. ...3-20

Assembler/Compiler Coding Rule 26. (M impact, L generality) Avoid prefixes, especially multiple
non-0F-prefixed opcodes..3-20

Assembler/Compiler Coding Rule 27. (M impact, L generality) Do not use many segment
registers. ...3-20

Assembler/Compiler Coding Rule 28. (M impact, M generality) Avoid using complex instructions
(for example, enter, leave, or loop) that have more than four µops and require multiple cycles to
decode. Use sequences of simple instructions instead. ...3-20

Assembler/Compiler Coding Rule 29. (MH impact, M generality) Use push/pop to manage stack
space and address adjustments between function calls/returns instead of enter/leave. Using enter
instruction with non-zero immediates can experience significant delays in the pipeline in addition to
misprediction..3-20

Assembler/Compiler Coding Rule 30. (ML impact, L generality) If an LEA instruction using the
scaled index is on the critical path, a sequence with ADDs may be better..........................3-22

Assembler/Compiler Coding Rule 31. (ML impact, L generality) Avoid ROTATE by register or
ROTATE by immediate instructions. If possible, replace with a ROTATE by 1 instruction.3-24

Assembler/Compiler Coding Rule 32. (M impact, ML generality) Use dependency-breaking-idiom
instructions to set a register to 0, or to break a false dependence chain resulting from re-use of
registers. In contexts where the condition codes must be preserved, move 0 into the register instead.
This requires more code space than using XOR and SUB, but avoids setting the condition codes.3-
25

Assembler/Compiler Coding Rule 33. (M impact, MH generality) Break dependences on portions
of registers between instructions by operating on 32-bit registers instead of partial registers. For
moves, this can be accomplished with 32-bit moves or by using MOVZX...........................3-26

Assembler/Compiler Coding Rule 34. (M impact, M generality) Try to use zero extension or
operate on 32-bit operands instead of using moves with sign extension............................3-26

3

Assembler/Compiler Coding Rule 35. (ML impact, L generality) Avoid placing instructions that use
32-bit immediates which cannot be encoded as sign-extended 16-bit immediates near each other.
Try to schedule µops that have no immediate immediately before or after µops with 32-bit
immediates. ...3-26

Assembler/Compiler Coding Rule 36. (ML impact, M generality) Use the TEST instruction instead
of AND when the result of the logical AND is not used. This saves µops in execution. Use a TEST of a
register with itself instead of a CMP of the register to zero, this saves the need to encode the zero
and saves encoding space. Avoid comparing a constant to a memory operand. It is preferable to load
the memory operand and compare the constant to a register..3-27

Assembler/Compiler Coding Rule 37. (ML impact, M generality) Eliminate unnecessary compare
with zero instructions by using the appropriate conditional jump instruction when the flags are already
set by a preceding arithmetic instruction. If necessary, use a TEST instruction instead of a compare.
Be certain that any code transformations made do not introduce problems with overflow....3-27

Assembler/Compiler Coding Rule 38. (H impact, MH generality) For small loops, placing loop
invariants in memory is better than spilling loop-carried dependencies.3-28

Assembler/Compiler Coding Rule 39. (M impact, ML generality) Avoid introducing dependences
with partial floating-point register writes, e.g. from the MOVSD XMMREG1, XMMREG2 instruction. Use
the MOVAPD XMMREG1, XMMREG2 instruction instead. ..3-35

Assembler/Compiler Coding Rule 40. (H impact, M generality) Pass parameters in registers
instead of on the stack where possible. Passing arguments on the stack requires a store followed by
a reload. While this sequence is optimized in hardware by providing the value to the load directly from
the memory order buffer without the need to access the data cache if permitted by store-forwarding
restrictions, floating-point values incur a significant latency in forwarding. Passing floating-point
arguments in (preferably XMM) registers should save this long latency operation...............3-46

Assembler/Compiler Coding Rule 41. (H impact, M generality) A load that forwards from a store
must have the same address start point and therefore the same alignment as the store data.3-48

Assembler/Compiler Coding Rule 42. (H impact, M generality) The data of a load which is
forwarded from a store must be completely contained within the store data......................3-48

Assembler/Compiler Coding Rule 43. (H impact, ML generality) If it is necessary to extract a non-
aligned portion of stored data, read out the smallest aligned portion that completely contains the data
and shift/mask the data as necessary. This is better than incurring the penalties of a failed store-
forward. ..3-48

Assembler/Compiler Coding Rule 44. (MH impact, ML generality) Avoid several small loads after
large stores to the same area of memory by using a single large read and register copies as needed.
3-48

Assembler/Compiler Coding Rule 45. (H impact, MH generality) Where it is possible to do so
without incurring other penalties, prioritize the allocation of variables to registers, as in register
allocation and for parameter passing, to minimize the likelihood and impact of store-forwarding
problems. Try not to store-forward data generated from a long latency instruction - for example, MUL
or DIV. Avoid store-forwarding data for variables with the shortest store-load distance. Avoid store-
forwarding data for variables with many and/or long dependence chains, and especially avoid
including a store forward on a loop-carried dependence chain. ..3-51

Assembler/Compiler Coding Rule 46. (M impact, MH generality) Calculate store addresses as
early as possible to avoid having stores block loads. ..3-51

Assembler/Compiler Coding Rule 47. (H impact, M generality) Try to arrange data structures such
that they permit sequential access. ...3-53

Assembler/Compiler Coding Rule 48. (H impact, M generality) Make sure that the stack is aligned
at the largest multi-byte granular data type boundary matching the register width.3-53

Assembler/Compiler Coding Rule 49. (H impact, M generality) Avoid having a store followed by
a non-dependent load with addresses that differ by a multiple of 4 KBytes. Also, lay out data or order
computation to avoid having cache lines that have linear addresses that are a multiple of 64 KBytes
apart in the same working set. Avoid having more than 4 cache lines that are some multiple of 2

4

KBytes apart in the same first-level cache working set, and avoid having more than 8 cache lines that
are some multiple of 4 KBytes apart in the same first-level cache working set.3-54

Assembler/Compiler Coding Rule 50. (M impact, L generality) If (hopefully read-only) data must
occur on the same page as code, avoid placing it immediately after an indirect jump. For example,
follow an indirect jump with its mostly likely target, and place the data after an unconditional branch.
3-55

Assembler/Compiler Coding Rule 51. (H impact, L generality) Always put code and data on
separate pages. Avoid self-modifying code wherever possible. If code is to be modified, try to do it
all at once and make sure the code that performs the modifications and the code being modified are
on separate 4-KByte pages or on separate aligned 1-KByte subpages.3-55

Assembler/Compiler Coding Rule 52. (H impact, L generality) If an inner loop writes to more than
four arrays (four distinct cache lines), apply loop fission to break up the body of the loop such that
only four arrays are being written to in each iteration of each of the resulting loops.3-56

Assembler/Compiler Coding Rule 53. (H impact, M generality) Minimize changes to bits 8-12 of
the floating-point control word. Changes for more than two values (each value being a combination
of the following bits: precision, rounding and infinity control, and the rest of bits in FCW) leads to
delays that are on the order of the pipeline depth..3-70

Assembler/Compiler Coding Rule 54. (H impact, L generality) Minimize the number of changes to
the rounding mode. Do not use changes in the rounding mode to implement the floor and ceiling
functions if this involves a total of more than two values of the set of rounding, precision, and infinity
bits. ..3-71

Assembler/Compiler Coding Rule 55. (H impact, L generality) Minimize the number of changes to
the precision mode..3-72

Assembler/Compiler Coding Rule 56. (M impact, M generality) Use Streaming SIMD Extensions 2
or Streaming SIMD Extensions unless you need an x87 feature. Most SSE2 arithmetic operations have
shorter latency then their X87 counterpart and they eliminate the overhead associated with the
management of the X87 register stack...3-72

Assembler/Compiler Coding Rule 57. (H impact, M generality) Use the 32-bit versions of
instructions in 64-bit mode to reduce code size unless the 64-bit version is necessary to access 64-
bit data or additional registers. ...12-1

Assembler/Compiler Coding Rule 58. (M impact, MH generality) When they are needed to reduce
register pressure, use the 8 extra general purpose registers for integer code and 8 extra XMM
registers for floating-point or SIMD code. ...12-2

Assembler/Compiler Coding Rule 59. (ML impact, M generality) Prefer 64-bit by 64-bit integer
multiplication that produces 64-bit results over multiplication that produces 128-bit results.12-2

Assembler/Compiler Coding Rule 60. (ML impact, M generality) Stagger accessing the high 64-
bit result of a 128-bit multiplication after accessing the low 64-bit results.12-2

Assembler/Compiler Coding Rule 61. (ML impact, M generality) Use the 64-bit versions of
multiply for 32-bit integer multiplies that require a 64 bit result.12-6

Assembler/Compiler Coding Rule 62. (ML impact, M generality) Use the 64-bit versions of add
for 64-bit adds..12-6

Assembler/Compiler Coding Rule 63. (L impact, L generality) If software prefetch instructions are
necessary, use the prefetch instructions provided by SSE. ..12-6

Assembler/Compiler Coding Rule 64. (H impact, H generality) Whenever a 256-bit AVX code
block and 128-bit SSE code block might execute in sequence, use the VZEROUPPER instruction to
facilitate a transition to a “Clean” state for the next block to execute from. 14-10

Assembler/Compiler Coding Rule 65. (H impact, H generality) Add VZEROUPPER instruction after
256-bit AVX instructions are executed and before any function call that might execute SSE code. Add
VZEROUPPER at the end of any function that uses 256-bit AVX instructions. 14-10

Assembler/Compiler Coding Rule 66. (H impact, M generality) Align data to 32-byte boundary
when possible. Prefer store alignment over load alignment. .. 14-20

Assembler/Compiler Coding Rule 67. (M impact, H generality) Align data to 32-byte boundary
when possible. If it is not possible to align both loads and stores, then prefer store alignment over
load alignment.. 14-22

5

Assembler/Compiler Coding Rule 68. (M impact, M generality) Use Blend instructions in lieu of
shuffle instruction in AVX whenever possible... 14-32

6

1

Tuning Suggestion 1. In rare cases, a performance problem may be caused by executing data on a
code page as instructions. This is very likely to happen when execution is following an indirect branch
that is not resident in the trace cache. If this is clearly causing a performance problem, try moving
the data elsewhere, or inserting an illegal opcode or a pause instruction immediately after the indirect
branch. Note that the latter two alternatives may degrade performance in some circumstances. 3-
55

Tuning Suggestion 2. Optimize single threaded code to maximize execution throughput first. 10-25
Tuning Suggestion 3. Employ efficient threading model, leverage available tools (such as Intel

Threading Building Block, Intel Thread Checker, Intel Thread Profiler) to achieve optimal processor
scaling with respect to the number of physical processors or processor cores. 10-25

Tuning Suggestion 4. Use a profiling tool to identify the transactional aborts that contribute most to
any performance loss. ..15-4

Tuning Suggestion 5. Add padding to put the two conflicting variables in separate cache line. 15-5
Tuning Suggestion 6. Reorganize the data structure to minimize false sharing whenever possible.

15-5
Tuning Suggestion 7. Global statistics may also be sampled rather than being updated for every

operation. ...15-5
Tuning Suggestion 8. Avoid unnecessary statistics in critical sections.15-5
Tuning Suggestion 9. Consider maintaining statistics in critical sections on a per-thread basis. 15-5
Tuning Suggestion 10. Transactional regions during program startup may observe a higher abort rate

than during steady state. ..15-9
Tuning Suggestion 11. Operating system services may cause infrequent transactional aborts due to

background activity. ...15-9
Tuning Suggestion 12. Keep any transactional only code paths simple and inlined.15-9
Tuning Suggestion 13. Minimize code paths that are only executed transactionally.15-9
Tuning Suggestion 14. Don't use an RTM wrapper if the lock variable is not readable in the wrapper.

15-11
Tuning Suggestion 15. When RTM is used for lock elision, forward progress is easily ensured by

acquiring the lock. .. 15-12
Tuning Suggestion 16. Lock Busy retries should wait for the lock to become free again. 15-13
Tuning Suggestion 17. For Read/Write locks elide the complete lock operation, not the building block

locks. ... 15-15
Tuning Suggestion 18. Use RTM to elide ticket locks. ... 15-15
Tuning Suggestion 19. Use an RTM wrapper for locks that implement queuing as part of the initial

atomic operation. ... 15-16
Tuning Suggestion 20. For meta-locking elide the full outer lock, not the building block locks. 15-17
Tuning Suggestion 21. Always include a pause instruction in the wait loop of a HLE spinlock. 15-19
Tuning Suggestion 22. The aborts with the highest cost should be examined first. 15-22
Tuning Suggestion 23. The TX Abort Information has additional information about the transactional

abort. ... 15-22
Tuning Suggestion 24. Instruction aborts should be analyzed early, but only when they are costly and

happen after program startup. ... 15-22
Tuning Suggestion 25. For data conflicts or capacity aborts, concentrate on the whole critical section,

not just the instruction address reported at the time of the abort. 15-22
Tuning Suggestion 26. The profiler should support displaying the ReturnIP with callgraph for non-

Instruction abort events, but display the EventingRIP for instruction abort events. 15-22
Tuning Suggestion 27. The PEBS TX Abort Information bits should be all displayed by the profiling tool.

.. 15-22
Tuning Suggestion 28. The profiling tool should display the abort code to the user for RTM aborts.

15-23
Tuning Suggestion 29. The profiler should have options to display ReturnIP and EventingIP. 15-23

2

Tuning Suggestion 30. The stack callgraph is always associated with the ReturnIP and may appear
noncontiguous with the EventingIP. .. 15-23

Tuning Suggestion 31. To see function calls inside the transactional region use LBRs or SDE. 15-23
Tuning Suggestion 32. The PEBS profiling handler should support sampling LBRs on abort and report

them to the user. ... 15-23
Tuning Suggestion 33. Intel TSX is designed for critical sections and thus the latency profiles of the

XBEGIN/XEND instructions and XACQUIRE/XRELEASE prefixes are intended to match the LOCK
prefixed instructions. These instructions should not be expected to have the latency of a regular load
operation. ... 15-25

3

CONTENTS

PAGE

(MH impact, ML generality) For Intel Atom processors, minimize the presence of complex in-
structions requiring MSROM to take advantage the optimal decode bandwidth provided by the two
decode units. 4
(M impact, H generality) For Intel Atom processors, keeping the instruction working set footprint
small will help the front end to take advantage the optimal decode bandwidth provided by the two
decode units. 4
(MH impact, ML generality) For Intel Atom processors, avoiding back-to-back X87 instructions
will help the front end to take advantage the optimal decode bandwidth provided by the two decode
units. 4
(M impact, H generality) For Intel Atom processors, place a MOV instruction between a flag pro-
ducer instruction and a flag consumer instruction that would have incurred a two-cycle delay. This
will prevent partial flag dependency. 5
(MH impact, H generality) For Intel Atom processors, LEA should be used for address manipu-
lation; but software should avoid the following situations which creates dependencies from ALU
to AGU: an ALU instruction (instead of LEA) for address manipulation or ESP updates; a LEA for
ternary addition or non-destructive writes which do not feed address generation. Alternatively,
hoist producer instruction more than 3 cycles above the consumer instruction that uses the AGU. 6
(M impact, M generality) For Intel Atom processors, sequence an independent FP or integer mul-
tiply after an integer multiply instruction to take advantage of pipelined IMUL execution. 7
(M impact, M generality) For Intel Atom processors, hoist the producer instruction for the im-
plicit register count of an integer shift instruction before the shift instruction by at least two cycles.
7
(M impact, MH generality) For Intel Atom processors, LEA, simple loads and POP are slower if
the input is smaller than 4 bytes. 7
(MH impact, H generality) For Intel Atom processors, prefer SIMD instructions operating on
XMM register over X87 instructions using FP stack. Use Packed single-precision instructions
where possible. Replace packed double-precision instruction with scalar double-precision instruc-
tions. 8
(M impact, ML generality) For Intel Atom processors, library software performing sophisticated
math operations like transcendental functions should use SIMD instructions operating on XMM
register instead of native X87 instructions. 8
(M impact, M generality) For Intel Atom processors, enable DAZ and FTZ whenever possible. 8
(H impact, L generality) For Intel Atom processors, use divide instruction only when it is abso-
lutely necessary, and pay attention to use the smallest data size operand. 9
(MH impact, M generality) For Intel Atom processors, prefer a sequence MOVAPS+PALIGN
over MOVUPS. Similarly, MOVDQA+PALIGNR is preferred over MOVDQU. 9
(MH impact, H generality) For Intel Atom processors, ensure data are aligned in memory to its
natural size. For example, 4-byte data should be aligned to 4-byte boundary, etc. Additionally,
smaller access (less than 4 bytes) within a chunk may experience delay if they touch different
bytes. 10
(H impact, ML generality) For Intel Atom processors, use segments with base set to 0 whenever
possible; avoid non-zero segment base address that is not aligned to cache line boundary at all cost.
10
(H impact, L generality) For Intel Atom processors, when using non-zero segment bases, Use DS,
FS, GS; string operation should use implicit ES. 10
(M impact, ML generality) For Intel Atom processors, favor using ES, DS, SS over FS, GS with

CONTENTS

4

PAGE

zero segment base. 10
(MH impact, M generality) For Intel Atom processors, “bool” and “char” value should be passed
onto and read off the stack as 32-bit data. 11
(MH impact, M generality) For Intel Atom processors, favor register form of PUSH/POP and
avoid using LEAVE; Use LEA to adjust ESP instead of ADD/SUB. 11

	Chapter 1 Introduction
	1.1 Tuning Your Application
	1.2 About This Manual
	1.3 Related Information

	Chapter 2 Intel® 64 and IA-32 Processor Architectures
	2.1 Sapphire Rapids Architecture
	2.1.1 Intel® 4th generation Intel® Xeon® Scalable Family of Processors

	2.2 Alder Lake Performance Hybrid Architecture
	2.2.1 12th Generation Intel® Core™ Processors Supporting Performance Hybrid Architecture
	2.2.2 Hybrid Scheduling
	2.2.2.1 Intel® Thread Director
	2.2.2.2 Scheduling with Intel Hyper-Threading Technology Enabled on Processors Supporting x86 Hybrid Architecture
	2.2.2.3 Scheduling with a Multi-E-Core Module
	2.2.2.4 Scheduling Background Threads on x86 Hybrid Architecture

	2.2.3 Recommendations for Application Developers

	2.3 Golden Cove Microarchitecture
	2.3.1 Golden Cove Microarchitecture Overview
	2.3.1.1 The Front End
	2.3.1.2 The Out-of-Order and Execution Engines
	2.3.1.3 Cache Subsystem and Memory Subsystem
	2.3.1.4 Avoiding Destination False Dependency

	2.4 Ice Lake Client Microarchitecture
	2.4.1 Ice Lake Client Microarchitecture Overview
	2.4.1.1 The Front End
	2.4.1.2 The Out of Order and Execution Engines
	2.4.1.3 Cache and Memory Subsystem
	Paired Stores

	2.4.1.4 New Instructions
	2.4.1.5 Ice Lake Client Microarchitecture Power Management

	2.5 Skylake Server Microarchitecture
	2.5.1 Skylake Server Microarchitecture Cache
	2.5.1.1 Larger Mid-Level Cache
	2.5.1.2 Non-Inclusive Last Level Cache
	2.5.1.3 Skylake Server Microarchitecture Cache Recommendations

	2.5.2 Non-Temporal Stores on Skylake Server Microarchitecture
	2.5.3 Skylake Server Power Management

	2.6 Skylake Client Microarchitecture
	2.6.1 The Front End
	2.6.2 The Out-of-Order Execution Engine
	2.6.3 Cache and Memory Subsystem
	2.6.4 Pause Latency in Skylake Client Microarchitecture

	2.7 Intel® Hyper-Threading Technology
	2.7.1 Processor Resources and HT Technology
	2.7.1.1 Replicated Resources
	2.7.1.2 Partitioned Resources
	2.7.1.3 Shared Resources

	2.7.2 Microarchitecture Pipeline and HT Technology
	2.7.3 Execution Core
	2.7.4 Retirement

	2.8 SIMD Technology
	2.9 Summary of SIMD Technologies and Application Level Extensions
	2.9.1 MMX™ Technology
	2.9.2 Streaming SIMD Extensions
	2.9.3 Streaming SIMD Extensions 2
	2.9.4 Streaming SIMD Extensions 3
	2.9.5 Supplemental Streaming SIMD Extensions 3
	2.9.6 SSE4.1
	2.9.7 SSE4.2
	2.9.8 AESNI and PCLMULQDQ
	2.9.9 Intel® Advanced Vector Extensions
	2.9.10 Half-Precision Floating-Point Conversion (F16C)
	2.9.11 RDRAND
	2.9.12 Fused-Multiply-ADD (FMA) Extensions
	2.9.13 Intel AVX2
	2.9.14 General-Purpose Bit-Processing Instructions
	2.9.15 Intel® Transactional Synchronization Extensions
	2.9.16 RDSEED
	2.9.17 ADCX and ADOX Instructions

	Chapter 3 General Optimization Guidelines
	3.1 Performance Tools
	3.1.1 Intel® C++ and Fortran Compilers
	3.1.2 General Compiler Recommendations
	3.1.3 VTune™ Performance Analyzer

	3.2 Processor Perspectives
	3.2.1 CPUID Dispatch Strategy and Compatible Code Strategy
	3.2.2 Transparent Cache-Parameter Strategy
	3.2.3 Threading Strategy and Hardware Multithreading Support

	3.3 Coding Rules, Suggestions and Tuning Hints
	3.4 Optimizing the Front End
	3.4.1 Branch Prediction Optimization
	3.4.1.1 Eliminating Branches
	3.4.1.2 Static Prediction
	3.4.1.3 Inlining, Calls and Returns
	3.4.1.4 Code Alignment
	3.4.1.5 Branch Type Selection
	3.4.1.6 Loop Unrolling

	3.4.2 Fetch and Decode Optimization
	3.4.2.1 Optimizing for Micro-fusion
	3.4.2.2 Optimizing for Macrofusion
	3.4.2.3 Length-Changing Prefixes (LCP)
	3.4.2.4 Optimizing the Loop Stream Detector (LSD)
	3.4.2.5 Optimization for Decoded ICache
	3.4.2.6 Other Decoding Guidelines

	3.5 Optimizing the Execution Core
	3.5.1 Instruction Selection
	3.5.1.1 Integer Divide
	3.5.1.2 Using LEA
	3.5.1.3 ADC and SBB in Sandy Bridge Microarchitecture
	3.5.1.4 Bitwise Rotation
	3.5.1.5 Variable Bit Count Rotation and Shift
	3.5.1.6 Address Calculations
	3.5.1.7 Clearing Registers and Dependency Breaking Idioms
	3.5.1.8 Compares
	3.5.1.9 Using NOPs
	3.5.1.10 Mixing SIMD Data Types
	3.5.1.11 Spill Scheduling
	3.5.1.12 Zero-Latency MOV Instructions

	3.5.2 Avoiding Stalls in Execution Core
	3.5.2.1 Writeback Bus Conflicts
	3.5.2.2 Bypass between Execution Domains
	3.5.2.3 Partial Register Stalls
	3.5.2.4 Partial XMM Register Stalls
	3.5.2.5 Partial Flag Register Stalls
	3.5.2.6 Floating-Point/SIMD Operands

	3.5.3 Vectorization
	3.5.4 Optimization of Partially Vectorizable Code
	3.5.4.1 Alternate Packing Techniques
	3.5.4.2 Simplifying Result Passing
	3.5.4.3 Stack Optimization
	3.5.4.4 Tuning Considerations

	3.6 Optimizing Memory Accesses
	3.6.1 Load and Store Execution Bandwidth
	3.6.1.1 Making Use of Load Bandwidth in Sandy Bridge Microarchitecture
	3.6.1.2 L1D Cache Latency in Sandy Bridge Microarchitecture
	3.6.1.3 Handling L1D Cache Bank Conflict

	3.6.2 Minimize Register Spills
	3.6.3 Enhance Speculative Execution and Memory Disambiguation
	3.6.4 Store Forwarding
	3.6.4.1 Store-to-Load-Forwarding Restriction on Size and Alignment
	3.6.4.2 Store-forwarding Restriction on Data Availability

	3.6.5 Data Layout Optimizations
	3.6.6 Stack Alignment
	3.6.7 Capacity Limits and Aliasing in Caches
	3.6.8 Mixing Code and Data
	3.6.8.1 Self-modifying Code
	3.6.8.2 Position Independent Code

	3.6.9 Write Combining
	3.6.10 Locality Enhancement
	3.6.11 Non-Temporal Store Bus Traffic

	3.7 Prefetching
	3.7.1 Hardware Instruction Fetching and Software Prefetching
	3.7.2 Hardware Prefetching for First-Level Data Cache
	3.7.3 Hardware Prefetching for Second-Level Cache
	3.7.4 Cacheability Instructions
	3.7.5 REP Prefix and Data Movement
	3.7.6 Enhanced REP MOVSB and STOSB Operation
	3.7.6.1 Fast Short REP MOVSB
	3.7.6.2 Memcpy Considerations
	3.7.6.3 Memmove Considerations
	3.7.6.4 Memset Considerations

	3.8 REP String Operations
	3.8.1 Fast Zero Length REP MOVSB
	3.8.2 Fast Short REP STOSB
	3.8.3 Fast Short REP CMPSB and SCASB

	3.9 Floating-point Considerations
	3.9.1 Guidelines for Optimizing Floating-point Code
	3.9.2 Floating-point Modes and Exceptions
	3.9.2.1 Floating-point Exceptions
	3.9.2.2 Dealing with floating-point exceptions in x87 FPU code
	3.9.2.3 Floating-point Exceptions in SSE/SSE2/SSE3 Code

	3.9.3 Floating-point Modes
	3.9.3.1 Rounding Mode
	3.9.3.2 Precision

	3.9.4 x87 vs. Scalar SIMD Floating-point Trade-offs
	3.9.4.1 Scalar SSE/SSE2
	3.9.4.2 Transcendental Functions

	3.10 Maximizing PCIe Performance
	3.10.1 Optimizing PCIe Performance for Accesses Toward Coherent Memory and Toward MMIO Regions (P2P)

	3.11 Scalability with Contended line Access in Intel® 4th generation Intel® Xeon® Scalable Processors
	3.11.1 Why it Happens
	3.11.2 How to Detect it
	3.11.3 How to Fix it
	3.11.4 Case Study: SysBench/MariaDB Metric CHA % Cycles Fast Asserted
	3.11.5 Instruction Sequence Slowdowns
	3.11.5.1 Why it Happens
	3.11.5.2 How to Detect it
	3.11.5.3 How to Fix it

	3.11.6 Misprediction for Branches >2GB
	3.11.6.1 Why it Happens
	3.11.6.2 How to Detect it
	3.11.6.3 How to Fix it

	3.12 Optimizing Communication with PCI Devices on Intel® 4th generation Intel® Xeon® Scalable Processors
	3.12.1 Signaling Devices with Direct Move
	3.12.1.1 MOVDIR64B – Additional considerations
	3.12.1.2 Streaming Data

	3.13 Synchronization
	3.13.1 User-Level Monitor, User-Level MWAIT, and TPAUSE
	3.13.1.1 Checking for User-Level Monitor, MWAIT, and TPAUSE support
	3.13.1.2 User-Level Monitor, User-Level MWAIT, and TPAUSE Operations
	3.13.1.3 Recommended usage

	Chapter 4 Intel Atom® Processor Architectures
	4.1 Gracemont Microarchitecture
	4.1.1 Gracemont Microarchitecture Overview
	4.1.2 Predict and Fetch
	4.1.3 Dynamic Load Balancing
	4.1.4 Decode and the On-Demand Instruction Length Decoder
	4.1.5 Allocation and Retirement
	4.1.6 The Out-of-Order and Execution Engines
	4.1.7 Cache and Memory Subsystem
	4.1.8 Intel® AVX and Intel® AVX2 Instruction Support
	4.1.8.1 256-bit Permute Operations
	4.1.8.2 256-bit Broadcast with 128-bit Memory Operand
	4.1.8.3 256-bit Insertion, Up-Conversion Instructions with 128-bit Memory Operand
	4.1.8.4 256-bit Variable Blend Instructions
	4.1.8.5 256-bit Vector TEST Instructions
	4.1.8.6 GATHER Instructions
	4.1.8.7 Masked Load and Store Instructions
	4.1.8.8 ADX Instructions
	4.1.8.9 BMI1, BMI2, and LZCNT Instructions

	4.2 Tremont Microarchitecture
	4.2.1 Tremont Microarchitecture Overview
	4.2.2 The Front End
	4.2.3 The Out of Order and Execution Engines
	4.2.4 Cache and Memory Subsystem
	4.2.5 New Instructions
	4.2.6 Tremont Microarchitecture Power Management

	Chapter 5 Coding for SIMD Architectures
	5.1 Checking for Processor Support of SIMD Technologies
	5.1.1 Checking for MMX Technology Support
	5.1.2 Checking for Streaming SIMD Extensions Support
	5.1.3 Checking for Streaming SIMD Extensions 2 Support
	5.1.4 Checking for Streaming SIMD Extensions 3 Support
	5.1.5 Checking for Supplemental Streaming SIMD Extensions 3 Support
	5.1.6 Checking for SSE4.1 Support
	5.1.7 Checking for SSE4.2 Support
	5.1.8 DetectiON of PCLMULQDQ and AESNI Instructions
	5.1.9 Detection of AVX Instructions
	5.1.10 Detection of VEX-Encoded AES and VPCLMULQDQ
	5.1.11 Detection of F16C Instructions
	5.1.12 Detection of FMA
	5.1.13 Detection of AVX2

	5.2 Considerations for Code Conversion to SIMD Programming
	5.2.1 Identifying Hot Spots
	5.2.2 Determine If Code Benefits by Conversion to SIMD Execution

	5.3 Coding Techniques
	5.3.1 Coding Methodologies
	5.3.1.1 Assembly
	5.3.1.2 Intrinsics
	5.3.1.3 Classes
	5.3.1.4 Automatic Vectorization

	5.4 Stack and Data Alignment
	5.4.1 Alignment and Contiguity of Data Access Patterns
	5.4.1.1 Using Padding to Align Data
	5.4.1.2 Using Arrays to Make Data Contiguous

	5.4.2 Stack Alignment For 128-bit SIMD Technologies
	5.4.3 Data Alignment for MMX Technology
	5.4.4 Data Alignment for 128-bit data
	5.4.4.1 Compiler-Supported Alignment

	5.5 Improving Memory Utilization
	5.5.1 Data Structure Layout
	5.5.2 Strip-Mining
	5.5.3 Loop Blocking

	5.6 Instruction Selection
	5.7 Tuning the Final Application

	Chapter 6 Optimizing for SIMD Integer Applications
	6.1 General Rules on SIMD Integer Code
	6.2 Using SIMD Integer with x87 Floating-point
	6.2.1 Using the EMMS Instruction
	6.2.2 Guidelines for Using EMMS Instruction

	6.3 Data Alignment
	6.4 Data Movement Coding Techniques
	6.4.1 Unsigned Unpack
	6.4.2 Signed Unpack
	6.4.3 Interleaved Pack with Saturation
	6.4.4 Interleaved Pack without Saturation
	6.4.5 Non-Interleaved Unpack
	6.4.6 Extract Data Element
	6.4.7 Insert Data Element
	6.4.8 Non-Unit Stride Data Movement
	6.4.9 Move Byte Mask to Integer
	6.4.10 Packed Shuffle Word for 64-bit Registers
	6.4.11 Packed Shuffle Word for 128-bit Registers
	6.4.12 Shuffle Bytes
	6.4.13 Conditional Data Movement
	6.4.14 Unpacking/interleaving 64-bit Data in 128-bit Registers
	6.4.15 Data Movement
	6.4.16 Conversion Instructions

	6.5 Generating Constants
	6.6 Building Blocks
	6.6.1 Absolute Difference of Unsigned Numbers
	6.6.2 Absolute Difference of Signed Numbers
	6.6.3 Absolute Value
	6.6.4 Pixel Format Conversion
	6.6.5 Endian Conversion
	6.6.6 Clipping to an Arbitrary Range [High, Low]
	6.6.6.1 Highly Efficient Clipping
	6.6.6.2 Clipping to an Arbitrary Unsigned Range [High, Low]

	6.6.7 Packed Max/Min of Byte, Word and Dword
	6.6.8 Packed Multiply Integers
	6.6.9 Packed Sum of Absolute Differences
	6.6.10 MPSADBW and PHMINPOSUW
	6.6.11 Packed Average (Byte/Word)
	6.6.12 Complex Multiply by a Constant
	6.6.13 Packed 64-bit Add/Subtract
	6.6.14 128-bit Shifts
	6.6.15 PTEST and Conditional Branch
	6.6.16 Vectorization of Heterogeneous Computations across Loop Iterations
	6.6.17 Vectorization of Control Flows in Nested Loops

	6.7 Memory Optimizations
	6.7.1 Partial Memory Accesses
	6.7.2 Increasing Bandwidth of Memory Fills and Video Fills
	6.7.2.1 Increasing Memory Bandwidth Using the MOVDQ Instruction
	6.7.2.2 Increasing Memory Bandwidth by Loading and Storing to and from the Same DRAM Page
	6.7.2.3 Increasing UC and WC Store Bandwidth by Using Aligned Stores

	6.7.3 Reverse Memory Copy

	6.8 Converting from 64-bit to 128-bit SIMD Integers
	6.8.1 SIMD Optimizations and Microarchitectures
	6.8.1.1 Packed SSE2 Integer versus MMX Instructions
	6.8.1.2 Work-around for False Dependency Issue

	6.9 Tuning Partially Vectorizable Code
	6.10 Parallel Mode AES Encryption and Decryption
	6.10.1 AES Counter Mode of Operation
	6.10.2 AES Key Expansion Alternative
	6.10.3 Enhancement in Haswell Microarchitecture
	6.10.3.1 AES and Multi-Buffer Cryptographic Throughput
	6.10.3.2 PCLMULQDQ Improvement

	6.11 Light-Weight Decompression and Database Processing
	6.11.1 Reduced Dynamic Range Datasets
	6.11.2 Compression and Decompression Using SIMD Instructions

	Chapter 7 Optimizing for SIMD Floating-point Applications
	7.1 General Rules for SIMD Floating-point Code
	7.2 Planning Considerations
	7.3 Using SIMD Floating-point with x87 Floating-point
	7.4 Scalar Floating-point Code
	7.5 Data Alignment
	7.5.1 Data Arrangement
	7.5.1.1 Vertical versus Horizontal Computation
	7.5.1.2 Data Swizzling
	7.5.1.3 Data Deswizzling
	7.5.1.4 Horizontal ADD Using SSE

	7.5.2 Use of CVTTPS2PI/CVTTSS2SI Instructions
	7.5.3 Flush-to-Zero and Denormals-are-Zero Modes

	7.6 SIMD Optimizations and Microarchitectures
	7.6.1 SIMD Floating-point Programming Using SSE3
	7.6.1.1 SSE3 and Complex Arithmetics
	7.6.1.2 Packed Floating-Point Performance in Intel Core Duo Processor

	7.6.2 Dot Product and Horizontal SIMD Instructions
	7.6.3 Vector Normalization
	7.6.4 Using Horizontal SIMD Instruction Sets and Data Layout
	7.6.4.1 SOA and Vector Matrix Multiplication

	Chapter 8 INT8 Deep Learning Inference
	8.1 Introducing INT8 as Data Type for Deep Learning Inference
	8.2 Introducing Intel® DL Boost
	8.2.1 Multiply and Add Unsigned and Signed Bytes (VPDPBUSD Instruction)
	8.2.2 Multiply and Add Signed Word Integers (VPDPWSSD Instruction)

	8.3 General Optimizations
	8.3.1 Memory Layout
	8.3.2 Quantization
	8.3.2.1 Quantization of Weights
	8.3.2.2 Quantization of Activations
	8.3.2.3 Quantizing Negative Activations

	8.3.3 Multicore Considerations
	8.3.3.1 Large Batch (Throughput Workload)
	8.3.3.2 Small Batch (Throughput at Latency Workload)
	8.3.3.3 NUMA

	8.4 CNNs
	8.4.1 Convolutional Layers
	8.4.1.1 Direct Convolution
	Memory Layout
	Matrix Multiplication
	Blocking
	Direct Convolution Example

	8.4.1.2 Convolutional Layers with Low OFM Count

	8.4.2 Post Convolution
	8.4.2.1 Fused Quantization/Dequantization
	8.4.2.2 ReLu
	8.4.2.3 EltWise
	8.4.2.4 Pooling
	8.4.2.5 Pixel Shuffler

	8.5 LSTM Networks
	8.5.1 Fused LSTM Embedding
	8.5.2 Fused post GEMM
	8.5.3 Dynamic Batch Size
	8.5.4 NMT Example: Beam Search Decoder Get Top K

	Chapter 9 Optimizing Cache Usage
	9.1 General Prefetch Coding Guidelines
	9.2 Prefetch and Cacheability Instructions
	9.3 Prefetch
	9.3.1 Software Data Prefetch
	9.3.2 Prefetch Instructions
	9.3.3 Prefetch and Load Instructions

	9.4 Cacheability Control
	9.4.1 The Non-temporal Store Instructions
	9.4.1.1 Fencing
	9.4.1.2 Streaming Non-temporal Stores
	9.4.1.3 Memory Type and Non-temporal Stores
	9.4.1.4 Write-Combining

	9.4.2 Streaming Store Usage Models
	9.4.2.1 Coherent Requests
	9.4.2.2 Non-coherent requests

	9.4.3 Streaming Store Instruction Descriptions
	9.4.4 The Streaming Load Instruction
	9.4.5 FENCE Instructions
	9.4.5.1 SFENCE Instruction
	9.4.5.2 LFENCE Instruction
	9.4.5.3 MFENCE Instruction

	9.4.6 CLFLUSH Instruction
	9.4.7 CLFLUSHOPT Instruction

	9.5 Memory Optimization Using Prefetch
	9.5.1 Software-Controlled Prefetch
	9.5.2 Hardware Prefetch
	9.5.3 Example of Effective Latency Reduction with Hardware Prefetch
	9.5.4 Example of Latency Hiding with S/W Prefetch Instruction
	9.5.5 Software Prefetching Usage Checklist
	9.5.6 Software Prefetch Scheduling Distance
	9.5.7 Software Prefetch Concatenation
	9.5.8 Minimize Number of Software Prefetches
	9.5.9 Mix Software Prefetch with Computation Instructions
	9.5.10 Software Prefetch and Cache Blocking Techniques
	9.5.11 Hardware Prefetching and Cache Blocking Techniques
	9.5.12 Single-pass versus Multi-pass Execution

	9.6 Memory Optimization using Non-Temporal Stores
	9.6.1 Non-temporal Stores and Software Write-Combining
	9.6.2 Cache Management
	9.6.2.1 Video Encoder
	9.6.2.2 Video Decoder
	9.6.2.3 Conclusions from Video Encoder and Decoder Implementation
	9.6.2.4 Optimizing Memory Copy Routines
	9.6.2.5 Using the 8-byte Streaming Stores and Software Prefetch
	9.6.2.6 Using 16-byte Streaming Stores and Hardware Prefetch
	9.6.2.7 Performance Comparisons of Memory Copy Routines

	9.6.3 Deterministic Cache Parameters
	9.6.3.1 Cache Sharing Using Deterministic Cache Parameters
	9.6.3.2 Cache Sharing in Single-Core or Multicore
	9.6.3.3 Determine Prefetch Stride

	Chapter 10 sub-numa clustering
	10.1 sub-numa clustering
	10.2 comparison with cluster-on-die
	10.3 SNC usage
	10.3.1 How to Check NUMA Configuration
	10.3.2 MPI Optimizations for SNC
	10.3.3 SNC Performance Comparison

	Chapter 11 Multicore and Hyper-Threading Technology
	11.1 Performance and Usage Models
	11.1.1 Multithreading
	11.1.2 Multitasking Environment

	11.2 Programming Models and Multithreading
	11.2.1 Parallel Programming Models
	11.2.1.1 Domain Decomposition

	11.2.2 Functional Decomposition
	11.2.3 Specialized Programming Models
	11.2.3.1 Producer-Consumer Threading Models

	11.2.4 Tools for Creating Multithreaded Applications
	11.2.4.1 Programming with OpenMP Directives
	11.2.4.2 Automatic Parallelization of Code
	11.2.4.3 Supporting Development Tools

	11.3 Optimization Guidelines
	11.3.1 Key Practices of Thread Synchronization
	11.3.2 Key Practices of System Bus Optimization
	11.3.3 Key Practices of Memory Optimization
	11.3.4 Key Practices of Execution Resource Optimization
	11.3.5 Generality and Performance Impact

	11.4 Thread Synchronization
	11.4.1 Choice of Synchronization Primitives
	11.4.2 Synchronization for Short Periods
	11.4.3 Optimization with Spin-Locks
	11.4.4 Synchronization for Longer Periods
	11.4.4.1 Avoid Coding Pitfalls in Thread Synchronization

	11.4.5 Prevent Sharing of Modified Data and False-Sharing
	11.4.6 Placement of Shared Synchronization Variable

	11.5 System Bus Optimization
	11.5.1 Conserve Bus Bandwidth
	11.5.2 Understand the Bus and Cache Interactions
	11.5.3 Avoid Excessive Software Prefetches
	11.5.4 Improve Effective Latency of Cache Misses
	11.5.5 Use Full Write Transactions to Achieve Higher Data Rate

	11.6 Memory Optimization
	11.6.1 Cache Blocking Technique
	11.6.2 Shared-Memory Optimization
	11.6.2.1 Minimize Sharing of Data between Physical Processors
	11.6.2.2 Batched Producer-Consumer Model

	11.6.3 Eliminate 64-KByte Aliased Data Accesses

	11.7 Front end Optimization
	11.7.1 Avoid Excessive Loop Unrolling

	11.8 Affinities and Managing Shared Platform Resources
	11.8.1 Topology Enumeration of Shared Resources
	11.8.2 Non-Uniform Memory Access

	11.9 Optimization of Other Shared Resources
	11.9.1 Expanded Opportunity for HT Optimization

	Chapter 12 Intel® Optane™ DC Persistent Memory
	12.1 Memory Mode and App-Direct Mode
	12.1.1 Memory Mode
	12.1.2 App Direct Mode
	12.1.3 Selecting a Mode

	12.2 Device Characteristics of Intel® Optane™ DC Persistent Memory Module
	12.2.1 Intel® Optane™ DC Persistent Memory Module Latency
	12.2.2 Read vs. Write Bandwidth
	12.2.3 Number of Threads for Optimal Bandwidth

	12.3 Platform Implications of Handling a Second Type of Memory
	12.3.1 Multi-Processor Cache Coherence
	12.3.2 Shared Queues in the Memory Hierarchy

	12.4 Implementing Persistence for Memory
	12.5 Power Consumption
	12.5.1 Read-Write Equivalence
	12.5.2 Spatial and Temporal Locality

	Chapter 13 64-bit Mode Coding Guidelines
	13.1 Introduction
	13.2 Coding Rules Affecting 64-bit Mode
	13.2.1 Use Legacy 32-Bit Instructions When Data Size Is 32 Bits
	13.2.2 Use Extra Registers to Reduce Register Pressure
	13.2.3 Effective Use of 64-Bit by 64-Bit Multiplication
	13.2.4 Replace 128-bit Integer Division with 128-bit Multiplication
	13.2.5 Sign Extension to Full 64-Bits

	13.3 Alternate Coding Rules for 64-Bit Mode
	13.3.1 Use 64-Bit Registers Instead of Two 32-Bit Registers for 64-Bit Arithmetic Result
	13.3.2 Using Software Prefetch

	Chapter 14 SSE4.2 and SIMD Programming For Text- Processing/Lexing/Parsing
	14.1 SSE4.2 String and Text Instructions
	14.1.1 CRC32

	14.2 Using SSE4.2 String and Text Instructions
	14.2.1 Unaligned Memory Access and Buffer Size Management
	14.2.2 Unaligned Memory Access and String Library

	14.3 SSE4.2 Application Coding Guideline and Examples
	14.3.1 Null Character Identification (Strlen equivalent)
	14.3.2 White-Space-Like Character Identification
	14.3.3 Substring Searches
	14.3.4 String Token Extraction and Case Handling
	14.3.5 Unicode Processing and PCMPxSTRy
	14.3.6 Replacement String Library Function Using SSE4.2

	14.4 SSE4.2 Enabled Numerical and Lexical Computation
	14.5 Numerical Data Conversion to ASCII Format
	14.5.1 Large Integer Numeric Computation
	14.5.1.1 MULX Instruction and Large Integer Numeric Computation

	Chapter 15 Optimizations for Intel® AVX, FMA and AVX2
	15.1 Intel® AVX Intrinsics Coding
	15.1.1 Intel® AVX Assembly Coding

	15.2 Non-Destructive Source (NDS)
	15.3 Mixing AVX Code with SSE Code
	15.3.1 Mixing Intel® AVX and Intel SSE in Function Calls

	15.4 128-Bit Lane Operation and AVX
	15.4.1 Programming With the Lane Concept
	15.4.2 Strided Load Technique
	15.4.3 The Register Overlap Technique

	15.5 Data Gather and Scatter
	15.5.1 Data Gather
	15.5.2 Data Scatter

	15.6 Data Alignment for Intel® AVX
	15.6.1 Align Data to 32 Bytes
	15.6.2 Consider 16-Byte Memory Access when Memory is Unaligned
	15.6.3 Prefer Aligned Stores Over Aligned Loads

	15.7 L1D Cache LIne Replacements
	15.8 4K Aliasing
	15.9 Conditional SIMD Packed Loads and Stores
	15.9.1 Conditional Loops

	15.10 Mixing Integer and Floating-Point Code
	15.11 Handling Port 5 Pressure
	15.11.1 Replace Shuffles with Blends
	15.11.2 Design Algorithm With Fewer Shuffles
	15.11.3 Perform Basic Shuffles on Load Ports

	15.12 Divide and Square Root Operations
	15.12.1 Single-Precision Divide
	15.12.2 Single-Precision Reciprocal Square Root
	15.12.3 Single-Precision Square Root

	15.13 Optimization of Array Sub Sum Example
	15.14 Half-Precision Floating-Point Conversions
	15.14.1 Packed Single-Precision to Half-Precision Conversion
	15.14.2 Packed Half-Precision to Single-Precision Conversion
	15.14.3 Locality Consideration for using Half-Precision FP to Conserve Bandwidth

	15.15 Fused Multiply-Add (FMA) Instructions Guidelines
	15.15.1 Optimizing Throughput with FMA and Floating-Point Add/MUL
	15.15.2 Optimizing Throughput with Vector Shifts

	15.16 AVX2 Optimization Guidelines
	15.16.1 Multi-Buffering and AVX2
	15.16.2 Modular Multiplication and AVX2
	15.16.3 Data Movement Considerations
	15.16.3.1 SIMD Heuristics to implement Memcpy()
	15.16.3.2 Memcpy() Implementation Using Enhanced REP MOVSB
	15.16.3.3 Memset() Implementation Considerations
	15.16.3.4 Hoisting Memcpy/Memset Ahead of Consuming Code
	15.16.3.5 256-bit Fetch versus Two 128-bit Fetches
	15.16.3.6 Mixing MULX and AVX2 Instructions

	15.16.4 Considerations for Gather Instructions
	15.16.4.1 Strided Loads
	15.16.4.2 Adjacent Loads

	15.16.5 AVX2 Conversion Remedy to MMX Instruction Throughput Limitation

	Chapter 16 Intel® TSX Recommendations
	16.1 Introduction
	16.1.1 Optimization Outline

	16.2 Application-Level Tuning and Optimizations
	16.2.1 Existing TSX-enabled Locking Libraries
	16.2.1.1 Libraries allowing lock elision for unmodified programs
	16.2.1.2 Libraries requiring program modifications

	16.2.2 Initial Checks
	16.2.3 Run and Profile the Application
	16.2.4 Minimize Transactional Aborts
	16.2.4.1 Transactional Aborts due to Data Conflicts
	16.2.4.2 Transactional Aborts due to Limited Transactional Resources
	16.2.4.3 Lock Elision Specific Transactional Aborts
	16.2.4.4 HLE Specific Transactional Aborts
	16.2.4.5 Miscellaneous Transactional Aborts

	16.2.5 Using Transactional-Only Code Paths
	16.2.6 Dealing with Transactional Regions or Paths that Abort at a High Rate
	16.2.6.1 Transitioning to Non-Elided Execution without Aborting
	16.2.6.2 Forcing an Early Abort
	16.2.6.3 Not Eliding Selected Locks

	16.3 Developing an Intel TSX Enabled Synchronization Library
	16.3.1 Adding HLE Prefixes
	16.3.2 Elision Friendly Critical Section Locks
	16.3.3 Using HLE or RTM for Lock Elision
	16.3.4 An example wrapper for lock elision using RTM
	16.3.5 Guidelines for the RTM fallback handler
	16.3.6 Implementing Elision-Friendly Locks using Intel® TSX
	16.3.6.1 Implementing a Simple Spinlock using HLE
	16.3.6.2 Implementing Reader-Writer Locks using Intel TSX
	16.3.6.3 Implementing Ticket Locks using Intel® TSX
	16.3.6.4 Implementing Queue-Based Locks using Intel® TSX

	16.3.7 Eliding Application-Specific Meta-Locks using Intel® TSX
	16.3.8 Avoiding Persistent Non-Elided Execution
	16.3.9 Reading the Value of an Elided Lock in RTM-based libraries
	16.3.10 Intermixing HLE and RTM

	16.4 Using the Performance Monitoring Support for Intel® TSX
	16.4.1 Measuring Transactional Success
	16.4.2 Finding locks to elide and verifying all locks are elided.
	16.4.3 Sampling Transactional Aborts
	16.4.4 Classifying Aborts using a Profiling Tool
	16.4.5 XABORT Arguments for RTM fallback handlers
	16.4.6 Call Graphs for Transactional Aborts
	16.4.7 Last Branch Records and Transactional Aborts
	16.4.8 Profiling and Testing Intel TSX Software using the Intel® SDE
	16.4.9 HLE Specific Performance Monitoring Events
	16.4.10 Computing Useful Metrics for Intel® TSX

	16.5 Performance Guidelines
	16.6 Debugging Guidelines
	16.7 Common Intrinsics for Intel® TSX
	16.7.1 RTM C Intrinsics
	16.7.1.1 Emulated RTM intrinsics on older gcc compatible compilers

	16.7.2 HLE Intrinsics on gcc and Other Linux Compatible Compilers
	16.7.2.1 Generating HLE intrinsics with gcc4.8
	16.7.2.2 C++11 atomic support
	16.7.2.3 Emulating HLE intrinsics with older gcc-compatible compilers

	16.7.3 HLE intrinsics on Windows C/C++ compilers

	Chapter 17 Power Optimization for Mobile Usages
	17.1 Overview
	17.2 Mobile Usage Scenarios
	17.2.1 Intelligent Energy Efficient Software

	17.3 ACPI C-States
	17.3.1 Processor-Specific C4 and Deep C4 States
	17.3.2 Processor-Specific Deep C-States and Intel® Turbo Boost Technology
	17.3.3 Processor-Specific Deep C-States for Sandy Bridge Microarchitecture
	17.3.4 Intel® Turbo Boost Technology 2.0

	17.4 Guidelines for Extending Battery Life
	17.4.1 Adjust Performance to Meet Quality of Features
	17.4.2 Reducing Amount of Work
	17.4.3 Platform-Level Optimizations
	17.4.4 Handling Sleep State Transitions
	17.4.5 Using Enhanced Intel SpeedStep® Technology
	17.4.6 Enabling Intel® Enhanced Deeper Sleep
	17.4.7 Multicore Considerations
	17.4.7.1 Enhanced Intel SpeedStep® Technology
	17.4.7.2 Thread Migration Considerations
	17.4.7.3 Multicore Considerations for C-States

	17.5 Tuning Software for Intelligent Power Consumption
	17.5.1 Reduction of Active Cycles
	17.5.1.1 Multi-threading to reduce Active Cycles
	17.5.1.2 Vectorization

	17.5.2 PAUSE and Sleep(0) Loop Optimization
	17.5.3 Spin-Wait Loops
	17.5.4 Using Event Driven Service Instead of Polling in Code
	17.5.5 Reducing Interrupt Rate
	17.5.6 Reducing Privileged Time
	17.5.7 Setting Context Awareness in the Code
	17.5.8 Saving Energy by Optimizing for Performance

	17.6 Processor Specific Power Management Optimization for System Software
	17.6.1 Power Management Recommendation of Processor-Specific Inactive State Configurations
	17.6.1.1 Balancing Power Management and Responsiveness of Inactive To Active State Transitions

	Chapter 18 Software Optimization for Intel® AVX-512 Instructions
	18.1 Basic Intel® AVX-512 vs. Intel® AVX2 Coding
	18.1.1 Intrinsic Coding
	18.1.2 Assembly Coding

	18.2 Masking
	18.2.1 Masking Example
	18.2.2 Masking Cost
	18.2.3 Masking vs. Blending
	18.2.4 Nested Conditions / Mask Aggregation
	18.2.5 Memory Masking Microarchitecture Improvements
	18.2.6 Peeling and Remainder Masking

	18.3 Forwarding and Unmasked Operations
	18.4 Forwarding and Memory Masking
	18.5 Data Compress
	18.5.1 Data Compress Example

	18.6 Data Expand
	18.6.1 Data Expand Example

	18.7 Ternary Logic
	18.7.1 Ternary Logic Example 1
	18.7.2 Ternary Logic Example 2

	18.8 New Shuffle instructions
	18.8.1 Two Source Permute Example

	18.9 Broadcast
	18.9.1 Embedded Broadcast
	18.9.2 Broadcast Executed on Load Ports

	18.10 Embedded Rounding
	18.10.1 Static Rounding Mode

	18.11 Scatter Instruction
	18.11.1 Data Scatter Example

	18.12 Static Rounding Modes, Suppress-All-Exceptions (SAE)
	18.13 QWORD Instruction SUpport
	18.13.1 QUADWORD Support in Arithmetic Instructions
	18.13.2 QUADWORD Support in Convert Instructions
	18.13.3 QUADWORD Support for Convert with Truncation Instructions

	18.14 Vector Length Orthogonality
	18.15 Intel® AVX-512 Instructions for Transcendental Support
	18.15.1 VRCP14, VRSQRT14 - Software Sequences for 1/x, x/y, sqrt(x)
	18.15.1.1 Application Examples

	18.15.2 VGETMANT VGETEXP - Vector Get Mantissa and Vector Get Exponent
	18.15.2.1 Application Examples

	18.15.3 VRNDSCALE - Vector Round Scale
	18.15.3.1 Application Examples

	18.15.4 VREDUCE - Vector Reduce
	18.15.4.1 Application Examples

	18.15.5 VSCALEF - Vector Scale
	18.15.5.1 Application Examples

	18.15.6 VFPCLASS - Vector Floating Point Class
	18.15.6.1 Application Examples

	18.15.7 VPERM, VPERMI2, VPERMT2 - Small Table Lookup Implementation
	18.15.7.1 Application Examples

	18.16 Conflict Detection
	18.16.1 Vectorization with Conflict Detection
	18.16.2 Sparse Dot Product with VPCONFLICT

	18.17 Intel® AVX-512 Vector Byte Manipulation Instructions (VBMI)
	18.17.1 Permute Packet Bytes Elements Across Lanes (VPERMB)
	18.17.2 Two-Source Byte Permute Across Lanes (VPERMI2B, VPERMT2B)
	18.17.3 Select Packed Unaligned Bytes from Quadword Sources (VPMULTISHIFTQB)

	18.18 FMA Latency
	18.19 Mixing Intel® AVX Extensions or Intel® AVX-512 Extensions with Intel® Streaming SIMD Extensions (Intel® SSE) Code
	18.20 Mixing zmm Vector Code with xmm/ymm
	18.21 Servers With a Single FMA Unit
	18.22 Gather/Scatter to Shuffle (G2S/STS)
	18.22.1 Gather to Shuffle in Strided Loads
	18.22.2 Scatter to Shuffle in Strided Stores
	18.22.3 Gather to Shuffle in Adjacent Loads

	18.23 Data Alignment
	18.23.1 Align Data to 64 Bytes

	18.24 Dynamic Memory Allocation and Memory Alignment
	18.25 Division and Square Root Operations
	18.25.1 Divide and Square Root Approximation Methods
	18.25.2 Divide and Square Root Performance
	18.25.3 Approximation Latencies
	18.25.4 Code Snippets

	18.26 CLDEMOTE
	18.26.1 Producer-Consumer Communication in Software

	18.27 Tips on Compiler Usage

	Chapter 19 Intel® Advanced Vector Extensions 512 - FP16 Instruction Set for Intel® Xeon® Processors
	19.1 Introduction
	19.1.1 Terminology

	19.2 Overview
	19.3 FP16 Numeric Instructions
	19.3.1 Data Type Support
	19.3.2 Overview of Intrinsics
	19.3.3 Fundamental Complex-Valued Support
	19.3.4 Using Intel® AVX-512 Bit Masks for Real-Valued Operations
	19.3.5 Using Intel® AVX-512 Bit Masks for Complex-Valued Operations

	19.4 Numerics
	19.4.1 Introduction to FP16 Number Format
	19.4.2 Observations on Representing Numbers in FP16 Format
	19.4.3 Numeric Accuracy Guarantees
	19.4.4 Handling Denormal Values
	19.4.5 Embedded Rounding
	19.4.6 Legacy FP16 Data Type Conversion
	19.4.7 FP16 Conversions to and from Other Data Types
	19.4.8 Approximation Instructions and Their Uses
	19.4.8.1 Approximate Reciprocal
	19.4.8.2 Approximate Division
	19.4.8.3 Approximate Reciprocal Square Root

	19.4.9 Approximate Square Root

	19.5 Using Existing Intel® AVX-512 Instructions to Augment FP16 Support
	19.5.1 Using Existing Instructions to Extend Intel® AVX-512 FP16 Intrinsics
	19.5.2 Common Convenience Intrinsics
	19.5.3 Using Integer Comparisons for Fast Floating-Point Comparison

	19.6 Math Library Support

	Chapter 20 Intel® Advanced Matrix Extensions (Intel® AMX)
	20.1 Detecting Intel® AMX support
	20.2 Intel® AMX Microarchitecture Overview
	20.2.1 Intel AMX Frequencies

	20.3 Intel® AMX Instructions Throughput and Latency
	20.4 Data Structure Alignment
	20.5 GEMMs / Convolutions
	20.5.1 Notation
	20.5.2 Tiles in the Intel® AMX Architecture
	TileLoad and TileStore Instructions

	20.5.3 B Matrix Layout
	20.5.4 Straightforward GEMM Implementation
	20.5.5 Optimizations
	20.5.5.1 Minimizing Tile Loads
	Location of the K Loop: Outside of the M_ACC and N_ACC Loops
	Pre-loading Innermost Loop Tiles
	2D Accumulator Array vs. 1D Accumulator Array

	20.5.5.2 Software Pipelining of Tile Loads and Stores
	20.5.5.3 Optimized GEMM Implementation
	Variable Input Dimensions

	20.5.5.4 Direct Convolution with Intel® AMX
	Activations Layout
	Weights Layout

	20.5.5.5 Convolution - Matrix-like Multiplications and Summations Equivalence
	20.5.5.6 Optimized Convolution Implementation
	Location of the KH, KW Loops

	20.6 Cache Blocking
	20.6.1 Optimized Convolution Implementation with Cache Blocking
	Intel AMX-Specific Considerations

	20.7 Mini-batching in Large Batch Inference
	20.8 Non-temporal Tile Loads
	Priority Inversion Scenarios with Temporal Loads
	Scenario 1:
	Scenario 2:
	Solution to Priority Inversions: Non-temporal Loads

	20.9 Using Large Tiles in Small Convolutions to Maximize Data Reuse
	20.10 Handling Inconveniently Sized Activations
	20.11 Post-convolution Optimizations
	20.11.1 Post-convolution Fusion
	20.11.2 Intel® AMX and Intel® AVX-512 Interleaving (SW Pipelining)
	20.11.3 AVOIDING THE H/W OVERHEAD OF PORT 5 FREQUENT OPEN/CLOSE OPERATIONS
	20.11.4 Post-Conv Multiple OFM Accumulation and Efficient Down- Conversion

	20.12 Input and Output Buffers Reuse (aka Double Buffering)
	20.13 Software Prefetches
	20.13.1 Software Prefetch for Convolution and GEMM Layers
	20.13.1.1 The Prefetch Strategy
	20.13.1.2 Prefetch Distance
	20.13.1.3 To Prefetch A or Prefetch B?
	20.13.1.4 To Prefetch or not to Prefetch C?

	20.13.2 Software Prefetch for Embedding Layer

	20.14 Store to Load Forwarding
	20.15 Matrix Transpose
	20.15.1 Flat-to-Flat Transpose of BF16 Data
	20.15.2 VNNI-to-VNNI Transpose
	20.15.3 Flat-to-VNNI Transpose
	20.15.4 Flat-to-VNNI Re-layout

	20.16 Multi-Threading Considerations
	20.16.1 Thread Affinity
	20.16.2 Hyper-Threading
	20.16.3 Work Partitioning Between Cores
	20.16.3.1 Partitioning over M
	20.16.3.2 Partitioning over N
	20.16.3.3 Partitioning over K
	20.16.3.4 Memory Bandwidth Implications of Work Partitioning over Multiple Dimensions

	20.16.4 Recommendation System Example

	20.17 Sparsity Optimizations for Intel® AMX
	20.18 TileConfig/TileRelease, Core C-State, and Compiler ABI
	20.18.1 ABI
	20.18.2 Intrinsics
	20.18.3 User Interface
	20.18.4 Example
	20.18.5 Compilation Option

	20.19 Intel® AMX State Management
	20.19.1 Extended Feature Disable (XFD)
	20.19.2 Alternate Signal Handler Stack in Linux Operating System

	20.20 Using Intel® AMX to Emulate Higher Precision GEMMs

	Chapter 21 Cryptography & Finite Field Arithmetic Enhancements
	21.1 Vector AES
	21.2 VPCLMULQDQ
	21.3 Galois Field New Instructions
	21.4 Integer Fused Multiply Accumulate operations (AVX512_IFMA - VPMADD52)

	Chapter 22 Intel® QuickAssist Technology
	22.1 Software Design Guidelines
	22.1.1 Polling vs. Interrupts (If Supported)
	22.1.1.1 Interrupt Mode
	22.1.1.2 Polling Mode
	22.1.1.3 Recommendations

	22.1.2 Use of Data Plane (DP) API vs. Traditional API
	22.1.2.1 Batch Submission of Requests Using the Data Plane API

	22.1.3 Synchronous (sync) vs. Asynchronous (async)
	22.1.4 Buffer Lists
	22.1.5 Maximum Number of Concurrent Requests
	22.1.6 Symmetric Crypto Partial Operations
	22.1.7 Reusing Sessions in QAT Environment
	22.1.8 Maximizing QAT Device Utilization
	22.1.9 Best Known Method (BKM) for Avoiding Performance Bottlenecks
	22.1.10 Avoid Data Copies By Using SVM and ATS
	22.1.11 Avoid Page Faults When Using SVM

	Chapter 23 Knights Landing Microarchitecture and Software Optimization
	23.1 Knights Landing Microarchitecture
	23.1.1 Front End
	23.1.2 Out-of-Order Engine
	23.1.3 UnTile

	23.2 Intel® AVX-512 Coding Recommendations for Knights Landing Microarchitecture
	23.2.1 Using Gather and Scatter Instructions
	23.2.2 Using Enhanced Reciprocal Instructions
	23.2.3 Using AVX-512CD Instructions
	23.2.4 Using Intel® Hyper-Threading Technology
	23.2.5 Front End Considerations
	23.2.5.1 Instruction Decoder
	23.2.5.2 Branching Indirectly Across a 4GB Boundary

	23.2.6 Integer Execution Considerations
	23.2.6.1 Flags usage
	23.2.6.2 Integer Division

	23.2.7 Optimizing FP and Vector Execution
	23.2.7.1 Instruction Selection Considerations
	23.2.7.2 Porting Intrinsics from Previous Generation
	23.2.7.3 Vectorization Trade-Off Estimation

	23.2.8 Memory Optimization
	23.2.8.1 Data Alignment
	23.2.8.2 Hardware Prefetcher
	23.2.8.3 Software Prefetch
	23.2.8.4 Memory Execution Cluster
	23.2.8.5 Store Forwarding
	23.2.8.6 Way, Set Conflicts
	23.2.8.7 Streaming Store Versus Regular Store
	23.2.8.8 Compiler Switches and Directives
	23.2.8.9 Direct Mapped MCDRAM Cache

	Appendix A Application Performance Tools
	A.1 Compilers
	A.1.1 Recommended Optimization Settings for Intel® 64 and IA-32 Processors
	A.1.2 Vectorization and Loop Optimization
	A.1.2.1 Multithreading with OpenMP*
	A.1.2.2 Automatic Multithreading

	A.1.3 Inline Expansion of Library Functions (/Oi, /Oi-)
	A.1.4 Interprocedural and Profile-Guided Optimizations
	A.1.4.1 Interprocedural Optimization (IPO)
	A.1.4.2 Profile-Guided Optimization (PGO)

	A.1.5 Intel® Cilk™ Plus

	A.2 Performance Libraries
	A.2.1 Intel® Integrated Performance Primitives (Intel® IPP)
	A.2.2 Intel® Math Kernel Library (Intel® MKL)
	A.2.3 Intel® Threading Building Blocks (Intel® TBB)
	A.2.4 Benefits Summary

	A.3 Performance Profilers
	A.3.1 Intel® VTune™ Amplifier XE
	A.3.1.1 Hardware Event-Based Sampling Analysis
	A.3.1.2 Algorithm Analysis
	A.3.1.3 Platform Analysis

	A.4 Thread and Memory Checkers
	A.4.1 Intel® Inspector

	A.5 Vectorization Assistant
	A.5.1 Intel® Advisor

	A.6 Cluster Tools
	A.6.1 Intel® Trace Analyzer and Collector
	A.6.1.1 MPI Performance Snapshot

	A.6.2 Intel® MPI Library
	A.6.3 Intel® MPI Benchmarks

	A.7 Intel® Academic Community

	Appendix B Using Performance Monitoring Events
	B.1 Top-Down Analysis Method
	B.1.1 Top-Level
	B.1.2 Frontend Bound
	B.1.3 Backend Bound
	B.1.4 Memory Bound
	B.1.5 Core Bound
	B.1.6 Bad Speculation
	B.1.7 Retiring
	B.1.8 Golden Cove Microarchitecture
	B.1.9 Ice Lake Microarchitecture
	B.1.10 Optane Persistent Memory
	B.1.11 Skylake Microarchitecture
	B.1.11.1 TMA Use Case 1
	B.1.11.2 TMA Use Case 2

	B.2 Performance Monitoring and Microarchitecture
	B.3 Intel® Xeon® processor 5500 Series
	B.4 Performance Analysis Techniques for Intel® Xeon® Processor 5500 Series
	B.4.1 Cycle Accounting and Uop Flow Analysis
	B.4.1.1 Cycle Drill Down and Branch Mispredictions
	B.4.1.2 Basic Block Drill Down

	B.4.2 Stall Cycle Decomposition and Core Memory Accesses
	B.4.2.1 Measuring Costs of Microarchitectural Conditions

	B.4.3 Core PMU Precise Events
	B.4.3.1 Precise Memory Access Events
	B.4.3.2 Load Latency Event
	B.4.3.3 Precise Execution Events
	B.4.3.4 Last Branch Record (LBR)
	B.4.3.5 Measuring Per-Core Bandwidth
	B.4.3.6 Miscellaneous L1 and L2 Events for Cache Misses
	B.4.3.7 TLB Misses
	B.4.3.8 L1 Data Cache

	B.4.4 Frontend Monitoring Events
	B.4.4.1 Branch Mispredictions
	B.4.4.2 Frontend Code Generation Metrics

	B.4.5 Uncore Performance Monitoring Events
	B.4.5.1 Global Queue Occupancy
	B.4.5.2 Global Queue Port Events
	B.4.5.3 Global Queue Snoop Events
	B.4.5.4 L3 Events

	B.4.6 Intel QuickPath Interconnect Home Logic (QHL)
	B.4.7 Measuring Bandwidth From the Uncore

	B.5 Performance Tuning Techniques for Sandy Bridge Microarchitecture
	B.5.1 Correlating Performance Bottleneck to Source Location
	B.5.2 Hierarchical Top-Down Performance Characterization Methodology and Locating Performance Bottlenecks
	B.5.2.1 Back End Bound Characterization
	B.5.2.2 Core Bound Characterization
	B.5.2.3 Memory Bound Characterization

	B.5.3 Back End Stalls
	B.5.4 Memory Sub-System Stalls
	B.5.4.1 Accounting for Load Latency
	B.5.4.2 Cache-line Replacement Analysis
	B.5.4.3 Lock Contention Analysis
	B.5.4.4 Other Memory Access Issues

	B.5.5 Execution Stalls
	B.5.5.1 Longer Instruction Latencies
	B.5.5.2 Assists

	B.5.6 Bad Speculation
	B.5.6.1 Branch Mispredicts

	B.5.7 Frontend Stalls
	B.5.7.1 Understanding the Micro-op Delivery Rate
	B.5.7.2 Understanding the Sources of the Micro-op Queue
	B.5.7.3 The Decoded ICache
	B.5.7.4 Issues in the Legacy Decode Pipeline
	B.5.7.5 Instruction Cache

	B.6 Using Performance Events of Intel® Core™ Solo and Intel® Core™ Duo processors
	B.6.1 Understanding the Results in a Performance Counter
	B.6.2 Ratio Interpretation
	B.6.3 Notes on Selected Events

	B.7 Drill-Down Techniques for Performance Analysis
	B.7.1 Cycle Composition at Issue Port
	B.7.2 Cycle Composition of OOO Execution
	B.7.3 Drill-Down on Performance Stalls

	B.8 Event ratios for Intel Core microarchitecture
	B.8.1 Clocks Per Instructions Retired Ratio (CPI)
	B.8.2 Front End Ratios
	B.8.2.1 Code Locality
	B.8.2.2 Branching and Front End
	B.8.2.3 Stack Pointer Tracker
	B.8.2.4 Macro-fusion
	B.8.2.5 Length Changing Prefix (LCP) Stalls
	B.8.2.6 Self Modifying Code Detection

	B.8.3 Branch Prediction Ratios
	B.8.3.1 Branch Mispredictions
	B.8.3.2 Virtual Tables and Indirect Calls
	B.8.3.3 Mispredicted Returns

	B.8.4 Execution Ratios
	B.8.4.1 Resource Stalls
	B.8.4.2 ROB Read Port Stalls
	B.8.4.3 Partial Register Stalls
	B.8.4.4 Partial Flag Stalls
	B.8.4.5 Bypass Between Execution Domains
	B.8.4.6 Floating-Point Performance Ratios

	B.8.5 Memory Sub-System - Access Conflicts Ratios
	B.8.5.1 Loads Blocked by the L1 Data Cache
	B.8.5.2 4K Aliasing and Store Forwarding Block Detection
	B.8.5.3 Load Block by Preceding Stores
	B.8.5.4 Memory Disambiguation
	B.8.5.5 Load Operation Address Translation

	B.8.6 Memory Sub-System - Cache Misses Ratios
	B.8.6.1 Locating Cache Misses in the Code
	B.8.6.2 L1 Data Cache Misses
	B.8.6.3 L2 Cache Misses

	B.8.7 Memory Sub-system - Prefetching
	B.8.7.1 L1 Data Prefetching
	B.8.7.2 L2 Hardware Prefetching
	B.8.7.3 Software Prefetching

	B.8.8 Memory Sub-system - TLB Miss Ratios
	B.8.9 Memory Sub-system - Core Interaction
	B.8.9.1 Modified Data Sharing
	B.8.9.2 Fast Synchronization Penalty
	B.8.9.3 Simultaneous Extensive Stores and Load Misses

	B.8.10 Memory Sub-system - Bus Characterization
	B.8.10.1 Bus Utilization
	B.8.10.2 Modified Cache Lines Eviction

	Appendix C Runtime Performance Optimization Blueprint: Intel® Architecture Optimization with Large Code Pages
	C.1 Overview
	C.1.1 ITLBs and Stalls
	C.1.2 Large Pages

	C.2 Diagnosing the Problem
	C.2.1 ITLB Misses
	C.2.2 Measuring the ITLB Miss Stall
	C.2.3 Source of ITLB Misses

	C.3 Solution
	C.3.1 Linux* and Large Pages
	C.3.2 Large Pages for .text
	C.3.3 Reference Code
	C.3.4 Large Pages for the Heap

	C.4 Solution INtegration
	C.4.1 V8 Integration with the Reference Implementation
	C.4.2 JAVA JVM Integration with the Reference Implementation

	C.5 Limitations
	C.6 Case Study
	C.6.1 Ghost.js Workload
	C.6.2 Web Tooling Workload
	C.6.2.1 Node Version
	C.6.2.2 Web Tooling
	C.6.2.3 Comparing Clear Linux* OS and Ubuntu*

	C.6.3 MediaWiki Workload
	C.6.4 Visualization of Benefits
	C.6.4.1 Precise Events
	C.6.4.2 Visualizing Precise ITLB Miss

	C.7 Summary
	C.8 Test Configuration Details
	C.9 Additional References

	Appendix D Instruction Latency and Throughput
	D.1 Overview
	D.2 Definitions
	D.3 Latency and Throughput
	D.3.1 Latency and Throughput with Register Operands
	D.3.2 Table Footnotes
	D.3.3 Instructions with Memory Operands
	D.3.3.1 Software Observable Latency of Memory References

	Appendix E Earlier Generations of Intel® 64 and IA-32 Processor Architectures
	E.1 Haswell Microarchitecture
	E.1.1 The Front End
	E.1.2 The Out-of-Order Engine
	E.1.3 Execution Engine
	E.1.4 Cache and Memory Subsystem
	E.1.4.1 Load and Store Operation Enhancements

	E.1.5 Unlamination
	E.1.6 Haswell-E Microarchitecture
	E.1.7 Broadwell Microarchitecture

	E.2 Sandy Bridge Microarchitecture
	E.2.1 Sandy Bridge Microarchitecture Pipeline Overview
	E.2.2 The Front End
	E.2.2.1 Legacy Decode Pipeline
	E.2.2.2 Decoded ICache
	E.2.2.3 Branch Prediction
	E.2.2.4 Micro-op Queue and the Loop Stream Detector (LSD)

	E.2.3 The Out-of-Order Engine
	E.2.3.1 Renamer
	E.2.3.2 Scheduler

	E.2.4 The Execution Core
	E.2.5 Cache Hierarchy
	E.2.5.1 Load and Store Operation Overview
	E.2.5.2 L1 DCache
	E.2.5.3 Ring Interconnect and Last Level Cache
	E.2.5.4 Data Prefetching

	E.2.6 System Agent
	E.2.7 Ivy Bridge Microarchitecture

	E.3 Intel® Core™ Microarchitecture and Enhanced Intel® Core™ Microarchitecture
	E.3.1 Intel® Core™ Microarchitecture Pipeline Overview
	E.3.2 Front End
	E.3.2.1 Branch Prediction Unit
	E.3.2.2 Instruction Fetch Unit
	E.3.2.3 Instruction Queue (IQ)
	E.3.2.4 Instruction Decode
	E.3.2.5 Stack Pointer Tracker
	E.3.2.6 Micro-fusion

	E.3.3 Execution Core
	E.3.3.1 Issue Ports and Execution Units

	E.3.4 Intel® Advanced Memory Access
	E.3.4.1 Loads and Stores
	E.3.4.2 Data Prefetch to L1 caches
	E.3.4.3 Data Prefetch Logic
	E.3.4.4 Store Forwarding
	E.3.4.5 Memory Disambiguation

	E.3.5 Intel® Advanced Smart Cache
	E.3.5.1 Loads
	E.3.5.2 Stores

	E.4 Nehalem Microarchitecture
	E.4.1 Microarchitecture Pipeline
	E.4.2 Front End Overview
	E.4.3 Execution Engine
	E.4.3.1 Issue Ports and Execution Units

	E.4.4 Cache and Memory Subsystem
	E.4.5 Load and Store Operation Enhancements
	E.4.5.1 Efficient Handling of Alignment Hazards
	E.4.5.2 Store Forwarding Enhancement

	E.4.6 REP String Enhancement
	E.4.7 Enhancements for System Software
	E.4.8 Efficiency Enhancements for Power Consumption
	E.4.9 Hyper-Threading Technology Support in Nehalem Microarchitecture

	Appendix F Earlier Generations of Intel Atom® Microarchitecture and Software Optimization
	F.1 Overview
	F.2 Intel Atom® Microarchitecture
	F.2.1 Hyper-Threading Technology Support in Intel Atom® Microarchitecture

	F.3 Coding Recommendations for Intel Atom® Microarchitecture
	F.3.1 Optimization for Front End of Intel Atom® Microarchitecture
	F.3.2 Optimizing the Execution Core
	F.3.2.1 Integer Instruction Selection
	F.3.2.2 Address Generation
	F.3.2.3 Integer Multiply
	F.3.2.4 Integer Shift Instructions
	F.3.2.5 Partial Register Access
	F.3.2.6 FP/SIMD Instruction Selection

	F.3.3 Optimizing Memory Access
	F.3.3.1 Store Forwarding
	F.3.3.2 First-level Data Cache
	F.3.3.3 Segment Base
	F.3.3.4 String Moves
	F.3.3.5 Parameter Passing
	F.3.3.6 Function Calls
	F.3.3.7 Optimization of Multiply/Add Dependent Chains
	F.3.3.8 Position Independent Code

	F.4 Instruction Latency
	F.5 Silvermont Microarchitecture
	F.5.1 Integer Pipeline
	F.5.2 Floating-Point Pipeline

	F.6 Goldmont Microarchitecture
	F.7 Goldmont Plus Microarchitecture
	F.8 Coding Recommendations
	F.8.1 Optimizing The Front End
	F.8.1.1 Instruction Decoder
	F.8.1.2 Front End High IPC Considerations
	F.8.1.3 Branching Across 4GB Boundary
	F.8.1.4 Loop Unrolling and Loop Stream Detector
	F.8.1.5 Mixing Code and Data

	F.8.2 Optimizing The Execution Core
	F.8.2.1 Scheduling
	F.8.2.2 Address Generation
	F.8.2.3 FP Multiply-Accumulate-Store Execution
	F.8.2.4 Integer Multiply Execution
	F.8.2.5 Zeroing Idioms
	F.8.2.6 NOP Idioms
	F.8.2.7 Move Elimination and ESP Folding
	F.8.2.8 Stack Manipulation Instruction
	F.8.2.9 Flags usage
	F.8.2.10 SIMD Floating-Point and X87 Instructions
	F.8.2.11 SIMD Integer Instructions
	F.8.2.12 Vectorization Considerations
	F.8.2.13 Other SIMD Instructions
	F.8.2.14 Instruction Selection
	F.8.2.15 Integer Division
	F.8.2.16 Integer Shift
	F.8.2.17 Pause Instruction

	F.8.3 Optimizing Memory Accesses
	F.8.3.1 Reduce Unaligned Memory Access with PALIGNR
	F.8.3.2 Minimize Memory Execution Issues
	F.8.3.3 Store Forwarding
	F.8.3.4 PrefetchW Instruction
	F.8.3.5 Cache Line Splits and Alignment
	F.8.3.6 Segment Base
	F.8.3.7 Copy and String Copy

	F.9 Instruction Latency and Throughput

