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CHAPTER 1
INTRODUCTION

The Intel® 64 and IA-32 Architectures Optimization Reference Manual describes how to optimize soft-
ware to take advantage of the performance characteristics of IA-32 and Intel 64 architecture processors.

The target audience for this manual includes software programmers and compiler writers. This manual

assumes that the reader is familiar with the basics of the IA-32 architecture and has access to the Inte/®
64 and IA-32 Architectures Software Developer’s Manual. A detailed understanding of Intel 64 and IA-32
processors is often required. In many cases, knowledge of the underlying microarchitectures is required.

The design guidelines discussed in this manual for developing high-performance software generally
apply to current and future IA-32 and Intel 64 processors. In most cases, coding rules apply to software
running in 64-bit mode of Intel 64 architecture, compatibility mode of Intel 64 architecture, and IA-32
modes (IA-32 modes are supported in IA-32 and Intel 64 architectures). Coding rules specific to 64-bit
modes are noted separately.

NOTE

A public repository is available with open source code samples from select chapters of
this manual. These code samples are released under a 0-Clause BSD license. Intel
provides additional code samples and updates to the repository as the samples are
created and verified.

Public repository: https://github.com/intel/optimization-manual.

Link to license: https://github.com/intel/optimization-manual/blob/master/COPYING.

1.1 TUNING YOUR APPLICATION

Tuning an application for high performance on any Intel 64 or IA-32 processor requires understanding
and basic skills in:

* Intel 64 and IA-32 architecture.

® Cand Assembly language.

® Hot-spot regions in the application that impact performance.
®* Optimization capabilities of the compiler.

®* Techniques used to evaluate application performance.

The Intel® VTune™ Performance Analyzer can help you analyze and locate hot-spot regions in your
applications. On the Intel® Core™ i7, Intel® Core™2 Duo, Intel® Core™ Duo, Intel® Core™ Solo,
Pentium® 4, Intel® Xeon®, and Intel® Pentium® M processors, this tool can monitor an application
through a selection of performance monitoring events and analyze the performance event data that is
gathered during code execution.

This manual also describes data that can be gathered using the performance counters through the
processor’s performance monitoring events.

1.2 ABOUT THIS MANUAL

The Intel® Core™ i7 processor and Intel® Xeon® processor 3400, 5500, 7500 series are based on 45 nm
Nehalem microarchitecture. Westmere microarchitecture is a 32 nm version of the Nehalem microarchi-
tecture. Intel® Xeon® processor 5600 series, Intel Xeon processor E7 and various Intel Core i7, i5, i3
processors are based on the Westmere microarchitecture. These processors support Intel 64 architec-
ture.


https://github.com/intel/optimization-manual
https://github.com/intel/optimization-manual/blob/master/COPYING
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The Intel® Xeon® processor E5 family, Intel® Xeon® processor E3-1200 family, Intel® Xeon® processor
E7-8800/4800/2800 product families, Intel® Core™ i7-3930K processor, and 2nd generation Intel®
Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series are based on the Sandy
Bridge microarchitecture and support Intel 64 architecture.

The Intel® Xeon® processor E7-8800/4800/2800 v2 product families, Intel® Xeon® processor E3-1200
v2 product family and 3rd generation Intel® Core™ processors are based on the Ivy Bridge microarchi-
tecture and support Intel 64 architecture.

The Intel® Xeon® processor E5-4600/2600/1600 v2 product families, Intel® Xeon® processor E5-
2400/1400 v2 product families and Intel® Core™ i7-49xx Processor Extreme Edition are based on the
Ivy Bridge-E microarchitecture and support Intel 64 architecture.

The Intel® Xeon® processor E3-1200 v3 product family and 4th Generation Intel® Core™ processors are
based on the Haswell microarchitecture and support Intel 64 architecture.

The Intel® Xeon® processor E5-2600/1600 v3 product families and the Intel® Core™ i7-59xx Processor
Extreme Edition are based on the Haswell-E microarchitecture and support Intel 64 architecture.

The Intel Atom® processor Z8000 series is based on the Airmont microarchitecture.

The Intel Atom® processor Z3400 series and the Intel Atom® processor Z3500 series are based on the
Silvermont microarchitecture.

The Intel® Core™ M processor family, 5th generation Intel® Core™ processors, Intel® Xeon® processor
D-1500 product family and the Intel® Xeon® processor E5 v4 family are based on the Broadwell microar-
chitecture and support Intel 64 architecture.

The Intel® Xeon® Processor Scalable Family, Intel® Xeon® processor E3-1500m v5 product family and
6th generation Intel® Core™ processors are based on the Skylake microarchitecture and support Intel 64
architecture.

The 7th generation Intel® Core™ processors are based on the Kaby Lake microarchitecture and support
Intel 64 architecture.

The Intel Atom® processor C series, the Intel Atom® processor X series, the Intel® Pentium® processor
J series, the Intel® Celeron® processor J series, and the Intel® Celeron® processor N series are based on
the Goldmont microarchitecture.

The Intel® Xeon Phi™ Processor 3200, 5200, 7200 Series is based on the Knights Landing microarchitec-
ture and supports Intel 64 architecture.

The Intel® Pentium® Silver processor series, the Intel® Celeron® processor J series, and the Intel®
Celeron® processor N series are based on the Goldmont Plus microarchitecture.

The 8th generation Intel® Core™ processors, 9th generation Intel® Core™ processors, and Intel® Xeon®
E processors are based on the Coffee Lake microarchitecture and support Intel 64 architecture.

The Intel® Xeon Phi™ Processor 7215, 7285, 7295 Series is based on the Knights Mill microarchitecture
and supports Intel 64 architecture.

The 2nd generation Intel® Xeon® Processor Scalable Family is based on the Cascade Lake product and
supports Intel 64 architecture.

Some 10th generation Intel® Core™ processors are based on the Ice Lake microarchitecture, and some
are based on the Comet Lake microarchitecture; both support Intel 64 architecture.

Some 11th generation Intel® Core™ processors are based on the Tiger Lake microarchitecture, and
some are based on the Rocket Lake microarchitecture; both support Intel 64 architecture.

Some 3rd generation Intel® Xeon® Processor Scalable Family processors are based on the Cooper Lake
product, and some are based on the Ice Lake microarchitecture; both support Intel 64 architecture.

The 12th generation Intel® Core™ processors are based on the Alder Lake performance hybrid
architecture and support Intel 64 architecture.

The Intel® 4th generation Intel® Xeon® Scalable Processor Family is based on Sapphire Rapids microar-
chitecture and uses Golden Cove cores.
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The chapters in this manual are summarized below.

Chapter 1: Introduction — Defines the purpose and outlines the contents of this manual.

Chapter 2: Intel® 64 and IA-32 Processor Architectures — Describes the microarchitecture of
recent Intel 64 and IA-32 processor families, and other features relevant to software optimization.

Chapter 3: General Optimization Guidelines — Describes general code development and optimi-
zation techniques that apply to all applications designed to take advantage of the common features
of current Intel processors.

Chapter 4: Intel Atom® Processor Architecture — Describes the microarchitecture of recent
Intel Atom processor families, and other features relevant to software optimization.

Chapter 5: Coding for SIMD Architectures — Describes techniques and concepts for using the
SIMD integer and SIMD floating-point instructions provided by the MMX™ technology, Streaming
SIMD Extensions, Streaming SIMD Extensions 2, Streaming SIMD Extensions 3, SSSE3, and SSE4.1.

Chapter 6: Optimizing for SIMD Integer Applications — Provides optimization suggestions and
common building blocks for applications that use the 128-bit SIMD integer instructions.

Chapter 7: Optimizing for SIMD Floating-point Applications — Provides optimization
suggestions and common building blocks for applications that use the single-precision and double-
precision SIMD floating-point instructions.

Chapter 8: INT8 Deep Learning Inference — Describes INT8 as a data type for Deep learning
Inference on Intel technology. The document covers both AVX-512 implementations and implemen-
tations using the new Intel® DL Boost Instructions.

Chapter 9: Optimizing Cache Usage — Describes how to use the PREFETCH instruction, cache
control management instructions to optimize cache usage, and the deterministic cache parameters.

Chapter 10: Introducing Sub-NUMA Clustering — Describes Sub-NUMA Clustering (SNC), a
mode for improving average latency from last level cache (LLC) to local memory.

Chapter 11: Multicore and Hyper-Threading Technology — Describes guidelines and
techniques for optimizing multithreaded applications to achieve optimal performance scaling. Use
these when targeting multicore processor, processors supporting Hyper-Threading Technology, or
multiprocessor (MP) systems.

Chapter 12: Intel® Optane™ DC Persistent Memory — Provides optimization suggestions for
applications that use Intel® Optane™ DC Persistent Memory.

Chapter 13: 64-Bit Mode Coding Guidelines — This chapter describes a set of additional coding
guidelines for application software written to run in 64-bit mode.

Chapter 14: SSE4.2 and SIMD Programming for Text-Processing/Lexing/Parsing—
Describes SIMD techniques of using SSE4.2 along with other instruction extensions to improve
text/string processing and lexing/parsing applications.

Chapter 15: Optimizations for Intel® AVX, FMA, and Intel® AVX2— Provides optimization
suggestions and common building blocks for applications that use Intel® Advanced Vector
Extensions, FMA, and Intel® Advanced Vector Extensions 2 (Intel® AVX2).

Chapter 16: Intel Transactional Synchronization Extensions — Tuning recommendations to
use lock elision techniques with Intel Transactional Synchronization Extensions to optimize multi-
threaded software with contended locks.

Chapter 17: Power Optimization for Mobile Usages — This chapter provides background on
power saving techniques in mobile processors and makes recommendations that developers can
leverage to provide longer battery life.

Chapter 18: Software Optimization for Intel® AVX-512 Instructions— Provides optimization
suggestions and common building blocks for applications that use Intel® Advanced Vector Extensions
512.

Chapter 19: Intel® Advanced Vector Extensions 512-FP16 Instruction Set for Intel® Xeon®
Processors — Describes the addition of the FP16 ISA for Intel AVX-512 to handle IEEE 754-2019
compliant half-precision floating-point operations.
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Chapter 20: Intel® Advanced Matrix Extensions (Intel® AMX) — Describes best practices to
optimally code to the metal on Intel® Xeon® Processors based on Sapphire Rapids SP microarchi-
tecture. It extends the public documentation on Optimizing DL code with DL Boost instructions.

Chapter 21: Cryptography & Finite Field Arithmetic Enhancements — Describes the new
instruction extensions designated for acceleration of cryptography flows and finite field arithmetic.

Chapter 22: Intel QuickAssist Technology — Describes software development guidelines for the
QuickAssist Technology (QAT) API. This API supports both the Cryptographic and Data Compression
services.

Chapter 23: Knights Landing Microarchitecture and Software Optimization — Describes the
microarchitecture of processor families based on the Knights Landing microarchitecture, and
software optimization techniques targeting Intel processors based on the Knights Landing microar-
chitecture.

Appendix A: Application Performance Tools — Introduces tools for analyzing and enhancing
application performance without having to write assembly code.

Appendix B: Using Performance Monitoring Events — Provides information on the Top-Down
Analysis Method and information on how to use performance events specific to the Intel Xeon
processor 5500 series, processors based on Sandy Bridge microarchitecture, and Intel Core Solo and
Intel Core Duo processors.

Appendix C: Intel Architecture Optimization with Large Code Pages — Provides information
on how the performance of runtimes can be improved by using large code pages.

Appendix D: IA-32 Instruction Latency and Throughput — Provides latency and throughput
data for the IA-32 instructions. Instruction timing data specific to recent processor families are
provided.

Appendix E: Earlier Generations of Intel® 64 and IA-32 Processor Architectures —
Describes the microarchitecture of earlier generations of Intel 64 and IA-32 processor families, and
other features relevant to software optimization.

Appendix F: Earlier Generations of Intel Atom® Microarchitecture and Software Optimi-
zation — Describes the microarchitecture of earlier generations of processor families based on Intel
Atom microarchitecture, and software optimization techniques targeting Intel Atom microarchi-
tecture.

1.3 RELATED INFORMATION

For more information on the Intel® architecture, techniques, and the processor architecture terminology,
the following are of particular interest:

Intel® 64 and IA-32 Architectures Software Developer’s Manual

Developing Multi-threaded Applications: A Platform Consistent Approach
Intel® C++ Compiler documentation and online help

Intel® Fortran Compiler documentation and online help

Intel® VTune™ Amplifier documentation and online help

Using Spin-Loops on Intel Pentium 4 Processor and Intel Xeon Processor MP

More relevant links are:

Developer Zone:

https://software.intel.com/en-us/all-dev-areas

Processor support general link:
https://www.intel.com/content/www/us/en/products/processors.html
Intel Multi-Core Technology:
https://software.intel.com/en-us/articles/multi-core-introduction
Hyper-Threading Technology (HT Technology):


https://software.intel.com/en-us/c-compilers/ipsxe-support 
https://software.intel.com/en-us/fortran-compilers-support/
https://www.intel.com/content/www/us/en/products/processors.html
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/sites/default/files/article/147714/51534-developing-multithreaded-applications.pdf
https://software.intel.com/en-us/intel-vtune-amplifier-xe-support
https://software.intel.com/sites/default/files/22/30/25602
https://software.intel.com/en-us/all-dev-areas
https://software.intel.com/en-us/articles/multi-core-introduction
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http://www.intel.com/content/www/us/en/architecture-and-technology/hyper-threading/hyper-
threading-technology.html

SSE4.1 Application Note: Motion Estimation with Intel® Streaming SIMD Extensions 4:

https://software.intel.com/en-us/articles/motion-estimation-with-intel-streaming-simd-extensions-
4-intel-sse4

Intel® SSE4 Programming Reference:
https://software.intel.com/sites/default/files/m/8/b/8/D9156103.pdf

Intel® 64 Architecture Processor Topology Enumeration:
https://software.intel.com/en-us/articles/intel-64-architecture-processor-topology-enumeration
Multi-buffering techniques using SIMD extensions:

http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/communications-
ia-multi-buffer-paper.pdf

Parallel hashing using Multi-buffering techniques:
http://www.scirp.org/journal/PaperInformation.aspx?paperID=23995
http://eprint.iacr.org/2012/476.pdf

PCMMULQDQ resources:

https://software.intel.com/en-us/articles/intel-carry-less-multiplication-instruction-and-its-usage-
for-computing-the-gcm-mode

Modular exponentiation using redundant representation and AVX2:
http://rd.springer.com/chapter/10.1007%2F978-3-642-31662-3_9?LI=true
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CHAPTER 2
INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

This chapter gives an overview of features relevant to software optimization for current generations of
Intel® 64 and IA-32 processors!. These features are:

® Microarchitectures that enable executing instructions with high throughput at high clock rates, a high
speed cache hierarchy, and high speed system bus.

* Hyper-Threading Technology? (HT Technology) support.
®* Intel 64 architecture on Intel 64 processors.

® SIMD instruction extensions: MMX technology, Streaming SIMD Extensions (SSE), Streaming SIMD
Extensions 2 (SSE2), Streaming SIMD Extensions 3 (SSE3), Supplemental Streaming SIMD
Extensions 3 (SSSE3), SSE4.1, and SSE4.2.

* Intel® Advanced Vector Extensions (Intel® AVX).

® Half-precision floating-point conversion and RDRAND.

® Fused Multiply Add Extensions.

* Intel® Advanced Vector Extensions 2 (Intel® AVX2).

® ADX and RDSEED.

* Intel® Advanced Vector Extensions 512 (Intel® AVX-512).
* Intel® Thread Director

2.1 SAPPHIRE RAPIDS ARCHITECTURE

Sapphire Rapids uses Intel® Golden Cove-based cores and features Intel® Advanced Vector Extensions
512 (Intel® AVX-512) (Chapter 19), Intel® Transactional Synchronization Extensions (Intel® TSX)
Suspend Load Address Tracking (TSXLDTRK), Advanced Matrix Extensions (AMX) (Chapter 20), Intel
Data Streaming Accelerator (DSA)3, and Intel In-Memory Analytics Accelerator (IAA).

2.1.1 Intel” 4th generation Intel” Xeon' Scalable Family of Processors

Intel's fourth generation Xeon Scalable Family of Processors (Sapphire Rapids) changes from a single-die
monolithic design to multi-die Tiles.

The server products are scalable from dual-socket to eight-socket configurations (Section 3.11).
Its I/0O includes PCI Express 5.0, DDR5 memory, and Compute Express Link 1.1.

Packaging includes a multi-die chip with up to 4 tiles. Each tile is a 400mm2 SoC, providing both compute
cores and I/0.

Each tile contains 15 Golden Cove cores (see Section 2.3). Its memory controller provides two channels
of DDR5 with a maximum of eight channels across 4 tiles, and 28 PCIe 5.0 lanes for a maximum of 112
across 4 tiles.

1. For previous generations of Intel 64 and IA-32 processors, see Appendix E, “Earlier Generations of Intel® 64 and IA-32
Processor Architectures.” Intel Atom® processors are covered in Chapter 4, “Intel Atom® Processor Architectures.”

2. Hyper-Threading Technology requires a computer system with an Intel processor supporting HT Technology and an HT
Technology enabled chipset, BIOS and operating system. Performance varies depending on the hardware and software
used.

I 3. Please see the DSA Specification: https://cdrdv2.intel.com/v1/dl/getContent/671116 and User Guide:

https://cdrdv2.intel.com/v1/dl/getContent/759709
4. Please see the IAA Specification: https://cdrdv2.intel.com/v1/dl/getContent/721858


https://cdrdv2.intel.com/v1/dl/getContent/721858
https://cdrdv2.intel.com/v1/dl/getContent/671116
https://cdrdv2.intel.com/v1/dl/getContent/759709
https://cdrdv2.intel.com/v1/dl/getContent/759709
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/intel-tsx-asynchronous-abort.html
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2.2 ALDER LAKE PERFORMANCE HYBRID ARCHITECTURE

The Alder Lake performance hybrid architecture combines two Intel architectures, bringing together the
Golden Cove performant cores and the Gracemont efficient Atom cores onto a single SoC. For details on
the Golden Cove microarchitecture, see Section 2.3, “"Golden Cove Microarchitecture.” For details on the
Gracemont microarchitecture, see Section 4.1, “"Gracemont Microarchitecture.”

2.2.1 12th Generation Intel® Core™ Processors Supporting Performance Hybrid
Architecture

12th Generation Intel® Core™ processors supporting performance hybrid architecture consist of up to
eight Performance cores (P-cores) and eight Efficient cores (E-cores). These processors also include a
3MB Last Level Cache (LLC) per IDI module, where a module is one P-core or four E-cores. It has
symmetrical ISA and comes in variety of configurations.

P-cores provide single or limited thread performance, while E-cores help provide improved scaling and
multithreaded efficiency. P-cores on these processors can also have Intel® Hyper-Threading Technology
enabled. All cores can be active simultaneously when the operating system (OS) decides to schedule on
all processors.

A key OSV requirement for enabling hybrid is symmetric ISA across different core types in a performance
hybrid architecture. In 12th Generation Intel Core processors supporting performance hybrid architec-
ture, ISA is converged to a common baseline between the P-cores and E-cores. In order to maintain
symmetric ISA, the E-cores do not support the following features: Intel AVX-512, Intel AVX-512 FP-16,
and Intel® TSX. The E-cores do support Intel AVX2 and Intel AVX-VNNI.

2.2.2 Hybrid Scheduling

2.2.2.1  Intel’ Thread Director

Intel® Thread Director continually monitors software in real-time giving hints to the operating system's
scheduler allowing it to make more intelligent and data-driven decisions on thread scheduling. With Intel
Thread Director, hardware provides runtime feedback to the OS per thread based on various IPC perfor-
mance characteristics, in the form of:

®* Dynamic performance and energy efficiency capabilities of P-cores and E-cores based on
power/thermal limits.

¢ Idling hints when power and thermal are constrained.

Intel Thread Director is first introduced in desktop and mobile variants of the 12th generation Intel Core
processor based on Alder Lake performance hybrid architecture.

A processor containing both P-cores and E-cores with different performance characteristics creates a
challenge for the operating system’s scheduler. Additionally, different software threads see different
performance ratios between the P-cores and E-cores. For example, the performance ratio between the P-
cores and E-cores for highly vectorized floating-point code is higher than the performance ratio for scalar
integer code. So, when the operating system needs to make an optimal scheduling decision it needs to
be aware of the characteristics of the software threads that are candidates for scheduling. If not enough
P-cores are available and there is a mix of software threads with different characteristics, the operating
system should schedule those threads that benefit most from the P-cores onto those cores and schedule
the others on the E-cores.

Intel Thread Director provides the necessary hint to the operating system about the characteristics of the
software thread executing on each of the logical processors. The hint is dynamic and reflects the recent
characteristics of the thread, i.e., it may change over time based on the dynamic instruction mix of the
thread. The processor also considers microarchitecture factors to define the dynamic software thread
characteristics.
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Thread specific hardware support is enumerated via the CPUID instruction and enabled by the operating
system via writing to configuration MSRs. The Intel Thread Director implementation on processors based
on Alder Lake performance hybrid architecture defines four thread classes:

0. Non-vectorized integer or floating-point code.

1. Integer or floating-point vectorized code, excluding Intel® Deep Learning Boost (Intel® DL Boost)
code.

2. Intel DL Boost code.
3. Pause (spin-wait) dominated code.

The dynamic code does not have to be 100% of the class definition. It should be large enough to be
considered belonging to that class. Also, dynamic microarchitectural metrics such as consumed memory
bandwidth or cache bandwidth may move software threads between classes. Example pseudo-code
sequences for the Intel Thread Director classes available on processors based on Alder Lake performance
hybrid architecture are provided in the examples 2-1 through 2-4.

Intel Thread Director also provides a table in system memory, only accessible to the operating system,
that defines the P-core vs. E-core performance ratio per class. This allows the operating system to pick
and choose the right software thread for the right logical processor.

In addition to the performance ratio between P-cores and E-cores, Intel Thread Director provides the
energy efficiency ratio between those cores. The operating system can then use this information when it
prefers energy savings over maximum performance. For example, a background task such as indexing
can be scheduled on the most energy efficient core since its performance is less critical.
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Example 2-1. Class 0 Pseudo-code Snippet

while (1)
{
asm(“xor rax, rax;"
"add rax, 5"
"inc rax;”

Example 2-2. Class 1 Pseudo-code Snippet

while (1)
{
asm(“vfmaddsub132ps %ymmO0, %eymm1, %ymmZ2;”
"vfmaddsub213ps %ymmO0, %ymm1, %ymm3;”
"vfmaddsub231ps %ymmO, %ymm1, %ymm4;”
"vfmaddsub132ps %ymmO0, %ymm1, %ymmb5;”
"vfmaddsub213ps %ymmO, %ymm1, %ymm6;”
“vfmaddsub231ps %ymm0, %ymm1, %ymm7;"
“vfmaddsub132ps %ymm0, %ymm1, %ymm8;"
"vfmaddsub213ps %ymmO0, %ymm1, %ymm3;”
"vfmaddsub231ps %ymmO0, %ymm1, %ymm10;”
"vfmaddsub132ps %ymmO, %ymm1, %ymmZ2;”
"vfmaddsub213ps %ymmO0, %ymm1, %ymm3;”
"vfmaddsub231ps %ymmO, %ymm1, %ymm4;”
"vfmaddsub132ps %ymmO0, %ymm1, %ymmb5;”
"vfmaddsub213ps %ymmO, %ymm1, %ymm6;”
"vfmaddsub231ps %ymmO, %ymm1, %ymm7;”
"vfmaddsub132ps %ymmO0, %ymm1, %ymm8;”
"vfmaddsub213ps %ymmO0, %ymm1, %ymm9;”
“vfmaddsub231ps %ymmO, %ymm1, %ymm10;"
"vfmaddsub132ps %ymmO0, %ymm1, %ymm2;”
"vfmaddsub213ps %ymmO0, %ymm1, %ymm3;”
"vfmaddsub231ps %ymmO0, %ymm1, %ymm4;”
"vfmaddsub132ps %ymmO0, %ymm1, %ymm5;”
“vfmaddsub213ps %ymmO0, %ymm1, %ymm6;”
“vfmaddsub231ps %ymmO, %ymm1, %ymm7;”
“vfmaddsub132ps %ymmO0, %ymm1, %ymm8;”
“vfmaddsub213ps %ymmO0, %ymm1, %ymm3;”
“vfmaddsub231ps %ymmO0, %ymm1, %ymm10;”
“vfmaddsub132ps %ymmO0, %ymm1, %ymm2;”
“vfmaddsub213ps %ymmO0, %ymm1, %ymm3;”
“vfmaddsub231ps %ymmO, %ymm1, %ymm4;”
“vfmaddsub132ps %ymmO0, %ymm1, %ymmb5;”
“vfmaddsub213ps %ymmO0, %ymm1, %ymm6;”
“vfmaddsub231ps %ymmO0, %ymm1, %ymm7;”
“vfmaddsub132ps %ymmO0, %ymm1, %ymm8;”
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Example 2-2. Class 1 Pseudo-code Snippet (Contd.)

“vfmaddsub213ps %ymmO, %ymm1, %ymm39;”
“vfmaddsub231ps %ymmO, %ymm1, %ymm10;”
“vfmaddsub132ps %ymm0, %ymm1, %ymmz2;"

Example 2-3. Class 2 Pseudo-code Snippet

while (1)
{

__asm(
vpdpbusd ymm2, ymmO, ymm1
vpdpbusd ymm3, ymmO, ymm1
vpdpbusd ymm4, ymmO, ymm1
vpdpbusd ymm5, ymmO, ymm1
vpdpbusd ymm6, ymmO, ymm1
vpdpbusd ymm7, ymmO, ymm1
vpdpbusd ymm8, ymmO, ymm1
vpdpbusd ymm9, ymmO, ymm1
vpdpbusd ymm10, ymmO, ymm1
vpdpbusd ymm11, ymmO, ymm1
vpdpbusd ymm12, ymmO, ymm 1
vpdpbusd ymm13, ymmO, ymm1

Example 2-4. Class 3 Pseudo-code Snippet

while (1)
{

asm("PAUSE;")
asm("PAUSE;")
asm("PAUSE;")
asm("PAUSE;")
asm("PAUSE;")
asm("PAUSE;")
asm("PAUSE;")
asm("PAUSE;")
asm("PAUSE;")
asm("PAUSE;")

}

For more detailed information on this technology, refer to the Intel® 64 and IA-32 Architectures Software
Developer Manuals located here: www.intel.com/sdm.
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2.2.2.2 Scheduling with Intel Hyper-Threading Technology Enabled on Processors
Supporting x86 Hybrid Architecture

E-cores are designed to provide better performance than a logical P-core with both hardware sibling
hyper-threads busy.

2.2.2.3 Scheduling with a Multi-€-Core Module

E-cores within an idle module help provide better performance than E-cores in a busy module.

2.2.2.4  Scheduling Background Threads on x86 Hybrid Architecture

In most scenarios, background threads can leverage scalability and multithread efficiency of E-cores.

2.2.3 Recommendations for Application Developers

The following are recommendations when using processors supporting performance hybrid architecture:

® Stay up to date on updates on operating systems and optimized libraries.
®* Software needs to avoid setting hard affinities on either threads or processes in order to allow the
operating system to provide the optimal core selection for Intel Hybrid.

* Software should replace active spin-waits with lightweight waits ideally using the new
UMWAIT/TPAUSE and older PAUSE instructions which will allow for better hints to the scheduler on
time spinning.

®* Software can utilize the Windows Power Throttling information using process information and thread

information APIs, to give hints to the scheduler on the Quality of Service (QoS) required for a
particular thread or process to improve both performance and energy efficiency.

®* Leverage Windows frameworks and media APIs for multimedia application development. Windows
Media Foundation framework is optimized for hybrid architecture and enables media applications to
run efficiently while preventing glitches.

®* The Windows IrgPolicyMachineDefault policy enables Windows to optimally target interrupts to the
right core, and more so on hybrid architecture.

For additional recommendations and information on performance hybrid architecture, refer to the white

papers located here: https://www.intel.com/content/www/us/en/developer/articles/technical/hybrid-

architecture.html.
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2.3 GOLDEN COVE MICROARCHITECTURE

The Golden Cove microarchitecture is the successor of Ice Lake microarchitecture. The Golden Cove
microarchitecture introduces the following enhancements:

® Wider machine: 5—6 wide allocation, 10—>12 execution ports, and 4—8 wide retirement.

® Significant increases in the size of key structures enable deeper OO0 execution and expose more
instruction level parallelism.

® Greater capabilities per execution port, e.g., 5th integer ALU execution ports with expanded
capability and a new fast floating-point adder.

* Intel® Advanced Matrix Extensions (Intel® AMX)!: Built-in integrated Tiled Matrix Multiplication /
Machine Learning Accelerator.

®* Improved branch prediction.

* Improvements for large code footprint workloads, e.g., larger branch prediction structures, enhanced
code prefetcher, and larger instruction TLB.

®* Wider fetch: legacy decode pipeline fetch bandwidth increase to 32B/cycles, 4—6 decoders,
increased micro-op cache size, and increased micro-op cache bandwidth.

®* Maximum load bandwidth increased from 2 loads/cycle to 3 loads/cycle.

® Larger 4K Pages DTLB, increase in the number of outstanding Page Miss handlers.

® Increased number of outstanding misses (16 FB, 32—48 Deeper MLC miss queues).

®* Enhanced data prefetchers for increased memory parallelism.

® Mid-level cache size increased to 2MB on server parts; remains 1.25MB on client parts.

1. Intel® Advanced Matrix Extensions are not available on Client parts.
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2.3.1 Golden Cove Microarchitecture Overview
The basic pipeline functionality of the Golden Cove microarchitecture is depicted in Figure 2-1.

| ITLB + 32KB Instruction Cache BPU
| MSROM | | Decode |4—| uop Cache |
| uop Queue |
1
| Allocate/ Rename/Move Elimination/Zero idiom
| Scheduler / Reservation Station
| PO || P1 || P5 || P6 || P10 | P2 P3 P11 P4 P9 P7 P8
AGU AGU AGU STD STD AGU AGU
3 < 3 < 3 ¥ ¥
ALU ALU ALU ALU ALU | Load Buffer | | Store Buffer |
LEA LEA LEA LEA LEA & 3056
INT 3 2512
Shift MUL MulHI Shift
| LD DTLB | 2%256 STADTLB
Jmp IDIV Jmp D612
4 3x256
2x512
FMA FMA || Fmas12 =
48 KB DCU
ALU ALU ALU
VEC Shift Shift AMX
1.25 MB Client / 2MB Server MLC
fpDiv Shuffle || Shuffle
FastADD FastADD soc

Figure 2-1. Processor Core Pipeline Functionality of the Golden Cove Microarchitecture
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2.3.1.1 The Front End

The Golden Cove front end is depicted in Figure 2-2. The front end is built to feed the wider and deeper
out-of-order core:

® Legacy decode pipeline fetch bandwidth increased from 16 to 32 bytes/cycle.
®* The number of decoders increased from four to six, allowing decode of up to 6 instructions per cycle.

®* The micro-op cache size increased, and its bandwidth increased to deliver up to 8 micro-ops per
cycle.

®* Improved branch prediction.

ITLB + 32KB Instruction Cache BPU
A 32 bytes i 64 bytes
MSROM Decode pop Cache
4 4 uops 4 6 uops 4 8 uops
pop Queue

i’ 6 uops

Figure 2-2. Processor Front End of the Golden Cove Microarchitecture

Improvements for large code footprint workloads:

®* Double the size of the instruction TLB: 128—256 entries for 4K pages, 16—32 entries for 2M/4M
pages.

® Bigger branch prediction structures.
®* Enhanced code prefetcher.
®* Improved LSD coverage.

®* The IDQ can hold 144 uops per logical processor in single thread mode, or 72 uops per thread when
SMT is active.

23.1.2 The Out-of-Order and Execution Engines

The Out-of-Order and execution engines changes in the Golden Cove microarchitecture include:

® Significant increase in size of key buffer structures to enable deeper OO0 execution and expose more
instruction level parallelism.

® Wider machine:
— Wider allocation (5—6 uops per cycle) and retirement (4—8 uops per cycle) width.
— Increase in number of execution ports (10—12).
— Greater capabilities per execution port.
Table 2-1 summarizes the OO0 engine's capability to dispatch different types of operations to ports.
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Table 2-1. Dispatch Port and Execution Stacks of the Golden Cove Microarchitecture

PortO | Port1' | Port2 | Port3 | Port4 | Port52 | Port6 | Ports7,8 | Port9 | Port10 | Port 11
INTALU | INTALU | Load Load Store INT ALU | INT ALU | Store Store INT ALU | Load
LEA LEA Data LEA LEA Address Data LEA
INT Shift | INT Mul INTMUL | INT Shift
Jump1 INT Div Hi Jump2
FMA FMA* FMA**

Vec ALU | Fast Fast
Vec Adder* Adder
Shift Vec Vec ALU
FPDiv | ALU* Shuffle
Vec
Shift*
Shuffle*
NOTES:

1.”*"in this table indicates that these features are not available for 512-bit vectors.
2."**"in this table indicates that these features are not available for 512-bit vectors in Client parts.

Table 2-2 lists execution units and common representative instructions that rely on these units.

Throughput improvements across the SSE, Intel AVX, and general-purpose instruction sets are related to
the number of units for the respective operations, and the varieties of instructions that execute using a
particular unit.

Table 2-2. Golden Cove Microarchitecture Execution Units and Representative Instructions’

Execution # of Unit Instructions
Unit
ALU 5 add, and, cmp, or, test, xor, movzx, movsx, mov, (v)movdqu, (v)movdga, (v)movap*,
(v)movup*
SHFT 2 sal, shl, rol, adc, sarx, adcx, adox, etc.
Slow Int 1 mul, imul, bsr, rcl, shid, mulx, pdep, etc.
BM 2 andn, bextr, blsi, blsmsk, bzhi, etc.
2x256-bit (v)add, (v)emp. (v)max, (v)min, (v)sub, (v)cvtps2dq, (v)cvtdq2ps, (v)cvtsd2sl,
Vec ALU .
1x512-bit (v)cvtssesl
3x256-bit (v)pand, (v)por, (v)pxor, (v)movq, (v)movq, (v)movap*, (v)movup?*, (v)andp*, (v)orp*,
2x512-bit (v)paddb/w/d/q, (v)blendv*, (v)blendp*, (v)pblendd
Vec_Shft 2x256-bit (v)psliv*, (v)psriv*, vector shift count in imm8
1x512-bit
VEC Add (in 2x256-bit (v)add*, (v)emp*, (v)max*, (v)min*, (v)sub*, (v)padds™, (v)paddus*, (v)psign, (v)pabs,
VEC FMA) 1x512-bit (v)pavgb, (v)pcmpeq*, (v)pmax, (v)cvtps2dq, (v)evtdg2lps, (v)cvtsd2si, (v)cviss2si
VEC Fast 2x256-bit (v)add*, (v)addsub*, (v)sub*
Add 1x512-bit
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Table 2-2. Golden Cove Microarchitecture Execution Units and Representative Instructions’ (Contd.)

Execution # of Unit Instructions
Unit
Shuffle 2x256-bit (v)shufp*, vperm*, (v)pack*, (v)unpck*, (v)punpck*, (v)pshuf*, (v)pslidq, (v)alignr,
1x512-bit (v)pmovzx*, vbroadcast*, (v)pslidq, (v)psridq, (v)pblendw (new cross lane shuffle on
both ports)
Vec 2x256-bit (v)mul*, (v)pmul*, (v)pmadd*
Mul/FMA (1 or 2)x512-bit
SIMD Misc 1 STTNI, (v)pclmulgdq, (v)psadw, vector shift count in xmm
FP Mov 1 (v)movsd/ss, (v)movd gpr
DIVIDE 1 divp*, divs*, vdiv*, sqrt*, vsqrt*, rcp*, vrcp*, rsqrt?*, idiv
NOTES:

1. Execution unit mapping to MMX instructions are not covered in this table. See Section 15.16.5 on MMX instruction
throughput remedy.

Table 2-3 describes bypass delay in cycles between producer and consumer operations.

Table 2-3. Bypass Delay Between Producer and Consumer Micro-ops

TO [EU/PORT/Latency]
FROM SIMD/0,1/1 | FMA/0,1/4 | MUL/O,1/4 Fast SIMD/5/1,3 | SHUF/ | V21/0/3

[EU/Port/Latency] Adder/1,5/3 1 ,53/1 ,
SIMD/0,1/1 0 1 1 1 0 0 0
FMA/0,1/4 1 0 1 0 0 0 0
MUL/0,1/4 1 0 1 0 0 0 0
Fast Adder/0,1/3 | 1 0 1 -1 0 0 0
SIMD/5/1,3 0 1 1 1 0 0 0
SHUF/1,5/1,3 0 0 1 0 0 0 0
Vv2i/0/3 0 0 1 0 0 0 0
12V/5/1 0 1 1 0 0 0 0

The attributes that are relevant to the producer/consumer micro-ops for bypass are a triplet of
abbreviation/one or more port number/latency cycle of the uop. For example:

* "“SIMD/0,1/1" applies to a 1-cycle vector SIMD uop dispatched to either port 0 or port 1.
* “SIMD/5/1,3" applies to either a 1-cycle or 3-cycle non-shuffle uop dispatched to port 5.
* “W2I/0/3" applies to a 3-cycle vector-to-integer uop dispatched to port O.
® “I2V/5/1" applies to a 1-cycle integer-to-vector uop dispatched to port 5.

* “Fast Adder/1,5/3" applies to either a 3-cycle 256-bit uop dispatched to either port 1 or port 5, or a
512-bit uop dispatched to port 5. This operation supports two cycles back-to-back between a pair of
Fast Adder operations.

A new Fast Adder! unit is added as 512-bit on port 5 in VEC stack, and as 256-bit on ports 1 and 5. The
Fast Adder performs floating-point ADD/SUB operations in 3 cycles.
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Back-to-back ADD/SUB operations that are both executed on the Fast Adder unit perform the operations
in two cycles.

* In 128/256-bit, back-to-back ADD/SUB operations executed on the Fast Adder unit perform the
operations in two cycles.

* In 512-bit, back-to-back ADD/SUB operations are executed in two cycles if both operations use the
Fast Adder unit on port 5.

The following instructions are executed by the Fast Adder unit:
* (V)ADDSUBSS/SD/PS/PD

* (V)ADDSS/SD/PS/PD

* (V)SUBSS/SD/PS/PD

2.3.1.3 Cache Subsystem and Memory Subsystem

The cache subsystem and memory subsystem changes in the Golden Cove microarchitecture are:

®* Maximum load bandwidth increased from 2 to 3 loads per cycle. Bandwidth of Intel AVX-512 loads,
Intel AMX loads, and MMX/x87 loads remain at a maximum of 2 loads per cycle.

®* Simultaneous handling of more loads and stores enabled by enlarged buffers.

®* Number of entries for 4K pages in the load DTLB increased from 64 to 96.

® Page Miss handler can handle up to four D-side page walks in parallel instead of two.
®* Increased number of outstanding DCU and MLC misses.

®* Enhanced data prefetchers for increased memory parallelism.

® Partial store forwarding allowing forwarding data from store to load also when only part of the load
was covered by the store (in case the load's offset matches the store's offset).

23.14 Avoiding Destination False Dependency

Some SIMD instructions incur false dependency on the destination operand. The following instructions
are affected:

* VFMULCSH, VFMULCPH

* VFCMULCSH, VFCMULCPH

®* VPERMD, VPERMQ, VPERMPS, VPERMPD

* VRANGE[SS,PS,SD,PD]

® VGETMANTSH, VGETMANTSS, VGETMANTSD

® VGETMANTPS, VGETMANTPD (memory versions only)
* VPMULLQ

1. The Fast Adder unit is not available on 512-bit vectors in Client parts.

2-12



INTEL® 64 AND |IA-32 PROCESSOR ARCHITECTURES

Recommendation: Use dependency breaking zero idioms on the destination register before the
affected instructions to avoid potential slowdown from the false dependency.

Example 2-5. Breaking False Dependency through Zero Idiom

Code with False Dependency Impact

Mitigation: Break False Dependency with Zero Idiom

vaddps zmm3, zmm4, zmm5
vmovaps [rsi], zmm3
vfmulcph zmm3, zmm2, zmm1 ;False dependency on
zmm3.
Will not execute out-of-order
until vaddps writes zmm3.

vaddps zmm3, zmm4, zmm5

vmovaps [rsi], zmm3

vpxord zmm3, zmm3, zmm3  ;Dependency-breaking

zero idiom.

vfmulcph zmm3, zmm2, zmm1 ;Execute out-of-order
without waiting for

vaddps result.
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2.4 ICE LAKE CLIENT MICROARCHITECTURE

The Ice Lake Client microarchitecture introduces the following new features that allow optimizations of
applications for performance and power consumption:

®* Targeted vector acceleration.

®* Crypto acceleration.

* Intel® Software Guard Extensions (Intel® SGX) enhancements.
® Cache line writeback instruction (CLWB).

2.4.1 Ice Lake Client Microarchitecture Overview
The Ice Lake Client microarchitecture builds on the successes of the Skylake Client microarchitecture.
The basic pipeline functionality of the Ice Lake Client microarchitecture is depicted in Figure 2-3.

32KB
Instruction Cache BPU
Legacy
Decode Pipeline nop Cache MSROM
| pop Queue |
| Allocate / Rename / Move Elimination / Zero Idiom |
| Scheduler |
P4+PO|]| P2 P8 || P3 P7 Port O Port 1 Port 5 Port 6
Séore load || STA || load || sTA ALU ALU ALU ALU
ata E LEA LEA LEA LEA
I ) ' =| shift Mul MulHi Shift
| 48KB L1 Data Cache | IMP1 iDIV IMP2
} FMA FMA*
— 512KB L2 Cache | g Aw ALU* ALU
= | Shift Shift*
I fpDIV Shuffle* Shuffle
| SOC |

Figure 2-3. Processor Core Pipeline Functionality of the Ice Lake Client Microarchitecture’

NOTES:

1. "*"in the figure above indicates these features are not available for 512-bit vectors.
2. “INT” represents GPR scalar instructions.

3. “VEC" represents floating-point and integer vector instructions.

4, “MulHi" produces the upper 64 bits of the result of an iMul operation that multiplies two 64-bit registers and places the
result into two 64-bits registers.

5. The "Shuffle” on port 1 is new, and supports only in-lane shuffles that operate within the same 128-bit sub-vector.
6. The “iDIV” unit on port 1 is new, and performs integer divide operations at a reduced latency.

The Ice Lake Client microarchitecture introduces the following new features:
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® Significant increase in size of key structures enable deeper OO0 execution.
®* Wider machine: 4 — 5 wide allocation, 8 — 10 execution ports.

* Intel AVX-512 (new for client processors): 512-bit vector operations, 512-bit loads and stores to
memory, and 32 new 512-bit registers.

® Greater capabilities per execution port (e.g., SIMD shuffle, LEA), reduced latency Integer Divider.
* 2xBW for AES-NI peak throughput for existing binaries (microarchitectural).
® Rep move string acceleration.

® 50% increase in size of the L1 data cache.

®* Reduced effective load latency.

® 2xL1 store bandwidth: 1 — 2 stores per cycle.

®* Enhanced data prefetchers for increased memory parallelism.

® Larger 2nd level TLB.

® Larger uop cache.

®* Improved branch predictor.

® Large page ITLB size in single thread mode doubled.

® Larger L2 cache.

The Ice Lake Client microarchitecture supports flexible integration of multiple processor cores with a
shared uncore sub-system consisting of a number of components including a ring interconnect to
multiple slices of L3, processor graphics, integrated memory controller, interconnect fabrics, and more.

2.4.1.1 The Front End

The front end changes in Ice Lake Client microarchitecture include:

®* Improved branch predictor.

® Large page ITLB in single thread mode increased from 8 to 16 entries.
® Larger uop cache.

®* The IDQ can hold 70 uops per logical processor vs. 64 uops per logical processor in previous
generations when two sibling logical processors in the same core are active (2x70 vs. 2x64 per
core). If only one logical processor is active in the core, the IDQ can hold 70 uops vs. 64 uops.

® The LSD in the IDQ can detect loops of up to 70 uops per logical processor irrespective single thread
or multi thread operation.

24.1.2 The Out of Order and Execution Engines

The Out of Order and execution engines changes in Ice Lake Client microarchitecture include:

®* Asignificant increase in size of reorder buffer, load buffer, store buffer, and reservation stations
enable deeper OO0 execution and higher cache bandwidth.

® Wider machine: 4 — 5 wide allocation, 8 — 10 execution ports.
® Greater capabilities per execution port (e.g., SIMD shuffle, LEA).
® Reduced latency Integer Divider.

®* Anew iDIV unit was added that significantly reduces the latency and improves the of throughput of
integer divide operations.
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Table 2-4 summarizes the OO0 engine's capability to dispatch different types of operations to ports.

Table 2-4. Dispatch Port and Execution Stacks of the Ice Lake Client Microarchitecture

Port 0 Port 1! Port 2 Port 3 Port 4 Port 5 Port 6 Port 7 Port 8 Port9
INT ALU INT ALU Load Load Store INT ALU INT ALU Store Store Store
LEA LEA Data LEA LEA Address | Address | Data
INT Shift | INT Mul INT MUL | INT Shift
Jump1 INT Div Hi Jump2
FMA FMA* Vec ALU
Vec ALU | Vec ALU* Vec
Vec Shift | Vec Shuffle
EP Div Shift*

Vec
Shuffle*
NOTES:

1."*"in this table indicates these features are not available for 512-bit vectors.

Table 2-5 lists execution units and common representative instructions that rely on these units.

Throughput improvements across the SSE, Intel AVX, and general-purpose instruction sets are related to
the number of units for the respective operations, and the varieties of instructions that execute using a
particular unit.

Table 2-5. Ice Lake Client Microarchitecture Execution Units and Representative Instructions’

Execution # of Instructions
Unit Unit

ALU 4 add, and, cmp, or, test, xor, movzx, movsx, mov, (v)movdqu, (v)movdga, (v)movap*, (v)movup*

SHFT 2 sal, shl, rol, adc, sarx, adcx, adox, etc.

Slow Int 1 mul, imul, bsr, rcl, shid, mulx, pdep, etc.

BM 2 andn, bextr, blsi, blsmsk, bzhi, etc.

Vec ALU 3 (v)pand, (v)por, (v)pxor, (v)movq, (v)movq, (v)movap*, (v)movup*, (v)andp*, (v)orp*,
(v)paddb/w/d/q, (v)blendv*, (v)blendp*, (v)pblendd

Vec_Shft 2 (v)psliv*, (v)psriv*, vector shift count in imm8

Vec Add 2 (v)addp*, (v)cmpp*, (v)max*, (v)min*, (v)padds*, (v)paddus?*, (v)psign, (v)pabs, (v)pavgb,
(v)pcmpeq*, (v)pmax, (v)cvtps2dq, (v)cvtdq2ps, (v)cvtsd2si, (v)cviss2si

Shuffle 2 (v)shufp*, vperm*, (v)pack*, (v)unpck*, (v)punpck*, (v)pshuf*, (v)pslidq, (v)alignr, (v)pmovzx*,
vbroadcast?*, (v)pslidq, (v)psrldq, (v)pblendw

Vec Mul 2 (v)mul*, (v)pmul*, (v)pmadd*

SIMD Misc 1 STTNI, (v)pclmulgdgq, (v)psadw, vector shift count in xmm

FP Mov 1 (v)movsd/ss, (v)movd gpr

DIVIDE 1 divp*, divs*, vdiv*, sqrt*, vsqrt*, rcp*, vrcp*, rsqrt?*, idiv
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:\I.OE-I;(isc.ution unit mapping to MMX instructions are not covered in this table. See Section 15.16.5 on MMX instruction
throughput remedy.
Table 2-6 describes bypass delay in cycles between producer and consumer operations.
Table 2-6. Bypass Delay Between Producer and Consumer Micro-ops
TO [EU/PORT/Latency]
FROM SIMD/0,1/1 | FMA/0,1/4 | VIMUL/O0,1/4 | SIMD/5/1,3 | SHUF/5/1, | V21/0/3 | 12V/5/1
[EU/Port/Latency] 3
SIMD/0,1/1 0 1 1 0 0 0 NA
FMA/0,1/4 1 0 1 0 0 0 NA
VIMUL/0,1/4 1 0 1 0 0 0 NA
SIMD/5/1,3 0 1 1 0 0 0 NA
SHUF/5/1,3 0 0 1 0 0 0 NA
vai/o/3 0 0 1 0 0 0 NA
12V/5/1 0 1 1 0 0 0 NA

The attributes that are relevant to the producer/consumer micro-ops for bypass are a triplet of abbrevi-
ation/one or more port number/latency cycle of the uop. For example:

“SIMD/0,1/1" applies to 1-cycle vector SIMD uop dispatched to either port 0 or port 1.
“SIMD/5/1,3" applies to either a 1-cycle or 3-cycle non-shuffle uop dispatched to port 5.
“V21/0/3" applies to a 3-cycle vector-to-integer uop dispatched to port 0.

“12V/5/1" applies to a 1-cycle integer-to-vector uop to port 5.

2413 Cache and Memory Subsystem

The cache hierarchy changes in Ice Lake Client microarchitecture include:

50% increase in size of the L1 data cache.

2xL1 store bandwidth: 3 — 4 AGUs, 1 — 2 store data.

Simultaneous handling of more loads and stores enabled by enlarged buffers.
Higher cache bandwidth compared to previous generations.

Larger 2nd level TLB: 1.5K entries — 2K entries.

Enhanced data prefetchers for increased memory parallelism.

L2 cache size increased from 256KB to 512KB.

L2 cache associativity increased from 4 ways to 8 ways.

Significant reduction in effective load latency.
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Table 2-7. Cache Parameters of the Ice Lake Client Microarchitecture

Capacity / Line Size | Latency’ Peak Bandwidth Sustained Bandwidth | Update
Level Associativity (bytes) | (cycles) (bytes/cycles) (bytes/cycles) Policy
First Level | 48KB/8 64 5 2x64B loads + 1x64B | Same as peak Writeback
(DCU) or 2x32B stores
Second 512KB/8 64 13 64 48 Writeback
Level (MLC)
Third Level | Up to 2MB per 64 Xx2 32 21 Writeback
(LLG) core/up to 16 ways
NOTES:

1. Software-visible latency/bandwidth will vary depending on access patterns and other factors.
2. This number depends on core count.

The TLB hierarchy consists of dedicated level one TLB for instruction cache, TLB for L1D, shared L2 TLB
for 4K and 4MB pages and a dedicated L2 TLB for 1GB pages.

Table 2-8. TLB Parameters of the Ice Lake Client Microarchitecture

Per-thread Entries
Level Page Size Entries ST MT Latency Associativity
Instruction 4KB 128 64 8
Instruction 2MB/4MB 16 8 8
First Level Data (loads) | 4KB 64 64 competitively 4
shared
First Level Data (loads) | 2MB/4MB 32 32 competitively 4
shared
First Level Data (loads) | 1GB 8 8 competitively shared | 8
First Level Data (stores) | Shared for all page | 16 16 competitively 16
sizes shared
Second Level Shared for all page | 2048! 2048 competitively 16
sizes shared

NOTES:
1. 4K pages can use all 2048 entries. 2/4MB pages can use 1024 entries (in 8 ways), sharing them with 4K pages. 1GB
pages can use the other 1024 entries (in 8 ways), also sharing them with 4K pages.

Paired Stores

Ice Lake Client microarchitecture includes two store pipelines in the core, with the following features:
®* Two dedicated AGU for LDs on ports 2 and 3.

® Two dedicated AGU for STAs on ports 7 and 8.

* Two fully featured STA pipelines.

® Two 256-bit wide STD pipelines (AVX-512 store data takes two cycles to write).

® Second senior store pipeline to the DCU via store merging.

Ice Lake Client microarchitecture can write two senior stores to the cache in a single cycle if these two
stores can be paired together. That is:

® The stores must be to the same cache line.
® Both stores are of the same memory type, WB or USWC.
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®* None of the stores cross cache line or page boundary.

In order to maximize performance from the second store port try to:

* Align store operations whenever possible.

®* Place consecutive stores in the same cache line (not necessarily as adjacent instructions).
As seen in Example 2-6, it is important to take into consideration all stores, explicit or not.

Example 2-6. Considering Stores

Stores are Paired Across Loop Iterations Stores Not Paired Due to Stack Update in Between
Loop: Loop:
compute reg call function to compute reg
store [X], reg store [X], reg
add X, 4 add X, 4
jmp Loop ; stores from different iterations of the jmp Loop ; stores from different iterations of the
loop can be paired all together because loop cannot be paired anymore because
they usually would be same line of the call store to stack
; the call is disturbing pairing

In some cases it is possible to rearrange the code to achieve store pairing. See the example below for
details.

Example 2-7. Rearranging Code to Achieve Store Pairing

Stores to Different Cache Lines - Not Paired Unrolling May Solve the Problem
Loop: Loop:
.. compute ymm1 ... .. compute ymm1 ...
vmovaps [x], ymm1 vmovaps [X], ymm1
.. compute ymmZ2 ... .. compute new ymm1 ...
vmovaps [v], ymm2 vmovaps [x+32], ymm1
add x, 32 .. compute ymmZ2 ...
addy, 32 vmovaps [v], ymm2
jmp Loop ; this loop cannot pair any store because .. compute new ymm?2 ...
of alternating store to different cache vmovaps [y+32], ymm?2
lines [x] and [y] add x, 64
add y, 64
jmp Loop ; the loop was unrolled 2 times and stores
re-arranged to make sure two stores to
the same cache line are placed one after
another. Now stores to addresses [x] and
[x+32] are to the same cache line and
could be paired together and executed in
same cycle

24.1.4 New Instructions

New instructions and architectural changes in Ice Lake Client microarchitecture are listed below. Actual
support may be product dependent.

®* Crypto acceleration
— SHA NI for acceleration of SHA1 and SHA256 hash algorithms.

— Big-Number Arithmetic (IFMA): VPMADD52 - two new instructions for big number multiplication
for acceleration of RSA vectorized SW and other Crypto algorithms (Public key) performance.
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— Galois Field New Instructions (GFNI) for acceleration of various encryption algorithms, error
correction algorithms, and bit matrix multiplications.

— Vector AES and Vector Carry-less Multiply (PCLMULQDQ) instructions to accelerate AES and AES-
GCM.

® Security Technologies

— Intel® SGX enhancements to improve usability and applicability: EDMM, multi-package server
support, support for VMM memory oversubscription, performance, larger secure memory.

® Sub Page protection for better performance of security VMMs.
®* Targeted Acceleration

— Vector Bit Manipulation Instructions: VBMI1 (permutes, shifts) and VBMI2 (Expand, Compress,
Shifts)- used for columnar database access, dictionary based decompression, discrete mathe-
matics, and data-mining routines (bit permutation and bit-matrix-multiplication).

— VNNI with support for integer 8 and 16 bits data types- CNN/ML/DL acceleration.
— Bit Algebra (POPCNT, Bit Shuffle).

— Cache line writeback instruction (CLWB) enables fast cache-line update to memory, while
retaining clean copy in cache.

®* Platform analysis features for more efficient performance software tuning and debug.
— AnyThread removal.
— 2x general counters (up to 8 per-thread).
— Fixed Counter 3 for issue slots.

— New performance metrics for built-in support for Level 1 Top-Down method (% of Issue slots that
are front-end bound, back-end bound, bad speculation, retiring) while leaving the 8 general
purpose counters free for software use.

24.1.5 Ice Lake Client Microarchitecture Power Management

Processors based on Ice Lake Client microarchitecture are the first client processors whose cores may
execute at a different frequency from one another. The frequency is selected based on the specific
instruction mix; the type, width and number of vector instructions of the program that executes on each
core, the ratio between active time and idle time of each core, and other considerations such as how
many cores share similar characteristics.

Most of the power management features of Skylake Server Microarchitecture (see Section 2.5) is appli-
cable to Ice Lake Client microarchitecture as well. The main differences are the following:

* The typical POn max frequency difference between Intel® Advanced Vector Extensions (Intel® AvVX-
512) and Intel® Advanced Vector Extensions 2 (Intel® AVX2) on Ice Lake Client microarchitecture is
much lower than on Skylake Server microarchitecture. Therefore, the negative impact on overall
application performance is much smaller.

® All processors based on Ice Lake Client microarchitecture contain a single 512-bit FMA unit, whereas
some of the processors based on Skylake Server microarchitecture contain two such units. Both
processors contain two 256-bit FMA units. The power consumed by Ice Lake Client FMA units is the
same, whereas on Skylake Server the 512-bit units consume twice as much.

Compute heavy workloads, especially those that span multiple Ice Lake client cores, execute at a lower
frequency than POn, both under Intel AVX-512 and under Intel AVX2 instruction sets, due to power
limitations. In this scenario, Intel AVX-512 architecture, which requires less dynamic instructions to
complete the same task than Intel AVX2 architecture, consumes less power and thus may achieve higher
frequency. The net result may be higher performance due to the shorter path length and a bit higher
frequency.

There are still some cases where coding to the Intel AVX-512 instruction set yields lower performance
than when coding to the Intel AVX2 instruction set. Sometimes it is due to microarchitecture artifacts of

2-20



INTEL® 64 AND |IA-32 PROCESSOR ARCHITECTURES

longer vectors, in other cases the natural vectors are just not long enough. Most compilers are still
maturing their Intel AVX-512 support, and it may take them a few more years to generate optimal code.

The general recommendation in the Skylake Server Power Management section (see Section 2.5.3) still
holds. Developers should code to the Intel AVX-512 instruction set and compare the performance to their
Intel AVX2 workload on Ice Lake Client microarchitecture, before making the decision to proceed with a
complete port.

2.5 SKYLAKE SERVER MICROARCHITECTURE

The Intel® Xeon® Processor Scalable Family is based on the Skylake Server microarchitecture. Proces-
sors based on the Skylake microarchitecture can be identified using CPUID’s DisplayFamily_DisplayModel
signature, which can be found in Table 2-1 of CHAPTER 2 of Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 4.

The Skylake Server microarchitecture introduces the following new features! that allow you to optimize
your application for performance and power consumption.

®* A new core based on the Skylake Server microarchitecture with process improvements based on the
Kaby Lake microarchitecture.

* Intel® Advanced Vector Extensions 512 (Intel® AVX-512) support.

® More cores per socket (max 28 vs. max 22).

® 6 memory channels per socket in Skylake microarchitecture vs. 4 in the Broadwell microarchitecture.
® Bigger L2 cache, smaller non inclusive L3 cache.

* Intel® Optane™ support.

* Intel® Omni-Path Architecture (Intel® OPA).

® Sub-NUMA Clustering (SNC) support.

The green stars in Figure 2-4 represent new features in Skylake Server microarchitecture compared to
Skylake microarchitecture for client; a 1MB L2 cache and an additional Intel AVX-512 FMA unit on port 5
which is available on some parts.

Since port 0 and port 1 are 256-bits wide, Intel AVX-512 operations that will be dispatched to port 0 will
execute on both port 0 and port 1; however, other operations such as /ea can still execute on port 1 in
parallel. See the red block in Figure 2-8 for the fusion of ports 0 and 1.

Notice that, unlike Skylake microarchitecture for client, the Skylake Server microarchitecture has its
front end loop stream detector (LSD) disabled.

1. Some features may not be available on all products.
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Figure 2-4. Processor Core Pipeline Functionality of the Skylake Server Microarchitecture

2.5.1 Skylake Server Microarchitecture Cache

The Intel Xeon Processor Scalable Family based on Skylake Server microarchitecture has significant
changes in core and uncore architecture to improve performance and scalability of several components
compared with the previous generation of the Intel Xeon processor family based on Broadwell microar-
chitecture.

2.5.1.1

Skylake Server microarchitecture implements a mid-level (L2) cache of 1 MB capacity with a minimum
load-to-use latency of 14 cycles. The mid-level cache capacity is four times larger than the capacity in
previous Intel Xeon processor family implementations. The line size of the mid-level cache is 64B and it
is 16-way associative. The mid-level cache is private to each core.

Larger Mid-Level Cache

Software that has been optimized to place data in mid-level cache may have to be revised to take advan-
tage of the larger mid-level cache available in Skylake Server microarchitecture.

2.5.1.2 Non-Inclusive Last Level Cache

The last level cache (LLC) in Skylake is a non-inclusive, distributed, shared cache. The size of each of the
banks of last level cache has shrunk to 1.375 MB per bank. Because of the non-inclusive nature of the last
level cache, blocks that are present in the mid-level cache of one of the cores may not have a copy resi-
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dent in a bank of last level cache. Based on the access pattern, size of the code and data accessed, and
sharing behavior between cores for a cache block, the last level cache may appear as a victim cache of
the mid-level cache and the aggregate cache capacity per core may appear to be a combination of the
private mid-level cache per core and a portion of the last level cache.

25.1.3 Skylake Server Microarchitecture Cache Recommendations

A high-level comparison between Skylake Server microarchitecture cache and the previous generation
Broadwell microarchitecture cache is available in the table below.

Table 2-9. Cache Comparison Between Skylake Microarchitecture and Broadwell Microarchitecture

Cache level Category Broadwell Skylake Server
Microarchitecture Microarchitecture
L1 Data Cache Size [KB] 32 32
Unit (DCU)
Latency [cycles] 4-6 4-6
Max bandwidth [bytes/cycles] 96 192
Sustained bandwidth [bytes/cycles] 93 133
Associativity [ways] 8 8
L2 Mid-level Cache | Size [KB] 256 1024 (1MB)
(MLC)
Latency [cycles] 12 14
Max bandwidth [bytes/cycles] 32 64
Sustained bandwidth [bytes/cycles] 25 52
Associativity [ways] 8 16
L3 Last-level Size [MB] Up to 2.5 per core up to 1.375" per core
Cache (LLC)
Latency [cycles] 50-60 50-70
Max bandwidth [bytes/cycles] 16 32
Sustained bandwidth [bytes/cycles] 14 15
NOTES:

1. Some Skylake Server parts have some cores disabled and hence have more than 1.375 MB per core of L3 cache.

The figure below shows how Skylake Server microarchitecture shifts the memory balance from shared-
distributed with high latency, to private-local with low latency.
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Broadwell Server Cache Structure

Shared L3 Cache (Inclusive): 2.5MB * N

Skylake Server Cache Structure
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Figure 2-5. Broadwell Microarchitecture and Skylake Server Microarchitecture Cache Structures

The potential performance benefit from the cache changes is high, but software will need to adapt its
memory tiling strategy to be optimal for the new cache sizes.

Recommendation: Rebalance application shared and private data sizes to match the smaller, non-
inclusive L3 cache, and larger L2 cache.

Choice of cache blocking should be based on application bandwidth requirements and changes from one
application to another. Having four times the L2 cache size and twice the L2 cache bandwidth compared
to the previous generation Broadwell microarchitecture enables some applications to block to L2 instead
of L1 and thereby improves performance.

Recommendation: Consider blocking to L2 on Skylake Server microarchitecture if L2 can sustain the
application’s bandwidth requirements.

The change from inclusive last level cache to non-inclusive means that the capacity of mid-level and last
level cache can now be added together. Programs that determine cache capacity per core at run time
should now use a combination of mid-level cache size and last level cache size per core to estimate the
effective cache size per core. Using just the last level cache size per core may result in non-optimal use
of available on-chip cache; see Section 2.5.2 for details.

Recommendation: In case of no data sharing, applications should consider cache capacity per core as
L2 and L3 cache sizes and not only L3 cache size.

2.5.2 Non-Temporal Stores on Skylake Server Microarchitecture

Because of the change in the size of each bank of last level cache on Skylake Server microarchitecture, if
an application, library, or driver only considers the last level cache to determine the size of on-chip cache-
per-core, it may see a reduction with Skylake Server microarchitecture and may use non-temporal store
with smaller blocks of memory writes. Since non-temporal stores evict cache lines back to memory, this
may result in an increase in the number of subsequent cache misses and memory bandwidth demands
on Skylake Server microarchitecture, compared to the previous Intel Xeon processor family.

Also, because of a change in the handling of accesses resulting from non-temporal stores by Skylake
Server microarchitecture, the resources within each core remain busy for a longer duration compared to
similar accesses on the previous Intel Xeon processor family. As a result, if a series of such instructions
are executed, there is a potential that the processor may run out of resources and stall, thus limiting the
memory write bandwidth from each core.
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The increase in cache misses due to overuse of non-temporal stores and the limit on the memory write
bandwidth per core for non-temporal stores may result in reduced performance for some applications.

To avoid the performance condition described above with Skylake Server microarchitecture, include mid-
level cache capacity per core in addition to the last level cache per core for applications, libraries, or
drivers that determine the on-chip cache available with each core. Doing so optimizes the available on-
chip cache capacity on Skylake Server microarchitecture as intended, with its non-inclusive last level
cache implementation.

2.5.3 Skylake Server Power Management
This section describes the interaction of Skylake Server's Power Management and its Vector ISA.

Skylake Server microarchitecture dynamically selects the frequency at which each of its cores executes.
The selected frequency depends on the instruction mix; the type, width, and number of vector instruc-

tions that execute over a given period of time. The processor also takes into account the number of cores
that share similar characteristics.

Intel® Xeon® processors based on Broadwell microarchitecture work similarly, but to a lesser extent
since they only support 256-bit vector instructions. Skylake Server microarchitecture supports Intel®
AVX-512 instructions, which can potentially draw more current and more power than Intel® AVX2
instructions.

The processor dynamically adjusts its maximum frequency to higher or lower levels as necessary, there-
fore a program might be limited to different maximum frequencies during its execution.

Table 2-10 includes information about the maximum Intel® Turbo Boost technology core frequency for
each type of instruction executed. The maximum frequency (POn) is an array of frequencies which
depend on the number of cores within the category. The more cores belonging to a category at any given
time, the lower the maximum frequency.

Table 2-10. Maximum Intel® Turbo Boost Technology Core Frequency Levels

Level Category Frequency Level Max Frequency (POn) |Instruction Types

0 Intel® AVX2 light | Highest Max Scalar, AVX128, SSE, Intel® AVX2 w/o FP
instructions or INT MUL/FMA

1 Intel® AVX2 heavy |Medium Max Intel® AVX2 Intel® AVX2 FP + INT MUL/FMA, Intel®
instructions + AVX-512 without FP or INT MUL/FMA

Intel® AVX-512
light instructions

2 Intel® AVX-512 Lowest Max Intel® AVX-512 Intel® AVX-512 FP + INT MUL/FMA
heavy instructions

For per SKU max frequency details (reference figure 1-15), refer to the Intel® Xeon® Processor Scalable
Family Specification Update located here: https://www.intel.com/content/www/us/en/proces-
sors/xeon/scalable/xeon-scalable-spec-update.html.
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Figure 2-6 is an example for core frequency range in a given system where each core frequency is deter-
mined independently based on the demand of the workload.

Mixed Workloads

PON |-mmmmmmmmm ey —
POn-AVX2 |-~ ———— X - ———— X -
POn-AVX-512 |- e eeeeq €1
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P1-AVX2 |- -S54 oo oo oo Cores using Intel® AVX2
P1-AVX-512 |- - - - -~ T Cores not using Intel®AVX

SOMO00060

Figure 2-6. Mixed Workloads

The following performance monitoring events can be used to determine how many cycles were spent in
each of the three frequency levels.

® CORE_POWER.LVLO_TURBO_LICENSE: Core cycles where the core was running in a manner where
the maximum frequency was POn.

® CORE_POWER.LVL1_TURBO_LICENSE: Core cycles where the core was running in a manner where
the maximum frequency was POn-AVX2.

® CORE_POWER.LVL2_TURBO_LICENSE: Core cycles where the core was running in a manner where
the maximum frequency was POn-AVX-512.

When the core requests a higher license level than its current one, it takes the PCU up to 500 micro-
seconds to grant the new license. Until then the core operates at a lower peak capability. During this time
period the PCU evaluates how many cores are executing at the new license level and adjusts their
frequency as necessary, potentially lowering the frequency. Cores that execute at other license levels are
not affected.

A timer of approximately 2ms is applied before going back to a higher frequency level. Any condition that
would have requested a new license resets the timer.

NOTES

A license transition request may occur when executing instructions on a mis-speculated
path.

A large enough mix of Intel AVX-512 light instructions and Intel AVX2 heavy instructions
drives the core to request License 2, despite the fact that they usually map to License 1.
The same is true for Intel AVX2 light instructions and Intel SSE heavy instructions that
may drive the core to License 1 rather than License 0. For example, The Intel® Xeon®
Platinum 8180 processor moves from license 1 to license 2 when executing a mix of 110
Intel AVX-512 light instructions and 20 256-bit heavy instructions over a window of 65
cycles.
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Some workloads do not cause the processor to reach its maximum frequency as these workloads are
bound by other factors. For example, the LINPACK benchmark is power limited and does not reach the
processor's maximum frequency. The following graph shows how frequency degrades as vector width
grows, but, despite the frequency drop, performance improves. The data for this graph was collected on
an Intel Xeon Platinum 8180 processor.

LINPACK Performance
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Figure 2-7. LINPACK Performance

Workloads that execute Intel AVX-512 instructions as a large proportion of their whole instruction count
can gain performance compared to Intel AVX2 instructions, even though they may operate at a lower
frequency. For example, maximum frequency bound Deep Learning workloads that target Intel AVX-512
heavy instructions at a very high percentage can gain 1.3x-1.5x performance improvement vs. the same
workload built to target Intel AVX2 (both operating on Skylake Server microarchitecture).

It is not always easy to predict whether a program's performance will improve from building it to target
Intel AVX-512 instructions. Programs that enjoy high performance gains from the use of xmm or ymm
registers may expect performance improvement by moving to the use of zmm registers. However, some
programs that use zmm registers may not gain as much, or may even lose performance. It is recom-
mended to try multiple build options and measure the performance of the program.

Recommendation: To identify the optimal compiler options to use, build the application with each of the
following set of options and choose the set that provides the best performance.

® -—xCORE-AVX2 -mtune=skylake-avx512 (Linux* and macOS¥*)
/QxCORE-AVX2 /tune=skylake-avx512 (Windows¥*)

® -xCORE-AVX512 -gopt-zmm-usage=low (Linux* and macOS¥*)
/QxCORE-AVX512 /Qopt-zmm-usage:low (Windows*)

® -—xCORE-AVX512 -gopt-zmm-usage=high (Linux* and macOS¥*)
/QxCORE-AVX512 /Qopt-zmm-usage:high (Windows*)

See Section 18.26, "CLDEMOTE" for more information about these options.
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The GCC Compiler has the option -mprefer-vector-width=none|128|256|512 to control vector width
preference. While -march=skylake-avx512 is designed to provide the best performance for the Skylake
Server microarchitecture some programs can benefit from different vector width preferences. To identify
the optimal compiler options to use, build the application with each of the following set of options and
choose the set that provides the best performance. -mprefer-vector-width=256 is the default for
skylake-avx512.

® -march=skylake -mtune=skylake-avx512

® -march=skylake-avx512

® -march=skylake-avx512 -mprefer-vector-width=512
Clang/LLVM is currently implementing the option -mprefer-vector-width=none|128|256|512, similar
to GCC. To identify the optimal compiler options to use, build the application with each of the following

set of options and choose the set that provides the best performance.

® -march=skylake -mtune=skylake-avx512

-march=skylake-avx512 (plus -mprefer-vector-width=256, if available)

-march=skylake-avx512 (plus -mprefer-vector-width=512, if available)

2.6 SKYLAKE CLIENT MICROARCHITECTURE

The Skylake Client microarchitecture builds on the successes of the Haswell and Broadwell microarchitec-
tures. The basic pipeline functionality of the Skylake Client microarchitecture is depicted in Figure 2-8.
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l4 uops/cycle 6 uops/cycle 5 uops/cycle l
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Figure 2-8. CPU Core Pipeline Functionality of the Skylake Client Microarchitecture
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The Skylake Client microarchitecture offers the following enhancements:

Larger internal buffers to enable deeper OO0 execution and higher cache bandwidth.
Improved front end throughput.

Improved branch predictor.

Improved divider throughput and latency.

Lower power consumption.

Improved SMT performance with Hyper-Threading Technology.

Balanced floating-point ADD, MUL, FMA throughput and latency.

The microarchitecture supports flexible integration of multiple processor cores with a shared uncore sub-
system consisting of a number of components including a ring interconnect to multiple slices of L3 (an
off-die L4 is optional), processor graphics, integrated memory controller, interconnect fabrics, etc. A
four-core configuration can be supported similar to the arrangement shown in Appendix E, “Earlier
Generations of Intel® 64 and IA-32 Processor Architectures,” Figure E-2.

2.6.1 The Front End

The front end in the Skylake Client microarchitecture provides the following improvements over previous
generation microarchitectures:

Legacy Decode Pipeline delivery of 5 uops per cycle to the IDQ compared to 4 uops in previous gener-
ations.

The DSB delivers 6 uops per cycle to the IDQ compared to 4 uops in previous generations.

The IDQ can hold 64 uops per logical processor vs. 28 uops per logical processor in previous
generations when two sibling logical processors in the same core are active (2x64 vs. 2x28 per core).
If only one logical processor is active in the core, the IDQ can hold 64 uops (64 vs. 56 uops in ST
operation).

The LSD in the IDQ can detect loops up to 64 uops per logical processor irrespective ST or SMT
operation.

Improved Branch Predictor.

2.6.2 The Out-of-Order Execution Engine

The Out of Order and execution engine changes in Skylake Client microarchitecture include:

Larger buffers enable deeper OO0 execution compared to previous generations.
Improved throughput and latency for divide/sqrt and approximate reciprocals.
Identical latency and throughput for all operations running on FMA units.

Longer pause latency enables better power efficiency and better SMT performance resource utili-
zation.
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Table 2-11 summarizes the OO0 engine’s capability to dispatch different types of operations to various

ports.
Table 2-11. Dispatch Port and Execution Stacks of the Skylake Client Microarchitecture
Port 0 Port 1 Port2, 3 Port 4 Port 5 Port 6 Port 7
ALU, ALU, LD STD ALU, ALU, STA
Vec ALU Fast LEA, STA Fast LEA, Shft,
Vec ALU Vec ALU,
Vec Shft, Vec Shft, Vec Shuffle, Branch1
Vec Add, Vec Add,
Vec Mul, Vec Mul,
FMA, FMA
DIV, Slow Int
Branch?2 Slow LEA

Table 2-12 lists execution units and common representative instructions that rely on these units.
Throughput improvements across the SSE, AVX and general-purpose instruction sets are related to the
number of units for the respective operations, and the varieties of instructions that execute using a

particular unit.

Table 2-12. Skylake Client Microarchitecture Execution Units and Representative Instructions’

Execution # of Instructions
Unit Unit

ALU 4 add, and, cmp, or, test, xor, movzx, movsx, mov, (v)movdqu, (v)movdga, (v)movap*, (v)movup*

SHFT 2 sal, shl, rol, adc, sarx, adcx, adox, etc.

Slow Int 1 mul, imul, bsr, rcl, shid, mulx, pdep, etc.

BM 2 andn, bextr, blsi, blsmsk, bzhi, etc

Vec ALU 3 (v)pand, (v)por, (v)pxor, (v)movq, (v)movq, (v)movap*, (v)movup*,
(v)andp*, (v)orp*, (v)paddb/w/d/q, (v)blendv*, (v)blendp*, (v)pblendd

Vec_Shft 2 (v)psliv*, (v)psriv*, vector shift count in imm8

Vec Add 2 (v)addp*, (v)cmpp*, (v)max*, (v)min*, (v)padds*, (v)paddus?*, (v)psign, (v)pabs, (v)pavgb,
(v)pcmpeq*, (v)pmax, (v)cvtps2daq, (v)cvtdqlps, (v)cvtsdZsi, (v)cvtssesi

Shuffle 1 (v)shufp*, vperm*, (v)pack*, (v)unpck*, (v)punpck?*, (v)pshuf*, (v)pslidg, (v)alignr, (v)pmovzx*,
vbroadcast*, (v)pslidq, (v)psrldg, (v)pblendw

Vec Mul 2 (v)mul*, (v)pmul*, (v)pmadd*,

SIMD Misc 1 STTNI, (v)pcimulgdq, (v)psadw, vector shift count in xmm,

FP Mov 1 (v)movsd/ss, (v)movd gpr,

DIVIDE 1 divp*, divs*, vdiv*, sqrt*, vsqrt*, rcp*, vrcp*, rsqrt?*, idiv

NOTES:

1. Execution unit mapping to MMX instructions are not covered in this table. See Section 15.16.5 on MMX instruction
throughput remedy.
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A significant portion of the SSE, AVX and general-purpose instructions also have latency improvements.
Appendix C lists the specific details. Software-visible latency exposure of an instruction sometimes may
include additional contributions that depend on the relationship between micro-ops flows of the producer
instruction and the micro-op flows of the ensuing consumer instruction. For example, a two-uop instruc-
tion like VPMULLD may experience two cumulative bypass delays of 1 cycle each from each of the two
micro-ops of VPMULLD.

Table 2-13 describes the bypass delay in cycles between a producer uop and the consumer uop. The left-
most column lists a variety of situations characteristic of the producer micro-op. The top row lists a
variety of situations characteristic of the consumer micro-op.

Table 2-13. Bypass Delay Between Producer and Consumer Micro-ops

SIMD/0,1/1 | FMA/0,1/4 | VIMUL/O,1/4 | SIMD/5/1,3 | SHUF/5/1,3 | V21/0/3 | 12V/5/1

SIMD/0,1/1 0 1 1 0 0 0 NA
FMA/0,1/4 1 0 1 0 0 0 NA
VIMUL/0,1/4 | 1 0 1 0 0 0 NA
SIMD/5/1,3 0 1 1 0 0 0 NA
SHUF/5/1,3 0 0 1 0 0 0 NA
val/0/3 NA NA NA NA NA NA NA
12V/5/1 0 0 1 0 0 0 NA

The attributes that are relevant to the producer/consumer micro-ops for bypass are a triplet of abbrevi-
ation/one or more port number/latency cycle of the uop. For example:

* "“SIMD/0,1/1"” applies to 1-cycle vector SIMD uop dispatched to either port 0 or port 1.
* “WIMUL/0,1/4" applies to 4-cycle vector integer multiply uop dispatched to either port 0 or port 1.
* "“SIMD/5/1,3" applies to either 1-cycle or 3-cycle non-shuffle uop dispatched to port 5.

2.6.3 Cache and Memory Subsystem

The cache hierarchy of the Skylake Client microarchitecture has the following enhancements:
® Higher Cache bandwidth compared to previous generations.
®* Simultaneous handling of more loads and stores enabled by enlarged buffers.

® Processor can do two page walks in parallel compared to one in Haswell microarchitecture and earlier
generations.

® Page split load penalty down from 100 cycles in previous generation to 5 cycles.
® L3 write bandwidth increased from 4 cycles per line in previous generation to 2 per line.

® Support for the CLFLUSHOPT instruction to flush cache lines and manage memory ordering of flushed
data using SFENCE.

®* Reduced performance penalty for a software prefetch that specifies a NULL pointer.
® L2 associativity changed from 8 ways to 4 ways.
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Table 2-14. Cache Parameters of the Skylake Client Microarchitecture

Capacity / Line Size | Fastest Peak Bandwidth | Sustained Bandwidth | Update
Level Associativity | (bytes) Latency’ | (bytes/cyc) (bytes/cyc) Policy
First LevelData | 32KB/8 64 4 cycle 96 (2x32B Load + | ~81 Writeback

1*32B Store)

Instruction 32 KB/8 64 N/A N/A N/A N/A
Second Level 256KB/4 64 12 cycle 64 ~29 Writeback
Third Level Up to 2MB 64 44 32 ~18 Writeback
(Shared L3) per core/Up

to 16 ways

NOTES:

1. Software-visible latency will vary depending on access patterns and other factors.

The TLB hierarchy consists of dedicated level one TLB for instruction cache, TLB for L1D, plus unified TLB
for L2. The partition column of Table 2-15 indicates the resource sharing policy when Hyper-Threading
Technology is active.

Table 2-15. TLB Parameters of the Skylake Client Microarchitecture

Level Page Size Entries Associativity Partition
Instruction 4KB 128 8 ways dynamic
Instruction 2MB/4MB 8 per thread fixed
First Level Data 4KB 64 4 fixed
First Level Data 2MB/4MB 32 4 fixed
First Level Data 1GB 4 4 fixed
Second Level Shared by 4KB and 2/4MB pages | 1536 12 fixed
Second Level 1GB 16 4 fixed

2.6.4 Pause Latency in Skylake Client Microarchitecture

The PAUSE instruction is typically used with software threads executing on two logical processors located
in the same processor core, waiting for a lock to be released. Such short wait loops tend to last between
tens and a few hundreds of cycles, so performance-wise it is better to wait while occupying the CPU than
yielding to the OS. When the wait loop is expected to last for thousands of cycles or more, it is preferable
to yield to the operating system by calling an OS synchronization API function, such as WaitForSingleO-
bject on Windows* OS or futex on Linux.

The PAUSE instruction is intended to:

®* Temporarily provide the sibling logical processor (ready to make forward progress exiting the spin
loop) with competitively shared hardware resources. The competitively-shared microarchitectural
resources that the sibling logical processor can utilize in the Skylake Client microarchitecture are
listed below.

— Front end slots in the Decode ICache, LSD and IDQ.
— Execution slots in the RS.

® Save power consumed by the processor core compared with executing equivalent spin loop
instruction sequence in the following configurations.

— One logical processor is inactive (e.g., entering a C-state).

— Both logical processors in the same core execute the PAUSE instruction.
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— HT is disabled (e.g. using BIOS options).

The latency of the PAUSE instruction in prior generation microarchitectures is about 10 cycles, whereas
in Skylake Client microarchitecture it has been extended to as many as 140 cycles.

The increased latency (allowing more effective utilization of competitively-shared microarchitectural
resources to the logical processor ready to make forward progress) has a small positive performance
impact of 1-2% on highly threaded applications. It is expected to have negligible impact on less threaded
applications if forward progress is not blocked executing a fixed number of looped PAUSE instructions.
There's also a small power benefit in 2-core and 4-core systems.

As the PAUSE latency has been increased significantly, workloads that are sensitive to PAUSE latency will
suffer some performance loss.

The following is an example of how to use the PAUSE instruction with a dynamic loop iteration count.

Notice that in the Skylake Client microarchitecture the RDTSC instruction counts at the machine's guar-
anteed P1 frequency independently of the current processor clock (see the INVARIANT TSC property),
and therefore, when running in Intel® Turbo-Boost-enabled mode, the delay will remain constant, but
the number of instructions that could have been executed will change.

Use Poll Delay function in your lock to wait a given amount of guaranteed P1 frequency cycles, specified
in the “clocks” variable.

Example 2-8. Dynamic Pause Loop Example
#include <x86intrin.n>
#include <stdint.h>

/* A useful predicate for dealing with timestamps that may wrap.

Is a before b? Since the timestamps may wrap, this is asking whether it's
shorter to go clockwise from a to b around the clock-face, or anti-clockwise.
Times where going clockwise is less distance than going anti-clockwise

are in the future, others are in the past. e.g. a = MAX-1, b = MAX+1 (=0),
then a > b (true) does not mean a reached b; whereas signed(a) = -2,
signed(b) = O captures the actual difference */

static inline bool before(uint64_t a, uint64_t b)

{
return ((int64_t)b - (int64_t)a) > O;

}

void pollDelay(uint32_t clocks)
{

uint64_t endTime = _rdtsc()+ clocks;

for (; before(_rdtsc(), endTime); )
_mm_pause();

For contended spinlocks of the form shown in the baseline example below, we recommend an exponen-
tial back off when the lock is found to be busy, as shown in the improved example, to avoid significant
performance degradation that can be caused by conflicts between threads in the machine. This is more
important as we increase the number of threads in the machine and make changes to the architecture
that might aggravate these conflict conditions. In multi-socket Intel server processors with shared
memory, conflicts across threads take much longer to resolve as the number of threads contending for
the same lock increases. The exponential back off is designed to avoid these conflicts between the
threads thus avoiding the potential performance degradation. Note that in the example below, the
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number of PAUSE instructions are increased by a factor of 2 until some MAX_BACKOFF is reached which
is subject to tuning.

Example 2-9. Contended Locks with Increasing Back-off Example

/*******************/

/*Baseline Version */

/*******************/

// atomic {if (lock == free) then change lock state to busy}
while (cmpxchg(lock, free, busy) == fail)

{
while (lock == busy)
{
__asm__ ("pause™;
}
}
/ /
/*Improved Version */
/ /
int mask = 1;

int const max = 64; //MAX_BACKOFF
while (cmpxchg(lock, free, busy) == fail)
{
while (lock == busy)
{
for (int i=mask; i; --i){
__asm__ ("pause”);

}

mask = mask < max ? mask<<1 : max;

2.7 INTEL' HYPER-THREADING TECHNOLOGY

Intel® Hyper-Threading Technology (HT Technology) enables software to take advantage of task-level,
or thread-level parallelism by providing multiple logical processors within a physical processor package,
or within each processor core in a physical processor package. In its first implementation in the Intel
Xeon processor, Hyper-Threading Technology makes a single physical processor (or a processor core)
appear as two or more logical processors. Intel Xeon Phi processors based on the Knights Landing
microarchitecture support 4 logical processors in each processor core; see Chapter 23 for detailed infor-
mation of Hyper-Threading Technology that is implemented in the Knights Landing microarchitecture.

Most Intel Architecture processor families support Hyper-Threading Technology with two logical proces-
sors in each processor core, or in a physical processor in early implementations. The rest of this section
describes features of the early implementation of Hyper-Threading Technology. Most of the descriptions
also apply to later Hyper-Threading Technology implementations supporting two logical processors. The
microarchitecture sections in this chapter provide additional details to individual microarchitecture and
enhancements to Hyper-Threading Technology.

The two logical processors each have a complete set of architectural registers while sharing one single
physical processor's resources. By maintaining the architecture state of two processors, an HT Tech-
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nology capable processor looks like two processors to software, including operating system and applica-
tion code.

By sharing resources needed for peak demands between two logical processors, HT Technology is well
suited for multiprocessor systems to provide an additional performance boost in throughput when
compared to traditional MP systems.

Figure 2-9 shows a typical bus-based symmetric multiprocessor (SMP) based on processors supporting
HT Technology. Each logical processor can execute a software thread, allowing a maximum of two soft-
ware threads to execute simultaneously on one physical processor. The two software threads execute
simultaneously, meaning that in the same clock cycle an “add” operation from logical processor 0 and
another “add” operation and load from logical processor 1 can be executed simultaneously by the execu-
tion engine.

In the first implementation of HT Technology, the physical execution resources are shared and the archi-
tecture state is duplicated for each logical processor. This minimizes the die area cost of implementing HT
Technology while still achieving performance gains for multithreaded applications or multitasking work-
loads.

Architectural Architectural Architectural Architectural
State State State State
Execution Engine Execution Engine
Local APIC Local APIC Local APIC Local APIC
Bus Interface Bus Interface

¢ System Bus ¢
< >

Figure 2-9. Hyper-Threading Technology on an SMP

OM15152

The performance potential due to HT Technology is due to:

® The fact that operating systems and user programs can schedule processes or threads to execute
simultaneously on the logical processors in each physical processor.

®* The ability to use on-chip execution resources at a higher level than when only a single thread is
consuming the execution resources; higher level of resource utilization can lead to higher system
throughput.

2.7.1 Processor Resources and HT Technology

The majority of microarchitecture resources in a physical processor are shared between the logical
processors. Only a few small data structures were replicated for each logical processor. This section
describes how resources are shared, partitioned or replicated.
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2.7.1.1 Replicated Resources

The architectural state is replicated for each logical processor. The architecture state consists of registers
that are used by the operating system and application code to control program behavior and store data
for computations. This state includes the eight general-purpose registers, the control registers, machine
state registers, debug registers, and others. There are a few exceptions, most notably the memory type
range registers (MTRRs) and the performance monitoring resources. For a complete list of the architec-
ture state and exceptions, see the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volumes 3A, 3B, 3C & 3D.

Other resources such as instruction pointers and register renaming tables were replicated to simultane-
ously track execution and state changes of the two logical processors. The return stack predictor is repli-
cated to improve branch prediction of return instructions.

In addition, a few buffers (for example, the 2-entry instruction streaming buffers) were replicated to
reduce complexity.

2.7.1.2 Partitioned Resources

Several buffers are shared by limiting the use of each logical processor to half the entries. These are
referred to as partitioned resources. Reasons for this partitioning include:

® Operational fairness.

® Permitting the ability to allow operations from one logical processor to bypass operations of the other
logical processor that may have stalled.

For example: a cache miss, a branch misprediction, or instruction dependencies may prevent a logical
processor from making forward progress for some number of cycles. The partitioning prevents the stalled
logical processor from blocking forward progress.

In general, the buffers for staging instructions between major pipe stages are partitioned. These buffers
include pop queues after the execution trace cache, the queues after the register rename stage, the
reorder buffer which stages instructions for retirement, and the load and store buffers.

In the case of load and store buffers, partitioning also provided an easier implementation to maintain
memory ordering for each logical processor and detect memory ordering violations.

2.7.1.3 Shared Resources

Most resources in a physical processor are fully shared to improve the dynamic utilization of the resource,
including caches and all the execution units. Some shared resources which are linearly addressed, like
the DTLB, include a logical processor ID bit to distinguish whether the entry belongs to one logical
processor or the other.

2.7.2 Microarchitecture Pipeline and HT Technology

This section describes the HT Technology microarchitecture and how instructions from the two logical
processors are handled between the front end and the back end of the pipeline.

Although instructions originating from two programs or two threads execute simultaneously and not
necessarily in program order in the execution core and memory hierarchy, the front end and back end
contain several selection points to select between instructions from the two logical processors. All selec-
tion points alternate between the two logical processors unless one logical processor cannot make use of
a pipeline stage. In this case, the other logical processor has full use of every cycle of the pipeline stage.
Reasons why a logical processor may not use a pipeline stage include cache misses, branch mispredic-
tions, and instruction dependencies.
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2.7.3 Execution Core

The core can dispatch up to six pops per cycle, provided the pops are ready to execute. Once the pops
are placed in the queues waiting for execution, there is no distinction between instructions from the two
logical processors. The execution core and memory hierarchy is also oblivious to which instructions
belong to which logical processor.

After execution, instructions are placed in the re-order buffer. The re-order buffer decouples the execu-
tion stage from the retirement stage. The re-order buffer is partitioned such that each uses half the
entries.

2.7.4 Retirement

The retirement logic tracks when instructions from the two logical processors are ready to be retired. It
retires the instruction in program order for each logical processor by alternating between the two logical
processors. If one logical processor is not ready to retire any instructions, then all retirement bandwidth
is dedicated to the other logical processor.

Once stores have retired, the processor needs to write the store data into the level-one data cache.
Selection logic alternates between the two logical processors to commit store data to the cache.

2.8 SIMD TECHNOLOGY

SIMD computations (see Figure 2-10) were introduced to the architecture with MMX technology. MMX
technology allows SIMD computations to be performed on packed byte, word, and doubleword integers.
The integers are contained in a set of eight 64-bit registers called MMX registers (see Figure 2-11).

The Pentium Il processor extended the SIMD computation model with the introduction of the Streaming
SIMD Extensions (SSE). SSE allows SIMD computations to be performed on operands that contain four
packed single-precision floating-point data elements. The operands can be in memory or in a set of eight
128-bit XMM registers (see Figure 2-11). SSE also extended SIMD computational capability by adding
additional 64-bit MMX instructions.

Figure 2-10 shows a typical SIMD computation. Two sets of four packed data elements (X1, X2, X3, and
X4,and Y1, Y2, Y3, and Y4) are operated on in parallel, with the same operation being performed on each
corresponding pair of data elements (X1 and Y1, X2 and Y2, X3 and Y3, and X4 and Y4). The results of
the four parallel computations are sorted as a set of four packed data elements.

X4 X3 X2 X1
Y4 Y3 Y2 Y1
vy vy vy v v
X4 op Y4 X3 op Y3 X2 o0p Y2 X1 op Y1
OM15148

Figure 2-10. Typical SIMD Operations
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The Pentium 4 processor further extended the SIMD computation model with the introduction of
Streaming SIMD Extensions 2 (SSE2), Streaming SIMD Extensions 3 (SSE3), and Intel Xeon processor
5100 series introduced Supplemental Streaming SIMD Extensions 3 (SSSE3).

SSE2 works with operands in either memory or in the XMM registers. The technology extends SIMD
computations to process packed double-precision floating-point data elements and 128-bit packed inte-
gers. There are 144 instructions in SSE2 that operate on two packed double-precision floating-point data
elements or on 16 packed byte, 8 packed word, 4 doubleword, and 2 quadword integers.

SSE3 enhances x87, SSE and SSE2 by providing 13 instructions that can accelerate application perfor-
mance in specific areas. These include video processing, complex arithmetics, and thread synchroniza-
tion. SSE3 complements SSE and SSE2 with instructions that process SIMD data asymmetrically,
facilitate horizontal computation, and help avoid loading cache line splits. See Figure 2-11.

SSSE3 provides additional enhancement for SIMD computation with 32 instructions on digital video and
signal processing.

SSE4.1, SSE4.2 and AESNI are additional SIMD extensions that provide acceleration for applications in
media processing, text/lexical processing, and block encryption/decryption.

The SIMD extensions operates the same way in Intel 64 architecture as in IA-32 architecture, with the
following enhancements:

® 128-bit SIMD instructions referencing XMM register can access 16 XMM registers in 64-bit mode.
® Instructions that reference 32-bit general purpose registers can access 16 general purpose registers

in 64-bit mode.
64-bit MMX Registers 128-bit XMM Registers
MM7 XMM7
MM6 XMM6
MM5 XMM5
MM4 XMM4
MM3 XMM3
MM2 XMM2
MM 1 XMM 1
MMO XMMO
OM15149

Figure 2-11. SIMD Instruction Register Usage

SIMD improves the performance of 3D graphics, speech recognition, image processing, scientific applica-
tions and applications that have the following characteristics:

® Inherently parallel.

¢ Recurring memory access patterns.

® Localized recurring operations performed on the data.
®* Data-independent control flow.
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2.9 SUMMARY OF SIMD TECHNOLOGIES AND APPLICATION LEVEL
EXTENSIONS

SIMD floating-point instructions fully support the IEEE Standard 754 for Binary Floating-Point Arithmetic.
They are accessible from all IA-32 execution modes: protected mode, real address mode, and Virtual
8086 mode.

SSE, SSE2, and MMX technologies are architectural extensions. Existing software will continue to run
correctly, without modification on Intel microprocessors that incorporate these technologies. Existing
software will also run correctly in the presence of applications that incorporate SIMD technologies.

SSE and SSE2 instructions also introduced cacheability and memory ordering instructions that can
improve cache usage and application performance.

For more on SSE, SSE2, SSE3 and MMX technologies, see the following chapters in the Inte/® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 1:

* Chapter 9, “Programming with Intel® MMX™ Technology.”

® Chapter 10, “Programming with Streaming SIMD Extensions (SSE).”

® Chapter 11, “Programming with Streaming SIMD Extensions 2 (SSE2).”

* Chapter 12, “Programming with Intel® SSE3, SSSE3,Intel® SSE4 AND Intel® AESNI.”
® Chapter 14, “Programming with AVX, FMA and AVX2.”

® Chapter 15, "Programming with Intel® AVX-512."

® Chapter 16, “Programming with Intel® Transactional Synchronization Extensions.”

2.9.1 MMX™ Technology

MMX Technology introduced:
® 64-bit MMX registers.
® Support for SIMD operations on packed byte, word, and doubleword integers.

Recommendation: Integer SIMD code written using MMX instructions should consider more efficient
implementations using SSE/Intel AVX instructions.

2.9.2 Streaming SIMD Extensions

Streaming SIMD extensions introduced:

® 128-bit XMM registers.

® 128-bit data type with four packed single-precision floating-point operands.

® Data prefetch instructions.

®* Non-temporal store instructions and other cacheability and memory ordering instructions.
® Extra 64-bit SIMD integer support.

SSE instructions are useful for 3D geometry, 3D rendering, speech recognition, and video encoding and
decoding.

2.9.3 Streaming SIMD Extensions 2

Streaming SIMD extensions 2 add the following:
* 128-bit data type with two packed double-precision floating-point operands.

® 128-bit data types for SIMD integer operation on 16-byte, 8-word, 4-doubleword, or 2-quadword
integers.

® Support for SIMD arithmetic on 64-bit integer operands.
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® Instructions for converting between new and existing data types.
®* Extended support for data shuffling.
®* Extended support for cacheability and memory ordering operations.

SSE2 instructions are useful for 3D graphics, video decoding/encoding, and encryption.

294 Streaming SIMD Extensions 3

Streaming SIMD extensions 3 add the following:

®* SIMD floating-point instructions for asymmetric and horizontal computation.

® A special-purpose 128-bit load instruction to avoid cache line splits.

®* An x87 FPU instruction to convert to integer independent of the floating-point control word (FCW).
® Instructions to support thread synchronization.

SSE3 instructions are useful for scientific, video and multi-threaded applications.

2.9.5 Supplemental Streaming SIMD Extensions 3

The Supplemental Streaming SIMD Extensions 3 introduces 32 new instructions to accelerate eight
types of computations on packed integers. These include:

® 12 instructions that perform horizontal addition or subtraction operations.
® 6 instructions that evaluate the absolute values.
® 2 instructions that perform multiply and add operations and speed up the evaluation of dot products.

® 2 instructions that accelerate packed-integer multiply operations and produce integer values with
scaling.

® 2 instructions that perform a byte-wise, in-place shuffle according to the second shuffle control
operand.

® 6 instructions that negate packed integers in the destination operand if the signs of the corre-
sponding element in the source operand is less than zero.

® 2 instructions that align data from the composite of two operands.

2.9.6 SSE4.1

SSE4.1 introduces 47 new instructions to accelerate video, imaging and 3D applications. SSE4.1 also
improves compiler vectorization and significantly increase support for packed dword computation. These
include:

®* Two instructions perform packed dword multiplies.

®* Two instructions perform floating-point dot products with input/output selects.
®* One instruction provides a streaming hint for WC loads.

® Six instructions simplify packed blending.

®* Eightinstructions expand support for packed integer MIN/MAX.

® Fourinstructions support floating-point round with selectable rounding mode and precision exception
override.

® Seven instructions improve data insertion and extractions from XMM registers

®* Twelve instructions improve packed integer format conversions (sign and zero extensions).
®* One instruction improves SAD (sum absolute difference) generation for small block sizes.

®* One instruction aids horizontal searching operations of word integers.

® One instruction improves masked comparisons.
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® One instruction adds qword packed equality comparisons.
® One instruction adds dword packing with unsigned saturation.

2.9.7 SSE4.2

SSE4.2 introduces 7 new instructions. These include:
® A 128-bit SIMD integer instruction for comparing 64-bit integer data elements.

®* Four string/text processing instructions providing a rich set of primitives, these primitives can
accelerate:

— Basic and advanced string library functions from strlen, strcmp, to strcspn.

— Delimiter processing, token extraction for lexing of text streams.

— Parser, schema validation including XML processing.
® A general-purpose instruction for accelerating cyclic redundancy checksum signature calculations.
®* A general-purpose instruction for calculating bit count population of integer numbers.

2.9.8 AESNI and PCLMULQDQ

AESNI introduces 7 new instructions, six of them are primitives for accelerating algorithms based on AES
encryption/decryption standard, referred to as AESNI.

The PCLMULQDQ instruction accelerates general-purpose block encryption, which can perform carry-less
multiplication for two binary numbers up to 64-bit wide.

Typically, algorithm based on AES standard involve transformation of block data over multiple iterations
via several primitives. The AES standard supports cipher key of sizes 128, 192, and 256 bits. The respec-
tive cipher key sizes correspond to 10, 12, and 14 rounds of iteration.

AES encryption involves processing 128-bit input data (plain text) through a finite number of iterative
operation, referred to as “AES round”, into a 128-bit encrypted block (ciphertext). Decryption follows the
reverse direction of iterative operation using the “equivalent inverse cipher” instead of the “inverse
cipher”.

The cryptographic processing at each round involves two input data, one is the “state”, the other is the
“round key”. Each round uses a different “round key”. The round keys are derived from the cipher key
using a “key schedule” algorithm. The “key schedule” algorithm is independent of the data processing of
encryption/decryption, and can be carried out independently from the encryption/decryption phase.

The AES extensions provide two primitives to accelerate AES rounds on encryption, two primitives for
AES rounds on decryption using the equivalent inverse cipher, and two instructions to support the AES
key expansion procedure.

2.9.9 Intel® Advanced Vector Extensions

Intel® Advanced Vector Extensions offers comprehensive architectural enhancements over previous
generations of Streaming SIMD Extensions. Intel AVX introduces the following architectural enhance-
ments:

® Support for 256-bit wide vectors and SIMD register set.

® 256-bit floating-point instruction set enhancement with up to 2X performance gain relative to 128-bit
Streaming SIMD extensions.

* Instruction syntax support for generalized three-operand syntax to improve instruction programming
flexibility and efficient encoding of new instruction extensions.

®* Enhancement of legacy 128-bit SIMD instruction extensions to support three-operand syntax and to
simplify compiler vectorization of high-level language expressions.
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® Support flexible deployment of 256-bit AVX code, 128-bit AVX code, legacy 128-bit code and scalar
code.

Intel AVX instruction set and 256-bit register state management detail are described in Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B, 2C & 2D. Optimization techniques for
Intel AVX are discussed in Chapter 15, “Optimizations for Intel® AVX, FMA and AVX2.”

2.9.10 Half-Precision Floating-Point Conversion (F16C)

VCVTPH2PS and VCVTPS2PH are two instructions supporting half-precision floating-point data type
conversion to and from single-precision floating-point data types. These two instruction extends on the
same programming model as Intel AVX.

2.9.11 RDRAND

The RDRAND instruction retrieves a random number supplied by a cryptographically secure, determin-
istic random bit generator (DBRG). The DBRG is designed to meet NIST SP 800-90A standard.

2.9.12 Fused-Multiply-ADD (FMA) Extensions

FMA extensions enhances Intel AVX with high-throughput, arithmetic capabilities covering fused
multiply-add, fused multiply-subtract, fused multiply add/subtract interleave, signed-reversed multiply
on fused multiply-add and multiply-subtract operations. FMA extensions provide 36 256-bit floating-
point instructions to perform computation on 256-bit vectors and additional 128-bit and scalar FMA
instructions.

2.9.13 Intel AVX2

Intel AVX2 extends Intel AVX by promoting most of the 128-bit SIMD integer instructions with 256-bit
numeric processing capabilities. AVX2 instructions follow the same programming model as AVX instruc-
tions.

In addition, AVX2 provide enhanced functionalities for broadcast/permute operations on data elements,
vector shift instructions with variable-shift count per data element, and instructions to fetch non-contig-
uous data elements from memory.

2.9.14 General-Purpose Bit-Processing Instructions

The fourth generation Intel Core processor family introduces a collection of bit processing instructions
that operate on the general purpose registers. The majority of these instructions uses the VEX-prefix
encoding scheme to provide non-destructive source operand syntax.

There instructions are enumerated by three separate feature flags reported by CPUID. For details, see
Section 5.1 of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1 and chapters 3,
4 and 5 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B, 2C & 2D.

2.9.15 Intel® Transactional Synchronization Extensions

The fourth generation Intel Core processor family introduces Intel® Transactional Synchronization
Extensions (Intel TSX), which aim to improve the performance of lock-protected critical sections of multi-
threaded applications while maintaining the lock-based programming model.

For background and details, see Chapter 16, “Programming with Intel® Transactional Synchronization
Extensions” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1.
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Software tuning recommendations for using Intel TSX on lock-protected critical sections of multithreaded
applications are described in Chapter 16, “Intel® TSX Recommendations.”

2.9.16 RDSEED

The RDSEED instruction retrieves a random number supplied by a cryptographically secure, enhanced
deterministic random bit generator Enhanced NRBG). The NRBG is designed to meet the NIST SP 800-
90B and NIST SP 800-90C standards.

2.9.17 ADCX and ADOX Instructions

The ADCX and ADOX instructions, in conjunction with MULX instruction, enable software to speed up
calculations that require large integer numerics. Details can be found at
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/large-integer-
squaring-ia-paper.pdf.
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CHAPTER 3
GENERAL OPTIMIZATION GUIDELINES

This chapter discusses general optimization techniques that can improve the performance of applications
running on Intel® processors. These techniques take advantage of microarchitectural features described
in Chapter 2, “"Intel® 64 and IA-32 Processor Architectures.” Optimization guidelines focusing on Intel
multi-core processors, Hyper-Threading Technology, and 64-bit mode applications are discussed in
Chapter 11, “Multicore and Hyper-Threading Technology,” and Chapter 13, “64-bit Mode Coding Guide-
lines.”

Practices that optimize performance focus on three areas:
® Tools and techniques for code generation.

®* Analysis of the performance characteristics of the workload and its interaction with microarchitec-
tural sub-systems.

® Tuning code to the target microarchitecture (or families of microarchitecture) to improve perfor-
mance.

Some hints on using tools are summarized first to simplify the first two tasks. The rest of the chapter will
focus on recommendations for code generation or code tuning to the target microarchitectures.

This chapter explains optimization techniques for the Intel® C++ Compiler, the Intel® Fortran Compiler,
and other compilers.

3.1 PERFORMANCE TOOLS

Intel offers several tools to help optimize application performance, including compilers, performance
analysis, and multithreading tools.

3.1.1 Intel® C++ and Fortran Compilers

Intel compilers support multiple operating systems (Windows*, Linux*, Mac OS*, and embedded). The
Intel compilers optimize performance and give application developers access to advanced features,
including:

®* Flexibility to target 32-bit or 64-bit Intel processors for optimization
®* Compatibility with many integrated development environments or third-party compilers.
* Automatic optimization features to take advantage of the target processor’s architecture.
®* Automatic compiler optimization reduces the need to write different code for different processors.
® Common compiler features that are supported across Windows, Linux, and Mac OS include:
— General optimization settings.
— Cache-management features.
— Interprocedural optimization (IPO) methods.
— Profile-guided optimization (PGO) methods.
— Multithreading support.
— Floating-point arithmetic precision and consistency support.

— Compiler optimization and vectorization reports.
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3.1.2 General Compiler Recommendations

Generally speaking, a compiler tuned for a target microarchitecture can be expected to match or outper-
form hand-coding. However, if performance problems are noted with the compiled code, some compilers
(like Intel C++ and Fortran compilers) allow the coder to insert intrinsics or inline assembly to exert
control over generated code. If inline assembly is used, the user must verify that the code generated is
high quality and yields good performance.

Default compiler switches are targeted for common cases. An optimization may be made to the compiler
default if it benefits most programs. If the root cause of a performance problem is a poor choice on the
part of the compiler, using different switches or compiling the targeted module with a different compiler
may be the solution. See the “"Quick Reference Guide to Optimization with Intel C++ and Fortran
Compilers” for additional suggestions on compiler Optimization Options, including processor-specific
ones.

3.1.3 VTune™ Performance Analyzer

VTune uses performance monitoring hardware to collect statistics and coding information about your
application and its interaction with the microarchitecture. This allows software engineers to measure
performance characteristics of the workload for a given microarchitecture. VTune supports all current
and past Intel processor families.

The VTune Performance Analyzer provides two kinds of feedback:

* Indication of a performance improvement gained by using a specific coding recommendation or
microarchitectural feature.

* Information on whether a change in the program has improved or degraded performance with
respect to a particular metric.

The VTune Performance Analyzer also provides measures for a number of workload characteristics,
including:

®* Retirement throughput of instruction execution as an indication of the degree of extractable
instruction-level parallelism in the workload.

* Data traffic locality as an indication of the stress point of the cache and memory hierarchy.

* Data traffic parallelism as an indication of the degree of effectiveness of amortization of data access
latency.

NOTE

Improving performance in one part of the machine does not necessarily bring significant
gains to overall performance. It is possible to degrade overall performance by improving
performance for some particular metric.

Where appropriate, coding recommendations in this chapter include descriptions of the VTune Perfor-
mance Analyzer events that provide measurable data on the performance gain achieved by following the
recommendations. For more on using the VTune analyzer, refer to the application’s online help.

3.2 PROCESSOR PERSPECTIVES

Many coding recommendations work well across current microarchitectures. However, there are situa-
tions where a recommendation may benefit one microarchitecture more than another.

3.2.1 CPUID Dispatch Strategy and Compatible Code Strategy

When optimum performance on all processor generations is desired, applications can take advantage of
the CPUID instruction to identify the processor generation and integrate processor-specific instructions
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into the source code. The Intel C++ Compiler supports the integration of different versions of the code
for different target processors. The selection of which code to execute at runtime is made based on the
CPU identifiers. Binary code targeted for different processor generations can be generated under the
control of the programmer or by the compiler. Refer to the Intel® C++ Compiler 19.0 Developer Guide
and reference cpu_dispatch and cpu_specific sections for more information on CPU dispatching (a.k.a
function multi-versioning).

For applications that target multiple generations of microarchitectures, and where minimum binary code
size and single code path is important, a compatible code strategy is the best. Optimizing applications
using techniques developed for the Intel Core microarchitecture combined with Nehalem microarchitec-
ture are likely to improve code efficiency and scalability when running on processors based on current
and future generations of Intel 64 and IA-32 processors.

3.2.2 Transparent Cache-Parameter Strategy

If the CPUID instruction supports function leaf 4, also known as deterministic cache parameter leaf, the
leaf reports cache parameters for each level of the cache hierarchy in a deterministic and forward-
compatible manner across Intel 64 and IA-32 processor families.

For coding techniques that rely on specific parameters of a cache level, using the deterministic cache
parameter allows software to implement techniques in a way that is forward-compatible with future
generations of Intel 64 and IA-32 processors, and cross-compatible with processors equipped with
different cache sizes.

3.23 Threading Strategy and Hardware Multithreading Support

Intel 64 and IA-32 processor families offer hardware multithreading support in two forms: multi-core
technology and HT Technology.

To fully harness the performance potential of hardware multithreading in current and future generations
of Intel 64 and IA-32 processors, software must embrace a threaded approach in application design. At
the same time, to address the widest range of installed machines, multithreaded software should be able
to run without failure on a single processor without hardware multithreading support and should achieve
performance on a single logical processor that is comparable to an unthreaded implementation (if such

comparison can be made). This generally requires architecting a multithreaded application to minimize

the overhead of thread synchronization. Additional guidelines on multithreading are discussed in Chapter
11, “Multicore and Hyper-Threading Technology.”

3.3 CODING RULES, SUGGESTIONS AND TUNING HINTS

This section includes rules, suggestions, and hints. They are targeted for engineers who are:
®* Modifying source code to enhance performance (user/source rules).

® Writing assemblers or compilers (assembly/compiler rules).

®* Doing detailed performance tuning (tuning suggestions).

Coding recommendations are ranked in importance using two measures:

® Local impact (high, medium, or low) refers to a recommendation’s affect on the performance of a
given instance of code.

® Generality (high, medium, or low) measures how often such instances occur across all application
domains. Generality may also be thought of as “frequency”.

These recommendations are approximate. They can vary depending on coding style, application domain,
and other factors.

The purpose of the high, medium, and low (H, M, and L) priorities is to suggest the relative level of
performance gain one can expect if a recommendation is implemented.
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Because it is not possible to predict the frequency of a particular code instance in applications, priority
hints cannot be directly correlated to application-level performance gain. In cases in which application-
level performance gain has been observed, we have provided a quantitative characterization of the gain
(for information only). In cases in which the impact has been deemed inapplicable, no priority is
assigned.

3.4 OPTIMIZING THE FRONT END

Optimizing the front end covers two aspects:

® Maintaining steady supply of micro-ops to the execution engine — Mispredicted branches can disrupt
streams of micro-ops, or cause the execution engine to waste execution resources on executing
streams of micro-ops in the non-architected code path. Much of the tuning in this respect focuses on
working with the Branch Prediction Unit. Common techniques are covered in Section 3.4.1, “Branch
Prediction Optimization.”

® Supplying streams of micro-ops to utilize the execution bandwidth and retirement bandwidth as
much as possible — For Intel Core microarchitecture and Intel Core Duo processor family, this aspect
focuses maintaining high decode throughput. In Sandy Bridge microarchitecture, this aspect focuses
on keeping the hot code running from Decoded ICache. Techniques to maximize decode throughput
for Intel Core microarchitecture are covered in Section 3.4.2, “Fetch and Decode Optimization.”

3.4.1 Branch Prediction Optimization

Branch optimizations have a significant impact on performance. By understanding the flow of branches
and improving their predictability, you can increase the speed of code significantly.

Optimizations that help branch prediction are:

®* Keep code and data on separate pages. This is very important; see Section 3.6, "Optimizing Memory
Accesses,” for more information.

®* Eliminate branches whenever possible.

®* Arrange code to be consistent with the static branch prediction algorithm.
® Use the PAUSE instruction in spin-wait loops.

® Inline functions and pair up calls and returns.

®* Unroll as necessary so that repeatedly-executed loops have sixteen or fewer iterations (unless this
causes an excessive code size increase).

®* Avoid putting multiple conditional branches in the same 8-byte aligned code block (i.e, have their last
bytes' addresses within the same 8-byte aligned code) if the lower 6 bits of their target IPs are the
same. This restriction has been removed in Ice Lake Client and later microarchitectures.

34.1.1 Eliminating Branches
Eliminating branches improves performance because:
® It reduces the possibility of mispredictions.

® It reduces the number of required branch target buffer (BTB) entries. Conditional branches that are
never taken do not consume BTB resources.

There are four principal ways of eliminating branches:

®* Arrange code to make basic blocks contiguous.

®* Unroll loops, as discussed in Section 3.4.1.6, “Loop Unrolling.”
® Use the CMOV instruction.

® Use the SETCC instruction.

The following rules apply to branch elimination:
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Assembly/Compiler Coding Rule 1. (MH impact, M generality) Arrange code to make basic blocks
contiguous and eliminate unnecessary branches.

Assembly/Compiler Coding Rule 2. (M impact, ML generality) Use the SETCC and CMOV
instructions to eliminate unpredictable conditional branches where possible. Do not do this for
predictable branches. Do not use these instructions to eliminate all unpredictable conditional branches
(because using these instructions will incur execution overhead due to the requirement for executing
both paths of a conditional branch). In addition, converting a conditional branch to SETCC or CMOV
trades off control flow dependence for data dependence and restricts the capability of the out-of-order
engine. When tuning, note that all Intel 64 and IA-32 processors usually have very high branch
prediction rates. Consistently mispredicted branches are generally rare. Use these instructions only if
the increase in computation time is less than the expected cost of a mispredicted branch.

Consider a line of C code that has a condition dependent upon one of the constants:
X =(A<B)?CONST1:CONST2;

This code conditionally compares two values, A and B. If the condition is true, X is set to CONST1; other-
wise it is set to CONST2. An assembly code sequence equivalent to the above C code can contain
branches that are not predictable if there are no correlation in the two values.

Example 3-1 shows the assembly code with unpredictable branches. The unpredictable branches can be
removed with the use of the SETCC instruction. Example 3-2 shows optimized code that has no
branches.

Example 3-1. Assembly Code with an Unpredictable Branch

cmpa, b ; Condition
jbe L30 ; Conditional branch
mov ebx const1 ; ebx holds X
jmp L31 ; Unconditional branch
L30:
mov ebx, const2
L31:

Example 3-2. Code Optimization to Eliminate Branches

xor ebx, ebx ; Clear ebx (X in the C code)
cnp A B
setge bl ;Whenebx=0o0r1

; OR the complement condition
sub ebx, 1 ,ebx=11..11 or 00..00

and ebx, CONST3; CONST3 = CONST1-CONST2
add ebx, CONSTZ; ebx=CONST1 or CONSTZ

The optimized code in Example 3-2 sets EBX to zero, then compares A and B. If A is greater than or equal
to B, EBX is set to one. Then EBX is decreased and AND’d with the difference of the constant values. This
sets EBX to either zero or the difference of the values. By adding CONST2 back to EBX, the correct value
is written to EBX. When CONST2 is equal to zero, the last instruction can be deleted.

Another way to remove branches is to use the CMOV and FCMOV instructions. Example 3-3 shows how to
change a TEST and branch instruction sequence using CMOV to eliminate a branch. If the TEST sets the
equal flag, the value in EBX will be moved to EAX. This branch is data-dependent, and is representative
of an unpredictable branch.
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Example 3-3. Eliminating Branch with CMOV Instruction

test ecx, ecx
jne TH
mov eax, ebx
TH:
; To optimize code, combine jne and mov into one cmovcc instruction that checks the equal flag
test  ecx, ecx ; Test the flags
cmoveq eax, ebx ; If the equal flag is set, move
; ebx to eax- the TH: tag no longer needed

An extension to this concept can be seen in the AVX-512 masked operations, as well as in some instruc-
tions such as VPCMP which can be used to eliminate data dependent branches; see Section 18.4.

3.4.1.2 Static Prediction

Branches that do not have a history in the BTB (see Section 3.4.1, "Branch Prediction Optimization”) are
predicted using a static prediction algorithm:

® Predict forward conditional branches to be NOT taken.

®* Predict backward conditional branches to be taken.

® Predict indirect branches to be NOT taken.

The following rule applies to static prediction:

Assembly/Compiler Coding Rule 3. (M impact, H generality) Arrange code to be consistent with
the static branch prediction algorithm: make the fall-through code following a conditional branch be the
likely target for a branch with a forward target, and make the fall-through code following a conditional
branch be the unlikely target for a branch with a backward target.

Example 3-4 illustrates the static branch prediction algorithm. The body of an IF-THEN conditional is
predicted.

Example 3-4. Static Branch Prediction Algorithm

//Forward condition branches not taken (fall through)
IF<condition> {....

\
}

IF<condition> {...
\
}

//Backward conditional branches are taken
LOOP{...
T — }<condition>

//Unconditional branches taken
JMP

Example 3-5 and Example 3-6 provide basic rules for a static prediction algorithm. In Example 3-5, the
backward branch (JC BEGIN) is not in the BTB the first time through; therefore, the BTB does not issue

3-6



GENERAL OPTIMIZATION GUIDELINES

a prediction. The static predictor, however, will predict the branch to be taken, so a misprediction will not
occur.

Example 3-5. Static Taken Prediction

Begin: mov eax, mem32
and eax, ebx
imul eax, edx
shid eax, 7
jc Begin

The first branch instruction (JC BEGIN) in Example 3-6 is a conditional forward branch. It is not in the
BTB the first time through, but the static predictor will predict the branch to fall through. The static
prediction algorithm correctly predicts that the CALL CONVERT instruction will be taken, even before the
branch has any branch history in the BTB.

Example 3-6. Static Not-Taken Prediction

mov eax, mem32

and eax, ebx

imul eax, edx

shid eax, 7

ic Begin

mov eax, 0
Begin: call Convert

The Intel Core microarchitecture does not use the static prediction heuristic. However, to maintain
consistency across Intel 64 and IA-32 processors, software should maintain the static prediction heuristic
as the default.

3.4.1.3 Inlining, Calls and Returns

The return address stack mechanism augments the static and dynamic predictors to optimize specifically
for calls and returns. It holds 16 entries, which is large enough to cover the call depth of most programs.
If there is a chain of more than 16 nested calls and more than 16 returns in rapid succession, perfor-
mance may degrade.

To enable the use of the return stack mechanism, calls and returns must be matched in pairs. If this is
done, the likelihood of exceeding the stack depth in a manner that will impact performance is very low.

The following rules apply to inlining, calls, and returns:

Assembly/Compiler Coding Rule 4. (MH impact, MH generality) Near calls must be matched with
near returns, and far calls must be matched with far returns. Pushing the return address on the stack
and jumping to the routine to be called is not recommended since it creates a mismatch in calls and
returns.

Calls and returns are expensive; use inlining for the following reasons:
® Parameter passing overhead can be eliminated.
®* In a compiler, inlining a function exposes more opportunity for optimization.

* If the inlined routine contains branches, the additional context of the caller may improve branch
prediction within the routine.

®* A mispredicted branch can lead to performance penalties inside a small function that are larger than
those that would occur if that function is inlined.
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Assembly/Compiler Coding Rule 5. (MH impact, MH generality) Selectively inline a function if
doing so decreases code size or if the function is small and the call site is frequently executed.

Assembly/Compiler Coding Rule 6. (ML impact, ML generality) If there are more than 16 nested
calls and returns in rapid succession; consider transforming the program with inline to reduce the call
depth.

Assembly/Compiler Coding Rule 7. (ML impact, ML generality) Favor inlining small functions that
contain branches with poor prediction rates. If a branch misprediction results in a RETURN being
prematurely predicted as taken, a performance penalty may be incurred.

Assembly/Compiler Coding Rule 8. (L impact, L generality) If the last statement in a function is
a call to another function, consider converting the call to a jump. This will save the call/return overhead
as well as an entry in the return stack buffer.

Assembly/Compiler Coding Rule 9. (M impact, L generality) Do not put more than four branches
in a 16-byte chunk.

Assembly/Compiler Coding Rule 10. (M impact, L generality) Do not put more than two end loop
branches in a 16-byte chunk.

34.1.4 Code Alignment

Careful arrangement of code can enhance cache and memory locality. Likely sequences of basic blocks
should be laid out contiguously in memory. This may involve removing unlikely code, such as code to
handle error conditions, from the sequence. See Section 3.7, “Prefetching,” on optimizing the instruction
prefetcher.

Assembly/Compiler Coding Rule 11. (M impact, H generality) When executing code from the
Decoded ICache, direct branches that are mostly taken should have all their instruction bytes in a 648
cache line and nearer the end of that cache line. Their targets should be at or near the beginning of a
64B cache line.

When executing code from the legacy decode pipeline, direct branches that are mostly taken should have
all their instruction bytes in a 16B aligned chunk of memory and nearer the end of that 16B aligned
chunk. Their targets should be at or near the beginning of a 16B aligned chunk of memory.

Assembly/Compiler Coding Rule 12. (M impact, H generality) If the body of a conditional is not
likely to be executed, it should be placed in another part of the program. If it is highly unlikely to be
executed and code locality is an issue, it should be placed on a different code page.

34.1.5 Branch Type Selection

The default predicted target for indirect branches and calls is the fall-through path. Fall-through predic-
tion is overridden if and when a hardware prediction is available for that branch. The predicted branch
target from branch prediction hardware for an indirect branch is the previously executed branch target.

The default prediction to the fall-through path is only a significant issue if no branch prediction is avail-
able, due to poor code locality or pathological branch conflict problems. For indirect calls, predicting the
fall-through path is usually not an issue, since execution will likely return to the instruction after the
associated return.

Placing data immediately following an indirect branch can cause a performance problem. If the data
consists of all zeros, it looks like a long stream of ADDs to memory destinations and this can cause
resource conflicts and slow down branch recovery. Also, data immediately following indirect branches
may appear as branches to the branch predication hardware, which can branch off to execute other data
pages. This can lead to subsequent self-modifying code problems.

Assembly/Compiler Coding Rule 13. (M impact, L generality) When indirect branches are
present, try to put the most likely target of an indirect branch immediately following the indirect
branch. Alternatively, if indirect branches are common but they cannot be predicted by branch
prediction hardware, then follow the indirect branch with a UDZ2 instruction, which will stop the
processor from decoding down the fall-through path.

Indirect branches resulting from code constructs (such as switch statements, computed GOTOs or calls
through pointers) can jump to an arbitrary number of locations. If the code sequence is such that the
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target destination of a branch goes to the same address most of the time, then the BTB will predict accu-
rately most of the time. Since only one taken (non-fall-through) target can be stored in the BTB, indirect
branches with multiple taken targets may have lower prediction rates.

The effective number of targets stored may be increased by introducing additional conditional branches.
Adding a conditional branch to a target is fruitful if:

®* The branch direction is correlated with the branch history leading up to that branch; that is, not just
the last target, but how it got to this branch.

®* The source/target pair is common enough to warrant using the extra branch prediction capacity. This
may increase the number of overall branch mispredictions, while improving the misprediction of
indirect branches. The profitability is lower if the number of mispredicting branches is very large.

User/Source Coding Rule 1. (M impact, L generality) If an indirect branch has two or more
common taken targets and at least one of those targets is correlated with branch history leading up to
the branch, then convert the indirect branch to a tree where one or more indirect branches are
preceded by conditional branches to those targets. Apply this “"peeling” procedure to the common
target of an indirect branch that correlates to branch history.

The purpose of this rule is to reduce the total number of mispredictions by enhancing the predictability of
branches (even at the expense of adding more branches). The added branches must be predictable for
this to be worthwhile. One reason for such predictability is a strong correlation with preceding branch
history. That is, the directions taken on preceding branches are a good indicator of the direction of the
branch under consideration.

Example 3-7 shows a simple example of the correlation between a target of a preceding conditional
branch and a target of an indirect branch.

Example 3-7. Indirect Branch With Two Favored Targets

function ()
{
int n = rand(); // random integer 0 to RAND_MAX
if (1(n&0x01)){ //n will be O half the times
n=0; // updates branch history to predict taken
}

// indirect branches with multiple taken targets
// may have lower prediction rates

switch (n) {
case 0: handle_0(); break;  // common target, correlated with
// branch history that is forward taken
case 1: handle_1(); break; // uncommon
case 3: handle_3(); break; // uncommon
default: handle_other(); // common target

}

Correlation can be difficult to determine analytically, for a compiler and for an assembly language
programmer. It may be fruitful to evaluate performance with and without peeling to get the best perfor-
mance from a coding effort.

An example of peeling out the most favored target of an indirect branch with correlated branch history is
shown in Example 3-8.
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Example 3-8. A Peeling Technique to Reduce Indirect Branch Misprediction

function ()
{
int n =rand(); // Random integer O to RAND_MAX
if(!(n & 0x01) ) THEN
n=0; /1 n will be 0 half the times
if (In) THEN
handle_0(); // Peel out the most common target
// with correlated branch history
{
switch (n) {
case 1: handle_1(); break; // Uncommon
case 3: handle_3(); break; // Uncommon
default: handle_other(); // Make the favored target in
// the fall-through path
}
}
}

3.4.1.6 Loop Unrolling

Benefits of unrolling loops are:

®* Unrolling amortizes the branch overhead, since it eliminates branches and some of the code to
manage induction variables.

®* Unrolling allows one to aggressively schedule (or pipeline) the loop to hide latencies. This is useful if
you have enough free registers to keep variables live as you stretch out the dependence chain to
expose the critical path.

®* Unrolling exposes the code to various other optimizations, such as removal of redundant loads,
common subexpression elimination, and so on.

The potential costs of unrolling loops are:

®* Unrolling loops whose bodies contain branches increases demand on BTB capacity. If the number of
iterations of the unrolled loop is 16 or fewer, the branch predictor should be able to correctly predict
branches in the loop body that alternate direction.
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Assembly/Compiler Coding Rule 14. (H impact, M generality) Unroll small loops until the
overhead of the branch and induction variable accounts (generally) for less than 10% of the execution
time of the loop.

Assembly/Compiler Coding Rule 15. (M impact, M generality) Unroll loops that are frequently
executed and have a predictable number of iterations to reduce the number of iterations to 16 or fewer.
Do this unless it increases code size so that the working set no longer fits in the instruction cache. If the
loop body contains more than one conditional branch, then unroll so that the number of iterations is
16/(# conditional branches).

Example 3-9 shows how unrolling enables other optimizations.

Example 3-9. Loop Unrolling

Before unrolling:
doi=1,100
if (imod2==0)thena(i)=x
elsea(i)=y
enddo
After unrolling
doi=1,100,2
a(i)=y
a(i+1)=x
enddo

In this example, the loop that executes 100 times assigns X to every even-numbered element and Y to
every odd-numbered element. By unrolling the loop you can make assignments more efficiently,
removing one branch in the loop body.

3.4.2 Fetch and Decode Optimization

Intel Core microarchitecture provides several mechanisms to increase front end throughput. Techniques
to take advantage of some of these features are discussed below.

34.2.1 Optimizing for Micro-fusion

An Instruction that operates on a register and a memory operand decodes into more micro-ops than its
corresponding register-register version. Replacing the equivalent work of the former instruction using
the register-register version usually require a sequence of two instructions. The latter sequence is likely
to result in reduced fetch bandwidth.

Assembly/Compiler Coding Rule 16. (ML impact, M generality) For improving fetch/decode
throughput, Give preference to memory flavor of an instruction over the register-only flavor of the
same instruction, if such instruction can benefit from micro-fusion.

The following examples are some of the types of micro-fusions that can be handled by all decoders:

® All stores to memory, including store immediate. Stores execute internally as two separate micro-
ops: store-address and store-data.

* All “read-modify” (load+op) instructions between register and memory, for example:
ADDPS XMM9, OWORD PTR [RSP+40]
FADD  DOUBLE PTR [RDI+RSI*8]
XOR RAX, QWORD PTR [RBP+32]

® Allinstructions of the form “load and jump,” for example:
JMP [RDI+200]
RET

® CMP and TEST with immediate operand and memory.
An Intel 64 instruction with RIP relative addressing is not micro-fused in the following cases:
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®* When an additional immediate is needed, for example:
CMP [RIP+400], 27
MOV [RIP+3000], 142

®* When an RIP is needed for control flow purposes, for example:
JMP [RIP+5000000]

In these cases, Intel Core microarchitecture and Sandy Bridge microarchitecture provide a 2 micro-op
flow from decoder 0, resulting in a slight loss of decode bandwidth since 2 micro-op flow must be steered
to decoder 0 from the decoder with which it was aligned.

RIP addressing may be common in accessing global data. Since it will not benefit from micro-fusion,
compiler may consider accessing global data with other means of memory addressing.

3.4.2.2 Optimizing for Macrofusion

Macrofusion merges two instructions to a single micro-op. Intel Core microarchitecture performs this
hardware optimization under limited circumstances.

The first instruction of the macro-fused pair must be a CMP or TEST instruction. This instruction can be
REG-REG, REG-IMM, or a micro-fused REG-MEM comparison. The second instruction (adjacent in the
instruction stream) should be a conditional branch.

Since these pairs are common ingredient in basic iterative programming sequences, macrofusion
improves performance even on un-recompiled binaries. All of the decoders can decode one macro-fused
pair per cycle, with up to three other instructions, resulting in a peak decode bandwidth of 5 instructions
per cycle.

Each macro-fused instruction executes with a single dispatch. This process reduces latency, which in this
case shows up as a cycle removed from branch mispredict penalty. Software also gain all other fusion
benefits: increased rename and retire bandwidth, more storage for instructions in-flight, and power
savings from representing more work in fewer bits.

The following list details when you can use macrofusion:
® CMP or TEST can be fused when comparing:

REG-REG. For example: CMP EAX,ECX; JZ label
REG-IMM. For example: CMP EAX,0x80; JZ label
REG-MEM. For example: CMP EAX,[ECX]; JZ label
MEM-REC. For example: CMP [EAX],ECX; JZ label

® TEST can fused with all conditional jumps.

®* CMP can be fused with only the following conditional jumps in Intel Core microarchitecture. These
conditional jumps check carry flag (CF) or zero flag (ZF). jump. The list of macrofusion-capable
conditional jumps are:

JA or INBE

JAE or JNB or JNC
JEorjz

JNA or |BE
JNAEorJCor B
JNE or INZ

CMP and TEST can not be fused when comparing MEM-IMM (e.g. CMP [EAX],0x80; JZ label). Macrofusion
is not supported in 64-bit mode for Intel Core microarchitecture.

®* Nehalem microarchitecture supports the following enhancements in macrofusion:

— CMP can be fused with the following conditional jumps (that was not supported in Intel Core
microarchitecture):

* JLor JNGE
e JGEorJNL
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* JLE or NG
e JGorJINLE
— Macrofusion is supported in 64-bit mode.

®* Enhanced macrofusion support in Sandy Bridge microarchitecture is summarized in Table 3-1 with
additional information in Section E.2.2.1 and Example 3-14:

Table 3-1. Macro-Fusible Instructions in Sandy Bridge Microarchitecture
Instructions TEST AND CMP ADD SuB INC DEC
JO/JNO
|C/JB/JAE/INB
|E/)Z/NE/INZ
INA/|BE/)A/INBE
JS/INS/)P/|PE/INP/JPO
JL/JNGE/JGE/INL/JLE/JNG/)G/INLE

<|=<|=<|=<|=<]|=<
<|=<|=<|=<|=<]|=<
<|lz|<|=<|=<|z
<|z|<|=<|=<|z
<|z|<|=<|<|z
<|z|lz|<|z|z
<|lz|z|<|z|z

®* Enhanced macrofusion support in Haswell microarchitecture is summarized in Table 3-2. Macrofusion
is supported CMP/TEST/OP with reg-imm, reg-mem, and reg-reg addressing but not mem-imm

addressing.
Table 3-2. Macro-Fusible Instructions in Haswell Microarchitecture
Opcode JcC ADD / SUB/ CMP INC / DEC TEST / AND
70 OF 80 Jo N N Y
71 OF 81 Jno N N Y
72 OF 82 Ic/)b Y N Y
73 OF 83 Jae /]nb Y N Y
74 OF 84 Je/)z Y Y Y
75 OF 85 Jne / |nz Y Y Y
76 OF 86 Jna/Jbe Y N Y
77 OF 87 Ja/nbe Y N Y
78 OF 88 Js N N Y
79 OF 89 Jns N N Y
7A OF 8A Ip/ Jpe N N Y
7B OF 8B Jnp/ Jpo N N Y
7C OF 8C JI 7 Jnge Y Y Y
7D OF 8D Jge /nl Y Y Y
7€ OF 8€E Jle/Jng Y Y Y
7F OF 8F Jg/nle Y Y Y
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Assembly/Compiler Coding Rule 17. (M impact, ML generality) Employ macrofusion where
possible using instruction pairs that support macrofusion. Prefer TEST over CMP if possible. Use
unsigned variables and unsigned jumps when possible. Try to logically verify that a variable is non-
negative at the time of comparison. Avoid CMP or TEST of MEM-IMM flavor when possible. However, do
not add other instructions to avoid using the MEM-IMM flavor.

Example 3-10. Macrofusion, Unsigned Iteration Count

Without Macrofusion With Macrofusion
C code for (int! i = 0;i < 1000; i++) for (unsigned int? i = 0; i < 1000; i++)
a++; a++;
Disassembly for (inti=0;i < 1000; i++) for (unsigned inti=0;i < 1000; i++)
mov  dwordptr[i], O xor eax, eax
jmp First mov  dword ptr [i], eax
Loop: jmp First
mov  eax, dword ptr[i] Loop:
add eax, 1 mov  eax, dword ptr[i]
mov  dword ptr[i], eax add eax, 1
mov  dword ptr [i], eax

First: First:
cmp  dword ptr[i], 3€8H3 cmp  eax, 3E8H*
jge End jae End

a++; a++;
mov  eaXx, dword ptr[a] mov  eax, dword ptr[a]
addqq eax,1 add eax, 1
mov  dword ptr[a], eax mov  dword ptr[a], eax
jmp Loop jmp Loop
End: End:

NOTES:

1. Signed iteration count inhibits macrofusion.

2. Unsigned iteration count is compatible with macrofusion.

3. CMP MEM-IMM, JGE inhibit macrofusion.
4. CMP REG-IMM, JAE permits macrofusion.

Example 3-11. Macrofusion, If Statement

Without Macrofusion With Macrofusion
C code int'a=7; unsigned int?a = 7;
if(a<77) if (a<77)
at+t a++;
else else
a-- a--
Disassembly inta=7; unsignedinta =7;
mov  dwordptr[al, 7 mov  dwordptr[al 7
if (@<77) if(a<77)
cmp  dword ptr[a], 4DH 3 mov  eax, dwordptr[a]
jge Dec cmp  eax, 4DH
jae Dec
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Example 3-11. Macrofusion, If Statement (Contd.)

Without Macrofusion With Macrofusion
at+; at+;
mov  eax, dword ptr[a] add eax, 1
add eax, 1 mov  dword ptr [ a], eax
mov  dword ptr [a], eax else
else jmp End
jmp End a--;
a--; Dec:
Dec: sub eax, 1
mov  eax, dword ptr[a] mov  dword ptr [ a], eax
sub eax, 1 End:
mov  dword ptr [ a], eax
End:

NOTES:

1. Signed iteration count inhibits macrofusion.

2. Unsigned iteration count is compatible with macrofusion.
3. CMP MEM-IMM, JGE inhibit macrofusion.

Assembly/Compiler Coding Rule 18. (M impact, ML generality) Software can enable macro
fusion when it can be logically determined that a variable is non-negative at the time of comparison;
use TEST appropriately to enable macrofusion when comparing a variable with 0.

Example 3-12. Macrofusion, Signed Variable

Without Macrofusion With Macrofusion

test ecx, ecx test ecx, ecx

jle OutSideThelF jle OutSideThelF
cmp ecx, 64H cmp ecx, 64H

jge OutSideThelF jae OutSideThelF
<|F BLOCK CODE> <IF BLOCK CODE>
OutSideThelF: OutSideThelF:

For either signed or unsigned variable ‘a’; “"CMP a,0” and “TEST a,a” produce the same result as far as the
flags are concerned. Since TEST can be macro-fused more often, software can use “TEST a,a” to replace
“CMP a,0"” for the purpose of enabling macrofusion.

Example 3-13. Macrofusion, Signed Comparison

C Code Without Macrofusion With Macrofusion
if @==0) cmpa, 0 test g, a

jne bl jne bl

Ibl: Ibl:
if (a>=0) cmpa, 0 testa, a

jllbl; jl bl

Ibl: Ibl:

Sandy Bridge microarchitecture enables more arithmetic and logic instructions to macro-fuse with condi-
tional branches. In loops where the ALU ports are already congested, performing one of these
macrofusions can relieve the pressure, as the macro-fused instruction consumes only port 5, instead of
an ALU port plus port 5.

In Example 3-14, the “add/cmp/jnz” loop contains two ALU instructions that can be dispatched via either
port 0, 1, 5. So there is higher probability of port 5 might bind to either ALU instruction causing JNZ to
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wait a cycle. The “sub/jnz” loop, the likelihood of ADD/SUB/INZ can be dispatched in the same cycle is
increased because only SUB is free to bind with either port 0, 1, 5.

Example 3-14. Additional Macrofusion Benefit in Sandy Bridge Microarchitecture

Add + cmp + jnz alternative Loop control with sub + jnz
lea rdx, buff lea rdx, buff - 4

xor rcx, rex xor rcx, LEN

xor eax, eax xor eax, eax

loop: loop:

add eax, [rdx + 4 * rcx] add eax, [rdx + 4 * rex]
add rex, 1 sub rex, 1

cmp rcx, LEN jnz loop

jnz loop

3.4.2.3 Length-Changing Prefixes (LCP)

The length of an instruction can be up to 15 bytes in length. Some prefixes can dynamically change the
length of an instruction that the decoder must recognize. Typically, the pre-decode unit will estimate the
length of an instruction in the byte stream assuming the absence of LCP. When the predecoder encoun-
ters an LCP in the fetch line, it must use a slower length decoding algorithm. With the slower length
decoding algorithm, the predecoder decodes the fetch in 6 cycles, instead of the usual 1 cycle. Normal
queuing throughout of the machine pipeline generally cannot hide LCP penalties.

The prefixes that can dynamically change the length of a instruction include:
®* Operand size prefix (0x66).
® Address size prefix (0x67).

The instruction MOV DX, 01234h is subject to LCP stalls in processors based on Intel Core microarchitec-
ture, and in Intel Core Duo and Intel Core Solo processors. Instructions that contain imm16 as part of
their fixed encoding but do not require LCP to change the immediate size are not subject to LCP stalls.
The REX prefix (4xh) in 64-bit mode can change the size of two classes of instruction, but does not cause
an LCP penalty.

If the LCP stall happens in a tight loop, it can cause significant performance degradation. When decoding
is not a bottleneck, as in floating-point heavy code, isolated LCP stalls usually do not cause performance
degradation.

Assembly/Compiler Coding Rule 19. (MH impact, MH generality) Favor generating code using
imm8 or imm32 values instead of imm16 values.

If imm16 is needed, load equivalent imm32 into a register and use the word value in the register instead.

Double LCP Stalls

Instructions that are subject to LCP stalls and cross a 16-byte fetch line boundary can cause the LCP stall
to trigger twice. The following alignment situations can cause LCP stalls to trigger twice:

®* Aninstruction is encoded with a MODR/M and SIB byte, and the fetch line boundary crossing is
between the MODR/M and the SIB bytes.

®* Aninstruction starts at offset 13 of a fetch line references a memory location using register and
immediate byte offset addressing mode.

The first stall is for the 1st fetch line, and the 2nd stall is for the 2nd fetch line. A double LCP stall causes
a decode penalty of 11 cycles.
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The following examples cause LCP stall once, regardless of their fetch-line location of the first byte of the
instruction:

ADD DX, 01234H

ADD word ptr [EDX], 01234H

ADD word ptr 012345678H[EDX], 01234H

ADD word ptr [012345678H], 01234H

The following instructions cause a double LCP stall when starting at offset 13 of a fetch line:

ADD word ptr [EDX+ESI], 01234H
ADD word ptr 012H[EDX], 01234H
ADD word ptr 012345678H[EDX+ESI], 01234H

To avoid double LCP stalls, do not use instructions subject to LCP stalls that use SIB byte encoding or
addressing mode with byte displacement.

False LCP Stalls

False LCP stalls have the same characteristics as LCP stalls, but occur on instructions that do not have
any imm16 value.

False LCP stalls occur when (a) instructions with LCP that are encoded using the F7 opcodes, and (b) are
located at offset 14 of a fetch line. These instructions are: not, neg, div, idiv, mul, and imul. False LCP
experiences delay because the instruction length decoder can not determine the length of the instruction
before the next fetch line, which holds the exact opcode of the instruction in its MODR/M byte.

The following techniques can help avoid false LCP stalls:
® Upcast all short operations from the F7 group of instructions to long, using the full 32 bit version.
®* Ensure that the F7 opcode never starts at offset 14 of a fetch line.

Assembly/Compiler Coding Rule 20. (M impact, ML generality) Ensure instructions using OxF7
opcode byte does not start at offset 14 of a fetch line; and avoid using these instruction to operate on
16-bit data, upcast short data to 32 bits.

Example 3-15. Avoiding False LCP Delays with OxF7 Group Instructions

A Sequence Causing Delay in the Decoder Alternate Sequence to Avoid Delay
neg word ptr a movsx eax, word ptr a

neg eax

mov  word ptr a, AX

34.24 Optimizing the Loop Stream Detector (LSD)

The LSD detects loops that have many iterations and fit into the pop-queue. The pop-queue streams the
loop until a branch miss-prediction inevitably ends it.

LSD improves fetch bandwidth. In single thread mode, it saves power by allowing the front-end to sleep.
In multi-thread mode, front-resource can better serve the other thread.

Loops qualify for LSD replay if all the following conditions are met:

® Loop body size up to 60 pops, with up to 15 taken branches, and up to 15 64-byte fetch lines.
® No CALL or RET.

®* No mismatched stack operations (e.g., more PUSH than POP).

® More than ~20 iterations.

Many calculation-intensive loops, searches, and software string moves match these characteristics.
These loops exceed the BPU prediction capacity and always terminate in a branch misprediction.
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Assembly/Compiler Coding Rule 21. (MH impact, MH generality) Break up a loop body with a
long sequence of instructions into loops of shorter instruction blocks of no more than the size of the
LSD.

Allocation bandwidth in Ice Lake Client microarchitecture increased from 4 pops per cycle to 5 pops per
cycle.

Assume a loop that qualifies for LSD has 23 pops in the loop body. The hardware unrolls the loop such
that it still fits into the pop-queue, in this case twice. The loop in the pop-queue thus takes 46 pops.

The loop is sent to allocation 5 pops per cycle. After 45 out of the 46 pops are sent, in the next cycle only
a single pop is sent, which means that in that cycle, 4 of the allocation slots are wasted. This pattern
repeats itself, until the loop is exited by a misprediction. Hardware loop unrolling minimizes the number
of wasted slots during LSD.

3.4.25 Optimization for Decoded ICache

The decoded ICache is a new feature in Sandy Bridge microarchitecture. Running the code from the
Decoded ICache has two advantages:

®* Higher bandwidth of micro-ops feeding the out-of-order engine.
®* The front end does not need to decode the code that is in the Decoded ICache; this saves power.

There is overhead in switching between the Decoded ICache and the legacy decode pipeline. If your code
switches frequently between the front end and the Decoded ICache, the penalty may be higher than
running only from the legacy pipeline.

To ensure “hot” code is feeding from the decoded ICache:

®* Make sure each hot code block is less than about 750 instructions. Specifically, do not unroll to more
than 750 instructions in a loop. This should enable Decoded ICache residency even when hyper-
threading is enabled.

®* For applications with very large blocks of calculations inside a loop, consider loop-fission: split the
loop into multiple loops that fit in the Decoded ICache, rather than a single loop that overflows.

* If an application can be sure to run with only one thread per core, it can increase hot code block size
to about 1500 instructions.

Dense Read-Modify-Write Code

The Decoded ICache can hold only up to 18 micro-ops per each 32 byte aligned memory chunk. There-
fore, code with a high concentration of instructions that are encoded in a small number of bytes, yet have
many micro-ops, may overflow the 18 micro-op limitation and not enter the Decoded ICache. Read-
modify-write (RMW) instructions are a good example of such instructions.

RMW instructions accept one memory source operand, one register source operand, and use the source
memory operand as the destination. The same functionality can be achieved by two or three instructions:
the first reads the memory source operand, the second performs the operation with the second register
source operand, and the last writes the result back to memory. These instructions usually result in the
same number of micro-ops but use more bytes to encode the same functionality.

One case where RMW instructions may be used extensively is when the compiler optimizes aggressively
for code size.

Here are some possible solutions to fit the hot code in the Decoded ICache:

®* Replace RMW instructions with two or three instructions that have the same functionality. For
example, “adc [rdi], rcx™ is only three bytes long; the equivalent sequence “adc rax, [rdi]* + “mov
[rdi], rax™ has a footprint of six bytes.

® Align the code so that the dense part is broken down among two different 32-byte chunks. This
solution is useful when using a tool that aligns code automatically, and is indifferent to code changes.

® Spread the code by adding multiple byte NOPs in the loop. Note that this solution adds micro-ops for
execution.
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Align Unconditional Branches for Decoded ICache

For code entering the Decoded ICache, each unconditional branch is the last micro-op occupying a
Decoded ICache Way. Therefore, only three unconditional branches per a 32 byte aligned chunk can
enter the Decoded ICache.

Unconditional branches are frequent in jump tables and switch declarations. Below are examples for
these constructs, and methods for writing them so that they fit in the Decoded ICache.

Compilers create jump tables for C++ virtual class methods or DLL dispatch tables. Each unconditional
branch consumes five bytes; therefore up to seven of them can be associated with a 32-byte chunk. Thus
jump tables may not fit in the Decoded ICache if the unconditional branches are too dense in each
32Byte-aligned chunk. This can cause performance degradation for code executing before and after the
branch table.

The solution is to add multi-byte NOP instructions among the branches in the branch table. This may
increases code size and should be used cautiously. However, these NOPs are not executed and therefore
have no penalty in later pipe stages.

Switch-Case constructs represents a similar situation. Each evaluation of a case condition results in an
unconditional branch. The same solution of using multi-byte NOP can apply for every three consecutive
unconditional branches that fits inside an aligned 32-byte chunk.

Two Branches in a Decoded ICache Way

The Decoded ICache can hold up to two branches in a way. Dense branches in a 32 byte aligned chunk,
or their ordering with other instructions may prohibit all the micro-ops of the instructions in the chunk
from entering the Decoded ICache. This does not happen often. When it does happen, you can space the
code with NOP instructions where appropriate. Make sure that these NOP instructions are not part of hot
code.

Assembly/Compiler Coding Rule 22. (M impact, M generality) Avoid putting explicit references to
ESP in a sequence of stack operations (POP, PUSH, CALL, RET).

3.4.2.6 Other Decoding Guidelines

Assembly/Compiler Coding Rule 23. (ML impact, L generality) Use simple instructions that are
less than eight bytes in length.

Assembly/Compiler Coding Rule 24. (M impact, MH generality) Avoid using prefixes to change
the size of immediate and displacement.

Long instructions (more than seven bytes) may limit the number of decoded instructions per cycle. Each
prefix adds one byte to the length of instruction, possibly limiting the decoder’s throughput. In addition,
multiple prefixes can only be decoded by the first decoder. These prefixes also incur a delay when
decoded. If multiple prefixes or a prefix that changes the size of an immediate or displacement cannot be
avoided, schedule them behind instructions that stall the pipe for some other reason.

3.5 OPTIMIZING THE EXECUTION CORE

The superscalar, out-of-order execution core(s) in recent generations of microarchitectures contain
multiple execution hardware resources that can execute multiple micro-ops in parallel. These resources
generally ensure that micro-ops execute efficiently and proceed with fixed latencies. General guidelines
to make use of the available parallelism are:

®* Follow the rules (see Section 3.4) to maximize useful decode bandwidth and front end throughput.
These rules include favoring single micro-op instructions and taking advantage of micro-fusion, Stack
pointer tracker and macrofusion.

® Maximize rename bandwidth. Guidelines are discussed in this section and include properly dealing
with partial registers, ROB read ports and instructions which causes side-effects on flags.

®* Scheduling recommendations on sequences of instructions so that multiple dependency chains are
alive in the reservation station (RS) simultaneously, thus ensuring that your code utilizes maximum
parallelism.
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®* Avoid hazards, minimize delays that may occur in the execution core, allowing the dispatched micro-
ops to make progress and be ready for retirement quickly.

3.5.1 Instruction Selection

Some execution units are not pipelined, this means that micro-ops cannot be dispatched in consecutive
cycles and the throughput is less than one per cycle.

It is generally a good starting point to select instructions by considering the number of micro-ops associ-
ated with each instruction, favoring in the order of: single micro-op instructions, simple instruction with
less than 4 micro-ops, and last instruction requiring microsequencer ROM (micro-ops which are executed
out of the microsequencer involve extra overhead).

Assembly/Compiler Coding Rule 25. (M impact, H generality) Favor single-micro-operation
instructions. Also favor instruction with shorter latencies.

A compiler may be already doing a good job on instruction selection. If so, user intervention usually is not
necessary.

Assembly/Compiler Coding Rule 26. (M impact, L generality) Avoid prefixes, especially multiple
non-0F-prefixed opcodes.

Assembly/Compiler Coding Rule 27. (M impact, L generality) Do not use many segment
registers.

Assembly/Compiler Coding Rule 28. (M impact, M generality) Avoid using complex instructions

(for example, enter, leave, or loop) that have more than four uops and require multiple cycles to
decode. Use sequences of simple instructions instead.

Assembly/Compiler Coding Rule 29. (MH impact, M generality) Use push/pop to manage stack
space and address adjustments between function calls/returns instead of enter/leave. Using enter
instruction with non-zero immediates can experience significant delays in the pipeline in addition to
misprediction.

Theoretically, arranging instructions sequence to match the 4-1-1-1 template applies to processors
based on Intel Core microarchitecture. However, with macrofusion and micro-fusion capabilities in the

front end, attempts to schedule instruction sequences using the 4-1-1-1 template will likely provide
diminishing returns.

Instead, software should follow these additional decoder guidelines:

® If you need to use multiple micro-op, non-microsequenced instructions, try to separate by a few
single micro-op instructions. The following instructions are examples of multiple micro-op instruction
not requiring micro-sequencer:

ADC/SBB
CMOVcc
Read-modify-write instructions
* If a series of multiple micro-op instructions cannot be separated, try breaking the series into a
different equivalent instruction sequence. For example, a series of read-modify-write instructions
may go faster if sequenced as a series of read-modify + store instructions. This strategy could
improve performance even if the new code sequence is larger than the original one.

3.5.1.1 Integer Divide

Typically, an integer divide is preceded by a CWD or CDQ instruction. Depending on the operand size,
divide instructions use DX:AX or EDX:EAX for the dividend. The CWD or CDQ instructions sign-extend AX
or EAX into DX or EDX, respectively. These instructions have denser encoding than a shift and move
would be, but they generate the same number of micro-ops. If AX or EAX is known to be positive, replace
these instructions with:

xor dx, dx

or
xor edx, edx
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Modern compilers typically can transform high-level language expression involving integer division where
the divisor is a known integer constant at compile time into a faster sequence using IMUL instruction
instead. Thus programmers should minimize integer division expression with divisor whose value can not
be known at compile time.

Alternately, if certain known divisor value are favored over other unknown ranges, software may consider
isolating the few favored, known divisor value into constant-divisor expressions.

Section 13.2.4 describes more detail of using MUL/IMUL to replace integer divisions.

3.5.1.2 Using LEA

In Sandy Bridge microarchitecture, there are two significant changes to the performance characteristics
of LEA instruction:

® LEA can be dispatched via port 1 and 5 in most cases, doubling the throughput over prior genera-
tions. However this apply only to LEA instructions with one or two source operands.

Example 3-16. Independent Two-Operand LEA Example

mov edx, N
mov eax, X
mov ecx, Y

loop:
lea ecx, [ecx + ecx] /] ecx = ecx*2
lea eax, [eax + eax *4] // eax = eax*5
and ecx, Oxff
and eax, Oxff
dec edx
ia loop

® For LEA instructions with three source operands and some specific situations, instruction latency has
increased to 3 cycles, and must dispatch via port 1:

— LEA that has all three source operands: base, index, and offset.

— LEA that uses base and index registers where the base is EBP, RBP, or R13.
— LEA that uses RIP relative addressing mode.

— LEA that uses 16-bit addressing mode.
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Example 3-17. Alternative to Three-Operand LEA

3 operand LEA is slower Two-operand LEA alternative Alternative 2
#defineK 1 #defineK 1 #defineK 1
uint32 an = 0; uint32 an = 0; uint32 an = 0;
uint32 N= mi_N; uint32 N= mi_N; uint32 N=mi_N;
mov ecx, N mov ecx, N mov ecx, N
Xor esi, esi; Xor esi, esi; XOr esi, esi;
xor edx, edx; xor edx, edx; mov edx, K;
cmp ecx, 2; cmp ecx, 2; cmp ecx, 2;
jb finished; jb finished; jb finished;
dec ecx; dec ecx; mov eax, 2

dec ecx;

loop1: loop1: loop1:

mov edi, esi; mov edi, esi; mov edi, esi;

lea esi, [K+esi+edx]; lea esi, [K+edx]; lea esi, [esi+edx];

and esi, OxFF; lea esi, [esi+edx]; and esi, OxFF;
mov edx, edi; and esi, OxFF; lea edx, [edi +K];
dec ecx; mov edx, edi; dec ecx;

jnz loop1; dec ecx; jnz loop1;
finished: jnz loop1; finished:

mov [an] ,esi; finished: mov [an] ,esi;

mov [an] ,esi;

The LEA instruction or a sequence of LEA, ADD, SUB and SHIFT instructions can replace constant multiply
instructions. The LEA instruction can also be used as a multiple operand addition instruction, for
example:

LEA ECX, [EAX + EBX*4 + A]
Using LEA in this way may avoid register usage by not tying up registers for operands of arithmetic
instructions. This use may also save code space.

If the LEA instruction uses a shift by a constant amount then the latency of the sequence of pops is
shorter if adds are used instead of a shift, and the LEA instruction may be replaced with an appropriate
sequence of pops. This, however, increases the total number of pops, leading to a trade-off.

Assembly/Compiler Coding Rule 30. (ML impact, L generality) If an LEA instruction using the
scaled index is on the critical path, a sequence with ADDs may be better.

3.5.1.3 ADC and SBB in Sandy Bridge Microarchitecture

The throughput of ADC and SBB in Sandy Bridge microarchitecture is 1 cycle, compared to 1.5-2 cycles
in the prior generation. These two instructions are useful in numeric handling of integer data types that
are wider than the maximum width of native hardware.
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//Add 64-bit to 512 Number

lea rsi, gLongCounter
lea rdi, gStepValue
mov rax, [rdi]
Xor rcx, rex

oop_start:
mov r10, [rsi+rcx]
add r10, rax
mov [rsi+rex], r10
mov r10, [rsi+rcx+8]
adc r10,0
mov [rsi+rcx+8],r10

| mov r10, [rsi+rcx+16]
adc r10,0
mov [rsi+rex+16],r10
mov r10, [rsi+rcx+24]
adc r10,0
mov [rsi+rcx+24],r10
mov r10, [rsi+rcx+32]
adc r10,0
mov [rsi+rex+32],r10

mov r10, [rsi+rcx+40]
adcr10,0
mov [rsi+rcx+40],r10

mov r10, [rsi+rcx+48]
adcr10,0
mov [rsi+rcx+48],r10

mov r10, [rsi+rcx+56]
adcr10,0

mov [rsi+rcx+56],r10
add rcx, 64

cmp rex, SIZE

jnz loop_start

/1'512-bit Addition

loop1:
mov
add
mov
mov
adc
mov
mov
adc

mov
mov
adc

mov
mov
adc

mov
mov
adc

mov
mov
adc

mov
mov
adc

mov
dec
inz

rax, [StepValue]

rax, [LongCounter]
LongCounter, rax

rax, [StepValue+8]
rax, [LongCounter+8]
LongCounter+8, rax
rax, [StepValue+16]
rax, [LongCounter+16]

LongCounter+16, rax
rax, [StepValue+24]
rax, [LongCounter+24]

LongCounter+24, rax
rax, [StepValue+32]
rax, [LongCounter+32]

LongCounter+32, rax
rax, [StepValue+40]
rax, [LongCounter+40]

LongCounter+40, rax
rax, [StepValue+48]
rax, [LongCounter+48]

LongCounter+48, rax
rax, [StepValue+56]
rax, [LongCounter+56]

LongCounter+56, rax
rcx
loop1

3.5.1.4 Bitwise Rotation

Bitwise rotation can choose between rotate with count specified in the CL register, an immediate constant
and by 1 bit. Generally, The rotate by immediate and rotate by register instructions are slower than
rotate by 1 bit. The rotate by 1 instruction has the same latency as a shift.
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Assembly/Compiler Coding Rule 31. (ML impact, L generality) Avoid ROTATE by register or
ROTATE by immediate instructions. If possible, replace with a ROTATE by 1 instruction.

In Sandy Bridge microarchitecture, ROL/ROR by immediate has 1-cycle throughput, SHLD/SHRD using
the same register as source and destination by an immediate constant has 1-cycle latency with 0.5 cycle
throughput. The "ROL/ROR reg, imm8” instruction has two micro-ops with the latency of 1-cycle for the
rotate register result and 2-cycles for the flags, if used.

In Ivy Bridge microarchitecture, The "ROL/ROR reg, imm8” instruction with immediate greater than 1, is
one micro-op with one-cycle latency when the overflow flag result is used. When the immediate is one,
dependency on the overflow flag result of ROL/ROR by a subsequent instruction will see the ROL/ROR
instruction with two-cycle latency.

3.5.1.5 Variable Bit Count Rotation and Shift

In Sandy Bridge microarchitecture, The "ROL/ROR/SHL/SHR reg, cl” instruction has three micro-ops.
When the flag result is not needed, one of these micro-ops may be discarded, providing better perfor-
mance in many common usages. When these instructions update partial flag results that are subse-
quently used, the full three micro-ops flow must go through the execution and retirement pipeline,
experiencing slower performance. In Ivy Bridge microarchitecture, executing the full three micro-ops
flow to use the updated partial flag result has additional delay. Consider the looped sequence below:
loop:

shl eax, cl

add ebx, eax

dec edx ; DEC does not update carry, causing SHL to execute slower three micro-ops flow

jnz loop

The DEC instruction does not modify the carry flag. Consequently, the SHL EAX, CL instruction needs to
execute the three micro-ops flow in subsequent iterations. The SUB instruction will update all flags. So
replacing DEC with SUB will allow SHL EAX, CL to execute the two micro-ops flow.

3.5.1.6 Address Calculations

For computing addresses, use the addressing modes rather than general-purpose computations. Inter-
nally, memory reference instructions can have four operands:

®* Relocatable load-time constant.
®* Immediate constant.

® Base register.

® Scaled index register.

Note that the latency and throughput of LEA with more than two operands are slower (see Section
3.5.1.2) in Sandy Bridge microarchitecture. Addressing modes that uses both base and index registers
will consume more read port resource in the execution engine and may experience more stalls due to
availability of read port resources. Software should take care by selecting the speedy version of address
calculation.

In the segmented model, a segment register may constitute an additional operand in the linear address
calculation. In many cases, several integer instructions can be eliminated by fully using the operands of
memory references.
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3.5.1.7 Clearing Registers and Dependency Breaking Idioms

Code sequences that modifies partial register can experience some delay in its dependency chain, but
can be avoided by using dependency breaking idioms.

In processors based on Intel Core microarchitecture, a number of instructions can help clear execution
dependency when software uses these instruction to clear register content to zero. The instructions
include:

XOR REG, REG

SUB REG, REG

XORPS/PD XMMREG, XMMREG

PXOR XMMREG, XMMREG

SUBPS/PD XMMREG, XMMREG

PSUBB/W/D/Q XMMREG, XMMREG

In processors based on Sandy Bridge microarchitecture, the instruction listed above plus equivalent AVX
counter parts are also zero idioms that can be used to break dependency chains. Furthermore, they do
not consume an issue port or an execution unit. So using zero idioms are preferable than moving 0’s into
the register. The AVX equivalent zero idioms are:

VXORPS/PD XMMREG, XMMREG

VXORPS/PD YMMREG, YMMREG

VPXOR XMMREG, XMMREG

VSUBPS/PD XMMREG, XMMREG

VSUBPS/PD YMMREG, YMMREG

VPSUBB/W/D/Q XMMREG, XMMREG

Microarchitectures that support Intel AVX-512 have the equivalent of zero idioms for the 512-bit regis-
ters using the unmasked versions of the instructions:

VXORPS/PD ZMMREG, ZMMREG

VPXOR ZMMREG, ZMMREG

VSUBPS/PD ZMMREG, ZMMREG

VPSUBB/W/D/Q ZMMREG, ZMMREG

The XOR and SUB instructions can be used to clear execution dependencies on the zero evaluation of the
destination register.

Assembly/Compiler Coding Rule 32. (M impact, ML generality) Use dependency-breaking-idiom
instructions to set a register to 0, or to break a false dependence chain resulting from re-use of
registers. In contexts where the condition codes must be preserved, move 0 into the register instead.
This requires more code space than using XOR and SUB, but avoids setting the condition codes.

Example 3-19 of using pxor to break dependency idiom on a XMM register when performing negation on
the elements of an array.
int a[4096], b[4096], c[4096];
For (inti=0;i<4096; i++)
C[i1 = - (a[i] + b[i] )
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Example 3-19. Clearing Register to Break Dependency While Negating Array Elements

Negation (-x = (x XOR (-1)) - (-1) without breaking
dependency

Negation (-x = 0 -x) using PXOR reg, reg breaks
dependency

Lea eax, a

lea ecx, b

lea edi, c

xor edx, edx

movdga xmm?7, allone

Ip:

movdga xmmoO, [eax + edx]
paddd xmmO, [ecx + edx]
pxor xmmQ, xmm7

psubd xmmO, xmm?7
movdgqa [edi + edx], xmmO
add edx, 16

cmp edx, 4096

ilp

lea eax, a
lea ecx, b
lea edi,
xor edx, edx

Ip:

movdga xmmoO, [eax + edx]
paddd xmmO, [ecx + edx]
pxor xmm?7, xmm7

psubd xmm?7, xmmO
movdqa [edi + edx], xmm7
add edx,16

cmp edx, 4096

ilp

Assembly/Compiler Coding Rule 33. (M impact, MH generality) Break dependences on portions
of registers between instructions by operating on 32-bit registers instead of partial registers. For
moves, this can be accomplished with 32-bit moves or by using MOVZX.

Sometimes sign-extended semantics can be maintained by zero-extending operands. For example, the C
code in the following statements does not need sign extension, nor does it need prefixes for operand size

overrides:

static short INT a, b;
IF(@==b){

}

Code for comparing these 16-bit operands might be:

MOVZW EAX, [a]
MOVZW EBX, [b]
CMP  EAX, EBX

These circumstances tend to be common. However, the technique will not work if the compare is for
greater than, less than, greater than or equal, and so on, or if the values in eax or ebx are to be used in
another operation where sign extension is required.

Assembly/Compiler Coding Rule 34. (M impact, M generality) Try to use zero extension or
operate on 32-bit operands instead of using moves with sign extension.

The trace cache can be packed more tightly when instructions with operands that can only be repre-

sented as 32 bits are not adjacent.

Assembly/Compiler Coding Rule 35. (ML impact, L generality) Avoid placing instructions that
use 32-bit immediates which cannot be encoded as sign-extended 16-bit immediates near each other.
Try to schedule pops that have no immediate immediately before or after uops with 32-bit immediates.

3.5.1.8 Compares

Use TEST when comparing a value in a register with zero. TEST essentially ANDs operands together
without writing to a destination register. TEST is preferred over AND because AND produces an extra
result register. TEST is better than CMP ..., 0 because the instruction size is smaller.
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Use TEST when comparing the result of a logical AND with an immediate constant for equality or
inequality if the register is EAX for cases such as:

IF (AVAR & 8) { }

The TEST instruction can also be used to detect rollover of modulo of a power of 2. For example, the C
code:

IF ((AVAR % 16)==0){}
can be implemented using:

TEST  EAX, OxOF
JNZ Afterlf

Using the TEST instruction between the instruction that may modify part of the flag register and the
instruction that uses the flag register can also help prevent partial flag register stall.

Assembly/Compiler Coding Rule 36. (ML impact, M generality) Use the TEST instruction instead
of AND when the result of the logical AND is not used. This saves uops in execution. Use a TEST of a
register with itself instead of a CMP of the register to zero, this saves the need to encode the zero and
saves encoding space. Avoid comparing a constant to a memory operand. It is preferable to load the
memory operand and compare the constant to a register.

Often a produced value must be compared with zero, and then used in a branch. Because most Intel
architecture instructions set the condition codes as part of their execution, the compare instruction may
be eliminated. Thus the operation can be tested directly by a JCC instruction. The notable exceptions are
MOV and LEA. In these cases, use TEST.

Assembly/Compiler Coding Rule 37. (ML impact, M generality) Eliminate unnecessary compare
with zero instructions by using the appropriate conditional jump instruction when the flags are already
set by a preceding arithmetic instruction. If necessary, use a TEST instruction instead of a compare. Be
certain that any code transformations made do not introduce problems with overflow.

3.5.1.9 Using NOPs

Code generators generate a no-operation (NOP) to align instructions. Examples of NOPs of different
lengths in 32-bit mode are shown in Table 3-3.

Table 3-3. Recommended Multi-Byte Sequence of NOP Instruction

Length Assembly Byte Sequence

2 bytes 66 NOP 66 90H

3 bytes NOP DWORD ptr [EAX] OF 1F O0H

4 bytes NOP DWORD ptr [EAX + 00H] OF 1F 40 O0H

5 bytes NOP DWORD ptr [EAX + EAX*1 + 00H] OF 1F 44 00 OOH

6 bytes 66 NOP DWORD ptr [EAX + EAX*1 + 00H] 66 OF 1F 44 00 00H

7 bytes NOP DWORD ptr [EAX + 00000000H] OF 1F 80 00 00 00 00OH

8 bytes NOP DWORD ptr [EAX + EAX*1 + 00000000H] OF 1F 84 00 00 00 00 00H

9 bytes 66 NOP DWORD ptr [EAX + EAX*1 + 00000000H] 66 OF 1F 84 00 00 00 00 OOH

These are all true NOPs, having no effect on the state of the machine except to advance the EIP. Because
NOPs require hardware resources to decode and execute, use the fewest humber to achieve the desired
padding.

The one byte NOP:[XCHG EAX,EAX] has special hardware support. Although it still consumes a pop and
its accompanying resources, the dependence upon the old value of EAX is removed. This pop can be
executed at the earliest possible opportunity, reducing the number of outstanding instructions, and is the
lowest cost NOP.

3-27



GENERAL OPTIMIZATION GUIDELINES

The other NOPs have no special hardware support. Their input and output registers are interpreted by the
hardware. Therefore, a code generator should arrange to use the register containing the oldest value as
input, so that the NOP will dispatch and release RS resources at the earliest possible opportunity.

Try to observe the following NOP generation priority:

® Select the smallest number of NOPs and pseudo-NOPs to provide the desired padding.
®* Select NOPs that are least likely to execute on slower execution unit clusters.

®* Select the register arguments of NOPs to reduce dependencies.

3.5.1.10 Mixing SIMD Data Types

Previous microarchitectures (before Intel Core microarchitecture) do not have explicit restrictions on
mixing integer and floating-point (FP) operations on XMM registers. For Intel Core microarchitecture,
mixing integer and floating-point operations on the content of an XMM register can degrade perfor-
mance. Software should avoid mixed-use of integer/FP operation on XMM registers. Specifically:

® Use SIMD integer operations to feed SIMD integer operations. Use PXOR for idiom.
®* Use SIMD floating-point operations to feed SIMD floating-point operations. Use XORPS for idiom.

®* When floating-point operations are bitwise equivalent, use PS data type instead of PD data type.
MOVAPS and MOVAPD do the same thing, but MOVAPS takes one less byte to encode the instruction.

3.5.1.11 Spill Scheduling

The spill scheduling algorithm used by a code generator will be impacted by the memory subsystem. A
spill scheduling algorithm is an algorithm that selects what values to spill to memory when there are too
many live values to fit in registers. Consider the code in Example 3-20, where it is necessary to spill
either A, B, or C.

Example 3-20. Spill Scheduling Code

LOOP
C=..
B
A

At

For modern microarchitectures, using dependence depth information in spill scheduling is even more
important than in previous processors. The loop-carried dependence in A makes it especially important
that A not be spilled. Not only would a store/load be placed in the dependence chain, but there would also
be a data-not-ready stall of the load, costing further cycles.

Assembly/Compiler Coding Rule 38. (H impact, MH generality) For small loops, placing loop
invariants in memory is better than spilling loop-carried dependencies.

A possibly counter-intuitive result is that in such a situation it is better to put loop invariants in memory
than in registers, since loop invariants never have a load blocked by store data that is not ready.

3.5.1.12 Zero-Latency MOV Instructions

In processors based on Ivy Bridge microarchitecture, a subset of register-to-register move operations
are executed in the front end (similar to zero-idioms, see Section 3.5.1.7). This conserves sched-
uling/execution resources in the out-of-order engine. Most forms of register-to-register MOV instructions
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can benefit from zero-latency MOV. Example 3-21 list the details of those forms that qualify and a small

set that do not.

Example 3-21. Zero-Latency MOV Instructions

MOV instructions latency that can be eliminated

MOV instructions latency that cannot be eliminated

MOV reg32, reg32

MOV regb4, regb4

MOVUPD/MOVAPD xmm, xmm
MOVUPD/MOVAPD ymm, ymm
MOVUPS?MOVAPS xmm, xmm
MOVUPS/MOVAPS ymm, ymm
MOVDQA/MOVDQU xmm, xmm
MOVDQA/MOVDQU ymm, ymm
MOVDQA/MOVDQU zmm, zmm

MOVZX reg32, reg8 (if not AH/BH/CH/DH)
MOVZX reg64, reg8 (if not AH/BH/CH/DH)

MOV reg8, reg8

MOV reg16, reg16

MOVZX reg32, reg8 (if AH/BH/CH/DH)
MOVZX regb4, reg8 (if AH/BH/CH/DH)
MOVSX

Example 3-22 shows how to process 8-bit integers using MOVZX to take advantage of zero-latency MOV

enhancement. Consider
X = (X * 32N ) MOD 256;
Y = (Y * 32N ) MOD 256;

When "MOD 256" is implemented using the “"AND Oxff” technique, its latency is exposed in the result-
dependency chain. Using a form of MOVZX on a truncated byte input, it can take advantage of zero-
latency MOV enhancement and gain about 45% in speed.

Example 3-22. Byte-Granular Data Computation Technique

lea rex, [rex+rex*2]
lea rax, [rax+rax*4]
and rcx, Oxff

and rax, Oxff
subrsi, 2

jg loop

Use AND Reg32, Oxff Use MOVZX

mov rsi, N mov rsi, N

mov rax, X mov rax, X

mov rex, Y mov rex, Y

loop: loop:

lea rex, [rex+rex*2] lea rbx, [rex+rex*2]
lea rax, [rax+rax*4] movzx, rcx, bl

and rcx, Oxff lea rbx, [rcx+rex*2]
and rax, Oxff movzx, rcx, bl

lea rdx, [rax+rax*4]
movzx, rax, di

llea rdx, [rax+rax*4]
movzx, rax, di
subrsi, 2

jg loop

The effectiveness of coding a dense sequence of instructions to rely on a zero-latency MOV instruction
must also consider internal resource constraints in the microarchitecture.
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Example 3-23. Re-ordering Sequence to Improve Effectiveness of Zero-Latency MOV Instructions

Needing more internal resource for zero-latency

MOVs Needing less internal resource for zero-latency MOVs
mov rsi, N mov rsi, N

mov rax, X mov rax, X

mov rcx, Y mov rcx, Y

loop: loop:

lea rbx, [rex+rex*2] lea rbx, [rex+rex*2]
movzx, rcX, bl movzx, rcx, bl

lea rdx, [rax+rax*4] lea rbx, [rcx+rex*2]
movzx, rax, dl movzx, rcx, bl

lea rbx, [rex+rex*2] lea rdx, [rax+rax*4]
movzx, rcx, bl movzx, rax, dl

llea rdx, [rax+rax*4] llea rdx, [rax+rax*4]
movzx, rax, dl movzx, rax, dl
subrsi, 2 subrsi, 2

ig loop ig loop

In Example 3-23, RBX/RCX and RDX/RAX are pairs of registers that are shared and continuously over-
written. In the right-hand sequence, registers are overwritten with new results immediately, consuming
less internal resources provided by the underlying microarchitecture. As a result, it is about 8% faster
than the left-hand sequence where internal resources could only support 50% of the attempt to take
advantage of zero-latency MOV instructions.

3.5.2 Avoiding Stalls in Execution Core

Although the design of the execution core is optimized to make common cases executes quickly. A micro-
op may encounter various hazards, delays, or stalls while making forward progress from the front end to
the ROB and RS. The significant cases are:

®* ROB Read Port Stalls.

®* Partial Register Reference Stalls.

® Partial Updates to XMM Register Stalls.
®* Partial Flag Register Reference Stalls.

3.5.2.1 Writeback Bus Conflicts

The writeback bus inside the execution engine is a common resource needed to facilitate out-of-order
execution of micro-ops in flight. When the writeback bus is needed at the same time by two micro-ops
executing in the same stack of execution units (see Table E-11 in Appendix E, “Earlier Generations of
Intel® 64 and IA-32 Processor Architectures”), the younger micro-op will have to wait for the writeback
bus to be available. This situation typically will be more likely for short-latency instructions experience a
delay when it might have been otherwise ready for dispatching into the execution engine.

Consider a repeating sequence of independent floating-point ADDs with a single-cycle MOV bound to the
same dispatch port. When the MOV finds the dispatch port available, the writeback bus can be occupied
by the ADD. This delays the MOV operation.

If this problem is detected, you can sometimes change the instruction selection to use a different
dispatch port and reduce the writeback contention.
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3.5.2.2 Bypass between Execution Domains

Floating-point (FP) loads have an extra cycle of latency. Moves between FP and SIMD stacks have
another additional cycle of latency.

Example:
ADDPS XMMO, XMM1

PAND XMMO, XMM3
ADDPS XMM2, XMMO

The overall latency for the above calculation is 9 cycles:

® 3 cycles for each ADDPS instruction.

®* 1 cycle for the PAND instruction.

® 1 cycle to bypass between the ADDPS floating-point domain to the PAND integer domain.

® 1 cycle to move the data from the PAND integer to the second floating-point ADDPS domain.

To avoid this penalty, organize code to minimize domain changes. Sometimes bypasses cannot be
avoided.

Account for bypass cycles when counting the overall latency of your code. If your calculation is latency-
bound, you can execute more instructions in parallel or break dependency chains to reduce total latency.

Code that has many bypass domains and is completely latency-bound may run slower on the Intel Core
microarchitecture than it did on previous microarchitectures.

3.5.2.3 Partial Register Stalls

General purpose registers can be accessed in granularities of bytes, words, doublewords; 64-bit mode
also supports quadword granularity. Referencing a portion of a register is referred to as a partial register
reference.

A partial register stall happens when an instruction refers to a register, portions of which were previously
modified by other instructions. For example, partial register stalls occurs with a read to AX while previous
instructions stored AL and AH, or a read to EAX while previous instruction modified AX.

The delay of a partial register stall is small in processors based on Intel Core microarchitecture, and in
Pentium M processor (with CPUID signature family 6, model 13), Intel Core Solo, and Intel Core Duo
processors. Pentium M processors (CPUID signature with family 6, model 9) and the P6 family incur a
large penalty.

Note that in Intel 64 architecture, an update to the lower 32 bits of a 64 bit integer register is architec-
turally defined to zero extend the upper 32 bits. While this action may be logically viewed as a 32 bit
update, it is really a 64 bit update (and therefore does not cause a partial stall).

Referencing partial registers frequently produces code sequences with either false or real dependencies.
Example 3-16 demonstrates a series of false and real dependencies caused by referencing partial regis-
ters.

If instructions 4 and 6 (in Example 3-16) are changed to use a movzx instruction instead of a moyv, then
the dependences of instruction 4 on 2 (and transitively 1 before it), and instruction 6 on 5 are broken.
This creates two independent chains of computation instead of one serial one.
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Example 3-24 illustrates the use of MOVZX to avoid a partial register stall when packing three byte
values into a register.

Example 3-24. Avoiding Partial Register Stalls in Integer Code

A Sequence Causing Partial Register Stall Alternate Sequence Using MOVZX to Avoid Delay
mov al, byte ptr a[2] movzx eax, byte ptr a[2]
shl eax,16 shleax, 16
mov ax, word ptr a movzx ecx, word ptr a
movd mmoO, eax or eax,ecx
ret movd mmO0, eax
ret

Beginning with Sandy Bridge microarchitecture and all subsequent generations of Intel Core microarchi-
tecture, partial register access is handled in hardware by inserting a micro-op that merges the partial
register with the full register in the following cases:

®* After a write to one of the registers AH, BH, CH or DH and before a following read of the 2-, 4- or 8-
byte form of the same register. In these cases a merge micro-op is inserted. The insertion consumes
a full allocation cycle in which other micro-ops cannot be allocated.

* After a micro-op with a destination register of 1 or 2 bytes, which is not a source of the instruction (or
the register's bigger form), and before a following read of a 2-,4- or 8-byte form of the same register.
In these cases the merge micro-op is part of the flow. For example:

* MOV AX, [BX]

When you want to load from memory to a partial register, consider using MOVZX or MOVSX to
avoid the additional merge micro-op penalty.

e LEA AX, [BX+CX]

For optimal performance, use of zero idioms, before the use of the register, eliminates the need for
partial register merge micro-ops.

3.5.24 Partial XMM Register Stalls

Partial register stalls can also apply to XMM registers. The following SSE and SSE2 instructions update
only part of the destination register:

MOVL/HPD XMM, MEM64
MOVL/HPS XMM, MEM32
MOVSS/SD between registers

Using these instructions creates a dependency chain between the unmodified part of the register and the
modified part of the register. This dependency chain can cause performance loss.

Example 3-25 illustrates the use of MOVZX to avoid a partial register stall when packing three byte
values into a register.

Follow these recommendations to avoid stalls from partial updates to XMM registers:
® Avoid using instructions which update only part of the XMM register.
* If a 64-bit load is needed, use the MOVSD or MOVQ instruction.

* If 2 64-bit loads are required to the same register from non continuous locations, use
MOVSD/MOVHPD instead of MOVLPD/MOVHPD.

®* When copying the XMM register, use the following instructions for full register copy, even if you only
want to copy some of the source register data:

MOVAPS
MOVAPD
MOVDQA
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Example 3-25. Avoiding Partial Register Stalls in SIMD Code

Using movlpd for memory transactions and movsd Using movsd for memory and movapd between
between register copies Causing Partial Register Stall register copies Avoid Delay

mov edx, X

mov ecx, count
movlpd xmm3,_1_
movlpd xmm2,_1pt5_
align 16

movlpd xmmO, [edX]
addsd xmmO, xmm3
movsd xmm1, xmm2
subsd xmm1, [edx]
mulsd  xmmO, xmm1
movsd [edx], xmmO
add edx, 8

dec ecx

inzlp

mov edx, X

mov ecx, count
movsd xmm3,_1_
movsd xmm2, _1pt5_

align 16

Ip:
movsd xmmO, [edx]
addsd xmmO, xmm3
movapd xmm1, xmm2
subsd xmmT1, [edx]
mulsd  xmmO, xmm1
movsd [edx], xmmO
add edx, 8
dec ecx
inzlp

3.5.25 Partial Flag Register Stalls

A “partial flag register stall” occurs when an instruction modifies a part of the flag register and the
following instruction is dependent on the outcome of the flags. This happens most often with shift
instructions (SAR, SAL, SHR, SHL). The flags are not modified in the case of a zero shift count, but the
shift count is usually known only at execution time. The front end stalls until the instruction is retired.

Other instructions that can modify some part of the flag register include CMPXCHGS8B, various rotate
instructions, STC, and STD. An example of assembly with a partial flag register stall and alternative code
without the stall is shown in Example 3-26.

In processors based on Intel Core microarchitecture, shift immediate by 1 is handled by special hardware
such that it does not experience partial flag stall.

Example 3-26. Avoiding Partial Flag Register Stalls

Partial Flag Register Stall

Avoiding Partial Flag Register Stall

XOr eax, eax
mov ecx, a

sar ecx, 2

setz al ;SAR can update carry causing a stall

or eax, eax
mov ecx, a

sar ecx, 2

test ecx, ecx ; test always updates all flags

setz al ;No partial reg or flag stall,

In Sandy Bridge microarchitecture, the cost of partial flag access is replaced by the insertion of a micro-
op instead of a stall. However, it is still recommended to use less of instructions that write only to some
of the flags (such as INC, DEC, SET CL) before instructions that can write flags conditionally (such as
SHIFT CL).

Example 3-27 compares two techniques to implement the addition of very large integers (e.g., 1024
bits). The alternative sequence on the right side of Example 3-27 will be faster than the left side on
Sandy Bridge microarchitecture, but it will experience partial flag stalls on prior microarchitectures.
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Example 3-27. Partial Flag Register Accesses in Sandy Bridge Microarchitecture

Save partial flag register to avoid stall

Simplified code sequence

lea rsi, [A]

lea rdi, [B]

XOr rax, rax

mov rcx, 16 ; 16*64 =1024 bit

Ip_64bit:
add rax, [rsi]
adc rax, [rdi]
mov [rdi], rax
setc al ;save carry for next iteration

lea rsi, [A]
lea rdi, [B]
XOr rax, rax
mov rcx, 16

Ip_64bit:

add rax, [rsi]
adc rax, [rdi]
mov [rdi], rax
lea rsi, [rsi+8]

movzx rax, al lea rdi, [rdi+8]
addrsi, 8 dec rcx

add rdi, 8 jnz Ip_64bit
dec rex

jnz Ip_64bit

3.5.2.6 Floating-Point/SIMD Operands

Moves that write a portion of a register can introduce unwanted dependences. The MOVSD REG, REG
instruction writes only the bottom 64 bits of a register, not all 128 bits. This introduces a dependence on
the preceding instruction that produces the upper 64 bits (even if those bits are not longer wanted). The
dependence inhibits register renaming, and thereby reduces parallelism.

Use MOVAPD as an alternative; it writes all 128 bits. Even though this instruction has a longer latency,
the uops for MOVAPD use a different execution port and this port is more likely to be free. The change can
impact performance. There may be exceptional cases where the latency matters more than the depen-
dence or the execution port.

Assembly/Compiler Coding Rule 39. (M impact, ML generality) Avoid introducing dependences
with partial floating-point register writes, e.g. from the MOVSD XMMREG1, XMMREG2 instruction. Use
the MOVAPD XMMREG1, XMMREG?2 instruction instead.

The MOVSD XMMREG, MEM instruction writes all 128 bits and breaks a dependence.

3.5.3 Vectorization

This section provides a brief summary of optimization issues related to vectorization. There is more detail
in the chapters that follow.

Vectorization is a program transformation that allows special hardware to perform the same operation on
multiple data elements at the same time. Successive processor generations have provided vector

support through the MMX technology, Streaming SIMD Extensions (SSE), Streaming SIMD Extensions 2
(SSE2), Streaming SIMD Extensions 3 (SSE3) and Supplemental Streaming SIMD Extensions 3 (SSSE3).

Vectorization is a special case of SIMD, a term defined in Flynn’s architecture taxonomy to denote a
single instruction stream capable of operating on multiple data elements in parallel. The number of
elements which can be operated on in parallel range from four single-precision floating-point data
elements in Streaming SIMD Extensions and two double-precision floating-point data elements in
Streaming SIMD Extensions 2 to sixteen byte operations in a 128-bit register in Streaming SIMD Exten-
sions 2. Thus, vector length ranges from 2 to 16, depending on the instruction extensions used and on
the data type.

The Intel C++ Compiler supports vectorization in three ways:
®* The compiler may be able to generate SIMD code without intervention from the user.
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® The can user insert pragmas to help the compiler realize that it can vectorize the code.
®* The user can write SIMD code explicitly using intrinsics and C++ classes.

To help enable the compiler to generate SIMD code, avoid global pointers and global variables. These
issues may be less troublesome if all modules are compiled simultaneously, and whole-program optimi-
zation is used.

User/Source Coding Rule 2. (H impact, M generality) Use the smallest possible floating-point or
SIMD data type, to enable more parallelism with the use of a (longer) SIMD vector. For example, use
single precision instead of double precision where possible.

User/Source Coding Rule 3. (M impact, ML generality) Arrange the nesting of loops so that the
innermost nesting level is free of inter-iteration dependencies. Especially avoid the case where the
store of data in an earlier iteration happens lexically after the load of that data in a future iteration,
something which is called a lexically backward dependence.

The integer part of the SIMD instruction set extensions cover 8-bit,16-bit and 32-bit operands. Not all
SIMD operations are supported for 32 bits, meaning that some source code will not be able to be vector-
ized at all unless smaller operands are used.

User/Source Coding Rule 4. (M impact, ML generality) Avoid the use of conditional branches
inside loops and consider using SSE instructions to eliminate branches.

User/Source Coding Rule 5. (M impact, ML generality) Keep induction (loop) variable expressions
simple.

3.54 Optimization of Partially Vectorizable Code

Frequently, a program contains a mixture of vectorizable code and some routines that are non-vectoriz-
able. A common situation of partially vectorizable code involves a loop structure which include mixtures
of vectorized code and unvectorizable code. This situation is depicted in Figure 3-1.
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Packed SIMD Instruction
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Unpacking
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Unvectorizable Code </$r— ~ *> Serial Routine
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Figure 3-1. Generic Program Flow of Partially Vectorized Code

It generally consists of five stages within the loop:

®* Prolog.

® Unpacking vectorized data structure into individual elements.

® Calling a non-vectorizable routine to process each element serially.
® Packing individual result into vectorized data structure.

®* Epilog.
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This section discusses techniques that can reduce the cost and bottleneck associated with the
packing/unpacking stages in these partially vectorize code.

Example 3-28 shows a reference code template that is representative of partially vectorizable coding
situations that also experience performance issues. The unvectorizable portion of code is represented
generically by a sequence of calling a serial function named “foo” multiple times. This generic example is
referred to as “shuffle with store forwarding”, because the problem generally involves an unpacking
stage that shuffles data elements between register and memory, followed by a packing stage that can
experience store forwarding issue.

There are more than one useful techniques that can reduce the store-forwarding bottleneck between the
serialized portion and the packing stage. The following sub-sections presents alternate techniques to
deal with the packing, unpacking, and parameter passing to serialized function calls.

Example 3-28. Reference Code Template for Partially Vectorizable Program

/1 Prolog /1T
push ebp
mov ebp, esp

/1 Unpacking /111111
sub ebp, 32

and ebp, Oxfffffff0

movaps [ebp], xmmO

// Serial operations on components /////1/
sub ebp, 4

mov eax, [ebp+4]
mov [ebp], eax

call foo

mov [ebp+16+4], eax

mov eax, [ebp+8]

mov [ebp], eax

call foo

mov [ebp+16+4+4], eax

mov eax, [ebp+12]

mov [ebp], eax

call foo

mov [ebp+16+8+4], eax

mov eax, [ebp+12+4]
mov [ebp], eax

call foo

mov [ebp+16+12+4], eax

11 Packing /11T
movaps xmmO, [ebp+16+4]

/1 Epilog TN

pop ebp
ret
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3.54.1 Alternate Packing Techniques

The packing method implemented in the reference code of Example 3-28 will experience delay as it
assembles 4 doubleword result from memory into an XMM register due to store-forwarding restrictions.

Three alternate techniques for packing, using different SIMD instruction to assemble contents in XMM
registers are shown in Example 3-29. All three techniques avoid store-forwarding delay by satisfying the
restrictions on data sizes between a preceding store and subsequent load operations.

Example 3-29. Three Alternate Packing Methods for Avoiding Store Forwarding Difficulty

Packing Method 1 Packing Method 2 Packing Method 3
movd xmmoO, [ebp+16+4] movd xmmoO, [ebp+16+4] movd xmmoO, [ebp+16+4]
movd xmm1, [ebp+16+8] movd xmm1, [ebp+16+8] movd xmm1, [ebp+16+8]
movd xmmZ2, [ebp+16+12] movd xmmZ2, [ebp+16+12] movd xmm2, [ebp+16+12]
movd xmm3, [ebp+12+16+4] movd xmm3, [ebp+12+16+4] movd xmm3, [ebp+12+16+4]
punpckldg xmmO, xmm1 pslig xmm3, 32 movlhps xmm1,xmm3
punpckldg xmm2, xmm3 orps xmme2, xmm3 pslig xmm1, 32
punpckldg xmmO, xmm?2 pslig xmm1, 32 movlhps xmmO, xmm2

orps xmmQO, xmm1movlhps xmmO, xmmZ2 orps xmmO, xmm 1

3.54.2 Simplifying Result Passing

In Example 3-28, individual results were passed to the packing stage by storing to contiguous memory
locations. Instead of using memory spills to pass four results, result passing may be accomplished by
using either one or more registers. Using registers to simplify result passing and reduce memory spills
can improve performance by varying degrees depending on the register pressure at runtime.

Example 3-30 shows the coding sequence that uses four extra XMM registers to reduce all memory spills
of passing results back to the parent routine. However, software must observe the following conditions
when using this technique:

® There is no register shortage.

* If the loop does not have many stores or loads but has many computations, this technique does not
help performance. This technique adds work to the computational units, while the store and loads
ports are idle.

Example 3-30. Using Four Registers to Reduce Memory Spills and Simplify Result Passing

mov eax, [ebp+4]
mov [ebp], eax
call foo

movd xmmO, eax

mov eax, [ebp+8]
mov [ebp], eax
call foo

movd xmm1, eax
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Example 3-30. Using Four Registers to Reduce Memory Spills and Simplify Result Passing (Contd.)

mov eax, [ebp+12]
mov [ebp], eax

call foo

movd xmm2, eax

mov eax, [ebp+12+4]
mov [ebp], eax

call foo

movd xmm3, eax

3.543 Stack Optimization

In Example 3-28, an input parameter was copied in turn onto the stack and passed to the non-vectoriz-
able routine for processing. The parameter passing from consecutive memory locations can be simplified
by a technique shown in Example 3-31.

Example 3-31. Stack Optimization Technique to Simplify Parameter Passing

call foo
mov [ebp+16], eax

add ebp, 4
call foo
mov [ebp+16], eax

add ebp, 4
call foo
mov [ebp+16], eax

add ebp, 4
call foo

Stack Optimization can only be used when:

®* The serial operations are function calls. The function “foo” is declared as: INT FOO(INT A). The
parameter is passed on the stack.

® The order of operation on the components is from last to first.

Note the call to FOO and the advance of EDP when passing the vector elements to FOO one by one from
last to first.

3544 Tuning Considerations
Tuning considerations for situations represented by looping of Example 3-28 include:
®* Applying one of more of the following combinations:
— Choose an alternate packing technique.
— Consider a technique to simply result-passing.
— Consider the stack optimization technique to simplify parameter passing.
®* Minimizing the average number of cycles to execute one iteration of the loop.
®* Minimizing the per-iteration cost of the unpacking and packing operations.
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The speed improvement by using the techniques discussed in this section will vary, depending on the
choice of combinations implemented and characteristics of the non-vectorizable routine. For example, if
the routine “foo” is short (representative of tight, short loops), the per-iteration cost of
unpacking/packing tend to be smaller than situations where the non-vectorizable code contain longer
operation or many dependencies. This is because many iterations of short, tight loop can be in flight in
the execution core, so the per-iteration cost of packing and unpacking is only partially exposed and
appear to cause very little performance degradation.

Evaluation of the per-iteration cost of packing/unpacking should be carried out in a methodical manner
over a selected number of test cases, where each case may implement some combination of the tech-
niques discussed in this section. The per-iteration cost can be estimated by:

® Evaluating the average cycles to execute one iteration of the test case.

®* Evaluating the average cycles to execute one iteration of a base line loop sequence of non-vector-
izable code.

Example 3-32 shows the base line code sequence that can be used to estimate the average cost of a loop
that executes non-vectorizable routines.

Example 3-32. Base Line Code Sequence to Estimate Loop Overhead

push ebp
mov ebp, esp
sub ebp, 4

mov [ebp], edi
call foo

mov [ebp], edi
call foo

mov [ebp], edi
call foo

mov [ebp], edi
call foo

add ebp, 4

pop ebp
ret

The average per-iteration cost of packing/unpacking can be derived from measuring the execution times
of a large number of iterations by:

((Cycles to run TestCase) - (Cycles to run equivalent baseline sequence) ) / (Iteration count).

For example, using a simple function that returns an input parameter (representative of tight, short
loops), the per-iteration cost of packing/unpacking may range from slightly more than 7 cycles (the
shuffle with store forwarding case, Example 3-28) to ~0.9 cycles (accomplished by several test cases).
Across 27 test cases (consisting of one of the alternate packing methods, no result-simplification/simpli-
fication of either 1 or 4 results, no stack optimization or with stack optimization), the average per-itera-
tion cost of packing/unpacking is about 1.7 cycles.

Generally speaking, packing method 2 and 3 (see Example 3-29) tend to be more robust than packing
method 1; the optimal choice of simplifying 1 or 4 results will be affected by register pressure of the
runtime and other relevant microarchitectural conditions.
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Note that the numeric discussion of per-iteration cost of packing/packing is illustrative only. It will vary
with test cases using a different base line code sequence and will generally increase if the non-vectoriz-
able routine requires longer time to execute because the number of loop iterations that can reside in
flight in the execution core decreases.

3.6 OPTIMIZING MEMORY ACCESSES

This section discusses guidelines for optimizing code and data memory accesses. The most important
recommendations are:

®* Execute load and store operations within available execution bandwidth.
®* Enable forward progress of speculative execution.

®* Enable store forwarding to proceed.

* Align data, paying attention to data layout and stack alignment.

® Place code and data on separate pages.

®* Enhance data locality.

® Use prefetching and cacheability control instructions.

® Enhance code locality and align branch targets.

®* Take advantage of write combining.

3.6.1 Load and Store Execution Bandwidth

Typically, loads and stores are the most frequent operations in a workload, up to 40% of the instructions
in a workload carrying load or store intent are not uncommon. Each generation of microarchitecture
provides multiple buffers to support executing load and store operations while there are instructions in
flight. These buffers were comprised of 128-bit wide entries for the Sandy Bridge and Ivy Bridge microar-
chitectures. The size was increased to 256-bit in Haswell, Broadwell and Skylake Client microarchitec-
tures; and to 512-bit in Skylake Server, Cascade Lake, Cascade Lake Advanced Performance, and Ice
Lake Client microarchitectures. To maximize performance, it is best to use the largest width available in
the platform.

3.6.1.1 Making Use of Load Bandwidth in Sandy Bridge Microarchitecture

While prior microarchitecture has one load port (port 2), Sandy Bridge microarchitecture can load from
port 2 and port 3. Thus two load operations can be performed every cycle and doubling the load
throughput of the code. This improves code that reads a lot of data and does not need to write out results
to memory very often (Port 3 also handles store-address operation). To exploit this bandwidth, the data
has to stay in the L1 data cache or it should be accessed sequentially, enabling the hardware prefetchers
to bring the data to the L1 data cache in time.

Consider the following C code example of adding all the elements of an array:
int buff[BUFF_SIZET];

int sum = 0;

for (i=0;i<BUFF_SIZE;i++){
sum+=buff[i];

be

Alternative 1 is the assembly code generated by the Intel compiler for this C code, using the optimization
flag for Nehalem microarchitecture. The compiler vectorizes execution using Intel SSE instructions. In

this code, each ADD operation uses the result of the previous ADD operation. This limits the throughput
to one load and ADD operation per cycle. Alternative 2 is optimized for Sandy Bridge microarchitecture
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by enabling it to use the additional load bandwidth. The code removes the dependency among ADD oper-
ations, by using two registers to sum the array values. Two load and two ADD operations can be executed
every cycle.

Example 3-33. Optimizing for Load Port Bandwidth in Sandy Bridge Microarchitecture

Register dependency inhibits PADD execution Reduce register dependency allow two load port to supply
PADD execution
Xor eax, eax Xor eax, eax
pxor xmmO, xmmO pxor xmmO, xmmO
lea rsi, buff pxor xmm1, xmm1
lea rsi, buff
loop_start: loop_start:
paddd xmmO, [rsi+4*rax] paddd xmmoO, [rsi+4*rax]
paddd xmmoO, [rsi+4*rax+16] paddd xmm1, [rsi+4*rax+16]
paddd xmmoO, [rsi+4*rax+32] paddd xmmO, [rsi+4*rax+32]
paddd xmmo, [rsi+4*rax+48] paddd xmm1, [rsi+4*rax+48]
paddd xmmo, [rsi+4*rax+64] paddd xmmO, [rsi+4*rax+64]
paddd xmmoO, [rsi+4*rax+80] paddd xmmf, [rsi+4*rax+80]
paddd xmmoO, [rsi+4*rax+96] paddd xmmoO, [rsi+4*rax+96]
paddd xmmoO, [rsi+4*rax+112] paddd xmmT, [rsi+4*rax+112]
add eax, 32 add  eax, 32
cmp  eax, BUFF_SIZE cmp  eax, BUFF_SIZE
jl loop_start jl loop_start
sum_partials: sum_partials:
movdga xmm1, xmmO paddd xmmO, xmm1
psrldg xmm1, 8 movdga xmm?1, xmmO
paddd xmmO, xmm1 psridg xmm1, 8
movdga xmm2, xmmO paddd xmmO, xmm1
psridg xmm2, 4 movdga xmmz2, xmmO
paddd xmmO, xmm2 psridg  xmmZ2, 4
movd  [sum], xmmO paddd xmmO, xmmZ2
movd  [sum], xmmO

3.6.1.2 L1D Cache Latency in Sandy Bridge Microarchitecture

Load latency from L1D cache may vary (see Table E-15 in Appendix E). The best case if 4 cycles, which
apply to load operations to general purpose registers using one of the following:

® One register.
® A base register plus an offset that is smaller than 2048.

Consider the pointer-chasing code example in Example 3-34.
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Example 3-34. Index versus Pointers in Pointer-Chasing Code

Traversing through indexes Traversing through pointers
// C code example /1 C code example
index = buffer.m_buff[index].next_index; node = node->pNext;
// ASM example // ASM example
loop: loop:
shlrbx, 6 mov rdx, [rdx]
mov rbx, 0x20(rbx+rcx) dec rax
dec rax cmp rax, -1
cmp rax, -1 jne loop
jne loop

The left side implements pointer chasing via traversing an index. Compiler then generates the code
shown below addressing memory using base+index with an offset. The right side shows compiler gener-
ated code from pointer de-referencing code and uses only a base register.

The code on the right side is faster than the left side across Sandy Bridge microarchitecture and prior
microarchitecture. However the code that traverses index will be slower on Sandy Bridge microarchitec-
ture relative to prior microarchitecture.

3.6.1.3 Handling L1D Cache Bank Conflict

In Sandy Bridge microarchitecture, the internal organization of the L1D cache may manifest a situation
when two load micro-ops whose addresses have a bank conflict. When a bank conflict is present between
two load operations, the more recent one will be delayed until the conflict is resolved. A bank conflict
happens when two simultaneous load operations have the same bit 2-5 of their linear address but they
are not from the same set in the cache (bits 6 - 12).

Bank conflicts should be handled only if the code is bound by load bandwidth. Some bank conflicts do not
cause any performance degradation since they are hidden by other performance limiters. Eliminating
such bank conflicts does not improve performance.

The following example demonstrates bank conflict and how to modify the code and avoid them. It uses
two source arrays with a size that is a multiple of cache line size. When loading an element from A and
the counterpart element from B the elements have the same offset in their cache lines and therefore a
bank conflict may happen.

The L1D Cache bank conflict issue does not apply to Haswell microarchitecture.
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Example 3-35. Example of Bank Conflicts in L1D Cache and Remedy

int A[128];
int B[128];
int C[128];
for (i=0;i<128;i+=4)

Cli+1]=A[i+1]+B[i+1];
Cli+2]=A[i+2]+B[i+2];
C[i+3]=A[i+3]+B[i+3];
}

// Code with Bank Conflicts
XOr FCX, rcX
lear11, A
lear12,B
lear13,C

loop:
lea esi, [rcx*4]
movsxd rsi, esi
mov edi, [r11+rsi*4]
add edi, [r12+rsi*4]
mov r8d, [r11+rsi*4+4]
add r8d, [r12+rsi*4+4]
mov r9d, [r11+rsi*4+8]
add r9d, [r12+rsi*4+8]
mov r10d, [r11+rsi*4+12]
add r10d, [r12+rsi*4+12]

mov [r13+rsi*4], edi

inc ecx

mov [r13+rsi*4+4], r8d
mov [r13+rsi*4+8], rad
mov [r13+rsi*4+12],r10d
cmp ecx, LEN

jb loop

C[i]=A[i]+BIi]; the loads from A[i] and Bi] collide

// Code without Bank Conflicts

loop:

XOr rcX, rcx
lear11, A
lear12, B
lear13,C

lea esi, [rcx*4]

movsxd rsi, esi

mov edi, [r11+rsi*4]

mov r8d, [r11+rsi*4+4]
add edi, [r12+rsi*4]

add r8d, [r12+rsi*4+4]
mov r9d, [r11+rsi*4+8]
mov r10d, [r11+rsi*4+12]
add r9d, [r12+rsi*4+8]
add r10d, [r12+rsi*4+12]

inc ecx

mov [r13+rsi*4], edi

mov [r13+rsi*4+4], r8d
mov [r13+rsi*4+8], r9d
mov [r13+rsi*4+12], r10d
cmp ecx, LEN

jb loop

3.6.2 Minimize Register Spills

When a piece of code has more live variables than the processor can keep in general purpose registers,
a common method is to hold some of the variables in memory. This method is called register spill. The
effect of L1D cache latency can negatively affect the performance of this code. The effect can be more
pronounced if the address of register spills uses the slower addressing modes.

One option is to spill general purpose registers to XMM registers. This method is likely to improve perfor-
mance also on previous processor generations. The following example shows how to spill a register to an

XMM register rather than to memory.
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Example 3-36. Using XMM Register in Lieu of Memory for Register Spills

Register spills into memory

Register spills into XMM

loop:
mov rdx, [rsp+0x18]
movdga xmmO, [rdx]
movdga xmm1, [rsp+0x20]
pcmpeqd xmm1, xmmO
pmovmskb eax, xmm1
test eax, eax
jne end_loop
movzx rcx, [rbx+0x60]

add qword ptr[rsp+0x18], 0x10
add rdi, 0x4

movzx rdx, di

sub rcx, 0x4

add rsi, 0x1d0

cmp rdx, rex

jle loop

movqg xmm4, [rsp+0x18]
mov rcx, 0x10
movqg Xmm5, rcx

loop:
movq rdx, xmm4
movdga xmmO, [rdx]
movdga xmm1, [rsp+0x20]
pcmpeqd xmm1, xmmO
pmovmskb eax, xmm1
test eax, eax
jne end_loop
movzx rcx, [rbx+0x60]

padd xmm4, xmm5
add rdi, Ox4
movzx rdx, di

sub rcx, 0x4

add rsi, 0x1d0
cmp rdx, rex

jle loop

3.6.3 Enhance Speculative Execution and Memory Disambiguation

Prior to Intel Core microarchitecture, when code contains both stores and loads, the loads cannot be
issued before the address of the older stores is known. This rule ensures correct handling of load depen-
dencies on preceding stores.

The Intel Core microarchitecture contains a mechanism that allows some loads to be executed specula-
tively in the presence of older unknown stores. The processor later checks if the load address overlapped
with an older store whose address was unknown at the time the load executed. If the addresses do
overlap, then the processor re-executes the load and all succeeding instructions.

Example 3-37 illustrates a situation that the compiler cannot be sure that “Ptr->Array” does not change
during the loop. Therefore, the compiler cannot keep “Ptr->Array” in a register as an invariant and must
read it again in every iteration. Although this situation can be fixed in software by a rewriting the code to
require the address of the pointer is invariant, memory disambiguation improves performance without
rewriting the code.
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Example 3-37. Loads Blocked by Stores of Unknown Address

C code Assembly sequence
struct AA{ nullify_loop:
AA ** array; mov dword ptr [eax], 0
¥ mov edx, dword ptr [edi]
void nullify_array ( AA *Ptr, DWORD Index, AA *ThisPtr | sub ecx, 4
) cmp dword ptr [ecx+edx], esi
{ lea eax, [ecx+edx]
while ( Ptr->Array[--Index] |= ThisPtr ) jne nullify_loop

{

Ptr->Array[Index] = NULL ;

Y
}

It is possible to disable speculative store bypass with the IA32_SPEC_CTRL.SSBD MSR. Additional infor-
mation on this topic can be found here: https://software.intel.com/security-software-guidance/insights.

3.6.4 Store Forwarding

The processor’'s memory system only sends stores to memory (including cache) after store retirement.
However, store data can be forwarded from a store to a subsequent load from the same address to give
a much shorter store-load latency.

There are two kinds of requirements for store forwarding. If these requirements are violated, store
forwarding cannot occur and the load must get its data from the cache (so the store must write its data
back to the cache first). This incurs a penalty that is largely related to pipeline depth of the underlying
micro-architecture.

The first requirement pertains to the size and alignment of the store-forwarding data. This restriction is
likely to have high impact on overall application performance. Typically, a performance penalty due to
violating this restriction can be prevented. The store-to-load forwarding restrictions vary from one
microarchitecture to another. Several examples of coding pitfalls that cause store-forwarding stalls and
solutions to these pitfalls are discussed in detail in Section 3.6.4.1, “Store-to-Load-Forwarding Restric-
tion on Size and Alignment.” The second requirement is the availability of data, discussed in Section
3.6.4.2, “Store-forwarding Restriction on Data Availability.” A good practice is to eliminate redundant
load operations.

It may be possible to keep a temporary scalar variable in a register and never write it to memory. Gener-
ally, such a variable must not be accessible using indirect pointers. Moving a variable to a register elimi-
nates all loads and stores of that variable and eliminates potential problems associated with store
forwarding. However, it also increases register pressure.

Load instructions tend to start chains of computation. Since the out-of-order engine is based on data
dependence, load instructions play a significant role in the engine’s ability to execute at a high rate. Elim-
inating loads should be given a high priority.

If a variable does not change between the time when it is stored and the time when it is used again, the
register that was stored can be copied or used directly. If register pressure is too high, or an unseen func-
tion is called before the store and the second load, it may not be possible to eliminate the second load.

Assembly/Compiler Coding Rule 40. (H impact, M generality) Pass parameters in registers
instead of on the stack where possible. Passing arguments on the stack requires a store followed by a
reload. While this sequence is optimized in hardware by providing the value to the load directly from
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the memory order buffer without the need to access the data cache if permitted by store-forwarding
restrictions, floating-point values incur a significant latency in forwarding. Passing floating-point
arguments in (preferably XMM) registers should save this long latency operation.

Parameter passing conventions may limit the choice of which parameters are passed in registers which
are passed on the stack. However, these limitations may be overcome if the compiler has control of the
compilation of the whole binary (using whole-program optimization).

3.6.4.1 Store-to-Load-Forwarding Restriction on Size and Alignment

Data size and alignment restrictions for store-forwarding apply to processors based on Intel Core
microarchitecture, Intel Core 2 Duo, Intel Core Solo and Pentium M processors. The performance penalty
for violating store-forwarding restrictions is less for shorter-pipelined machines.

Store-forwarding restrictions vary with each microarchitecture. The following rules help satisfy size and
alignment restrictions for store forwarding:

Assembly/Compiler Coding Rule 41. (H impact, M generality) A load that forwards from a store
must have the same address start point and therefore the same alignment as the store data.

Assembly/Compiler Coding Rule 42. (H impact, M generality) The data of a load which is
forwarded from a store must be completely contained within the store data.

A load that forwards from a store must wait for the store’s data to be written to the store buffer before
proceeding, but other, unrelated loads need not wait.

Assembly/Compiler Coding Rule 43. (H impact, ML generality) If it is necessary to extract a non-
aligned portion of stored data, read out the smallest aligned portion that completely contains the data
and shift/mask the data as necessary. This is better than incurring the penalties of a failed store-
forward.

Assembly/Compiler Coding Rule 44. (MH impact, ML generality) Avoid several small loads after
large stores to the same area of memory by using a single large read and register copies as needed.

Example 3-38 depicts several store-forwarding situations in which small loads follow large stores. The
first three load operations illustrate the situations described in Rule 44. However, the last load operation
gets data from store-forwarding without problem.

Example 3-38. Situations Showing Small Loads After Large Store

mov [EBP],'abcd’

mov AL, [EBP] ; Not blocked - same alignment

mov BL, [EBP + 1] ; Blocked

mov CL, [EBP + 2] ; Blocked

mov DL, [EBP + 3] ; Blocked

mov AL, [EBP] ; Not blocked - same alignment
; n.b. passes older blocked loads

Example 3-39 illustrates a store-forwarding situation in which a large load follows several small stores.
The data needed by the load operation cannot be forwarded because all of the data that needs to be
forwarded is not contained in the store buffer. Avoid large loads after small stores to the same area of
memory.

Example 3-39. Non-forwarding Example of Large Load After Small Store

mov [EBP], ‘@’

mov [EBP + 1],

mov [EBP + 2],

mov [EBP + 3], 'd’

mov EAX, [EBP] ; Blocked
; The first 4 small store can be consolidated into
; a single DWORD store to prevent this non-forwarding
; situation.
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Example 3-40 illustrates a stalled store-forwarding situation that may appear in compiler generated
code. Sometimes a compiler generates code similar to that shown in Example 3-40 to handle a spilled
byte to the stack and convert the byte to an integer value.

Example 3-40. A Non-forwarding Situation in Compiler Generated Code

mov DWORD PTR [esp+10h], 00000000h

mov BYTE PTR [esp+10h], bl

mov eax, DWORD PTR [esp+10h] ; Stall

and eax, Oxff ; Converting back to byte value

Example 3-41 offers two alternatives to avoid the non-forwarding situation shown in Example 3-40.

Example 3-41. Two Ways to Avoid Non-forwarding Situation in Example 3-40

; A. Use MOVZ instruction to avoid large load after small
; store, when spills are ignored.

movz eax, bl ; Replaces the last three instructions
; B. Use MOVZ instruction and handle spills to the stack

mov DWORD PTR [esp+10h], 00000000h

mov BYTE PTR [esp+10h], bl

movz eax, BYTE PTR [esp+10h] ; Not blocked

When moving data that is smaller than 64 bits between memory locations, 64-bit or 128-bit SIMD
register moves are more efficient (if aligned) and can be used to avoid unaligned loads. Although
floating-point registers allow the movement of 64 bits at a time, floating-point instructions should not be
used for this purpose, as data may be inadvertently modified.

As an additional example, consider the cases in Example 3-42.

Example 3-42. Large and Small Load Stalls

; A. Large load stall

mov mem, eax ; Store dword to address “MEM"

mov mem + 4, ebx ; Store dword to address “MEM + 4"

fld mem ; Load qword at address “MEM”, stalls

; B. Small Load stall

fstp mem ; Store qword to address “MEM”

mov bx, mem+2 ; Load word at address “MEM + 2“, stalls
mov X, mem+4 ; Load word at address “MEM + 4", stalls

In the first case (A), there is a large load after a series of small stores to the same area of memory
(beginning at memory address MEM). The large load will stall.

The FLD must wait for the stores to write to memory before it can access all the data it requires. This stall
can also occur with other data types (for example, when bytes or words are stored and then words or
doublewords are read from the same area of memory).

In the second case (B), there is a series of small loads after a large store to the same area of memory
(beginning at memory address MEM). The small loads will stall.

The word loads must wait for the quadword store to write to memory before they can access the data
they require. This stall can also occur with other data types (for example, when doublewords or words
are stored and then words or bytes are read from the same area of memory). This can be avoided by

moving the store as far from the loads as possible.
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Store forwarding restrictions for processors based on Intel Core microarchitecture is listed in Table 3-4.

Table 3-4. Store Forwarding Restrictions of Processors Based on Intel Core Microarchitecture

Store Alignment Width of Load Alignment (byte) | Width of Load (bits) Store Forwarding
Store (bits) Restriction
To Natural size 16 word aligned 8,16 not stalled
To Natural size 16 not word aligned 8 stalled
To Natural size 32 dword aligned 8,32 not stalled
To Natural size 32 not dword aligned 8 stalled
To Natural size 32 word aligned 16 not stalled
To Natural size 32 not word aligned 16 stalled
To Natural size 64 qword aligned 8,16, 64 not stalled
To Natural size 64 not qword aligned 8,16 stalled
To Natural size 64 dword aligned 32 not stalled
To Natural size 64 not dword aligned 32 stalled
To Natural size 128 dqword aligned 8,16, 128 not stalled
To Natural size 128 not dqword aligned 8,16 stalled
To Natural size 128 dword aligned 32 not stalled
To Natural size 128 not dword aligned 32 stalled
To Natural size 128 gword aligned 64 not stalled
To Natural size 128 not qword aligned 64 stalled
Unaligned, start byte 1 32 byte 0 of store 8,16, 32 not stalled
Unaligned, start byte 1 32 not byte O of store 8,16 stalled
Unaligned, start byte 1 64 byte 0 of store 8,16, 32 not stalled
Unaligned, start byte 1 64 not byte O of store 8,16, 32 stalled
Unaligned, start byte 1 64 byte 0 of store 64 stalled
Unaligned, start byte 7 32 byte O of store 8 not stalled
Unaligned, start byte 7 32 not byte O of store 8 not stalled
Unaligned, start byte 7 32 don't care 16,32 stalled
Unaligned, start byte 7 64 don't care 16, 32, 64 stalled

3.6.4.2

Store-forwarding Restriction on Data Availability

The value to be stored must be available before the load operation can be completed. If this restriction is
violated, the execution of the load will be delayed until the data is available. This delay causes some

execution resources to be used unnecessarily, and that can lead to sizable but non-deterministic delays.
However, the overall impact of this problem is much smaller than that from violating size and alignment

requirements.

In modern microarchitectures, hardware predicts when loads are dependent on and get their data
forwarded from preceding stores. These predictions can significantly improve performance. However, if a
load is scheduled too soon after the store it depends on or if the generation of the data to be stored is
delayed, there can be a significant penalty.

There are several cases in which data is passed through memory, and the store may need to be sepa-

rated from the load:

®* Spills, save and restore registers in a stack frame.

® Parameter passing.

® Global and volatile variables.
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®* Type conversion between integer and floating-point.

® When compilers do not analyze code that is inlined, forcing variables that are involved in the interface
with inlined code to be in memory, creating more memory variables and preventing the elimination of
redundant loads.
Assembly/Compiler Coding Rule 45. (H impact, MH generality) Where it is possible to do so
without incurring other penalties, prioritize the allocation of variables to registers, as in register
allocation and for parameter passing, to minimize the likelihood and impact of store-forwarding
problems. Try not to store-forward data generated from a long latency instruction - for example, MUL
or DIV. Avoid store-forwarding data for variables with the shortest store-load distance. Avoid store-
forwarding data for variables with many and/or long dependence chains, and especially avoid including
a store forward on a loop-carried dependence chain.

Example 3-43 shows an example of a loop-carried dependence chain.

Example 3-43. Loop-carried Dependence Chain

for (i=0;i<MAX; i++){
a[i] = b[i] * foo;
foo =a[i]/ 3;
1 // foo is a loop-carried dependence.

Assembly/Compiler Coding Rule 46. (M impact, MH generality) Calculate store addresses as
early as possible to avoid having stores block loads.

3.6.5 Data Layout Optimizations

User/Source Coding Rule 6. (H impact, M generality) Pad data structures defined in the source
code so that every data element is aligned to a natural operand size address boundary.

If the operands are packed in a SIMD instruction, align to the packed element size (64-bit or 128-bit).

Align data by providing padding inside structures and arrays. Programmers can reorganize structures and
arrays to minimize the amount of memory wasted by padding. However, compilers might not have this
freedom. The C programming language, for example, specifies the order in which structure elements are
allocated in memory. For more information, see Section 5.4, “Stack and Data Alignment.”

Example 3-44 shows how a data structure could be rearranged to reduce its size.

Example 3-44. Rearranging a Data Structure

struct unpacked { /* Fits in 20 bytes due to padding */
int a;
char b;
int G
char d;
int e
¥
struct packed { /* Fits in 16 bytes */
int a;
int (o8
int €
char b;
char d;
}

Cache line size of 64 bytes can impact streaming applications (for example, multimedia). These refer-
ence and use data only once before discarding it. Data accesses which sparsely utilize the data within a
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cache line can result in less efficient utilization of system memory bandwidth. For example, arrays of
structures can be decomposed into several arrays to achieve better packing, as shown in Example 3-45.

Example 3-45. Decomposing an Array

struct { /* 1600 bytes */
int ace;
char b, d;
}array_of_struct [100];

struct { /* 1400 bytes */
int  a[100], c[100], e[100];
char b[100], d[100];

} struct_of_array;

struct { /* 1200 bytes */
int a,ce;
}hybrid_struct_of_array_ace[100];

struct { /* 200 bytes */
char b, d;
}hybrid_struct_of_array_bd[100];

The efficiency of such optimizations depends on usage patterns. If the elements of the structure are all
accessed together but the access pattern of the array is random, then ARRAY_OF_STRUCT avoids unnec-
essary prefetch even though it wastes memory.

However, if the access pattern of the array exhibits locality (for example, if the array index is being swept
through) then processors with hardware prefetchers will prefetch data from STRUCT_OF_ARRAY, even if
the elements of the structure are accessed together.

When the elements of the structure are not accessed with equal frequency, such as when element A is
accessed ten times more often than the other entries, then STRUCT_OF_ARRAY not only saves memory,
but it also prevents fetching unnecessary data items B, C, D, and E.

Using STRUCT_OF_ARRAY also enables the use of the SIMD data types by the programmer and the
compiler.

Note that STRUCT_OF_ARRAY can have the disadvantage of requiring more independent memory stream
references. This can require the use of more prefetches and additional address generation calculations.
It can also have an impact on DRAM page access efficiency. An alternative, HYBRID_STRUCT_OF_ARRAY
blends the two approaches. In this case, only 2 separate address streams are generated and referenced:
1 for HYBRID_STRUCT_OF_ARRAY_ACE and 1 for HYBRID_STRUCT_OF_ARRAY_BD. The second alter-
ative also prevents fetching unnecessary data — assuming that (1) the variables A, C and E are always
used together, and (2) the variables B and D are always used together, but not at the same time as A, C
and E.

The hybrid approach ensures:

®* Simpler/fewer address generations than STRUCT_OF_ARRAY.

®* Fewer streams, which reduces DRAM page misses.

®* Fewer prefetches due to fewer streams.

* Efficient cache line packing of data elements that are used concurrently.
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Assembly/Compiler Coding Rule 47. (H impact, M generality) Try to arrange data structures
such that they permit sequential access.

If the data is arranged into a set of streams, the automatic hardware prefetcher can prefetch data that
will be needed by the application, reducing the effective memory latency. If the data is accessed in a non-
sequential manner, the automatic hardware prefetcher cannot prefetch the data. The prefetcher can
recognize up to eight concurrent streams. See Chapter 9, “"Optimizing Cache Usage,” for more informa-
tion on the hardware prefetcher.

User/Source Coding Rule 7. (M impact, L generality) Beware of false sharing within a cache line
(64 bytes).

3.6.6 Stack Alignment

Performance penalty of unaligned access to the stack happens when a memory reference splits a cache
line. This means that one out of eight spatially consecutive unaligned quadword accesses is always
penalized, similarly for one out of 4 consecutive, non-aligned double-quadword accesses, etc.

Aligning the stack may be beneficial any time there are data objects that exceed the default stack align-
ment of the system. For example, on 32/64bit Linux, and 64bit Windows, the default stack alignment is
16 bytes, while 32bit Windows is 4 bytes.

Assembly/Compiler Coding Rule 48. (H impact, M generality) Make sure that the stack is aligned
at the largest multi-byte granular data type boundary matching the register width.

Aligning the stack typically requires the use of an additional register to track across a padded area of
unknown amount. There is a trade-off between causing unaligned memory references that spanned
across a cache line and causing extra general purpose register spills.

The assembly level technique to implement dynamic stack alignment may depend on compilers, and
specific OS environment. The reader may wish to study the assembly output from a compiler of interest.

Example 3-46. Examples of Dynamical Stack Alignment

// 32-bit environment
push ebp; save ebp
mov ebp, esp ; ebp now points to incoming parameters
andl esp, $-<N> ;align esp to N byte boundary
sub esp, $<stack_size>; reserve space for new stack frame
. ; parameters must be referenced off of ebp
mov esp, ebp ; restore esp
pop ebp ; restore ebp

// 64-bit environment

sub esp, $<stack_size +N>
mov r13, $<offset_of_aligned_section_in_stack>
andl r13, $-<N>; r13 point to aligned section in stack

;use r13 as base for aligned data

If for some reason it is not possible to align the stack for 64-bits, the routine should access the parameter
and save it into a register or known aligned storage, thus incurring the penalty only once.

3-51



GENERAL OPTIMIZATION GUIDELINES

3.6.7 Capacity Limits and Aliasing in Caches

There are cases in which addresses with a given stride will compete for some resource in the memory
hierarchy.

Typically, caches are implemented to have multiple ways of set associativity, with each way consisting of
multiple sets of cache lines (or sectors in some cases). Multiple memory references that compete for the
same set of each way in a cache can cause a capacity issue. There are aliasing conditions that apply to
specific microarchitectures. Note that first-level cache lines are 64 bytes. Thus, the least significant 6 bits
are not considered in alias comparisons.

3.6.8 Mixing Code and Data

The aggressive prefetching and pre-decoding of instructions by Intel processors have two related effects:

®* Self-modifying code works correctly, according to the Intel architecture processor requirements, but
incurs a significant performance penalty. Avoid self-modifying code if possible.

® Placing writable data in the code segment might be impossible to distinguish from self-modifying
code. Writable data in the code segment might suffer the same performance penalty as self-
modifying code.

Assembly/Compiler Coding Rule 49. (M impact, L generality) If (hopefully read-only) data must
occur on the same page as code, avoid placing it immediately after an indirect jump. For example,
follow an indirect jump with its mostly likely target, and place the data after an unconditional branch.

Tuning Suggestion 1. In rare cases, a performance problem may be caused by executing data on a
code page as instructions. This is very likely to happen when execution is following an indirect branch
that is not resident in the trace cache. If this is clearly causing a performance problem, try moving the
data elsewhere, or inserting an illegal opcode or a PAUSE instruction immediately after the indirect
branch. Note that the latter two alternatives may degrade performance in some circumstances.

Assembly/Compiler Coding Rule 50. (H impact, L generality) Always put code and data on
separate pages. Avoid self-modifying code wherever possible. If code is to be modified, try to do it all at
once and make sure the code that performs the modifications and the code being modified are on
separate 4-KByte pages or on separate aligned 1-KByte subpages.

3.6.8.1 Self-modifying Code

Self-modifying code (SMC) that ran correctly on Pentium Il processors and prior implementations will run
correctly on subsequent implementations. SMC and cross-modifying code (when multiple processors in a
multiprocessor system are writing to a code page) should be avoided when high performance is desired.

Software should avoid writing to a code page in the same 1-KByte subpage that is being executed or
fetching code in the same 2-KByte subpage of that is being written. In addition, sharing a page
containing directly or speculatively executed code with another processor as a data page can trigger an
SMC condition that causes the entire pipeline of the machine and the trace cache to be cleared. This is
due to the self-modifying code condition.

Dynamic code need not cause the SMC condition if the code written fills up a data page before that page
is accessed as code. Dynamically-modified code (for example, from target fix-ups) is likely to suffer from
the SMC condition and should be avoided where possible. Avoid the condition by introducing indirect
branches and using data tables on data pages (not code pages) using register-indirect calls.
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3.6.8.2 Position Independent Code

Position independent code often needs to obtain the value of the instruction pointer. Example 3-47a
shows one technique to put the value of IP into the ECX register by issuing a CALL without a matching
RET. Example 3-47b shows an alternative technique to put the value of IP into the ECX register using a
matched pair of CALL/RET.

Example 3-47. Instruction Pointer Query Techniques

a) Using call without return to obtain IP does not corrupt the RSB

call _Iabel; return address pushed is the IP of next instruction
_label:

pop ECX; IP of this instruction is now put into ECX

b) Using matched call/ret pair

call _Iblcx;
..., ECX now contains IP of this instruction

_lblex
mov ecx, [esp];
ret

3.6.9 Write Combining

Write combining (WC) improves performance in two ways:

®* Onawrite miss to the first-level cache, it allows multiple stores to the same cache line to occur before
that cache line is read for ownership (RFO) from further out in the cache/memory hierarchy. Then the
rest of line is read, and the bytes that have not been written are combined with the unmodified bytes
in the returned line.

®* Write combining allows multiple writes to be assembled and written further out in the cache hierarchy
as a unit. This saves port and bus traffic. Saving traffic is particularly important for avoiding partial
writes to uncached memory.

Processors based on Intel Core microarchitecture have eight write-combining buffers in each core. Begin-
ning with Nehalem microarchitecture, there are 10 buffers available for write-combining. Beginning with
Ice Lake Client microarchitecture, there are 12 buffers available for write-combining.

Assembly/Compiler Coding Rule 51. (H impact, L generality) If an inner loop writes to more than
four arrays (four distinct cache lines), apply loop fission to break up the body of the loop such that only
four arrays are being written to in each iteration of each of the resulting loops.

Write combining buffers are used for stores of all memory types. They are particularly important for
writes to uncached memory: writes to different parts of the same cache line can be grouped into a single,
full-cache-line bus transaction instead of going across the bus (since they are not cached) as several
partial writes. Avoiding partial writes can have a significant impact on bus bandwidth-bound graphics
applications, where graphics buffers are in uncached memory. Separating writes to uncached memory
and writes to writeback memory into separate phases can assure that the write combining buffers can fill
before getting evicted by other write traffic. Eliminating partial write transactions has been found to have
performance impact on the order of 20% for some applications. Because the cache lines are 64 bytes, a
write to the bus for 63 bytes will result in partial bus transactions.

When coding functions that execute simultaneously on two threads, reducing the number of writes that
are allowed in an inner loop will help take full advantage of write-combining store buffers. For write-
combining buffer recommendations for Hyper-Threading Technology, see Chapter 11, “Multicore and
Hyper-Threading Technology.”
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Store ordering and visibility are also important issues for write combining. When a write to a write-
combining buffer for a previously-unwritten cache line occurs, there will be a read-for-ownership (RFO).
If a subsequent write happens to another write-combining buffer, a separate RFO may be caused for that
cache line. Subsequent writes to the first cache line and write-combining buffer will be delayed until the
second RFO has been serviced to guarantee properly ordered visibility of the writes. If the memory type
for the writes is write-combining, there will be no RFO since the line is not cached, and there is no such
delay. For details on write-combining, see Chapter 9, “Optimizing Cache Usage.”

3.6.10 Locality Enhancement

Locality enhancement can reduce data traffic originating from an outer-level sub-system in the
cache/memory hierarchy. This is to address the fact that the access-cost in terms of cycle-count from an
outer level will be more expensive than from an inner level. Typically, the cycle-cost of accessing a given
cache level (or memory system) varies across different microarchitectures, processor implementations,
and platform components. It may be sufficient to recognize the relative data access cost trend by locality
rather than to follow a large table of numeric values of cycle-costs, listed per locality, per processor/plat-
form implementations, etc. The general trend is typically that access cost from an outer sub-system may
be approximately 3-10X more expensive than accessing data from the immediate inner level in the
cache/memory hierarchy, assuming similar degrees of data access parallelism.

Thus locality enhancement should start with characterizing the dominant data traffic locality. Section A,
“Application Performance Tools,” describes some techniques that can be used to determine the dominant
data traffic locality for any workload.

Even if cache miss rates of the last level cache may be low relative to the number of cache references,
processors typically spend a sizable portion of their execution time waiting for cache misses to be
serviced. Reducing cache misses by enhancing a program’s locality is a key optimization. This can take
several forms:

®* Blocking to iterate over a portion of an array that will fit in the cache (with the purpose that
subsequent references to the data-block [or tile] will be cache hit references).

®* Loop interchange to avoid crossing cache lines or page boundaries.
®* Loop skewing to make accesses contiguous.

Locality enhancement to the last level cache can be accomplished with sequencing the data access
pattern to take advantage of hardware prefetching. This can also take several forms:

®* Transformation of a sparsely populated multi-dimensional array into a one-dimension array such that
memory references occur in a sequential, small-stride pattern that is friendly to the hardware
prefetch (see Section E.2.5.4, “Data Prefetching” in Appendix E).

®* Optimal tile size and shape selection can further improve temporal data locality by increasing hit
rates into the last level cache and reduce memory traffic resulting from the actions of hardware
prefetching (see Section 9.5.11, “"Hardware Prefetching and Cache Blocking Techniques”).

It is important to avoid operations that work against locality-enhancing techniques. Using the lock prefix
heavily can incur large delays when accessing memory, regardless of whether the data is in the cache or
in system memory.

User/Source Coding Rule 8. (H impact, H generality) Optimization techniques such as blocking,
loop interchange, loop skewing, and packing are best done by the compiler. Optimize data structures
either to fit in one-half of the first-level cache or in the second-level cache; turn on loop optimizations
in the compiler to enhance locality for nested loops.

3-54



GENERAL OPTIMIZATION GUIDELINES

Optimizing for one-half of the first-level cache will bring the greatest performance benefit in terms of
cycle-cost per data access. If one-half of the first-level cache is too small to be practical, optimize for the
second-level cache. Optimizing for a point in between (for example, for the entire first-level cache) will
likely not bring a substantial improvement over optimizing for the second-level cache.

3.6.11 Non-Temporal Store Bus Traffic

Peak system bus bandwidth is shared by several types of bus activities, including reads (from memory),
reads for ownership (of a cache line), and writes. The data transfer rate for bus write transactions is
higher if 64 bytes are written out to the bus at a time.

Typically, bus writes to Writeback (WB) memory must share the system bus bandwidth with read-for-
ownership (RFO) traffic. Non-temporal stores do not require RFO traffic; they do require care in
managing the access patterns in order to ensure 64 bytes are evicted at once (rather than evicting
several chunks).

Although the data bandwidth of full 64-byte bus writes due to non-temporal stores is twice that of bus
writes to WB memory, transferring several chunks wastes bus request bandwidth and delivers signifi-
cantly lower data bandwidth. This difference is depicted in Examples 3-48 and 3-49.

Example 3-48. Using Non-temporal Stores and 64-byte Bus Write Transactions

#define STRIDESIZE 256

lea ecx, p64byte_Aligned

mov edx, ARRAY_LEN

XOr eax, eax

slloop:

movntps XMMWORD ptr [ecx + eax], xmmO
movntps XMMWORD ptr [ecx + eax+16], xmmO
movntps XMMWORD ptr [ecx + eax+32], xmmO
movntps XMMWORD ptr [ecx + eax+48], xmmO
; 64 bytes is written in one bus transaction

add eax, STRIDESIZE

cmp eax, edx

jl slloop

Example 3-49. On-temporal Stores and Partial Bus Write Transactions

#define STRIDESIZE 256

Lea ecx, p64byte_Aligned

Mov edx, ARRAY_LEN

Xor eax, eax

slloop:

movntps XMMWORD ptr [ecx + eax], xmmO
movntps XMMWORD ptr [ecx + eax+16], xmmO
movntps XMMWORD ptr [ecx + eax+32], xmmO

; Storing 48 bytes results in several bus partial transactions
add eax, STRIDESIZE

cmp eax, edx

jl slloop
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3.7 PREFETCHING

Recent Intel processor families employ several prefetching mechanisms to accelerate the movement of
data or code and improve performance:

® Hardware instruction prefetcher.
®* Software prefetch for data.
®* Hardware prefetch for cache lines of data or instructions.

3.7.1 Hardware Instruction Fetching and Software Prefetching

Software prefetching requires a programmer to use PREFETCH hint instructions and anticipate some suit-
able timing and location of cache misses.

Software PREFETCH operations work the same way as do load from memory operations, with the
following exceptions:

® Software PREFETCH instructions retire after virtual to physical address translation is completed.

® If an exception, such as page fault, is required to prefetch the data, then the software prefetch
instruction retires without prefetching data.

®* Avoid specifying a NULL address for software prefetches.

3.7.2 Hardware Prefetching for First-Level Data Cache

The hardware prefetching mechanism for L1 in Intel Core microarchitecture is discussed in Section
E.3.4.2 in Appendix E.

Example 3-50 depicts a technique to trigger hardware prefetch. The code demonstrates traversing a
linked list and performing some computational work on 2 members of each element that reside in 2
different cache lines. Each element is of size 192 bytes. The total size of all elements is larger than can
be fitted in the L2 cache.

Example 3-50. Using DCU Hardware Prefetch

Original code Modified sequence benefit from prefetch
mov ebx, DWORD PTR [First] mov ebx, DWORD PTR [First]
XOr eax, eax XOr eax, eax
scan_list: scan_list:
mov eax, [ebx+4] mov eax, [ebx+4]
mov ecx, 60 mov eax, [ebx+4]
mov eax, [ebx+4]
mov ecx, 60
do_some_work_1: do_some_work_1:
add eax, eax add eax, eax
and eax, 6 and eax, 6
sub ecx, 1 sub ecx, 1
jnz do_some_work_1 jnz do_some_work_1
mov eax, [ebx+64] mov eax, [ebx+64]
mov ecx, 30 mov ecx, 30
do_some_work_2: do_some_work_2:
add eax, eax add eax, eax
and eax, 6 and eax, 6
sub ecx, 1 sub ecx, 1
jnz do_some_work_2 jnz do_some_work_2
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Example 3-50. Using DCU Hardware Prefetch (Contd.)

Original code Modified sequence benefit from prefetch
mov ebx, [ebx] mov ebx, [ebx]

test ebx, ebx test ebx, ebx

jnz scan_list jnz scan_list

The additional instructions to load data from one member in the modified sequence can trigger the DCU
hardware prefetch mechanisms to prefetch data in the next cache line, enabling the work on the second
member to complete sooner.

Software can gain from the first-level data cache prefetchers in two cases:

* If datais not in the second-level cache, the first-level data cache prefetcher enables early trigger of
the second-level cache prefetcher.

® Ifdataisinthe second-level cache and not in the first-level data cache, then the first-level data cache
prefetcher triggers earlier data bring-up of sequential cache line to the first-level data cache.

There are situations that software should pay attention to a potential side effect of triggering unneces-
sary DCU hardware prefetches. If a large data structure with many members spanning many cache lines
is accessed in ways that only a few of its members are actually referenced, but there are multiple pair
accesses to the same cache line. The DCU hardware prefetcher can trigger fetching of cache lines that
are not needed. In Example 3-51, references to the “Pts” array and “AltPts” will trigger DCU prefetch to
fetch additional cache lines that won’t be needed. If significant negative performance impact is detected
due to DCU hardware prefetch on a portion of the code, software can try to reduce the size of that
contemporaneous working set to be less than half of the L2 cache.

Example 3-51. Avoid Causing DCU Hardware Prefetch to Fetch Un-needed Lines

while ( CurrBond != NULL)
{
MyATOM *al = CurrBond->At1 ;
MyATOM *a2 = CurrBond->At2;

if (a1->CurrStep <= al->LastStep &&
a2->CurrStep <= a2->LastStep
)
{

al->CurrStep++;
a2->CurrStep++;

double ux =a1->Pts[0].x - a2->Pts[0].x ;
double uy =a1->Pts[0].y - a2->Pts[0].y ;
double uz = al1->Pts[0].z - a2->Pts[0].z;
a1->AuxPts[0].x += ux;
a1->AuxPts[0].y +=uy;
a1->AuxPts[0].z += uz;
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Example 3-51. Avoid Causing DCU Hardware Prefetch to Fetch Un-needed Lines (Contd.)

a2->AuxPts[0].x += ux;
a2->AuxPts[0]y +=uy;
a2->AuxPts[0].z +=uz;
1

CurrBond = CurrBond->Next ;

I

To fully benefit from these prefetchers, organize and access the data using one of the following methods:
Method 1:

®* Organize the data so consecutive accesses can usually be found in the same 4-KByte page.

®* Access the data in constant strides forward or backward IP Prefetcher.

Method 2:

® Organize the data in consecutive lines.

® Access the data in increasing addresses, in sequential cache lines.

Example 3-52 demonstrates accesses to sequential cache lines that can benefit from the first-level cache
prefetcher.

Example 3-52. Technique For Using L1 Hardware Prefetch

unsigned int *p1, j, a, b;
for (j=0;j <num;j+=16)
{
a=pl[l

b=p1[j+1];

// Use these two values

}

By elevating the load operations from memory to the beginning of each iteration, it is likely that a signif-
icant part of the latency of the pair cache line transfer from memory to the second-level cache will be in
parallel with the transfer of the first cache line.

The IP prefetcher uses only the lower 8 bits of the address to distinguish a specific address. If the code
size of a loop is bigger than 256 bytes, two loads may appear similar in the lowest 8 bits and the IP
prefetcher will be restricted. Therefore, if you have a loop bigger than 256 bytes, make sure that no two
loads have the same lowest 8 bits in order to use the IP prefetcher.

3.7.3 Hardware Prefetching for Second-Level Cache

The Intel Core microarchitecture contains two second-level cache prefetchers:

®* Streamer — Loads data or instructions from memory to the second-level cache. To use the
streamer, organize the data or instructions in blocks of 128 bytes, aligned on 128 bytes. The first
access to one of the two cache lines in this block while it is in memory triggers the streamer to
prefetch the pair line. To software, the L2 streamer’s functionality is similar to the adjacent cache line
prefetch mechanism found in processors based on Intel NetBurst microarchitecture.

®* Data prefetch logic (DPL) — DPL and L2 Streamer are triggered only by writeback memory type.
They prefetch only inside page boundary (4 KBytes). Both L2 prefetchers can be triggered by
software prefetch instructions and by prefetch request from DCU prefetchers. DPL can also be
triggered by read for ownership (RFO) operations. The L2 Streamer can also be triggered by DPL
requests for L2 cache misses.
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Software can gain from organizing data both according to the instruction pointer and according to line
strides. For example, for matrix calculations, columns can be prefetched by IP-based prefetches, and
rows can be prefetched by DPL and the L2 streamer.

3.7.4 Cacheability Instructions

SSE2 provides additional cacheability instructions that extend those provided in SSE. The new cache-
ability instructions include:

®* New streaming store instructions.
®* New cache line flush instruction.
* New memory fencing instructions.

For more information, see Chapter 9, “"Optimizing Cache Usage.”

3.7.5 REP Prefix and Data Movement

The REP prefix is commonly used with string move instructions for memory related library functions such
as MEMCPY (using REP MOVSD) or MEMSET (using REP STOS). These STRING/MOV instructions with the
REP prefixes are implemented in MS-ROM and have several implementation variants with different
performance levels.

The specific variant of the implementation is chosen at execution time based on data layout, alignment
and the counter (ECX) value. For example, MOVSB/STOSB with the REP prefix should be used with
counter value less than or equal to three for best performance.

String MOVE/STORE instructions have multiple data granularities. For efficient data movement, larger data
granularities are preferable. This means better efficiency can be achieved by decomposing an arbitrary
counter value into a number of doublewords plus single byte moves with a count value less than or equal
to 3.

Because software can use SIMD data movement instructions to move 16 bytes at a time, the following
paragraphs discuss general guidelines for designing and implementing high-performance library func-
tions such as MEMCPY(), MEMSET(), and MEMMOVE(). Four factors are to be considered:

®* Throughput per iteration — If two pieces of code have approximately identical path lengths,
efficiency favors choosing the instruction that moves larger pieces of data per iteration. Also, smaller
code size per iteration will in general reduce overhead and improve throughput. Sometimes, this may
involve a comparison of the relative overhead of an iterative loop structure versus using REP prefix
for iteration.

®* Address alignment — Data movement instructions with highest throughput usually have alignment
restrictions, or they operate more efficiently if the destination address is aligned to its natural data
size. Specifically, 16-byte moves need to ensure the destination address is aligned to 16-byte
boundaries, and 8-bytes moves perform better if the destination address is aligned to 8-byte
boundaries. Frequently, moving at doubleword granularity performs better with addresses that are 8-
byte aligned.

® REP string move vs. SIMD move — Implementing general-purpose memory functions using SIMD
extensions usually requires adding some prolog code to ensure the availability of SIMD instructions,
preamble code to facilitate aligned data movement requirements at runtime. Throughput comparison
must also take into consideration the overhead of the prolog when considering a REP string imple-
mentation versus a SIMD approach.

® Cache eviction — If the amount of data to be processed by a memory routine approaches half the
size of the last level on-die cache, temporal locality of the cache may suffer. Using streaming store
instructions (for example: MOVNTQ, MOVNTDQ) can minimize the effect of flushing the cache. The
threshold to start using a streaming store depends on the size of the last level cache. Determine the
size using the deterministic cache parameter leaf of CPUID.

Techniques for using streaming stores for implementing a MEMSET()-type library must also
consider that the application can benefit from this technique only if it has no immediate need to
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reference the target addresses. This assumption is easily upheld when testing a streaming-store
implementation on a micro-benchmark configuration, but violated in a full-scale application
situation.

When applying general heuristics to the design of general-purpose, high-performance library routines,
the following guidelines can are useful when optimizing an arbitrary counter value N and address align-
ment. Different techniques may be necessary for optimal performance, depending on the magnitude of

N:

When N is less than some small count (where the small count threshold will vary between microarchi-
tectures -- empirically, 8 may be a good value when optimizing for Intel NetBurst microarchitecture),
each case can be coded directly without the overhead of a looping structure. For example, 11 bytes

can be processed using two MOVSD instructions explicitly and a MOVSB with REP counter equaling 3.

When N is not small but still less than some threshold value (which may vary for different micro-
architectures, but can be determined empirically), an SIMD implementation using run-time CPUID
and alignment prolog will likely deliver less throughput due to the overhead of the prolog. A REP
string implementation should favor using a REP string of doublewords. To improve address
alignment, a small piece of prolog code using MOVSB/STOSB with a count less than 4 can be used to
peel off the non-aligned data moves before starting to use MOVSD/STOSD.

When N is less than half the size of last level cache, throughput consideration may favor either:

— An approach using a REP string with the largest data granularity because a REP string has little
overhead for loop iteration, and the branch misprediction overhead in the prolog/epilogue code to
handle address alignment is amortized over many iterations.

— An iterative approach using the instruction with largest data granularity, where the overhead for
SIMD feature detection, iteration overhead, and prolog/epilogue for alignment control can be
minimized. The trade-off between these approaches may depend on the microarchitecture.

An example of MEMSET() implemented using stosd for arbitrary counter value with the destination
address aligned to doubleword boundary in 32-bit mode is shown in Example 3-53.

When N is larger than half the size of the last level cache, using 16-byte granularity streaming stores
with prolog/epilog for address alignment will likely be more efficient, if the destination addresses will
not be referenced immediately afterwards.

Example 3-53. REP STOSD with Arbitrary Count Size and 4-Byte-Aligned Destination

A ‘C’ example of Memset()

Equivalent Implementation Using REP STOSD

void memset(void *dst,int ¢ size_t size)
{
char *d = (char *)dst;
size_ti;
for (i=0;i<size;i++)
*d++ = (char)c;

}

push edi

movzx eax, byte ptr [esp+12]

MOV ecx, eax

shlecx, 8

or ecx, eax

MoV ecx, eax

shlecx, 16

or eax, ecx

mov edi, [esp+8] ; 4-byte aligned
mov ecx, [esp+16] ; byte count
shrecx, 2 ; do dword
cmp ecx, 127

jle _main

test edi, 4

jz _main

stosd ;peel off one dword
dec ecx
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Example 3-53. REP STOSD with Arbitrary Count Size and 4-Byte-Aligned Destination (Contd.)

A ‘C’ example of Memset() Equivalent Implementation Using REP STOSD
_main: ; 8-byte aligned
rep stosd
mov ecx, [esp + 16]
and ecx, 3 ;do count <=3
rep stosb ; optimal with <=3
pop edi
ret

Memory routines in the runtime library generated by Intel compilers are optimized across a wide range
of address alignments, counter values, and microarchitectures. In most cases, applications should take
advantage of the default memory routines provided by Intel compilers.

In some situations, the byte count of the data is known by the context (as opposed to being known by a
parameter passed from a call), and one can take a simpler approach than those required for a general-
purpose library routine. For example, if the byte count is also small, using REP MOVSB/STOSB with a
count less than four can ensure good address alignment and loop-unrolling to finish the remaining data;
using MOVSD/STOSD can reduce the overhead associated with iteration.

Using a REP prefix with string move instructions can provide high performance in the situations described
above. However, using a REP prefix with string scan instructions (SCASB, SCASW, SCASD, SCASQ) or
compare instructions (CMPSB, CMPSW, SMPSD, SMPSQ) is not recommended for high performance.
Consider using SIMD instructions instead.

3.7.6 Enhanced REP MOVSB and STOSB Operation

Beginning with processors based on Ivy Bridge microarchitecture, REP string operation using MOVSB and
STOSB can provide both flexible and high-performance REP string operations for software in common
situations like memory copy and set operations. Processors that provide enhanced MOVSB/STOSB oper-
ations are enumerated by the CPUID feature flag: CPUID:(EAX=7H, ECX=0H):EBX.[bit 9] = 1.

3.7.6.1 Fast Short REP MOVSB

Beginning with processors based on Ice Lake Client microarchitecture, REP MOVSB performance of short
operations is enhanced. The enhancement applies to string lengths between 1 and 128 bytes long.
Support for fast-short REP MOVSB is enumerated by the CPUID feature flag: CPUID [EAX=7H,
ECX=0H).EDX.FAST_SHORT_REP_MOVSB[bit 4] = 1. There is no change in the REP STOS performance.

3.7.6.2 Memcpy Considerations

The interface for the standard library function memcpy introduces several factors (e.g. length, alignment
of the source buffer and destination) that interact with microarchitecture to determine the performance
characteristics of the implementation of the library function. Two of the common approaches to imple-
ment memcpy are driven from small code size vs. maximum throughput. The former generally uses REP
MOVSD+B (see Section 3.7.5), while the latter uses SIMD instruction sets and has to deal with additional
data alignment restrictions.

For processors supporting enhanced REP MOVSB/STOSB, implementing memcpy with REP MOVSB will
provide even more compact benefits in code size and better throughput than using the combination of
REP MOVSD+B. For processors based on Ivy Bridge microarchitecture, implementing memcpy using
Enhanced REP MOVSB and STOSB might not reach the same level of throughput as using 256-bit or 128-
bit AVX alternatives, depending on length and alignment factors.
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Figure 3-2. Memcpy Performance Comparison for Lengths up to 2KB

Figure 3-2 depicts the relative performance of memcpy implementation on a third-generation Intel Core
processor using Enhanced REP MOVSB and STOSB versus REP MOVSD+B, for alignment conditions when
both the source and destination addresses are aligned to a 16-Byte boundary and the source region does
not overlap with the destination region. Using Enhanced REP MOVSB and STOSB always delivers better
performance than using REP MOVSD+B. If the length is a multiple of 64, it can produce even higher
performance. For example, copying 65-128 bytes takes 40 cycles, while copying 128 bytes needs only 35
cycles.

If an application wishes to bypass standard memcpy library implementation with its own custom imple-
mentation and have freedom to manage the buffer length allocation for both source and destination, it

may be worthwhile to manipulate the lengths of its memory copy operation to be multiples of 64 to take
advantage the code size and performance benefit of Enhanced REP MOVSB and STOSB.

The performance characteristic of implementing a general-purpose memcpy library function using a
SIMD register is significantly more colorful than an equivalent implementation using a general-purpose
register, depending on length, instruction set selection between SSE2, 128-bit AVX, 256-bit AVX, relative
alignment of source/destination, and memory address alignment granularities/boundaries, etc.

Hence comparing performance characteristics between a memcpy using Enhanced REP MOVSB and
STOSB versus a SIMD implementation is highly dependent on the particular SIMD implementation. The
remainder of this section discusses the relative performance of memcpy using Enhanced REP MOVSB and
STOSB versus unpublished, optimized 128-bit AVX implementation of memcpy to illustrate the hardware
capability of Ivy Bridge microarchitecture.

Table 3-5. Relative Performance of Memcpy() Using Enhanced REP MOVSB and STOSB Vs. 128-bit AVX
Range of Lengths (bytes) <128 128 to 2048 2048 to 4096

Memcpy_ERMSB/Memcpy_AVX128 0x7X 1X 1.02X
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Table 3-5 shows the relative performance of the Memcpy function implemented using enhanced REP
MOVSB versus 128-bit AVX for several ranges of memcpy lengths, when both the source and destination
addresses are 16-byte aligned and the source region and destination region do not overlap. For memcpy
length less than 128 bytes, using Enhanced REP MOVSB and STOSB is slower than what'’s possible using
128-bit AVX, due to internal start-up overhead in the REP string.

For situations with address misalignment, memcpy performance will generally be reduced relative to the
16-byte alignment scenario (see Table 3-6).

Table 3-6. Effect of Address Misalignment on Memcpy() Performance

Address Misalignment Performance Impact

Source Buffer The impact on Enhanced REP MOVSB and STOSB implementation versus 128-
bit AVX is similar.

Destination Buffer The impact on Enhanced REP MOVSB and STOSB implementation can be 25%
degradation, while 128-bit AVX implementation of memcpy may degrade only
5%, relative to 16-byte aligned scenario.

Memcpy() implemented with Enhanced REP MOVSB and STOSB can benefit further from the 256-bit
SIMD integer data-path in Haswell microarchitecture. See Section 15.16.3.

3.7.6.3 Memmove Considerations

When there is an overlap between the source and destination regions, software may need to use
memmove instead of memcpy to ensure correctness. It is possible to use REP MOVSB in conjunction with
the direction flag (DF) in a memmove() implementation to handle situations where the latter part of the
source region overlaps with the beginning of the destination region. However, setting the DF to force REP
MOVSB to copy bytes from high towards low addresses will experience significant performance degrada-
tion.

When using Enhanced REP MOVSB and STOSB to implement memmove function, one can detect the
above situation and handle first the rear chunks in the source region that will be written to as part of the
destination region, using REP MOVSB with the DF=0, to the non-overlapping region of the destination.
After the overlapping chunks in the rear section are copied, the rest of the source region can be
processed normally, also with DF=0.

3.7.6.4 Memset Considerations

The consideration of code size and throughput also applies for memset() implementations. For proces-
sors supporting Enhanced REP MOVSB and STOSB, using REP STOSB will again deliver more compact
code size and significantly better performance than the combination of STOSD+B technique described in
Section 3.7.5.

When the destination buffer is 16-byte aligned, memset() using Enhanced REP MOVSB and STOSB can
perform better than SIMD approaches. When the destination buffer is misaligned, memset() perfor-
mance using Enhanced REP MOVSB and STOSB can degrade about 20% relative to aligned case, for
processors based on Ivy Bridge microarchitecture. In contrast, SIMD implementation of memset() will
experience smaller degradation when the destination is misaligned.

Memset() implemented with Enhanced REP MOVSB and STOSB can benefit further from the 256-bit data
path in Haswell microarchitecture. see Section 15.16.3.3.

3.8 REP STRING OPERATIONS

Several REP string performance enhancements are available beginning with processors based on Golden
Cove microarchitecture.
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3.8.1 Fast Zero Length REP MOVSB

REP MOVSB performance of zero length operations is enhanced. The latency of a zero length REP MOVSB
is now the same as the latency of lengths 1 to 128 bytes. When both Fast Short REP MOVSB and Fast
Zero Length REP MOVSB features are enabled, REP MOVSB performance is flat 9 cycles per operation, for
all strings 0-128 byte long whose source and destination operands reside in the processor first level
cache.

Support for fast zero-length REP MOVSB is enumerated by the CPUID feature flag:
CPUID.07H.01H:EAX.FAST_ZERO_LENGTH_REP_MOVSBI[bit 10] = 1.

3.8.2 Fast Short REP STOSB

REP STOSB performance of short operations is enhanced. The enhancement applies to string lengths
between 0 and 128 bytes long. When Fast Short REP STOSB feature is enabled, REP STOSB performance
is flat 12 cycles per operation, for all strings 0-128 byte long whose destination operand resides in the
processor first level cache.

Support for fast-short REP STOSB is enumerated by the CPUID feature flag:
CPUID.07H.01H:EAX.FAST_SHORT_REP_STOSB[bit 11] = 1.

3.8.3 Fast Short REP CMPSB and SCASB

REP CMPSB and SCASB performance is enhanced. The enhancement applies to string lengths between 1
and 128 bytes long. When the Fast Short REP CMPSB and SCASB feature is enabled, REP CMPSB and REP
SCASB performance is flat 15 cycles per operation, for all strings 1-128 byte long whose two source oper-
ands reside in the processor first level cache.

Support for fast short REP CMPSB and SCASB is enumerated by the CPUID feature flag:
CPUID.07H.01H:EAX.FAST_SHORT_REP_CMPSB_SCASBI[bit 12] = 1.

3.9 FLOATING-POINT CONSIDERATIONS

When programming floating-point applications, it is best to start with a high-level programming language
such as C, C++, or Fortran. Many compilers perform floating-point scheduling and optimization when it
is possible. However in order to produce optimal code, the compiler may need some assistance.

3.9.1 Guidelines for Optimizing Floating-point Code

User/Source Coding Rule 9. (M impact, M generality) Enable the compiler’s use of SSE, SSE2,
AVX, AVX2, and possibly more advanced SIMD instruction sets (AVX-512) with appropriate switches.
Favor scalar SIMD code generation to replace x87 code generation.

Follow this procedure to investigate the performance of your floating-point application:

® Understand how the compiler handles floating-point code.

®* Look at the assembly dump and see what transforms are already performed on the program.
® Study the loop nests in the application that dominate the execution time.

®* Determine why the compiler is not creating the fastest code.

® Seeif there is a dependence that can be resolved.

®* Determine the problem area: bus bandwidth, cache locality, trace cache bandwidth, or instruction
latency. Focus on optimizing the problem area. For example, adding PREFETCH instructions will not
help if the bus is already saturated. If trace cache bandwidth is the problem, added prefetch pops
may degrade performance.
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Also, in general, follow the general coding recommendations discussed in this chapter, including:

® Blocking the cache.

® Using prefetch.

® Enabling vectorization.

® Unrolling loops.

User/Source Coding Rule 10. (H impact, ML generality) Make sure your application stays in range
to avoid denormal values, underflows.

Out-of-range numbers cause very high overhead.

When converting floating-point values to 16-bit, 32-bit, or 64-bit integers using truncation, the instruc-
tions CVTTSS2SI and CVTTSD2SI are recommended over instructions that access x87 FPU stack. This
avoids changing the rounding mode.

User/Source Coding Rule 11. (M impact, ML generality) Usually, math libraries take advantage of
the transcendental instructions (for example, FSIN) when evaluating elementary functions. If there is
no critical need to evaluate the transcendental functions using the extended precision of 80 bits,
applications should consider an alternate, software-based approach, such as a look-up-table-based
algorithm using interpolation techniques. It is possible to improve transcendental performance with
these techniques by choosing the desired numeric precision and the size of the look-up table, and by
taking advantage of the parallelism of the SSE and the SSEZ2 instructions.

3.9.2 Floating-point Modes and Exceptions

When working with floating-point numbers, high-speed microprocessors frequently must deal with situ-
ations that need special handling in hardware or code.

3.9.2.1 Floating-point Exceptions

The most frequent cause of performance degradation is the use of masked floating-point exception
conditions such as:

®* Arithmetic overflow.

®* Arithmetic underflow.

®* Denormalized operand.

Refer to Chapter 4 of Inte/® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1 for definitions of over-
flow, underflow and denormal exceptions.

Denormalized floating-point numbers impact performance in two ways:

¢ Directly when are used as operands.

®* Indirectly when are produced as a result of an underflow situation.

If a floating-point application never underflows, the denormals can only come from floating-point
constants.

User/Source Coding Rule 12. (H impact, ML generality) Denormalized floating-point constants
should be avoided as much as possible.

Denormal and arithmetic underflow exceptions can occur during the execution of x87 instructions or
SSE/SSE2/SSE3 instructions. Processors based on Intel NetBurst microarchitecture handle these excep-
tions more efficiently when executing SSE/SSE2/SSE3 instructions and when speed is more important
than complying with the IEEE standard. The following paragraphs give recommendations on how to opti-
mize your code to reduce performance degradations related to floating-point exceptions.
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3.9.2.2 Dealing with floating-point exceptions in x87 FPU code

Every special situation listed in Section 3.9.2.1, “Floating-point Exceptions,” is costly in terms of perfor-
mance. For that reason, x87 FPU code should be written to avoid these situations.

There are basically three ways to reduce the impact of overflow/underflow situations with x87 FPU code:

®* Choose floating-point data types that are large enough to accommodate results without generating
arithmetic overflow and underflow exceptions.

® Scale the range of operands/results to reduce as much as possible the number of arithmetic
overflow/underflow situations.

* Keep intermediate results on the x87 FPU register stack until the final results have been computed
and stored in memory. Overflow or underflow is less likely to happen when intermediate results are
kept in the x87 FPU stack (this is because data on the stack is stored in double extended-precision
format and overflow/underflow conditions are detected accordingly).

®* Denormalized floating-point constants (which are read-only, and hence never change) should be
avoided and replaced, if possible, with zeros of the same sign.

3.9.23 Floating-point Exceptions in SSE/SSE2/SSE3 Code

Most special situations that involve masked floating-point exceptions are handled efficiently in hardware.
When a masked overflow exception occurs while executing SSE/SSE2/SSE3/AVX/AVX2/AVX-512 code,
processor hardware can handles it without performance penalty.

Underflow exceptions and denormalized source operands are usually treated according to the IEEE 754
specification, but this can incur significant performance delay. If a programmer is willing to trade pure
IEEE 754 compliance for speed, two non-IEEE 754 compliant modes are provided to speed situations
where underflows and input are frequent: FTZ mode and DAZ mode.

When the FTZ mode is enabled, an underflow result is automatically converted to a zero with the correct
sign. Although this behavior is not compliant with IEEE 754, it is provided for use in applications where
performance is more important than IEEE 754 compliance. Since denormal results are not produced
when the FTZ mode is enabled, the only denormal floating-point numbers that can be encountered in FTZ
mode are the ones specified as constants (read only).

The DAZ mode is provided to handle denormal source operands efficiently when running a SIMD floating-
point application. When the DAZ mode is enabled, input denormals are treated as zeros with the same
sign. Enabling the DAZ mode is the way to deal with denormal floating-point constants when perfor-
mance is the objective.

If departing from the IEEE 754 specification is acceptable and performance is critical, run
SSE/SSE2/SSE3/AVX/AVX2/AVX-512 applications with FTZ and DAZ modes enabled.

NOTE

The DAZ mode is available with both the SSE and SSE2 extensions, although the speed
improvement expected from this mode is fully realized only in SSE code and later.

3.9.3 Floating-point Modes

For x87 code, using the FLDCW instruction to change floating modes can be an expensive operation in
many cases.

Recent processor generations provide hardware optimization for FLDCW that allows programmers to
alternate between two constant values efficiently. For the FLDCW optimization to be effective, the two
constant FCW values are only allowed to differ on the following 5 bits in the FCW:

FCW[B-9] ; Precision control

FCW[10-11] ; Rounding control

FCW[12] ; Infinity control
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If programmers need to modify other bits (for example: mask bits) in the FCW, the FLDCW instruction is
still an expensive operation.

In situations where an application cycles between three (or more) constant values, FLDCW optimization
does not apply, and the performance degradation occurs for each FLDCW instruction.

One solution to this problem is to choose two constant FCW values, take advantage of the optimization of
the FLDCW instruction to alternate between only these two constant FCW values, and devise some
means to accomplish the task that requires the 3rd FCW value without actually changing the FCW to a
third constant value. An alternative solution is to structure the code so that, for periods of time, the appli-
cation alternates between only two constant FCW values. When the application later alternates between
a pair of different FCW values, the performance degradation occurs only during the transition.

It is expected that SIMD applications are unlikely to alternate between FTZ and DAZ mode values.
Consequently, the SIMD control word does not have the short latencies that the floating-point control
register does. A read of the MXCSR register has a fairly long latency, and a write to the register is a seri-
alizing instruction.

There is no separate control word for single and double precision; both use the same modes. Notably,
this applies to both FTZ and DAZ modes.

Assembly/Compiler Coding Rule 52. (H impact, M generality) Minimize changes to bits 8-12 of
the floating-point control word. Changes for more than two values (each value being a combination of
the following bits: precision, rounding and infinity control, and the rest of bits in FCW) leads to delays
that are on the order of the pipeline depth.

3.9.3.1 Rounding Mode

Many libraries provide float-to-integer library routines that convert floating-point values to integer. Many
of these libraries conform to ANSI C coding standards which state that the rounding mode should be
truncation. With the Pentium 4 processor, one can use the CVTTSD2SI and CVTTSS2SI instructions to
convert operands with truncation without ever needing to change rounding modes. The cost savings of
using these instructions over the methods below is enough to justify using SSE and SSE2 wherever
possible when truncation is involved.

For x87 floating-point, the FIST instruction uses the rounding mode represented in the floating-point
control word (FCW). The rounding mode is generally “round to nearest”, so many compiler writers imple-
ment a change in the rounding mode in the processor in order to conform to the C and FORTRAN stan-
dards. This implementation requires changing the control word on the processor using the FLDCW
instruction. For a change in the rounding, precision, and infinity bits, use the FSTCW instruction to store
the floating-point control word. Then use the FLDCW instruction to change the rounding mode to trunca-
tion.

In a typical code sequence that changes the rounding mode in the FCW, a FSTCW instruction is usually
followed by a load operation. The load operation from memory should be a 16-bit operand to prevent
store-forwarding problem. If the load operation on the previously-stored FCW word involves either an 8-
bit or a 32-bit operand, this will cause a store-forwarding problem due to mismatch of the size of the data
between the store operation and the load operation.

To avoid store-forwarding problems, make sure that the write and read to the FCW are both 16-bit oper-
ations.

If there is more than one change to the rounding, precision, and infinity bits, and the rounding mode is
not important to the result, use the algorithm in Example 3-54 to avoid synchronization issues, the over-
head of the FLDCW instruction, and having to change the rounding mode. Note that the example suffers
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from a store-forwarding problem which will lead to a performance penalty. However, its performance is
still better than changing the rounding, precision, and infinity bits among more than two values.

Example 3-54. Algorithm to Avoid Changing Rounding Mode

_fto132proc
lea ecx, [esp-8]
sub esp, 16 ; Allocate frame
and ecx, -8 ; Align pointer on boundary of 8
fid st(0) ; Duplicate FPU stack top

fistp qword ptrlecx]
fild qword ptrlecx]

mov edx, [ecx+4] ; High DWORD of integer
mov eax, [ecx] ; Low DWIRD of integer
test eax, eax

je integer_QnaN_or_zero

arg_is_not_integer_QnaN:

fsubp  st(1), st ; TOS=d-round(d), { st(1) = st(1)-st & pop ST}
test edx, edx ; What's sign of integer
ins positive ; Number is negative
fstp dword ptrfecx]  ; Result of subtraction
mov ecx, [ecx] ; DWORD of diff(single-precision)
add esp, 16
Xor ecx, 80000000h
add ecx, 7fffffffh ; If diff<0 then decrement integer
adc eax,0 ; INC EAX (add CARRY flag)
ret

positive:
positive:
fstp dword ptrfecx]  ; 17-18 result of subtraction
mov ecx, [ecx] ; DWORD of diff(single precision)
add esp, 16
add ecx, 7fffffffth ; If diff<0 then decrement integer
sbb eax, 0 ; DEC EAX (subtract CARRY flag)
ret

integer_QnaN_or_zero:
test edx, 7ffffffth

jnz arg_is_not_integer_QnaN
add esp, 16
ret

Assembly/Compiler Coding Rule 53. (H impact, L generality) Minimize the number of changes to
the rounding mode. Do not use changes in the rounding mode to implement the floor and ceiling
functions if this involves a total of more than two values of the set of rounding, precision, and infinity
bits.

3.93.2 Precision
If single precision is adequate, use it instead of double precision. This is true because:

® Single precision operations allow the use of longer SIMD vectors, since more single precision data
elements can fit in a register.

® If the precision control (PC) field in the x87 FPU control word is set to single precision, the floating-
point divider can complete a single-precision computation much faster than either a double-precision
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computation or an extended double-precision computation. If the PC field is set to double precision,
this will enable those x87 FPU operations on double-precision data to complete faster than extended
double-precision computation. These characteristics affect computations including floating-point
divide and square root.

Assembly/Compiler Coding Rule 54. (H impact, L generality) Minimize the number of changes to
the precision mode.

394 x87 vs. Scalar SIMD Floating-point Trade-offs

There are a number of differences between x87 floating-point code and scalar floating-point code (using
SSE and SSE2). The following differences should drive decisions about which registers and instructions to
use:

® When an input operand for a SIMD floating-point instruction contains values that are less than the
representable range of the data type, a denormal exception occurs. This causes a significant
performance penalty. An SIMD floating-point operation has a flush-to-zero mode in which the results
will not underflow. Therefore subsequent computation will not face the performance penalty of
handling denormal input operands. For example, in the case of 3D applications with low lighting
levels, using flush-to-zero mode can improve performance by as much as 50% for applications with
large numbers of underflows.

® Scalar floating-point SIMD instructions have lower latencies than equivalent x87 instructions. Scalar
SIMD floating-point multiply instruction may be pipelined, while x87 multiply instruction is not.

* Although x87 supports transcendental instructions, software library implementation of transcen-
dental function can be faster in many cases.

® x87 supports 80-bit precision, double extended floating-point. SSE support a maximum of 32-bit
precision. SSE2 supports a maximum of 64-bit precision.

® Scalar floating-point registers may be accessed directly, avoiding FXCH and top-of-stack restrictions.

®* The cost of converting from floating-point to integer with truncation is significantly lower with
Streaming SIMD Extensions 2 and Streaming SIMD Extensions in the processors based on Intel
NetBurst microarchitecture than with either changes to the rounding mode or the sequence
prescribed in the Example 3-54.

Assembly/Compiler Coding Rule 55. (M impact, M generality) Use Streaming SIMD Extensions 2
or Streaming SIMD Extensions unless you need an x87 feature. Most SSE2 arithmetic operations have
shorter latency then their X87 counterpart and they eliminate the overhead associated with the
management of the X87 register stack.

3.9.4.1 Scalar SSE/SSE2

In code sequences that have conversions from floating-point to integer, divide single-precision instruc-

tions, or any precision change, x87 code generation from a compiler typically writes data to memory in

single-precision and reads it again in order to reduce precision. Using SSE/SSE2 scalar code instead of

x87 code can generate a large performance benefit using Intel NetBurst microarchitecture and a modest
benefit on Intel Core Solo and Intel Core Duo processors.

Recommendation: Use the compiler switch to generate scalar floating-point code using XMM rather
than x87 code.

When working with scalar SSE/SSE2 code, pay attention to the need for clearing the content of unused
slots in an XMM register and the associated performance impact. For example, loading data from
memory with MOVSS or MOVSD causes an extra micro-op for zeroing the upper part of the XMM register.

3.9.4.2 Transcendental Functions

If an application needs to emulate math functions in software for performance or other reasons (see
Section 3.9.1, “Guidelines for Optimizing Floating-point Code"), it may be worthwhile to inline math
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library calls because the CALL and the prologue/epilogue involved with such calls can significantly affect
the latency of operations.

3.10 MAXIMIZING PCIe PERFORMANCE

PCle performance can be dramatically impacted by the size and alignment of upstream reads and writes
(read and write transactions issued from a PCle agent to the host’'s memory). As a general rule, the best
performance, in terms of both bandwidth and latency, is obtained by aligning the start addresses of
upstream reads and writes on 64-byte boundaries and ensuring that the request size is a multiple of 64-
bytes, with modest further increases in bandwidth when larger multiples (128, 192, 256 bytes) are
employed. In particular, a partial write will cause a delay for the following request (read or write).

A second rule is to avoid multiple concurrently outstanding accesses to a single cache line. This can result
in a conflict which in turn can cause serialization of accesses that would otherwise be pipelined, resulting
in higher latency and/or lower bandwidth. Patterns that violate this rule include sequential accesses
(reads or writes) that are not a multiple of 64-bytes, as well as explicit accesses to the same cache line
address. Overlapping requests—those with different start addresses but with request lengths that result
in overlap of the requests—can have the same effect. For example, a 96-byte read of address
0x00000200 followed by a 64-byte read of address 0x00000240 will cause a conflict—and a likely delay—
for the second read.

Upstream writes that are a multiple of 64-byte but are non-aligned will have the performance of a series
of partial and full sequential writes. For example, a write of length 128-byte to address 0x00000070 will
perform similarly to 3 sequential writes of lengths 16, 64, and 48 to addresses 0x00000070,
0x00000080, and 0x00000100, respectively.

For PCle cards implementing multi-function devices, such as dual or quad port network interface cards
(NICs) or dual-GPU graphics cards, it is important to note that non-optimal behavior by one of those
devices can impact the bandwidth and/or latency observed by the other devices on that card. With
respect to the behavior described in this section, all traffic on a given PCle port is treated as if it origi-
nated from a single device and function.

For the best PCIe bandwidth:

1. Align start addresses of upstream reads and writes on 64-byte boundaries.

2. Use read and write requests that are a multiple of 64-bytes.

3. Eliminate or avoid sequential and random partial line upstream writes.

4. Eliminate or avoid conflicting upstream reads, including sequential partial line reads.
Techniques for avoiding performance pitfalls include cache line aligning all descriptors and data buffers,
padding descriptors that are written upstream to 64-byte alignment, buffering incoming data to achieve
larger upstream write payloads, allocating data structures intended for sequential reading by the PCle
device in such a way as to enable use of (multiple of) 64-byte reads. The negative impact of unoptimized

reads and writes depends on the specific workload and the microarchitecture on which the product is
based.

3.10.1 Optimizing PCle Performance for Accesses Toward Coherent Memory and
Toward MMIO Regions (P2P)

In order to maximize performance for PCle devices in the processors listed in Table 3-7 below, the soft-
ware should determine whether the accesses are toward coherent memory (system memory) or toward
MMIO regions (P2P access to other devices). If the access is toward MMIO region, then software can
command HW to set the RO bit in the TLP header, as this would allow hardware to achieve maximum
throughput for these types of accesses. For accesses toward coherent memory, software can command
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HW to clear the RO bit in the TLP header (no RO), as this would allow hardware to achieve maximum
throughput for these types of accesses.

Table 3-7. Intel Processor CPU RP Device IDs for Processors Optimizing PCle Performance

Processor CPU RP Device IDs
Intel Xeon processors based on Broadwell microarchitecture 6F01H-6FOEH
Intel Xeon processors based on Haswell microarchitecture 2F01H-2FOEH

3.11  SCALABIUTY WITH CONTENDED LINE ACCESS IN INTEL" 4TH
GENERATION INTEL XEON SCALABLE PROCESSORS

A two-socket Sapphire Rapids system can have up to 224 (2 sockets x 56 cores/socket x 2
threads/core) hardware threads. Scalability and performance bottlenecks may happen when all of these
hardware threads compete for the same address.

3.11.1  Why it Happens

When multiple hardware threads go after the same address (say AA), this address is queued in the
Ingress Queue, with one entry for each hardware thread. Due to the resource limitation of the Ingress
Queue, the CPU core is throttled to slow the rate of requests when this queue overflows. This usually
occurs with contention for a lock.

3.11.2 How to Detect it

When multiple cores are contending on the same lock, several outstanding requests are mapped to that
same address. The Phys_addr_match event can count as such an event. This CHA event increments by
one every other cycle when there is more than one outstanding request to the same address.

Here are the PMU event id and Umask for the 2 CHA events that are very useful for detecting contention
1. Phys_addr_match event: Event id: 0x19, Umask: 0x80
2. CHA_clockticks event: Event id: 0x01, Umask: 0x01

These events have to be measured on a per-CHA basis, and if the ratio of the counts between phys_ad-
dr_match to CHA_clockticks is more than 0.15 on any CHA that indicates > 30% of the CHA cycles (2x
the ratio as this event can count only once every two cycles) are spent with multiple requests outstanding
to the same address.

Here is the recipe to measure these events with Linux Perf:

S sudo perf stat -a -e ‘uncore_cha/event=0x19,umask=0x80/,uncore_cha/event=0x1,umask=0x1/' --per-socket --no-
merge -- sleep 30

Once it is confirmed that the ratio of phys_addr_match events to the CHA clockticks is more than 0.15,
the next step would be to figure out where this may be happening in the codeg. Intel CPUs provide a PMU
mechanism wherein a load operation is randomly selected and tracked through completion and the actual
latency is recorded if it is over a given threshold. The threshold value is specified in cycles and must be in
the power of 2. In the “perf mem record” command below, we are defining a command to sample all
loads that take more than 128 cycles to complete.

$ sudo perf mem record -a --Idlat 128 sleep 1
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Once the above data is collected, execute the following command to process the data collected

$ sudo perf mem report.

Information similar to the table below will be generated. This has details on hot loads along with data
linear address and the actual latency that the load experienced. This can be used to identify the neces-
sary fixes to the code.

Table 3-8. Samples: 365K of events ‘anon group{cpu/mem-loads-aux/,cpu/mem-loads,Idat=128/pp}, Event count (a--rOx):

67900852
Dat Local
Overhe | Sam Local ::;':s' Ssvmbol Shared SD ant1ab a Snoo A-I;tleas Lock | Blocke INSTR
ad ples | weight s v Object yol Obj P S ed d Latenc
ect v
[Joxo
0.22% 1 L3 or [Jasm_m lockcon- | 00055 | [he . L1 or
007% | ' | 38060 | 3hit | utex | tenton | 6dbi4 | apl | ™M | ohir | VeS| WA | 47230
282a0
[Jox0
0.18% 1 L3or [Jasm_m lockcon- | 00055 | [he . L1 or
006% | ' | 31338 | B3hit | utex | tention | 6db14 | ap] | T | ohir | Yes | NA | 4041
282a0
[Jox0
0.17% 1 L3or [Jasm_m lockcon- | 00055 | [he . L1 or
006% | 29572 | W3 hit utex tention | 6db14 | ap] | M | it | YES N/A | 36652
282a0

3.11.3 How to Fix it

The following is a list of suggested solutions:
1. Run multiple instances of the workload with a scale-out approach instead of a single instance

with scale-up so that the contention for per instance hot variables (including locks) is reduced.

2. Guard the cmpxchg by checking that the destination memory is expected with a load, test, and
branch beforehand

3. Implement a backoff mechanism so that the cmpxchg is issued less. For example, in locks,
exponential backoff is a common and effective method to prevent all cores from being in
lockstep. In the case of contention for a lock, checking to see if it is accessible by a load before
trying to write to it through a cmpxchg will help. Below is an example pseudo-code:

Example 3-55. Locking Algorithm for Sapphire Rapids

lock_loop:
while (lock is not free) // just a load operation

execute pause;

// now the lock is free. So, try to acquire it
Exponential Backoff spin // so all the cores don't come back at the same time
Execute cmpxchg on the lock

if the lock is not successfully acquired, goto lock_loop
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Additionally, as the core counts continue to increase, exploring other algorithmic fixes that dissolve or
reduce contention on memory variables (including locks) is essential. For example, instead of frequently
updating a hot statistical variable from all threads, consider updating a copy of it per thread (without
contention) and later aggregate the updated per-thread copies on a less frequent basis or use some
existing atomic-free concurrency methods such as rseql. As another example, restructure locking algo-
rithms to use hierarchical locking when excessive contention is detected on a global lock.

3.11.4 Case Study: SysBench/MariaDB Metric CHA % Cycles Fast Asserted

With SysBench/MariaDB 10.3.34, the workload’s throughput drops as the number of threads increases.
Another metric we can use is the CHA% Cycles Fast Asserted. It is a signal to slow down the cores
when the Ingress Queue fills up. This is another way to identify scalability issues. The graph below plots
the number of active client threads representing the work intensity on the horizontal axis. The percentage of Fast
Asserts is plotted on the vertical axis.

The baseline case (blue line) had a sharp throughput with increased thread count, as all cores reduced their throughput as they
suffered from the increasing percent of Fast Asserts. With the same work distributed instances (red line), Fast asserts dropped. Simi-
larly, with a software fix (gray line), again, the Fast Asserts dropped even though only one instance was in execution.

MariaDB - CHA % Cycles Fast Asserted
8.00

4.00
2.00
1.00
0.50
0.25

0.13

CHA % Cycles Fast Asserted

0.06 2

0.03

0.02
110 120 130 180 200 300 400 500

Client Threads

—e—MariaDB 10.3.34 - 1 Instance —e—MariaDB 10.3.34 - 2 Instances, NUMA Pinned —e—MariaDB 10.8 -1 Instance

Figure 3-3. MariaDB - CHA % Cycles Fast Asserted

1. https://git.kernel.org/pub/scm/libs/librseq/librseq.git/tree/doc/man/rseq.2
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3.11.5 Instruction Sequence Slowdowns

The Golden Cove CPU microarchitecture upon which Sapphire Rapids is based has increased the cost of
mixing Legacy SSE and VEX without clearing the state of upper registers for power efficiency reasons.

3.11.5.1 Why it Happens

The Golden Cove CPU microarchitecture eliminated some hardware speed paths for power efficiency and
replaced them with microcode. The following instruction sequence mixes VEX and Legacy SSE, for
example, has higher Core Cycles than on the previous generation Sunny Cove CPU microarchitecture for
the Ice Lake version of Xeon 3 (ICX). It is due to more micro-ops being executed.

Table 3-9. Instruction Sequence Mixing VEX and Legacy on Sapphire Rapids and ICX

Ice lake (Sunny Cove) Sapphire Rapids (Golden
Cove)

Intel Syntax for Assembly Code . .
Inst Retired Core Cycles Inst Retired Core Cycles

VPXOR XMM3, XMM3, XMM3;
VEXTRACTI128 XMM3, YMM3, 1; 3.00 1 3.00 388.04
PXOR XMM3, XMM3

3.11.5.2 How to Detect it

The event ASSISTS.SSE_AVX_MIX can be used to determine if there are VEX to legacy SSE transitions.
The following Linux perf command-line can be used while the workload is running:

$ sudo perf stat -e ‘assists.sse_avx_mix'! <workload>

With the Intel TMA (Topdown Methodology) (there is a metric called Mixing_Vectors which gives the
percentage of injected blend uops out of all the uops issued. Usually, a Mixing_Vectors metric over 5% is
worth investigating. You can find more details in Appendix B1 of the Optimizations Guide.

3.11.5.3 How to Fix it

The following is a list of suggested solutions:

1. When possible, use VEX-encoded instructions for all the SIMD instructions when possible.

2. Insert a VZEROUPPER to tell the hardware that the state of the higher registers is clean
between the VEX and the legacy SSE instructions. Often the best way to do this is to insert a
VZEROUPPER before returning from any function that uses VEX (that does not produce a VEX
register) and before any call to an unknown function.

1. Using upstream perf. If OS doesn’t have support for the event use
cpu/event=0xcl,umask=0x10,name=assists_sse_avx_mix/
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VZEROUPPER was inserted in the code sequence below and there are no SSE_AVX_MIX assists. With
this change, the Core Cycles do not have a performance inversion relative to the previous generation.

Example 3-56. Fixed Instruction Sequence with Improved Performance on Sapphire Rapids

Ice Lake (Sunny Cove) Sapphire Rapids
(Golden Cove)
Intel Syntax for Assembly Code Inst Retired Core Cycles Inst Core ASSISTS.SSE

Retired Cycles _AVX_MIX

VPXOR XMM3, XMM3, XMM3;
VEXTRACTI128 XMM3, YMM3, 1;
VVZEROUPPER;

PXOR XMM3, XMM3

4.00 2.00 4.00 1.00 0

3.11.6 Misprediction for Branches >2GB

The Golden Cove CPU is a wider machine and might exhibit a higher Top-down Microarchitecture Anal-
ysis (TMA) Bad Speculation percentage. Please see B.1.1 for additional information about TMA. Some
sources of Bad Speculation are branch prediction misses. In this case, however, Bad Speculation is due
to the wider machine and less efficient branch prediction for certain indirect branches.

3.11.6.1 Why it Happens

For a near absolute indirect JMP/CALL branch instruction (opcodes FF /4 and FF /2), the branch distance
(ADDR_TARGET - ADDR_BRANCH) affects the performance of the branch predictor as follows. The
branch predictor uses fewer resources to predict the branch if its distance can be specified with a 32-bit
signed displacement (JMP/CALL imm32). If the distance is larger (>2GB), the predictor uses more
resources to predict the branch, and performance may suffer.

3.11.6.2 How to Detect it

You can use the Intel LBR to identify jumps greater than 2GB. The collection of performance analysis
tools based on perf on Linux supports this. The following is an example output from the tool. It shows
that 21% of the call/jumps of >2GB offset are mispredicted. The histogram of one of the indirect
branches at address 0x555555603664 shows that it is to one target and in a library. The profile mask is
to use LBR, and the duration is 10 seconds. It does a system-level profile.

% ./do.py profile --profile-mask=0x100 -s 10

count of indirect call/jump of >2GB offset: 93200

count of mispredicted indirect call/jump of >2GB offset: 19943

misprediction ratio for indirect branch at address 0x7ffff577eca4: 4.23%
misprediction ratio for indirect branch at address 0x5555556030c4: 32.23%
misprediction ratio for indirect branch at address 0x555555603664: 22.30%
misprediction ratio for indirect branch at address 0x555555603c24: 13.84%

indirect_0x555555603664 histogram:
0x7ffff7af2670: 50501 100.0%

Figure 3-4. Identifying >2GB Branches
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3.11.6.3 How to Fix it

Arrange the code so the jumps don’t span the >2GB range. This can be done through a variety of
approaches:

1. If possible, statically link all the libraries into the executable.

2. For .text to library code, use the Glibc environment variable LD_PREFER_MAP_32BIT_EXEC=1to
restrict the addresses into the 4GB range.

3. For dynamically compiled code, keep it close to the .text address or copy the frequently called entries
into the dynamically compiled code address region. See the Google v8 Blog.

In a case study with WordPress/PHP running eight containers with and without the 2GB fix, the CPI and
performance scores improve by 6%.

Example 3-57. WordPress/PHP Case Study: with and without 2GB Fix for Branch Misprediction

WP4.2 / PHP7.4.29 WP4.2 / PHP7.4.29 - 2G FIX/
- NO FIX 2G FIX in Glibc NO FIX
Workers 8cx42 8cx 42
Cores Per socket 56 56 1.00
. Sockets 2 2 1.00
Config
Total Cores 112 112 1.00
Total Thread Count 224 224 1.00
Throughput 1.0 1.06 1.06
Performance
CPI 112 1.05 0.96
Path Length Instructions per Unit of Work 33,789,862.68 33,730,155.10 1.00
Cyclesper | ¢ les per Unit of Work 37,803,310.48 35,359,628.33 094
Transaction
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3.12  OPTIMIZING COMMUNICATION WITH PCI DEVICES ON INTEL" 4TH
GENERATION INTEL XEON SCALABLE PROCESSORS

The Sapphire Rapids microarchitecture introduced a new set of instructions designed to optimize
communication between SW running on IA cores and PCI devices on the platform.

3.12.1  Signaling Devices with Direct Move

Most software-to-device interaction follows a producer-to-consumer relationship where the software
creates work for the device and then signals it to inform the device that work is available. Descriptor rings
are the ubiquitous pattern here and once descriptors are added to the ring, the signal (or “doorbell”)
consists of an update to the tail pointer register on the device. This is a write to an MMIO-mapped BAR
register.

Such writes tend to be relatively expensive operations —-the latency to complete the write to the device is
high relative to the CPU operating speed. Since writes are ordered by default, this creates a bubble
during which subsequent writes cannot be drained from store buffers. Signaling can therefore affect
performance via store backpressure.

As a result, some software libraries avoid frequent signaling by batching relatively large quantities of
work descriptors with each doorbell update. However, this is not always possible, and it introduces
latency.

The Sapphire Rapids microarchitecture introduces “Direct Store” instructions to optimize signaling; there
are two instructions in the family:

® MOVDIRI: 4/8B direct store
®* MOVDIR64B: 64B atomic direct copy

Direct Stores are weakly ordered (like non-temporal or USWC-mapped memory writes) regardless of the
underlying memory type (which is usually UC for MMIO-mapped locations). Since they do not order
subsequent writes the performance issue described above does not occur.

Since they are intended for signaling, direct stores will never combine with other stores to the same
address, such as can happen with non-temporal or USWC writes. Each write is guaranteed to occur as
issued. In the case of MOVDIR64B, the full 64B will be delivered as a single write to the device. This is the
only ISA that carries an architectural guarantee of >8B atomicity.

These instructions derive benefit from the fact that signaling use cases typically do not care if subsequent
writes are observed before the doorbell itself — the ordering is relaxed. However, since typically the door-
bell must not be observable before earlier writes (such writes are creating the work descriptors), SW
should insert a store fence immediately before the direct store.

Having a fence before the direct store does not normally limit performance- except when many direct
stores are issued. If there is an SFENCE before each, the fence on direct store N+1 imposes an order on
direct store N, which can remove some of the benefits. If possible, the guideline is to avoid this where
possible. One technique that may work if multiple doorbells to different addresses are being issued (such
as for a NIC driver that is handling multiple descriptor rings) is to group the direct stores to different loca-
tions together and insert a single SFENCE before the group.

Finally, it is worth noting that the device write latency can vary widely with the address being written.
This is especially true on large CPUs implemented as multiple tiles. So if SW has the luxury of choosing
between multiple addresses, it is possible to envisage adaptive schemes that “match” an address to a SW
thread (especially if that thread is pinned to a single core) by selecting the best performing such address
during an initialization stage.

3.12.1.1 MOVDIR64B - Additional considerations

As noted above MOVDIR64B is a copy operation; it moves data from one 64B-aligned address to another.
Typical usage is that the source address is a memory location, and the destination is MMIO mapped to a
device, whereupon it confers the benefits described above. However, since the source data is usually
written immediately before the MOVDIR64B, there are additional considerations:
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® Since the source data is written to the same address that the MOVDIR64B reads, it is not necessary
to fence to ensure the source data is written before the MOVDIR64B. This can mean in some
scenarios, that no store fence is needed in conjunction with MOVDIR64B (if there is no other data
written to memory the correct operation of the system depends on being observed before the
MOVDIR64B).

® For best performance it is important to allow store forwarding of the source data.

® This means the source data should be 64B aligned and written at the same granularity that the
MOVDIR64B reads. For Sapphire Rapids, this is 64B, meaning the source data should be written using
64B AVX512 instructions for best performance.

3.12.1.2 Streaming Data

Because it is weakly ordered, MOVDIR64B can also be used to stream data to a device by copying a block
of memory. This is similar in behavior to mapping the destination memory locations as USWC, except:
® The destination address can remain mapped UC.

® The writes are guaranteed to arrive at the device as 64B writes, which is not guaranteed with any
other method.

3.13 SYNCHRONIZATION

3.13.1 User-Level Monitor, User-Level MWAIT, and TPAUSE

New instructions for user-level monitor and MWAIT act like legacy monitor and MWAIT instructions with
additional functionality identified as the timeout and ring-3 (aka user space) application support. TPAUSE
is similar to legacy pause instruction but is designed to accept time interval and sleep state parameters.
User-level MWAIT and TPAUSE support the same CO0.1 light sleep and C0.2 deeper sleep states. These
instructions are helpful in user space applications that support a busy poll, synchronization, or asynchro-
nous IO, such as waiting for an event. A minor code modification yields power benefits along with low
latency wake-up.

3.13.1.1 Checking for User-Level Monitor, MWAIT, and TPAUSE support

This section describes how to check whether a processor supports user-level monitor, user-level MWAIT,
or TPAUSE; if user-level monitor, user-level MWAIT, or TPAUSE instruction is supported, then CPUID.
(EAX=07H, ECX=0): ECX [bit 5] is enumerated as 1.

Example 3-58. Identification of WAITPKG with CPUID
..identify the existence of cpuid instruction

ey

ey

Identify signature is genuine Intel ..,

mov eax, 7; Request for feature flags

mov ecx, 0; Request for feature flags

cpuid; OFH, A2H CPUID instruction

test ecx, 00000020h;

Is waitpkg bit (bit 5) in feature flags equal to 1 jnz Found

3.13.1.2 User-Level Monitor, User-Level MWAIT, and TPAUSE Operations

User-level monitor initializes the monitor hardware in such a way that, after execution of the user-level
MWAIT, a store to a monitored address acts as a wakeup event. So, the User level monitor and the user-
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level MWAIT work together to obtain a sleep state. TPAUSE is a single instruction request to enter one of
the same two sleep states for a defined time

There are possibilities of a “false wake-up” because of other events, notably interrupts or timeouts. The
application may re-execute user-level MWAIT/TPAUSE if it has been falsely woken. If the application
needs to determine the source of the predefined OS sleep wakeup, RFLAGS.CF is set Otherwise it is
assumed that the application can detect changes at the monitored address (MWAIT) or poll for activity
(TPAUSE).

3.13.1.3 Recommended usage

A frequent paradigm in packet processing applications is to have dedicated HW threads polling a NIC
receive descriptor ring for ingress traffic. This kind of “busy polling” arrangement wastes energy when
the traffic rates are low. Changing the polling loop to perform user-level Monitor/ MWAIT on the next
descriptor to be written can save substantial power in periods of low traffic. The same scheme could be
used with any “work distributor,” which assigns work by writing to selected memory locations.

Accelerators frequently offload tasks from SW in an asynchronous manner. For example, the Data
Streaming Accelerator (DSA) performs copy operations and can return the status of the completed oper-
ation by writing to memory. If an application uses the user-level monitor/MWAIT, at a memory location
where the status field will be written, it can be woken when the task is complete.

Instead of monitoring, the device may issue an interrupt that can act as a wake-up event.

Alternatively, applications may decide to choose TPAUSE as a wait event. This has the advantage of being
independent of the number of event sources.

In all cases, a small change in the user space application is needed to convert a busy poll application to
something more energy efficient with low latency wake-up.

Synchronous application: when two hardware threads from the same core use User level monitor and
user-level MWALIT, it can progress effectively as some of the hardware resources are available to the
other thread when a hyperthread issues the user-level MWAITs.

To achieve the best performance using user-level monitor and user-level MWAIT:

® The entire contents of monitored locations must be verified after user-level MWAIT to avoid false
wake-up.

® Itis the developer’s responsibility to check the contents of monitored locations
— before issuing monitor
— before issuing user-level MWAIT
— after user-level MWAIT. See Example 3-59 below.

® If an application expects a store to a monitored location, the timeout value should be as high as it is
supported.
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Since user-level MWAIT and TPAUSE are a hint to a processor, a user should selectively identify locations
in the application.

Example 3-59. Code Snippet in an Asynchronous Example
void * m_address; // it is expected device will update m_address to 1

unsigned char ret;
while (1) {
if (*m_address != 0) // if device already finished operation, no need to user monitor/user mwait
break;
if (*m_address == 0) { // check monitored location before issuing umonitor instruction
_umonitor (m_address);
if (*m_address == 0) { /I check monitored location before issuing umwait instruction
ret = _umwait(0, 0x186A0); // some high value in timeout
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CHAPTER 4
INTEL ATOM® PROCESSOR ARCHITECTURES

This chapter gives an overview of features relevant to software optimization for current generations of
Intel Atom® processors!.

4.1 GRACEMONT MICROARCHITECTURE

The Gracemont microarchitecture builds on the success of the Tremont microarchitecture. Listed below
are some of the many enhancements provided by the Gracemont microarchitecture.

Enhanced branch prediction unit.
Larger 64KB Instruction Cache with dual 32B reads (32B read per fetch cluster).

Replaced shared second level predecode cache with an On-Demand Instruction Length Decoder per
fetch cluster.

Dynamic Load Balancing between the two fetch clusters.

Wider allocation and retirement width.

Larger load and store buffers.

Dual load and dual store execution pipes.

Four integer ALU execution ports with expanded capabilities.

Two jump execution ports.

Dual integer multiply and integer divide units.

Improved Intel® SHA-NI and AES latency for enhanced cryptographic performance.
256-bit advanced vector extension (Intel® AVX and Intel® AVX2).

BMI1, BMI2, ADX, LZCNT ISA extensions.

VEX-based VNNI ISA extension.

Control-flow enforcement technology (CET) for enhanced protection against malware.

4.1.1 Gracemont Microarchitecture Overview
The basic pipeline functionality of the Gracemont microarchitecture is depicted Figure 4-1.

1.

For previous generations of Intel Atom® processors, see Appendix F, “Earlier Generations of Intel Atom® Microarchitec-
ture and Software Optimization.”
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Figure 4-1. Processor Core Pipeline Functionality of the Gracemont Microarchitecture

The Gracemont microarchitecture supports flexible integration of multiple processor cores with a shared
uncore subsystem consisting of a number of components including a ring interconnect to multiple slices
of L3, processor graphics, integrated memory controller, interconnect fabrics, and more.

4.1.2 Predict and Fetch

The Gracemont microarchitecture features a front end with 32-byte prediction. The first predictor is the
next-line predictor (NLP) which can predict a taken branch every cycle and fetch it without bubbles. The
NLP is backed by the second predictor that includes a 5K entry target array combined with path-based
information to make predictions and verify target addresses in three cycles. Finally, instruction decode
can also redirect the front end when it decodes a branch that was not present in any of the predictors.
The front-end pipeline functionality of the Gracemont microarchitecture is shown in Figure 4-2.
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Figure 4-2. Front-End Pipeline Functionality of the Gracemont Microarchitecture

Each cycle, the predicted IP is sent down the instruction fetch pipeline. These predictions can look up the
Instruction TLB (ITLB) and the instruction cache tag to determine the physical address and instruction
cache hit or miss. Upon successful translation, and depending on resource availability, these accesses are
then stored into the instruction pointer (IP) queues. This enables the decoupling instruction cache
hit/miss from delivering raw instruction bytes to the rest of the front end. In the case of an instruction
cache miss, the IP queue holds the address but signals that the data cannot be read until it is returned
from the memory subsystem. The stream of IPs generated at fetch can handle up to 8 concurrent
instruction cache misses. There are two independent IP queues, each with their own instruction data
buffers. These, combined with their associated decoders, are referred to as clusters. For each taken
branch or inserted toggle point, prediction will toggle back and forth between each of the IP queues and
therefore each cluster. This toggling enables out-of-order decode, which is the key feature that enables
this microarchitecture to fetch and decode up to 6 variable length x86 instructions per cycle.

Performance debug of prediction or fetch can be done utilizing the front-end bound events in the top-
down category of performance monitoring events found at https://perfmon-events.intel.com. Front-end
bound events count slots at allocation only when there are slots available but no uops present. If bubbles
caused by the three-cycle predictor percolate all the way to allocation, for example, these will be repre-
sented by TOPDOWN_FE_BOUND.BRANCH_RESTEER. You can precisely tag the instruction following
such a bubble via FRONTEND_RETIRED.BRANCH_RESTEER. If the predictor failed to cache a branch
target and redirection occurred during decode, those slots are counted by
TOPDOWN_FE_BOUND.BRANCH_DETECT. If uops are not delivered due to misses in the Instruction
Cache or Instruction TLB, these appear as TOPDOWN_FE_BOUND.ICACHE and
TOPDOWN_FE_BOUND.ITLB, respectively. Similar to BRANCH_RESTEER, all front-end bound slot-based
accounting can be tracked precisely via the corresponding FRONTEND_RETIRED set of events. The
instruction code can often be rearranged to optimize such a bottleneck away. Multiple event classes can
be tracked simultaneously (e.g., mark both ICACHE and ITLB events) on the same general purpose
performance counter or with different events across multiple performance counters.

Sometimes a loop of code is simply too short and/or poorly aligned within the cache to enable the
machine to decode sufficiently fast. In this situation you could be fetching every cycle and never inserting
bubbles, but still unable to keep the back-end fed. When this happens, the event class that detects this
is TOPDOWN_FE_BOUND.OTHER. The “other” event class catches front-end bound behavior that cannot
be pinpointed to any of the other specific sources.
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4.1.3 Dynamic Load Balancing

One unique performance issue for a microarchitecture of clustered decoders can occur when very long
basic blocks are executed. Compilers will sometimes unroll loops of code and generate blocks that can be
hundreds of instructions long, trying to provide additional parallelism and reduce the overhead of loops.
This is very common for some compilers for floating point and vector processing. Since the method of
clustering relies on toggle points, inserting unconditional JMP instructions to the next sequential instruc-
tion pointer could have been employed by handwritten assembly using the Tremont microarchitecture.
Such insertions should no longer be necessary on Gracemont microarchitecture and beyond. Gracemont
microarchitecture addresses this bottleneck by introducing a hardware load-balancer. When the hard-
ware detects long basic blocks, additional toggle points can be created based on internal heuristics.
These toggle points are added to the predictors, thus guiding the machine to toggle within the basic
block.

In Intel microarchitecture, nearly all basic compute instructions are a single uop. Even complex instruc-
tions like CET enabled CALLs are still decoded into a single uop. The high-level algorithm of the load
balancer is based on the number of uops present in a sequential stream of instruction bytes. If there are
no natural toggle points (i.e., taken branches) within 32 uops, the hardware will insert a toggle point on
the instruction after or corresponding to the 24th uop of the stream. As inserted toggle points consume
resources in the predictor, it typically doesn't insert immediately but rather marks the location of the
instruction in a table of addresses. If the same inserted toggle point is marked a second time, it allocates
this location into the predictor.

Sometimes the number of sequential uops leading up to a single toggle point is dynamic. A conditional
branch that is not taken can later change to be always taken, for example. In situations such as this, if
the location of an inserted toggle point is no longer located at the end of a long uop sequence, it is typi-
cally removed. Also, since this algorithm is uop based, instructions that are implemented as long micro-
coded sequences of many uops often trigger the insertion of toggle points. This is advantageous as it
ensures that decode behavior continues underneath this activity.

4.1.4 Decode and the On-Demand Instruction Length Decoder

The Gracemont microarchitecture stores a single bit for each byte in the instruction cache that marks an
instruction boundary, often referred to as a predecode bit. This bit is used to steer instruction bytes into
decoder lanes. For native variable length encoding, finding each additional instruction can be considered
as having to decode one instruction, feed that information into the decode of the next instruction, and so
on. As this function gets wider, the cost of this rapidly increases. With the use of predecode bits, the
decoding of the instructions is removed from this path. With the clustered decode approach, when imple-
mented with three wide decoders, the hardware never has to look beyond finding the end of a third serial
instruction. This results in instruction muxing and decoding that can be implemented in a very small area
and with very low power.

One potential weakness can be determining the predecode bits and using those to mark the instruction
boundaries. An additional change from the Tremont microarchitecture is the removal of the large
(128KB) shared second level predecode cache. This cache helped seed the first level predecode cache
whenever there were misses in the first level instruction cache. While this handled the majority of perfor-
mant cases, loops of critical code with a footprint exceeding 1MB+ could still suffer additional front-end
bottlenecks due to low decode bandwidth from incorrect predecode bits. This could be seen via the event
TOPDOWN_FE_BOUND.PREDECODE.

Instead of a second level predecode cache, the Gracemont microarchitecture introduces an “on-demand”
instruction length decoder (OD-ILD). This block is typically only active when new instruction bytes are
brought into the instruction cache from a miss. When this happens, two extra cycles are added to the
fetch pipeline in order to generate predecode bits on the fly. These are done across 16 bytes per cycle.
With clustering, this means the Gracemont microarchitecture is capable of 32 bytes per cycle across the
two independent OD-ILDs. While many workloads will not notice a difference in behavior between the
Gracemont and Tremont microarchitectures, large code footprint workloads may see large benefits. This
overall approach to x86 instruction decoding provides a clear path forward to very wide designs without
needing to cache post-decoded instructions.
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Each instruction decoder generates a single uop yet can generate the majority of all x86 code as
measured by dynamic instruction count. Load-op-stores, complicated addressing forms, Control Enforce-
ment Technology (CET) instructions, and many more types are generated in a single internal uop format.
Each decoder is also capable of detecting a microcode entry point. The most common short microcode
flows can be executed out of order between the clusters, enabling additional performance. All uops are
written into two parallel uop queues, which are designed to allow the front end and the back end of the
core to execute independently. The allocation and rename pipeline reads both uop queues in parallel and
puts the instruction stream back in-order for register renaming and resource allocation.

The low-level characteristics of the microarchitecture within each decode cluster remain the same as in
the Tremont microarchitecture. For example, instructions should avoid more than 4 bytes of prefixes and
escapes. Refer to the previous generation documentation in Appendix F, “Earlier Generations of Intel
Atom® Microarchitecture and Software Optimization” for further details.

During performance debug if load balancing or other decode restrictions may be an issue, this will often
be indicated by TOPDOWN_FE_BOUND.DECODE. If the decoder was struggling due to not having the
correct predecode bits or there were too many prefixes or escapes on the instructions, this will be repre-
sented by TOPDOWN_FE_BOUND.PREDECODE. If the machine is stuck waiting on lengthy microcode
sequences, this will be represented by TOPDOWN_FE_BOUND.CISC. As with all other allocation slot-
based FE_BOUND events, there are corresponding FRONTEND_RETIRED events that mark an instruction
after the designated event class has occurred. However, there is a difference in how this is reported for
CISC events. As slot-based bottlenecks due to executing long microcoded instructions are typically seen
“within” an instruction, FRONTEND_RETIRED.CISC will often tag the CISC instruction itself and not the
instruction that follows. When microcode is invoked to handle external interrupts, faults, traps, or other
types of assists, FRONTEND_RETIRED.CISC will mark the next instruction that follows.

4.1.5 Allocation and Retirement

The Gracemont microarchitecture is capable of allocating up to five uops per cycle. Allocation reads the
uop queues of all front-end clusters simultaneously and generates an in-order stream splicing across
clustering boundaries within the same cycle as necessary. For some cases, there can be an expansion
between the format inside the uop queue and the format that is allocated into the machine. For example,
for a 256-bit Intel AVX instruction, the front-end decodes the instruction as a single uop that is subdi-
vided into 128-bit operations at allocation time. In this case, two allocation lanes are used in order to
allocate the two 128-bit halves of the instruction. The most common uops that use this method besides
the 256-bit Intel AVX uops are integer uops that require multiple logical register destinations, like integer
multiplies and divides. Another example is PUSH memory, which loads a value from memory from one
address, stores the value into memory at the location of the stack pointer, and updates the stack pointer.
If an operation needs two allocation lanes, and it appears on the last (5th) allocation lane, then the hard-
ware will allocate the first piece in the first cycle, and then allocate the second piece in the next cycle,
along with up to 4 additional uops. Move elimination, NOP detection and idiom detection (e.g., XOR a
register by itself, producing all zeros), and memory renaming are performed at allocation time. This can
reduce dependency chains and, in some situations, eliminate uops from execution.

Retirement can be up to eight instructions per cycle for the 256-entry retirement buffer. Retirement is
wider than allocation to improve performance for things like store deallocation along with other less
common flushing conditions. This is a feature that leads to better energy efficiency. The cost of widening
retirement is relatively small. In turn, the core is able to have smaller, shallower structures because the
lifetime of the operation ends up being reduced.

4.1.6 The Out-of-Order and Execution Engines

The Out-of-Order and execution engines changes in the Gracemont microarchitecture include:

®* Asignificant increase in size of the reorder buffer, load buffer, store buffer, and reservation stations,
which enable deeper OO0 execution and higher cache bandwidth.

® Wider machine: 10—17 execution ports.

® Greater capabilities per execution port.
The execution pipeline functionality of the Gracemont microarchitecture is shown in Figure 4-3.
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Figure 4-3. Execution Pipeline Functionality of the Gracemont Microarchitecture

Allocation delivers uops to three types of structures. For pure integer operations, each uop is written into
one or more of five reservation stations. These hold instructions, track their dependencies, and schedule
them for execution. Four are for ALU operations, labeled ports 00 to 03. These execution units are mostly
symmetric for single cycle operations. Two of the four ports (01 and 02) can execute longer latency oper-
ations like multiplies and divides. The fifth integer reservation station holds jumps and store data opera-
tions. This structure is banked and can schedule two uops of each type every cycle; two store data on
ports 08 and 09, and two jumps on ports 30 and 31. Complex instructions like an ADD where one source
and the destination are in memory, are decoded by the front-end and allocated as a single uop. The Grac-
emont microarchitecture can allocate five instructions like these per cycle. However, such uops break up
into multiple pieces as they enter the back end. In this example, this single complex uop generates a
load, an add, a store address operation, and a store data operation. These pieces execute independently
in the out-of-order machine and require four different dispatch ports.

Load Effective Address operations (LEAs) are special and deserve extra attention. The ALU ports are opti-
mized to execute standard two source arithmetic/logical operations while the AGUs are optimized to
handle the complexities of x86 memory addressing. LEAs are ALU operations that can have the same
complex characteristics as AGU operations. LEAs without a scaled index and with only two sources
among base, index, and displacement execute as a normal ALU operation on any port (00 through 03).
LEAs with three sources fracture into two operations and take an additional cycle of latency. LEAs with a
scaled index but without a displacement execute as a single operation but are statically bound to port 02.

Allocation can also write into a memory queue. This is a FIFO queue that enables deeper buffering of the
microarchitecture at a very low implementation cost. The memory queue can then write into a unified
reservation station that holds load and store address generation operations. This reservation station can
generate two load (ports 10 and 11) and two store address (ports 12 and 13) calculations per cycle. The
memory queue also writes the load and store uops into the memory subsystem to perform translation as
well as data cache access.

Finally, allocation can write the vector queue. This is where all vector SIMD and floating-point ALU oper-
ations go. This FIFO queue can then write into either a unified reservation with three scheduling pipelines
(ports 20, 21, and 22), or a store data reservation station capable of dispatching two store data per cycle
(ports 28 and 29). The vector unit can execute any combination of two floating-point multiplies, adds, or
multiply-add operations. In total, this enables a peak of 16 single precision or 8 double precision FLOPS
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per cycle. It can also execute up to three SIMD integer ALU or shuffle operations along with dedicated
AES and SHA units.

4.1.7 Cache and Memory Subsystem

The cache hierarchy changes in the Gracemont microarchitecture include:
® 2x total peak load and store bandwidth.
— Two dedicated load ports.
— Two dedicated store ports.
® Simultaneous handling of more loads and stores enabled by enlarged buffers.
® 4-cycle load-to-use latency.
®* Pipelined Page Miss Handler capable of handling 4 concurrent page walks.
* Increased support for large page translations throughout the paging hierarchy.
® Larger 2nd level TLB.
® L2 cache size support from 2MB to 4MB depending on product design choice:
— The L2 cache size on processors based on the Alder Lake performance hybrid architecture is 2MB.

The Gracemont microarchitecture memory subsystem is designed to handle two 16 byte loads and two
16-byte stores per cycle, providing simultaneous 32 bytes of read bandwidth and 32 bytes of write band-
width per cycle. The load to use latency for loads is typically four cycles. When performing a pointer
chasing operation where the address being computed is the result of a single prior load and a positive
displacement of no more than +1023, the load to use latency observed can be reduced to 3 cycles. The
L1 data cache is dual ported to eliminate potential bank conflicts.

Memory disambiguation is supported, which allows loads to execute while older stores have unresolved
addresses. Loads that forward from stores can do so in the same load to use latency as cache hits for
cases where the store's address is known, and the store data is available. Precise blocking and scheduling
are done for cases where the store address or data is not immediately available, and the hardware has
determined that these are likely to be related addresses.

Address translations are performed through the first level DTLB, which is fully associative. On Gracemont
microarchitecture, 2MB translations are natively cached within the first level DTLB. The DTLB is backed
by two second level TLB (STLB) structures shared between code and data requests. The main STLB is
2048 entries 4-way set associative and caches 4KB and 2MB translations. Additionally, Gracemont
microarchitecture has an 8-entry fully associative structure for GB translations. STLB misses are sent to
the page miss handler (PMH) which is pipelined such that it can perform up to four walks in parallel.

Table 4-1. Paging Cache Parameters of the Gracemont Microarchitecture

Level Entries Associativity Architectural Page Size Cached Translation Size
ITLB 64 Fully associative All 4KB, 256KB

DTLB 32 Fully associative All 4KB, 2MB

STLB 2048 4-way 4K/2M/4M 4KB, 2MB

STLB 8 Fully associative 1GB 1GB

There are three independent L1 prefetchers. One does a simple next-line fetch on DL1 load misses. The
second is an instruction pointer based prefetcher capable of detecting striding access patterns of various
sizes. This prefetcher works in the linear address space so it is capable of crossing page boundaries and
starting translations for TLB misses. The final prefetcher is a next-page prefetcher that detects accesses
that are likely to cross a page boundary and starts the access early. L1 data misses generated by these
prefetchers communicate additional information to the L2 prefetchers, which help them work together.

The L2 cache delivers 64 bytes of data per cycle at a latency of 17 cycles, and that bandwidth is shared
among four cores. The L2 cache subsystem contains multiple prefetchers as well, including a streaming
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prefetcher that detects striding access patterns. An additional L2 prefetcher attempts to detect more
complicated access patterns. These prefetches can also be generated such that they only fill the LLC but
do not fill into the L2 to help reduce DRAM latency.

The L2 cache subsystem of a single 4-core module can have 64 requests and 16 L2 data evictions
outstanding on the fabric. These are competitively shared among the cores with per-core reservations to
ensure fairness.

4.1.8 Intel® AVX and Intel® AVX2 Instruction Support

The Gracemont microarchitecture supports Intel AVX and Intel AVX2 instructions. The majority of all
256-bit Intel AVX and Intel AVX2 instructions are decoded as a single instruction and stored as a single
uop in the front-end pipeline. To execute 256-bit instructions on native 128-bit vector execution and load
data paths, most 256-bit uops are further subdivided into two independent 128-bit uops at allocation
before insertion into the MEC and FPC reservation stations. These two independent uops are usually
assigned to different execution ports such that both may execute in parallel. In general, 256-bit uops
consume twice the allocation, execution, and retirement resources compared to 128-bit uops.

While most 256-bit Intel AVX2 instructions can be decomposed into two independent 128-bit micro-oper-
ations, a subset of Intel AVX2 instructions, known as cross-lane operations, can only compute the result
for an element by utilizing one or more sources belonging to other elements. For example, when some or
all of the upper 128-bit result [255:128] is dependent on one or all of a lower element segment [127:0].
These 256-bit cross-lane instructions execute with longer latency and/or reduced throughput compared
to their 256-bit non-cross-lane counter-parts.

4.1.8.1 256-bit Permute Operations

The instructions listed below use more operand sources than can be natively supported by a single reser-
vation station within the Gracemont microarchitecture. They are decomposed into two uops where the
first uop resolves a subset of operand dependences across 2 cycles. The dependent second uop executes
the 256-bit operation by using a single 128-bit execution port for two consecutive cycles with a 5-cycle
latency for a total latency of 7 cycles.

® VPERM2I128 ymm1, ymm2, ymm3/m256, imm8
®* VPERM2F128 ymm1, ymm2, ymm3/m256, imm8
® VPERMPD ymm1, ymm2/m256, imm8

®* VPERMPS ymm1, ymm2, ymm3/m256

® VPERMD ymm1, ymm2, ymm3/m256

* VPERMQ ymm1, ymm2/m256, imm8

4.1.8.2 256-bit Broadcast with 128-bit Memory Operand

The memory versions of the broadcast instructions listed below have a single 128-bit or less memory
source operand. They have a single SIMD ALU uop in addition to load operand. The register version of the
same instructions is decomposed into two SIMD ALU uops.

Operation portion latency is 1 cycle in addition to load operation latency.
® VBROADCASTSD ymm1, m64
® VBROADCASTSS ymm1, m32

4.1.8.3 256-bit Insertion, Up-Conversion Instructions with 128-bit Memory Operand

The memory versions of the instructions listed below have a single 128-bit or less memory source
operand. They are decomposed into two uops. However, the second micro-operation has a dependence
on the first micro-operation for the memory version. The second micro-operation of the register version
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of the same instruction does not have dependence on the first micro-operation. The register version of
the same instructions can execute the upper and lower 128-bit segments in parallel.

Operation portion latency is 2 cycles in addition to load operation latency for the 256-bit insert, packed
move with zero and sign extension instructions listed below.

® VPMOVZX ymm1l, m128/64/32
® VPMOVSX ymm1l, m128/64/32
® VINSERTI128 ymm1, ymm2, m128, imm8
® VINSERTF128 ymm1, ymm2, m128, imm8

Operation portion latency is 6 cycles in addition to load operation latency for the up-convert instructions
listed below.

® VCVTPS2PD ymm1, m128
* VCVTDQ2PD ymm1, m128
® VCVTPH2PS ymm1, m128

4.1.8.4 256-bit Variable Blend Instructions

The VBLENDVPD and VBLENDVPS instructions listed below are implemented as micro-coded flow.
Throughput is 1 every 4 cycles, and latency is 3 cycles.

® VBLENDVPD ymm1l, ymm2, ymm3/m256, ymm4
® VBLENDVPS ymm1, ymm2, ymm3/m256, ymm4

4.1.8.5 256-bit Vector TEST Instructions

The 256-bit vector TEST instructions listed below are decomposed into two uops with dependence
between them. Operation result is written in the GPR arithmetic flags. Throughput is one per cycle, and
latency is 7 cycles.

® VTESTPS ymm1, ymm2/m256
® VTESTPD ymm1l, ymm2/m256
® VPTEST ymm1, ymm2/m256

4.1.8.6 GATHER Instructions

The VGATHER instructions are implemented as micro-coded flow. Latency is ~50 cycles.

4.1.8.7 Masked Load and Store Instructions

Throughput of 256-bit VMASKMOV load and store is one every two cycles. Throughput of 128-bit
VMASKMOV load and store is one per cycle. A masked load or store with masked element may encounter
performance degradation if the masked element memory access causes an exception or a fault.

4.1.8.8 ADX Instructions

ADX instructions are supported. ADCX and ADOX are partial arithmetic flag updating instructions. Intel
Core microarchitecture renames and tracks arithmetic flags differently than Intel Atom. The carry flag
(CF), overflow flag (OF), and other flags (ZF, AF, PF, SF) are renamed as if independent registers on Core
while they remain as a single register on Atom. Unless there is a non-flag consuming full flag updating
instruction in between ADCX/ADOX instructions, on Gracemont microarchitecture there is an operand
dependency between the ADCX and ADOX instructions as the arithmetic flag register is a source operand
of both. As this dependence between ADCX and ADOX instructions does not exist in the Intel Core
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microarchitecture, hand tuned binaries exploiting this parallelism exist. While the Gracemont microarchi-
tecture supports the ISA, the parallelism will be lower on the Gracemont microarchitecture.

4.1.8.9 BMI1, BMI2, and LZCNT Instructions
The bit manipulation instructions BMI1 and BMI2, and the LZCNT instruction are supported.

4.2 TREMONT MICROARCHITECTURE

The Tremont microarchitecture builds on the success of the Goldmont Plus microarchitecture and
provides the following enhancements:

®* Enhanced branch prediction unit.
— Increased capacity with improved path-based conditional and indirect prediction.
— New committed Return Stack Buffer.
®* Novel clustered 6-wide out-of-order front-end fetch and decode pipeline.
— Banked ICache with dual 16B reads.
— Two 3-wide decode clusters enabling up to 6 instructions per cycle.
®* Deeper back-end out-of-order windows.
* 32KB data cache.
® Larger load and store buffers.

®* Dual generic load and store execution pipes capable of 2 loads, 2 stores, or 1 load and 1 store per
cycle.

®* Dedicated integer and vector integer/floating point store data ports.
®* New and improved cryptography.

— New Galois-field instructions (GFNI).

— Dual AES units.

— Enhanced SHA-NI implementation.

— Faster PCLMULQDQ.

® Support for user level low-power and low-latency spin-loop instructions UMWAIT/UMONITOR and
TPAUSE.

4.2.1 Tremont Microarchitecture Overview
The basic pipeline functionality of the Tremont microarchitecture is depicted in Figure 4-4.
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Figure 4-4. Processor Core Pipeline Functionality of the Tremont Microarchitecture

The Tremont microarchitecture supports flexible integration of multiple processor cores with a shared
uncore sub-system consisting of a number of components including a ring interconnect to multiple slices
of L3, processor graphics, integrated memory controller, interconnect fabrics, and more.

4.2.2 The Front End

Tremont microarchitecture introduces parallel out-of-order instruction decode. Instruction pointers
access the ITLB, check the ICache tag array, and access the branch predictor. When the branch predictor
produces a taken branch target, the new block of code advances the decode cluster assignment. Tremont
microarchitecture has a 32B predict pipeline that feeds dual 3-wide decode clusters capable of 6 instruc-
tion decode per cycle. Each cluster can access a banked 32KB instruction cache at 16B/cycle for a
maximum of 32B/cycle. Due to differences in the number of instructions per block and other decode
latency differences, younger blocks of code can decode before older blocks. At the end of each decode
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cluster is a queue of decoded instructions (pop queue). The allocation and rename pipeline reads both
pop queues in parallel and puts the instruction stream back in-order for register renaming and resource
allocation. Whereas increasing decode width in a traditional fashion for x86 requires exponential
resources and triggers efficiency loss, clustering allows for x86 decode to be built with linear resources
and little efficiency loss.

As the clustering algorithm is dependent on the ability to predict taken branches within the branch
predictor, very long assembly sequences that lack taken branches (long unrolled code utilizing the
floating point unit, for example) can be bottlenecked due to being unable to utilize both decode clusters
simultaneously. Inserting unconditional JMP instructions to the next sequential instruction pointer at
intervals between 16 to 32 instructions may relieve this bottleneck if encountered. While Tremont
microarchitecture did not build a dynamic mechanism to load balance the decode clusters, future gener-
ations of Intel Atom processors will include hardware to recognize and mitigate these cases without the
need for explicit insertions of taken branches into the assembly code.

In addition to the novel clustered decode scheme, Tremont microarchitecture enhanced the branch
predictor and doubled the size of the L2 Predecode cache from 64KB on Goldmont Plus microarchitecture
to 128KB.

The low level characteristics of the microarchitecture within each decode cluster remain the same as in
the Goldmont Plus microarchitecture. For example, instructions should avoid more than 4 Bytes of
prefixes and escapes. Refer to previous generation documentation in Appendix F, “Earlier Generations of
Intel Atom® Microarchitecture and Software Optimization” for further details.

4.2.3 The Out of Order and Execution Engines

The Out of Order and execution engines changes in the Tremont microarchitecture include:

®* Asignificant increase in size of reorder buffer, load buffer, store buffer, and reservation stations which
enable deeper OO0 execution and higher cache bandwidth.

®* Wider machine: 8 — 10 execution ports.
®* Greater capabilities per execution port.
Table 4-2 summarizes the OO0 engine's capability to dispatch different types of operations to ports.

Table 4-2. Dispatch Port and Execution Stacks of the Tremont Microarchitecture

Port 00 Port 01 Port02 | Port08 | Port09 | Port10 | Port11 Port 20 Port 21 Port 29
INT INT INT INT INT FP/VEC FP/VEC FP/VEC
ALU ALU ALU JUMP Store Load Load ALU ALU Store
LEA! LEA2 LEA3 Data AES AES Data
Shift Bit Ops Store Store SHA-RND | SHA-MSG
IMUL Address | Address | FMUL FADD
DIV FDIV Shuffle
POPCNT Shuffle
CRC32 Shift
SIMUL
GFNI
Converts
NOTES:

1. LEAs without a scaled index and only two sources (among base, index, and displacement inputs) execute as one opera-
tion on any ALU port (00, 01, or 02).

2. LEAs with three sources fracture into two operations and take an additional cycle of latency. Index consuming portion,
regardless of scale value, will bind to port 02 while second operation binds to either port 00 or 01.

3. LEAs with a scaled index but without a displacement execute as one operation on port 02.
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42.4 Cache and Memory Subsystem
The cache hierarchy changes in Tremont microarchitecture include:
®* 33% increase in size of the L1 data cache from 24KB to 32KB.
* 2xL1 load bandwidth: 1 dedicated load port 2 generic AGUs, shared between loads and stores.
® 2xL1 store bandwidth: 1 dedicated store port 2 generic AGUs, shared between loads and stores.
® Simultaneous handling of more loads and stores enabled by enlarged buffers.
® Maintains a 3-cycle load-to-use latency.
® Larger 2nd level TLB:
— 512 4K entries — 1K 4K entries
— 32 2M/4M entries — 64 2M/4M entries
® L2 cache size from 1MB to 4.5MB depending on SoC design choice:
— The L2 size on Snow Ridge products is 4.5MB whereas the L2 size on Lakefield products is 1.5MB.

The TLB hierarchy consists of dedicated level one TLB for instruction cache and data cache with a shared
second-level TLB for all page translations.

Table 4-3. Cache Parameters of the Tremont Microarchitecture

Level Page Size Entries Associativity
Instruction 4KB/2M/4M! 48 Fully associative
First Level Data (loads and stores) 4KB/2M/4M? 32 Fully associative
Second Level 4KB 1024 4

Second Level 2M/4M 64 4
NOTES:

1. The first level instruction TLB (ITLB) caches small and large page translations but large pages are cached as 256KB
regions per ITLB entry.

2. The first level data TLB (uTLB) caches small and large page translations but large pages are fully fractured into 4KB
regions per uTLB entry.

4.2.5 New Instructions

New instructions and architectural changes in Tremont microarchitecture are listed below. Actual support
may be product dependent.

® Galois Field New Instructions (GFNI) for acceleration of various encryption algorithms, error
correction algorithms, and bit matrix multiplications.

*  UMWAIT/UMONITOR/TPAUSE instructions enable power savings in user level spin loops.

® Cache line writeback instruction (CLWB) enables fast cache-line update to memory, while retaining
clean copy in cache.

®* Performance debugging benefits can be realized from the Tremont microarchitecture skidless PEBS
implementation on both PMCO as well as the fixed instruction counter. This enables a precise distri-
bution via sampling on instructions and/or any of the precise general purpose events. As PEBS is
triggered on the event after the overflow is signaled, counters should be programmed to large
numbers that are (PRIME-1).
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4.2.6 Tremont Microarchitecture Power Management

Tremont microarchitecture supports many of the same features as those found on the Ice Lake Client
microarchitecture. Processors based on Tremont microarchitecture are the first Intel Atom processors
with support for Intel® Speed Shift Technology. Power management features sometimes differ
depending on the needs of the SoC.
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CHAPTER 5
CODING FOR SIMD ARCHITECTURES

Processors based on Intel Core microarchitecture support MMX, SSE, SSE2, SSE3, and SSSE3. Proces-
sors based on Enhanced Intel Core microarchitecture support MMX, SSE, SSE2, SSE3, SSSE3 and
SSE4.1. Processors based on Nehalem microarchitecture support MMX, SSE, SSE2, SSE3, SSSE3,
SSE4.1 and SSE4.2. Processors based Westmere microarchitecture support MMX, SSE, SSE2, SSE3,
SSSE3, SSE4.1, SSE4.2 and AESNI. Processors based on Sandy Bridge microarchitecture support MMX,
SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, AESNI, PCLMULQDQ and Intel AVX.

Intel Pentium 4, Intel Xeon and Pentium M processors include support for SSE2, SSE, and MMX tech-
nology. SSE3 were introduced with the Pentium 4 processor supporting Hyper-Threading Technology at
90 nm technology. Intel Core Solo and Intel Core Duo processors support SSE3/SSE2/SSE, and MMX.

Single-instruction, multiple-data (SIMD) technologies enable the development of advanced multimedia,
signal processing, and modeling applications.

Single-instruction, multiple-data techniques can be applied to text/string processing, lexing and parser
applications. This is covered in Chapter 14, "SSE4.2 and SIMD Programming For Text-
Processing/Lexing/Parsing.” Techniques for optimizing AESNI are discussed in Section 6.10.

To take advantage of the performance opportunities presented by these capabilities, do the following:
® Ensure that the processor supports MMX technology, SSE, SSE2, SSE3, SSSE3 and SSE4.1.

®* Ensure that the operating system supports MMX technology and SSE (OS support for SSE2, SSE3
and SSSE3 is the same as OS support for SSE).

®* Employ the optimization and scheduling strategies described in this book.
®* Use stack and data alignment techniques to keep data properly aligned for efficient memory use.
® Utilize the cacheability instructions offered by SSE and SSE2, where appropriate.

5.1 CHECKING FOR PROCESSOR SUPPORT OF SIMD TECHNOLOGIES

This section shows how to check whether a processor supports MMX technology, SSE, SSE2, SSE3,
SSSE3, and SSE4.1.

SIMD technology can be included in your application in three ways:

1. Check for the SIMD technology during installation. If the desired SIMD technology is available, the
appropriate DLLs can be installed.

2. Check for the SIMD technology during program execution and install the proper DLLs at runtime. This
is effective for programs that may be executed on different machines.

3. Create a “fat” binary that includes multiple versions of routines; versions that use SIMD technology
and versions that do not. Check for SIMD technology during program execution and run the
appropriate versions of the routines. This is especially effective for programs that may be executed
on different machines.
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5.1.1 Checking for MMX Technology Support

If MMX technology is available, then CPUID.01H:EDX[BIT 23] = 1. Use the code segment in Example 5-1
to test for MMX technology.

Example 5-1. Identification of MMX Technology with CPUID

..identify existence of cpuid instruction

; Identify signature is genuine Intel

’

mov eax, 1 ; Request for feature flags

cpuid ; OFH, 0A2H CPUID instruction

test edx, 00800000h ; Is MMX technology bit (bit 23) in feature flags equal to 1
jnz Found

For more information on CPUID see, Inte/® Processor Identification with CPUID Instruction, order
number 241618.

5.1.2 Checking for Streaming SIMD Extensions Support

Checking for processor support of Streaming SIMD Extensions (SSE) on your processor is similar to
checking for MMX technology. However, operating system (OS) must provide support for SSE states save
and restore on context switches to ensure consistent application behavior when using SSE instructions.

To check whether your system supports SSE, follow these steps:

1. Check that your processor supports the CPUID instruction.

2. Check the feature bits of CPUID for SSE existence.

Example 5-2 shows how to find the SSE feature bit (bit 25) in CPUID feature flags.

Example 5-2. Identification of SSE with CPUID

..Identify existence of cpuid instruction
; Identify signature is genuine intel

mov eax, 1 ; Request for feature flags

cpuid ; OFH, OA2H cpuid instruction
test EDX, 002000000h ; Bit 25 in feature flags equal to 1
jnz Found

5.1.3 Checking for Streaming SIMD Extensions 2 Support

Checking for support of SSE2 is like checking for SSE support. The OS requirements for SSE2 Support are
the same as the OS requirements for SSE.

To check whether your system supports SSE2, follow these steps:
1. Check that your processor has the CPUID instruction.
2. Check the feature bits of CPUID for SSE2 technology existence.
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Example 5-3 shows how to find the SSE2 feature bit (bit 26) in the CPUID feature flags.

Example 5-3. Identification of SSE2 with cpuid

..identify existence of cpuid instruction
; Identify signature is genuine intel

mov eax, 1 ; Request for feature flags

cpuid ; OFH, 0A2H CPUID instruction
test EDX, 004000000h ; Bit 26 in feature flags equal to 1
jnz Found

514 Checking for Streaming SIMD Extensions 3 Support

SSE3 includes 13 instructions, 11 of those are suited for SIMD or x87 style programming. Checking for
support of SSE3 instructions is similar to checking for SSE support. The OS requirements for SSE3
Support are the same as the requirements for SSE.

To check whether your system supports the x87 and SIMD instructions of SSE3, follow these steps:
1. Check that your processor has the CPUID instruction.

2. Check the ECX feature bit 0 of CPUID for SSE3 technology existence.

Example 5-4 shows how to find the SSE3 feature bit (bit 0 of ECX) in the CPUID feature flags.

Example 5-4. Identification of SSE3 with CPUID

..identify existence of cpuid instruction
; Identify signature is genuine intel

mov eax, 1 ; Request for feature flags
cpuid ; OFH, 0A2H CPUID instruction
test ECX, 000000001h  ;Bit O in feature flags equal to 1
jnz Found

Software must check for support of MONITOR and MWAIT before attempting to use MONITOR and
MWAIT.Detecting the availability of MONITOR and MWAIT can be done using a code sequence similar to
Example 5-4. The availability of MONITOR and MWAIT is indicated by bit 3 of the returned value in ECX.

5.1.5 Checking for Supplemental Streaming SIMD Extensions 3 Support

Checking for support of SSSE3 is similar to checking for SSE support. The OS requirements for SSSE3
support are the same as the requirements for SSE.

To check whether your system supports SSSE3, follow these steps:

1. Check that your processor has the CPUID instruction.

2. Check the feature bits of CPUID for SSSE3 technology existence.

Example 5-5 shows how to find the SSSE3 feature bit in the CPUID feature flags.

Example 5-5. Identification of SSSE3 with cpuid

..Identify existence of CPUID instruction
; Identify signature is genuine intel

mov eax, 1 ; Request for feature flags
cpuid ; OFH, OA2H CPUID instruction
test ECX, 000000200h  ; ECX bit9

jnz Found
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5.1.6 Checking for SSE4.1 Support

Checking for support of SSE4.1 is similar to checking for SSE support. The OS requirements for SSE4.1
support are the same as the requirements for SSE.

To check whether your system supports SSE4.1, follow these steps:

1. Check that your processor has the CPUID instruction.

2. Check the feature bit of CPUID for SSE4.1.

Example 5-6 shows how to find the SSE4.1 feature bit in the CPUID feature flags.

Example 5-6. Identification of SSE4.1 with cpuid

..Identify existence of CPUID instruction
; Identify signature is genuine intel

mov eax, 1 ; Request for feature flags
cpuid ; OFH, 0A2H CPUID instruction
test ECX, 000080000h  ; ECX bit 19

jnz Found

5.1.7 Checking for SSE4.2 Support

Checking for support of SSE4.2 is similar to checking for SSE support. The OS requirements for SSE4.2
support are the same as the requirements for SSE.

To check whether your system supports SSE4.2, follow these steps:

1. Check that your processor has the CPUID instruction.

2. Check the feature bit of CPUID for SSE4.2.

Example 5-7 shows how to find the SSE4.2 feature bit in the CPUID feature flags.

Example 5-7. Identification of SSE4.2 with cpuid

..Identify existence of CPUID instruction
; Identify signature is genuine intel

mov eax, 1 ; Request for feature flags
cpuid ; OFH, OA2H CPUID instruction
test ECX, 000100000h  ; ECX bit 20

jnz Found

5.1.8 DetectiON of PCLMULQDQ and AESNI Instructions

Before an application attempts to use the following AESNI instructions: AESDEC/AESDE-
CLAST/AESENC/AESENCLAST/AESIMC/AESKEYGENASSIST, it must check that the processor supports
the AESNI extensions. AESNI extensions is supported if CPUID.01H:ECX.AESNI[bit 25] = 1.

Prior to using PCLMULQDQ instruction, application must check if CPUID.01H:ECX.PCLMULQDQ[bit 1] = 1.
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Operating systems that support handling SSE state will also support applications that use AESNI exten-
sions and PCLMULQDQ instruction. This is the same requirement for SSE2, SSE3, SSSE3, and SSE4.

Example 5-8. Detection of AESNI Instructions

..Identify existence of CPUID instruction
; Identify signature is genuine intel

mov eax, 1 ; Request for feature flags
cpuid ; OFH, OA2H CPUID instruction
test ECX, 002000000h ; ECX bit 25

jnz Found

Example 5-9. Detection of PCLMULQDQ Instruction

..Identify existence of CPUID instruction
; Identify signature is genuine intel

mov eax, 1 ; Request for feature flags
cpuid ; OFH, 0A2H CPUID instruction
test ECX, 000000002h  ; ECX bit 1

jnz Found

5.1.9 Detection of AVX Instructions

Intel AVX operates on the 256-bit YMM register state. Application detection of new instruction extensions
operating on the YMM state follows the general procedural flow in Figure 5-1.

Prior to using AVX, the application must identify that the operating system supports the XGETBV instruc-
tion, the YMM register state, in addition to processor’s support for YMM state management using
XSAVE/XRSTOR and AVX instructions. The following simplified sequence accomplishes both and is
strongly recommended.

1) Detect CPUID.1:ECX.OSXSAVE[bit 27] = 1 (XGETBV enabled for application usel)

2) Issue XGETBV and verify that XFEATURE_ENABLED_MASK[2:1] ='11b’ (XMM state and YMM state are
enabled by 0OS).

3) Detect CPUID.1:ECX.AVX[bit 28] = 1 (AVX instructions supported).

Note: Step 3 can be done in any order relative to 1 and 2.

1. If CPUID.01H:ECX.OSXSAVE reports 1, it also indirectly implies the processor supports XSAVE, XRSTOR, XGETBY, pro-
cessor extended state bit vector XFEATURE ENALBED MASK register. Thus an application may streamline the checking
of CPUID feature flags for XSAVE and OSXSAVE. XSETBYV is a privileged instruction.
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Check feature flag
CPUID.1H:ECX.OXSAVE = 1?

OS provides processor

Yes
extended state management
Implied HW support for
XSAVE, XRSTOR, XGETBV, XFEATURE_ENABLED_MASK
Check enabled state in »| Check feature flag
XCRO via XGETBV State for Instruction set ok to use
enabled Instructions

Figure 5-1. General Procedural Flow of Application Detection of AVX

The following pseudocode illustrates this recommended application AVX detection process:

Example 5-10. Detection of AVX Instruction

INT supports_AVX()
{ mov eax, 1
cpuid
and ecx, 018000000H
cmp ecx, 018000000H; check both OSXSAVE and AVX feature flags
jne not_supported
; processor supports AVX instructions and XGETBV is enabled by 0S
mov ecx, O; specify O for XFEATURE_ENABLED_MASK register

XGETBV ; result in EDX:EAX

and eax, 06H

cmp eax, 06H; check OS has enabled both XMM and YMM state support
jne not_supported

mov eax, 1

jmp done

NOT_SUPPORTED:
mov eax, 0
done:

Note: It is unwise for an application to rely exclusively on CPUID.1:ECX.AVX[bit 28] or at all on
CPUID.1:ECX.XSAVE[bit 26]: These indicate hardware support but not operating system support. If YMM
state management is not enabled by an operating systems, AVX instructions will #UD regardless of
CPUID.1:ECX.AVX[bit 28]. "CPUID.1:ECX.XSAVE[bit 26] = 1” does not guarantee the OS actually uses
the XSAVE process for state management.
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5.1.10 Detection of VEX-Encoded AES and VPCLMULQDQ

VAESDEC/VAESDECLAST/VAESENC/VAESENCLAST/VAESIMC/VAESKEYGENASSIST instructions operate
on YMM states. The detection sequence must combine checking for CPUID.1:ECX.AES[bit 25] = 1 and

the sequence for detection application support for AVX.

Example 5-11. Detection of VEX-Encoded AESNI Instructions

INT supports_VAESNI()

{ mov eax, 1
cpuid
and ecx, 01A00000CH
cmp ecx, 01A000000H; check OSXSAVE AVX and AESNI feature flags
jne not_supported
; processor supports AVX and VEX-encoded AESNI and XGETBV is enabled by OS
mov ecx, 0; specify O for XFEATURE_ENABLED_MASK register
XGETBV ; result in EDX:EAX
and eax, 06H
cmp eax, 06H; check OS has enabled both XMM and YMM state support

jne not_supported
mov eax, 1
jmp done

NOT_SUPPORTED:
mov eax, 0
done:

Similarly, the detection sequence for VPCLMULQDQ must combine checking for
CPUID.1:ECX.PCLMULQDQ[bit 1] = 1 and the sequence for detection application support for AVX.

This is shown in the pseudocode:

Example 5-12. Detection of VEX-Encoded AESNI Instructions

INT supports_VPCLMULQDQ)
{ mov eax, 1
cpuid

and ecx, 018000002H

cmp ecx, 018000002H; check OSXSAVE AVX and PCLMULQDQ feature flags

jne not_supported

; processor supports AVX and VEX-encoded PCLMULQDQ and XGETBV is enabled by 0S
mov ecx, 0; specify O for XFEATURE_ENABLED_MASK register

XGETBV ; result in EDX:EAX

and eax, 06H

cmp eax, 06H; check OS has enabled both XMM and YMM state support

jne not_supported
mov eax, 1
jmp done

NOT_SUPPORTED:
mov eax, 0
done:

5.1.11 Detection of F16C Instructions
Application using float 16 instruction must follow a detection sequence similar to AVX to ensure:
® The OS has enabled YMM state management support.
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® The processor support AVX as indicated by the CPUID feature flag, i.e. CPUID.01H:ECX.AVX[bit 28]
=1.

®* The processor support 16-bit floating-point conversion instructions via a CPUID feature flag
(CPUID.01H:ECX.F16C[bit 29] = 1).

Application detection of Float-16 conversion instructions follow the general procedural flow in Figure 5-2.

Check feature flag
CPUID.1H:ECX.OXSAVE = 1?

Yes OS provides processor
extended state management
Implied HW support for
XSAVE, XRSTOR, XGETBV, XFEATURE_ENABLED_MASK

Check enabled YMM state in |y, | Check feature flags

—_—
XCRO via XGETBV State for AVX and F16C ok to use
enabled Instructions

Figure 5-2. General Procedural Flow of Application Detection of Float-16

INT supports_f16c()
{ ; result in eax
mov eax, 1
cpuid
and ecx, 038000000H
cmp ecx, 038000000H; check OSXSAVE, AVX, F16C feature flags
jne not_supported
; processor supports AVX,F16C instructions and XGETBV is enabled by OS
mov ecx, 0; specify 0 for XFEATURE_ENABLED_MASK register
XGETBV; result in EDX:EAX
and eax, 06H
cmp eax, 06H; check OS has enabled both XMM and YMM state support
jne not_supported
mov eax, 1
jmp done
NOT_SUPPORTED:
mov eax, 0
done:

5.1.12 Detection of FMA
Hardware support for FMA is indicated by CPUID.1:ECX.FMA[bit 12]=1.
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Application Software must identify that hardware supports AVX, after that it must also detect support for
FMA by CPUID.1:ECX.FMA[bit 12]. The recommended pseudocode sequence for detection of FMA is:

INT supports_fma()

{ ; result in eax
mov eax, 1
cpuid

and ecx, 018001000H

cmp ecx, 018001000H; check OSXSAVE, AVX, FMA feature flags

jne not_supported

; processor supports AVX,FMA instructions and XGETBYV is enabled by OS
mov ecx, 0; specify 0 for XFEATURE_ENABLED_MASK register
XGETBV; result in EDX:EAX

and eax, 06H

cmp eax, 06H; check OS has enabled both XMM and YMM state support
jne not_supported

mov eax, 1

jmp done

NOT_SUPPORTED:

mov eax, 0

done:

5.1.13 Detection of AVX2
Hardware support for AVX2 is indicated by CPUID.(EAX=07H, ECX=0H):EBX.AVX2[bit 5]=1.

Application Software must identify that hardware supports AVX, after that it must also detect support for
AVX2 by checking CPUID.(EAX=07H, ECX=0H):EBX.AVX2[bit 5]. The recommended pseudocode
sequence for detection of AVX2 is:

INT supports_avx2()
{ ; result in eax
mov eax, 1
cpuid
and ecx, 018000000H
cmp ecx, 018000000H; check both OSXSAVE and AVX feature flags
jne not_supported
; processor supports AVX instructions and XGETBV is enabled by OS
mov eax, 7
mov ecx, 0
cpuid
and ebx, 20H
cmp ebx, 20H; check AVX2 feature flags
jne not_supported
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mov ecx, 0; specify 0 for XFEATURE_ENABLED_MASK register
XGETBV; result in EDX:EAX

and eax, 06H

cmp eax, 06H; check OS has enabled both XMM and YMM state support
jne not_supported

mov eax, 1

jmp done

NOT_SUPPORTED:

mov eax, 0

done:

5.2 CONSIDERATIONS FOR CODE CONVERSION TO SIMD

PROGRAMMING

The VTune Performance Enhancement Environment CD provides tools to aid in the evaluation and tuning.
Before implementing them, you need answers to the following questions:

1.

o U s~ wN

Will the current code benefit by using MMX technology, Streaming SIMD Extensions, Streaming
SIMD Extensions 2, Streaming SIMD Extensions 3, or Supplemental Streaming SIMD Extensions 3?

Is this code integer or floating-point?

What integer word size or floating-point precision is needed?
What coding techniques should I use?

What guidelines do I need to follow?

How should I arrange and align the datatypes?

Figure 5-3 provides a flowchart for the process of converting code to MMX technology, SSE, SSE2, SSE3,
or SSSE3.
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Identify Hot Spots in Code

Code benefits
from SIMD

Integer or
floating-point?

Floating Point Integer

Performance >
If possible, re-arrange data

for SIMD efficiency
Range or ¢
Precision Align data structures
Convert to code to use
Can convert ves | Change touse | | SIMD Technologies
to Integer? SIMD Integer ¢

Follow general coding
guidelines and SIMD

No coding guidelines
Can convert to Yes — Change to use Usz me;n:)rr}]/ $pt|m|zat|9rt15
Single-precision?, Single Precision and pretete i appropriate
Schedule instructions to
No optimize performance

Figure 5-3. Converting to Streaming SIMD Extensions Chart

OM15156

To use any of the SIMD technologies optimally, you must evaluate the following situations in your code:
®* Fragments that are computationally intensive.

®* Fragments that are executed often enough to have an impact on performance.

®* Fragments that with little data-dependent control flow.

®* Fragments that require floating-point computations.

®* Fragments that can benefit from moving data 16 bytes at a time.

®* Fragments of computation that can coded using fewer instructions.

®* Fragments that require help in using the cache hierarchy efficiently.
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5.2.1 Identifying Hot Spots

To optimize performance, use the VTune Performance Analyzer to find sections of code that occupy most
of the computation time. Such sections are called the hotspots. See Appendix A, “Application Perfor-
mance Tools.”

The VTune analyzer provides a hotspots view of a specific module to help you identify sections in your
code that take the most CPU time and that have potential performance problems. The hotspots view
helps you identify sections in your code that take the most CPU time and that have potential performance
problems.

The VTune analyzer enables you to change the view to show hotspots by memory location, functions,
classes, or source files. You can double-click on a hotspot and open the source or assembly view for the
hotspot and see more detailed information about the performance of each instruction in the hotspot.

The VTune analyzer offers focused analysis and performance data at all levels of your source code and
can also provide advice at the assembly language level. The code coach analyzes and identifies opportu-
nities for better performance of C/C++, Fortran and Java* programs, and suggests specific optimiza-
tions. Where appropriate, the coach displays pseudo-code to suggest the use of highly optimized
intrinsics and functions in the Intel® Performance Library Suite. Because VTune analyzer is designed
specifically for Intel architecture (IA)-based processors, including the Pentium 4 processor, it can offer
detailed approaches to working with IA. See Appendix A.1.1, "Recommended Optimization Settings for
Intel® 64 and IA-32 Processors,” for details.

5.2.2 Determine If Code Benefits by Conversion to SIMD Execution

Identifying code that benefits by using SIMD technologies can be time-consuming and difficult. Likely
candidates for conversion are applications that are highly computation intensive, such as the following:

® Speech compression algorithms and filters.
® Speech recognition algorithms.

®* Video display and capture routines.

® Rendering routines.

®* 3D graphics (geometry).

®* Image and video processing algorithms.
® Spatial (3D) audio.

®* Physical modeling (graphics, CAD).

®* Workstation applications.

® Encryption algorithms.

® Complex arithmetics.

Generally, good candidate code is code that contains small-sized repetitive loops that operate on sequen-
tial arrays of integers of 8, 16 or 32 bits, single-precision 32-bit floating-point data, double precision 64-
bit floating-point data (integer and floating-point data items should be sequential in memory). The repet-
itiveness of these loops incurs costly application processing time. However, these routines have potential
for increased performance when you convert them to use one of the SIMD technologies.

Once you identify your opportunities for using a SIMD technology, you must evaluate what should be
done to determine whether the current algorithm or a modified one will ensure the best performance.

5.3 CODING TECHNIQUES

The SIMD features of SSE3, SSE2, SSE, and MMX technology require new methods of coding algorithms.
One of them is vectorization. Vectorization is the process of transforming sequentially-executing, or
scalar, code into code that can execute in parallel, taking advantage of the SIMD architecture parallelism.

5-12



CODING FOR SIMD ARCHITECTURES

This section discusses the coding techniques available for an application to make use of the SIMD archi-
tecture.

To vectorize your code and thus take advantage of the SIMD architecture, do the following:
®* Determine if the memory accesses have dependencies that would prevent parallel execution.

® “Strip-mine” the inner loop to reduce the iteration count by the length of the SIMD operations (for
example, four for single-precision floating-point SIMD, eight for 16-bit integer SIMD on the XMM
registers).

® Re-code the loop with the SIMD instructions.

Each of these actions is discussed in detail in the subsequent sections of this chapter. These sections also
discuss enabling automatic vectorization using the Intel C++ Compiler.

5.3.1 Coding Methodologies

Software developers need to compare the performance improvement that can be obtained from
assembly code versus the cost of those improvements. Programming directly in assembly language for a
target platform may produce the required performance gain, however, assembly code is not portable
between processor architectures and is expensive to write and maintain.

Performance objectives can be met by taking advantage of the different SIMD technologies using high-
level languages as well as assembly. The new C/C++ language extensions designed specifically for
SSSE3, SSE3, SSE2, SSE, and MMX technology help make this possible.

Figure 5-4 illustrates the trade-offs involved in the performance of hand-coded assembly versus the ease
of programming and portability.

R
Assembly Instrinsics
g - J Automatic
5 Y Vectorization
b=
[
o C/C++/Fortran
—
~—
Ease of Programming/Portability >

Figure 5-4. Hand-Coded Assembly and High-Level Compiler Performance Trade-offs

The examples that follow illustrate the use of coding adjustments to enable the algorithm to benefit from
the SSE. The same techniques may be used for single-precision floating-point, double-precision floating-
point, and integer data under SSSE3, SSE3, SSE2, SSE, and MMX technology.
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As a basis for the usage model discussed in this section, consider a simple loop shown in Example 5-13.

Example 5-13. Simple Four-lteration Loop

void add(float *a, float *b, float *c)
{
inti;
for(i=0;i<4;i++){
c[i] = a[i] + bl[i];
}
}

Note that the loop runs for only four iterations. This allows a simple replacement of the code with
Streaming SIMD Extensions.

For the optimal use of the Streaming SIMD Extensions that need data alignment on the 16-byte
boundary, all examples in this chapter assume that the arrays passed to the routine, A, B, C, are aligned
to 16-byte boundaries by a calling routine. For the methods to ensure this alignment, please refer to the
application notes for the Pentium 4 processor.

The sections that follow provide details on the coding methodologies: inlined assembly, intrinsics, C++
vector classes, and automatic vectorization.

5.3.1.1 Assembly

Key loops can be coded directly in assembly language using an assembler or by using inlined assembly
(C-asm) in C/C++ code. The Intel compiler or assembler recognize the new instructions and registers,
then directly generate the corresponding code. This model offers the opportunity for attaining greatest
performance, but this performance is not portable across the different processor architectures.

Example 5-14 shows the Streaming SIMD Extensions inlined assembly encoding.

Example 5-14. Streaming SIMD Extensions Using Inlined Assembly Encoding

void add(float *a, float *b, float *c)

{
_asm{
mov eax, a
mov edx, b
mov  ecx,C

movaps xmmO0, XMMWORD PTR [eax]
addps xmmO, XMMWORD PTR [edx]
movaps XMMWORD PTR [ecx], xmmO

5.3.1.2 Intrinsics

Intrinsics provide the access to the ISA functionality using C/C++ style coding instead of assembly
language. Intel has defined three sets of intrinsic functions that are implemented in the Intel C++
Compiler to support the MMX technology, Streaming SIMD Extensions and Streaming SIMD Extensions 2.
Four new C data types, representing 64-bit and 128-bit objects are used as the operands of these
intrinsic functions. ___M64 is used for MMX integer SIMD, _ M128 is used for single-precision floating-
point SIMD, __M128I is used for Streaming SIMD Extensions 2 integer SIMD, and __M128D is used for
double precision floating-point SIMD. These types enable the programmer to choose the implementation
of an algorithm directly, while allowing the compiler to perform register allocation and instruction sched-
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uling where possible. The intrinsics are portable among all Intel architecture-based processors supported
by a compiler.

The use of intrinsics allows you to obtain performance close to the levels achievable with assembly. The
cost of writing and maintaining programs with intrinsics is considerably less. For a detailed description of
the intrinsics and their use, refer to the Intel C++ Compiler documentation.

Example 5-15 shows the loop from Example 5-13 using intrinsics.

Example 5-15. Simple Four-lteration Loop Coded with Intrinsics

#include <xmmintrin.h>
void add(float *a, float *b, float *c)
{
__m12810, t1;
t0 = _mm_load_ps(a);
t1 = _mm_load_ps(b);
t0 = _mm_add_ps(t0, t1);
_mm_store_ps(c, t0);
}

The intrinsics map one-to-one with actual Streaming SIMD Extensions assembly code. The
XMMINTRIN.H header file in which the prototypes for the intrinsics are defined is part of the Intel C++
Compiler included with the VTune Performance Enhancement Environment CD.

Intrinsics are also defined for the MMX technology ISA. These are based on the __m64 data type to
represent the contents of an mm register. You can specify values in bytes, short integers, 32-bit values,
or as a 64-bit object.

The intrinsic data types, however, are not a basic ANSI C data type, and therefore you must observe the
following usage restrictions:

® Use intrinsic data types only on the left-hand side of an assignment as a return value or as a
parameter. You cannot use it with other arithmetic expressions (for example, “+”, “>>").

®* Use intrinsic data type objects in aggregates, such as unions to access the byte elements and
structures; the address of an __M64 object may be also used.

® Use intrinsic data type data only with the MMX technology intrinsics described in this guide.

For complete details of the hardware instructions, see the Intel Architecture MMX Technology
Programmer’s Reference Manual. For a description of data types, see the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual.

5.3.1.3 Classes

A set of C++ classes has been defined and available in Intel C++ Compiler to provide both a higher-level
abstraction and more flexibility for programming with MMX technology, Streaming SIMD Extensions and
Streaming SIMD Extensions 2. These classes provide an easy-to-use and flexible interface to the intrinsic
functions, allowing developers to write more natural C++ code without worrying about which intrinsic or
assembly language instruction to use for a given operation. Since the intrinsic functions underlie the
implementation of these C++ classes, the performance of applications using this methodology can
approach that of one using the intrinsics. Further details on the use of these classes can be found in the
Intel C++ Class Libraries for SIMD Operations User’s Guide, order number 693500.
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Example 5-16 shows the C++ code using a vector class library. The example assumes the arrays passed
to the routine are already aligned to 16-byte boundaries.

Example 5-16. C++ Code Using the Vector Classes

#include <fvech>
void add(float *3, float *b, float *c)

F32vec4 *av=(F32vec4 *) a;

F32vec4 *bv=(F32vec4 *) b;

F32vec4 *cv=(F32vec4d *) c;
*cv=*av + *by;

Here, fvec.h is the class definition file and F32vec4 is the class representing an array of four floats. The
“+"” and “=" operators are overloaded so that the actual Streaming SIMD Extensions implementation in
the previous example is abstracted out, or hidden, from the developer. Note how much more this resem-
bles the original code, allowing for simpler and faster programming.

Again, the example is assuming the arrays, passed to the routine, are already aligned to 16-byte
boundary.

5.3.14 Automatic Vectorization

The Intel C++ Compiler provides an optimization mechanism by which loops, such as in Example 5-13
can be automatically vectorized, or converted into Streaming SIMD Extensions code. The compiler uses
similar techniques to those used by a programmer to identify whether a loop is suitable for conversion to
SIMD. This involves determining whether the following might prevent vectorization:

®* The layout of the loop and the data structures used.
* Dependencies amongst the data accesses in each iteration and across iterations.

Once the compiler has made such a determination, it can generate vectorized code for the loop, allowing
the application to use the SIMD instructions.

The caveat to this is that only certain types of loops can be automatically vectorized, and in most cases
user interaction with the compiler is needed to fully enable this.

Example 5-17 shows the code for automatic vectorization for the simple four-iteration loop (from
Example 5-13).

Example 5-17. Automatic Vectorization for a Simple Loop

void add (float *restrict a,
float *restrict b,
float *restrict c)
{
inti;
for(i=0;i<4;i++){
c[i] = a[i] + b[il;
}
}

Compile this code using the -QAX and -QRESTRICT switches of the Intel C++ Compiler, version 4.0 or
later.

The RESTRICT qualifier in the argument list is necessary to let the compiler know that there are no other
aliases to the memory to which the pointers point. In other words, the pointer for which it is used,
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provides the only means of accessing the memory in question in the scope in which the pointers live.
Without the restrict qualifier, the compiler will still vectorize this loop using runtime data dependence
testing, where the generated code dynamically selects between sequential or vector execution of the
loop, based on overlap of the parameters (See documentation for the Intel C++ Compiler). The restrict
keyword avoids the associated overhead altogether.

See Intel C++ Compiler documentation for details.

54 STACK AND DATA ALIGNMENT

To get the most performance out of code written for SIMD technologies data should be formatted in
memory according to the guidelines described in this section. Assembly code with an unaligned accesses
is a lot slower than an aligned access.

54.1 Alignment and Contiguity of Data Access Patterns

The 64-bit packed data types defined by MMX technology, and the 128-bit packed data types for
Streaming SIMD Extensions and Streaming SIMD Extensions 2 create more potential for misaligned data
accesses. The data access patterns of many algorithms are inherently misaligned when using MMX tech-
nology and Streaming SIMD Extensions. Several techniques for improving data access, such as padding,
organizing data elements into arrays, etc. are described below. SSE3 provides a special-purpose instruc-
tion LDDQU that can avoid cache line splits is discussed in Section 6.7.2, “Increasing Bandwidth of
Memory Fills and Video Fills.”

5.4.1.1 Using Padding to Align Data

However, when accessing SIMD data using SIMD operations, access to data can be improved simply by a
change in the declaration. For example, consider a declaration of a structure, which represents a pointin
space plus an attribute.

typedef struct {short x,y,z; char a} Point;

Point pt[N];
Assume we will be performing a number of computations on X, Y, Z in three of the four elements of a
SIMD word; see Section 5.5.1, “"Data Structure Layout,” for an example. Even if the first element in array
PT is aligned, the second element will start 7 bytes later and not be aligned (3 shorts at two bytes each
plus a single byte = 7 bytes).
By adding the padding variable PAD, the structure is now 8 bytes, and if the first element is aligned to 8
bytes (64 bits), all following elements will also be aligned. The sample declaration follows:

typedef struct {short x,y,z; char a; char pad;} Point;

Point pt[N];

5.4.1.2 Using Arrays to Make Data Contiguous

In the following code,

for (i=0; i<N; i++) pt[ily *= scale;
the second dimension Y needs to be multiplied by a scaling value. Here, the FOR loop accesses each Y
dimension in the array PT thus disallowing the access to contiguous data. This can degrade the perfor-

mance of the application by increasing cache misses, by poor utilization of each cache line that is fetched,
and by increasing the chance for accesses which span multiple cache lines.

The following declaration allows you to vectorize the scaling operation and further improve the alignment
of the data access patterns:

short ptx[N], pty[N], ptz[N];

for (i=0; i<N; i++) pty[i] *= scale;
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With the SIMD technology, choice of data organization becomes more important and should be made
carefully based on the operations that will be performed on the data. In some applications, traditional
data arrangements may not lead to the maximum performance.

A simple example of this is an FIR filter. An FIR filter is effectively a vector dot product in the length of the
number of coefficient taps.

Consider the following code:
(data [ ] *coeff [0] + data [j+1]*coeff [1]+..+data [j+num of taps-1]*coeff [num of taps-1]),

If in the code above the filter operation of data element I is the vector dot product that begins at data
element J, then the filter operation of data element I+1 begins at data element J+1.

Assuming you have a 64-bit aligned data vector and a 64-bit aligned coefficients vector, the filter opera-
tion on the first data element will be fully aligned. For the second data element, however, access to the
data vector will be misaligned. For an example of how to avoid the misalignment problem in the FIR filter,
refer to Intel application notes on Streaming SIMD Extensions and filters.

Duplication and padding of data structures can be used to avoid the problem of data accesses in algo-
rithms which are inherently misaligned. Section 5.5.1, “Data Structure Layout,” discusses trade-offs for
organizing data structures.

NOTE

The duplication and padding technique overcomes the misalignment problem, thus
avoiding the expensive penalty for misaligned data access, at the cost of increasing the
data size. When developing your code, you should consider this tradeoff and use the
option which gives the best performance.

542 Stack Alignment For 128-bit SIMD Technologies

For best performance, the Streaming SIMD Extensions and Streaming SIMD Extensions 2 require their
memory operands to be aligned to 16-byte boundaries. Unaligned data can cause significant perfor-
mance penalties compared to aligned data. However, the existing software conventions for IA-32
(STDCALL, CDECL, FASTCALL) as implemented in most compilers, do not provide any mechanism for
ensuring that certain local data and certain parameters are 16-byte aligned. Therefore, Intel has defined
a new set of IA-32 software conventions for alignment to support the new ___M128* datatypes (__M128,
_ M128D, and __M218I). These meet the following conditions:

® Functions that use Streaming SIMD Extensions or Streaming SIMD Extensions 2 data need to provide
a 16-byte aligned stack frame.

® _ M128* parameters need to be aligned to 16-byte boundaries, possibly creating “holes” (due to
padding) in the argument block.

The new conventions presented in this section as implemented by the Intel C++ Compiler can be used as
a guideline for an assembly language code as well. In many cases, this section assumes the use of the
__M128* data types, as defined by the Intel C++ Compiler, which represents an array of four 32-bit floats.

543 Data Alignment for MMX Technology

Many compilers enable alignment of variables using controls. This aligns variable bit lengths to the
appropriate boundaries. If some of the variables are not appropriately aligned as specified, you can align
them using the C algorithm in Example 5-18.

Example 5-18. C Algorithm for 64-bit Data Alignment

/* Make newp a pointer to a 64-bit aligned array of NUM_ELEMENTS 64-bit elements. */
double *p, *newp;

p = (double*)malloc (sizeof(double)*(NUM_ELEMENTS+1));

newp = (p+7) & (~0x7);
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The algorithm in Example 5-18 aligns an array of 64-bit elements on a 64-bit boundary. The constant of
7 is derived from one less than the number of bytes in a 64-bit element, or 8-1. Aligning data in this
manner avoids the significant performance penalties that can occur when an access crosses a cache line
boundary.

Another way to improve data alignment is to copy the data into locations that are aligned on 64-bit
boundaries. When the data is accessed frequently, this can provide a significant performance improve-
ment.

5.4.4 Data Alignment for 128-bit data

Data must be 16-byte aligned when loading to and storing from the 128-bit XMM registers used by
SSE/SSE2/SSE3/SSSE3. This must be done to avoid severe performance penalties and, at worst, execu-
tion faults.

There are MOVE instructions (and intrinsics) that allow unaligned data to be copied to and out of XMM
registers when not using aligned data, but such operations are much slower than aligned accesses. If
data is not 16-byte-aligned and the programmer or the compiler does not detect this and uses the
aligned instructions, a fault occurs. So keep data 16-byte-aligned. Such alignment also works for MMX
technology code, even though MMX technology only requires 8-byte alignment.

The following describes alignment techniques for Pentium 4 processor as implemented with the Intel
C++ Compiler.

5.4.4.1 Compiler-Supported Alignment

The Intel C++ Compiler provides the following methods to ensure that the data is aligned.

Alignment by F32vec4 or __m128 Data Types

When the compiler detects F32VEC4 or _M128 data declarations or parameters, it forces alignment of
the object to a 16-byte boundary for both global and local data, as well as parameters. If the declaration
is within a function, the compiler also aligns the function's stack frame to ensure that local data and
parameters are 16-byte-aligned. For details on the stack frame layout that the compiler generates for
both debug and optimized (“release”-mode) compilations, refer to Intel’s compiler documentation.

__declspec(align(16)) specifications

These can be placed before data declarations to force 16-byte alignment. This is useful for local or global
data declarations that are assigned to 128-bit data types. The syntax for it is

__declspec(align(integer-constant))

where the INTEGER-CONSTANT is an integral power of two but no greater than 32. For example, the
following increases the alignment to 16-bytes:

__declspec(align(16)) float buffer[400];

The variable BUFFER could then be used as if it contained 100 objects of type ___M128 or F32VEC4. In the
code below, the construction of the F32VEC4 object, X, will occur with aligned data.

void foo() {
F32vecd x = *(__m128 *) buffer;

}
Without the declaration of __ DECLSPEC(ALIGN(16)), a fault may occur.

Alignment by Using a UNION Structure

When feasible, a UNION can be used with 128-bit data types to allow the compiler to align the data struc-
ture by default. This is preferred to forcing alignment with __DECLSPEC(ALIGN(16)) because it exposes
the true program intent to the compiler in that __M128 data is being used. For example:
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union {
float f[400];
__m128 m[100];
} buffer;

Now, 16-byte alignment is used by default due to the __M128 type in the UNION; it is not necessary to
use _ DECLSPEC(ALIGN(16)) to force the result.

In C++ (but notin C) it is also possible to force the alignment of a CLASS/STRUCT/UNION type, as in the
code that follows:

struct __declspec(align(16)) my_m128
{

¥

float f[4];

If the data in such a CLASS is going to be used with the Streaming SIMD Extensions or Streaming SIMD
Extensions 2, it is preferable to use a UNION to make this explicit. In C++, an anonymous UNION can be
used to make this more convenient:

class my_m128{
union {
_m128m;
float f[4];

¥

Because the UNION is anonymous, the names, M and F, can be used as immediate member names of
MY__M128. Note that _ DECLSPEC(ALIGN) has no effect when applied to a CLASS, STRUCT, or UNION
member in either C or C++.

Alignment by Using __m64 or DOUBLE Data

In some cases, the compiler aligns routines with __M64 or DOUBLE data to 16-bytes by default. The
command-line switch, -QSFALIGN16, limits the compiler so that it only performs this alignment on
routines that contain 128-bit data. The default behavior is to use -QSFALIGNS8. This switch instructs the
complier to align routines with 8- or 16-byte data types to 16 bytes.

For more, see the Intel C++ Compiler documentation.

5.5 IMPROVING MEMORY UTILIZATION

Memory performance can be improved by rearranging data and algorithms for SSE, SSE2, and MMX tech-
nology intrinsics. Methods for improving memory performance involve working with the following:

®* Data structure layout.

® Strip-mining for vectorization and memory utilization.

® Loop-blocking.

Using the cacheability instructions, prefetch and streaming store, also greatly enhance memory utiliza-
tion. See also: Chapter 9, "Optimizing Cache Usage.”

5.5.1 Data Structure Layout

For certain algorithms, like 3D transformations and lighting, there are two basic ways to arrange vertex
data. The traditional method is the array of structures (AoS) arrangement, with a structure for each
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vertex (Example 5-19). However this method does not take full advantage of SIMD technology capabili-
ties.

Example 5-19. AoS Data Structure

typedef struct{
float x,v,z;
intab,c;
} Vertex;
Vertex Vertices[NumOfVertices];

The best processing method for code using SIMD technology is to arrange the data in an array for each
coordinate (Example 5-20). This data arrangement is called structure of arrays (SoA).

Example 5-20. SoA Data Structure

typedef struct{
float x[NumOfVertices];
float y[NumOfVertices];
float zZ[NumOfVertices];
int a[lNumOfVertices];
int b[NumOfVertices];
int c[NumOfVertices];

} VerticesList;
VerticesList Vertices;

There are two options for computing data in AoS format: perform operation on the data as it stands in
AoS format, or re-arrange it (swizzle it) into SoA format dynamically. See Example 5-21 for code samples
of each option based on a dot-product computation.

Example 5-21. AoS and SoA Code Samples

; The dot product of an array of vectors (Array) and a fixed vector (Fixed) is a

; common operation in 3D lighting operations, where Array = (x0,y0,20),(x1,y1,21)....
; and Fixed = (xF,yF,zF)

; A dot product is defined as the scalar quantity dO = x0*xF + yO*yF + z0*zF.

; A0S code
; All values marked DC are “don't-care.”

; In the AOS model, the vertices are stored in the xyz format

movaps xmmO, Array ; xmmO = DC, x0, y0, z0

movaps xmm1, Fixed ;xmm1 = DC, xF, yF, zF

mulps xmmO, xmm1 ; xmmO = DC, xO*xF, yO*yF, z0*zF
movhlps xmm, xmmO ; xmm = DC, DC, DC, xO*xF

addps xmm1, xmmO ; xmmO = DC, DC, DC,

; XO*xF+20*zFmovaps xmmZ2, xmm1
shufps xmme2, xmm2,55h ; xmm2 =DC, DC, DC, yO*yF
addps xmm2, xmm1 ;xmm1 =DC,DC, DC,
X0*xF+y0*yF+z0*zF
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Example 5-21. AoS and SoA Code Samples (Contd.)

; SOA code

; X =x0,x1,x2,x3

;Y=y0yly2y3

;2=2021,22,23

; A = XF,xF,xF,xF

; B = yFyFyFyF

; C = zF,zF zF,zF

movaps xmm0, X ; xmmO = x0,x1,x2,x3

movaps xmm1, Y ;xmmO0 =y0,y1,y2,y3

movaps xmmz2, Z ; xmmO = z20,21,z2,23

mulps xmmo0, A ; xmmO = xO*xF, x1*xF, x2*xF, x3*xF
mulps xmm1, B ;xmm1 = yO*yF, y1*yF, y2*yF, y3*xF
mulps xmmz2, C ; xmm2 = z0*zF, z1*zF, z2*zF, z3*zF
addps xmmO, xmm1

addps xmmO, xmmZ2 ; xmmO = (xO*xF+y0*yF+z0*zF), ...

Performing SIMD operations on the original AoS format can require more calculations and some opera-
tions do not take advantage of all SIMD elements available. Therefore, this option is generally less effi-
cient.

The recommended way for computing data in AoS format is to swizzle each set of elements to SoA format
before processing it using SIMD technologies. Swizzling can either be done dynamically during program
execution or statically when the data structures are generated. See Chapter 6 and Chapter 7 for exam-
ples. Performing the swizzle dynamically is usually better than using AoS, but can be somewhat ineffi-
cient because there are extra instructions during computation. Performing the swizzle statically, when
data structures are being laid out, is best as there is no runtime overhead.

As mentioned earlier, the SoA arrangement allows more efficient use of the parallelism of SIMD technol-
ogies because the data is ready for computation in a more optimal vertical manner: multiplying compo-
nents X0,X1,X2,X3 by XF,XF,XF,XF using 4 SIMD execution slots to produce 4 unique results. In contrast,
computing directly on AoS data can lead to horizontal operations that consume SIMD execution slots but
produce only a single scalar result (as shown by the many “don‘t-care” (DC) slots in Example 5-21).

Use of the SoA format for data structures can lead to more efficient use of caches and bandwidth. When
the elements of the structure are not accessed with equal frequency, such as when element x, y, z are
accessed ten times more often than the other entries, then SoA saves memory and prevents fetching
unnecessary data items a, b, and c.

Example 5-22. Hybrid SOA Data Structure

NumOfGroups = NumOfVertices/SIMDwidth
typedef struct{

float x[SIMDwidth];

float y[SIMDwidth];

float z[SIMDwidth];

} VerticesCoordList;
typedef struct{
int a[SIMDwidth];
int b[SIMDwidth];
int c[SIMDwidth];

} VerticesColorList;
VerticesCoordList VerticesCoord[NumOfGroups];
VerticesColorList VerticesColor[NumOfGroups];
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Note that SoA can have the disadvantage of requiring more independent memory stream references. A
computation that uses arrays X, Y, and Z (see Example 5-20) would require three separate data streams.
This can require the use of more prefetches, additional address generation calculations, as well as having
a greater impact on DRAM page access efficiency.

There is an alternative: a hybrid SoA approach blends the two alternatives (see Example 5-22). In this

case, only 2 separate address streams are generated and referenced: one contains XXXX, YYYY,ZZZZ,

Z2ZZZ,... and the other AAAA, BBBB, CCCC, AAAA, DDDD,... . The approach prevents fetching unneces-
sary data, assuming the variables X, Y, Z are always used together; whereas the variables A, B, C would
also be used together, but not at the same time as X, Y, Z.

The hybrid SoA approach ensures:

* Data is organized to enable more efficient vertical SIMD computation.

® Simpler/less address generation than AoS.

®* Fewer streams, which reduces DRAM page misses.

® Use of fewer prefetches, due to fewer streams.

®* Efficient cache line packing of data elements that are used concurrently.

With the advent of the SIMD technologies, the choice of data organization becomes more important and
should be carefully based on the operations to be performed on the data. This will become increasingly
important in the Pentium 4 processor and future processors. In some applications, traditional data
arrangements may not lead to the maximum performance. Application developers are encouraged to
explore different data arrangements and data segmentation policies for efficient computation. This may
mean using a combination of AoS, SoA, and Hybrid SoA in a given application.

5.5.2 Strip-Mining

Strip-mining, also known as loop sectioning, is a loop transformation technique for enabling SIMD-
encodings of loops, as well as providing a means of improving memory performance. First introduced for
vectorizers, this technique consists of the generation of code when each vector operation is done for a
size less than or equal to the maximum vector length on a given vector machine. By fragmenting a large
loop into smaller segments or strips, this technique transforms the loop structure by:

* Increasing the temporal and spatial locality in the data cache if the data are reusable in different
passes of an algorithm.

® Reducing the number of iterations of the loop by a factor of the length of each “vector,” or number of
operations being performed per SIMD operation. In the case of Streaming SIMD Extensions, this
vector or strip-length is reduced by 4 times: four floating-point data items per single Streaming SIMD
Extensions single-precision floating-point SIMD operation are processed. Consider Example 5-23.

Example 5-23. Pseudo-code Before Strip Mining

typedef struct _VERTEX {
float x, vy, z, nx, ny, Nz, u, v;
} Vertex_rec;

main()

{

Vertex_rec v[Num];

for (i=0; i<Num; i++) {
Transform(v[i]);

}
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Example 5-23. Pseudo-code Before Strip Mining (Contd.)

for (i=0; i<Num; i++) {
Lighting(v[i]);
}

}

The main loop consists of two functions: transformation and lighting. For each object, the main loop calls
a transformation routine to update some data, then calls the lighting routine to further work on the data.
If the size of array V[NUM] is larger than the cache, then the coordinates for V[I] that were cached during
TRANSFORM(VI[I]) will be evicted from the cache by the time we do LIGHTING(V[I]). This means that
V[I] will have to be fetched from main memory a second time, reducing performance.

In Example 5-24, the computation has been strip-mined to a size STRIP_SIZE. The value STRIP_SIZE is
chosen such that STRIP_SIZE elements of array V[NUM] fit into the cache hierarchy. By doing this, a
given element V[I] brought into the cache by TRANSFORM(V[I]) will still be in the cache when we
perform LIGHTING(V[I]), and thus improve performance over the non-strip-mined code.

Example 5-24. Strip Mined Code

MAIN()
{

Vertex_rec v[Num];

for (i=0; i < Num; i+=strip_size) {
FOR (J=I; J < MIN(NUM, I+STRIP_SIZE); J++) {
TRANSFORM(V[I]);
}
FOR (J=I; J < MIN(NUM, I+STRIP_SIZE); J++) {
LIGHTING(V[I]);
b
}

b

553 Loop Blocking

Loop blocking is another useful technique for memory performance optimization. The main purpose of
loop blocking is also to eliminate as many cache misses as possible. This technique transforms the
memory domain of a given problem into smaller chunks rather than sequentially traversing through the
entire memory domain. Each chunk should be small enough to fit all the data for a given computation
into the cache, thereby maximizing data reuse. In fact, one can treat loop blocking as strip mining in two
or more dimensions. Consider the code in Example 5-23 and access pattern in Figure 5-5. The two-
dimensional array A is referenced in the J (column) direction and then referenced in the I (row) direction
(column-major order); whereas array B is referenced in the opposite manner (row-major order). Assume
the memory layout is in column-major order; therefore, the access strides of array A and B for the code
in Example 5-25 would be 1 and MAX, respectively.

Example 5-25. Loop Blocking

A. Original Loop
float AIMAX, MAX], BIMAX, MAX]
for (i=0; i< MAX; i++) {
for (j=0; j< MAX; j++){
Alij] = Alij] + B[, i
}

}
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Example 5-25. Loop Blocking (Contd.)

B. Transformed Loop after Blocking
float AIMAX, MAX], BIMAX, MAX];
for (i=0; i< MAX; i+=block_size) {
for (j=0; j< MAX; j+=block_size) {
for (ii=i; ii<i+block_size; ii++) {
for (jj=j; ji<j+block_size; jj++) {
Aliijj] = Alii.ji] + Bij, iil;
}

For the first iteration of the inner loop, each access to array B will generate a cache miss. If the size of
one row of array A, that is, A[2, 0:MAX-1], is large enough, by the time the second iteration starts, each
access to array B will always generate a cache miss. For instance, on the first iteration, the cache line
containing B[0, 0:7] will be brought in when B[0,0] is referenced because the float type variable is four
bytes and each cache line is 32 bytes. Due to the limitation of cache capacity, this line will be evicted due
to conflict misses before the inner loop reaches the end. For the next iteration of the outer loop, another
cache miss will be generated while referencing B[0, 1]. In this manner, a cache miss occurs when each
element of array B is referenced, that is, there is no data reuse in the cache at all for array B.

This situation can be avoided if the loop is blocked with respect to the cache size. In Figure 5-5, a
BLOCK_SIZE is selected as the loop blocking factor. Suppose that BLOCK_SIZE is 8, then the blocked
chunk of each array will be eight cache lines (32 bytes each). In the first iteration of the inner loop, A[O,
0:7] and B[O, 0:7] will be brought into the cache. B[0, 0:7] will be completely consumed by the first iter-
ation of the outer loop. Consequently, B[0, 0:7] will only experience one cache miss after applying loop
blocking optimization in lieu of eight misses for the original algorithm. As illustrated in Figure 5-5, arrays
A and B are blocked into smaller rectangular chunks so that the total size of two blocked A and B chunks
is smaller than the cache size. This allows maximum data reuse.
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A(i, j) access pattern
after blocking

A (i, j) access pattern
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Figure 5-5. Loop Blocking Access Pattern

As one can see, all the redundant cache misses can be eliminated by applying this loop blocking tech-
nique. If MAX is huge, loop blocking can also help reduce the penalty from DTLB (data translation look-
aside buffer) misses. In addition to improving the cache/memory performance, this optimization tech-

nique also saves external bus bandwidth.

5.6 INSTRUCTION SELECTION

The following section gives some guidelines for choosing instructions to complete a task

One barrier to SIMD computation can be the existence of data-dependent branches. Conditional moves
can be used to eliminate data-dependent branches. Conditional moves can be emulated in SIMD compu-
tation by using masked compares and logicals, as shown in Example 5-26. SSE4.1 provides packed blend

instruction that can vectorize data-dependent branches in a loop

Example 5-26. Emulation of Conditional Moves

High-level code:
__declspec(align(16)) short AIMAX_ELEMENT], B[IMAX_ELEMENT], C(MAX_ELEMENT], D[MAX_ELEMENT]
E[MAX_ELEMENT];

0; i<MAX_ELEMENT; i++) {

for (i=
if (AL > BL]) {
C[i1 = D[iJ;

Jelse {
C[i1 = E[i};

}
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Example 5-26. Emulation of Conditional Moves (Contd.)

}

Xxor

movq

movq
pand
pandn

por
movq
add
cmp
jle

Xxor

add
cmp
jle

top_of_loop:

top_of_loop:
movdqq xmmQ, [A + eax]
pcmpgtwxmmO, [B + eax]; Create compare mask
movdga xmm1, [E + eax]
pblendv xmm1, [D + eax], xmmO;
movdga [C + eax], xmm1;

MMX assembly code processes 4 short values per iteration:
eax, eax

mmoO, [A + eax]

pcmpgtwxmmO, [B + eax]; Create compare mask

mm1, [D + eax]
mm71, mmO; Drop elements where A<B
mmO, [E + eax] ; Drop elements where A>B

mmO, mm1; Crete single word
[C + eax], mmO

eax, 8

eax, MAX_ELEMENT*2
top_of_loop

SSE4.1 assembly processes 8 short values per iteration:

eax, eax

eax, 16
eax, MAX_ELEMENT*2
top_of_loop

CODING FOR SIMD ARCHITECTURES

If there are multiple consumers of an instance of a register, group the consumers together as closely as
possible. However, the consumers should not be scheduled near the producer.

5.7

TUNING THE FINAL APPLICATION

The best way to tune your application once it is functioning correctly is to use a profiler that measures the
application while it is running on a system. Intel VTune Amplifier XE can help you determine where to

make changes in your application to improve performance. Using Intel VTune Amplifier XE can help you
with various phases required for optimized performance. See Appendix A.3.1, “Intel® VTune™ Amplifier
XE,"” for details. After every effort to optimize, you should check the performance gains to see where you
are making your major optimization gains.
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CHAPTER 6
OPTIMIZING FOR SIMD INTEGER APPLICATIONS

SIMD integer instructions provide performance improvements in applications that are integer-intensive
and can take advantage of SIMD architecture.

Guidelines in this chapter for using SIMD integer instructions (in addition to those described in Chapter
3) may be used to develop fast and efficient code that scales across processor generations.

The collection of 64-bit and 128-bit SIMD integer instructions supported by MMX technology, SSE, SSE2,
SSE3, SSSE3, SSE4.1, and PCMPEQQ in SSE4.2 are referred to as SIMD integer instructions.

Code sequences in this chapter demonstrates the use of basic 64-bit SIMD integer instructions and more
efficient 128-bit SIMD integer instructions.

Processors based on Intel Core microarchitecture support MMX, SSE, SSE2, SSE3, and SSSE3. Proces-
sors based on Enhanced Intel Core microarchitecture support SSE4.1 and all previous generations of
SIMD integer instructions. Processors based on Nehalem microarchitecture support MMX, SSE, SSE2,
SSE3, SSSE3, SSE4.1 and SSE4.2.

Single-instruction, multiple-data techniques can be applied to text/string processing, lexing and parser
applications. SIMD programming in string/text processing and lexing applications often require sophisti-
cated techniques beyond those commonly used in SIMD integer programming. This is covered in Chapter
14, “SSE4.2 and SIMD Programming For Text-Processing/Lexing/Parsing.”

Execution of 128-bit SIMD integer instructions in Intel Core microarchitecture and Enhanced Intel Core
microarchitecture are substantially more efficient than on previous microarchitectures. Thus newer SIMD
capabilities introduced in SSE4.1 operate on 128-bit operands and do not introduce equivalent 64-bit
SIMD capabilities. Conversion from 64-bit SIMD integer code to 128-bit SIMD integer code is highly
recommended.

This chapter contains examples that will help you to get started with coding your application. The goal is
to provide simple, low-level operations that are frequently used. The examples use a minimum number
of instructions necessary to achieve best performance on the current generation of Intel 64 and IA-32
processors.

Each example includes a short description, sample code, and notes if necessary. These examples do not
address scheduling as it is assumed the examples will be incorporated in longer code sequences.

For planning considerations of using the SIMD integer instructions, refer to Section 5.1.3.

6.1 GENERAL RULES ON SIMD INTEGER CODE

General rules and suggestions are:

e Do not intermix 64-bit SIMD integer instructions with x87 floating-point instructions. See Section
6.2, “Using SIMD Integer with x87 Floating-point.” Note that all SIMD integer instructions can be
intermixed without penalty.

e Favor 128-bit SIMD integer code over 64-bit SIMD integer code. On microarchitectures prior to Intel
Core microarchitecture, most 128-bit SIMD instructions have two-cycle throughput restrictions due
to the underlying 64-bit data path in the execution engine. Intel Core microarchitecture executes
most SIMD instructions (except shuffle, pack, unpack operations) with one-cycle throughput and
provides three ports to execute multiple SIMD instructions in parallel. Enhanced Intel Core microar-
chitecture speeds up 128-bit shuffle, pack, unpack operations with 1 cycle throughput.

e When writing SIMD code that works for both integer and floating-point data, use the subset of SIMD
convert instructions or load/store instructions to ensure that the input operands in XMM registers
contain data types that are properly defined to match the instruction.
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Code sequences containing cross-typed usage produce the same result across different implementa-
tions but incur a significant performance penalty. Using SSE/SSE2/SSE3/SSSE3/SSE44.1 instruc-
tions to operate on type-mismatched SIMD data in the XMM register is strongly discouraged.

e Use the optimization rules and guidelines described in Chapter 3 and Chapter 5.

e Take advantage of hardware prefetcher where possible. Use the PREFETCH instruction only when
data access patterns are irregular and prefetch distance can be pre-determined. See Chapter 9,
“Optimizing Cache Usage.”

e Emulate conditional moves by using blend, masked compares and logicals instead of using
conditional branches.

6.2 USING SIMD INTEGER WITH X87 FLOATING-POINT

All 64-bit SIMD integer instructions use MMX registers, which share register state with the x87 floating-
point stack. Because of this sharing, certain rules and considerations apply. Instructions using MMX
registers cannot be freely intermixed with x87 floating-point registers. Take care when switching
between 64-bit SIMD integer instructions and x87 floating-point instructions to ensure functional
correctness. See Section 6.2.1.

Both Section 6.2.1 and Section 6.2.2 apply only to software that employs MMX instructions. As noted
before, 128-bit SIMD integer instructions should be favored to replace MMX code and achieve higher
performance. That also obviates the need to use EMMS, and the performance penalty of using EMMS
when intermixing MMX and X87 instructions.

For performance considerations, there is no penalty of intermixing SIMD floating-point operations and
128-bit SIMD integer operations and x87 floating-point operations.

6.2.1 Using the EMMS Instruction

When generating 64-bit SIMD integer code, keep in mind that the eight MMX registers are aliased to x87
floating-point registers. Switching from MMX instructions to x87 floating-point instructions incurs a finite
delay, so it is the best to minimize switching between these instruction types. But when switching, the
EMMS instruction provides an efficient means to clear the x87 stack so that subsequent x87 code can
operate properly.

As soon as an instruction makes reference to an MMX register, all valid bits in the x87 floating-point tag
word are set, which implies that all x87 registers contain valid values. In order for software to operate
correctly, the x87 floating-point stack should be emptied when starting a series of x87 floating-point
calculations after operating on the MMX registers.

Using EMMS clears all valid bits, effectively emptying the x87 floating-point stack and making it ready for
new x87 floating-point operations. The EMMS instruction ensures a clean transition between using oper-
ations on the MMX registers and using operations on the x87 floating-point stack. On the Pentium 4
processor, there is a finite overhead for using the EMMS instruction.

Failure to use the EMMS instruction (or the _MM_EMPTY() intrinsic) between operations on the MMX
registers and x87 floating-point registers may lead to unexpected results.

NOTE

Failure to reset the tag word for FP instructions after using an MMX instruction can result
in faulty execution or poor performance.

6.2.2 Guidelines for Using EMMS Instruction

When developing code with both x87 floating-point and 64-bit SIMD integer instructions, follow these
steps:
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1. Always call the EMMS instruction at the end of 64-bit SIMD integer code when the code transitions to
x87 floating-point code.

2. Insert the EMMS instruction at the end of all 64-bit SIMD integer code segments to avoid an x87
floating-point stack overflow exception when an x87 floating-point instruction is executed.

When writing an application that uses both floating-point and 64-bit SIMD integer instructions, use the
following guidelines to help you determine when to use EMMS:

¢ If next instruction is x87 FP — Use _MM_EMPTY() after a 64-bit SIMD integer instruction if the
next instruction is an X87 FP instruction; for example, before doing calculations on floats, doubles or
long doubles.

e Don't empty when already empty — If the next instruction uses an MMX register, _MM_EMPTY()
incurs a cost with no benefit.

e Group Instructions — Try to partition regions that use X87 FP instructions from those that use 64-
bit SIMD integer instructions. This eliminates the need for an EMMS instruction within the body of a
critical loop.

e Runtime initialization — Use _MM_EMPTY() during runtime initialization of __M64 and X87 FP data
types. This ensures resetting the register between data type transitions. See Example 6-1 for coding
usage.

Example 6-1. Resetting Register Between __m64 and FP Data Types Code

Incorrect Usage Correct Usage
__m64 x = _m_paddd(y, 2); __m64 x = _m_paddd(y, 2);
float f = init(); float f = (_mm_empty(), init());

You must be aware that your code generates an MMX instruction, which uses MMX registers with the Intel
C++ Compiler, in the following situations:

e when using a 64-bit SIMD integer intrinsic from MMX technology, SSE/SSE2/SSSE3

e when using a 64-bit SIMD integer instruction from MMX technology, SSE/SSE2/SSSE3 through inline
assembly

e when referencing the ___M64 data type variable

Additional information on the x87 floating-point programming model can be found in the Inte/l® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 1. For more on EMMS, visit http://devel-
oper.intel.com.

6.3 DATA ALIGNMENT

Make sure that 64-bit SIMD integer data is 8-byte aligned and that 128-bit SIMD integer data is 16-byte
aligned. Referencing unaligned 64-bit SIMD integer data can incur a performance penalty due to
accesses that span 2 cache lines. Referencing unaligned 128-bit SIMD integer data results in an excep-
tion unless the MOVDQU (move double-quadword unaligned) instruction is used. Using the MOVDQU
instruction on unaligned data can result in lower performance than using 16-byte aligned references.
Refer to Section 5.4, “Stack and Data Alignment,” for more information.

Loading 16 bytes of SIMD data efficiently requires data alignment on 16-byte boundaries. SSSE3
provides the PALIGNR instruction. It reduces overhead in situations that requires software to processing
data elements from non-aligned address. The PALIGNR instruction is most valuable when loading or
storing unaligned data with the address shifts by a few bytes. You can replace a set of unaligned loads
with aligned loads followed by using PALIGNR instructions and simple register to register copies.
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Using PALIGNRSs to replace unaligned loads improves performance by eliminating cache line splits and
other penalties. In routines like MEMCPY( ), PALIGNR can boost the performance of misaligned cases.
Example 6-2 shows a situation that benefits by using PALIGNR.

Example 6-2. FIR Processing Example in C language Code

void FIR(float *in, float *out, float *coeff, int count)
{intij;
for (i=0; i<count - TAP; i++)
{ floatsum = 0;
for (j=0; [<TAP; j++)
{ sum +=in[j]*coeff[j]; }
*out++ = sum;

in++;

Example 6-3 compares an optimal SSE2 sequence of the FIR loop and an equivalent SSSE3 implementa-
tion. Both implementations unroll 4 iteration of the FIR inner loop to enable SIMD coding techniques. The
SSE2 code can not avoid experiencing cache line split once every four iterations. PALGNR allows the

SSSE3 code to avoid the delays associated with cache line splits.

Example 6-3. SSE2 and SSSE3 Implementation of FIR Processing Code

Optimized for SSE2

pxor  xmmO, xmmO

xor ecx, ecx

mov  eax, dword ptr[input]
mov  ebx, dword ptr[coeff4]

inner_loop:

movaps xmm1, xmmword ptr[eax+ecx]
mulps xmm1, xmmword ptr[ebx+4*ecx]
addps xmmO, xmm1

movups xmm1, xmmword ptr[eax+ecx+4]
mulps xmm1, xmmword ptr[ebx+4*ecx+16]
addps xmmO, xmm1

movups xmm1, xmmword ptr[eax+ecx+8]
mulps xmm1, xmmword ptrebx+4*ecx+32]
addps xmmO, xmm1

movups xmm1, xmmword ptreax+ecx+12]
mulps xmm1, xmmword ptr[ebx+4*ecx+48]
addps xmmO, xmm1

add ecx, 16
cnp  ecx, 4*TAP
il inner_loop

mov  eax, dword ptr[output]
movaps xmmword ptr[eax], xmmO

Optimized for SSSE3

pxor xmmQ, xmmO

xor ecx, ecx

mov  eax, dword ptrinput]
mov  ebx, dword ptr[coeff4]

inner_loop:

movaps xmm1, xmmword ptrleax+ecx]
movaps xmm3, xmm 1

mulps xmm1, xmmword ptr[ebx+4*ecx]
addps xmmO, xmm1

movaps xmm2, xmmword ptr[eax+ecx+16]
movaps xmm1, xmm2

palignr xmm2, xmm3, 4

mulps xmmZ2, xmmword ptr[ebx+4*ecx+16]
addps xmmO, xmmZ2

movaps xmm2, xmm 1

palignr xmm2, xmm3, 8

mulps  xmm2, xmmword ptr[ebx+4*ecx+32]
addps xmmO, xmmZ2

movaps xmm2, xmm1

palignr xmm2, xmm3, 12

mulps xmmZ2, xmmword ptr[ebx+4*ecx+48]
addps xmmO, xmm2

add ecx, 16
cnp  ecx, 4*TAP
il inner_loop

mov  eax, dword ptroutput]
movaps xmmword ptr[eax], xmmO
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6.4 DATA MOVEMENT CODING TECHNIQUES

In general, better performance can be achieved if data is pre-arranged for SIMD computation (see
Section 5.5, “Improving Memory Utilization”). This may not always be possible.

This section covers techniques for gathering and arranging data for more efficient SIMD computation.

6.4.1 Unsigned Unpack

MMX technology provides several instructions that are used to pack and unpack data in the MMX regis-
ters. SSE2 extends these instructions so that they operate on 128-bit source and destinations.

The unpack instructions can be used to zero-extend an unsigned number. Example 6-4 assumes the
source is a packed-word (16-bit) data type.

Example 6-4. Zero Extend 16-bit Values into 32 Bits Using Unsigned Unpack Instructions Code

; Input:
; XMMO 8 16-bit values in source
; XMM7 0 a local variable can be used
; instead of the register XMM7 if
; desired.
; Output:
; XMMO four zero-extended 32-bit
; doublewords from four low-end
; words
; XMM1 four zero-extended 32-bit
; doublewords from four high-end
words
movdga xmm1, xmmO ; copy source
punpcklwd  xmmO, xmm?7 ; unpack the 4 low-end words
; into 4 32-bit doubleword
punpckhwd xmm1, xmm?7 ; unpack the 4 high-end words
; into 4 32-bit doublewords

6.4.2 Signed Unpack

Signed numbers should be sign-extended when unpacking values. This is similar to the zero-extend
shown above, except that the PSRAD instruction (packed shift right arithmetic) is used to sign extend the
values.

Example 6-5 assumes the source is a packed-word (16-bit) data type.

Example 6-5. Signed Unpack Code

Input;
; XMMO source value
; Output:
; XMMO four sign-extended 32-bit doublewords
; from four low-end words

XMM1 four sign-extended 32-bit doublewords
; from four high-end words

6-5



OPTIMIZING FOR SIMD INTEGER APPLICATIONS

Example 6-5. Signed Unpack Code (Contd.)

movdga xmm71, xmmO ; copy source

punpcklwd  xmmO, xmmO ; unpack four low end words of the source
; into the upper 16 bits of each doubleword
; in the destination

punpckhwd xmm1, xmm1 ; unpack 4 high-end words of the source
; into the upper 16 bits of each doubleword
; in the destination

psrad xmmO, 16  ; sign-extend the 4 low-end words of the source
; into four 32-bit signed doublewords
psrad xmm1,16 ;sign-extend the 4 high-end words of the

; source into four 32-bit signed doublewords

6.4.3 Interleaved Pack with Saturation

Pack instructions pack two values into a destination register in a predetermined order. PACKSSDW satu-
rates two signed doublewords from a source operand and two signed doublewords from a destination
operand into four signed words; and it packs the four signed words into a destination register. See
Figure 6-1.

SSE2 extends PACKSSDW so that it saturates four signed doublewords from a source operand and four
signed doublewords from a destination operand into eight signed words; the eight signed words are
packed into the destination.

mm/m64 mm

OM15159

Figure 6-1. PACKSSDW mm, mm/mm64 Instruction

Figure 6-2 illustrates where two pairs of values are interleaved in a destination register; Example 6-6
shows MMX code that accomplishes the operation.

Two signed doublewords are used as source operands and the result is interleaved signed words. The
sequence in Example 6-6 can be extended in SSE2 to interleave eight signed words using XMM registers.
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MM/M64 mm

OM15160

Figure 6-2. Interleaved Pack with Saturation

Example 6-6. Interleaved Pack with Saturation Code

; Input:

MMO  signed sourcel value

; MM1  signed source?2 value

; Output:

MMQ  the first and third words contain the
signed-saturated doublewords from MMOQ,
the second and fourth words contain
signed-saturated doublewords from MM 1

packssdw  mmO, mmO ; pack and sign saturate

packssdw mm1, mm1 ; pack and sign saturate
punpcklwd mmO, mm1 ;interleave the low-end 16-bit
; values of the operands

Pack instructions always assume that source operands are sighed numbers. The result in the destination
register is always defined by the pack instruction that performs the operation. For example, PACKSSDW
packs each of two signed 32-bit values of two sources into four saturated 16-bit signed values in a desti-
nation register. PACKUSWB, on the other hand, packs the four signed 16-bit values of two sources into
eight saturated eight-bit unsigned values in the destination.

6.4.4 Interleaved Pack without Saturation

Example 6-7 is similar to Example 6-6 except that the resulting words are not saturated. In addition, in
order to protect against overflow, only the low order 16 bits of each doubleword are used. Again,
Example 6-7 can be extended in SSE2 to accomplish interleaving eight words without saturation.

Example 6-7. Interleaved Pack without Saturation Code

; Input:
; MMO signed source value
MM1 signed source value
; Output:
; MMO the first and third words contain the

low 16-bits of the doublewords in MMO,
the second and fourth words contain the
low 16-bits of the doublewords in MM1
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Example 6-7. Interleaved Pack without Saturation Code (Contd.)

psiid mmT1, 16 ; shift the 16 LSB from each of the
; doubleword values to the 16 MSB
; position

pand  mmo, {O,ffff,0,ffff}
; mask to zero the 16 MSB
; of each doubleword value

por mmO, mm1 ; merge the two operands

6.4.5 Non-Interleaved Unpack

Unpack instructions perform an interleave merge of the data elements of the destination and source
operands into the destination register.

The following example merges the two operands into destination registers without interleaving. For
example, take two adjacent elements of a packed-word data type in SOURCE1 and place this value in the
low 32 bits of the results. Then take two adjacent elements of a packed-word data type in SOURCE2 and
place this value in the high 32 bits of the results. One of the destination registers will have the combina-
tion illustrated in Figure 6-3.

mm/m64 mm

2

2

2 1

1

2, 2

o

mm

Figure 6-3. Result of Non-Interleaved Unpack Low in MMO

The other destination register will contain the opposite combination illustrated in Figure 6-4.

Figure 6-4. Result of Non-Interleaved Unpack High in MM1
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Code in the Example 6-8 unpacks two packed-word sources in a non-interleaved way. The goal is to use
the instruction which unpacks doublewords to a quadword, instead of using the instruction which
unpacks words to doublewords.

Example 6-8. Unpacking Two Packed-word Sources in Non-interleaved Way Code

; Input:

; MMO packed-word source value

; MM1 packed-word source value

; Output:

; MMO contains the two low-end words of the
; original sources, non-interleaved

; MM2 contains the two high end words of the
; original sources, non-interleaved.

movq mm2, mm0 ; copy sourcel

punpckldg mmO, mm1 ; replace the two high-end words of MMO with
; two low-end words of MM1;
; leave the two low-end words of MMO in place
punpckhdqg mm2, mm1 ; move two high-end words of MMZ2 to the two low-end
; words of MMZ2; place the two high-end words of
; MMT1 in two high-end words of MM2

6.4.6 Extract Data Element

The PEXTRW instruction in SSE takes the word in the designated MMX register selected by the two least
significant bits of the immediate value and moves it to the lower half of a 32-bit integer register. See
Figure 6-5 and Example 6-9.

With SSE2, PEXTRW can extract a word from an XMM register to the lower 16 bits of an integer register.
SSE4.1 provides extraction of a byte, word, dword and qword from an XMM register into either a memory
location or integer register.

MM
63 31 0
X4 X3 X2 X1
R32
31 v 0
0..0 X1
OM15163

Figure 6-5. PEXTRW Instruction

6-9



OPTIMIZING FOR SIMD INTEGER APPLICATIONS

Example 6-9. PEXTRW Instruction Code

; Input:
; eax source value
; immediate value: “0"

; Output:

; edx 32-bit integer register containing the extracted word in the
; low-order bits & the high-order bits zero-extended

movg mmoO, [eax]
pextrw edx, mmO, 0

6.4.7 Insert Data Element

The PINSRW instruction in SSE loads a word from the lower half of a 32-bit integer register or from
memory and inserts it in an MMX technology destination register at a position defined by the two least
significant bits of the immediate constant. Insertion is done in such a way that three other words from
the destination register are left untouched. See Figure 6-6 and Example 6-10.

With SSE2, PINSRW can insert a word from the lower 16 bits of an integer register or memory into an
XMM register. SSE4.1 provides insertion of a byte, dword and qword from either a memory location or
integer register into an XMM register.

MM
63 31 0
X4 X3 Y1 X1
R32
31 0
Y2 Y1
OM15164

Figure 6-6. PINSRW Instruction

Example 6-10. PINSRW Instruction Code

; Input:

; edx pointer to source valu