
Intel® Advanced Vector Extensions
Programming Reference

DECEMBER 2008

319433-004

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANT-
ED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH
PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. INTEL PRODUCTS ARE NOT INTENDED
FOR USE IN MEDICAL, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS.

Intel may make changes to specifications and product descriptions at any time, without notice.

Developers must not rely on the absence or characteristics of any features or instructions marked “re-
served” or “undefined.” Improper use of reserved or undefined features or instructions may cause unpre-
dictable behavior or failure in developer's software code when running on an Intel processor. Intel reserves
these features or instructions for future definition and shall have no responsibility whatsoever for conflicts
or incompatibilities arising from their unauthorized use.

The Intel® 64 architecture processors may contain design defects or errors known as errata. Current char-
acterized errata are available on request.

Hyper-Threading Technology requires a computer system with an Intel® processor supporting Hyper-
Threading Technology and an HT Technology enabled chipset, BIOS and operating system. Performance will
vary depending on the specific hardware and software you use. For more information, see http://www.in-
tel.com/technology/hyperthread/index.htm; including details on which processors support HT Technology.

Intel® Virtualization Technology requires a computer system with an enabled Intel® processor, BIOS, virtual
machine monitor (VMM) and for some uses, certain platform software enabled for it. Functionality, perfor-
mance or other benefits will vary depending on hardware and software configurations. Intel® Virtualization
Technology-enabled BIOS and VMM applications are currently in development.

64-bit computing on Intel architecture requires a computer system with a processor, chipset, BIOS, oper-
ating system, device drivers and applications enabled for Intel® 64 architecture. Processors will not operate
(including 32-bit operation) without an Intel® 64 architecture-enabled BIOS. Performance will vary depend-
ing on your hardware and software configurations. Consult with your system vendor for more information.

Intel, Pentium, Intel Atom, Intel Xeon, Intel NetBurst, Intel Core, Intel Core Solo, Intel Core Duo, Intel Core
2 Duo, Intel Core 2 Extreme, Intel Pentium D, Itanium, Intel SpeedStep, MMX, and VTune are trademarks
or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing
your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel
literature, may be obtained from:

Intel Corporation
P.O. Box 5937
Denver, CO 80217-9808

or call 1-800-548-4725
or visit Intel’s website at http://www.intel.com

Copyright © 1997-2008 Intel Corporation
ii Ref. # 319433-004

CONTENTS
PAGE
CHAPTER 1
INTEL® ADVANCED VECTOR EXTENSIONS
1.1 About This Document . 1-1
1.2 Overview . 1-1
1.3 Intel® Advanced Vector Extensions Architecture Overview . 1-2
1.3.1 256-Bit Wide SIMD Register Support . 1-2
1.3.2 Instruction Syntax Enhancements . 1-3
1.3.3 VEX Prefix Instruction Encoding Support . 1-4
1.4 Functional Overview . 1-4
1.4.1 256-bit Floating-Point Arithmetic Processing Enhancements . 1-5
1.4.2 256-bit Non-Arithmetic Instruction Enhancements. 1-5
1.4.3 Arithmetic Primitives for 128-bit Vector and Scalar processing . 1-6
1.4.4 Non-Arithmetic Primitives for 128-bit Vector and Scalar Processing 1-6
1.5 General Encryption and Cryptographic Processing. 1-7

CHAPTER 2
APPLICATION PROGRAMMING MODEL
2.1 DetectiON of PCLMULQDQ and AES Instructions . 2-1
2.2 Detection of AVX and FMA Instructions . 2-1
2.2.1 Detection of FMA . 2-3
2.2.2 Detection of VEX-Encoded AES . 2-4
2.3 Fused-Multiply-ADD (FMA) Numeric Behavior . 2-5
2.3.1 FMA Instruction Operand Order and Arithmetic Behavior . 2-9
2.4 Accessing YMM Registers. 2-9
2.5 Memory alignment . 2-10
2.6 SIMD floating-point ExCeptions . 2-12
2.7 Instruction Exception Specification. 2-13
2.7.1 Exceptions Type 1 (Aligned memory reference) . 2-18
2.7.2 Exceptions Type 2 (>=16 Byte Memory Reference, Unaligned)2-18
2.7.3 Exceptions Type 3 (<16 Byte memory argument). 2-19
2.7.4 Exceptions Type 4 (>=16 Byte mem arg no alignment, no floating-point exceptions) .2-
20
2.7.5 Exceptions Type 5 (<16 Byte mem arg and no FP exceptions) . 2-21
2.7.6 Exceptions Type 6 (VEX-Encoded Instructions Without Legacy SSE Analogues). . . . 2-22
2.7.7 Exceptions Type 7 (No FP exceptions, no memory arg). 2-23
2.7.8 Exceptions Type 8 (AVX and no memory argument) . 2-24
2.7.9 Exception Type 9 (AVX) . 2-25
2.8 Programming Considerations with 128-bit SIMD Instructions . 2-25
2.8.1 Clearing Upper YMM State Between AVX and Legacy SSE Instructions 2-26
2.8.2 Using AVX 128-bit Instructions Instead of Legacy SSE instructions 2-27
2.8.3 Unaligned Memory Access and Buffer Size Management . 2-27
2.9 CPUID Instruction . 2-28

CPUID—CPU Identification . 2-29
1 Ref. # 319433-004

CONTENTS
CHAPTER 3
SYSTEM PROGRAMMING MODEL
3.1 YMM State, VEX Prefix and Supported Operating Modes . 3-1
3.2 YMM State Management . 3-2
3.2.1 Detection of YMM State Support . 3-2
3.2.2 Enabling of YMM State . 3-2
3.2.3 Enabling of SIMD Floating-Exception Support . 3-3
3.2.4 The Layout of XSAVE Area . 3-4
3.2.5 XSAVE/XRSTOR Interaction with YMM State and MXCSR. 3-5
3.3 Reset Behavior . 3-6
3.4 Emulation. 3-7
3.5 Writing AVX floating-point exception handlers. 3-7

CHAPTER 4
INSTRUCTION FORMAT
4.1 Instruction Formats . 4-1
4.1.1 VEX and the LOCK prefix . 4-2
4.1.2 VEX and the 66H, F2H, and F3H prefixes. 4-2
4.1.3 VEX and the REX prefix . 4-2
4.1.4 The VEX Prefix . 4-2
4.1.4.1 VEX Byte 0, bits[7:0] . 4-6
4.1.4.2 VEX Byte 1, bit [7] - ‘R’ . 4-6
4.1.4.3 3-byte VEX byte 1, bit[6] - ‘X’. 4-6
4.1.4.4 3-byte VEX byte 1, bit[5] - ‘B’. 4-6
4.1.4.5 3-byte VEX byte 2, bit[7] - ‘W’ . 4-6
4.1.4.6 2-byte VEX Byte 1, bits[6:3] and 3-byte VEX Byte 2, bits [6:3]- ‘vvvv’ the Source or

dest Register Specifier . 4-7
4.1.5 Instruction Operand Encoding and VEX.vvvv, ModR/M. 4-8
4.1.5.1 3-byte VEX byte 1, bits[4:0] - “m-mmmm” . 4-11
4.1.5.2 2-byte VEX byte 1, bit[2], and 3-byte VEX byte 2, bit [2]- “L”. 4-11
4.1.5.3 2-byte VEX byte 1, bits[1:0], and 3-byte VEX byte 2, bits [1:0]- “pp” 4-12
4.1.6 The Opcode Byte . 4-12
4.1.7 The MODRM, SIB, and Displacement Bytes . 4-12
4.1.8 The Third Source Operand (Immediate Byte). 4-12
4.1.9 AVX Instructions and the Upper 128-bits of YMM registers . 4-13
4.1.10 AVX Instruction Length . 4-13

CHAPTER 5
INSTRUCTION SET REFERENCE
5.1 Interpreting InstructIon Reference Pages . 5-1
5.1.1 Instruction Format . 5-1

VBROADCASTF128- Broadcast 128 Bits of Floating-Point Values (THIS IS AN EXAMPLE)
5-2

5.1.2 Opcode Column in the Instruction Summary Table . 5-2
5.1.3 Instruction Column in the Instruction Summary Table . 5-4
5.1.4 64/32 bit Mode Support column in the Instruction Summary Table. 5-5
5.1.5 CPUID Support column in the Instruction Summary Table . 5-5
2 Ref. # 319433-004

CONTENTS
5.2 AES Transformations and Data Structure . 5-6
5.2.1 Little-Endian Architecture and Big-Endian Specification (FIPS 197) 5-6
5.2.1.1 AES Data Structure in Intel 64 Architecture. 5-6
5.2.2 AES Transformations and Functions . 5-8
5.3 Summary of Terms . 5-12
5.4 Instruction SET Reference . 5-13

ADDPD - Add Packed Double Precision Floating-Point Values .5-14
ADDPS- Add Packed Single Precision Floating-Point Values .5-16
ADDSD- Add Scalar Double Precision Floating-Point Values .5-18
ADDSS- Add Scalar Single Precision Floating-Point Values. .5-20
ADDSUBPD- Packed Double FP Add/Subtract. .5-22
ADDSUBPS- Packed Single FP Add/Subtract .5-24
AESENC/AESENCLAST- Perform One Round of an AES Encryption Flow.5-26
AESDEC/AESDECLAST- Perform One Round of an AES Decryption Flow.5-29
AESIMC- Perform the AES InvMixColumn Transformation .5-32
AESKEYGENASSIST - AES Round Key Generation Assist. .5-34
ANDPD- Bitwise Logical AND of Packed Double Precision Floating-Point Values5-36
ANDPS- Bitwise Logical AND of Packed Single Precision Floating-Point Values5-38
ANDNPD- Bitwise Logical AND NOT of Packed Double Precision Floating-Point Values 5-

40
ANDNPS- Bitwise Logical AND NOT of Packed Single Precision Floating-Point Values . 5-

42
BLENDPD- Blend Packed Double Precision Floating-Point Values5-44
BLENDPS- Blend Packed Single Precision Floating-Point Values 5-46
BLENDVPD- Blend Packed Double Precision Floating-Point Values5-49
BLENDVPS- Blend Packed Single Precision Floating-Point Values5-52
VBROADCAST- Load with Broadcast .5-55
CMPPD- Compare Packed Double-Precision Floating-Point Values 5-59
CMPPS- Compare Packed Single-Precision Floating-Point Values.5-67
CMPSD- Compare Scalar Double-Precision Floating-Point Values.5-74
CMPSS- Compare Scalar Single-Precision Floating-Point Values .5-79
COMISD- Compare Scalar Ordered Double-Precision Floating-Point Values and Set

EFLAGS .5-84
COMISS- Compare Scalar Ordered Single-Precision Floating-Point Values and Set EFLAGS

5-86
CVTDQ2PD- Convert Packed Doubleword Integers to Packed Double-Precision Floating-

Point Values .5-88
CVTDQ2PS- Convert Packed Doubleword Integers to Packed Single-Precision Floating-

Point Values .5-90
CVTPD2DQ- Convert Packed Double-Precision Floating-point values to Packed Double-

word Integers .5-92
CVTPD2PS- Convert Packed Double-Precision Floating-point values to Packed Single-

Precision Floating-Point Values .5-95
CVTPS2DQ- Convert Packed Single Precision Floating-Point Values to Packed Singed

Doubleword Integer Values .5-98
CVTPS2PD- Convert Packed Single Precision Floating-point values to Packed Double Pre-

cision Floating-Point Values . 5-100
CVTSD2SI- Convert Scalar Double-Precision Floating-Point Value to Doubleword Integer
3 Ref. # 319433-004

CONTENTS
5-103
CVTSD2SS- Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Preci-

sion Floating-Point Value .5-105
CVTSI2SD- Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value

5-107
CVTSI2SS- Convert Doubleword Integer to Scalar Single-Precision Floating-Point Value .

5-109
CVTSS2SD- Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Preci-

sion Floating-Point Value .5-111
CVTSS2SI- Convert Scalar Single-Precision Floating-Point Value to Doubleword Integer .

5-113
CVTTPD2DQ- Convert with Truncation Packed Double-Precision Floating-point values to

Packed Doubleword Integers .5-115
CVTTPS2DQ- Convert with Truncation Packed Single Precision Floating-Point Values to

Packed Singed Doubleword Integer Values .5-118
CVTTSD2SI- Convert with Truncation Scalar Double-Precision Floating-Point Value to

Signed Doubleword Integer. .5-120
CVTTSS2SI- Convert with Truncation Scalar Single-Precision Floating-Point Value to

Doubleword Integer. .5-122
DIVPD- Divide Packed Double-Precision Floating-Point Values 5-124
DIVPS- Divide Packed Single-Precision Floating-Point Values .5-126
DIVSD- Divide Scalar Double-Precision Floating-Point Values. .5-128
DIVSS- Divide Scalar Single-Precision Floating-Point Values. .5-130
DPPD- Dot Product of Packed Double-Precision Floating-Point Values5-132
DPPS- Dot Product of Packed Single-Precision Floating-Point Values5-134
VEXTRACTF128- Extract packed floating-point values .5-137
EXTRACTPS- Extract packed floating-point values .5-139
HADDPD- Add Horizontal Double Precision Floating-Point Values5-141
HADDPS- Add Horizontal Single Precision Floating-Point Values 5-143
HSUBPD- Subtract Horizontal Double Precision Floating-Point Values5-146
HSUBPS- Subtract Horizontal Single Precision Floating-Point Values5-148
VINSERTF128- Insert packed floating-point values. .5-151
INSERTPS- Insert Scalar Single Precision Floating-Point Value5-152
LDDQU- Move Unaligned Integer .5-156
VLDMXCSR—Load MXCSR Register .5-158
MASKMOVDQU- Store Selected Bytes of Double Quadword with NT Hint.5-159
VMASKMOV- Conditional SIMD Packed Loads and Stores .5-161
MAXPD- Maximum of Packed Double Precision Floating-Point Values 5-165
MAXPS- Minimum of Packed Single Precision Floating-Point Values5-167
MAXSD- Return Maximum Scalar Double-Precision Floating-Point Value5-170
MAXSS- Return Maximum Scalar Single-Precision Floating-Point Value5-172
MINPD- Minimum of Packed Double Precision Floating-Point Values5-174
MINPS- Minimum of Packed Single Precision Floating-Point Values5-176
MINSD- Return Minimum Scalar Double-Precision Floating-Point Value5-179
MINSS- Return Minimum Scalar Single-Precision Floating-Point Value 5-181
MOVAPD- Move Aligned Packed Double-Precision Floating-Point Values.5-183
MOVAPS- Move Aligned Packed Single-Precision Floating-Point Values5-186
4 Ref. # 319433-004

CONTENTS
MOVD/MOVQ- Move Doubleword and Quadword . 5-189
MOVQ- Move Quadword . 5-192
MOVDDUP- Replicate Double FP Values . 5-194
MOVDQA- Move Aligned Packed Integer Values . 5-196
MOVDQU- Move Unaligned Packed Integer Values . 5-198
MOVHLPS - Move Packed Single-Precision Floating-Point Values High to Low 5-200
MOVHPD- Move High Packed Double-Precision Floating-Point Values 5-202
MOVHPS- Move High Packed Single-Precision Floating-Point Values 5-204
MOVLHPS - Move Packed Single-Precision Floating-Point Values Low to High 5-206
MOVLPD- Move Low Packed Double-Precision Floating-Point Values. 5-208
MOVLPS- Move Low Packed Single-Precision Floating-Point Values. 5-210
MOVMSKPD- Extract Double-Precision Floating-Point Sign mask. 5-212
MOVMSKPS- Extract Single-Precision Floating-Point Sign mask. 5-214
MOVNTDQ- Store Packed Integers Using Non-Temporal Hint . 5-216
MOVNTDQA- Load Double Quadword Non-Temporal Aligned Hint 5-218
MOVNTPD- Store Packed Double-Precision Floating-Point Values Using Non-Temporal

Hint . 5-220
MOVNTPS- Store Packed Single-Precision Floating-Point Values Using Non-Temporal

Hint . 5-222
MOVSD- Move or Merge Scalar Double-Precision Floating-Point Value 5-224
MOVSHDUP- Replicate Single FP Values . 5-227
MOVSLDUP- Replicate Single FP Values . 5-230
MOVSS- Move or Merge Scalar Single-Precision Floating-Point Value 5-233
MOVUPD- Move Unaligned Packed Double-Precision Floating-Point Values 5-236
MOVUPS- Move Unaligned Packed Single-Precision Floating-Point Values 5-239
MPSADBW - Multiple Sum of Absolute Differences. 5-242
MULPD- Multiply Packed Double Precision Floating-Point Values 5-247
MULPS- Multiply Packed Single Precision Floating-Point Values. 5-249
MULSD- Multiply Scalar Double-Precision Floating-Point Values. 5-251
MULSS- Multiply Scalar Single-Precision Floating-Point Values. 5-253
ORPD- Bitwise Logical OR of Packed Double Precision Floating-Point Values 5-255
ORPS- Bitwise Logical OR of Packed Single Precision Floating-Point Values 5-257
PABSB/PABSW/PABSD - Packed Absolute Value. 5-259
PACKSSWB/PACKSSDW- Pack with Signed Saturation . 5-262
PACKUSWB/PACKUSDW- Pack with Unsigned Saturation . 5-266
PADDB/PADDW/PADDD/PADDQ- Add Packed Integers . 5-269
PADDSB/PADDSW- Add Packed Signed Integers with Signed Saturation 5-273
PADDUSB/PADDUSW- Add Packed Unsigned Integers with Unsigned Saturation . 5-275
PALIGNR - Byte Align . 5-277
PAND- Logical AND . 5-279
PANDN- Logical AND NOT . 5-281
PAVGB/PAVGW - Average Packed Integers . 5-283
PBLENDVB - Variable Blend Packed Bytes . 5-285
PBLENDW - Blend Packed Words . 5-288
PCLMULQDQ - Carry-Less Multiplication Quadword . 5-290
PCMPESTRI - Packed Compare Explicit Length Strings, Return Index. 5-293
PCMPESTRM - Packed Compare Explicit Length Strings, Return Mask 5-295
5 Ref. # 319433-004

CONTENTS
PCMPISTRI - Packed Compare Implicit Length Strings, Return Index5-297
PCMPISTRM - Packed Compare Implicit Length Strings, Return Mask5-299
PCMPEQB/PCMPEQW/PCMPEQD/PCMPEQQ- Compare Packed Integers for Equality . . .5-

301
PCMPGTB/PCMPGTW/PCMPGTD/PCMPGTQ- Compare Packed Integers for Greater Than

5-305
VPERMILPD- Permute Double-Precision Floating-Point Values5-309
VPERMILPS- Permute Single-Precision Floating-Point Values .5-313
VPERM2F128- Permute Floating-Point Values. .5-317
PEXTRB/PEXTRW/PEXTRD/PEXTRQ- Extract Integer .5-319
PHADDW/PHADDD - Packed Horizontal Add .5-323
PHADDSW - Packed Horizontal Add with Saturation. .5-325
PHMINPOSUW - Horizontal Minimum and Position .5-327
PHSUBW/PHSUBD - Packed Horizontal Subtract .5-329
PHSUBSW - Packed Horizontal Subtract with Saturation .5-331
PINSRB/PINSRW/PINSRD/PINSRQ- Insert Integer .5-333
PMADDWD- Multiply and Add Packed Integers .5-337
PMADDUBSW- Multiply and Add Packed Integers. .5-339
PMAXSB/PMAXSW/PMAXSD- Maximum of Packed Signed Integers 5-341
PMAXUB/PMAXUW/PMAXUD- Maximum of Packed Unsigned Integers5-345
PMINSB/PMINSW/PMINSD- Minimum of Packed Signed Integers.5-349
PMINUB/PMINUW/PMINUD- Minimum of Packed Unsigned Integers 5-353
PMOVMSKB- Move Byte Mask .5-357
PMOVSX - Packed Move with Sign Extend .5-359
PMOVZX - Packed Move with Zero Extend .5-364
PMULHUW - Multiply Packed Unsigned Integers and Store High Result5-369
PMULHRSW - Multiply Packed Unsigned Integers with Round and Shift.5-371
PMULHW - Multiply Packed Integers and Store High Result .5-373
PMULLW/PMULLD - Multiply Packed Integers and Store Low Result5-375
PMULUDQ - Multiply Packed Unsigned Doubleword Integers .5-378
PMULDQ - Multiply Packed Doubleword Integers .5-380
POR - Bitwise Logical Or .5-382
PSADBW - Compute Sum of Absolute Differences. .5-384
PSHUFB - Packed Shuffle Bytes. .5-386
PSHUFD - Shuffle Packed Doublewords .5-388
PSHUFHW - Shuffle Packed High Words .5-390
PSHUFLW - Shuffle Packed Low Words .5-392
PSIGNB/PSIGNW/PSIGND - Packed SIGN .5-394
PSLLDQ - Byte Shift Left .5-398
PSRLDQ - Byte Shift Right .5-400
PSLLW/PSLLD/PSLLQ - Bit Shift Left .5-402
PSRAW/PSRAD - Bit Shift Arithmetic Right .5-407
PSRLW/PSRLD/PSRLQ - Shift Packed Data Right Logical .5-411
PTEST- Packed Bit Test .5-416
PSUBB/PSUBW/PSUBD/PSUBQ -Packed Integer Subtract .5-420
PSUBSB/PSUBSW -Subtract Packed Signed Integers with Signed Saturation.5-424
PSUBUSB/PSUBUSW -Subtract Packed Unsigned Integers with Unsigned Saturation . .5-
6 Ref. # 319433-004

CONTENTS
426
PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ - Unpack High Data 5-428
PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ - Unpack Low Data 5-432
PXOR - Exclusive Or . 5-436
RCPPS- Compute Approximate Reciprocals of Packed Single-Precision Floating-Point Val-

ues . 5-438
RCPSS - Compute Reciprocal of Scalar Single-Precision Floating-Point Value 5-441
RSQRTPS - Compute Approximate Reciprocals of Square Roots of Packed Single-Preci-

sion Floating-point Values . 5-443
RSQRTSS - Compute Reciprocal of Square Root of Scalar Single-Precision Floating-Point

Value . 5-446
ROUNDPD- Round Packed Double-Precision Floating-Point Values 5-448
ROUNDPS- Round Packed Single-Precision Floating-Point Values 5-452
ROUNDSD - Round Scalar Double-Precision Value. 5-455
ROUNDSS - Round Scalar Single-Precision Value. 5-457
SHUFPD - Shuffle Packed Double Precision Floating-Point Values 5-459
SHUFPS - Shuffle Packed Single Precision Floating-Point Values 5-462
SQRTPD- Square Root of Double-Precision Floating-Point Values. 5-465
SQRTPS- Square Root of Single-Precision Floating-Point Values 5-467
SQRTSD - Compute Square Root of Scalar Double-Precision Floating-Point Value. 5-469
SQRTSS - Compute Square Root of Scalar Single-Precision Value 5-471
VSTMXCSR—Store MXCSR Register State. 5-473
SUBPD- Subtract Packed Double Precision Floating-Point Values 5-474
SUBPS- Subtract Packed Single Precision Floating-Point Values 5-476
SUBSD- Subtract Scalar Double Precision Floating-Point Values 5-478
SUBSS- Subtract Scalar Single Precision Floating-Point Values 5-480
UCOMISD - Unordered Compare Scalar Double-Precision Floating-Point Values and Set

EFLAGS . 5-482
UCOMISS - Unordered Compare Scalar Single-Precision Floating-Point Values and Set

EFLAGS . 5-484
UNPCKHPD- Unpack and Interleave High Packed Double-Precision Floating-Point Values

5-486
UNPCKHPS- Unpack and Interleave High Packed Single-Precision Floating-Point Values

5-488
UNPCKLPD- Unpack and Interleave Low Packed Double-Precision Floating-Point Values

5-491
UNPCKLPS- Unpack and Interleave Low Packed Single-Precision Floating-Point Values .

5-493
XORPD- Bitwise Logical XOR of Packed Double Precision Floating-Point Values . . 5-496
XORPS- Bitwise Logical XOR of Packed Single Precision Floating-Point Values . . . 5-498
VZEROALL- Zero All YMM registers . 5-500
VZEROUPPER- Zero Upper bits of YMM registers . 5-502

CHAPTER 6
INSTRUCTION SET REFERENCE - FMA
6.1 FMA InstructIon SET Reference . 6-1

VFMADD132PD/VFMADD213PD/VFMADD231PD - Fused Multiply-Add of Packed Dou-
7 Ref. # 319433-004

CONTENTS
ble-Precision Floating-Point Values . 6-2
VFMADD132PS/VFMADD213PS/VFMADD231PS - Fused Multiply-Add of Packed Single-

Precision Floating-Point Values . 6-6
VFMADD132SD/VFMADD213SD/VFMADD231SD - Fused Multiply-Add of Scalar Double-

Precision Floating-Point Values . 6-10
VFMADD132SS/VFMADD213SS/VFMADD231SS - Fused Multiply-Add of Scalar Single-

Precision Floating-Point Values . 6-12
VFMADDSUB132PD/VFMADDSUB213PD/VFMADDSUB231PD - Fused Multiply-Alternat-

ing Add/Subtract of Packed Double-Precision Floating-Point Values. 6-15
VFMADDSUB132PS/VFMADDSUB213PS/VFMADDSUB231PS - Fused Multiply-Alternat-

ing Add/Subtract of Packed Single-Precision Floating-Point Values 6-19
VFMSUBADD132PD/VFMSUBADD213PD/VFMSUBADD231PD - Fused Multiply-Alternat-

ing Subtract/Add of Packed Double-Precision Floating-Point Values. 6-23
VFMSUBADD132PS/VFMSUBADD213PS/VFMSUBADD231PS - Fused Multiply-Alternat-

ing Subtract/Add of Packed Single-Precision Floating-Point Values 6-27
VFMSUB132PD/VFMSUB213PD/VFMSUB231PD - Fused Multiply-Subtract of Packed

Double-Precision Floating-Point Values. 6-31
VFMSUB132PS/VFMSUB213PS/VFMSUB231PS - Fused Multiply-Subtract of Packed

Single-Precision Floating-Point Values . 6-35
VFMSUB132SD/VFMSUB213SD/VFMSUB231SD - Fused Multiply-Subtract of Scalar

Double-Precision Floating-Point Values. 6-39
VFMSUB132SS/VFMSUB213SS/VFMSUB231SS - Fused Multiply-Subtract of Scalar Sin-

gle-Precision Floating-Point Values . 6-42
VFNMADD132PD/VFNMADD213PD/VFNMADD231PD - Fused Negative Multiply-Add of

Packed Double-Precision Floating-Point Values . 6-45
VFNMADD132PS/VFNMADD213PS/VFNMADD231PS - Fused Negative Multiply-Add of

Packed Single-Precision Floating-Point Values . 6-49
VFNMADD132SD/VFNMADD213SD/VFNMADD231SD - Fused Negative Multiply-Add of

Scalar Double-Precision Floating-Point Values . 6-53
VFNMADD132SS/VFNMADD213SS/VFNMADD231SS - Fused Negative Multiply-Add of

Scalar Single-Precision Floating-Point Values . 6-55
VFNMSUB132PD/VFNMSUB213PD/VFNMSUB231PD - Fused Negative Multiply-Sub-

tract of Packed Double-Precision Floating-Point Values . 6-57
VFNMSUB132PS/VFNMSUB213PS/VFNMSUB231PS - Fused Negative Multiply-Subtract

of Packed Single-Precision Floating-Point Values . 6-61
VFNMSUB132SD/VFNMSUB213SD/VFNMSUB231SD - Fused Negative Multiply-Sub-

tract of Scalar Double-Precision Floating-Point Values . 6-65
VFNMSUB132SS/VFNMSUB213SS/VFNMSUB231SS - Fused Negative Multiply-Subtract

of Scalar Single-Precision Floating-Point Values . 6-67
8 Ref. # 319433-004

TABLES
PAGE
Table 2-1Rounding behavior of Zero Result in FMA Operation . 2-6
Table 2-2FMA Numeric Behavior . 2-7
Table 2-3Alignment Faulting Conditions when Memory Access is Not Aligned. 2-11
Table 2-4instructions Requiring Explicitly Aligned Memory . 2-11
Table 2-5Instructions Not Requiring Explicit Memory Alignment . 2-12
Table 2-6Exception class description . 2-13
Table 2-7Instructions in each Exception Class. 2-14
Table 2-8#UD Exception and VEX.L Field Encoding . 2-17
Table 2-9Type 1 Class Exception Conditions . 2-18
Table 2-10Type 2 Class Exception Conditions. 2-19
Table 2-11Type 3 Class Exception Conditions. 2-20
Table 2-12Type 4 Class Exception Conditions. 2-21
Table 2-13Type 5 Class Exception Conditions. 2-22
Table 2-14Type 6 Class Exception Conditions. 2-23
Table 2-15Type 7 Class Exception Conditions. 2-24
Table 2-16Type 8 Class Exception Conditions. 2-24
Table 2-17Type 9 Class Exception Conditions. 2-25
Table 2-18Information Returned by CPUID Instruction . 2-30
Table 2-19Highest CPUID Source Operand for Intel 64 and IA-32 Processors 2-39
Table 2-20Processor Type Field . 2-40
Table 2-21Feature Information Returned in the ECX Register . 2-42
Table 2-22More on Feature Information Returned in the EDX Register. 2-46
Table 2-23Encoding of Cache and TLB Descriptors . 2-48
Table 2-24Processor Brand String Returned with Pentium 4 Processor . 2-54
Table 2-25Mapping of Brand Indices; and
Intel 64 and IA-32 Processor Brand Strings . 2-57
Table 2-26 XFEATURE_ENABLED_MASK and Processor State Components. 3-3
Table 2-27 CR4 bits for AVX New Instructions technology support . 3-3
Table 2-28 Layout of XSAVE Area For Processor Supporting YMM State . 3-4
Table 2-29XSAVE Header Format . 3-4
Table 2-30XSAVE Save Area Layout for YMM State (Ext_Save_Area_2) . 3-5
Table 2-31XRSTOR Action on MXCSR, XMM Registers, YMM Registers . 3-5
Table 2-32 Processor Supplied Init Values XRSTOR May Use . 3-6
Table 2-33XSAVE Action on MXCSR, XMM, YMM Register . 3-6
Table 2-34VEX.vvvv to register name mapping . 4-8
Table 2-35Instructions with a VEX.vvvv destination . 4-9
Table 2-36Interpreting VEX.vvvv, reg_field, and rm_field. 4-10
Table 2-37 VEX.m-mmmm interpretation . 4-11
Table 2-38VEX.L interpretation . 4-12
Table 2-39VEX.pp interpretation. 4-12
Table 2-40Byte and 32-bit Word Representation of a 128-bit State . 5-7
Table 2-41Matrix Representation of a 128-bit State . 5-7
Table 2-42Little Endian Representation of a 128-bit State . 5-7
Table 2-43Little Endian Representation of a 4x4 Byte Matrix . 5-7
Ref. # 319433-004 1

Table 2-44The ShiftRows Transformation. 5-9
Table 2-45Look-up Table Associated with S-Box Transformation . 5-10
Table 2-46The InvShiftRows Transformation . 5-11
Table 2-47Look-up Table Associated with InvS-Box Transformation . 5-12
Table 2-48Comparison Predicate for CMPPD and CMPPS Instructions . 5-60
Table 2-49Pseudo-Op and CMPPD Implementation . 5-63
Table 2-50Pseudo-Op and VCMPPD Implementation . 5-63
Table 2-51Pseudo-Op and CMPPS Implementation . 5-68
Table 2-52Pseudo-Op and VCMPPS Implementation. 5-69
Table 2-53Pseudo-Op and CMPSD Implementation . 5-75
Table 2-54Pseudo-Op and VCMPSD Implementation. 5-76
Table 2-55Pseudo-Op and CMPSS Implementation . 5-80
Table 2-56Pseudo-Op and VCMPSS Implementation . 5-81
Table 2-57PCLMULQDQ Quadword Selection of Immediate Byte .5-290
Table 2-58Pseudo-Op and PCLMULQDQ Implementation. .5-291
Table 2-59Promoted SSE/SSE2/SSE3/SSSE3/SSE4 Instructions. A-2
Table 2-60AVX, FMA and AES New Instructions . A-10
2 Ref. # 319433-004

FIGURES
PAGE
Figure 2-1. General Procedural Flow of Application Detection of AVX . 2-2
Figure 2-2. Version Information Returned by CPUID in EAX . 2-40
Figure 2-3. Feature Information Returned in the ECX Register. 2-42
Figure 2-4. Feature Information Returned in the EDX Register . 2-45
Figure 2-5. Determination of Support for the Processor Brand String . 2-54
Figure 2-6. Algorithm for Extracting Maximum Processor Frequency . 2-56
Figure 4-7. Instruction Encoding Format with VEX Prefix . 4-2
Figure 4-8. VEX bitfields. 4-5
Figure 5-1. VBROADCASTSS Operation (VEX.256 encoded version) . 5-56
Figure 5-2. VBROADCASTSS Operation (128-bit version) . 5-56
Figure 5-3. VBROADCASTSD Operation. 5-57
Figure 5-4. VBROADCASTF128 Operation . 5-57
Figure 5-5. CVTDQ2PD (VEX.256 encoded version) . 5-89
Figure 5-6. VCVTPD2DQ (VEX.256 encoded version) . 5-93
Figure 5-7. VCVTPD2PS (VEX.256 encoded version) . 5-96
Figure 5-8. CVTPS2PD (VEX.256 encoded version). .5-101
Figure 5-9. VCVTTPD2DQ (VEX.256 encoded version) .5-116
Figure 5-10. VHADDPD operation .5-141
Figure 5-11. VHADDPS operation .5-143
Figure 5-12. VHSUBPD operation .5-146
Figure 5-13. VHSUBPS operation. .5-148
Figure 5-14. VMOVDDUP Operation .5-195
Figure 5-15. MOVSHDUP Operation .5-228
Figure 5-16. MOVSLDUP Operation .5-231
Figure 5-17. PACKSSDW Instruction Operation using 64-bit Operands .5-263
Figure 5-18. VPERMILPD operation .5-310
Figure 5-19. VPERMILPD Shuffle Control .5-310
Figure 5-20. VPERMILPS Operation. .5-314
Figure 5-21. VPERMILPS Shuffle Control. .5-314
Figure 5-22. VPERM2F128 Operation .5-317
Figure 5-23. PSHUFD Instruction Operation .5-388
Figure 5-24. PUNPCKHDQ Instruction Operation .5-429
Figure 5-25. PUNPCKLBW Instruction Operation using 64-bit Operands 5-433
Figure 5-26. VROUNDxx immediate control field definition .5-449
Figure 5-27. VSHUFPD Operation .5-460
Figure 5-28. VSHUFPS Operation. .5-463
Figure 5-29. VUNPCKHPS Operation. .5-489
Figure 5-30. VUNPCKLPS Operation .5-494
1 Ref. # 319433-004

2 Ref. # 319433-004

INTEL® ADVANCED VECTOR EXTENSIONS
CHAPTER 1
INTEL® ADVANCED VECTOR EXTENSIONS

1.1 ABOUT THIS DOCUMENT
This document describes the software programming interfaces of several vector
SIMD instruction extensions of the Intel® 64 architecture that will be introduced
starting with Intel 64 processors built on 32nm process technology. The instruction
set extensions covered in this document, with respect to availability in different
processor generations, is referred to by the following categories:

• General-purpose encryption and AES: 128-bit SIMD extensions targeted to
accelerate high-speed block encryption and cryptographic processing using the
Advanced Encryption Standard.

• Intel® Advanced Vector Extensions (AVX) introduces 256-bit vector processing
capability and includes two components to be introduced on Intel processor
generations built from 32nm process and beyond:

— The first generation Intel AVX provides 256-bit SIMD register support, 256-
bit vector floating-point instructions, enhancements to 128-bit SIMD instruc-
tions, support for three and four operand syntax.

— FMA is a future extension of Intel AVX, FMA provides floating-point, fused
multiply-add instructions supporting 256-bit and 128-bit SIMD vectors.

Chapter 1 provides an overview of these instruction set extensions. Chapter 2 de-
scribes the application programming environment. Chapter 3 describes system
programming requirements needed to support 256-bit registers. Chapter 4 de-
scribes the architectural extensions of Intel 64 instruction encoding format that
support 256-bit registers, three and four operand syntax. Chapter 5 provides de-
tailed instruction reference for AVX and encryption/AES instructions. Chapter 6
provides detailed instruction reference for FMA instructions.

1.2 OVERVIEW
Intel® Advanced Vector Extensions extend beyond the capabilities and program-
ming environment over those of multiple generations of Streaming SIMD Exten-
sions. Intel AVX address the continued need for vector floating-point performance
in mainstream scientific and engineering numerical applications, visual processing,
recognition, data-mining/synthesis, gaming, physics, cryptography and other ar-
eas of applications. Intel AVX is designed to facilitate efficient implementation by
wide spectrum of software architectures of varying degrees of thread parallelism,
and data vector lengths. Intel AVX offers the following benefits:

• efficient building blocks for applications targeted across all segments of
computing platforms.
Ref. # 319433-004 1

INTEL® ADVANCED VECTOR EXTENSIONS
• significant increase in floating-point performance density with good power
efficiency over previous generations of 128-bit SIMD instruction set extensions,

• scalable performance with multi-core processor capability.
Intel AVX also establishes a foundation for future evolution in both instruction set
functionality and vector lengths by introducing an efficient instruction encoding
scheme, three and four operand instruction syntax, supporting load and store
masking, etc.
Intel Advanced Vector Extensions offers comprehensive architectural enhance-
ments and functional enhancements in arithmetic as well as data processing prim-
itives. Section 1.3 summarizes the architectural enhancement of AVX. Functional
overview of AVX and FMA instructions are summarized in Section 1.4. General-pur-
pose encryption and AES instructions follow the existing architecture of 128-bit
SIMD instruction sets like SSE4 and its predecessors, Section 1.5 provides a short
summary.

1.3 INTEL® ADVANCED VECTOR EXTENSIONS
ARCHITECTURE OVERVIEW

Intel AVX has many similarities to the SSE and double-precision floating-point por-
tions of SSE2. However, Intel AVX introduces the following architectural enhance-
ments:

• Support for 256-bit wide vectors and SIMD register set. 256-bit register state is
managed by Operating System using XSAVE/XRSTOR instructions introduced in
45 nm Intel 64 processors (see IA-32 Intel® Architecture Software Developer’s
Manual, Volumes 2B and 3A).

• Instruction syntax support for generalized three-operand syntax to improve
instruction programming flexibility and efficient encoding of new instruction
extensions.

• Enhancement of legacy 128-bit SIMD instruction extensions to support three-
operand syntax and to simplify compiler vectorization of high-level language
expressions.

• Instruction encoding format using a new prefix (referred to as VEX) to provide
compact, efficient encoding for three-operand syntax, vector lengths,
compaction of SIMD prefixes and REX functionality.

• FMA extensions and enhanced floating-point compare instructions add support
for IEEE-754-2008 standard.

1.3.1 256-Bit Wide SIMD Register Support
Intel AVX introduces support for 256-bit wide SIMD registers (YMM0-YMM7 in oper-
ating modes that are 32-bit or less, YMM0-YMM15 in 64-bit mode). The lower 128-
bits of the YMM registers are aliased to the respective 128-bit XMM registers.
2 Ref. # 319433-004

INTEL® ADVANCED VECTOR EXTENSIONS
1.3.2 Instruction Syntax Enhancements
Intel AVX employs an instruction encoding scheme using a new prefix (known as
“VEX” prefix). Instruction encoding using the VEX prefix can directly encode a
register operand within the VEX prefix. This support two new instruction syntax in
Intel 64 architecture:

• A non-destructive operand (in a three-operand instruction syntax): The non-
destructive source reduces the number of registers, register-register copies and
explicit load operations required in typical SSE loops, reduces code size, and
improves micro-fusion opportunities.

• A third source operand (in a four-operand instruction syntax) via the upper 4 bits
in an 8-bit immediate field. Support for the third source operand is defined for
selected instructions (e.g. VBLENDVPD, VBLENDVPS, PBLENDVB).

Two-operand instruction syntax previously expressed as

ADDPS xmm1, xmm2/m128

now can be expressed in three-operand syntax as

VADDPS xmm1, xmm2, xmm3/m128

In four-operand syntax, the extra register operand is encoded in the immediate byte.

XMM0YMM0

XMM1YMM1

. . .
XMM15YMM15

Bit#
0127128255
Ref. # 319433-004 3

INTEL® ADVANCED VECTOR EXTENSIONS
Note SIMD instructions supporting three-operand syntax but processing only 128-
bits of data are considered part of the 256-bit SIMD instruction set extensions of
AVX, because bits 255:128 of the destination register are zeroed by the processor.

1.3.3 VEX Prefix Instruction Encoding Support
Intel AVX introduces a new prefix, referred to as VEX, in the Intel 64 and IA-32
instruction encoding format. Instruction encoding using the VEX prefix provides the
following capabilities:

• Direct encoding of a register operand within VEX. This provides instruction syntax
support for non-destructive source operand.

• Efficient encoding of instruction syntax operating on 128-bit and 256-bit register
sets.

• Compaction of REX prefix functionality: The equivalent functionality of the REX
prefix is encoded within VEX.

• Compaction of SIMD prefix functionality and escape byte encoding: The function-
ality of SIMD prefix (66H, F2H, F3H) on opcode is equivalent to an opcode
extension field to introduce new processing primitives. This functionality is
replaced by a more compact representation of opcode extension within the VEX
prefix. Similarly, the functionality of the escape opcode byte (0FH) and two-byte
escape (0F38H, 0F3AH) are also compacted within the VEX prefix encoding.

• Most VEX-encoded SIMD numeric and data processing instruction semantics with
memory operand have relaxed memory alignment requirements than instruc-
tions encoded using SIMD prefixes (see Section 2.5).

VEX prefix encoding applies to SIMD instructions operating on YMM registers, XMM
registers, and in some cases with a general-purpose register as one of the operand.
VEX prefix is not supported for instructions operating on MMX or x87 registers.
Details of VEX prefix and instruction encoding are discussed in Chapter 4.

1.4 FUNCTIONAL OVERVIEW
Intel AVX and FMA provide comprehensive functional improvements over previous
generations of SIMD instruction extensions. The functional improvements include:

• 256-bit floating-point arithmetic primitives: AVX enhances existing 128-bit
floating-point arithmetic instructions with 256-bit capabilities for floating-point
processing. FMA provides additional set of 256-bit floating-point processing
capabilities with a rich set of fused-multiply-add and fused multiply-subtract
primitives.

• Enhancements for flexible SIMD data movements: AVX provides a number of
new data movement primitives to enable efficient SIMD programming in relation
to loading non-unit-strided data into SIMD registers, intra-register SIMD data
manipulation, conditional expression and branch handling, etc. Enhancements
4 Ref. # 319433-004

INTEL® ADVANCED VECTOR EXTENSIONS
for SIMD data movement primitives cover 256-bit and 128-bit vector floating-
point data, and across 128-bit integer SIMD data processing using VEX-encoded
instructions.

Several key categories of functional improvements in AVX and FMA are summarized
in the following subsections.

1.4.1 256-bit Floating-Point Arithmetic Processing Enhancements
Intel AVX provides 35 256-bit floating-point arithmetic instructions. The arithmetic
operations cover add, subtract, multiply, divide, square-root, compare, max, min,
round, etc., on single-precision and double-precision floating-point data.

The enhancement in AVX on floating-point compare operation provides 32 condi-
tional predicates to improve programming flexibility in evaluating conditional expres-
sions.

FMA provides 36 256-bit floating-point instructions to perform computation on 256-
bit vectors. The arithmetic operations cover fused multiply-add, fused multiply-
subtract, fused multiply add/subtract interleave, signed-reversed multiply on fused
multiply-add and multiply-subtract.

1.4.2 256-bit Non-Arithmetic Instruction Enhancements
Intel AVX provides new primitives for handling data movement within 256-bit
floating-point vectors and promotes many 128-bit floating data processing instruc-
tions to handle 256-bit floating-point vectors.

AVX includes 33 256-bit data processing instructions that are promoted from
previous generations of SIMD instruction extensions, ranging from logical, blend,
convert, test, unpacking, shuffling, load and stores.

AVX introduces 19new data processing instructions that operate on 256-bit vectors.
These new primitives cover the following operations:

• Non-unit-strided fetching of SIMD data. AVX provides several flexible SIMD
floating-point data fetching primitives:

— broadcast of single or multiple data elements into a 256-bit destination,

— masked move primitives to load or store SIMD data elements conditionally,

• Intra-register manipulation of SIMD data elements. AVX provides several flexible
SIMD floating-point data manipulation primitives:

— insert/extract multiple SIMD floating-point data elements to/from 256-bit
SIMD registers

— permute primitives to facilitate efficient manipulation of floating-point data
elements in 256-bit SIMD registers

• Branch handling. AVX provides several primitives to enable handling of branches
in SIMD programming:
Ref. # 319433-004 5

INTEL® ADVANCED VECTOR EXTENSIONS
— new variable blend instructions supports four-operand syntax with non-
destructive source syntax. This is more flexible than the equivalent SSE4
instruction syntax which uses the XMM0 register as the implied mask for
blend selection.

— Packed TEST instructions for floating-point data.

1.4.3 Arithmetic Primitives for 128-bit Vector and Scalar processing
Intel AVX provides 131 128-bit numeric processing instructions that employ VEX-
prefix encoding. These VEX-encoded instructions generally provide the same func-
tionality over instructions operating on XMM register that are encoded using SIMD
prefixes. The 128-bit numeric processing instructions in AVX cover floating-point and
integer data processing; across 128-bit vector and scalar processing.

The enhancement in AVX on 128-bit floating-point compare operation provides 32
conditional predicates to improve programming flexibility in evaluating conditional
expressions. This contrasts with floating-point SIMD compare instructions in SSE and
SSE2 supporting only 8 conditional predicates.

FMA provides 60 128-bit floating-point instructions to process 128-bit vector and
scalar data. The arithmetic operations cover fused multiply-add, fused multiply-
subtract, signed-reversed multiply on fused multiply-add and multiply-subtract.

1.4.4 Non-Arithmetic Primitives for 128-bit Vector and Scalar
Processing

Intel AVX provides 126 data processing instructions that employ VEX-prefix
encoding. These VEX-encoded instructions generally provide the same functionality
over instructions operating on XMM register that are encoded using SIMD prefixes.
The 128-bit data processing instructions in AVX cover floating-point and integer data
movement primitives.

Additional enhancements in AVX on 128-bit data processing primitives include 16
new instructions with the following capabilities:

• Non-unit-strided fetching of SIMD data. AVX provides several flexible SIMD
floating-point data fetching primitives:

— broadcast of single data element into a 128-bit destination,

— masked move primitives to load or store SIMD data elements conditionally,

• Intra-register manipulation of SIMD data elements. AVX provides several flexible
SIMD floating-point data manipulation primitives:

— permute primitives to facilitate efficient manipulation of floating-point data
elements in 128-bit SIMD registers

• Branch handling. AVX provides several primitives to enable handling of branches
in SIMD programming:
6 Ref. # 319433-004

INTEL® ADVANCED VECTOR EXTENSIONS
— new variable blend instructions supports four-operand syntax with non-
destructive source syntax. Branching conditions dependent on floating-point
data or integer data can benefit from Intel AVX. This is more flexible than
non-VEX encoded instruction syntax that uses the XMM0 register as implied
mask for blend selection. While variable blend with implied XMM0 syntax is
supported in SSE4 using SIMD prefix encoding, VEX-encoded 128-bit variable
blend instructions only support the more flexible four-operand syntax.

— Packed TEST instructions for floating-point data.

1.5 GENERAL ENCRYPTION AND CRYPTOGRAPHIC
PROCESSING

Intel 64 processors using 32nm processing technology introduces several primitives
targeted to accelerate general-purpose block encryption and cryptographic functions
using the Advanced Encryption Standard (AES) of block cipher encryption and
decryption on 128-bit blocks.

General-purpose block encryption primitives are provided by PCLMULQDQ instruc-
tion, which can perform carry-less multiplication for two binary numbers up to 64-bit
wide.

AES encryption involves processing 128-bit input data (plaintext) through a finite
number of iterative operation, referred to as “AES round”, into a 128-bit encrypted
block (ciphertext). Decryption follows the reverse direction of iterative operation
using the “equivalent inverse cipher” instead of the “inverse cipher“.

The cryptographic processing at each round involves two input data, one is the
“state“, the other is the “round key“. Each round uses a different “round key“. The
round keys are derived from the cipher key using a “key schedule“ algorithm. The
“key schedule“ algorithm is independent of the data processing of encryp-
tion/decryption, and can be carried out independently from the encryption/decryp-
tion phase.

The AES standard supports cipher key of sizes 128, 192, and 256 bits. The respective
cipher key sizes correspond to 10, 12, and 14 rounds of iteration.

The AES extensions provide two primitives to accelerate AES rounds on encryption,
two primitives for AES rounds on decryption using the equivalent inverse cipher, and
two instructions to support the AES key expansion procedure.
Ref. # 319433-004 7

INTEL® ADVANCED VECTOR EXTENSIONS
§

This p
age was

intentionally left

blank.
8 Ref. # 319433-004

APPLICATION PROGRAMMING MODEL
CHAPTER 2
APPLICATION PROGRAMMING MODEL

The application programming model for Intel AVX, FMA, AES and encryption primi-
tives extend from that of Streaming SIMD Extensions (SSE) and is summarized as
follows:

• The AES extensions and carry-less multiplication instruction (PCLMULQDQ)
follow the same programming model as SSE, SSE2, SSE3, SSSE3, and SSE4 (see
IA-32 Intel Architecture Software Developer’s Manual, Volume 1). The detection
of AES and PCLMULQDQ is described in Section 2.1.

• The AVX and FMA extensions follow a programming model analogous to that of
SSE with minor differences. This is described in Section 2.1 through Section 2.8.
Note however that the OS support and detection process has changed consid-
erably.

• The numeric exception behavior of FMA is similar to previous generations of SIMD
floating-point instructions. The specific details are described in Section 2.3.

CPUID instruction details for detecting AVX, FMA, AES, PCLMULQDQ are described in
Section 2.9.

2.1 DETECTION OF PCLMULQDQ AND AES INSTRUCTIONS
Before an application attempts to use the following AES instructions:
AESDEC/AESDECLAST/AESENC/AESENCLAST/AESIMC/AESKEYGENASSIST, it must
check that the processor supports the AES extensions. AES extensions is supported
if CPUID.01H:ECX.AES[bit 25] = 1.

Prior to using PCLMULQDQ instruction, application must check if
CPUID.01H:ECX.PCLMULQDQ[bit 1] = 1.

Operating systems that support handling SSE state will also support applications that
use AES extensions and PCLMULQDQ instruction. This is the same requirement for
SSE2, SSE3, SSSE3, and SSE4.

2.2 DETECTION OF AVX AND FMA INSTRUCTIONS
AVX and FMA operate on the 256-bit YMM register state. System software require-
ments to support YMM state is described in Chapter 3.

Application detection of new instruction extensions operating on the YMM state
follows the general procedural flow in Figure 2-1.
Ref. # 319433-004 1

APPLICATION PROGRAMMING MODEL
Prior to using AVX, the application must identify that the operating system supports
the XGETBV instruction, the YMM register state, in addition to processor’s support for
YMM state management using XSAVE/XRSTOR and AVX instructions. The following
simplified sequence accomplishes both and is strongly recommended.

1) Detect CPUID.1:ECX.OSXSAVE[bit 27] = 1 (XGETBV enabled for application use1)

2) Issue XGETBV and verify that XFEATURE_ENABLED_MASK[2:1] = ‘11b’ (XMM
state and YMM state are enabled by OS).

3) detect CPUID.1:ECX.AVX[bit 28] = 1 (AVX instructions supported).

(Step 3 can be done in any order relative to 1 and 2)

The following pseudocode illustrates this recommended application AVX detection
process:

--

INT supports_AVX()

{ ; result in eax

mov eax, 1

cpuid

Figure 2-1. General Procedural Flow of Application Detection of AVX

1. If CPUID.01H:ECX.OSXSAVE reports 1, it also indirectly implies the processor supports XSAVE,
XRSTOR, XGETBV, processor extended state bit vector XFEATURE_ENALBED_MASK register.
Thus an application may streamline the checking of CPUID feature flags for XSAVE and OSXSAVE.
XSETBV is a privileged instruction.

Implied HW support for

Check enabled state in

XFEM via XGETBV
Check feature flag

for Instruction set

Check feature flag

CPUID.1H:ECX.OXSAVE = 1?

OS provides processor
extended state management

State ok to use

XSAVE, XRSTOR, XGETBV, XFEATURE_ENABLED_MASK

enabled Instructions

Yes
2 Ref. # 319433-004

APPLICATION PROGRAMMING MODEL
and ecx, 018000000H

cmp ecx, 018000000H; check both OSXSAVE and AVX feature flags

 jne not_supported

; processor supports AVX instructions and XGETBV is enabled by OS

mov ecx, 0; specify 0 for XFEATURE_ENABLED_MASK register

XGETBV; result in EDX:EAX

and eax, 06H

cmp eax, 06H; check OS has enabled both XMM and YMM state support

jne not_supported

mov eax, 1

jmp done

NOT_SUPPORTED:

mov eax, 0

done:

}

Note: It is unwise for an application to rely exclusively on CPUID.1:ECX.AVX[bit 28]
or at all on CPUID.1:ECX.XSAVE[bit 26]: These indicate hardware support but not
operating system support. If YMM state management is not enabled by an operating
systems, AVX instructions will #UD regardless of CPUID.1:ECX.AVX[bit 28].
“CPUID.1:ECX.XSAVE[bit 26] = 1” does not guarantee the OS actually uses the
XSAVE process for state management.

These steps above also apply to enhanced 128-bit SIMD floating-pointing instruc-
tions in AVX (using VEX prefix-encoding) that operate on the YMM states. Application
detection of VEX-encoded AES is described in Section 2.2.2.

2.2.1 Detection of FMA
Hardware support for FMA is indicated by CPUID.1:ECX.FMA[bit 12]=1.

Application Software must identify that hardware supports AVX as explained in
Section 2.2, after that it must also detect support for FMA by CPUID.1:ECX.FMA[bit
12]. The recommended pseudocode sequence for detection of FMA is:

--

INT supports_fma()

{ ; result in eax

mov eax, 1

cpuid

and ecx, 018001000H
Ref. # 319433-004 3

APPLICATION PROGRAMMING MODEL
cmp ecx, 018001000H; check OSXSAVE, AVX, FMA feature flags

 jne not_supported

; processor supports AVX,FMA instructions and XGETBV is enabled by OS

mov ecx, 0; specify 0 for XFEATURE_ENABLED_MASK register

XGETBV; result in EDX:EAX

and eax, 06H

cmp eax, 06H; check OS has enabled both XMM and YMM state support

jne not_supported

mov eax, 1

jmp done

NOT_SUPPORTED:

mov eax, 0

done:

}

Note that FMA comprises of 256-bit and 128-bit SIMD instructions operating on YMM
states.

2.2.2 Detection of VEX-Encoded AES
VAESDEC/VAESDECLAST/VAESENC/VAESENCLAST/VAESIMC/VAESKEYGENASSIST
instructions operate on YMM states. The detection sequence must combine checking
for CPUID.1:ECX.AES[bit 25] = 1 and the sequence for detection application support
for AVX.

This is shown in the pseudocode:

--

INT supports_VAES()

{ ; result in eax

mov eax, 1

cpuid

and ecx, 01A000000H

cmp ecx, 01A000000H; check OSXSAVE, AVX and AES feature flags

 jne not_supported

; processor supports AVX and VEX.128-encoded AES instructions and XGETBV
is enabled by OS

mov ecx, 0; specify 0 for XFEATURE_ENABLED_MASK register

XGETBV; result in EDX:EAX
4 Ref. # 319433-004

APPLICATION PROGRAMMING MODEL
and eax, 06H

cmp eax, 06H; check OS has enabled both XMM and YMM state support

jne not_supported

mov eax, 1

jmp done

NOT_SUPPORTED:

mov eax, 0

done:

}

2.3 FUSED-MULTIPLY-ADD (FMA) NUMERIC BEHAVIOR
FMA instructions can perform fused-multiply-add operations (including fused-
multiply-subtract, and other varieties) on packed and scalar data elements in the
instruction operands. FMA instruction provide separate instructions to handle
different types of arithmetic operations on the three source operands.

FMA instruction syntax is defined using three source operands and the first source
operand is updated based on the result of the arithmetic operations of the data
elements of 128-bit or 256-bit operands, i.e. The first source operand is also the
destination operand.

The arithmetic FMA operation performed in an FMA instruction takes one of several
forms, r=(x*y)+z, r=(x*y)-z, r=-(x*y)+z, or r=-(x*y)-z. Packed FMA instructions
can perform eight single-precision FMA operations or four double-precision FMA
operations with 256-bit vectors.

Scalar FMA instructions only perform one arithmetic operation on the low order data
element. The content of the rest of the data elements in the lower 128-bits of the
destination operand is preserved. the upper 128bits of the destination operand are
filled with zero.

An arithmetic FMA operation of the form, r=(x*y)+z, takes two IEEE-754-2008
single (double) precision values and multiplies them to form an infinite precision
intermediate value. This intermediate value is added to a third single (double) preci-
sion value (also at infinite precision) and rounded to produce a single (double) preci-
sion result.

Table 2-2 describes the numerical behavior of the FMA operation, r=(x*y)+z,
r=(x*y)-z, r=-(x*y)+z, r=-(x*y)-z for various input values. The input values can be
0, finite non-zero (F in Table 2-2), infinity of either sign (INF in Table 2-2), positive
infinity (+INF in Table 2-2), negative infinity (-INF in Table 2-2), or NaN (including
QNaN or SNaN). If any one of the input values is a NAN, the result of FMA operation,
Ref. # 319433-004 5

APPLICATION PROGRAMMING MODEL
r, may be a quietized NAN. The result can be either Q(x), Q(y), or Q(z), see Table 2-2.
If x is a NaN, then:

• Q(x) = x if x is QNaN or

• Q(x) = the quietized NaN obtained from x if x is SNaN

The notation for output value in Table 2-2 are:

• “+INF”: positive infinity, “-INF”: negative infinity. When the result depends on a
conditional expression, both values are listed in the result column and the
condition is described in the comment column.

• QNaNIndefinite represents the QNaN which has the sign bit equal to 1, the
second most significand field equal to 1, and the remaining significand field bits
equal to 0.

• The summation or subtraction of 0s or identical values in FMA operation can lead
to the following situations shown in Table 2-1

Table 2-1. Rounding behavior of Zero Result in FMA Operation
x*y z (x*y) + z (x*y) - z - (x*y) + z - (x*y) - z

(+0) (+0)
+0 in all rounding
modes

- 0 when rounding
down, and +0
otherwise

- 0 when rounding
down, and +0
otherwise

- 0 in all rounding
modes

(+0) (-0)
- 0 when rounding
down, and +0
otherwise

+0 in all rounding
modes

- 0 in all rounding
modes

- 0 when rounding
down, and +0
otherwise

(-0) (+0)
- 0 when rounding
down, and +0
otherwise

- 0 in all rounding
modes

+ 0 in all rounding
modes

- 0 when rounding
down, and +0
otherwise

(-0) (-0)
- 0 in all rounding
modes

- 0 when rounding
down, and +0
otherwise

- 0 when rounding
down, and +0
otherwise

+ 0 in all rounding
modes

F -F
- 0 when rounding
down, and +0
otherwise

2*F -2*F - 0 when rounding
down, and +0
otherwise

F F
2*F - 0 when rounding

down, and +0
otherwise

- 0 when rounding
down, and +0
otherwise

-2*F
6 Ref. # 319433-004

APPLICATION PROGRAMMING MODEL
Table 2-2. FMA Numeric Behavior

x y z
r=(x*y)

+z
r=(x*y) -

z
r =

-(x*y)+z
r=

-(x*y)-z
Comment

NaN
0, F,
INF,
NaN

0, F,
INF,
NaN

Q(x) Q(x) Q(x) Q(x)
Signal invalid excep-
tion if x or y or z is
SNaN

0, F,
INF

NaN
0, F,
INF,
NaN

Q(y) Q(y) Q(y) Q(y)
Signal invalid excep-
tion if y or z is SNaN

0, F,
INF

0, F,
INF

NaN Q(z) Q(z) Q(z) Q(z)
Signal invalid excep-
tion if z is SNaN

INF F, INF +INF
+INF

QNaNIn-
definite

QNaNIn-
definite

-INF
if x*y and z have the
same sign

QNaNIn-
definite

 -INF +INF
QNaNIn-
definite

if x*y and z have
opposite signs

INF F, INF -INF
-INF

QNaNIn-
definite

QNaNIn-
definite

+INF
if x*y and z have the
same sign

QNaNIn-
definite

 +INF -INF
QNaNIn-
definite

if x*y and z have
opposite signs

INF F, INF 0, F
+INF +INF -INF -INF

if x and y have the
same sign

-INF -INF +INF +INF
if x and y have oppo-
site signs

INF 0
0, F,
INF

QNaNIn-
definite

QNaNIn-
definite

QNaNIn-
definite

QNaNIn-
definite

Signal invalid excep-
tion

0 INF
0, F,
INF

QNaNIn-
definite

QNaNIn-
definite

QNaNIn-
definite

QNaNIn-
definite

Signal invalid excep-
tion

F INF +INF
+INF

QNaNIn-
definite

QNaNIn-
definite

-INF
if x*y and z have the
same sign

QNaNIn-
definite

-INF +INF
 QNaNIn-
definite

if x*y and z have
opposite signs

F INF -INF
-INF

QNaNIn-
definite

QNaNIn-
definite

+INF
if x*y and z have the
same sign

QNaNIn-
definite

+INF -INF
QNaNIn-
definite

if x*y and z have
opposite signs

F INF 0,F
 +INF +INF -INF -INF if x * y > 0

-INF -INF +INF +INF if x * y < 0

0,F 0,F INF
 +INF -INF +INF -INF if z > 0

-INF +INF -INF +INF if z < 0
Ref. # 319433-004 7

APPLICATION PROGRAMMING MODEL
If unmasked floating-point exceptions are signaled (invalid operation, denormal
operand, overflow, underflow, or inexact result) the result register is left unchanged
and a floating-point exception handler is invoked.

0 0 0 0 0 0 0 The sign of the
result depends on
the sign of the oper-
ands and on the
rounding mode. The
product x*y is +0 or
-0, depending on the
signs of x and y. The
summation/subtrac-
tion of the zero rep-
resenting (x*y) and
the zero represent-
ing z can lead to one
of the four cases
shown in Table 2-1.

0 F 0 0 0 0 0

F 0 0 0 0 0 0

0 0 F z -z z -z

0 F F z -z z -z

F 0 F z -z z -z

F F 0 x*y x*y -x*y -x*y

Rounded to the des-
tination precision,
with bounded expo-
nent

F F F (x*y)+z (x*y)-z -(x*y)+z -(x*y)-z

Rounded to the des-
tination precision,
with bounded expo-
nent; however, if the
exact values of x*y
and z are equal in
magnitude with
signs resulting in the
FMA operation pro-
ducing 0, the round-
ing behavior
described in
Table 2-1.

x y z r=(x*y)
+z

r=(x*y) -
z

r =
-(x*y)+z

r=
-(x*y)-z

Comment
8 Ref. # 319433-004

APPLICATION PROGRAMMING MODEL
2.3.1 FMA Instruction Operand Order and Arithmetic Behavior
FMA instruction mnemonics are defined explicitly with an ordered three digits, e.g.
VMADD132PD. The value of each digit refer to the ordering of the three source
operand as defined by instruction encoding specification (see Table 4-36):

• 1: The first source operand (also the destination operand) in the syntactical order
listed in this specification.

• 2: The second source operand in the syntactical order. This is a YMM/XMM
register, encoded using VEX prefix.

• 3: The third source operand in the syntactical order. The first and third operand
are encoded following ModR/M encoding rules.

The ordering of each digit within the mnemonic refers to the floating-point data listed
on the right-hand side of the arithmetic equation of each FMA operation (see
Table 2-2):

• The first position in the three digit ordering of a FMA mnemonic refers to the first
FP data expressed in the arithmetic equation of FMA operation, the multiplicand.

• The second position in the three digit FMA mnemonic refers to the second FP data
expressed in the arithmetic equation of FMA operation, the multiplier.

• The third position in the three digit FMA mnemonic refers to the FP data being
added/subtracted to the multiplication result.

Note non-numerical result of an FMA operation do not resemble the mathematically-
defined commutative property between the multiplicand and the multiplier values
(see Table 2-2). Consequently, software tools (such as an assembler) may support a
complementary set of FMA mnemonics for each FMA instruction for ease of program-
ming to take advantage of the mathematical property of commutative multiplica-
tions. For example, an assembler may optionally support the complementary
mnemonic “VMADD312PD“ in addition to the true mnemonic “VMADD132PD“. The
assembler will generate the same instruction opcode sequence corresponding to
VMADD132PD. The processor executes VMADD132PD and report any NAN conditions
based on the definition of VMADD132PD. Similarly, if the complementary mnemonic
VMADD123PD is supported by an assembler at source level, it must generate the
opcode sequence corresponding to VMADD213PD; the complementary mnemonic
VMADD321PD must produce the opcode sequence defined by VMADD231PD. In the
absence of FMA operations reporting a NAN result, the numerical results of using
either mnemonic with an assembler supporting both mnemonics will match the
behavior defined in Table 2-2. Support for the complementary FMA mnemonics by
software tools is optional.

2.4 ACCESSING YMM REGISTERS
The lower 128 bits of a YMM register is aliased to the corresponding XMM register.
Legacy SSE instructions (i.e. SIMD instructions operating on XMM state but not using
the VEX prefix, also referred to non-VEX encoded SIMD instructions) will not access
Ref. # 319433-004 9

APPLICATION PROGRAMMING MODEL
the upper bits (255:128) of the YMM registers. AVX and FMA instructions with a VEX
prefix and vector length of 128-bits zeroes the upper 128 bits of the YMM register.
See Chapter 2, “Programming Considerations with 128-bit SIMD Instructions” for
more details.

Upper bits of YMM registers (255:128) can be read and written by many instructions
with a VEX.256 prefix.

XSAVE and XRSTOR may be used to save and restore the upper bits of the YMM regis-
ters.

2.5 MEMORY ALIGNMENT
Memory alignment requirements on VEX-encoded instruction differs from non-VEX-
encoded instructions. Memory alignment applies to non-VEX-encoded SIMD instruc-
tions in three categories:

• Explicitly-aligned SIMD load and store instructions accessing 16 bytes of memory
(e.g. MOVAPD, MOVAPS, MOVDQA, etc.). These instructions always require
memory address to be aligned on 16-byte boundary.

• Explicitly-unaligned SIMD load and store instructions accessing 16 bytes or less
of data from memory (e.g. MOVUPD, MOVUPS, MOVDQU, MOVQ, MOVD, etc.).
These instructions do not require memory address to be aligned on 16-byte
boundary.

• The vast majority of arithmetic and data processing instructions in legacy SSE
instructions (non-VEX-encoded SIMD instructions) support memory access
semantics. When these instructions access 16 bytes of data from memory, the
memory address must be aligned on 16-byte boundary.

Most arithmetic and data processing instructions encoded using the VEX prefix and
performing memory accesses have more flexible memory alignment requirements
than instructions that are encoded without the VEX prefix. Specifically,

• With the exception of explicitly aligned 16 or 32 byte SIMD load/store instruc-
tions, most VEX-encoded, arithmetic and data processing instructions operate in
a flexible environment regarding memory address alignment, i.e. VEX-encoded
instruction with 32-byte or 16-byte load semantics will support unaligned load
operation by default. Memory arguments for most instructions with VEX prefix
operate normally without causing #GP(0) on any byte-granularity alignment
(unlike Legacy SSE instructions). The instructions that require explicit memory
alignment requirements are listed in Table 2-4.

Software may see performance penalties when unaligned accesses cross cacheline
boundaries, so reasonable attempts to align commonly used data sets should
continue to be pursued.
10 Ref. # 319433-004

APPLICATION PROGRAMMING MODEL
Atomic memory operation in Intel 64 and IA-32 architecture is guaranteed only for a
subset of memory operand sizes and alignment scenarios. The list of guaranteed
atomic operations are described in Section 7.1.1 of IA-32 Intel® Architecture Soft-
ware Developer’s Manual, Volumes 3A. AVX and FMA instructions do not introduce
any new guaranteed atomic memory operations.

AVX and FMA will generate an #AC(0) fault on misaligned 4 or 8-byte memory refer-
ences in Ring-3 when CR0.AM=1. 16 and 32-byte memory references will not
generate #AC(0) fault. See Table 2-3 for details.

Certain AVX instructions always require 16- or 32-byte alignment (see the complete
list of such instructions in Table 2-4). These instructions will #GP(0) if not aligned to
16-byte boundaries (for 16-byte granularity loads and stores) or 32-byte boundaries
(for 32-byte loads and stores).

Table 2-3. Alignment Faulting Conditions when Memory Access is Not Aligned
EFLAGS.AC==1 && Ring-3 && CR0.AM == 1 0 1

In
st

ru
ct

io
n

Ty
pe AV

X
, F

M
A

,

16- or 32-byte “explicitly unaligned” loads
and stores (see Table 2-5)

no fault no fault

VEX op YMM, m256 no fault no fault

VEX op XMM, m128 no fault no fault

“explicitly aligned” loads and stores (see
Table 2-4)

#GP(0) #GP(0)

2, 4, or 8-byte loads and stores no fault #AC(0)

SS
E

16 byte “explicitly unaligned” loads and
stores (see Table 2-5)

no fault no fault

op XMM, m128 #GP(0) #GP(0)

“explicitly aligned” loads and stores (see
Table 2-4)

#GP(0) #GP(0)

2, 4, or 8-byte loads and stores no fault #AC(0)

Table 2-4. instructions Requiring Explicitly Aligned Memory

Require 16-byte alignment Require 32-byte alignment

(V)MOVDQA xmm, m128 VMOVDQA ymm, m256

(V)MOVDQA m128, xmm VMOVDQA m256, ymm

(V)MOVAPS xmm, m128 VMOVAPS ymm, m256

(V)MOVAPS m128, xmm VMOVAPS m256, ymm

(V)MOVAPD xmm, m128 VMOVAPD ymm, m256
Ref. # 319433-004 11

APPLICATION PROGRAMMING MODEL
2.6 SIMD FLOATING-POINT EXCEPTIONS
AVX and FMA instructions can generate SIMD floating-point exceptions (#XM) and
respond to exception masks in the same way as Legacy SSE instructions. When
CR4.OSXMMEXCPT=0 any unmasked FP exceptions generate an Undefined Opcode
exception (#UD).

AVX FP exceptions are created in a similar fashion (differing only in number of el-
ements) to Legacy SSE and SSE2 instructions capable of generating SIMD floating-
point exceptions.

AVX introduces no new arithmetic operations (AVX floating-point are analogues of
existing Legacy SSE instructions). FMA introduces new arithmetic operations, de-
tailed FMA numeric behavior are described in Section 2.3.

(V)MOVAPD m128, xmm VMOVAPD m256, ymm

(V)MOVNTPS m128, xmm VMOVNTPS m256, ymm

(V)MOVNTPD m128, xmm VMOVNTPD m256, ymm

(V)MOVNTDQ m128, xmm VMOVNTDQ m256, ymm

(V)MOVNTDQA xmm, m128

Table 2-5. Instructions Not Requiring Explicit Memory Alignment

(V)MOVDQU xmm, m128

(V)MOVDQU m128, m128

(V)MOVUPS xmm, m128

(V)MOVUPS m128, xmm

(V)MOVUPD xmm, m128

(V)MOVUPD m128, xmm

VMOVDQU ymm, m256

VMOVDQU m256, ymm

VMOVUPS ymm, m256

VMOVUPS m256, ymm

VMOVUPD ymm, m256

VMOVUPD m256, ymm

Table 2-4. instructions Requiring Explicitly Aligned Memory

Require 16-byte alignment Require 32-byte alignment
12 Ref. # 319433-004

APPLICATION PROGRAMMING MODEL
2.7 INSTRUCTION EXCEPTION SPECIFICATION
To use this reference of instruction exceptions, look at each instruction for a descrip-
tion of the particular exception type of interest. For example, ADDPS contains the
entry:

“See Exceptions Type 2”

In this entry, “Type2” can be looked up in Table 2-6.

The instruction’s corresponding CPUID feature flag can be identified in the fourth
column of the Instruction summary table.

Note: #UD on CPUID feature flags=0 is not guaranteed in a virtualized environment
if the hardware supports the feature flag.

Table 2-6. Exception class description

See Table 2-7 for lists of instructions in each exception class.

Exception Class Instruction set Mem arg
Floating-Point

Exceptions
(#XM)

Type 1
AVX,

Legacy SSE
16/32 byte

explicitly aligned
none

Type 2
AVX, FMA

Legacy SSE
16/32 byte not
explicitly aligned

yes

Type 3
AVX, FMA

Legacy SSE
< 16 byte yes

Type 4
AVX,

Legacy SSE
16/32 byte not
explicitly aligned

no

Type 5
AVX,

Legacy SSE
< 16 byte no

Type 6
AVX (no Legacy

SSE)
Varies

(At present,
none do)

Type 7
AVX,

Legacy SSE
none none

Type 8 AVX none none

Type 9 AVX 4 byte none
Ref. # 319433-004 13

APPLICATION PROGRAMMING MODEL
Table 2-7. Instructions in each Exception Class
Exception Class Instruction

Type 1
(V)MOVAPD, (V)MOVAPS, (V)MOVDQA, (V)MOVNTDQ,
(V)MOVNTDQA, (V)MOVNTPD, (V)MOVNTPS

Type 2

(V)ADDPD, (V)ADDPS, (V)ADDSUBPD, (V)ADDSUBPS, (V)CMPPD,
(V)CMPPS, (V)CVTDQ2PS, (V)CVTPD2DQ, (V)CVTPD2PS,
(V)CVTPS2DQ, (V)CVTTPD2DQ, (V)CVTTPS2DQ, (V)DIVPD, (V)DIVPS,
(V)DPPD*, (V)DPPS*, VFMADD132PD, VFMADD213PD, VFMADD231PD,
VFMADD132PS, VFMADD213PS, VFMADD231PS, VFMADDSUB132PD,
VFMADDSUB213PD, VFMADDSUB231PD, VFMADDSUB132PS,
VFMADDSUB213PS, VFMADDSUB231PS, VFMSUBADD132PD,
VFMSUBADD213PD, VFMSUBADD231PD, VFMSUBADD132PS,
VFMSUBADD213PS, VFMSUBADD231PS, VFMSUB132PD,
VFMSUB213PD, VFMSUB231PD, VFMSUB132PS, VFMSUB213PS,
VFMSUB231PS, VFNMADD132PD, VFNMADD213PD, VFNMADD231PD,
VFNMADD132PS, VFNMADD213PS, VFNMADD231PS, VFNMSUB132PD,
VFNMSUB213PD, VFNMSUB231PD, VFNMSUB132PS, VFNMSUB213PS,
VFNMSUB231PS, (V)HADDPD, (V)HADDPS, (V)HSUBPD, (V)HSUBPS,
(V)MAXPD, (V)MAXPS, (V)MINPD, (V)MINPS, (V)MULPD, (V)MULPS,
(V)ROUNDPS, (V)ROUNDPS, (V)SQRTPD, (V)SQRTPS, (V)SUBPD,
(V)SUBPS

Type 3

(V)ADDSD, (V)ADDSS, (V)CMPSD, (V)CMPSS, (V)COMISD, (V)COMISS,
(V)CVTPS2PD, (V)CVTSD2SI, (V)CVTSD2SS, (V)CVTSI2SD,
(V)CVTSI2SS, (V)CVTSS2SD, (V)CVTSS2SI, (V)CVTTSD2SI,
(V)CVTTSS2SI, (V)DIVSD, (V)DIVSS, VFMADD132SD, VFMADD213SD,
VFMADD231SD, VFMADD132SS, VFMADD213SS, VFMADD231SS,
VFMSUB132SD, VFMSUB213SD, VFMSUB231SD, VFMSUB132SS,
VFMSUB213SS, VFMSUB231SS, VFNMADD132SD, VFNMADD213SD,
VFNMADD231SD, VFNMADD132SS, VFNMADD213SS,
VFNMADD231SS, VFNMSUB132SD, VFNMSUB213SD, VFNMSUB231SD,
VFNMSUB132SS, VFNMSUB213SS, VFNMSUB231SS, (V)MAXSD,
(V)MAXSS, (V)MINSD, (V)MINSS, (V)MULSD, (V)MULSS,
(V)ROUNDSD, (V)ROUNDSS, (V)SQRTSD, (V)SQRTSS, (V)SUBSD,
(V)SUBSS, (V)UCOMISD, (V)UCOMISS
14 Ref. # 319433-004

APPLICATION PROGRAMMING MODEL
Type 4

(V)AESDEC, (V)AESDECLAST, (V)AESENC, (V)AESENCLAST,
(V)AESIMC, (V)AESKEYGENASSIST, (V)ANDPD, (V)ANDPS,
(V)ANDNPD, (V)ANDNPS, (V)BLENDPD, (V)BLENDPS, VBLENDVPD,
VBLENDVPS, (V)LDDQU, (V)MASKMOVDQU, (V)PTEST, VTESTPS,
VTESTPD, (V)MOVDQU*, (V)MOVSHDUP, (V)MOVSLDUP,
(V)MOVUPD*, (V)MOVUPS*, (V)MPSADBW, (V)ORPD, (V)ORPS,
(V)PABSB, (V)PABSW, (V)PABSD, (V)PACKSSWB, (V)PACKSSDW,
(V)PACKUSWB, (V)PACKUSDW, (V)PADDB, (V)PADDW, (V)PADDD,
(V)PADDQ, (V)PADDSB, (V)PADDSW, (V)PADDUSB, (V)PADDUSW,
(V)PALIGNR, (V)PAND, (V)PANDN, (V)PAVGB, (V)PAVGW,
(V)PBLENDVB, (V)PBLENDW, (V)PCMP(E/I)STRI/M, (V)PCMPEQB,
(V)PCMPEQW, (V)PCMPEQD, (V)PCMPEQQ, (V)PCMPGTB,
(V)PCMPGTW, (V)PCMPGTD, (V)PCMPGTQ, PCLMULQDQ, (V)PHADDW,
(V)PHADDD, (V)PHADDSW, (V)PHMINPOSUW, (V)PHSUBD,
(V)PHSUBW, (V)PHSUBSW,
(V)PMADDWD, (V)PMADDUBSW, (V)PMAXSB, (V)PMAXSW,
(V)PMAXSD, (V)PMAXUB, (V)PMAXUW, (V)PMAXUD, (V)PMINSB,
(V)PMINSW, (V)PMINSD, (V)PMINUB, (V)PMINUW, (V)PMINUD,
(V)PMULHUW, (V)PMULHRSW, (V)PMULHW, (V)PMULLW,
(V)PMULLD, (V)PMULUDQ, (V)PMULDQ, (V)POR, (V)PSADBW,
(V)PSHUFB, (V)PSHUFD, (V)PSHUFHW, (V)PSHUFLW, (V)PSIGNB,
(V)PSIGNW, (V)PSIGND, (V)PSLLW, (V)PSLLD, (V)PSLLQ, (V)PSRAW,
(V)PSRAD, (V)PSRLW, (V)PSRLD, (V)PSRLQ, (V)PSUBB, (V)PSUBW,
(V)PSUBD, (V)PSUBQ, (V)PSUBSB, (V)PSUBSW, (V)PUNPCKHBW,
(V)PUNPCKHWD, (V)PUNPCKHDQ, (V)PUNPCKHQDQ,
(V)PUNPCKLBW, (V)PUNPCKLWD, (V)PUNPCKLDQ, (V)PUNPCKLQDQ,
(V)PXOR, (V)RCPPS, (V)RSQRTPS, (V)SHUFPD, (V)SHUFPS,
(V)UNPCKHPD, (V)UNPCKHPS, (V)UNPCKLPD, (V)UNPCKLPS,
(V)XORPD, (V)XORPS

Type 5

(V)CVTDQ2PD, (V)EXTRACTPS, (V)INSERTPS, (V)MOVD, (V)MOVQ,
(V)MOVDDUP, (V)MOVLPD, (V)MOVLPS, (V)MOVHPD, (V)MOVHPS,
(V)MOVSD, (V)MOVSS, (V)PEXTRB, (V)PEXTRD, (V)PEXTRW,
(V)PEXTRQ, (V)PINSRB, (V)PINSRD, (V)PINSRW, (V)PINSRQ, (V)RCPSS,
(V)RSQRTSS, (V)PMOVSX/ZX

Type 6
VEXTRACTF128, VPERMILPD, VPERMILPS, VPERM2F128,
VBROADCASTSS, VBROADCASTSD, VBROADCASTF128,
VINSERTF128, VMASKMOVPS**, VMASKMOVPD**

Type 7
(V)MOVLHPS, (V)MOVHLPS, (V)MOVMSKPD, (V)MOVMSKPS,
(V)PMOVMSKB, (V)PSLLDQ, (V)PSRLDQ, (V)PSLLW, (V)PSLLD,
(V)PSLLQ, (V)PSRAW, (V)PSRAD, (V)PSRLW, (V)PSRLD, (V)PSRLQ

Type 8 VZEROALL, VZEROUPPER
Type 9 VLDMXCSR*, VSTMXCSR

Exception Class Instruction
Ref. # 319433-004 15

APPLICATION PROGRAMMING MODEL
(*) - Additional exception restrictions are present - see the Instruction description
for details

(**) - Instruction behavior on alignment check reporting with mask bits of less than
all 1s are the same as with mask bits of all 1s, i.e. no alignment checks are per-
formed.

Table 2-7 classifies exception behaviors for AVX instructions. Within each class of
exception conditions that are listed in Table 2-9 through Table 2-15, certain subsets
of AVX instructions may be subject to #UD exception depending on the encoded
value of the VEX.L field. Table 2-8 provides supplemental information of AVX instruc-
tions that may be subject to #UD exception if encoded with incorrect values in the
VEX.L field.
16 Ref. # 319433-004

APPLICATION PROGRAMMING MODEL
Table 2-8. #UD Exception and VEX.L Field Encoding
Exception Class #UD If VEX.L = 0 #UD If VEX.L = 1

Type 1 VMOVNTDQA

Type 2
VDPPD

Type 3

Type 4

VMASKMOVDQU, VMPSADBW,
VPABSB/W/D, VPACKSSWB/DW,
VPACKUSWB/DW, VPADDB/W/D, VPADDQ,
VPADDSB/W, VPADDUSB/W, VPALIGNR,
VPAND, VPANDN, VPAVGB/W, VPBLENDVB,
VPBLENDW, VPCMP(E/I)STRI/M,
VPCMPEQB/W/D/Q, VPCMPGTB/W/D/Q,
VPHADDW/D, VPHADDSW, VPHMINPOSUW,
VPHSUBD/W, VPHSUBSW, VPMADDWD,
VPMADDUBSW, VPMAXSB/W/D,
VPMAXUB/W/D, VPMINSB/W/D,
VPMINUB/W/D, VPMULHUW, VPMULHRSW,
VPMULHW/LW, VPMULLD, VPMULUDQ,
VPMULDQ, VPOR, VPSADBW, VPSHUFB/D,
VPSHUFHW/LW, VPSIGNB/W/D,
VPSLLW/D/Q, VPSRAW/D, VPSRLW/D/Q,
VPSUBB/W/D/Q, VPSUBSB/W,
VPUNPCKHBW/WD/DQ, VPUNPCKHQDQ,
VPUNPCKLBW/WD/DQ, VPUNPCKLQDQ,
VPXOR

Type 5

VEXTRACTPS, VINSERTPS, VMOVD,
VMOVQ, VMOVLPD, VMOVLPS, VMOVHPD,
VMOVHPS, VPEXTRB, VPEXTRD, VPEXTRW,
VPEXTRQ, VPINSRB, VPINSRD, VPINSRW,
VPINSRQ, VPMOVSX/ZX

Type 6

VEXTRACTF128,
VPERM2F128,
VBROADCASTSD,
VBROADCASTF128,
VINSERTF128,

Type 7

VMOVLHPS, VMOVHLPS, VPMOVMSKB,
VPSLLDQ, VPSRLDQ, VPSLLW, VPSLLD,
VPSLLQ, VPSRAW, VPSRAD, VPSRLW,
VPSRLD, VPSRLQ

Type 8

Type 9 VLDMXCSR, VSTMXCSR
Ref. # 319433-004 17

APPLICATION PROGRAMMING MODEL
2.7.1 Exceptions Type 1 (Aligned memory reference)

Table 2-9. Type 1 Class Exception Conditions

2.7.2 Exceptions Type 2 (>=16 Byte Memory Reference, Unaligned)

Exception
R

ea
l

V
ir

tu
al

 8
0

x8
6

Pr
ot

ec
te

d
an

d
Co

m
pa

ti
bi

lit
y

6
4

-b
it

Cause of Exception

Invalid Opcode,
#UD

X X VEX prefix

X X
VEX prefix:
If XFEATURE_ENABLED_MASK[2:1] != ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X X X
Legacy SSE instruction:
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H)

X X
If any REX, F2, F3, or 66 prefixes precede a VEX
prefix

X X X X If any corresponding CPUID feature flag is ‘0’

Device Not Avail-
able, #NM

X X X X If CR0.TS[bit 3]=1

Stack, SS(0)
X For an illegal address in the SS segment

X
If a memory address referencing the SS segment
is in a non-canonical form

General Protec-
tion, #GP(0)

X X

VEX.256: Memory operand is not 32-byte
aligned
VEX.128: Memory operand is not 16-byte
aligned

X X X X
Legacy SSE: Memory operand is not 16-byte
aligned

X
For an illegal memory operand effective address
in the CS, DS, ES, FS or GS segments.

X If the memory address is in a non-canonical form.

X X
If any part of the operand lies outside the effec-
tive address space from 0 to FFFFH

Page Fault
#PF(fault-code)

X X X For a page fault
18 Ref. # 319433-004

APPLICATION PROGRAMMING MODEL
Table 2-10. Type 2 Class Exception Conditions

2.7.3 Exceptions Type 3 (<16 Byte memory argument)

Exception

R
ea

l

V
ir

tu
al

 8
0

8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode,
#UD

X X VEX prefix

X X X X
If an unmasked SIMD floating-point exception and
CR4.OSXMMEXCPT[bit 10] = 0.

X X
VEX prefix:
If XFEATURE_ENABLED_MASK[2:1] != ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X X X
Legacy SSE instruction:
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H)

X X
If any REX, F2, F3, or 66 prefixes precede a VEX
prefix

X X X X If any corresponding CPUID feature flag is ‘0’

Device Not Avail-
able, #NM

X X X X If CR0.TS[bit 3]=1

Stack, SS(0)
X For an illegal address in the SS segment

X
If a memory address referencing the SS segment is
in a non-canonical form

General Protec-
tion, #GP(0)

X X X X
Legacy SSE: Memory operand is not 16-byte
aligned

X
For an illegal memory operand effective address in
the CS, DS, ES, FS or GS segments.

X If the memory address is in a non-canonical form.

X X
If any part of the operand lies outside the effective
address space from 0 to FFFFH

Page Fault
#PF(fault-code)

X X X For a page fault

SIMD Floating-
point Exception,
#XM

X X X X
If an unmasked SIMD floating-point exception and
CR4.OSXMMEXCPT[bit 10] = 1
Ref. # 319433-004 19

APPLICATION PROGRAMMING MODEL
Table 2-11. Type 3 Class Exception Conditions

2.7.4 Exceptions Type 4 (>=16 Byte mem arg no alignment, no
floating-point exceptions)

Exception

R
ea

l

V
ir

tu
al

 8
0

x8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X VEX prefix

X X X X
If an unmasked SIMD floating-point exception
and CR4.OSXMMEXCPT[bit 10] = 0.

X X
VEX prefix:
If XFEATURE_ENABLED_MASK[2:1] != ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X X X
Legacy SSE instruction:
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H)

X X
If any REX, F2, F3, or 66 prefixes precede a
VEX prefix

X X X X If any corresponding CPUID feature flag is ‘0’

Device Not Available,
#NM

X X X X If CR0.TS[bit 3]=1

Stack, SS(0)
X For an illegal address in the SS segment

X
If a memory address referencing the SS seg-
ment is in a non-canonical form

General Protection,
#GP(0)

X
For an illegal memory operand effective
address in the CS, DS, ES, FS or GS segments.

X
If the memory address is in a non-canonical
form.

X X
If any part of the operand lies outside the
effective address space from 0 to FFFFH

Page Fault
#PF(fault-code)

X X X For a page fault

Alignment Check
#AC(0)

X X X
If alignment checking is enabled and an
unaligned memory reference is made while
the current privilege level is 3.

SIMD Floating-point
Exception, #XM

X X X X
If an unmasked SIMD floating-point exception
and CR4.OSXMMEXCPT[bit 10] = 1
20 Ref. # 319433-004

APPLICATION PROGRAMMING MODEL
Table 2-12. Type 4 Class Exception Conditions

2.7.5 Exceptions Type 5 (<16 Byte mem arg and no FP exceptions)

Exception
R

ea
l

V
ir

tu
al

 8
0

x8
6

Pr
ot

ec
te

d
an

d
Co

m
pa

ti
bi

lit
y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X VEX prefix

X X
VEX prefix:
If XFEATURE_ENABLED_MASK[2:1] != ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X X X
Legacy SSE instruction:
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H)

X X
If any REX, F2, F3, or 66 prefixes precede a
VEX prefix

X X X X If any corresponding CPUID feature flag is ‘0’

Device Not Available,
#NM

X X X X If CR0.TS[bit 3]=1

Stack, SS(0)
X For an illegal address in the SS segment

X
If a memory address referencing the SS seg-
ment is in a non-canonical form

General Protection,
#GP(0)

X X X X
Legacy SSE: Memory operand is not 16-byte
aligned

X
For an illegal memory operand effective
address in the CS, DS, ES, FS or GS segments.

X
If the memory address is in a non-canonical
form.

X X
If any part of the operand lies outside the
effective address space from 0 to FFFFH

Page Fault
#PF(fault-code)

X X X For a page fault
Ref. # 319433-004 21

APPLICATION PROGRAMMING MODEL
Table 2-13. Type 5 Class Exception Conditions

2.7.6 Exceptions Type 6 (VEX-Encoded Instructions Without Legacy
SSE Analogues)

Note: At present, the AVX instructions in this category do not generate floating-point
exceptions.

Exception

R
ea

l

V
ir

tu
al

 8
0

x8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X VEX prefix

X X
VEX prefix:
If XFEATURE_ENABLED_MASK[2:1] != ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X X X
Legacy SSE instruction:
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H)

X X
If any REX, F2, F3, or 66 prefixes precede a
VEX prefix

X X X X If any corresponding CPUID feature flag is ‘0’

Device Not Available,
#NM

X X X X If CR0.TS[bit 3]=1

Stack, SS(0)
X For an illegal address in the SS segment

X
If a memory address referencing the SS seg-
ment is in a non-canonical form

General Protection,
#GP(0)

X
For an illegal memory operand effective
address in the CS, DS, ES, FS or GS segments.

X
If the memory address is in a non-canonical
form.

X X
If any part of the operand lies outside the
effective address space from 0 to FFFFH

Page Fault
#PF(fault-code)

X X X For a page fault

Alignment Check
#AC(0)

X X X
If alignment checking is enabled and an
unaligned memory reference is made while
the current privilege level is 3.
22 Ref. # 319433-004

APPLICATION PROGRAMMING MODEL
Table 2-14. Type 6 Class Exception Conditions

2.7.7 Exceptions Type 7 (No FP exceptions, no memory arg)

Exception

R
ea

l

V
ir

tu
al

 8
0

x8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X VEX prefix

X X
If XFEATURE_ENABLED_MASK[2:1] != ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X If preceded by a LOCK prefix (F0H)

X X
If any REX, F2, F3, or 66 prefixes precede a
VEX prefix

X X If any corresponding CPUID feature flag is ‘0’

Device Not Available,
#NM

X X If CR0.TS[bit 3]=1

Stack, SS(0)
X For an illegal address in the SS segment

X
If a memory address referencing the SS seg-
ment is in a non-canonical form

General Protection,
#GP(0)

X
For an illegal memory operand effective
address in the CS, DS, ES, FS or GS segments.

X
If the memory address is in a non-canonical
form.

Page Fault
#PF(fault-code)

X X For a page fault

Alignment Check
#AC(0)

X X

For 4 or 8 byte memory references if align-
ment checking is enabled and an unaligned
memory reference is made while the current
privilege level is 3.
Ref. # 319433-004 23

APPLICATION PROGRAMMING MODEL
Table 2-15. Type 7 Class Exception Conditions

2.7.8 Exceptions Type 8 (AVX and no memory argument)

Table 2-16. Type 8 Class Exception Conditions

Exception

R
ea

l

V
ir

tu
al

 8
0

x8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X VEX prefix

X X
VEX prefix:
If XFEATURE_ENABLED_MASK[2:1] != ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X X X
Legacy SSE instruction:
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H)

X X
If any REX, F2, F3, or 66 prefixes precede a
VEX prefix

X X X X If any corresponding CPUID feature flag is ‘0’

Device Not Available,
#NM

X X If CR0.TS[bit 3]=1

Exception

R
ea

l

V
irt

ua
l 8

0x
86

Pr
ot

ec
te

d
an

d
C

om
pa

tib
ili

ty

64
-b

it

Cause of Exception

Invalid Opcode, #UD X X Always in Real or Virtual 80x86 mode
X X If XFEATURE_ENABLED_MASK[2:1] !=

‘11b’.
If CR4.OSXSAVE[bit 18]=0.
If CPUID.01H.ECX.AVX[bit 28]=0.
If VEX.vvvv != 1111B.

X X X X If proceeded by a LOCK prefix (F0H)
Device Not Avail-
able, #NM

X X If CR0.TS[bit 3]=1.
24 Ref. # 319433-004

APPLICATION PROGRAMMING MODEL
2.7.9 Exception Type 9 (AVX)

Table 2-17. Type 9 Class Exception Conditions

2.8 PROGRAMMING CONSIDERATIONS WITH 128-BIT SIMD
INSTRUCTIONS

VEX-encoded SIMD instructions generally operate on the 256-bit YMM register state.
In contrast, non-VEX encoded instructions (e.g from SSE to AES) operating on XMM
registers only access the lower 128-bit of YMM registers. Processors supporting both
256-bit VEX-encoded instruction and legacy 128-bit SIMD instructions has internal
state to manage the upper and lower halves of the YMM states. Functionally, VEX-
encoded SIMD instructions can be intermixed with legacy SSE instructions (non-VEX-

Exception
R

ea
l

V
ir

tu
al

 8
0

x8
6

Pr
ot

ec
te

d
an

d
Co

m
pa

ti
bi

lit
y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X Always in Real or Virtual 80x86 mode

X X

If CR4.OSXSAVE[bit 18]=0.
If CR0.EM[bit 2] = 1.
If CPUID.01H.ECX.AVX[bit 28]=0
If VEX.L = 1

X X If preceded by a LOCK prefix (F0H)

X X
If any REX, F2, F3, or 66 prefixes precede a
VEX prefix

Device Not Available,
#NM

X X If CR0.TS[bit 3]=1

Stack, SS(0)
X For an illegal address in the SS segment

X
If a memory address referencing the SS seg-
ment is in a non-canonical form

General Protection,
#GP(0)

X
For an illegal memory operand effective
address in the CS, DS, ES, FS or GS segments.

X
If the memory address is in a non-canonical
form.

Page Fault
#PF(fault-code)

X X For a page fault

Alignment Check
#AC(0)

X X
If alignment checking is enabled and an
unaligned memory reference is made while
the current privilege level is 3.
Ref. # 319433-004 25

APPLICATION PROGRAMMING MODEL
encoded SIMD instructions operating on XMM registers). However, there is a perfor-
mance impact with intermixing VEX-encoded SIMD instructions (AVX, FMA) and
Legacy SSE instructions that only operate on the XMM register state.

The general programming considerations to realize optimal performance are the
following:

• Minimize transition delays and partial register stalls with YMM registers accesses:
Intermixed 256-bit, 128-bit or scalar SIMD instructions that are encoded with
VEX prefixes have no transition delay due to internal state management.

Sequences of legacy SSE instructions (including SSE2, and subsequent
generations non-VEX-encoded SIMD extensions) that are not intermixed with
VEX-encoded SIMD instructions are not subject to transition delays.

• When an application must employ AVX and/or FMA, along with legacy SSE code,
it should minimize the number of transitions between VEX-encoded instructions
and legacy, non-VEX-encoded SSE code. Section 2.8.1 provides recommendation
for software to minimize the impact of transitions between VEX-encoded code
and legacy SSE code.

2.8.1 Clearing Upper YMM State Between AVX and Legacy SSE
Instructions

There is no transition penalty if an application clears the upper bits of all YMM regis-
ters (set to ‘0’) via VZEROUPPER, VZEROALL, before transitioning between AVX
instructions and legacy SSE instructions. Note: clearing the upper state via
sequences of XORPS or loading ‘0’ values individually may be useful for breaking
dependency, but will not avoid state transition penalties.

Example 1: an application using 256-bit AVX instructions makes calls to a library
written using Legacy SSE instructions. This would encounter a delay upon executing
the first Legacy SSE instruction in that library and then (after exiting the library)
upon executing the first AVX instruction. To eliminate both of these delays, the user
should execute the instruction VZEROUPPER prior to entering the legacy library and
(after exiting the library) before executing in a 256-bit AVX code path.

Example 2: a library using 256-bit AVX instructions is intended to support other
applications that uses legacy SSE instructions. Such a library function should execute
VZEROUPPER prior to executing other VEX-encoded instructions. The library function
should issue VZEROUPPER at the end of the function before it returns to the calling
application. This will prevent the calling application to experience delay when it starts
to execute legacy SSE code.
26 Ref. # 319433-004

APPLICATION PROGRAMMING MODEL
2.8.2 Using AVX 128-bit Instructions Instead of Legacy SSE
instructions

Applications using AVX and FMA should migrate legacy 128-bit SIMD instructions to
their 128-bit AVX equivalents. AVX supplies the full complement of 128-bit SIMD
instructions except for AES and PCLMULQDQ.

2.8.3 Unaligned Memory Access and Buffer Size Management
The majority of AVX instructions support loading 16/32 bytes from memory without
alignment restrictions (A number non-VEX-encoded SIMD instructions also don’t
require 16-byte address alignment, e.g. MOVDQU, MOVUPS, MOVUPD, LDDQU,
PCMPESTRI/PCMPESTRM/PCMPISTRI/PCMPISTRM). A buffer size management issue
related to unaligned SIMD memory access is discussed here.

The size requirements for memory buffer allocation should consider unaligned SIMD
memory semantics and application usage. Frequently a caller function may pass an
address pointer in conjunction with a length parameter. From the caller perspective,
the length parameter usually corresponds to the limit of the allocated memory buffer
range, or it may corresponds to certain application-specific configuration parameter
that have indirect relationship with valid buffer size.

For certain types of application usage, it may be desirable to make distinctions
between valid buffer range limit versus other application specific parameters related
memory access patterns, examples of the latter may be stride distance, frame
dimensions, etc. There may be situations that a callee wishes to load 16-bytes of
data with parts of the 16-bytes lying outside the valid memory buffer region to take
advantage of the efficiency of SIMD load bandwidth and discard invalid data
elements outside the buffer boundary. An example of this may be in video processing
of frames having dimensions that are not modular 16 bytes.

To support the added margin of safety in situations of buffer size allocation and iter-
ative pointer advancement occurring across modules of different software visibility.
The standard programming practice of caller function allocation of buffer size based
on non-SIMD processing requirement should consider an added padding size to
support newer SIMD extensions offering more lax alignment restrictions. The extra
padding space can prevent the rare occurrence of access rights violation described
below:

• A present page in the linear address space being used by ring 3 code is followed
by a page owned by ring 0 code,

• A caller routine allocates a memory buffer without adding extra pad space and
passes the buffer address to a callee routine,

• A callee routine implements an iterative processing algorithm by advancing an
address pointer relative to the buffer address using SIMD instructions with
unaligned 16/32 load semantics

• The callee routine may choose to load 16/32 bytes near buffer boundary with the
intent to discard invalid data outside the data buffer allocated by the caller.
Ref. # 319433-004 27

APPLICATION PROGRAMMING MODEL
• If the valid data buffer extends to the end of the present page, unaligned 16/32
byte loads near the end of a present page may spill over to the subsequent ring-
0 page and causing a #GP.

As a general rule, the minimal padding size should be the width the SIMD register
that might be used in conjunction with unaligned SIMD memory access.

2.9 CPUID INSTRUCTION
28 Ref. # 319433-004

APPLICATION PROGRAMMING MODEL
CPUID—CPU Identification

Description

The ID flag (bit 21) in the EFLAGS register indicates support for the CPUID instruc-
tion. If a software procedure can set and clear this flag, the processor executing the
procedure supports the CPUID instruction. This instruction operates the same in non-
64-bit modes and 64-bit mode.

CPUID returns processor identification and feature information in the EAX, EBX, ECX,
and EDX registers.1 The instruction’s output is dependent on the contents of the EAX
register upon execution (in some cases, ECX as well). For example, the following
pseudocode loads EAX with 00H and causes CPUID to return a Maximum Return
Value and the Vendor Identification String in the appropriate registers:

MOV EAX, 00H
CPUID

Table 2-18 shows information returned, depending on the initial value loaded into the
EAX register. Table 2-19 shows the maximum CPUID input value recognized for each
family of IA-32 processors on which CPUID is implemented.

Two types of information are returned: basic and extended function information. If a
value is entered for CPUID.EAX is invalid for a particular processor, the data for the
highest basic information leaf is returned. For example, using the Intel Core 2 Duo
E6850 processor, the following is true:

CPUID.EAX = 05H (* Returns MONITOR/MWAIT leaf. *)
CPUID.EAX = 0AH (* Returns Architectural Performance Monitoring leaf. *)
CPUID.EAX = 0BH (* INVALID: Returns the same information as CPUID.EAX = 0AH. *)
CPUID.EAX = 80000008H (* Returns virtual/physical address size data. *)
CPUID.EAX = 8000000AH (* INVALID: Returns same information as CPUID.EAX = 0AH. *)

When CPUID returns the highest basic leaf information as a result of an invalid input
EAX value, any dependence on input ECX value in the basic leaf is honored.

CPUID can be executed at any privilege level to serialize instruction execution. Seri-
alizing instruction execution guarantees that any modifications to flags, registers,

Opcode Instruction 64-Bit Mode
Compat/

Leg Mode
Description

0F A2 CPUID Valid Valid Returns processor identification
and feature information to the
EAX, EBX, ECX, and EDX registers,
as determined by input entered in
EAX (in some cases, ECX as well).

1. On Intel 64 processors, CPUID clears the high 32 bits of the RAX/RBX/RCX/RDX registers in all
modes.
Ref. # 319433-004 29

APPLICATION PROGRAMMING MODEL
and memory for previous instructions are completed before the next instruction is
fetched and executed.

See also:

“Serializing Instructions” in Chapter 7, “Multiple-Processor Management,” in the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A

AP-485, Intel Processor Identification and the CPUID Instruction (Order Number
241618)

Table 2-18. Information Returned by CPUID Instruction

Initial EAX
Value Information Provided about the Processor

Basic CPUID Information

0H

EAX
EBX
ECX
EDX

Maximum Input Value for Basic CPUID Information (see Table 2-19)
“Genu”
“ntel”
“ineI”

01H

EAX

EBX

ECX
EDX

Version Information: Type, Family, Model, and Stepping ID (see
Figure 2-2)

Bits 7-0: Brand Index
Bits 15-8: CLFLUSH line size (Value ∗ 8 = cache line size in bytes)
Bits 23-16: Maximum number of addressable IDs for logical processors
in this physical package*.
Bits 31-24: Initial APIC ID

Feature Information (see Figure 2-3 and Table 2-21)
Feature Information (see Figure 2-4 and Table 2-22)
NOTES:
* The nearest power-of-2 integer that is not smaller than EBX[23:16]
is the maximum number of unique initial APIC IDs reserved for address-
ing different logical processors in a physical package.

02H

EAX
EBX
ECX
EDX

Cache and TLB Information (see Table 2-23)
Cache and TLB Information
Cache and TLB Information
Cache and TLB Information

03H
EAX
EBX

ECX

EDX

Reserved.
Reserved.

Bits 00-31 of 96 bit processor serial number. (Available in Pentium III
processor only; otherwise, the value in this register is reserved.)

Bits 32-63 of 96 bit processor serial number. (Available in Pentium III
processor only; otherwise, the value in this register is reserved.)
30 Ref. # 319433-004

APPLICATION PROGRAMMING MODEL
NOTES:
Processor serial number (PSN) is not supported in the Pentium 4 pro-
cessor or later. On all models, use the PSN flag (returned using
CPUID) to check for PSN support before accessing the feature.

See AP-485, Intel Processor Identification and the CPUID
Instruction (Order Number 241618) for more information
on PSN.

CPUID leaves > 3 < 80000000 are visible only when
IA32_MISC_ENABLES.BOOT_NT4[bit 22] = 0 (default).

Deterministic Cache Parameters Leaf

04H

NOTES:
Leaf 04H output depends on the initial value in ECX.
See also: “INPUT EAX = 4: Returns Deterministic Cache
Parameters for each level on page 2-52.

EAX

Bits 4-0: Cache Type Field
0 = Null - No more caches
1 = Data Cache
2 = Instruction Cache
3 = Unified Cache
4-31 = Reserved

Bits 7-5: Cache Level (starts at 1)
Bits 8: Self Initializing cache level (does not need SW initialization)
Bits 9: Fully Associative cache

Bits 13-10: Reserved
Bits 25-14: Maximum number of addressable IDs for logical processors
sharing this cache*, **
Bits 31-26: Maximum number of addressable IDs for processor cores in
the physical package*, ***, ****

EBX Bits 11-00: L = System Coherency Line Size*
Bits 21-12: P = Physical Line partitions*
Bits 31-22: W = Ways of associativity*

ECX Bits 31-00: S = Number of Sets*

Table 2-18. Information Returned by CPUID Instruction(Continued)

Initial EAX
Value Information Provided about the Processor
Ref. # 319433-004 31

APPLICATION PROGRAMMING MODEL
EDX

Bit 0: WBINVD/INVD behavior on lower level caches
Bit 10: Write-Back Invalidate/Invalidate

0 = WBINVD/INVD from threads sharing this cache acts upon lower
level caches for threads sharing this cache
1 = WBINVD/INVD is not guaranteed to act upon lower level caches
of non-originating threads sharing this cache.

Bit 1: Cache Inclusiveness
0 = Cache is not inclusive of lower cache levels.
1 = Cache is inclusive of lower cache levels.

Bits 31-02: Reserved = 0

NOTES:
* Add one to the return value to get the result.
**The nearest power-of-2 integer that is not smaller than

(1 + EAX[25:14]) is the number of unique initial APIC
IDs reserved for addressing different logical processors
sharing this cache

*** The nearest power-of-2 integer that is not smaller than
(1 + EAX[31:26]) is the number of unique Core_IDs
reserved for addressing different processor cores in a
physical package. Core ID is a subset of bits of the initial
APIC ID.

****The returned value is constant for valid initial values
in ECX. Valid ECX values start from 0.

MONITOR/MWAIT Leaf

5H
EAX

Bits 15-00: Smallest monitor-line size in bytes (default is processor's
monitor granularity)
Bits 31-16: Reserved = 0

EBX
Bits 15-00: Largest monitor-line size in bytes (default is processor's
monitor granularity)
Bits 31-16: Reserved = 0

ECX Bits 00: Enumeration of Monitor-Mwait extensions (beyond EAX and
EBX registers) supported

Bits 01: Supports treating interrupts as break-event for MWAIT, even
when interrupts disabled

Bits 31 - 02: Reserved

Table 2-18. Information Returned by CPUID Instruction(Continued)

Initial EAX
Value Information Provided about the Processor
32 Ref. # 319433-004

APPLICATION PROGRAMMING MODEL
EDX

Bits 03 - 00: Number of C0* sub C-states supported using MWait
Bits 07 - 04: Number of C1* sub C-states supported using MWAIT
Bits 11 - 08: Number of C2* sub C-states supported using MWAIT
Bits 15 - 12: Number of C3* sub C-states supported using MWAIT
Bits 19 - 16: Number of C4* sub C-states supported using MWAIT
Bits 31 - 20: Reserved = 0
NOTE:
* The definition of C0 through C4 states for MWAIT exten-

sion are processor-specific C-states, not ACPI C-states.

Thermal and Power Management Leaf

6H

EAX

EBX

Bits 00: Digital temperature sensor is supported if set
Bits 01: Intel Dynamic Acceleration Enabled
Bits 31 - 02: Reserved
Bits 03 - 00: Number of Interrupt Thresholds in Digital Thermal Sensor
Bits 31 - 04: Reserved

ECX
Bits 00: Hardware Coordination Feedback Capability (Presence of MCNT
and ACNT MSRs). The capability to provide a measure of delivered pro-
cessor performance (since last reset of the counters), as a percentage
of expected processor performance at frequency specified in CPUID
Brand String
Bits 31 - 01: Reserved = 0

EDX Reserved = 0

Direct Cache Access Information Leaf

09H

EAX

EBX

ECX

EDX

Value of bits [31:0] of IA32_PLATFORM_DCA_CAP MSR (address 1F8H)

Reserved

Reserved

Reserved

Architectural Performance Monitoring Leaf

0AH EAX

Bits 07 - 00: Version ID of architectural performance monitoring
Bits 15- 08: Number of general-purpose performance monitoring
counter per logical processor
Bits 23 - 16: Bit width of general-purpose, performance monitoring
counter
Bits 31 - 24: Length of EBX bit vector to enumerate architectural per-
formance monitoring events

Table 2-18. Information Returned by CPUID Instruction(Continued)

Initial EAX
Value Information Provided about the Processor
Ref. # 319433-004 33

APPLICATION PROGRAMMING MODEL
EBX
Bit 0: Core cycle event not available if 1
Bit 1: Instruction retired event not available if 1
Bit 2: Reference cycles event not available if 1
Bit 3: Last-level cache reference event not available if 1
Bit 4: Last-level cache misses event not available if 1
Bit 5: Branch instruction retired event not available if 1
Bit 6: Branch mispredict retired event not available if 1
Bits 31- 07: Reserved = 0

ECX
EDX

Reserved = 0
Bits 04 - 00: Number of fixed-function performance counters (if Ver-
sion ID > 1)
Bits 12- 05: Bit width of fixed-function performance counters (if Ver-
sion ID > 1)
Reserved = 0

Extended Topology Enumeration Leaf

0BH

NOTES:
Most of Leaf 0BH output depends on the initial value in
ECX.
EDX output do not vary with initial value in ECX.
ECX[7:0] output always reflect initial value in ECX.
All other output value for an invalid initial value in ECX
are 0
This leaf exists if EBX[15:0] contain a non-zero value.

EAX

Bits 4-0: Number of bits to shift right on x2APIC ID to get a unique
topology ID of the next level type*. All logical processors with the same
next level ID share current level.
Bits 31-5: Reserved.

0BH EBX
Bits 15 - 00: Number of logical processors at this level type. The num-
ber reflects configuration as shipped by Intel**.
Bits 31- 16: Reserved.

ECX Bits 07 - 00: Level number. Same value in ECX input
Bits 15 - 08: Level type***.
Bits 31 - 16: Reserved.

EDX Bits 31- 0: x2APIC ID the current logical processor.

Table 2-18. Information Returned by CPUID Instruction(Continued)

Initial EAX
Value Information Provided about the Processor
34 Ref. # 319433-004

APPLICATION PROGRAMMING MODEL
NOTES:
* Software should use this field (EAX[4:0]) to enumerate processor
topology of the system.

** Software must not use EBX[15:0] to enumerate processor topology
of the system. This value in this field (EBX[15:0]) is only intended for
display/diagnostic purposes. The actual number of logical processors
available to BIOS/OS/Applications may be different from the value of
EBX[15:0], depending on software and platform hardware configura-
tions.

*** The value of the “level type” field is not related to level numbers in
any way, higher “level type” values do not mean higher levels. Level
type field has the following encoding:
0: invalid
1: SMT
2: Core
3-255: Reserved

Processor Extended State Enumeration Main Leaf (EAX = 0DH, ECX = 0)

0DH
NOTES:

Leaf 0DH main leaf (ECX = 0).

EAX
Bits 31-0: Reports the valid bit fields of the lower 32 bits of the
XFEATURE_ENABLED_MASK register. If a bit is 0, the corresponding bit
field in XFEATURE_ENABLED_MASK is reserved.

EBX

Bits 31-0: Maximum size (bytes) required by enabled features in
XFEATURE_ENABLED_MASK. May be different than ECX when features
at the end of the save area are not enabled.

ECX Bit 31-0: Maximum size (bytes) of the XSAVE/XRSTOR save area
required by all HW supported features, i.e all the valid bit fields in
XFEATURE_ENABLED_MASK. This includes the size needed for the
XSAVE.HEADER.

EDX Bit 31-0: Reports the valid bit fields of the upper 32 bits of the
XFEATURE_ENABLED_MASK register. If a bit is 0, the corresponding bit
field in XFEATURE_ENABLED_MASK is reserved

Processor Extended State Enumeration Sub-leaf (EAX = 0DH, ECX = 1)

Table 2-18. Information Returned by CPUID Instruction(Continued)

Initial EAX
Value Information Provided about the Processor
Ref. # 319433-004 35

APPLICATION PROGRAMMING MODEL
EAX

EBX

ECX

EDX

Reserved

Reserved

Reserved

Reserved

Processor Extended State Enumeration Sub-leaves (EAX = 0DH, ECX = n, n > 1)

0DH

NOTES:
Leaf 0DH output depends on the initial value in ECX.
If ECX contains an invalid sub leaf index,
EAX/EBX/ECX/EDX return 0.

EAX

Bits 31-0: The size in bytes of the save area for an extended state
associated with a valid sub-leaf index, n. Each valid sub-leaf index maps
to a valid bit in XFEATURE_ENABLED_MASK starting at bit position 2.
This field reports 0 if the sub-leaf index, n, is invalid*.

EBX
Bits 31-0: The offset in bytes of the save area from the beginning of
the XSAVE/XRSTOR area.
This field reports 0 if the sub-leaf index, n, is invalid*.

ECX This field reports 0 if the sub-leaf index, n, is invalid*; otherwise it is
reserved.

EDX This field reports 0 if the sub-leaf index, n, is invalid*; otherwise it is
reserved.

*The highest valid sub-leaf index, n, is
(POPCNT(CPUID.(EAX=0D, ECX=0):EAX) + POPCNT(CPUID.(EAX=0D,
ECX=0):EDX) - 1)

Extended Function CPUID Information

80000000H EAX
Maximum Input Value for Extended Function CPUID Information (see
Table 2-19).

EBX
ECX
EDX

Reserved
Reserved
Reserved

80000001H

EAX

EBX

ECX

Extended Processor Signature and Feature Bits.

Reserved

Bit 0: LAHF/SAHF available in 64-bit mode
Bits 31-1 Reserved

Table 2-18. Information Returned by CPUID Instruction(Continued)

Initial EAX
Value Information Provided about the Processor
36 Ref. # 319433-004

APPLICATION PROGRAMMING MODEL
EDX

Bits 10-0: Reserved
Bit 11: SYSCALL/SYSRET available (when in 64-bit mode)
Bits 19-12: Reserved = 0
Bit 20: Execute Disable Bit available
Bits 28-21: Reserved = 0
Bit 29: Intel® 64 Architecture available if 1
Bits 31-30: Reserved = 0

80000002H

EAX
EBX
ECX
EDX

Processor Brand String
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued

80000003H

EAX
EBX
ECX
EDX

Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued

80000004H

EAX
EBX
ECX
EDX

Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued

80000005H

EAX
EBX
ECX
EDX

Reserved = 0
Reserved = 0
Reserved = 0
Reserved = 0

80000006H
EAX
EBX

Reserved = 0
Reserved = 0

ECX

EDX

Bits 7-0: Cache Line size in bytes
Bits 15-12: L2 Associativity field *
Bits 31-16: Cache size in 1K units
Reserved = 0

NOTES:
* L2 associativity field encodings:

00H - Disabled
01H - Direct mapped
02H - 2-way
04H - 4-way
06H - 8-way
08H - 16-way
0FH - Fully associative

Table 2-18. Information Returned by CPUID Instruction(Continued)

Initial EAX
Value Information Provided about the Processor
Ref. # 319433-004 37

APPLICATION PROGRAMMING MODEL
INPUT EAX = 0: Returns CPUID’s Highest Value for Basic Processor Information and
the Vendor Identification String

When CPUID executes with EAX set to 0, the processor returns the highest value the
CPUID recognizes for returning basic processor information. The value is returned in
the EAX register (see Table 2-19) and is processor specific.

A vendor identification string is also returned in EBX, EDX, and ECX. For Intel
processors, the string is “GenuineIntel” and is expressed:

EBX ← 756e6547h (* "Genu", with G in the low 4 bits of BL *)
EDX ← 49656e69h (* "ineI", with i in the low 4 bits of DL *)
ECX ← 6c65746eh (* "ntel", with n in the low 4 bits of CL *)

INPUT EAX = 80000000H: Returns CPUID’s Highest Value for Extended Processor
Information

When CPUID executes with EAX set to 0, the processor returns the highest value the
processor recognizes for returning extended processor information. The value is
returned in the EAX register (see Table 2-19) and is processor specific.

80000007H

EAX
EBX
ECX
EDX

Reserved = 0
Reserved = 0
Reserved = 0
Reserved = 0

80000008H
EAX

Virtual/Physical Address size
Bits 7-0: #Physical Address Bits*
Bits 15-8: #Virtual Address Bits
Bits 31-16: Reserved = 0

EBX
ECX
EDX

Reserved = 0
Reserved = 0
Reserved = 0

NOTES:
* If CPUID.80000008H:EAX[7:0] is supported, the maxi-

mum physical address number supported should come
from this field.

Table 2-18. Information Returned by CPUID Instruction(Continued)

Initial EAX
Value Information Provided about the Processor
38 Ref. # 319433-004

APPLICATION PROGRAMMING MODEL
IA32_BIOS_SIGN_ID Returns Microcode Update Signature

For processors that support the microcode update facility, the IA32_BIOS_SIGN_ID
MSR is loaded with the update signature whenever CPUID executes. The signature is
returned in the upper DWORD. For details, see Chapter 9 in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Table 2-19. Highest CPUID Source Operand for Intel 64 and IA-32 Processors

Intel 64 or IA-32 Processors

Highest Value in EAX

Basic Information
Extended Function

Information

Earlier Intel486 Processors CPUID Not Implemented CPUID Not Implemented

Later Intel486 Processors and
Pentium Processors

01H Not Implemented

Pentium Pro and Pentium II
Processors, Intel® Celeron®
Processors

02H Not Implemented

Pentium III Processors 03H Not Implemented

Pentium 4 Processors 02H 80000004H

Intel Xeon Processors 02H 80000004H

Pentium M Processor 02H 80000004H

Pentium 4 Processor
supporting Hyper-Threading
Technology

05H 80000008H

Pentium D Processor (8xx) 05H 80000008H

Pentium D Processor (9xx) 06H 80000008H

Intel Core Duo Processor 0AH 80000008H

Intel Core 2 Duo Processor 0AH 80000008H

Intel Xeon Processor 3000,
5100, 5300 Series

0AH 80000008H

Intel Xeon Processor 3000,
5100, 5200, 5300, 5400
Series

0AH 80000008H

Intel Core 2 Duo Processor
8000 Series

0DH 80000008H

Intel Xeon Processor 5200,
5400 Series

0AH 80000008H
Ref. # 319433-004 39

APPLICATION PROGRAMMING MODEL
INPUT EAX = 1: Returns Model, Family, Stepping Information

When CPUID executes with EAX set to 1, version information is returned in EAX (see
Figure 2-2). For example: model, family, and processor type for the Intel Xeon
processor 5100 series is as follows:

• Model — 1111B

• Family — 0101B

• Processor Type — 00B

See Table 2-20 for available processor type values. Stepping IDs are provided as
needed.

NOTE
See AP-485, Intel Processor Identification and the CPUID Instruction
(Order Number 241618) and Chapter 14 in the Intel® 64 and IA-32

Figure 2-2. Version Information Returned by CPUID in EAX

Table 2-20. Processor Type Field
Type Encoding

Original OEM Processor 00B

Intel OverDrive® Processor 01B

Dual processor (not applicable to Intel486
processors)

10B

Intel reserved 11B

OM16525

Processor Type

034781112131415161920272831

EAX

Family (0FH for the Pentium 4 Processor Family)
Model

Extended
Family ID

Extended
Model ID

Family
ID Model Stepping

ID

Extended Family ID (0)
Extended Model ID (0)

Reserved
40 Ref. # 319433-004

APPLICATION PROGRAMMING MODEL
Architectures Software Developer’s Manual, Volume 1, for
information on identifying earlier IA-32 processors.

The Extended Family ID needs to be examined only when the Family ID is 0FH. Inte-
grate the fields into a display using the following rule:

IF Family_ID ≠ 0FH
THEN Displayed_Family = Family_ID;
ELSE Displayed_Family = Extended_Family_ID + Family_ID;
(* Right justify and zero-extend 4-bit field. *)

FI;
(* Show Display_Family as HEX field. *)

The Extended Model ID needs to be examined only when the Family ID is 06H or 0FH.
Integrate the field into a display using the following rule:

IF (Family_ID = 06H or Family_ID = 0FH)
THEN Displayed_Model = (Extended_Model_ID << 4) + Model_ID;
(* Right justify and zero-extend 4-bit field; display Model_ID as HEX field.*)
ELSE Displayed_Model = Model_ID;

FI;
(* Show Display_Model as HEX field. *)

INPUT EAX = 1: Returns Additional Information in EBX

When CPUID executes with EAX set to 1, additional information is returned to the
EBX register:

• Brand index (low byte of EBX) — this number provides an entry into a brand
string table that contains brand strings for IA-32 processors. More information
about this field is provided later in this section.

• CLFLUSH instruction cache line size (second byte of EBX) — this number
indicates the size of the cache line flushed with CLFLUSH instruction in 8-byte
increments. This field was introduced in the Pentium 4 processor.

• Local APIC ID (high byte of EBX) — this number is the 8-bit ID that is assigned to
the local APIC on the processor during power up. This field was introduced in the
Pentium 4 processor.

INPUT EAX = 1: Returns Feature Information in ECX and EDX

When CPUID executes with EAX set to 1, feature information is returned in ECX and
EDX.

• Figure 2-3 and Table 2-21 show encodings for ECX.

• Figure 2-4 and Table 2-22 show encodings for EDX.

For all feature flags, a 1 indicates that the feature is supported. Use Intel to properly
interpret feature flags.
Ref. # 319433-004 41

APPLICATION PROGRAMMING MODEL
NOTE
Software must confirm that a processor feature is present using
feature flags returned by CPUID prior to using the feature. Software
should not depend on future offerings retaining all features.

Figure 2-3. Feature Information Returned in the ECX Register

Table 2-21. Feature Information Returned in the ECX Register

Bit # Mnemonic Description

0 SSE3
Streaming SIMD Extensions 3 (SSE3). A value of 1 indicates the
processor supports this technology.

1 PCLMULQDQ
A value of 1 indicates the processor supports PCLMULQDQ
instruction

2 Reserved Reserved

OM16524b

CNXT-ID — L1 Context ID

012345678910111213141516171819202122232425262728293031

ECX

TM2 — Thermal Monitor 2
EST — Enhanced Intel SpeedStep® Technology

DS-CPL — CPL Qualified Debug Store
MONITOR — MONITOR/MWAIT
PCLMULQDQ — Carryless Multiplication

Reserved

CMPXCHG16B

SMX — Safer Mode Extensions

xTPR Update Control

SSSE3 — SSSE3 Extensions

PDCM — Perf/Debug Capability MSR

VMX — Virtual Machine Extensions

SSE4_1 — SSE4.1

OSXSAVE

SSE4_2 — SSE4.2

DCA — Direct Cache Access

x2APIC
POPCNT

XSAVE

AVX

AES

FMA — Fused Multiply Add

SSE3 — SSE3 Extensions
42 Ref. # 319433-004

APPLICATION PROGRAMMING MODEL
3 MONITOR
MONITOR/MWAIT. A value of 1 indicates the processor supports
this feature.

4 DS-CPL
CPL Qualified Debug Store. A value of 1 indicates the processor
supports the extensions to the Debug Store feature to allow for
branch message storage qualified by CPL.

5 VMX
Virtual Machine Extensions. A value of 1 indicates that the
processor supports this technology

6 SMX
Safer Mode Extensions. A value of 1 indicates that the processor
supports this technology. See Chapter 6, “Safer Mode Extensions
Reference”.

7 EST
Enhanced Intel SpeedStep® technology. A value of 1 indicates that
the processor supports this technology.

8 TM2
Thermal Monitor 2. A value of 1 indicates whether the processor
supports this technology.

9 SSSE3
A value of 1 indicates the presence of the Supplemental
Streaming SIMD Extensions 3 (SSSE3). A value of 0 indicates the
instruction extensions are not present in the processor

10 CNXT-ID

L1 Context ID. A value of 1 indicates the L1 data cache mode can
be set to either adaptive mode or shared mode. A value of 0
indicates this feature is not supported. See definition of the
IA32_MISC_ENABLE MSR Bit 24 (L1 Data Cache Context Mode) for
details.

11 Reserved Reserved

12 FMA
A value of 1 indicates the processor supports FMA extensions
using YMM state.

13 CMPXCHG16B
CMPXCHG16B Available. A value of 1 indicates that the feature is
available. See the “CMPXCHG8B/CMPXCHG16B—Compare and
Exchange Bytes” section in this chapter for a description.

14
xTPR Update

Control
xTPR Update Control. A value of 1 indicates that the processor
supports changing IA32_MISC_ENABLES[bit 23].

15 PDCM
Perfmon and Debug Capability: A value of 1 indicates the
processor supports the performance and debug feature indication
MSR IA32_PERF_CAPABILITIES.

16-17 Reserved Reserved

18 DCA
 A value of 1 indicates the processor supports the ability to
prefetch data from a memory mapped device.

19 SSE4.1 A value of 1 indicates that the processor supports SSE4.1.

20 SSE4.2 A value of 1 indicates that the processor supports SSE4.2.

21 x2APIC
A value of 1 indicates that the processor supports x2APIC
feature.

Table 2-21. Feature Information Returned in the ECX Register (Continued)

Bit # Mnemonic Description
Ref. # 319433-004 43

APPLICATION PROGRAMMING MODEL
22 Reserved Reserved

23 POPCNT
A value of 1 indicates that the processor supports the POPCNT
instruction.

24 Reserved Reserved

25 AES
A value of 1 indicates that the processor supports the AES
instruction

26 XSAVE

A value of 1 indicates that the processor supports the
XFEATURE_ENABLED_MASK register and
XSAVE/XRSTOR/XSETBV/XGETBV instructions to manage
processor extended states.

27 OSXSAVE
A value of 1 indicates that the OS has enabled support for using
XGETBV/XSETBV instructions to query processor extended
states.

28 AVX
A value of 1 indicates that processor supports AVX instructions
operating on 256-bit YMM state, and three-operand encoding of
256-bit and 128-bit SIMD instructions.

31 - 29 Reserved Reserved

Table 2-21. Feature Information Returned in the ECX Register (Continued)

Bit # Mnemonic Description
44 Ref. # 319433-004

APPLICATION PROGRAMMING MODEL

Figure 2-4. Feature Information Returned in the EDX Register
Ref. # 319433-004 45

APPLICATION PROGRAMMING MODEL
Table 2-22. More on Feature Information Returned in the EDX Register

Bit # Mnemonic Description

0 FPU floating-point Unit On-Chip. The processor contains an x87 FPU.

1 VME

Virtual 8086 Mode Enhancements. Virtual 8086 mode enhancements,
including CR4.VME for controlling the feature, CR4.PVI for protected mode
virtual interrupts, software interrupt indirection, expansion of the TSS with
the software indirection bitmap, and EFLAGS.VIF and EFLAGS.VIP flags.

2 DE
Debugging Extensions. Support for I/O breakpoints, including CR4.DE for
controlling the feature, and optional trapping of accesses to DR4 and DR5.

3 PSE
Page Size Extension. Large pages of size 4 MByte are supported, including
CR4.PSE for controlling the feature, the defined dirty bit in PDE (Page
Directory Entries), optional reserved bit trapping in CR3, PDEs, and PTEs.

4 TSC
Time Stamp Counter. The RDTSC instruction is supported, including CR4.TSD
for controlling privilege.

5 MSR
Model Specific Registers RDMSR and WRMSR Instructions. The RDMSR and
WRMSR instructions are supported. Some of the MSRs are implementation
dependent.

6 PAE

Physical Address Extension. Physical addresses greater than 32 bits are
supported: extended page table entry formats, an extra level in the page
translation tables is defined, 2-MByte pages are supported instead of 4
Mbyte pages if PAE bit is 1. The actual number of address bits beyond 32 is
not defined, and is implementation specific.

7 MCE

Machine Check Exception. Exception 18 is defined for Machine Checks,
including CR4.MCE for controlling the feature. This feature does not define
the model-specific implementations of machine-check error logging,
reporting, and processor shutdowns. Machine Check exception handlers may
have to depend on processor version to do model specific processing of the
exception, or test for the presence of the Machine Check feature.

8 CX8
CMPXCHG8B Instruction. The compare-and-exchange 8 bytes (64 bits)
instruction is supported (implicitly locked and atomic).

9 APIC

APIC On-Chip. The processor contains an Advanced Programmable Interrupt
Controller (APIC), responding to memory mapped commands in the physical
address range FFFE0000H to FFFE0FFFH (by default - some processors
permit the APIC to be relocated).

10 Reserved Reserved

11 SEP
SYSENTER and SYSEXIT Instructions. The SYSENTER and SYSEXIT and
associated MSRs are supported.

12 MTRR

Memory Type Range Registers. MTRRs are supported. The MTRRcap MSR
contains feature bits that describe what memory types are supported, how
many variable MTRRs are supported, and whether fixed MTRRs are
supported.
46 Ref. # 319433-004

APPLICATION PROGRAMMING MODEL
13 PGE

PTE Global Bit. The global bit in page directory entries (PDEs) and page table
entries (PTEs) is supported, indicating TLB entries that are common to
different processes and need not be flushed. The CR4.PGE bit controls this
feature.

14 MCA

Machine Check Architecture. The Machine Check Architecture, which
provides a compatible mechanism for error reporting in P6 family, Pentium 4,
Intel Xeon processors, and future processors, is supported. The MCG_CAP
MSR contains feature bits describing how many banks of error reporting
MSRs are supported.

15 CMOV
Conditional Move Instructions. The conditional move instruction CMOV is
supported. In addition, if x87 FPU is present as indicated by the CPUID.FPU
feature bit, then the FCOMI and FCMOV instructions are supported

16 PAT

Page Attribute Table. Page Attribute Table is supported. This feature
augments the Memory Type Range Registers (MTRRs), allowing an operating
system to specify attributes of memory on a 4K granularity through a linear
address.

17 PSE-36

36-Bit Page Size Extension. Extended 4-MByte pages that are capable of
addressing physical memory beyond 4 GBytes are supported. This feature
indicates that the upper four bits of the physical address of the 4-MByte
page is encoded by bits 13-16 of the page directory entry.

18 PSN
Processor Serial Number. The processor supports the 96-bit processor
identification number feature and the feature is enabled.

19 CLFSH CLFLUSH Instruction. CLFLUSH Instruction is supported.

20 Reserved Reserved

21 DS

Debug Store. The processor supports the ability to write debug information
into a memory resident buffer. This feature is used by the branch trace store
(BTS) and precise event-based sampling (PEBS) facilities (see Chapter 18,
“Debugging and Performance Monitoring,” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3B).

22 ACPI

Thermal Monitor and Software Controlled Clock Facilities. The processor
implements internal MSRs that allow processor temperature to be monitored
and processor performance to be modulated in predefined duty cycles under
software control.

23 MMX Intel MMX Technology. The processor supports the Intel MMX technology.

24 FXSR

FXSAVE and FXRSTOR Instructions. The FXSAVE and FXRSTOR instructions
are supported for fast save and restore of the floating-point context.
Presence of this bit also indicates that CR4.OSFXSR is available for an
operating system to indicate that it supports the FXSAVE and FXRSTOR
instructions.

Table 2-22. More on Feature Information Returned in the EDX Register(Continued)

Bit # Mnemonic Description
Ref. # 319433-004 47

APPLICATION PROGRAMMING MODEL
INPUT EAX = 2: Cache and TLB Information Returned in EAX, EBX, ECX, EDX

When CPUID executes with EAX set to 2, the processor returns information about the
processor’s internal caches and TLBs in the EAX, EBX, ECX, and EDX registers.

The encoding is as follows:

• The least-significant byte in register EAX (register AL) indicates the number of
times the CPUID instruction must be executed with an input value of 2 to get a
complete description of the processor’s caches and TLBs. The first member of the
family of Pentium 4 processors will return a 1.

• The most significant bit (bit 31) of each register indicates whether the register
contains valid information (set to 0) or is reserved (set to 1).

• If a register contains valid information, the information is contained in 1 byte
descriptors. Table 2-23 shows the encoding of these descriptors. Note that the
order of descriptors in the EAX, EBX, ECX, and EDX registers is not defined; that
is, specific bytes are not designated to contain descriptors for specific cache or
TLB types. The descriptors may appear in any order.

25 SSE SSE. The processor supports the SSE extensions.

26 SSE2 SSE2. The processor supports the SSE2 extensions.

27 SS
Self Snoop. The processor supports the management of conflicting memory
types by performing a snoop of its own cache structure for transactions
issued to the bus.

28 HTT
Multi-Threading. The physical processor package is capable of supporting
more than one logical processor.

29 TM
Thermal Monitor. The processor implements the thermal monitor automatic
thermal control circuitry (TCC).

30 Reserved Reserved

31 PBE

Pending Break Enable. The processor supports the use of the FERR#/PBE#
pin when the processor is in the stop-clock state (STPCLK# is asserted) to
signal the processor that an interrupt is pending and that the processor
should return to normal operation to handle the interrupt. Bit 10 (PBE
enable) in the IA32_MISC_ENABLE MSR enables this capability.

Table 2-23. Encoding of Cache and TLB Descriptors
Descriptor Value Cache or TLB Description

00H Null descriptor

01H Instruction TLB: 4 KByte pages, 4-way set associative, 32 entries

02H Instruction TLB: 4 MByte pages, 4-way set associative, 2 entries

Table 2-22. More on Feature Information Returned in the EDX Register(Continued)

Bit # Mnemonic Description
48 Ref. # 319433-004

APPLICATION PROGRAMMING MODEL
03H Data TLB: 4 KByte pages, 4-way set associative, 64 entries

04H Data TLB: 4 MByte pages, 4-way set associative, 8 entries

05H Data TLB1: 4 MByte pages, 4-way set associative, 32 entries

06H 1st-level instruction cache: 8 KBytes, 4-way set associative, 32 byte line size

08H 1st-level instruction cache: 16 KBytes, 4-way set associative, 32 byte line size

0AH 1st-level data cache: 8 KBytes, 2-way set associative, 32 byte line size

0BH Instruction TLB: 4 MByte pages, 4-way set associative, 4 entries

0CH 1st-level data cache: 16 KBytes, 4-way set associative, 32 byte line size

22H
3rd-level cache: 512 KBytes, 4-way set associative, 64 byte line size, 2 lines
per sector

23H
3rd-level cache: 1 MBytes, 8-way set associative, 64 byte line size, 2 lines per
sector

25H
3rd-level cache: 2 MBytes, 8-way set associative, 64 byte line size, 2 lines per
sector

29H
3rd-level cache: 4 MBytes, 8-way set associative, 64 byte line size, 2 lines per
sector

2CH 1st-level data cache: 32 KBytes, 8-way set associative, 64 byte line size

30H 1st-level instruction cache: 32 KBytes, 8-way set associative, 64 byte line size

40H
No 2nd-level cache or, if processor contains a valid 2nd-level cache, no 3rd-
level cache

41H 2nd-level cache: 128 KBytes, 4-way set associative, 32 byte line size

42H 2nd-level cache: 256 KBytes, 4-way set associative, 32 byte line size

43H 2nd-level cache: 512 KBytes, 4-way set associative, 32 byte line size

44H 2nd-level cache: 1 MByte, 4-way set associative, 32 byte line size

45H 2nd-level cache: 2 MByte, 4-way set associative, 32 byte line size

46H 3rd-level cache: 4 MByte, 4-way set associative, 64 byte line size

47H 3rd-level cache: 8 MByte, 8-way set associative, 64 byte line size

49H
3rd-level cache: 4MB, 16-way set associative, 64-byte line size (Intel Xeon
processor MP, Family 0FH, Model 06H);

2nd-level cache: 4 MByte, 16-way set associative, 64 byte line size

4AH 3rd-level cache: 6MByte, 12-way set associative, 64 byte line size

4BH 3rd-level cache: 8MByte, 16-way set associative, 64 byte line size

4CH 3rd-level cache: 12MByte, 12-way set associative, 64 byte line size

4DH 3rd-level cache: 16MByte, 16-way set associative, 64 byte line size

Table 2-23. Encoding of Cache and TLB Descriptors (Continued)
Descriptor Value Cache or TLB Description
Ref. # 319433-004 49

APPLICATION PROGRAMMING MODEL
4EH 2nd-level cache: 6MByte, 24-way set associative, 64 byte line size

50H Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 64 entries

51H Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 128 entries

52H Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 256 entries

56H Data TLB0: 4 MByte pages, 4-way set associative, 16 entries

57H Data TLB0: 4 KByte pages, 4-way associative, 16 entries

5BH Data TLB: 4 KByte and 4 MByte pages, 64 entries

5CH Data TLB: 4 KByte and 4 MByte pages,128 entries

5DH Data TLB: 4 KByte and 4 MByte pages,256 entries

60H 1st-level data cache: 16 KByte, 8-way set associative, 64 byte line size

66H 1st-level data cache: 8 KByte, 4-way set associative, 64 byte line size

67H 1st-level data cache: 16 KByte, 4-way set associative, 64 byte line size

68H 1st-level data cache: 32 KByte, 4-way set associative, 64 byte line size

70H Trace cache: 12 K-μop, 8-way set associative

71H Trace cache: 16 K-μop, 8-way set associative

72H Trace cache: 32 K-μop, 8-way set associative

78H 2nd-level cache: 1 MByte, 4-way set associative, 64byte line size

79H
2nd-level cache: 128 KByte, 8-way set associative, 64 byte line size, 2 lines
per sector

7AH
2nd-level cache: 256 KByte, 8-way set associative, 64 byte line size, 2 lines
per sector

7BH
2nd-level cache: 512 KByte, 8-way set associative, 64 byte line size, 2 lines
per sector

7CH
2nd-level cache: 1 MByte, 8-way set associative, 64 byte line size, 2 lines per
sector

7DH 2nd-level cache: 2 MByte, 8-way set associative, 64byte line size

7FH 2nd-level cache: 512 KByte, 2-way set associative, 64-byte line size

82H 2nd-level cache: 256 KByte, 8-way set associative, 32 byte line size

83H 2nd-level cache: 512 KByte, 8-way set associative, 32 byte line size

84H 2nd-level cache: 1 MByte, 8-way set associative, 32 byte line size

85H 2nd-level cache: 2 MByte, 8-way set associative, 32 byte line size

86H 2nd-level cache: 512 KByte, 4-way set associative, 64 byte line size

87H 2nd-level cache: 1 MByte, 8-way set associative, 64 byte line size

B0H Instruction TLB: 4 KByte pages, 4-way set associative, 128 entries

Table 2-23. Encoding of Cache and TLB Descriptors (Continued)
Descriptor Value Cache or TLB Description
50 Ref. # 319433-004

APPLICATION PROGRAMMING MODEL
Example 2-1. Example of Cache and TLB Interpretation

The first member of the family of Pentium 4 processors returns the following informa-
tion about caches and TLBs when the CPUID executes with an input value of 2:

EAX 66 5B 50 01H
EBX 0H
ECX 0H
EDX 00 7A 70 00H

Which means:

• The least-significant byte (byte 0) of register EAX is set to 01H. This indicates
that CPUID needs to be executed once with an input value of 2 to retrieve
complete information about caches and TLBs.

• The most-significant bit of all four registers (EAX, EBX, ECX, and EDX) is set to 0,
indicating that each register contains valid 1-byte descriptors.

• Bytes 1, 2, and 3 of register EAX indicate that the processor has:

— 50H - a 64-entry instruction TLB, for mapping 4-KByte and 2-MByte or 4-
MByte pages.

— 5BH - a 64-entry data TLB, for mapping 4-KByte and 4-MByte pages.

— 66H - an 8-KByte 1st level data cache, 4-way set associative, with a 64-Byte
cache line size.

• The descriptors in registers EBX and ECX are valid, but contain NULL descriptors.

• Bytes 0, 1, 2, and 3 of register EDX indicate that the processor has:

— 00H - NULL descriptor.

— 70H - Trace cache: 12 K-μop, 8-way set associative.

— 7AH - a 256-KByte 2nd level cache, 8-way set associative, with a sectored,
64-byte cache line size.

— 00H - NULL descriptor.

B1H Instruction TLB: 2M pages, 4-way, 8 entries or 4M pages, 4-way, 4 entries

B3H Data TLB: 4 KByte pages, 4-way set associative, 128 entries

B4H Data TLB1: 4 KByte pages, 4-way associative, 256 entries

F0H 64-Byte prefetching

F1H 128-Byte prefetching

Table 2-23. Encoding of Cache and TLB Descriptors (Continued)
Descriptor Value Cache or TLB Description
Ref. # 319433-004 51

APPLICATION PROGRAMMING MODEL
INPUT EAX = 4: Returns Deterministic Cache Parameters for Each Level

When CPUID executes with EAX set to 4 and ECX contains an index value, the
processor returns encoded data that describe a set of deterministic cache parame-
ters (for the cache level associated with the input in ECX). Valid index values start
from 0.

Software can enumerate the deterministic cache parameters for each level of the
cache hierarchy starting with an index value of 0, until the parameters report the
value associated with the cache type field is 0. The architecturally defined fields
reported by deterministic cache parameters are documented in Table 2-18.

The CPUID leaf 4 also reports data that can be used to derive the topology of
processor cores in a physical package. This information is constant for all valid index
values. Software can query the raw data reported by executing CPUID with EAX=4
and ECX=0 and use it as part of the topology enumeration algorithm described in
Chapter 7, “Multiple-Processor Management,” in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3A.

INPUT EAX = 5: Returns MONITOR and MWAIT Features

When CPUID executes with EAX set to 5, the processor returns information about
features available to MONITOR/MWAIT instructions. The MONITOR instruction is used
for address-range monitoring in conjunction with MWAIT instruction. The MWAIT
instruction optionally provides additional extensions for advanced power manage-
ment. See Table 2-18.

INPUT EAX = 6: Returns Thermal and Power Management Features

When CPUID executes with EAX set to 6, the processor returns information about
thermal and power management features. See Table 2-18.

INPUT EAX = 9: Returns Direct Cache Access Information

When CPUID executes with EAX set to 9, the processor returns information about
Direct Cache Access capabilities. See Table 2-18.

INPUT EAX = 10: Returns Architectural Performance Monitoring Features

When CPUID executes with EAX set to 10, the processor returns information about
support for architectural performance monitoring capabilities. Architectural perfor-
mance monitoring is supported if the version ID (see Table 2-18) is greater than
Pn 0. See Table 2-18.

For each version of architectural performance monitoring capability, software must
enumerate this leaf to discover the programming facilities and the architectural
performance events available in the processor. The details are described in Chapter
18, “Debugging and Performance Monitoring,” in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3B.
52 Ref. # 319433-004

APPLICATION PROGRAMMING MODEL
INPUT EAX = 11: Returns Extended Topology Information

When CPUID executes with EAX set to 11, the processor returns information about
extended topology enumeration data. Software must detect the presence of CPUID
leaf 0BH by verifying (a) the highest leaf index supported by CPUID is >= 0BH, and
(b) CPUID.0BH:EBX[15:0] reports a non-zero value.

INPUT EAX = 13: Returns Processor Extended States Enumeration Information

When CPUID executes with EAX set to 13 and ECX = 0, the processor returns infor-
mation about the bit-vector representation of all processor state extensions that are
supported in the processor and storage size requirements of the XSAVE/XRSTOR
area. See Table 2-18.

When CPUID executes with EAX set to 13 and ECX = n (n > 1and less than the
number of non-zero bits in CPUID.(EAX=0DH, ECX= 0H).EAX and CPUID.(EAX=0DH,
ECX= 0H).EDX), the processor returns information about the size and offset of each
processor extended state save area within the XSAVE/XRSTOR area. See Table 2-18.

METHODS FOR RETURNING BRANDING INFORMATION

Use the following techniques to access branding information:

1. Processor brand string method; this method also returns the processor’s
maximum operating frequency

2. Processor brand index; this method uses a software supplied brand string table.

These two methods are discussed in the following sections. For methods that are
available in early processors, see Section: “Identification of Earlier IA-32 Processors”
in Chapter 14 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1.

The Processor Brand String Method

Figure 2-5 describes the algorithm used for detection of the brand string. Processor
brand identification software should execute this algorithm on all Intel 64 and IA-32
processors.

This method (introduced with Pentium 4 processors) returns an ASCII brand identifi-
cation string and the maximum operating frequency of the processor to the EAX,
EBX, ECX, and EDX registers.
Ref. # 319433-004 53

APPLICATION PROGRAMMING MODEL
How Brand Strings Work

To use the brand string method, execute CPUID with EAX input of 8000002H through
80000004H. For each input value, CPUID returns 16 ASCII characters using EAX,
EBX, ECX, and EDX. The returned string will be NULL-terminated.

Table 2-24 shows the brand string that is returned by the first processor in the
Pentium 4 processor family.

Figure 2-5. Determination of Support for the Processor Brand String

Table 2-24. Processor Brand String Returned with Pentium 4 Processor

EAX Input Value Return Values ASCII Equivalent

OM15194

IF (EAX & 0x80000000)

CPUID

IF (EAX Return Value
≥ 0x80000004)

CPUID
Function

Supported

True ≥
Extended

EAX Return Value =
Max. Extended CPUID

Function Index

Input: EAX=
0x80000000

Processor Brand
String Not
Supported

False

Processor Brand
String Supported

True
54 Ref. # 319433-004

APPLICATION PROGRAMMING MODEL
Extracting the Maximum Processor Frequency from Brand Strings

Figure 2-6 provides an algorithm which software can use to extract the maximum
processor operating frequency from the processor brand string.

NOTE
When a frequency is given in a brand string, it is the maximum
qualified frequency of the processor, not the frequency at which the
processor is currently running.

80000002H EAX = 20202020H

EBX = 20202020H

ECX = 20202020H

EDX = 6E492020H

“ ”

“ ”

“ ”

“nI ”

80000003H EAX = 286C6574H

EBX = 50202952H

ECX = 69746E65H

EDX = 52286D75H

“(let”

“P)R”

“itne”

“R(mu”

80000004H EAX = 20342029H

EBX = 20555043H

ECX = 30303531H

EDX = 007A484DH

“ 4)”

“ UPC”

“0051”

“\0zHM”

Table 2-24. Processor Brand String Returned with Pentium 4 Processor (Continued)
Ref. # 319433-004 55

APPLICATION PROGRAMMING MODEL
The Processor Brand Index Method

The brand index method (introduced with Pentium® III Xeon® processors) provides
an entry point into a brand identification table that is maintained in memory by
system software and is accessible from system- and user-level code. In this table,
each brand index is associate with an ASCII brand identification string that identifies
the official Intel family and model number of a processor.

When CPUID executes with EAX set to 1, the processor returns a brand index to the
low byte in EBX. Software can then use this index to locate the brand identification
string for the processor in the brand identification table. The first entry (brand index
0) in this table is reserved, allowing for backward compatibility with processors that

Figure 2-6. Algorithm for Extracting Maximum Processor Frequency
56 Ref. # 319433-004

APPLICATION PROGRAMMING MODEL
do not support the brand identification feature. Starting with processor signature
family ID = 0FH, model = 03H, brand index method is no longer supported. Use
brand string method instead.

Table 2-25 shows brand indices that have identification strings associated with them.

Table 2-25. Mapping of Brand Indices; and
Intel 64 and IA-32 Processor Brand Strings

Brand Index Brand String

00H This processor does not support the brand identification feature

01H Intel(R) Celeron(R) processor1

02H Intel(R) Pentium(R) III processor1

03H
Intel(R) Pentium(R) III Xeon(R) processor; If processor signature =
000006B1h, then Intel(R) Celeron(R) processor

04H Intel(R) Pentium(R) III processor

06H Mobile Intel(R) Pentium(R) III processor-M

07H Mobile Intel(R) Celeron(R) processor1

08H Intel(R) Pentium(R) 4 processor

09H Intel(R) Pentium(R) 4 processor

0AH Intel(R) Celeron(R) processor1

0BH
Intel(R) Xeon(R) processor; If processor signature = 00000F13h, then Intel(R)
Xeon(R) processor MP

0CH Intel(R) Xeon(R) processor MP

0EH
Mobile Intel(R) Pentium(R) 4 processor-M; If processor signature =
00000F13h, then Intel(R) Xeon(R) processor

0FH Mobile Intel(R) Celeron(R) processor1

11H Mobile Genuine Intel(R) processor

12H Intel(R) Celeron(R) M processor

13H Mobile Intel(R) Celeron(R) processor1

14H Intel(R) Celeron(R) processor

15H Mobile Genuine Intel(R) processor

16H Intel(R) Pentium(R) M processor

17H Mobile Intel(R) Celeron(R) processor1

18H – 0FFH RESERVED

NOTES:
1.Indicates versions of these processors that were introduced after the Pentium III
Ref. # 319433-004 57

APPLICATION PROGRAMMING MODEL
IA-32 Architecture Compatibility

CPUID is not supported in early models of the Intel486 processor or in any IA-32
processor earlier than the Intel486 processor.

Operation

IA32_BIOS_SIGN_ID MSR ← Update with installed microcode revision number;

CASE (EAX) OF
EAX = 0:

EAX ← Highest basic function input value understood by CPUID;
EBX ← Vendor identification string;
EDX ← Vendor identification string;
ECX ← Vendor identification string;

BREAK;
EAX = 1H:

EAX[3:0] ← Stepping ID;
EAX[7:4] ← Model;
EAX[11:8] ← Family;
EAX[13:12] ← Processor type;
EAX[15:14] ← Reserved;
EAX[19:16] ← Extended Model;
EAX[27:20] ← Extended Family;
EAX[31:28] ← Reserved;
EBX[7:0] ← Brand Index; (* Reserved if the value is zero. *)
EBX[15:8] ← CLFLUSH Line Size;
EBX[16:23] ← Reserved; (* Number of threads enabled = 2 if MT enable fuse set. *)
EBX[24:31] ← Initial APIC ID;
ECX ← Feature flags; (* See Figure 2-3. *)
EDX ← Feature flags; (* See Figure 2-4. *)

BREAK;
EAX = 2H:

EAX ← Cache and TLB information;
 EBX ← Cache and TLB information;
 ECX ← Cache and TLB information;

EDX ← Cache and TLB information;
BREAK;
EAX = 3H:

EAX ← Reserved;
 EBX ← Reserved;
 ECX ← ProcessorSerialNumber[31:0];

(* Pentium III processors only, otherwise reserved. *)
EDX ← ProcessorSerialNumber[63:32];
(* Pentium III processors only, otherwise reserved. *
58 Ref. # 319433-004

APPLICATION PROGRAMMING MODEL
BREAK
EAX = 4H:

EAX ← Deterministic Cache Parameters Leaf; (* See Table 2-18. *)
EBX ← Deterministic Cache Parameters Leaf;

 ECX ← Deterministic Cache Parameters Leaf;
EDX ← Deterministic Cache Parameters Leaf;

BREAK;
EAX = 5H:

EAX ← MONITOR/MWAIT Leaf; (* See Table 2-18. *)
 EBX ← MONITOR/MWAIT Leaf;
 ECX ← MONITOR/MWAIT Leaf;

EDX ← MONITOR/MWAIT Leaf;
BREAK;
EAX = 6H:

EAX ← Thermal and Power Management Leaf; (* See Table 2-18. *)
 EBX ← Thermal and Power Management Leaf;
 ECX ← Thermal and Power Management Leaf;

EDX ← Thermal and Power Management Leaf;
BREAK;
EAX = 7H or 8H:

EAX ← Reserved = 0;
 EBX ← Reserved = 0;
 ECX ← Reserved = 0;

EDX ← Reserved = 0;
BREAK;
EAX = 9H:

EAX ← Direct Cache Access Information Leaf; (* See Table 2-18. *)
 EBX ← Direct Cache Access Information Leaf;
 ECX ← Direct Cache Access Information Leaf;

EDX ← Direct Cache Access Information Leaf;
BREAK;
EAX = AH:

EAX ← Architectural Performance Monitoring Leaf; (* See Table 2-18. *)
 EBX ← Architectural Performance Monitoring Leaf;
 ECX ← Architectural Performance Monitoring Leaf;

EDX ← Architectural Performance Monitoring Leaf;
BREAK

EAX = BH:
EAX ← Extended Topology Enumeration Leaf; (* See Table 2-18. *)
EBX ← Extended Topology Enumeration Leaf;

 ECX ← Extended Topology Enumeration Leaf;
EDX ← Extended Topology Enumeration Leaf;

BREAK;
Ref. # 319433-004 59

APPLICATION PROGRAMMING MODEL
EAX = CH:
EAX ← Reserved = 0;

 EBX ← Reserved = 0;
 ECX ← Reserved = 0;

EDX ← Reserved = 0;
BREAK;
EAX = DH:

EAX ← Processor Extended State Enumeration Leaf; (* See Table 2-18. *)
 EBX ← Processor Extended State Enumeration Leaf;
 ECX ← Processor Extended State Enumeration Leaf;

EDX ← Processor Extended State Enumeration Leaf;
BREAK;

BREAK;
EAX = 80000000H:

EAX ← Highest extended function input value understood by CPUID;
EBX ← Reserved;
ECX ← Reserved;
EDX ← Reserved;

BREAK;
EAX = 80000001H:

EAX ← Reserved;
EBX ← Reserved;
ECX ← Extended Feature Bits (* See Table 2-18.*);
EDX ← Extended Feature Bits (* See Table 2-18. *);

BREAK;
EAX = 80000002H:

EAX ← Processor Brand String;
EBX ← Processor Brand String, continued;
ECX ← Processor Brand String, continued;
EDX ← Processor Brand String, continued;

BREAK;
EAX = 80000003H:

EAX ← Processor Brand String, continued;
EBX ← Processor Brand String, continued;
ECX ← Processor Brand String, continued;
EDX ← Processor Brand String, continued;

BREAK;
EAX = 80000004H:

EAX ← Processor Brand String, continued;
EBX ← Processor Brand String, continued;
ECX ← Processor Brand String, continued;
EDX ← Processor Brand String, continued;

BREAK;
60 Ref. # 319433-004

APPLICATION PROGRAMMING MODEL
EAX = 80000005H:
EAX ← Reserved = 0;
EBX ← Reserved = 0;
ECX ← Reserved = 0;
EDX ← Reserved = 0;

BREAK;
EAX = 80000006H:

EAX ← Reserved = 0;
EBX ← Reserved = 0;
ECX ← Cache information;
EDX ← Reserved = 0;

BREAK;
EAX = 80000007H:

EAX ← Reserved = 0;
EBX ← Reserved = 0;
ECX ← Reserved = 0;
EDX ← Reserved = 0;

BREAK;
EAX = 80000008H:

EAX ← Reserved = 0;
EBX ← Reserved = 0;
ECX ← Reserved = 0;
EDX ← Reserved = 0;

BREAK;
DEFAULT: (* EAX = Value outside of recognized range for CPUID. *)

(* If the highest basic information leaf data depend on ECX input value, ECX is honored.*)
EAX ← Reserved; (* Information returned for highest basic information leaf. *)
EBX ← Reserved; (* Information returned for highest basic information leaf. *)
ECX ← Reserved; (* Information returned for highest basic information leaf. *)
EDX ← Reserved; (* Information returned for highest basic information leaf. *)

BREAK;
ESAC;

Flags Affected

None.

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

In earlier IA-32 processors that do not support the CPUID
instruction, execution of the instruction results in an invalid
opcode (#UD) exception being generated.

§

Ref. # 319433-004 61

APPLICATION PROGRAMMING MODEL
62 Ref. # 319433-004

SYSTEM PROGRAMMING MODEL
CHAPTER 3
SYSTEM PROGRAMMING MODEL

This chapter describes the operating system programming considerations for AVX.
The AES extension and PCLMULQDQ instruction follow the same system software
requirements for XMM state support and SIMD floating-point exception support as
SSE2, SSE3, SSSE3, SSE4 (see Chapter 12 of IA-32 Intel Architecture Software
Developer’s Manual, Volumes 3A).

The AVX and FMA extensions operate on 256-bit YMM registers, and require oper-
ating system to supports processor extended state management using
XSAVE/XRSTOR instructions. VAESDEC/VAESDECLAST/VAESENC/VAESEN-
CLAST/VAESIMC/VAESKEYGENASSIST follow the same system programming
requirements as AVX and FMA instructions operating on YMM states.

The basic requirements for an operating system using XSAVE/XRSTOR to manage
processor extended states for current and future Intel Architecture processors can be
found in Chapter 12 of IA-32 Intel Architecture Software Developer’s Manual,
Volumes 3A. This chapter covers additional requirements for OS to support YMM
state.

3.1 YMM STATE, VEX PREFIX AND SUPPORTED OPERATING
MODES

AVX and FMA instructions comprises of 256-bit and 128-bit instructions that operates
on YMM states via VEX prefix encoding. SIMD instructions operating on XMM states
(i.e. not accessing the upper 128 bits of YMM) generally do not use VEX prefix.

For processors that support YMM states, the YMM state exists in all operating modes.
However, the available interfaces to access YMM states may vary in different modes.
The processor's support for instruction extensions that employ VEX prefix encoding is
independent of the processor's support for YMM state.

Instructions requiring VEX prefix encoding generally are supported in 64-bit, 32-bit
modes, and 16-bit protected mode. They are not supported in Real mode, Virtual-
8086 mode or entering into SMM mode.

Note that bits 255:128 of YMM register state are maintained across transitions into
and out of these modes. Because, XSAVE/XRSTOR instruction can operate in all oper-
ating modes, it is possible that the processor's YMM register state can be modified by
software in any operating mode by executing XRSTOR. The YMM registers can be
updated by XRSTOR using the state information stored in the XSAVE/XRSTOR area
residing in memory.
Ref. # 319433-004 1

SYSTEM PROGRAMMING MODEL
3.2 YMM STATE MANAGEMENT
Operating systems must use the XSAVE/XRSTOR instructions for YMM state manage-
ment. The XSAVE/XRSTOR instructions also provide flexible and efficient interface to
manage XMM/MXCSR states and x87 FPU states in conjunction with new processor
extended states.

An OS must enable its YMM state management to support AVX and FMA extensions.
Otherwise, an attempt to execute an instruction in AVX or FMA extensions (including
an enhanced 128-bit SIMD instructions using VEX encoding) will cause a #UD excep-
tion.

3.2.1 Detection of YMM State Support
Detection of hardware support for new processor extended state is provided by the
main leaf of CPUID leaf function 0DH with index ECX = 0. Specifically, the return
value in EDX:EAX of CPUID.(EAX=0DH, ECX=0) provides a 64-bit wide bit vector of
hardware support of processor state components, beginning with bit 0 of EAX corre-
sponding to x87 FPU state, CPUID.(EAX=0DH, ECX=0):EAX[1] corresponding to SSE
state (XMM registers and MXCSR), CPUID.(EAX=0DH, ECX=0):EAX[2] corre-
sponding to YMM states.

3.2.2 Enabling of YMM State
An OS can enable YMM state support with the following steps:

• Verify the processor supports XSAVE/XRSTOR/XSETBV/XGETBV instructions and
the XFEATURE_ENABLED_MASK register by checking CPUID.1.ECX.XSAVE[bit
26]=1.

• Verify the processor supports YMM state (i.e. bit 2 of XFEATURE_ENABLED_MASK
is valid) by checking CPUID.(EAX=0DH, ECX=0):EAX.YMM[2]. The OS should
also verify CPUID.(EAX=0DH, ECX=0):EAX.SSE[bit 1]=1, because the lower
128-bits of an YMM register are aliased to an XMM register.

The OS must determine the buffer size requirement for the XSAVE area that will
be used by XSAVE/XRSTOR (see CPUID instruction in Section 2.9).

• Set CR4.OSXSAVE[bit 18]=1 to enable the use of XSETBV/XGETBV instructions
to write/read the XFEATURE_ENABLED_MASK register.

• Supply an appropriate mask via EDX:EAX to execute XSETBV to enable the
processor state components that the OS wishes to manage using XSAVE/XRSTOR
instruction. To enable x87 FPU, SSE and YMM state management using
XSAVE/XRSTOR, the enable mask is EDX=0H, EAX=7H (The individual bits of
XFEATURE_ENABLED_MASK is listed in Table 3-26).
2 Ref. # 319433-004

SYSTEM PROGRAMMING MODEL
To enable YMM state, the OS must use EDX:EAX[2:1] = 11B when executing
XSETBV. An attempt to execute XSETBV with EDX:EAX[2:1] = 10B causes a
#GP(0) exception.

3.2.3 Enabling of SIMD Floating-Exception Support
AVX and FMA instruction may generate SIMD floating-point exceptions. An OS must
enable SIMD floating-point exception support by setting CR4.OSXMMEXCPT[bit
10]=1.
The effect of CR4 setting that affects AVX and FMA enabling is listed in Table 3-27

Table 3-26. XFEATURE_ENABLED_MASK and Processor State Components

Bit Meaning

0 - x87
If set, the processor supports x87 FPU state management
via XSAVE/XRSTOR. This bit must be 1 if
CPUID.01H:ECX.XSAVE[26] = 1.

1 - SSE
If set, the processor supports SSE state (XMM and MXCSR)
management via XSAVE/XRSTOR. This bit must be set to
‘1’ to enable AVX.

2 - YMM
If set, the processor supports YMM state (upper 128 bits
of YMM registers) management via XSAVE. This bit must
be set to ‘1’ to enable AVX and FMA.

Table 3-27. CR4 bits for AVX New Instructions technology support

Bit Meaning

CR4.OSXSAVE[bit 18] If set, the OS supports use of XSETBV/XGETBV instruc-
tion to access. the XFEATURE_ENABLED_MASK register,
XSAVE/XRSTOR to manage processor extended state.
Must be set to ‘1’ to enable AVX and FMA.

CR4.OSXMMEXCPT[bit 10] Must be set to 1 to enable SIMD floating-point exceptions.
This applies to AVX, FMA operating on YMM states, and
legacy 128-bit SIMD floating-point instructions operating
on XMM states.

CR4.OSFXSR[bit 9] Ignored by AVX and FMA instructions operating on YMM
states.
Must be set to 1 to enable SIMD instructions operating on
XMM state.
Ref. # 319433-004 3

SYSTEM PROGRAMMING MODEL
3.2.4 The Layout of XSAVE Area
The OS must determine the buffer size requirement by querying CPUID with
EAX=0DH, ECX=0. If the OS wishes to enable all processor extended state compo-
nents in the XFEATURE_ENABLED_MASK, it can allocate the buffer size according to
CPUID.(EAX=0DH, ECX=0):ECX.

After the memory buff for XSAVE is allocated, the entire buffer must to cleared to
zero prior to use by XSAVE.

For processors that support SSE and YMM states, the XSAVE area layout is listed in
Table 3-28. The register fields of the first 512 byte of the XSAVE area are identical to
those of the FXSAVE/FXRSTOR area.

The format of the header is as follows (see Table 3-29):

The layout of the Ext_Save_Area[YMM] contains 16 of the upper 128-bits of the YMM
registers, it is shown in Table 3-30.

Note in general that the layout of the XSAVE/XRSTOR save area is fixed and may
contain non-contiguous individual save area (Ext_Save_Area_X). The
XSAVE/XRSTOR area is not compacted if some processor extended state features are
not saved or are not supported by the processor and/or by system software.

Table 3-28. Layout of XSAVE Area For Processor Supporting YMM State

Save Areas Offset (Byte) Size (Bytes)

FPU/SSE SaveArea 0 512

Header 512 64

Ext_Save_Area_2
(YMM)

CPUID.(EAX=0DH, ECX=2):EBX CPUID.(EAX=0DH, ECX=2):EAX

Table 3-29. XSAVE Header Format

15:8 7:0
Byte Offset
from Header

Byte Offset
from XSAVE

Area

Reserved (Must be zero) XSTATE_BV 0 512

Reserved Reserved (Must be zero) 16 528

Reserved Reserved 32 544

Reserved Reserved 48 560
4 Ref. # 319433-004

SYSTEM PROGRAMMING MODEL
3.2.5 XSAVE/XRSTOR Interaction with YMM State and MXCSR
The processor’s action as a result of executing XRSTOR, on the MXCSR, XMM and
YMM registers, are listed in Table 3-31 (Both bit 1 and bit 2 of the
XFEATURE_ENABLED_MASK register are presumed to be 1). The XMM registers may
be initialized by the processor (See XRSTOR operation in Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 2B). When the MXCSR register is
updated from memory, reserved bit checking is enforced. The saving/restoring of
MXCSR is bound to both the SSE state and YMM state.

Table 3-30. XSAVE Save Area Layout for YMM State (Ext_Save_Area_2)

31 16 15 0

Byte Offset
from

YMM_Save_Are
a

Byte Offset from
XSAVE Area

YMM1[255:128] YMM0[255:128] 0 576

YMM3[255:128] YMM2[255:128] 32 608

YMM5[255:128] YMM4[255:128] 64 640

YMM7[255:128] YMM6[255:128] 96 672

YMM9[255:128] YMM8[255:128] 128 704

YMM11[255:128] YMM10[255:128] 160 736

YMM13[255:128] YMM12[255:128] 192 768

YMM15[255:128] YMM14[255:128] 224 800

Table 3-31. XRSTOR Action on MXCSR, XMM Registers, YMM Registers

EDX:EAX XSATE_BV
MXCSR

YMM_H
Registers

XMM Registers
Bit 2 Bit 1 Bit 2 Bit 1

0 0 X X None None None

0 1 X 0 Load/Check None Init by processor

0 1 X 1 Load/Check None Load

1 0 0 X Load/Check Init by processor None

1 0 1 X Load/Check Load None

1 1 0 0 Load/Check Init by processor Init by processor

1 1 0 1 Load/Check Init by processor Load

1 1 1 0 Load/Check Load Init by processor

1 1 1 1 Load/Check Load Load
Ref. # 319433-004 5

SYSTEM PROGRAMMING MODEL
The processor supplied init values for each processor state component used by
XRSTOR is listed in Table 3-32.

The action of XSAVE is listed in Table 3-33.

3.3 RESET BEHAVIOR
At processor reset
• YMM0-16 bits[255:0] are set to zero.

Table 3-32. Processor Supplied Init Values XRSTOR May Use

Processor State Component Processor Supplied Register Values

x87 FPU State
FCW ← 037FH; FTW ← 0FFFFH; FSW ← 0H; FPU CS ← 0H;
FPU DS ← 0H; FPU IP ← 0H; FPU DP ← 0; ST0-ST7 ← 0;

SSE State1

NOTES:
1. MXCSR state is not updated by processor supplied values. MXCSR state can only

be updated by XRSTOR from state information stored in XSAVE/XRSTOR area.

If 64-bit Mode: XMM0-XMM15 ← 0H;
Else XMM0-XMM7 ← 0H

YMM State1 If 64-bit Mode: YMM0_H-YMM15_H ← 0H;
Else YMM0_H-YMM7_H ← 0H

Table 3-33. XSAVE Action on MXCSR, XMM, YMM Register

EDX:EAX
XFEATURE_ENABL

ED_MASK MXCSR YMM_H
Registers

XMM Registers
Bit 2 Bit 1 Bit 2 Bit 1

0 0 X X None None None

0 1 X 1 Store None Store

0 1 X 0 None None None

1 0 0 X None None None

1 0 1 1 Store Store None

1 1 0 0 None None None

1 1 0 1 Store None Store

1 1 1 1 Store Store Store
6 Ref. # 319433-004

SYSTEM PROGRAMMING MODEL
• XFEATURE_ENABLED_MASK[2:1] is set to zero, XFEATURE_ENABLED_MASK[0]
is set to 1.

• CR4.OSXSAVE[bit 18] (and its mirror CPUID.1.ECX.OSXSAVE[bit 27]) is set to
0.

3.4 EMULATION
Setting the CR0.EMbit to 1 provides a technique to emulate Legacy SSE floating-
point instruction sets in software. This technique is not supported with AVX instruc-
tions, nor FMA instructions.

If an operating system wishes to emulate AVX instructions, set
XFEATURE_ENABLED_MASK[2:1] to zero. This will cause AVX instructions to #UD.
Emulation of FMA by operating system can be done similarly as with emulating AVX
instructions.

3.5 WRITING AVX FLOATING-POINT EXCEPTION HANDLERS
AVX and FMA floating-point exceptions are handled in an entirely analogous way to
Legacy SSE floating-point exceptions. To handle unmasked SIMD floating-point
exceptions, the operating system or executive must provide an exception handler.
The section titled “SSE and SSE2 SIMD Floating-Point Exceptions” in Chapter 11,
“Programming with Streaming SIMD Extensions 2 (SSE2),” of the IA-32 Intel® Archi-
tecture Software Developer’s Manual, Volume 1, describes the SIMD floating-point
exception classes and gives suggestions for writing an exception handler to handle
them.

To indicate that the operating system provides a handler for SIMD floating-point
exceptions (#XM), the CR4.OSXMMEXCPT flag (bit 10) must be set.
Ref. # 319433-004 7

SYSTEM PROGRAMMING MODEL
§

This p
age was

intentionally left

blank.
8 Ref. # 319433-004

INSTRUCTION FORMAT
CHAPTER 4
INSTRUCTION FORMAT

AVX and FMA instructions are encoded using a more efficient format than previous
instruction extensions in the Intel 64 and IA-32 architecture. The improved encoding
format make use a new prefix referred to as “VEX“. The VEX prefix may be two or
three bytes long, depending on the instruction semantics. Despite the length of the
VEX prefix, the instruction encoding format using VEX addresses two important
issues: (a) there exists inefficiency in instruction encoding due to SIMD prefixes and
some fields of the REX prefix, (b) Both SIMD prefixes and REX prefix increase in
instruction byte-length. This chapter describes the instruction encoding format using
VEX.

4.1 INSTRUCTION FORMATS
Legacy instruction set extensions in IA-32 architecture employs one or more “single-
purpose“ byte as an “escape opcode“, or required SIMD prefix (66H, F2H, F3H) to
expand the processing capability of the instruction set. Intel 64 architecture uses the
REX prefix to expand the encoding of register access in instruction operands. Both
SIMD prefixes and REX prefix carry the side effect that they can cause the length of
an instruction to increase significantly. Legacy Intel 64 and IA-32 instruction set are
limited to supporting instruction syntax of only two operands that can be encoded to
access registers (and only one can access a memory address).

Instruction encoding using VEX prefix provides several advantages:

• Instruction syntax support for three operands and up-to four operands when
necessary. For example, the third source register used by VBLENDVPD is encoded
using bits 7:4 of the immediate byte.

• Encoding support for vector length of 128 bits (using XMM registers) and 256 bits
(using YMM registers)

• Encoding support for instruction syntax of non-destructive source operands.

• Elimination of escape opcode byte (0FH), SIMD prefix byte (66H, F2H, F3H) via a
compact bit field representation within the VEX prefix.

• Elimination of the need to use REX prefix to encode the extended half of general-
purpose register sets (R8-R15) for direct register access, memory addressing, or
accessing XMM8-XMM15 (including YMM8-YMM15).

• Flexible and more compact bit fields are provided in the VEX prefix to retain the
full functionality provided by REX prefix. REX.W, REX.X, REX.B functionalities are
provided in the three-byte VEX prefix only because only a subset of SIMD instruc-
tions need them.

• Extensibility for future instruction extensions without significant instruction
length increase.
Ref. # 319433-004 1

INSTRUCTION FORMAT
Figure 4-7 shows the Intel 64 instruction encoding format with VEX prefix support.
Legacy instruction without a VEX prefix is fully supported and unchanged. The use of
VEX prefix in an Intel 64 instruction is optional, but a VEX prefix is required for Intel
64 instructions that operate on YMM registers or support three and four operand
syntax. VEX prefix is not a constant-valued, “single-purpose” byte like 0FH, 66H,
F2H, F3H in legacy SSE instructions. VEX prefix provides substantially richer capa-
bility than the REX prefix.

Figure 4-7. Instruction Encoding Format with VEX Prefix

4.1.1 VEX and the LOCK prefix
Any VEX-encoded instruction with a LOCK prefix preceding VEX will #UD.

4.1.2 VEX and the 66H, F2H, and F3H prefixes
Any VEX-encoded instruction with a 66H, F2H, or F3H prefix preceding VEX will #UD.

4.1.3 VEX and the REX prefix
Any VEX-encoded instruction with a REX prefix proceeding VEX will #UD.

4.1.4 The VEX Prefix
The VEX prefix is encoded in either the two-byte form (the first byte must be C5H) or
in the three-byte form (the first byte must be C4H). The two-byte VEX is used mainly
for 128-bit, scalar, and the most common 256-bit AVX instructions; while the three-
byte VEX provides a compact replacement of REX and 3-byte opcode instructions
(including AVX and FMA instructions). Beyond the first byte of the VEX prefix, it
consists of a number of bit fields providing specific capability, they are shown in
Figure 4-8.

The bit fields of the VEX prefix can be summarized by its functional purposes:

• Non-destructive source register encoding (applicable to three and four operand
syntax): This is the first source operand in the instruction syntax. It is
represented by the notation, VEX.vvvv. This field is encoded using 1’s

ModR/M

1

[Prefixes] [VEX] OPCODE [SIB] [DISP] [IMM]

2,3 1 0,1 0,1,2,4 0,1# Bytes
2 Ref. # 319433-004

INSTRUCTION FORMAT
complement form (inverted form), i.e. XMM0/YMM0/R0 is encoded as 1111B,
XMM15/YMM15/R15 is encoded as 0000B.

• Vector length encoding: This 1-bit field represented by the notation VEX.L. L= 0
means vector length is 128 bits wide, L=1 means 256 bit vector. The value of this
field is written as VEX.128 or VEX.256 in this document to distinguish encoded
values of other VEX bit fields.

• REX prefix functionality: Full REX prefix functionality is provided in the three-byte
form of VEX prefix. However the VEX bit fields providing REX functionality are
encoded using 1’s complement form, i.e. XMM0/YMM0/R0 is encoded as 1111B,
XMM15/YMM15/R15 is encoded as 0000B.

— Two-byte form of the VEX prefix only provides the equivalent functionality of
REX.R, using 1’s complement encoding. This is represented as VEX.R.

— Three-byte form of the VEX prefix provides REX.R, REX.X, REX.B functionality
using 1’s complement encoding and three dedicated bit fields represented as
VEX.R, VEX.X, VEX.B.

— Three-byte form of the VEX prefix provides the functionality of REX.W only to
specific instructions that need to override default 32-bit operand size for a
general purpose register to 64-bit size in 64-bit mode. For those applicable
instructions, VEX.W field provides the same functionality as REX.W. VEX.W
field can provide completely different functionality for other instructions.

Consequently, the use of REX prefix with VEX encoded instructions is not
allowed. However, the intent of the REX prefix for expanding register set is
reserved for future instruction set extensions using VEX prefix encoding format.

• Compaction of SIMD prefix: Legacy SSE instructions effectively use SIMD
prefixes (66H, F2H, F3H) as an opcode extension field. VEX prefix encoding
allows the functional capability of such legacy SSE instructions (operating on
XMM registers, bits 255:128 of corresponding YMM unmodified) to be encoded
using the VEX.pp field without the presence of any SIMD prefix. The VEX-encod
128-bit instruction will zero-out bits 255:128 of the destination register. VEX-
encoded instruction may have 128 bit vector length or 256 bits length.

• Compaction of two-byte and three-byte opcode: More recently introduced legacy
SSE instructions employ two and three-byte opcode. The one or two leading
bytes are: 0FH, and 0FH 3AH/0FH 38H. The one-byte escape (0FH) and two-byte
escape (0FH 3AH, 0FH 38H) can also be interpreted as an opcode extension field.
The VEX.mmmmm field provides compaction to allow many legacy instruction to
be encoded without the constant byte sequence, 0FH, 0FH 3AH, 0FH 38H. These
VEX-encoded instruction may have 128 bit vector length or 256 bits length.

The VEX prefix is required to be the last prefix and immediately precedes the opcode
bytes. It must follow any other prefixes. If VEX prefix is present a REX prefix is not
supported.

The 3-byte VEX leaves room for future expansion with 3 reserved bits. REX and the
66h/F2h/F3h prefixes are reclaimed for future use.
Ref. # 319433-004 3

INSTRUCTION FORMAT
VEX prefix has a two-byte form and a three byte form. If an instruction syntax can be
encoded using the two-byte form, it can also be encoded using the three byte form of
VEX. The latter increases the length of the instruction by one byte. This may be
helpful in some situations for code alignment.

The VEX prefix supports 256-bit versions of floating-point SSE, SSE2, SSE3, and
SSE4 instructions. Some additional support for 128-bit vector integer instructions is
provided in Table A-1 of Appendix A. Note, certain new instruction functionality can
only be encoded with the VEX prefix (See Appendix A, Table A-2).

The VEX prefix will #UD on any instruction containing MMX register sources or desti-
nations.
4 Ref. # 319433-004

INSTRUCTION FORMAT
Figure 4-8. VEX bitfields

11000100 1

670

vvvv

1 03 2

L

7

R: REX.R in 1’s complement (inverted) form

00000: Reserved for future use (will #UD)
00001: implied 0F leading opcode byte
00010: implied 0F 38 leading opcode bytes
00011: implied 0F 3A leading opcode bytes
00100-11111: Reserved for future use (will #UD)

Byte 0 Byte 2
(Bit Position)

vvvv: a register specifier (in 1’s complement form) or 1111 if unused.

67 0

R X B

Byte 1

pp: opcode extension providing equivalent functionality of a SIMD prefix

W: opcode specific (use like REX.W, or used for opcode

m-mmmm

5

m-mmmm:

W

L: Vector Length

0: Same as REX.R=1 (64-bit mode only)
1: Same as REX.R=0 (must be 1 in 32-bit mode)

4

pp 3-byte VEX

11000101 1

670

vvvv

1 03 2

L

7

R pp 2-byte VEX

B: REX.B in 1’s complement (inverted) form

0: Same as REX.B=1 (64-bit mode only)
1: Same as REX.B=0 (Ignored in 32-bit mode).

 extension, or ignored, depending on the opcode byte)

0: scalar or 128-bit vector
1: 256-bit vector

00: None
01: 66
10: F3
11: F2

0: Same as REX.X=1 (64-bit mode only)
1: Same as REX.X=0 (must be 1 in 32-bit mode)

X: REX.X in 1’s complement (inverted) form
Ref. # 319433-004 5

INSTRUCTION FORMAT
The following subsections describe the various fields in two or three-byte VEX prefix:

4.1.4.1 VEX Byte 0, bits[7:0]
VEX Byte 0, bits [7:0] must contain the value 11000101b (C5h) or 11000100b
(C4h). The 3-byte VEX uses the C4h first byte, while the 2-byte VEX uses the C5h
first byte.

4.1.4.2 VEX Byte 1, bit [7] - ‘R’
VEX Byte 1, bit [7] contains a bit analogous to a bit inverted REX.R. In protected and
compatibility modes the bit must be set to ‘1’ otherwise the instruction is LES or LDS.

This bit is present in both 2- and 3-byte VEX prefixes.

The usage of WRXB bits for legacy instructions is explained in detail section 2.2.1.2
of Intel 64 and IA-32 Architectures Software developer’s manual, Volume 2A.

This bit is stored in bit inverted format.

4.1.4.3 3-byte VEX byte 1, bit[6] - ‘X’
Bit[6] of the 3-byte VEX byte 1 encodes a bit analogous to a bit inverted REX.X. It is
an extension of the SIB Index field in 64-bit modes. In 32-bit modes, this bit must be
set to ‘1’ otherwise the instruction is LES or LDS.

This bit is available only in the 3-byte VEX prefix.

This bit is stored in bit inverted format.

4.1.4.4 3-byte VEX byte 1, bit[5] - ‘B’
Bit[5] of the 3-byte VEX byte 1 encodes a bit analogous to a bit inverted REX.B. In
64-bit modes, it is an extension of the ModR/M r/m field, or the SIB base field. In 32-
bit modes, this bit is ignored.

This bit is available only in the 3-byte VEX prefix.

This bit is stored in bit inverted format.

4.1.4.5 3-byte VEX byte 2, bit[7] - ‘W’
Bit[7] of the 3-byte VEX byte 2 is represented by the notation VEX.W. It can provide
following functions, depending on the specific opcode.
• For AVX instructions that have equivalent legacy SSE instructions, if REX.W has

a meaning in legacy SSE instruction, VEX.W has same meaning in the corre-
sponding AVX equivalent form. In 32-bit modes, VEX.W must be set to “0” oth-
erwise the AVX form will #UD.

• For AVX instructions that have equivalent legacy SSE instructions, if REX.W is
6 Ref. # 319433-004

INSTRUCTION FORMAT
don’t care in legacy SSE instruction, VEX.W is ignored in the corresponding AVX
equivalent form irrespective of mode.

• For new AVX instructions where VEX.W has no defined function, it is reserved as
zero and setting to other than zero will cause instruction to #UD.

4.1.4.6 2-byte VEX Byte 1, bits[6:3] and 3-byte VEX Byte 2, bits [6:3]- ‘vvvv’
the Source or dest Register Specifier

In 32-bit mode the VEX first byte C4 and C5 alias onto the LES and LDS instructions.
To maintain compatibility with existing programs the VEX 2nd byte, bits [7:6] must
be 11b. To achieve this, the VEX payload bits are selected to place only inverted, 64-
bit valid fields (extended register selectors) in these upper bits.

The 2-byte VEX Byte 1, bits [6:3] and the 3-byte VEX, Byte 2, bits [6:3] encode a
field (shorthand VEX.vvvv) that for instructions with 2 or more source registers and
an XMM or YMM or memory destination encodes the first source register specifier
stored in inverted (1’s complement) form.

VEX.vvvv is not used by the instructions with one source (except certain shifts, see
below) or on instructions with no XMM or YMM or memory destination. If an instruc-
tion does not use VEX.vvvv then it should be set to 1111b otherwise instruction will
#UD.

In 64-bit mode all 4 bits may be used. See Table 4-34 for the encoding of the XMM or
YMM registers. In 32-bit and 16-bit modes bit 6 must be 1 (if bit 6 is not 1, the 2-byte
VEX version will generate LDS instruction and the 3-byte VEX version will ignore this
bit).
Ref. # 319433-004 7

INSTRUCTION FORMAT
Table 4-34. VEX.vvvv to register name mapping

The VEX.vvvv field is encoded in bit inverted format for accessing a register oper-
and.

4.1.5 Instruction Operand Encoding and VEX.vvvv, ModR/M
VEX-encoded instructions support three-operand and four-operand instruction
syntax. Some VEX-encoded instructions have syntax with less than three operands,
e.g. VEX-encoded pack shift instructions support one source operand and one desti-
nation operand).

The roles of VEX.vvvv, reg field of ModR/M byte (ModR/M.reg), r/m field of ModR/M
byte (ModR/M.r/m) with respect to encoding destination and source operands vary
with different type of instruction syntax.

The role of VEX.vvvv can be summarized to three situations:

• VEX.vvvv encodes the first source register operand, specified in inverted (1’s
complement) form and is valid for instructions with 2 or more source operands
(see Table 4-36).

• VEX.vvvv encodes the destination register operand, specified in 1’s complement
form for certain vector shifts. The instructions where VEX.vvvv is used as a
destination are listed in Table 4-35. The notation in the “Opcode” column in
Table 4-35 is described in detail in section 5.1.1

VEX.vvvv Dest Register
Valid in Legacy/Compatibility

32-bit modes?

1111B XMM0/YMM0 Valid

1110B XMM1/YMM1 Valid

1101B XMM2/YMM2 Valid

1100B XMM3/YMM3 Valid

1011B XMM4/YMM4 Valid

1010B XMM5/YMM5 Valid

1001B XMM6/YMM6 Valid

1000B XMM7/YMM7 Valid

0111B XMM8/YMM8 Invalid

0110B XMM9/YMM9 Invalid

0101B XMM10/YMM10 Invalid

0100B XMM11/YMM11 Invalid

0011B XMM12/YMM12 Invalid

0010B XMM13/YMM13 Invalid

0001B XMM14/YMM14 Invalid

0000B XMM15/YMM15 Invalid
8 Ref. # 319433-004

INSTRUCTION FORMAT
• VEX.vvvv does not encode any operand, the field is reserved and should contain
1111b.

Table 4-35. Instructions with a VEX.vvvv destination

The role of ModR/M.r/m field can be summarized to two situations:

• ModR/M.r/m encodes the instruction operand that references a memory address.

• For some instructions that do not support memory addressing semantics,
ModR/M.r/m encodes either the destination register operand or a source register
operand.

The role of ModR/M.reg field can be summarized to two situations:

• ModR/M.reg encodes either the destination register operand or a source register
operand.

• For some instructions, ModR/M.reg is treated as an opcode extension and not
used to encode any instruction operand.

For instruction syntax that support four operands, VEX.vvvv, ModR/M.r/m,
ModR/M.reg encodes three of the four operands. The role of bits 7:4 of the imme-
diate byte serves two situations:

• Imm8[7:4] encodes the third source register operand when VEX.W = 0.

• For instruction that support operand swizzling, Imm8[7:4] encodes the second
source register operand.

Table 4-36 lists each type of instruction syntax and the instruction operand encoding
rule for VEX.vvvv, ModR/M.r/m, ModR/M.reg, and Imm8[7:4]. The “Instruction type“
column lists the relationship of the destination operand, the number and types of
source operands. The encoding of each operand type to VEX.vvvv, ModR/M.r/m,
ModR/M.reg, and Imm8[7:4] is shown in the right-hand column.

Opcode Instruction mnemonic

VEX.NDD.128.66.0F 73 /7 ib VPSLLDQ xmm1, xmm2, imm8

VEX.NDD.128.66.0F 73 /3 ib VPSRLDQ xmm1, xmm2, imm8

VEX.NDD.128.66.0F 71 /2 ib VPSRLW xmm1, xmm2, imm8

VEX.NDD.128.66.0F 72 /2 ib VPSRLD xmm1, xmm2, imm8

VEX.NDD.128.66.0F 73 /2 ib VPSRLQ xmm1, xmm2, imm8

VEX.NDD.128.66.0F 71 /4 ib VPSRAW xmm1, xmm2, imm8

VEX.NDD.128.66.0F 72 /4 ib VPSRAD xmm1, xmm2, imm8

VEX.NDD.128.66.0F 71 /6 ib VPSLLW xmm1, xmm2, imm8

VEX.NDD.128.66.0F 72 /6 ib VPSLLD xmm1, xmm2, imm8

VEX.NDD.128.66.0F 73 /6 ib VPSLLQ xmm1, xmm2, imm8
Ref. # 319433-004 9

INSTRUCTION FORMAT
Table 4-36. Interpreting VEX.vvvv, reg_field, and rm_field.

Note 1: VBLENDVPD/VBLENDVPS/VPBLENDVB.

Note 2: The instruction VPEXTRW r32, xmm1, imm (VEX.128.66.0F C5 /r ib) encodes
the destination operand in ModR/M.reg.

Instruction Type Behavior How arguments feed the operation

xmm/ymm := op(reg,
reg/mem)

All Fields Used
ModR/M.reg := op (VEX.vvvv,
ModR/M.r/m)

xmm/ymm := op(reg,
reg)

All Fields Used
ModR/M.r/m := op (VEX.vvvv,
ModR/M.reg)

xmm/ymm := op (reg,
reg/mem, reg) 1

All Fields Used
ModR/M.reg := op (VEX.vvvv,
ModR/M.r/m, imm8[7:4])

reg0 := op132 ((reg0,
reg2/mem), reg1)

All Fields Used
ModR/M.reg := op132 ((ModR/M.reg,
ModR/M.r/m) , VEX.vvvv)

reg0 := op213 ((reg1,
reg0), reg2/mem)

All Fields Used
ModR/M.reg := op213 ((VEX.vvvv,
ModR/M.reg), ModR/M.r/m)

reg0 := op231 ((reg1,
reg2/mem), reg0)

All Fields Used
ModR/M.reg := op132 ((VEX.vvvv,
ModR/M.r/m) , ModR/M.reg)

xmm/ymm :=
op(reg/mem)

VEX.vvvv must be 1111b,
otherwise instruction will
#UD

ModR/M.reg := op (ModR/M.r/m)

xmm/ymm :=
op(xmm/ymm)

reg_field used for opcode
extension

VEX.vvvv := op(ModR/M.r/m)

r32/r64 :=
op(reg/mem)2

VEX.vvvv must be 1111b,
otherwise instruction will
#UD

ModR/M.reg := op (ModR/M.r/m)

implicit(eflags/r32) :=
op (reg, reg/mem)

VEX.vvvv must be 1111b,
otherwise instruction will
#UD

implicit(eflags/r32) := op(ModR/M.reg,
ModR/M.r/m)

xmm/ymm/mem :=
op(reg)

VEX.vvvv must be 1111b,
otherwise instruction will
#UD

ModR/M.r/m := op(ModR/M.reg)

r32/r64/mem :=
op(reg)

VEX.vvvv must be 1111b,
othwise instruction will
#UD

ModR/M.r/m := op (ModR/M.reg)

mem := op(reg)
VEX.vvvv must be 1111b,
othwise instruction will
#UD

ModR/M.r/m := op (ModR/M.reg)

mem := op(reg, reg) 3 All Fields used
ModR/M.r/m := op(VEX.vvvv,
ModR/M.reg,)

xmm/ymm := op(reg,
mem)4

All Fields Used
ModR/M.reg := op (VEX.vvvv,
ModR/M.r/m)
10 Ref. # 319433-004

INSTRUCTION FORMAT
Note 3: VMASKMOVPS/PD store form: VEX.vvvv holds the mask register, reg_field
the src register, and rm_field the memory operand.

Note 4: VMASKMOVPS/PD load form: VEX.vvvv holds the mask register, rm_field the
memory operand, and reg_field the destination register.

4.1.5.1 3-byte VEX byte 1, bits[4:0] - “m-mmmm”
Bits[4:0] of the 3-byte VEX byte 1 encode an implied leading opcode byte (0F, 0F 38,
or 0F 3A). Several bits are reserved for future use and will #UD unless 0.

Table 4-37. VEX.m-mmmm interpretation

VEX.m-mmmm is only available on the 3-byte VEX. The 2-byte VEX implies a leading
0Fh opcode byte.

4.1.5.2 2-byte VEX byte 1, bit[2], and 3-byte VEX byte 2, bit [2]- “L”
The vector length field, VEX.L, is encoded in bit[2] of either the second byte of 2-byte
VEX, or the third byte of 3-byte VEX. If “VEX.L = 1”, it indicates 256-bit vector oper-
ation. “VEX.L = 0” indicates scalar and 128-bit vector operations.

The instruction VZEROUPPER is a special case that is encoded with VEX.L = 0,
although its operation zero’s bits 255:128 of all YMM registers accessible in the
current operating mode.
See the following table.

VEX.m-mmmm
Implied Leading
Opcode Bytes

00000B Reserved

00001B 0F

00010B 0F 38

00011B 0F 3A

00100-11111B Reserved

(2-byte VEX) 0F
Ref. # 319433-004 11

INSTRUCTION FORMAT
Table 4-38. VEX.L interpretation

4.1.5.3 2-byte VEX byte 1, bits[1:0], and 3-byte VEX byte 2, bits [1:0]- “pp”
Up to one implied prefix is encoded by bits[1:0] of either the 2-byte VEX byte 1 or the
3-byte VEX byte 2. The prefix behaves as if it was encoded prior to VEX, but after all
other encoded prefixes.

See the following table.

Table 4-39. VEX.pp interpretation

4.1.6 The Opcode Byte
One (and only one) opcode byte follows the 2 or 3 byte VEX. Legal opcodes are spec-
ified in Appendix B, in color. Any instruction that uses illegal opcode will #UD.

4.1.7 The MODRM, SIB, and Displacement Bytes
The encodings are unchanged but the interpretation of reg_field or rm_field differs
(see above).

4.1.8 The Third Source Operand (Immediate Byte)
VEX-encoded instructions can support instruction with a four operand syntax.
VBLENDVPD, VBLENDVPS, and PBLENDVB use imm8[7:4] to encode one of the
source registers.

VEX.L Vector Length

0 128-bit (or 32/64-bit scalar)

1 256-bit

pp
Implies this prefix after other

prefixes but before VEX

00B None

01B 66

10B F3

11B F2
12 Ref. # 319433-004

INSTRUCTION FORMAT
4.1.9 AVX Instructions and the Upper 128-bits of YMM registers
If an instruction with a destination XMM register is encoded with a VEX prefix, the
processor zeroes the upper 128 bits of the equivalent YMM register. Legacy SSE
instructions without VEX preserve the upper 128-bits.

4.1.10 AVX Instruction Length
The AVX and FMA instructions described in this document (including VEX and
ignoring other prefixes) do not exceed 11 bytes in length, but may increase in the
future. The maximum length of an Intel 64 and IA-32 instruction remains 15 bytes.
Ref. # 319433-004 13

INSTRUCTION FORMAT
§

This p
age was

intentionally left

blank.
14 Ref. # 319433-004

INSTRUCTION SET REFERENCE
CHAPTER 5
INSTRUCTION SET REFERENCE

Instructions that are described in this document follow the general documentation
convention established in Intel 64 and IA-32 Architectures Software Developer’s
Manual Volume 2A and 2B. Additional notations and conventions adopted in this
document are listed in Section 5.1. Section 5.2 covers supplemental information that
applies to a specific subset of instructions.

5.1 INTERPRETING INSTRUCTION REFERENCE PAGES
This section describes the format of information contained in the instruction refer-
ence pages in this chapter. It explains notational conventions and abbreviations used
in these sections that are outside of those conventions described in Section 3.1 of the
Intel 64 and IA-32 Architectures Software Developer’s Manual Volume 2A.

5.1.1 Instruction Format
The following is an example of the format used for each instruction description in this
chapter. The table below provides an example summary table:
Ref. # 319433-004 1

INSTRUCTION SET REFERENCE
VBROADCASTF128- Broadcast 128 Bits of Floating-Point Values (THIS IS
AN EXAMPLE)

5.1.2 Opcode Column in the Instruction Summary Table
For notation and conventions applicable to instructions that do not use VEX prefix,
consult Section 3.1 of the Intel 64 and IA-32 Architectures Software Developer’s
Manual Volume 2A.

In the Instruction Summary Table, the Opcode column presents each instruction
encoded using the VEX prefix in following form (including the modR/M byte if appli-
cable, the immediate byte if applicable):

VEX.[NDS].[128,256].[66,F2,F3].0F/0F3A/0F38.[W0,W1] opcode [/r]
[/ib,/is4]

• VEX: indicates the presence of the VEX prefix is required. The VEX prefix can be
encoded using the three-byte form (the first byte is C4H), or using the two-byte
form (the first byte is C5H). The two-byte form of VEX only applies to those
instructions that do not require the following fields to be encoded:
VEX.mmmmm, VEX.W, VEX.X, VEX.B. Refer to Section 4.1.4 for more detail on
the VEX prefix

The encoding of various sub-fields of the VEX prefix is described using the
following notations:

— NDS, NDD, DDS: specifies that VEX.vvvv field is valid for the encoding of a
register operand:

• VEX.NDS: VEX.vvvv encodes the first source register in an instruction
syntax where the content of source registers will be preserved.

• VEX.NDD: VEX.vvvv encodes the destination register that cannot be
encoded by ModR/M:reg field.

• VEX.DDS: VEX.vvvv encodes the second source register in a three-
operand instruction syntax where the content of first source register will
be overwritten by the result.

• If none of NDS, NDD, and DDS is present, VEX.vvvv must be 1111b (i.e.
VEX.vvvv does not encode an operand). The VEX.vvvv field can be
encoded using either the 2-byte or 3-byte form of the VEX prefix.

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

VEX.256.66.0F38 1A /r V/V AVX Broadcast 128 bits of floating-
point data in mem to low and high
128-bits in ymm1

VBROADCASTF128 ymm1, m128
2 Ref. # 319433-004

INSTRUCTION SET REFERENCE
— 128,256: VEX.L field can be 0 (denoted by VEX.128) or 1 (denoted by
VEX.256). The VEX.L field can be encoded using either the 2-byte or 3-byte
form of the VEX prefix. The presence of the notation VEX.256 or VEX.128 in
the opcode column should be interpreted as follows:

• If VEX.256 is present in the opcode column: The semantics of the
instruction must be encoded with VEX.L = 1. An attempt to encode this
instruction with VEX.L= 0 can result in one of two situations: (a) if
VEX.128 version is defined, the processor will behave according to the
defined VEX.128 behavior; (b) an #UD occurs if there is no VEX.128
version defined.

• If VEX.128 is present in the opcode column but there is no VEX.256
version defined for the same opcode byte: Three situations apply: (a) For
VEX-encoded, 128-bit SIMD integer instructions, software must encode
the instruction with VEX.L = 0. The processor will treat the opcode byte
encoded with VEX.L= 1 by causing an #UD exception; (b) For VEX-
encoded, 128-bit packed floating-point instructions, software must
encode the instruction with VEX.L = 0. The processor will treat the opcode
byte encoded with VEX.L= 1 by causing an #UD exception (e.g.
VMOVLPS); (c) For VEX-encoded, scalar, SIMD floating-point instructions,
software should encode the instruction with VEX.L = 0 to ensure software
compatibility with future processor generations. Scalar SIMD floating-
point instruction can be distinguished from the mnemonic of the
instruction. Generally, the last two letters of the instruction mnemonic
would be either “SS“, “SD“, or “SI“ for SIMD floating-point conversion
instructions, except VBROADCASTSx are unique cases.

— 66,F2,F3: The presence or absence of these value maps to the VEX.pp field
encodings. If absent, this corresponds to VEX.pp=00B. If present, the corre-
sponding VEX.pp value affects the “opcode” byte in the same way as if a
SIMD prefix (66H, F2H or F3H) does to the ensuing opcode byte. Thus a non-
zero encoding of VEX.pp may be considered as an implied 66H/F2H/F3H
prefix. The VEX.pp field may be encoded using either the 2-byte or 3-byte
form of the VEX prefix.

— 0F,0F3A,0F38: The presence maps to a valid encoding of the VEX.mmmmm
field. Only three encoded values of VEX.mmmmm are defined as valid, corre-
sponding to the escape byte sequence of 0FH, 0F3AH and 0F38H. The effect
of a valid VEX.mmmmm encoding on the ensuing opcode byte is same as if
the corresponding escape byte sequence on the ensuing opcode byte for non-
VEX encoded instructions. Thus a valid encoding of VEX.mmmmm may be
consider as an implies escape byte sequence of either 0FH, 0F3AH or 0F38H.
The VEX.mmmmm field must be encoded using the 3-byte form of VEX
prefix.

— 0F,0F3A,0F38 and 2-byte/3-byte VEX. The presence of 0F3A and 0F38 in
the opcode column implies that opcode can only be encoded by the three-
byte form of VEX. The presence of 0F in the opcode column does not preclude
the opcode to be encoded by the two-byte of VEX if the semantics of the
Ref. # 319433-004 3

INSTRUCTION SET REFERENCE
opcode does not require any subfield of VEX not present in the two-byte form
of the VEX prefix.

— W0: VEX.W=0.

— W1: VEX.W=1.

— The presence of W0/W1 in the opcode column applies to two situations: (a) it
is treated as an extended opcode bit, (b) the instruction semantics support an
operand size promotion to 64-bit of a general-purpose register operand or a
32-bit memory operand. The presence of W1 in the opcode column implies
the opcode must be encoded using the 3-byte form of the VEX prefix. The
presence of W0 in the opcode column does not preclude the opcode to be
encoded using the C5H form of the VEX prefix, if the semantics of the opcode
does not require other VEX subfields not present in the two-byte form of the
VEX prefix. If neither W0 or W1 is present, the instruction may be encoded
using either the two-byte form (if the opcode semantic does not require VEX
subfields not present in the two-byte form of VEX) or the three-byte form of
VEX. Encoding an instruction using the two-byte form of VEX is equivalent to
W0. Please see Section 4.1.4 on the subfield definitions within VEX.

• opcode: Instruction opcode.

• /is4: An 8-bit immediate byte is present containing a source register specifier in
imm[7:4] and instruction-specific payload in imm[3:0].

• imz2: Part of the is4 immediate byte providing control functions that apply to
two-source permute instructions

• In general, the encoding o f VEX.R, VEX.X, VEX.B field are not shown explicitly in
the opcode column. The encoding scheme of VEX.R, VEX.X, VEX.B fields must
follow the rules defined in Section 4.1.4.

5.1.3 Instruction Column in the Instruction Summary Table
<additions to the eponymous PRM section>

• ymm — a YMM register. The 256-bit YMM registers are: YMM0 through YMM7;
YMM8 through YMM15 are available in 64-bit mode.

• m256 — A 32-byte operand in memory. This nomenclature is used only with AVX
and FMA instructions.

• ymm/m256 - a YMM register or 256-bit memory operand.

• <YMM0>: indicates use of the YMM0 register as an implicit argument.

• SRC1 - Denotes the first source operand in the instruction syntax of an
instruction encoded with the VEX prefix and having two or more source operands.

• SRC2 - Denotes the second source operand in the instruction syntax of an
instruction encoded with the VEX prefix and having two or more source operands.

• SRC3 - Denotes the third source operand in the instruction syntax of an
instruction encoded with the VEX prefix and having three source operands.
4 Ref. # 319433-004

INSTRUCTION SET REFERENCE
• SRC - The source in a AVX single-source instruction or the source in a Legacy SSE
instruction.

• DST - the destination in a AVX instruction. In Legacy SSE instructions can be
either the destination, first source, or both. This field is encoded by reg_field.

5.1.4 64/32 bit Mode Support column in the Instruction Summary
Table

The “64/32 bit Mode Support” column in the Instruction Summary table indicates
whether an opcode sequence is supported in (a) 64-bit mode or (b) the Compatibility
mode and other IA-32 modes that apply in conjunction with the CPUID feature flag
associated specific instruction extensions.

The 64-bit mode support is to the left of the ‘slash’ and has the following notation:
• V — Supported.
• I — Not supported.
• N.E. — Indicates an instruction syntax is not encodable in 64-bit mode (it may
represent part of a sequence of valid instructions in other modes).
• N.P. — Indicates the REX prefix does not affect the legacy instruction in 64-bit-
mode.
• N.I. — Indicates the opcode is treated as a new instruction in 64-bit mode.
• N.S. — Indicates an instruction syntax that requires an address override prefix
in 64-bit mode and is not supported. Using an address override prefix in 64-bit
mode may result in model-specific execution behavior.

The compatibility/Legacy mode support is to the right of the ‘slash’ and has the fol-
lowing notation:
• V — Supported.
• I — Not supported.
• N.E. — Indicates an Intel 64 instruction mnemonics/syntax that is not encodable;
the opcode sequence is not applicable as an individual instruction in compatibility
mode or IA-32 mode. The opcode may represent a valid sequence of legacy IA-32
instructions

5.1.5 CPUID Support column in the Instruction Summary Table
The fourth column holds abbreviated CPUID feature flags (e.g. appropriate bit in
CPUID.1.ECX, CPUID.1.EDX for SSE/SSE2/SSE3/SSSE3/SSE4.1/SSE4.2/AVX sup-
port) that indicate processor support for the instruction. If the corresponding flag
is ‘0’, the instruction will #UD.
Ref. # 319433-004 5

INSTRUCTION SET REFERENCE
5.2 AES TRANSFORMATIONS AND DATA STRUCTURE

5.2.1 Little-Endian Architecture and Big-Endian Specification (FIPS
197)

FIPS 197 document defines the Advanced Encryption Standard (AES) and includes a
set of test vectors for testing all of the steps in the algorithm, and can be used for
testing and debugging.

The following observation is important for using the AES instructions offered in Intel
64 Architecture: FIPS 197 text convention is to write hex strings with the low-
memory byte on the left and the high-memory byte on the right. Intel’s convention is
the reverse. It is similar to the difference between Big Endian and Little Endian nota-
tions.

In other words, a 128 bits vector in the FIPS document, when read from left to right,
is encoded as [7:0, 15:8, 23:16, 31:24, …127:120]. Note that inside the byte, the
encoding is [7:0], so the first bit from the left is the most significant bit. In practice,
the test vectors are written in hexadecimal notation, where pairs of hexadecimal
digits define the different bytes. To translate the FIPS 197 notation to an Intel 64
architecture compatible (“Little Endian”) format, each test vector needs to be byte-
reflected to [127:120,… 31:24, 23:16, 15:8, 7:0].

Example A:

FIPS Test vector: 0x000102030405060708090a0b0c0d0e0f

Intel AES Hardware: 0x0f0e0d0c0b0a09080706050403020100

It should be pointed out that the only thing at issue is a textual convention, and
programmers do not need to perform byte-reversal in their code, when using the AES
instructions.

5.2.1.1 AES Data Structure in Intel 64 Architecture
The AES instructions that are defined in this document operate on one or on two 128
bits source operands: State and Round Key. From the architectural point of view, the
state is input in an xmm register and the Round key is input either in an xmm register
or a 128-bit memory location.

In AES algorithm, the state (128 bits) can be viewed as 4 32-bit doublewords
(“Word”s in AES terminology): X3, X2, X1, X0.

The state may also be viewed as a set of 16 bytes. The 16 bytes can also be viewed
as a 4x4 matrix of bytes where S(i, j) with i, j = 0, 1, 2, 3 compose the 32-bit “word”s
as follows:

X0 = S (3, 0) S (2, 0) S (1, 0) S (0, 0)

X1 = S (3, 1) S (2, 1) S (1, 1) S (0, 1)
6 Ref. # 319433-004

INSTRUCTION SET REFERENCE
X2 = S (3, 2) S (2, 2) S (1, 2) S (0, 2)

X3 = S (3, 3) S (2, 3) S (1, 3) S (0, 3)

The following tables, Table 5-1 through Table 5-4, illustrate various representations
of a 128-bit state.

Example:

FIPS vector: d4 bf 5d 30 e0 b4 52 ae b8 41 11 f1 1e 27 98 e5

This vector has the “least significant” byte d4 and the significant byte e5 (written in
Big Endian format in the FIPS document). When it is translated to IA notations, the
encoding is:

Table 5-1. Byte and 32-bit Word Representation of a 128-bit State

Byte # 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bit
Position

127
-
120

119
-
112

111
-
103

103
-
96

95
-88

87
-80

79
-72

71
-64

63
-56

55
-48

47
-40

39
-32

31
-24

23
-16

15
-8

7 -
0

127 - 96 95 - 64 64 - 32 31 - 0

State Word X3 X2 X1 X0

State Byte P O N M L K J I H G F E D C B A

Table 5-2. Matrix Representation of a 128-bit State

A E I M S(0, 0) S(0, 1) S(0, 2) S(0, 3)

B F J N S(1, 0) S(1, 1) S(1, 2) S(1, 3)

C G K O S(2, 0) S(2, 1) S(2, 2) S(2, 3)

D H L P S(3, 0) S(3, 1) S(3, 2) S(3, 3)

Table 5-3. Little Endian Representation of a 128-bit State

Byte # 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

State Byte P O N M L K J I H G F E D C B A

State Value e5 98 27 1e f1 11 41 b8 ae 52 b4 e0 30 5d bf d4

Table 5-4. Little Endian Representation of a 4x4 Byte Matrix

A E I M d4 e0 b8 1e

B F J N bf b4 41 27

C G K O 5d 52 11 98
Ref. # 319433-004 7

INSTRUCTION SET REFERENCE
5.2.2 AES Transformations and Functions
The following functions and transformations are used in the algorithmic descriptions
of AES instruction extensions AESDEC, AESDECLAST, AESENC, AESENCLAST,
AESIMC, AESKEYGENASSIST.

Note that these transformations are expressed here in a Little Endian format (and not
as in the FIPS 197 document).

• MixColumns(): A byte-oriented 4x4 matrix transformation on the matrix repre-
sentation of a 128-bit AES state. A FIPS-197 defined 4x4 matrix is multiplied to
each 4x1 column vector of the AES state. The columns are considered
polynomials with coefficients in the Finite Field that is used in the definition of
FIPS 197, the operations (“multiplication” and “addition”) are in that Finite Field,
and the polynomials are reduced modulo x4+1.

The MixColumns() transformation defines the relationship between each byte of
the result state, represented as S’(i, j) of a 4x4 matrix (see Section 5.2.1), as a
function of input state bytes, S(i, j), as follows

S’(0, j) Å FF_MUL(02H, S(0, j)) XOR FF_MUL(03H, S(1, j)) XOR S(2, j) XOR
S(3, j)

S’(1, j) Å S(0, j) XOR FF_MUL(02H, S(1, j)) XOR FF_MUL(03H, S(2, j)) XOR
S(3, j)

S’(2, j) Å S(0, j) XOR S(1, j) XOR FF_MUL(02H, S(2, j)) XOR FF_MUL(03H,
S(3, j))

S’(3, j) Å FF_MUL(03H, S(0, j)) XOR S(1, j) XOR S(2, j) XOR FF_MUL(02H,
S(3, j))

where j = 0, 1, 2, 3. FF_MUL(Byte1, Byte2) denotes the result of multiplying
two elements (represented by Byte1 and byte2) in the Finite Field represen-
tation that defines AES. The result of produced bye FF_MUL(Byte1, Byte2) is an
element in the Finite Field (represented as a byte). A Finite Field is a field with a
finite number of elements, and when this number can be represented as a
power of 2 (2n), its elements can be represented as the set of 2n binary strings
of length n. AES uses a finite field with n=8 (having 256 elements). With this
representation, “addition” of two elements in that field is a bit-wise XOR of their
binary-string representation, producing another element in the field. Multipli-
cation of two elements in that field is defined using an irreducible polynomial
(for AES, this polynomial is m(x) = x8 + x4 + x3 + x + 1). In this Finite Field
representation, the bit value of bit position k of a byte represents the coefficient
of a polynomial of order k, e.g., 1010_1101B (ADH) is represented by the
polynomial (x7 + x5 + x3 + x2 + 1). The byte value result of multiplication of
two elements is obtained by a carry-less multiplication of the two corresponding
polynomials, followed by reduction modulo the polynomial, where the remainder

D H L P 30 ae f1 e5

Table 5-4. Little Endian Representation of a 4x4 Byte Matrix
8 Ref. # 319433-004

INSTRUCTION SET REFERENCE
is calculated using operations defined in the field. For example, FF_MUL(57H,
83H) = C1H, because the carry-less polynomial multiplication of the
polynomials represented by 57H and 83H produces (x13 + x11 + x9 + x8 + x6 +
x5 + x4 + x3 + 1), and the remainder modulo m(x) is (x7 + x6 + 1).

• RotWord(): performs a byte-wise cyclic permutation (rotate right in little-endian
byte order) on a 32-bit AES word.

The output word X’[j] of RotWord(X[j]) where X[j] represent the four bytes of
column j, S(i, j), in descending order X[j] = (S(3, j), S(2, j), S(1, j), S(0, j));
X’[j] = (S’(3, j), S’(2, j), S’(1, j), S’(0, j)) Å (S(0, j), S(3, j), S(2, j), S(1, j))

• ShiftRows(): A byte-oriented matrix transformation that processes the matrix
representation of a 16-byte AES state by cyclically shifting the last three rows of
the state by different offset to the left, see Figure 5-5.

• SubBytes(): A byte-oriented transformation that processes the 128-bit AES state
by applying a non-linear substitution table (S-BOX) on each byte of the state.

The SubBytes() function defines the relationship between each byte of the
result state S’(i, j) as a function of input state byte S(i, j), by

S’(i, j) Å S-Box (S(i, j)[7:4], S(i, j)[3:0])

where S-BOX(S[7:4], S[3:0]) represents a look-up operation on a 16x16 table
to return a byte value, see Table 5-6.

Table 5-5. The ShiftRows Transformation

Matrix Representation of Input State Output of ShiftRows

A E I M A E I M

B F J N F J N B

C G K O K O C G

D H L P P D H L
Ref. # 319433-004 9

INSTRUCTION SET REFERENCE
• SubWord(): produces an output AES word (four bytes) from the four bytes of an
input word using a non-linear substitution table (S-BOX).

X’[j] = (S’(3, j), S’(2, j), S’(1, j), S’(0, j)) Å (S-Box (S(3, j)), S-Box(S(2, j)),
S-Box(S(1, j)), S-Box(S(0, j)))

• InvMixColumns(): The inverse transformation of MixColumns().

The InvMixColumns() transformation defines the relationship between each byte
of the result state S’(i, j) as a function of input state bytes, S(i, j), by

S’(0, j) Å FF_MUL(0eH, S(0, j)) XOR FF_MUL(0bH, S(1, j)) XOR FF_MUL(0dH,
S(2, j)) XOR FF_MUL(09H, S(3, j))

S’(1, j) Å FF_MUL(09H, S(0, j)) XOR FF_MUL(0eH, S(1, j)) XOR FF_MUL(0bH,
S(2, j)) XOR FF_MUL(0dH, S(3, j))

S’(2, j) Å FF_MUL(0dH, S(0, j)) XOR FF_MUL(09H, S(1, j)) XOR FF_MUL(0eH,
S(2, j)) XOR FF_MUL(0bH, S(3, j))

Table 5-6. Look-up Table Associated with S-Box Transformation

S[3:0]

0 1 2 3 4 5 6 7 8 9 a b c d e f

S[7:4]

0 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76

1 ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0

2 b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15

3 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75

4 09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84

5 53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf

6 d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8

7 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2

8 cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73

9 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db

a e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79

b e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08

c ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a

d 70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e

e e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df

f 8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16
10 Ref. # 319433-004

INSTRUCTION SET REFERENCE
S’(3, j) Å FF_MUL(0bH, S(0, j)) XOR FF_MUL(0dH, S(1, j)) XOR FF_MUL(09H,
S(2, j)) XOR FF_MUL(0eH, S(3, j)), where j = 0, 1, 2, 3.

• InvShiftRows(): The inverse transformation of InvShiftRows(). The
InvShiftRows() transforms the matrix representation of a 16-byte AES state by
cyclically shifting the last three rows of the state by different offset to the right,
see Table 5-7.

• InvSubBytes(): The inverse transformation of SubBytes().

The InvSubBytes() transformation defines the relationship between each byte of
the result state S’(i, j) as a function of input state byte S(i, j), by

S’(i, j) Å InvS-Box (S(i, j)[7:4], S(i, j)[3:0])

where InvS-BOX(S[7:4], S[3:0]) represents a look-up operation on a 16x16
table to return a byte value, see Table 5-8.

Table 5-7. The InvShiftRows Transformation

Matrix Representation of Input State Output of ShiftRows

A E I M A E I M

B F J N N B F J

C G K O K O C G

D H L P H L P D
Ref. # 319433-004 11

INSTRUCTION SET REFERENCE
5.3 SUMMARY OF TERMS
• “Legacy SSE”: Refers to SSE, SSE2, SSE3, SSSE3, SSE4, and any future

instruction sets referencing XMM registers and encoded without a VEX prefix.

• XGETBV, XSETBV, XSAVE, XRSTOR are defined in IA-32 Intel Architecture
Software Developer’s Manual, Volumes 3A and Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 2B.

• VEX: refers to a two-byte or three-byte prefix. AVX and FMA instructions are
encoded using a VEX prefix.

• VEX.vvvv. The VEX bitfield specifying a source or destination register (in 1’s
complement form).

• rm_field: shorthand for the ModR/M r/m field and any REX.B

• reg_field: shorthand for the ModR/M reg field and any REX.R

Table 5-8. Look-up Table Associated with InvS-Box Transformation

S[3:0]

0 1 2 3 4 5 6 7 8 9 a b c d e f

S[7:4]

0 52 09 6a d5 30 36 a5 38 bf 40 a3 9e 81 f3 d7 fb

1 7c e3 39 82 9b 2f ff 87 34 8e 43 44 c4 de e9 cb

2 54 7b 94 32 a6 c2 23 3d ee 4c 95 0b 42 fa c3 4e

3 08 2e a1 66 28 d9 24 b2 76 5b a2 49 6d 8b d1 25

4 72 f8 f6 64 86 68 98 16 d4 a4 5c cc 5d 65 b6 92

5 6c 70 48 50 fd ed b9 da 5e 15 46 57 a7 8d 9d 84

6 90 d8 ab 00 8c bc d3 0a f7 e4 58 05 b8 b3 45 06

7 d0 2c 1e 8f ca 3f 0f 02 c1 af bd 03 01 13 8a 6b

8 3a 91 11 41 4f 67 dc ea 97 f2 cf ce f0 b4 e6 73

9 96 ac 74 22 e7 ad 35 85 e2 f9 37 e8 1c 75 df 6e

a 47 f1 1a 71 1d 29 c5 89 6f b7 62 0e aa 18 be 1b

b fc 56 3e 4b c6 d2 79 20 9a db c0 fe 78 cd 5a f4

c 1f dd a8 33 88 07 c7 31 b1 12 10 59 27 80 ec 5f

d 60 51 7f a9 19 b5 4a 0d 2d e5 7a 9f 93 c9 9c ef

e a0 e0 3b 4d ae 2a f5 b0 c8 eb bb 3c 83 53 99 61

f 17 2b 04 7e ba 77 d6 26 e1 69 14 63 55 21 0c 7d
12 Ref. # 319433-004

INSTRUCTION SET REFERENCE
5.4 INSTRUCTION SET REFERENCE
<only instructions modified by AVX are included>
Ref. # 319433-004 13

INSTRUCTION SET REFERENCE
ADDPD - Add Packed Double Precision Floating-Point Values

Description
Performs an SIMD add of the two or four packed double-precision floating-point
values from the first Source operand to the Second Source operand, and stores the
packed double-precision floating-point results in the destination operand.

VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

VEX.128 encoded version: the first source operand second source operand is an XMM
register or 128-bit memory location. The destination operand is an XMM register. The
upper bits (255:128) of the corresponding YMM register destination are zeroed.

128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (255:128) of the corresponding YMM register destination are
unmodified.

Operation
VADDPD (VEX.256 encoded version)
DEST[63:0] Å SRC1[63:0] + SRC2[63:0]
DEST[127:64] Å SRC1[127:64] + SRC2[127:64]
DEST[191:128] Å SRC1[191:128] + SRC2[191:128]
DEST[255:192] Å SRC1[255:192] + SRC2[255:192]

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 58 /r V/V SSE2 Add packed double-precision
floating-point values from
xmm2/mem to xmm1 and stores
result in xmm1

ADDPD xmm1, xmm2/m128

VEX.NDS.128.66.0F 58 /r V/V AVX Add packed double-precision
floating-point values from
xmm3/mem to xmm2 and stores
result in xmm1

VADDPD xmm1,xmm2, xmm3/m128

VEX.NDS.256.66.0F 58 /r V/V AVX Add packed double-precision
floating-point values from
ymm3/mem to ymm2 and stores
result in ymm1

VADDPD ymm1, ymm2,
ymm3/m256
14 Ref. # 319433-004

INSTRUCTION SET REFERENCE
.
VADDPD (VEX.128 encoded version)
DEST[63:0] Å SRC1[63:0] + SRC2[63:0]
DEST[127:64] Å SRC1[127:64] + SRC2[127:64]
DEST[255:128] Å 0

ADDPD (128-bit Legacy SSE version)
DEST[63:0] Å DEST[63:0] + SRC[63:0]
DEST[127:64] Å DEST[127:64] + SRC[127:64]
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VADDPD __m256d _mm256_add_pd (__m256d a, __m256d b);

ADDPD __m128d _mm_add_pd (__m128d a, __m128d b);

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions
See Exceptions Type 2
Ref. # 319433-004 15

INSTRUCTION SET REFERENCE
ADDPS- Add Packed Single Precision Floating-Point Values

Description
Performs an SIMD add of the four or eight packed single-precision floating-point
values from the first Source operand to the Second Source operand, and stores the
packed single-precision floating-point results in the destination operand.

VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

VEX.128 encoded version: the first source operand second source operand is an XMM
register or 128-bit memory location. The destination operand is an XMM register. The
upper bits (255:128) of the corresponding YMM register destination are zeroed.

128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (255:128) of the corresponding YMM register destination are
unmodified.

Operation
VADDPS (VEX.256 encoded version)
DEST[31:0] Å SRC1[31:0] + SRC2[31:0]
DEST[63:32] Å SRC1[63:32] + SRC2[63:32]
DEST[95:64] Å SRC1[95:64] + SRC2[95:64]
DEST[127:96] Å SRC1[127:96] + SRC2[127:96]

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 58 /r V/V SSE Add packed single-precision float-
ing-point values from xmm2/mem
to xmm1 and stores result in
xmm1

ADDPS xmm1, xmm2/m128

VEX.NDS.128.0F 58 /r V/V AVX Add packed single-precision float-
ing-point values from xmm3/mem
to xmm2 and stores result in
xmm1

VADDPS xmm1,xmm2, xmm3/m128

VEX.NDS.256.0F 58 /r V/V AVX Add packed single-precision float-
ing-point values from ymm3/mem
to ymm2 and stores result in
ymm1

VADDPS ymm1, ymm2,
ymm3/m256
16 Ref. # 319433-004

INSTRUCTION SET REFERENCE
DEST[159:128] Å SRC1[159:128] + SRC2[159:128]
DEST[191:160]Å SRC1[191:160] + SRC2[191:160]
DEST[223:192] Å SRC1[223:192] + SRC2[223:192]
DEST[255:224] Å SRC1[255:224] + SRC2[255:224].

VADDPS (VEX.128 encoded version)
DEST[31:0] Å SRC1[31:0] + SRC2[31:0]
DEST[63:32] Å SRC1[63:32] + SRC2[63:32]
DEST[95:64] Å SRC1[95:64] + SRC2[95:64]
DEST[127:96] Å SRC1[127:96] + SRC2[127:96]
DEST[255:128] Å 0

ADDPS (128-bit Legacy SSE version)
DEST[31:0] Å SRC1[31:0] + SRC2[31:0]
DEST[63:32] Å SRC1[63:32] + SRC2[63:32]
DEST[95:64] Å SRC1[95:64] + SRC2[95:64]
DEST[127:96] Å SRC1[127:96] + SRC2[127:96]
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VADDPS __m256 _mm256_add_ps (__m256 a, __m256 b);

ADDPS __m128 _mm_add_ps (__m128 a, __m128 b);

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions
See Exceptions Type 2
Ref. # 319433-004 17

INSTRUCTION SET REFERENCE
ADDSD- Add Scalar Double Precision Floating-Point Values

Description
Adds the low double-precision floating-point values from the second source operand
and the first source operand and stores the double-precision floating-point result in
the destination operand.

The second source operand can be an XMM register or a 64-bit memory location. The
first source and destination operands are XMM registers.

128-bit Legacy SSE version: Bits (255:64) of the corresponding YMM destination
register remain unchanged.

VEX.128 encoded version: Bits (127:64) of the XMM register destination are copied
from corresponding bits in the first source operand. Bits (255:128) of the destination
YMM register are zeroed.

Software should ensure VADDSD is encoded with VEX.L=0. Encoding VADDSD with
VEX.L=1 may encounter unpredictable behavior across different processor genera-
tions.

Operation
VADDSD (VEX.128 encoded version)
DEST[63:0] Å SRC1[63:0] + SRC2[63:0]
DEST[127:64] Å SRC1[127:64]
DEST[255:128] Å 0

ADDSD (128-bit Legacy SSE version)
DEST[63:0] Å DEST[63:0] + SRC[63:0]
DEST[255:64] (Unmodified)

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

F2 0F 58 /r V/V SSE2 Add the low double-precision
floating-point value from
xmm2/mem to xmm1 and store the
result in xmm1

ADDSD xmm1, xmm2/m64

VEX.NDS.128.F2.0F 58 /r V/V AVX Add the low double-precision
floating-point value from
xmm3/mem to xmm2 and store the
result in xmm1

VADDSD xmm1,xmm2, xmm3/m64
18 Ref. # 319433-004

INSTRUCTION SET REFERENCE
Intel C/C++ Compiler Intrinsic Equivalent

ADDSD __m128d _mm_add_sd (__m128d a, __m128d b);

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions
See Exceptions Type 3
Ref. # 319433-004 19

INSTRUCTION SET REFERENCE
ADDSS- Add Scalar Single Precision Floating-Point Values

Description
Adds the low single-precision floating-point values from the second source operand
and the first source operand, and stores the double-precision floating-point result in
the destination operand.

The second source operand can be an XMM register or a 64-bit memory location. The
first source and destination operands are XMM registers.

128-bit Legacy SSE version: Bits (255:32) of the corresponding YMM destination
register remain unchanged.

VEX.128 encoded version: Bits (127:32) of the XMM register destination are copied
from corresponding bits in the first source operand. Bits (255:128) of the destination
YMM register are zeroed.

Software should ensure VADDSS is encoded with VEX.L=0. Encoding VADDSS with
VEX.L=1 may encounter unpredictable behavior across different processor genera-
tions.

Operation
VADDSS DEST, SRC1, SRC2 (VEX.128 encoded version)
DEST[31:0] Å SRC1[31:0] + SRC2[31:0]
DEST[127:32] Å SRC1[127:32]
DEST[255:128] Å 0

ADDSS DEST, SRC (128-bit Legacy SSE version)
DEST[31:0] Å DEST[31:0] + SRC[31:0]
DEST[255:32] (Unmodified)

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

F3 0F 58 /r V/V SSE Add the low single-precision float-
ing-point value from xmm2/mem
to xmm1 and store the result in
xmm1

ADDSS xmm1, xmm2/m32

VEX.NDS.128.F3.0F 58 /r V/V AVX Add the low single-precision float-
ing-point value from xmm2/mem
to xmm1 and store the result in
xmm1

VADDSS xmm1,xmm2, xmm3/m32
20 Ref. # 319433-004

INSTRUCTION SET REFERENCE
Intel C/C++ Compiler Intrinsic Equivalent

ADDSS __m128 _mm_add_ss (__m128 a, __m128 b);

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions
See Exceptions Type 3
Ref. # 319433-004 21

INSTRUCTION SET REFERENCE
ADDSUBPD- Packed Double FP Add/Subtract

Description
Adds odd-numbered double-precision floating-point values of the first source
operand (second operand) with the corresponding double-precision floating-point
values from the second source operand (third operand); stores the result in the odd-
numbered values of the destination operand (first operand). Subtracts the even-
numbered double-precision floating-point values from the second source operand
from the corresponding double-precision floating values in the first source operand;
stores the result into the even-numbered values of the destination operand

VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

VEX.128 encoded version: the first source operand second source operand is an XMM
register or 128-bit memory location. The destination operand is an XMM register. The
upper bits (255:128) of the corresponding YMM register destination are zeroed.

128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (255:128) of the corresponding YMM register destination are
unmodified.

Operation
VADDSUBPD (VEX.256 encoded version)

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F D0 /r V/V SSE3 Add/subtract double-precision
floating-point values from
xmm2/m128 to xmm1

ADDSUBPD xmm1, xmm2/m128

VEX.NDS.128.66.0F D0 /r V/V AVX Add/subtract packed double-
precision floating-point values
from xmm3/mem to xmm2 and
stores result in xmm1

VADDSUBPD xmm1,xmm2,
xmm3/m128

VEX.NDS.256.66.0F D0 /r V/V AVX Add / subtract packed double-
precision floating-point values
from ymm3/mem to ymm2 and
stores result in ymm1

VADDSUBPD ymm1, ymm2,
ymm3/m256
22 Ref. # 319433-004

INSTRUCTION SET REFERENCE
DEST[63:0] Å SRC1[63:0] - SRC2[63:0]
DEST[127:64] Å SRC1[127:64] + SRC2[127:64]
DEST[191:128] Å SRC1[191:128] - SRC2[191:128]
DEST[255:192] Å SRC1[255:192] + SRC2[255:192]

VADDSUBPD (VEX.128 encoded version)
DEST[63:0] Å SRC1[63:0] - SRC2[63:0]
DEST[127:64] Å SRC1[127:64] + SRC2[127:64]
DEST[255:128] Å 0

ADDSUBPD (128-bit Legacy SSE version)
DEST[63:0] Å DEST[63:0] - SRC[63:0]
DEST[127:64] Å DEST[127:64] + SRC[127:64]
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VADDSUBPD __m256d _mm256_addsub_pd (__m256d a, __m256d b);

ADDSUBPD __m128d _mm_addsub_pd (__m128d a, __m128d b);

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions
See Exceptions Type 2
Ref. # 319433-004 23

INSTRUCTION SET REFERENCE
ADDSUBPS- Packed Single FP Add/Subtract

Description
Adds odd-numbered single-precision floating-point values of the first source operand
(second operand) with the corresponding single-precision floating-point values from
the second source operand (third operand); stores the result in the odd-numbered
values of the destination operand (first operand). Subtracts the even-numbered
single-precision floating-point values from the second source operand from the
corresponding single-precision floating values in the first source operand; stores the
result into the even-numbered values of the destination operand.

VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

VEX.128 encoded version: the first source operand second source operand is an XMM
register or 128-bit memory location. The destination operand is an XMM register. The
upper bits (255:128) of the corresponding YMM register destination are zeroed.

128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (255:128) of the corresponding YMM register destination are
unmodified.

Operation
VADDSUBPS (VEX.256 encoded version)
DEST[31:0] Å SRC1[31:0] - SRC2[31:0]

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

F2 0F D0 /r V/V SSE3 Add/subtract single-precision
floating-point values from
xmm2/m128 to xmm1

ADDSUBPS xmm1, xmm2/m128

VEX.NDS.128.F2.0F D0 /r V/V AVX Add/subtract single-precision
floating-point values from
xmm3/mem to xmm2 and stores
result in xmm1

VADDSUBPS xmm1,xmm2,
xmm3/m128

VEX.NDS.256.F2.0F D0 /r V/V AVX Add / subtract single-precision
floating-point values from
ymm3/mem to ymm2 and stores
result in ymm1

VADDSUBPS ymm1, ymm2,
ymm3/m256
24 Ref. # 319433-004

INSTRUCTION SET REFERENCE
DEST[63:32] Å SRC1[63:32] + SRC2[63:32]
DEST[95:64] Å SRC1[95:64] - SRC2[95:64]
DEST[127:96] Å SRC1[127:96] + SRC2[127:96]
DEST[159:128] Å SRC1[159:128] - SRC2[159:128]
DEST[191:160]Å SRC1[191:160] + SRC2[191:160]
DEST[223:192] Å SRC1[223:192] - SRC2[223:192]
DEST[255:224] Å SRC1[255:224] + SRC2[255:224].

VADDSUBPS (VEX.128 encoded version)
DEST[31:0] Å SRC1[31:0] - SRC2[31:0]
DEST[63:32] Å SRC1[63:32] + SRC2[63:32]
DEST[95:64] Å SRC1[95:64] - SRC2[95:64]
DEST[127:96] Å SRC1[127:96] + SRC2[127:96]
DEST[255:128] Å 0

ADDSUBPS (128-bit Legacy SSE version)
DEST[31:0] Å DEST[31:0] - SRC[31:0]
DEST[63:32] Å DEST[63:32] + SRC[63:32]
DEST[95:64] Å DEST[95:64] - SRC[95:64]
DEST[127:96] Å DEST[127:96] + SRC[127:96]
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VADDSUBPS __m256 _mm256_addsub_ps (__m256 a, __m256 b);

ADDSUBPS __m128 _mm_addsub_ps (__m128 a, __m128 b);

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions
See Exceptions Type 2
Ref. # 319433-004 25

INSTRUCTION SET REFERENCE
AESENC/AESENCLAST- Perform One Round of an AES Encryption Flow

Description
These instructions perform a single round of an AES encryption flow using a round
key from the second source operand, operating on 128-bit data (state) from the first
source operand, and store the result in the destination operand.

Use the AESENC instruction for all but the last encryption rounds. For the last encryp-
tion round, use the AESENCCLAST instruction

VEX.128 encoded version: The first source operand and the destination operand are
XMM registers. The second source operand can be an XMM register or a 128-bit
memory location. Bits (255:128) of the destination YMM register are zeroed.

128-bit Legacy SSE version: The first source operand and the destination operand
are the same and must be an XMM register. The second source operand can be an

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 38 DC /r V/V AES Perform one round of an AES
encryption flow, operating on a
128-bit data (state) from xmm1
with a 128-bit round key from
xmm2/m128.

AESENC xmm1, xmm2/m128

66 0F 38 DD /r V/V AES Perform the last round of an AES
encryption flow, operating on a
128-bit data (state) from xmm1
with a 128-bit round key from
xmm2/m128.

AESENCLAST xmm1, xmm2/m128

VEX.NDS.128.66.0F38 DC /r
VAESENC xmm1, xmm2,
xmm3/m128

V/V Both
AES and
AVX
flags

Perform one round of an AES
encryption flow, operating on a
128-bit data (state) from xmm2
with a 128-bit round key from the
xmm3/m128; store the result in
xmm1.

VEX.NDS.128.66.0F38 DD /r
VAESENCLAST xmm1, xmm2,
xmm3/m128

V/V Both
AES and
AVX
flags

Perform the last round of an AES
encryption flow, operating on a
128-bit data (state) from xmm2
with a 128 bit round key from
xmm3/m128; store the result in
xmm1.
26 Ref. # 319433-004

INSTRUCTION SET REFERENCE
XMM register or a 128-bit memory location. Bits (255:128) of the corresponding YMM
destination register remain unchanged.

Operation
VAESENC
STATE Å SRC1;
RoundKey Å SRC2;
STATE Å ShiftRows(STATE);
STATE Å SubBytes(STATE);
STATE Å MixColumns(STATE);
DEST[127:0] Å STATE XOR RoundKey;
DEST[255:128] Å 0

AESENC
STATE Å SRC1;
RoundKey Å SRC2;
STATE Å ShiftRows(STATE);
STATE Å SubBytes(STATE);
STATE Å MixColumns(STATE);
DEST[127:0] Å STATE XOR RoundKey;
DEST[255:128] (Unmodified)

VAESENCLAST
STATE Å SRC1;
RoundKey Å SRC2;
STATE Å ShiftRows(STATE);
STATE Å SubBytes(STATE);
DEST[127:0] Å STATE XOR RoundKey;
DEST[255:128] Å 0

AESENCLAST
STATE Å SRC1;
RoundKey Å SRC2;
STATE Å ShiftRows(STATE);
STATE Å SubBytes(STATE);
DEST[127:0] Å STATE XOR RoundKey;
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

(V)AESENC __m128i _mm_aesenc (__m128i, __m128i)

(V)AESENCLAST __m128i _mm_aesenclast (__m128i, __m128i)
Ref. # 319433-004 27

INSTRUCTION SET REFERENCE
SIMD Floating-Point Exceptions
none

Other Exceptions
See Exceptions Type 4
28 Ref. # 319433-004

INSTRUCTION SET REFERENCE
AESDEC/AESDECLAST- Perform One Round of an AES Decryption Flow

Description
These instructions perform a single round of the AES decryption flow using the Equiv-
alent Inverse Cipher, with the round key from the second source operand, operating
on a 128-bit data (state) from the first source operand, and store the result in the
destination operand.

Use the AESDEC instruction for all but the last decryption round. For the last decryp-
tion round, use the AESDECCLAST instruction

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 38 DE /r V/V AES Perform one round of an AES
decryption flow, using the Equiva-
lent Inverse Cipher, operating on a
128-bit data (state) from xmm1
with a 128-bit round key from
xmm2/m128.

AESDEC xmm1, xmm2/m128

66 0F 38 DF /r V/V AES Perform the last round of an AES
decryption flow, using the Equiva-
lent Inverse Cipher, operating on a
128-bit data (state) from xmm1
with a 128-bit round key from
xmm2/m128.

AESDECLAST xmm1, xmm2/m128

VEX.NDS.128.66.0F38 DE /r
VAESDEC xmm1, xmm2,
xmm3/m128

V/V Both
AES and
AVX
flags

Perform one round of an AES
decryption flow, using the Equiva-
lent Inverse Cipher, operating on a
128-bit data (state) from xmm2
with a 128-bit round key from
xmm3/m128; store the result in
xmm1.

VEX.NDS.128.66.0F38 DF /r
VAESDECLAST xmm1, xmm2,
xmm3/m128

V/V Both
AES and
AVX
flags

Perform the last round of an AES
decryption flow, using the Equiva-
lent Inverse Cipher, operating on a
128-bit data (state) from xmm2
with a 128-bit round key from
xmm3/m128; store the result in
xmm1.
Ref. # 319433-004 29

INSTRUCTION SET REFERENCE
VEX.128 encoded version: The first source operand and the destination operand are
XMM registers. The second source operand can be an XMM register or a 128-bit
memory location. Bits (255:128) of the destination YMM register are zeroed.

128-bit Legacy SSE version: The first source operand and the destination operand
are the same and must be an XMM register. The second source operand can be an
XMM register or a 128-bit memory location. Bits (255:128) of the corresponding YMM
destination register remain unchanged.

Operation
VAESDEC
STATE Å SRC1;
RoundKey Å SRC2;
STATE Å InvShiftRows(STATE);
STATE Å InvSubBytes(STATE);
STATE Å InvMixColumns(STATE);
DEST[127:0] Å STATE XOR RoundKey;
DEST[255:128] Å 0

AESDEC
STATE Å SRC1;
RoundKey Å SRC2;
STATE Å InvShiftRows(STATE);
STATE Å InvSubBytes(STATE);
STATE Å InvMixColumns(STATE);
DEST[127:0] Å STATE XOR RoundKey;
DEST[255:128] (Unmodified)

VAESDECLAST
STATE Å SRC1;
RoundKey Å SRC2;
STATE Å InvShiftRows(STATE);
STATE Å InvSubBytes(STATE);
DEST[127:0] Å STATE XOR RoundKey;
DEST[255:128] Å 0

AESDECLAST
STATE Å SRC1;
RoundKey Å SRC2;
STATE Å InvShiftRows(STATE);
STATE Å InvSubBytes(STATE);
DEST[127:0] Å STATE XOR RoundKey;
DEST[255:128] (Unmodified)
30 Ref. # 319433-004

INSTRUCTION SET REFERENCE
Intel C/C++ Compiler Intrinsic Equivalent

(V)AESDEC __m128i _mm_aesdec (__m128i, __m128i)

(V)AESDECLAST __m128i _mm_aesdeclast (__m128i, __m128i)

SIMD Floating-Point Exceptions
none

Other Exceptions
See Exceptions Type 4
Ref. # 319433-004 31

INSTRUCTION SET REFERENCE
AESIMC- Perform the AES InvMixColumn Transformation

Description
Perform the InvMixColumns transformation on the source operand and store the
result in the destination operand. The destination operand is an XMM register. The
source operand can be an XMM register or a 128-bit memory location.

Note the AESIMC instruction should be applied to the expanded AES round keys
(except for the first and last round key) in order to prepare them for decryption using
the “Equivalent Inverse Cipher” (defined in FIPS 197).

VEX.128 encoded version: Bits (255:128) of the destination YMM register are zeroed.

128-bit Legacy SSE version: Bits (255:128) of the corresponding YMM destination
register remain unchanged.Operation
VAESIMC
DEST[127:0] Å InvMixColumns(SRC);
DEST[255:128] Å 0;

AESIMC
DEST[127:0] Å InvMixColumns(SRC);
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

(V)AESIMC __m128i _mm_aesimc (__m128i)

SIMD Floating-Point Exceptions
None

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 38 DB /r V/V AES Perform the InvMixColumn trans-
formation on a 128-bit round key
from xmm2/m128 and store the
result in xmm1

AESIMC xmm1, xmm2/m128

VEX.128.66.0F38 DB /r
VAESIMC xmm1, xmm2/m128

V/V Both
AES and
AVX
flags

Perform the InvMixColumn trans-
formation on a 128-bit round key
from xmm2/m128 and store the
result in xmm1
32 Ref. # 319433-004

INSTRUCTION SET REFERENCE
Other Exceptions
See Exceptions Type 4
Ref. # 319433-004 33

INSTRUCTION SET REFERENCE
AESKEYGENASSIST - AES Round Key Generation Assist

Description
Assist in expanding the AES cipher key, by computing steps towards generating a
round key for encryption, using 128-bit data specified in the source operand and an
8-bit round constant specified as an immediate, store the result in the destination
operand.

The destination operand is an XMM register. The source operand can be an XMM
register or a 128-bit memory location.

VEX.128 encoded version: Bits (255:128) of the destination YMM register are zeroed.

128-bit Legacy SSE version:Bits (255:128) of the corresponding YMM destination
register remain unchanged.Operation
VAESKEYGENASSIST
X3[31:0] Å SRC [127: 96];
X2[31:0] Å SRC [95: 64];
X1[31:0] Å SRC [63: 32];
X0[31:0] Å SRC [31: 0];
RCON[31:0] Å ZeroExtend(Imm8[7:0]);
DEST[31:0] Å SubWord(X1);
DEST[63:32] Å RotWord(SubWord(X1)) XOR RCON;
DEST[95:64] Å SubWord(X3);
DEST[127:96] Å RotWord(SubWord(X3)) XOR RCON;

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 3A DF /r ib V/V AES Assist in AES round key genera-
tion using an 8 bits Round Con-
stant (RCON) specified in the
immediate byte, operating on 128
bits of data specified in
xmm2/m128 and stores the result
in xmm1.

AESKEYGENASSIST xmm1,
xmm2/m128, imm8

VEX.128.66.0F3A DF /r ib
VAESKEYGENASSIST xmm1,
xmm2/m128, imm8

V/V Both
AES and
AVX
flags

Assist in AES round key genera-
tion using 8 bits Round Constant
(RCON) specified in the immedi-
ate byte, operating on 128 bits of
data specified in xmm2/m128 and
stores the result in xmm1.
34 Ref. # 319433-004

INSTRUCTION SET REFERENCE
DEST[255:128] Å 0;

AESKEYGENASSIST
X3[31:0] Å SRC [127: 96];
X2[31:0] Å SRC [95: 64];
X1[31:0] Å SRC [63: 32];
X0[31:0] Å SRC [31: 0];
RCON[31:0] Å ZeroExtend(Imm8[7:0]);
DEST[31:0] Å SubWord(X1);
DEST[63:32] Å RotWord(SubWord(X1)) XOR RCON;
DEST[95:64] Å SubWord(X3);
DEST[127:96] Å RotWord(SubWord(X3)) XOR RCON;
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

(V)AESKEYGENASSIST __m128i _mm_aesimc (__m128i, const int)

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4
Ref. # 319433-004 35

INSTRUCTION SET REFERENCE
ANDPD- Bitwise Logical AND of Packed Double Precision Floating-Point
Values

Description
Performs a bitwise logical AND of the two or four packed double-precision floating-
point values from the first source operand and the second source operand, and stores
the result in the destination operand

VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

VEX.128 encoded version: the first source operand second source operand is an XMM
register or 128-bit memory location. The destination operand is an XMM register. The
upper bits (255:128) of the corresponding YMM register destination are zeroed.

128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (255:128) of the corresponding YMM register destination are
unmodified.

Operation
VANDPD (VEX.256 encoded version)
DEST[63:0] Å SRC1[63:0] BITWISE AND SRC2[63:0]
DEST[127:64] Å SRC1[127:64] BITWISE AND SRC2[127:64]
DEST[191:128] Å SRC1[191:128] BITWISE AND SRC2[191:128]

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 54 /r V/V SSE2 Return the bitwise logical AND of
packed double-precision floating-
point values in xmm1 and
xmm2/mem

ANDPD xmm1, xmm2/m128

VEX.NDS.128.66.0F 54 /r V/V AVX Return the bitwise logical AND of
packed double-precision floating-
point values in xmm2 and
xmm3/mem

VANDPD xmm1,xmm2, xmm3/m128

VEX.NDS.256.66.0F 54 /r V/V AVX Return the bitwise logical AND of
packed double-precision floating-
point values in ymm2 and
ymm3/mem

VANDPD ymm1, ymm2,
ymm3/m256
36 Ref. # 319433-004

INSTRUCTION SET REFERENCE
DEST[255:192] Å SRC1[255:192] BITWISE AND SRC2[255:192]

VANDPD (VEX.128 encoded version)
DEST[63:0] Å SRC1[63:0] BITWISE AND SRC2[63:0]
DEST[127:64] Å SRC1[127:64] BITWISE AND SRC2[127:64]
DEST[255:128] Å 0

ANDPD (128-bit Legacy SSE version)
DEST[63:0] Å DEST[63:0] BITWISE AND SRC[63:0]
DEST[127:64] Å DEST[127:64] BITWISE AND SRC[127:64]
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VANDPD __m256d _mm256_and_pd (__m256d a, __m256d b);

ANDPD __m128d _mm_and_pd (__m128d a, __m128d b);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4
Ref. # 319433-004 37

INSTRUCTION SET REFERENCE
ANDPS- Bitwise Logical AND of Packed Single Precision Floating-Point
Values

Description
Performs a bitwise logical AND of the four or eight packed single-precision floating-
point values from the first source operand and the second source operand, and stores
the result in the destination operand

VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

VEX.128 encoded version: the first source operand second source operand is an XMM
register or 128-bit memory location. The destination operand is an XMM register. The
upper bits (255:128) of the corresponding YMM register destination are zeroed.

128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (255:128) of the corresponding YMM register destination are
unmodified.

Operation
VANDPS (VEX.256 encoded version)
DEST[31:0] Å SRC1[31:0] BITWISE AND SRC2[31:0]
DEST[63:32] Å SRC1[63:32] BITWISE AND SRC2[63:32]
DEST[95:64] Å SRC1[95:64] BITWISE AND SRC2[95:64]

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 54 /r V/V SSE Return the bitwise logical AND of
packed single-precision floating-
point values in xmm1 and
xmm2/mem

ANDPS xmm1, xmm2/m128

VEX.NDS.128.0F 54 /r V/V AVX Return the bitwise logical AND of
packed single-precision floating-
point values in xmm2 and
xmm3/mem

VANDPS xmm1,xmm2, xmm3/m128

VEX.NDS.256.0F 54 /r V/V AVX Return the bitwise logical AND of
packed single-precision floating-
point values in ymm2 and
ymm3/mem

VANDPS ymm1, ymm2,
ymm3/m256
38 Ref. # 319433-004

INSTRUCTION SET REFERENCE
DEST[127:96] Å SRC1[127:96] BITWISE AND SRC2[127:96]
DEST[159:128] Å SRC1[159:128] BITWISE AND SRC2[159:128]
DEST[191:160]Å SRC1[191:160] BITWISE AND SRC2[191:160]
DEST[223:192] Å SRC1[223:192] BITWISE AND SRC2[223:192]
DEST[255:224] Å SRC1[255:224] BITWISE AND SRC2[255:224].

VANDPS (VEX.128 encoded version)
DEST[31:0] Å SRC1[31:0] BITWISE AND SRC2[31:0]
DEST[63:32] Å SRC1[63:32] BITWISE AND SRC2[63:32]
DEST[95:64] Å SRC1[95:64] BITWISE AND SRC2[95:64]
DEST[127:96] Å SRC1[127:96] BITWISE AND SRC2[127:96]
DEST[255:128] Å 0

ANDPS (128-bit Legacy SSE version)
DEST[31:0] Å DEST[31:0] BITWISE AND SRC[31:0]
DEST[63:32] Å DEST[63:32] BITWISE AND SRC[63:32]
DEST[95:64] Å DEST[95:64] BITWISE AND SRC[95:64]
DEST[127:96] Å DEST[127:96] BITWISE AND SRC[127:96]
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VANDPS __m256 _mm256_and_ps (__m256 a, __m256 b);

ANDPS __m128 _mm_and_ps (__m128 a, __m128 b);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4
Ref. # 319433-004 39

INSTRUCTION SET REFERENCE
ANDNPD- Bitwise Logical AND NOT of Packed Double Precision Floating-
Point Values

Description
Performs a bitwise logical AND NOT of the two or four packed double-precision
floating-point values from the first source operand and the second source operand,
and stores the result in the destination operand

VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

VEX.128 encoded version: the first source operand second source operand is an XMM
register or 128-bit memory location. The destination operand is an XMM register. The
upper bits (255:128) of the corresponding YMM register destination are zeroed.

128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (255:128) of the corresponding YMM register destination are
unmodified.

Operation
VANDNPD (VEX.256 encoded version)
DEST[63:0] Å (NOT(SRC1[63:0])) BITWISE AND SRC2[63:0]
DEST[127:64] Å (NOT(SRC1[127:64])) BITWISE AND SRC2[127:64]
DEST[191:128] Å (NOT(SRC1[191:128])) BITWISE AND SRC2[191:128]

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 55 /r V/V SSE2 Return the bitwise logical AND
NOT of packed double-precision
floating-point values in xmm1 and
xmm2/mem

ANDNPD xmm1, xmm2/m128

VEX.NDS.128.66.0F 55 /r V/V AVX Return the bitwise logical AND
NOT of packed double-precision
floating-point values in xmm2 and
xmm3/mem

VANDNPD xmm1,xmm2,
xmm3/m128

VEX.NDS.256.66.0F 55/r V/V AVX Return the bitwise logical AND
NOT of packed double-precision
floating-point values in ymm2 and
ymm3/mem

VANDNPD ymm1, ymm2,
ymm3/m256
40 Ref. # 319433-004

INSTRUCTION SET REFERENCE
DEST[255:192] Å (NOT(SRC1[255:192])) BITWISE AND SRC2[255:192]

VANDNPD (VEX.128 encoded version)
DEST[63:0] Å (NOT(SRC1[63:0])) BITWISE AND SRC2[63:0]
DEST[127:64] Å (NOT(SRC1[127:64])) BITWISE AND SRC2[127:64]
DEST[255:128] Å 0

ANDNPD (128-bit Legacy SSE version)
DEST[63:0] Å (NOT(DEST[63:0])) BITWISE AND SRC[63:0]
DEST[127:64] Å (NOT(DEST[127:64])) BITWISE AND SRC[127:64]
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VANDNPD __m256d _mm256_andnot_pd (__m256d a, __m256d b);

ANDNPD __m128d _mm_andnot_pd (__m128d a, __m128d b);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4
Ref. # 319433-004 41

INSTRUCTION SET REFERENCE
ANDNPS- Bitwise Logical AND NOT of Packed Single Precision Floating-
Point Values

Description
Performs a bitwise logical AND NOT of the four or eight packed single-precision
floating-point values from the first source operand and the second source operand,
and stores the result in the destination operand

VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

VEX.128 encoded version: the first source operand second source operand is an XMM
register or 128-bit memory location. The destination operand is an XMM register. The
upper bits (255:128) of the corresponding YMM register destination are zeroed.

128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (255:128) of the corresponding YMM register destination are
unmodified.

Operation
VANDNPS (VEX.256 encoded version)
DEST[31:0] Å (NOT(SRC1[31:0])) BITWISE AND SRC2[31:0]
DEST[63:32] Å (NOT(SRC1[63:32])) BITWISE AND SRC2[63:32]
DEST[95:64] Å (NOT(SRC1[95:64])) BITWISE AND SRC2[95:64]

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 55 /r V/V SSE Return the bitwise logical AND
NOT of packed single-precision
floating-point values in xmm1 and
xmm2/mem

ANDNPS xmm1, xmm2/m128

VEX.NDS.128.0F 55 /r V/V AVX Return the bitwise logical AND
NOT of packed single-precision
floating-point values in xmm2 and
xmm3/mem

VANDNPS xmm1,xmm2,
xmm3/m128

VEX.NDS.256.0F 55 /r V/V AVX Return the bitwise logical AND
NOT of packed single-precision
floating-point values in ymm2 and
ymm3/mem

VANDNPS ymm1, ymm2,
ymm3/m256
42 Ref. # 319433-004

INSTRUCTION SET REFERENCE
DEST[127:96] Å (NOT(SRC1[127:96])) BITWISE AND SRC2[127:96]
DEST[159:128] Å (NOT(SRC1[159:128])) BITWISE AND SRC2[159:128]
DEST[191:160]Å (NOT(SRC1[191:160])) BITWISE AND SRC2[191:160]
DEST[223:192] Å (NOT(SRC1[223:192])) BITWISE AND SRC2[223:192]
DEST[255:224] Å (NOT(SRC1[255:224])) BITWISE AND SRC2[255:224].

VANDNPS (VEX.128 encoded version)
DEST[31:0] Å (NOT(SRC1[31:0])) BITWISE AND SRC2[31:0]
DEST[63:32] Å (NOT(SRC1[63:32])) BITWISE AND SRC2[63:32]
DEST[95:64] Å (NOT(SRC1[95:64])) BITWISE AND SRC2[95:64]
DEST[127:96] Å (NOT(SRC1[127:96])) BITWISE AND SRC2[127:96]
DEST[255:128] Å 0

ANDNPS (128-bit Legacy SSE version)
DEST[31:0] Å (NOT(DEST[31:0])) BITWISE AND SRC[31:0]
DEST[63:32] Å (NOT(DEST[63:32])) BITWISE AND SRC[63:32]
DEST[95:64] Å (NOT(DEST[95:64])) BITWISE AND SRC[95:64]
DEST[127:96] Å (NOT(DEST[127:96])) BITWISE AND SRC[127:96]
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VANDNPS __m256 _mm256_andnot_ps (__m256 a, __m256 b);

ANDNPS __m128 _mm_andnot_ps (__m128 a, __m128 b);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4
Ref. # 319433-004 43

INSTRUCTION SET REFERENCE
BLENDPD- Blend Packed Double Precision Floating-Point Values

Description
Double-precision floating-point values from the second source operand (third
operand) are conditionally merged with values from the first source operand (second
operand) and written to the destination operand (first operand). The immediate bits
[3:0] determine whether the corresponding double-precision floating-point value in
the destination is copied from the second source or first source. If a bit in the mask,
corresponding to a word, is “1", then the double-precision floating-point value in the
second source operand is copied, else the value in the first source operand is copied.

VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

VEX.128 encoded version: the first source operand is an XMM register. The second
source operand is an XMM register or 128-bit memory location. The destination
operand is an XMM register. The upper bits (255:128) of the corresponding YMM
register destination are zeroed.

128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (255:128) of the corresponding YMM register destination are
unmodified.

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 3A 0D /r ib V/V SSE4_1 Select packed double-precision
floating-point Values from xmm1
and xmm2/m128 from mask in
imm8

BLENDPD xmm1, xmm2/m128,
imm8

VEX.NDS.128.66.0F3A 0D /r ib V/V AVX Select packed double-precision
floating-point Values from xmm2
and xmm3/m128 from mask in
imm8

VBLENDPD xmm1, xmm2,
xmm3/m128, imm8

VEX.NDS.256.66.0F3A 0D /r ib V/V AVX Select packed double-precision
floating-point Values from ymm2
and ymm3/m256 from mask in
imm8 and store the values in
ymm1

VBLENDPD ymm1, ymm2,
ymm3/m256, imm8
44 Ref. # 319433-004

INSTRUCTION SET REFERENCE
Operation
VBLENDPD (VEX.256 encoded version)
IF (IMM8[0] = 0)THEN DEST[63:0] Å SRC1[63:0]

ELSE DEST [63:0] Å SRC2[63:0] FI
IF (IMM8[1] = 0) THEN DEST[127:64] Å SRC1[127:64]

ELSE DEST [127:64] Å SRC2[127:64] FI
IF (IMM8[2] = 0) THEN DEST[191:128] Å SRC1[191:128]

ELSE DEST [191:128] Å SRC2[191:128] FI
IF (IMM8[3] = 0) THEN DEST[255:192] Å SRC1[255:192]

ELSE DEST [255:192] Å SRC2[255:192] FI

VBLENDPD (VEX.128 encoded version)
IF (IMM8[0] = 0)THEN DEST[63:0] Å SRC1[63:0]

ELSE DEST [63:0] Å SRC2[63:0] FI
IF (IMM8[1] = 0) THEN DEST[127:64] Å SRC1[127:64]

ELSE DEST [127:64] Å SRC2[127:64] FI
DEST[255:128] Å 0

BLENDPD (128-bit Legacy SSE version)
IF (IMM8[0] = 0)THEN DEST[63:0] Å DEST[63:0]

ELSE DEST [63:0] Å SRC[63:0] FI
IF (IMM8[1] = 0) THEN DEST[127:64] Å DEST[127:64]

ELSE DEST [127:64] Å SRC[127:64] FI
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VBLENDPD __m256d _mm256_blend_pd (__m256d a, __m256d b, const int mask);

BLENDPD __m128d _mm_blend_pd (__m128d a, __m128d b, const int mask);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4
Ref. # 319433-004 45

INSTRUCTION SET REFERENCE
BLENDPS- Blend Packed Single Precision Floating-Point Values

Description
Single-precision floating-point values from the second source operand (third
operand) are conditionally merged with values from the first source operand (second
operand) and written to the destination operand (first operand). The immediate bits
[7:0] determine whether the corresponding single precision floating-point value in
the destination is copied from the second source or first source. If a bit in the mask,
corresponding to a word, is “1", then the single-precision floating-point value in the
second source operand is copied, else the value in the first source operand is copied.

VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

VEX.128 encoded version: The first source operand an XMM register. The second
source operand is an XMM register or 128-bit memory location. The destination
operand is an XMM register. The upper bits (255:128) of the corresponding YMM
register destination are zeroed.

128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (255:128) of the corresponding YMM register destination are
unmodified.

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 3A 0C /r ib V/V SSE4_1 Select packed single-precision
floating-point values from xmm1
and xmm2/m128 from mask in
imm8

BLENDPS xmm1, xmm2/m128,
imm8

VEX.NDS.128.66.0F3A 0C /r ib V/V AVX Select packed single-precision
floating-point values from xmm2
and xmm3/m128 from mask in
imm8

VBLENDPS xmm1, xmm2,
xmm3/m128, imm8

VEX.NDS.256.66.0F3A 0C /r ib V/V AVX Select packed single-precision
floating-point values from ymm2
and ymm3/m256 from mask in
imm8

VBLENDPS ymm1, ymm2,
ymm3/m256, imm8
46 Ref. # 319433-004

INSTRUCTION SET REFERENCE
Operation
VBLENDPS (VEX.256 encoded version)
IF (IMM8[0] = 0) THEN DEST[31:0] ÅSRC1[31:0]

ELSE DEST [31:0] Å SRC2[31:0] FI
IF (IMM8[1] = 0) THEN DEST[63:32] Å SRC1[63:32]

ELSE DEST [63:32] Å SRC2[63:32] FI
IF (IMM8[2] = 0) THEN DEST[95:64] Å SRC1[95:64]

ELSE DEST [95:64] Å SRC2[95:64] FI
IF (IMM8[3] = 0) THEN DEST[127:96] Å SRC1[127:96]

ELSE DEST [127:96] Å SRC2[127:96] FI
IF (IMM8[4] = 0) THEN DEST[159:128] Å SRC1[159:128]

ELSE DEST [159:128] Å SRC2[159:128] FI
IF (IMM8[5] = 0) THEN DEST[191:160] Å SRC1[191:160]

ELSE DEST [191:160] Å SRC2[191:160] FI
IF (IMM8[6] = 0) THEN DEST[223:192] Å SRC1[223:192]

ELSE DEST [223:192] Å SRC2[223:192] FI
IF (IMM8[7] = 0) THEN DEST[255:224] Å SRC1[255:224]

ELSE DEST [255:224] Å SRC2[255:224] FI.

VBLENDPS (VEX.128 encoded version)
IF (IMM8[0] = 0) THEN DEST[31:0] ÅSRC1[31:0]

ELSE DEST [31:0] Å SRC2[31:0] FI
IF (IMM8[1] = 0) THEN DEST[63:32] Å SRC1[63:32]

ELSE DEST [63:32] Å SRC2[63:32] FI
IF (IMM8[2] = 0) THEN DEST[95:64] Å SRC1[95:64]

ELSE DEST [95:64] Å SRC2[95:64] FI
IF (IMM8[3] = 0) THEN DEST[127:96] Å SRC1[127:96]

ELSE DEST [127:96] Å SRC2[127:96] FI
DEST[255:128] Å 0

BLENDPS (128-bit Legacy SSE version)

IF (IMM8[0] = 0) THEN DEST[31:0] ÅDEST[31:0]
ELSE DEST [31:0] Å SRC[31:0] FI

IF (IMM8[1] = 0) THEN DEST[63:32] Å DEST[63:32]
ELSE DEST [63:32] Å SRC[63:32] FI

IF (IMM8[2] = 0) THEN DEST[95:64] Å DEST[95:64]
ELSE DEST [95:64] Å SRC[95:64] FI

IF (IMM8[3] = 0) THEN DEST[127:96] Å DEST[127:96]
ELSE DEST [127:96] Å SRC[127:96] FI

DEST[255:128] (Unmodified)
Ref. # 319433-004 47

INSTRUCTION SET REFERENCE
Intel C/C++ Compiler Intrinsic Equivalent

VBLENDPS __m256 _mm256_blend_ps (__m256 a, __m256 b, const int mask);

BLENDPS __m128 _mm_blend_ps (__m128 a, __m128 b, const int mask);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4
48 Ref. # 319433-004

INSTRUCTION SET REFERENCE
BLENDVPD- Blend Packed Double Precision Floating-Point Values

Description
Conditionally copy each quadword data element of double-precision floating-point
value from the second source operand and the first source operand depending on
mask bits defined in the mask register operand. The mask bits are the most signifi-
cant bit in each quadword element of the mask register.

Each quadword element of the destination operand is copied from:

• the corresponding quadword element in the second source operand, If a mask bit
is “1"; or

• the corresponding quadword element in the first source operand, If a mask bit is
“0"

The register assignment of the implicit mask operand for BLENDVPD is defined to be
the architectural register XMM0

128-bit Legacy SSE version: The first source operand and the destination operand is
the same. Bits (255:128) of the corresponding YMM destination register remain
unchanged. The mask register operand is implicitly defined to be the architectural
register XMM0. An attempt to execute BLENDVPD with a VEX prefix will cause #UD.

VEX.128 encoded version: The first source operand and the destination operand are
XMM registers. The second source operand is an XMM register or 128-bit memory

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 38 15 /r V/V SSE4_1 Conditionally copy double-preci-
sion floating-point values from
xmm2 or xmm3/m128 to xmm1,
based on mask bits in the implicit
mask operand, XMM0.

BLENDVPD xmm1, xmm2/m128,
<XMM0>

VEX.NDS.128.66.0F3A 4B /r /is4 V/V AVX Conditionally copy double-preci-
sion floating-point values from
xmm2 or xmm3/m128 to xmm1,
based on mask bits in the mask
operand, xmm4

VBLENDVPD xmm1, xmm2,
xmm3/m128, xmm4

VEX.NDS.256.66.0F3A 4B /r /is4 V/V AVX Conditionally copy double-preci-
sion floating-point values from
ymm2 or ymm3/m256 to ymm1,
based on mask bits in the mask
operand, ymm4

VBLENDVPD ymm1, ymm2,
ymm3/m256, ymm4
Ref. # 319433-004 49

INSTRUCTION SET REFERENCE
location. The mask operand is the third source register, and encoded in bits[7:4] of
the immediate byte(imm8). The bits[3:0] of imm8 are ignored. In 32-bit mode,
imm8[7] is ignored. The upper bits (255:128) of the corresponding YMM register
(destination register) are zeroed. VEX.W must be 0, otherwise, the instruction will
#UD.

VEX.256 encoded version: The first source operand and destination operand are YMM
registers. The second source operand can be a YMM register or a 256-bit memory
location. The mask operand is the third source register, and encoded in bits[7:4] of
the immediate byte(imm8). The bits[3:0] of imm8 are ignored. In 32-bit mode,
imm8[7] is ignored. VEX.W must be 0, otherwise, the instruction will #UD.

VBLENDVPD permits the mask to be any XMM or YMM register. In contrast,
BLENDVPD treats XMM0 implicitly as the mask and do not support non-destructive
destination operation.

Operation
VBLENDVPD (VEX.256 encoded version)
MASK Å SRC3
IF (MASK[63] = 0) THEN DEST[63:0] Å SRC1[63:0]

ELSE DEST [63:0] Å SRC2[63:0] FI
IF (MASK[127] = 0) THEN DEST[127:64] Å SRC1[127:64]

ELSE DEST [127:64] Å SRC2[127:64] FI
IF (MASK[191] = 0) THEN DEST[191:128] Å SRC1[191:128]

ELSE DEST [191:128] Å SRC2[191:128] FI
IF (MASK[255] = 0) THEN DEST[255:192] Å SRC1[255:192]

ELSE DEST [255:192] Å SRC2[255:192] FI

VBLENDVPD (VEX.128 encoded version)
MASK Å SRC3
IF (MASK[63] = 0) THEN DEST[63:0] Å SRC1[63:0]

ELSE DEST [63:0] Å SRC2[63:0] FI
IF (MASK[127] = 0) THEN DEST[127:64] Å SRC1[127:64]

ELSE DEST [127:64] Å SRC2[127:64] FI
DEST[255:128] Å 0

BLENDVPD (128-bit Legacy SSE version)
MASK Å XMM0
IF (MASK[63] = 0) THEN DEST[63:0] Å DEST[63:0]

ELSE DEST [63:0] Å SRC[63:0] FI
IF (MASK[127] = 0) THEN DEST[127:64] Å DEST[127:64]

ELSE DEST [127:64] Å SRC[127:64] FI
DEST[255:128] (Unmodified)
50 Ref. # 319433-004

INSTRUCTION SET REFERENCE
Intel C/C++ Compiler Intrinsic Equivalent

VBLENDVPD __m256 _mm256_blendv_pd (__m256d a, __m256d b, __m256d mask);

VBLENDVPD __m128 _mm_blendv_pd (__m128d a, __m128d b, __m128d mask);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4; additionally

#UD If VEX.W = 1.
Ref. # 319433-004 51

INSTRUCTION SET REFERENCE
BLENDVPS- Blend Packed Single Precision Floating-Point Values

Description
Conditionally copy each dword data element of single-precision floating-point value
from the second source operand and the first source operand depending on mask bits
defined in the mask register operand. The mask bits are the most significant bit in
each dword element of the mask register.

Each quadword element of the destination operand is copied from:

• the corresponding dword element in the second source operand, If a mask bit is
“1"; or

• the corresponding dword element in the first source operand, If a mask bit is “0"

The register assignment of the implicit mask operand for BLENDVPS is defined to be
the architectural register XMM0

128-bit Legacy SSE version: The first source operand and the destination operand is
the same. Bits (255:128) of the corresponding YMM destination register remain
unchanged. The mask register operand is implicitly defined to be the architectural
register XMM0. An attempt to execute BLENDVPS with a VEX prefix will cause #UD.

VEX.128 encoded version: The first source operand and the destination operand are
XMM registers. The second source operand is an XMM register or 128-bit memory
location. The mask operand is the third source register, and encoded in bits[7:4] of

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 38 14 /r V/V SSE4_1 Conditionally copy single-preci-
sion floating-point values from
xmm2 or xmm3/m128 to xmm1,
based on mask bits in the implicit
mask operand, XMM0.

BLENDVPS xmm1, xmm2/m128,
<XMM0>

VEX.NDS.128.66.0F3A 4A /r /is4 V/V AVX Conditionally copy single-preci-
sion floating-point values from
xmm2 or xmm3/m128 to xmm1,
based on mask bits in the specified
mask operand, xmm4

VBLENDVPS xmm1, xmm2,
xmm3/m128, xmm4

VEX.NDS.256.66.0F3A 4A /r /is4 V/V AVX Conditionally copy single-preci-
sion floating-point values from
ymm2 or ymm3/m256 to ymm1,
based on mask bits in the specified
mask register, ymm4

VBLENDVPS ymm1, ymm2,
ymm3/m256, ymm4
52 Ref. # 319433-004

INSTRUCTION SET REFERENCE
the immediate byte(imm8). The bits[3:0] of imm8 are ignored. In 32-bit mode,
imm8[7] is ignored. The upper bits (255:128) of the corresponding YMM register
(destination register) are zeroed. VEX.W must be 0, otherwise, the instruction will
#UD.

VEX.256 encoded version: The first source operand and destination operand are YMM
registers. The second source operand can be a YMM register or a 256-bit memory
location. The mask operand is the third source register, and encoded in bits[7:4] of
the immediate byte(imm8). The bits[3:0] of imm8 are ignored. In 32-bit mode,
imm8[7] is ignored. VEX.W must be 0, otherwise, the instruction will #UD.

VBLENDVPS permits the mask to be any XMM or YMM register. In contrast,
BLENDVPS treats XMM0 implicitly as the mask and do not support non-destructive
destination operation.

Operation
VBLENDVPS (VEX.256 encoded version)
MASK Å SRC3
IF (MASK[31] = 0) THEN DEST[31:0] Å SRC1[31:0]

ELSE DEST [31:0] Å SRC2[31:0] FI
IF (MASK[63] = 0) THEN DEST[63:32] Å SRC1[63:32]

ELSE DEST [63:32] Å SRC2[63:32] FI
IF (MASK[95] = 0) THEN DEST[95:64] Å SRC1[95:64]

ELSE DEST [95:64] Å SRC2[95:64] FI
IF (MASK[127] = 0) THEN DEST[127:96] Å SRC1[127:96]

ELSE DEST [127:96] Å SRC2[127:96] FI
IF (MASK[159] = 0) THEN DEST[159:128] Å SRC1[159:128]

ELSE DEST [159:128] Å SRC2[159:128] FI
IF (MASK[191] = 0) THEN DEST[191:160] Å SRC1[191:160]

ELSE DEST [191:160] Å SRC2[191:160] FI
IF (MASK[223] = 0) THEN DEST[223:192] Å SRC1[223:192]

ELSE DEST [223:192] Å SRC2[223:192] FI
IF (MASK[255] = 0) THEN DEST[255:224] Å SRC1[255:224]

ELSE DEST [255:224] Å SRC2[255:224] FI

VBLENDVPS (VEX.128 encoded version)
MASK Å SRC3
IF (MASK[31] = 0) THEN DEST[31:0] Å SRC1[31:0]

ELSE DEST [31:0] Å SRC2[31:0] FI
IF (MASK[63] = 0) THEN DEST[63:32] Å SRC1[63:32]

ELSE DEST [63:32] Å SRC2[63:32] FI
IF (MASK[95] = 0) THEN DEST[95:64] Å SRC1[95:64]

ELSE DEST [95:64] Å SRC2[95:64] FI
Ref. # 319433-004 53

INSTRUCTION SET REFERENCE
IF (MASK[127] = 0) THEN DEST[127:96] Å SRC1[127:96]
ELSE DEST [127:96] Å SRC2[127:96] FI

DEST[255:128] Å 0

BLENDVPS (128-bit Legacy SSE version)
MASK Å XMM0
IF (MASK[31] = 0) THEN DEST[31:0] Å DEST[31:0]

ELSE DEST [31:0] Å SRC[31:0] FI
IF (MASK[63] = 0) THEN DEST[63:32] Å DEST[63:32]

ELSE DEST [63:32] Å SRC[63:32] FI
IF (MASK[95] = 0) THEN DEST[95:64] Å DEST[95:64]

ELSE DEST [95:64] Å SRC[95:64] FI
IF (MASK[127] = 0) THEN DEST[127:96] Å DEST[127:96]

ELSE DEST [127:96] Å SRC[127:96] FI
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VBLENDVPS __m256 _mm256_blendv_ps (__m256 a, __m256 b, __m256 mask);

VBLENDVPS __m128 _mm_blendv_ps (__m128 a, __m128 b, __m128 mask);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4; additionally

#UD If VEX.W = 1.
54 Ref. # 319433-004

INSTRUCTION SET REFERENCE
VBROADCAST- Load with Broadcast

Description
Load floating point values from the source operand (second operand) and broadcast
to all elements of the destination operand (first operand).

The destination operand is a YMM register. The source operand is either a 32-bit, 64-
bit, or 128-bit memory location. Register source encodings are reserved and will
#UD.

VBROADCASTSD and VBROADCASTF128 are only supported as 256-bit wide
versions. VBROADCASTSS is supported in both 128-bit and 256-bit wide versions.

Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise
instructions will #UD.

If VBROADCASTSD or VBROADCASTF128 is encoded with VEX.L= 0, an attempt to
execute the instruction encoded with VEX.L= 0 will cause an #UD exception.

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

VEX.128.66.0F38 18 /r V/V AVX Broadcast single-precision float-
ing-point element in mem to four
locations in xmm1

VBROADCASTSS xmm1, m32

VEX.256.66.0F38 18 /r V/V AVX Broadcast single-precision float-
ing-point element in mem to eight
locations in ymm1

VBROADCASTSS ymm1, m32

VEX.256.66.0F38 19 /r V/V AVX Broadcast double-precision float-
ing-point element in mem to four
locations in ymm1

VBROADCASTSD ymm1, m64

VEX.256.66.0F38 1A /r V/V AVX Broadcast 128 bits of floating-
point data in mem to low and high
128-bits in ymm1

VBROADCASTF128 ymm1, m128
Ref. # 319433-004 55

INSTRUCTION SET REFERENCE
Figure 5-1. VBROADCASTSS Operation (VEX.256 encoded version)

Figure 5-2. VBROADCASTSS Operation (128-bit version)

DEST

m32 X0

X0X0 X0X0 X0X0 X0X0

DEST

m32 X0

X0X0 X00 X00 00
56 Ref. # 319433-004

INSTRUCTION SET REFERENCE
Figure 5-3. VBROADCASTSD Operation

Figure 5-4. VBROADCASTF128 Operation

Operation

VBROADCASTSS (128 bit version)
temp Å SRC[31:0]
DEST[31:0] Å temp
DEST[63:32] Å temp
DEST[95:64] Å temp
DEST[127:96] Å temp
DEST[255:128] Å 0

DEST

m64 X0

X0X0X0X0

DEST

m128 X0

X0X0
Ref. # 319433-004 57

INSTRUCTION SET REFERENCE
VBROADCASTSS (VEX.256 encoded version)
temp Å SRC[31:0]
DEST[31:0] Å temp
DEST[63:32] Å temp
DEST[95:64] Å temp
DEST[127:96] Å temp
DEST[159:128] Å temp
DEST[191:160] Å temp
DEST[223:192] Å temp
DEST[255:224] Å temp

VBROADCASTSD (VEX.256 encoded version)
temp Å SRC[63:0]
DEST[63:0] Å temp
DEST[127:64] Å temp
DEST[191:128] Å temp
DEST[255:192] Å temp

VBROADCASTF128
temp Å SRC[127:0]
DEST[127:0] Å temp
DEST[255:128] Å temp

Intel C/C++ Compiler Intrinsic Equivalent

VBROADCASTSS __m128 _mm_broadcast_ss(float *a);

VBROADCASTSS __m256 _mm256_broadcast_ss(float *a);

VBROADCASTSD __m256d _mm256_broadcast_sd(double *a);

VBROADCASTF128 __m256 _mm256_broadcast_ps(__m128 * a);

VBROADCASTF128 __m256d _mm256_broadcast_pd(__m128d * a);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 6, additionally

#UD If VEX.L = 0 for VBROADCASTSD.

If VEX.L = 0 for VBROADCASTF128
58 Ref. # 319433-004

INSTRUCTION SET REFERENCE
CMPPD- Compare Packed Double-Precision Floating-Point Values

Description
Performs a SIMD compare of the packed double-precision floating-point values in the
second source operand and the first source operand and returns the results of the
comparison to the destination operand. The comparison predicate operand (imme-
diate byte) specifies the type of comparison performed on each pair of packed values
in the two source operands. The result of each comparison is a quadword mask of all
1s (comparison true) or all 0s (comparison false).

VEX.256 encoded version: The first source operand (second operand) is a YMM
register. The second source operand (third operand) can be a YMM register or a 256-
bit memory location. The destination operand (first operand) is a YMM register. Four
comparisons are performed with results written to the destination operand.

128-bit Legacy SSE version: The first source and destination operand (first operand)
is an XMM register. The second source operand (second operand) can be an XMM
register or 128-bit memory location. Bits (255:128) of the corresponding YMM desti-
nation register remain unchanged. Two comparisons are performed with results
written to bits 127:0 of the destination operand.

VEX.128 encoded version: The first source operand (second operand) is an XMM
register. The second source operand (third operand) can be an XMM register or a
128-bit memory location. Bits (255:128) of the destination YMM register are zeroed.

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F C2 /r ib V/V SSE2 Compare packed double-precision
floating-point values in
xmm2/m128 and xmm1 using bits
2:0 of imm8 as a comparison pred-
icate

CMPPD xmm1, xmm2/m128, imm8

VEX.NDS.128.66.0F C2 /r ib V/V AVX Compare packed double-precision
floating-point values in
xmm3/m128 and xmm2 using bits
4:0 of imm8 as a comparison pred-
icate

VCMPPD xmm1, xmm2,
xmm3/m128, imm8

VEX.NDS.256.66.0F C2 /r ib V/V AVX Compare packed double-precision
floating-point values in
ymm3/m256 and ymm2 using bits
4:0 of imm8 as a comparison pred-
icate

VCMPPD ymm1, ymm2,
ymm3/m256, imm8
Ref. # 319433-004 59

INSTRUCTION SET REFERENCE
Two comparisons are performed with results written to bits 127:0 of the destination
operand.

The comparison predicate operand is an 8-bit immediate:

• For instructions encoded using the VEX prefix, bits 4:0 define the type of
comparison to be performed (see Table 5-9). Bits 5 through 7 of the immediate
are reserved.

• For instruction encodings that do not use VEX prefix, bits 2:0 define the type of
comparison to be made (see the first 8 rows of Table 5-9). Bits 3 through 7 of the
immediate are reserved.

Table 5-9. Comparison Predicate for CMPPD and CMPPS Instructions

Predicate imm8
Value

Description Result: A Is 1st Operand, B Is 2nd Operand Signals
#IA on
QNANA >B A < B A = B Unordered1

EQ_OQ
(EQ)

0H Equal (ordered, non-
signaling)

False False True False No

LT_OS
(LT)

1H Less-than (ordered,
signaling)

False True False False Yes

LE_OS
(LE)

2H Less-than-or-equal
(ordered, signaling)

False True True False Yes

UNORD_
Q
(UNORD)

3H Unordered (non-
signaling)

False False False True No

NEQ_UQ
(NEQ)

4H Not-equal
(unordered, non-
signaling)

True True False True No

NLT_US
(NLT)

5H Not-less-than
(unordered,
signaling)

True False True True Yes

NLE_US
(NLE)

6H Not-less-than-or-
equal (unordered,
signaling)

True False False True Yes

ORD_Q
(ORD)

7H Ordered (non-
signaling)

True True True False No

EQ_UQ 8H Equal (unordered,
non-signaling)

False False True True No

NGE_US
(NGE)

9H Not-greater-than-or-
equal (unordered,
signaling)

False True False True Yes
60 Ref. # 319433-004

INSTRUCTION SET REFERENCE
NGT_US
(NGT)

AH Not-greater-than
(unordered, signal-
ing)

False True True True Yes

FALSE_O
Q(FALSE)

BH False (ordered, non-
signaling)

False False False False No

NEQ_OQ CH Not-equal (ordered,
non-signaling)

True True False False No

GE_OS
(GE)

DH Greater-than-or-
equal (ordered, sig-
naling)

True False True False Yes

GT_OS
(GT)

EH Greater-than
(ordered, signaling)

True False False False Yes

TRUE_U
Q(TRUE)

FH True (unordered,
non-signaling)

True True True True No

EQ_OS 10H Equal (ordered, sig-
naling)

False False True False Yes

LT_OQ 11H Less-than (ordered,
nonsignaling)

False True False False No

LE_OQ 12H Less-than-or-equal
(ordered, nonsignal-
ing)

False True True False No

UNORD_
S

13H Unordered (signal-
ing)

False False False True Yes

NEQ_US 14H Not-equal (unor-
dered, signaling)

True True False True Yes

NLT_UQ 15H Not-less-than (unor-
dered, nonsignaling)

True False True True No

NLE_UQ 16H Not-less-than-or-
equal (unordered,
nonsignaling)

True False False True No

ORD_S 17H Ordered (signaling) True True True False Yes

EQ_US 18H Equal (unordered,
signaling)

False False True True Yes

Table 5-9. Comparison Predicate for CMPPD and CMPPS Instructions (Continued)

Predicate imm8
Value

Description Result: A Is 1st Operand, B Is 2nd Operand Signals
#IA on
QNANA >B A < B A = B Unordered1
Ref. # 319433-004 61

INSTRUCTION SET REFERENCE
The unordered relationship is true when at least one of the two source operands
being compared is a NaN; the ordered relationship is true when neither source
operand is a NaN.

A subsequent computational instruction that uses the mask result in the destination
operand as an input operand will not generate an exception, because a mask of all 0s
corresponds to a floating-point value of +0.0 and a mask of all 1s corresponds to a
QNaN.

Note that processors with “CPUID.1H:ECX.AVX =0” do not implement the “greater-
than”, “greater-than-or-equal”, “not-greater than”, and “not-greater-than-or-equal
relations” predicates. These comparisons can be made either by using the inverse
relationship (that is, use the “not-less-than-or-equal” to make a “greater-than”
comparison) or by using software emulation. When using software emulation, the
program must swap the operands (copying registers when necessary to protect the
data that will now be in the destination), and then perform the compare using a
different predicate. The predicate to be used for these emulations is listed in the first
8 rows of Table 3-7 (Intel 64 and IA-32 Architectures Software Developer’s Manual
Volume 2A) under the heading Emulation.

NGE_UQ 19H Not-greater-than-or-
equal (unordered,
nonsignaling)

False True False True No

NGT_UQ 1AH Not-greater-than
(unordered, nonsig-
naling)

False True True True No

FALSE_O
S

1BH False (ordered, sig-
naling)

False False False False Yes

NEQ_OS 1CH Not-equal (ordered,
signaling)

True True False False Yes

GE_OQ 1DH Greater-than-or-
equal (ordered, non-
signaling)

True False True False No

GT_OQ 1EH Greater-than
(ordered, nonsignal-
ing)

True False False False No

TRUE_US 1FH True (unordered, sig-
naling)

True True True True Yes

NOTES:
1. If either operand A or B is a NAN.

Table 5-9. Comparison Predicate for CMPPD and CMPPS Instructions (Continued)

Predicate imm8
Value

Description Result: A Is 1st Operand, B Is 2nd Operand Signals
#IA on
QNANA >B A < B A = B Unordered1
62 Ref. # 319433-004

INSTRUCTION SET REFERENCE
Compilers and assemblers may implement the following two-operand pseudo-ops in
addition to the three-operand CMPPD instruction, for processors with
“CPUID.1H:ECX.AVX =0”. See Table 5-10. Compiler should treat reserved Imm8
values as illegal syntax.
:

The greater-than relations that the processor does not implement require more than
one instruction to emulate in software and therefore should not be implemented as
pseudo-ops. (For these, the programmer should reverse the operands of the corre-
sponding less than relations and use move instructions to ensure that the mask is
moved to the correct destination register and that the source operand is left intact.)

Processors with “CPUID.1H:ECX.AVX =1” implement the full complement of 32 pred-
icates shown in Table 5-9, software emulation is no longer needed. Compilers and
assemblers may implement the following three-operand pseudo-ops in addition to
the four-operand VCMPPD instruction. See Table 5-11, where the notations of reg1
reg2, and reg3 represent either XMM registers or YMM registers. Compiler should
treat reserved Imm8 values as illegal syntax. Alternately, intrinsics can map the
pseudo-ops to pre-defined constants to support a simpler intrinsic interface.
:

Table 5-10. Pseudo-Op and CMPPD Implementation

Pseudo-Op CMPPD Implementation

CMPEQPD xmm1, xmm2 CMPPD xmm1, xmm2, 0

CMPLTPD xmm1, xmm2 CMPPD xmm1, xmm2, 1

CMPLEPD xmm1, xmm2 CMPPD xmm1, xmm2, 2

CMPUNORDPD xmm1, xmm2 CMPPD xmm1, xmm2, 3

CMPNEQPD xmm1, xmm2 CMPPD xmm1, xmm2, 4

CMPNLTPD xmm1, xmm2 CMPPD xmm1, xmm2, 5

CMPNLEPD xmm1, xmm2 CMPPD xmm1, xmm2, 6

CMPORDPD xmm1, xmm2 CMPPD xmm1, xmm2, 7

Table 5-11. Pseudo-Op and VCMPPD Implementation

Pseudo-Op CMPPD Implementation

VCMPEQPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 0

VCMPLTPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 1

VCMPLEPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 2

VCMPUNORDPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 3

VCMPNEQPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 4

VCMPNLTPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 5

VCMPNLEPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 6

VCMPORDPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 7
Ref. # 319433-004 63

INSTRUCTION SET REFERENCE
Operation
CASE (COMPARISON PREDICATE) OF
0: OP3 Å EQ_OQ; OP5 Å EQ_OQ;

1: OP3 Å LT_OS; OP5 Å LT_OS;
2: OP3 Å LE_OS; OP5 Å LE_OS;
3: OP3 Å UNORD_Q; OP5 Å UNORD_Q;

VCMPEQ_UQPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 8

VCMPNGEPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 9

VCMPNGTPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 0AH

VCMPFALSEPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 0BH

VCMPNEQ_OQPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 0CH

VCMPGEPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 0DH

VCMPGTPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 0EH

VCMPTRUEPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 0FH

VCMPEQ_OSPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 10H

VCMPLT_OQPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 11H

VCMPLE_OQPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 12H

VCMPUNORD_SPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 13H

VCMPNEQ_USPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 14H

VCMPNLT_UQPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 15H

VCMPNLE_UQPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 16H

VCMPORD_SPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 17H

VCMPEQ_USPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 18H

VCMPNGE_UQPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 19H

VCMPNGT_UQPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 1AH

VCMPFALSE_OSPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 1BH

VCMPNEQ_OSPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 1CH

VCMPGE_OQPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 1DH

VCMPGT_OQPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 1EH

VCMPTRUE_USPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 1FH

Table 5-11. Pseudo-Op and VCMPPD Implementation

Pseudo-Op CMPPD Implementation
64 Ref. # 319433-004

INSTRUCTION SET REFERENCE
4: OP3 Å NEQ_UQ; OP5 Å NEQ_UQ;
5: OP3 Å NLT_US; OP5 Å NLT_US;
6: OP3 Å NLE_US; OP5 Å NLE_US;
7: OP3 Å ORD_Q; OP5 Å ORD_Q;
8: OP5 Å EQ_UQ;
9: OP5 Å NGE_US;
10: OP5 Å NGT_US;
11: OP5 Å FALSE_OQ;
12: OP5 Å NEQ_OQ;
13: OP5 Å GE_OS;
14: OP5 Å GT_OS;
15: OP5 Å TRUE_UQ;
16: OP5 Å EQ_OS;
17: OP5 Å LT_OQ;
18: OP5 Å LE_OQ;
19: OP5 Å UNORD_S;
20: OP5 Å NEQ_US;
21: OP5 Å NLT_UQ;
22: OP5 Å NLE_UQ;
23: OP5 Å ORD_S;
24: OP5 Å EQ_US;
25: OP5 Å NGE_UQ;
26: OP5 Å NGT_UQ;
27: OP5 Å FALSE_OS;
28: OP5 Å NEQ_OS;
29: OP5 Å GE_OQ;
30: OP5 Å GT_OQ;
31: OP5 Å TRUE_US;
DEFAULT: Reserved;

ESAC;

VCMPPD (VEX.256 encoded version)
CMP0 Å SRC1[63:0] OP5 SRC2[63:0];
CMP1 Å SRC1[127:64] OP5 SRC2[127:64];
CMP2 Å SRC1[191:128] OP5 SRC2[191:128];
CMP3 Å SRC1[255:192] OP5 SRC2[255:192];
IF CMP0 = TRUE

THEN DEST[63:0] Å FFFFFFFFFFFFFFFFH;
ELSE DEST[63:0] Å 0000000000000000H; FI;

IF CMP1 = TRUE
THEN DEST[127:64] Å FFFFFFFFFFFFFFFFH;
ELSE DEST[127:64] Å 0000000000000000H; FI;

IF CMP2 = TRUE
Ref. # 319433-004 65

INSTRUCTION SET REFERENCE
THEN DEST[191:128] Å FFFFFFFFFFFFFFFFH;
ELSE DEST[191:128] Å 0000000000000000H; FI;

IF CMP3 = TRUE
THEN DEST[255:192] Å FFFFFFFFFFFFFFFFH;
ELSE DEST[255:192] Å 0000000000000000H; FI;

VCMPPD (VEX.128 encoded version)
CMP0 Å SRC1[63:0] OP5 SRC2[63:0];
CMP1 Å SRC1[127:64] OP5 SRC2[127:64];
IF CMP0 = TRUE

THEN DEST[63:0] Å FFFFFFFFFFFFFFFFH;
ELSE DEST[63:0] Å 0000000000000000H; FI;

IF CMP1 = TRUE
THEN DEST[127:64] Å FFFFFFFFFFFFFFFFH;
ELSE DEST[127:64] Å 0000000000000000H; FI;

DEST[255:128] Å 0

CMPPD (128-bit Legacy SSE version)
CMP0 Å SRC1[63:0] OP3 SRC2[63:0];
CMP1 Å SRC1[127:64] OP3 SRC2[127:64];
IF CMP0 = TRUE

THEN DEST[63:0] Å FFFFFFFFFFFFFFFFH;
ELSE DEST[63:0] Å 0000000000000000H; FI;

IF CMP1 = TRUE
THEN DEST[127:64] Å FFFFFFFFFFFFFFFFH;
ELSE DEST[127:64] Å 0000000000000000H; FI;

DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VCMPPD __m256 _mm256_cmp_pd(__m256 a, __m256 b, const int imm)

VCMPPD __m128 _mm_cmp_pd(__m128 a, __m128 b, const int imm)

SIMD Floating-Point Exceptions
Invalid if SNaN operand and invalid if QNaN and predicate as listed in Table 5-9.

Denormal

Other Exceptions
See Exceptions Type 2
66 Ref. # 319433-004

INSTRUCTION SET REFERENCE
CMPPS- Compare Packed Single-Precision Floating-Point Values

Description
Performs a SIMD compare of the packed single-precision floating-point values in the
second source operand and the first source operand and returns the results of the
comparison to the destination operand. The comparison predicate operand (imme-
diate byte) specifies the type of comparison performed on each of the pairs of packed
values. The result of each comparison is a quadword mask of all 1s (comparison true)
or all 0s (comparison false).

VEX.256 encoded version: The first source operand (second operand) is a YMM
register. The second source operand (third operand) can be a YMM register or a 256-
bit memory location. The destination operand (first operand) is a YMM register. Eight
comparisons are performed with results written to the destination operand.

128-bit Legacy SSE version: The first source and destination operand (first operand)
is an XMM register. The second source operand (second operand) can be an XMM
register or 128-bit memory location. Bits (255:128) of the corresponding YMM desti-
nation register remain unchanged. Four comparisons are performed with results
written to bits 127:0 of the destination operand.

VEX.128 encoded version: The first source operand (second operand) is an XMM
register. The second source operand (third operand) can be an XMM register or a
128-bit memory location. Bits (255:128) of the destination YMM register are zeroed.

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F C2 /r ib V/V SSE Compare packed single-precision
floating-point values in
xmm2/m128 and xmm1 using bits
2:0 of imm8 as a comparison pred-
icate

CMPPS xmm1, xmm2/m128, imm8

VEX.NDS.128.0F C2 /r ib V/V AVX Compare packed single-precision
floating-point values in
xmm3/m128 and xmm2 using bits
4:0 of imm8 as a comparison pred-
icate

VCMPPS xmm1, xmm2,
xmm3/m128, imm8

VEX.NDS.256.0F C2 /r ib V/V AVX Compare packed single-precision
floating-point values in
ymm3/m256 and ymm2 using bits
2:0 of imm8 as a comparison pred-
icate

VCMPPS ymm1, ymm2,
ymm3/m256, imm8
Ref. # 319433-004 67

INSTRUCTION SET REFERENCE
Four comparisons are performed with results written to bits 127:0 of the destination
operand.

The comparison predicate operand is an 8-bit immediate:

• For instructions encoded using the VEX prefix, bits 4:0 define the type of
comparison to be performed (see Figure 5-9). Bits 5 through 7 of the immediate
are reserved.

• For instruction encodings that do not use VEX prefix, bits 2:0 define the type of
comparison to be made (see the first 8 rows of Table 5-9). Bits 3 through 7 of the
immediate are reserved.

The unordered relationship is true when at least one of the two source operands
being compared is a NaN; the ordered relationship is true when neither source
operand is a NaN.

A subsequent computational instruction that uses the mask result in the destination
operand as an input operand will not generate an exception, because a mask of all 0s
corresponds to a floating-point value of +0.0 and a mask of all 1s corresponds to a
QNaN.

Note that processors with “CPUID.1H:ECX.AVX =0” do not implement the “greater-
than”, “greater-than-or-equal”, “not-greater than”, and “not-greater-than-or-equal
relations” predicates. These comparisons can be made either by using the inverse
relationship (that is, use the “not-less-than-or-equal” to make a “greater-than”
comparison) or by using software emulation. When using software emulation, the
program must swap the operands (copying registers when necessary to protect the
data that will now be in the destination), and then perform the compare using a
different predicate. The predicate to be used for these emulations is listed in the first
8 rows of Table 3-7 (Intel 64 and IA-32 Architectures Software Developer’s Manual
Volume 2A) under the heading Emulation.

Compilers and assemblers may implement the following two-operand pseudo-ops in
addition to the three-operand CMPPS instruction, for processors with
“CPUID.1H:ECX.AVX =0”. See Table 5-12. Compiler should treat reserved Imm8
values as illegal syntax.
:

Table 5-12. Pseudo-Op and CMPPS Implementation

Pseudo-Op CMPPS Implementation

CMPEQPS xmm1, xmm2 CMPPS xmm1, xmm2, 0

CMPLTPS xmm1, xmm2 CMPPS xmm1, xmm2, 1

CMPLEPS xmm1, xmm2 CMPPS xmm1, xmm2, 2

CMPUNORDPS xmm1, xmm2 CMPPS xmm1, xmm2, 3

CMPNEQPS xmm1, xmm2 CMPPS xmm1, xmm2, 4

CMPNLTPS xmm1, xmm2 CMPPS xmm1, xmm2, 5

CMPNLEPS xmm1, xmm2 CMPPS xmm1, xmm2, 6
68 Ref. # 319433-004

INSTRUCTION SET REFERENCE
The greater-than relations that the processor does not implement require more than
one instruction to emulate in software and therefore should not be implemented as
pseudo-ops. (For these, the programmer should reverse the operands of the corre-
sponding less than relations and use move instructions to ensure that the mask is
moved to the correct destination register and that the source operand is left intact.)

Processors with “CPUID.1H:ECX.AVX =1” implement the full complement of 32 pred-
icates shown in Table 5-13, software emulation is no longer needed. Compilers and
assemblers may implement the following three-operand pseudo-ops in addition to
the four-operand VCMPPS instruction. See Table 5-13, where the notation of reg1
and reg2 represent either XMM registers or YMM registers. Compiler should treat
reserved Imm8 values as illegal syntax. Alternately, intrinsics can map the pseudo-
ops to pre-defined constants to support a simpler intrinsic interface.
:

CMPORDPS xmm1, xmm2 CMPPS xmm1, xmm2, 7

Table 5-13. Pseudo-Op and VCMPPS Implementation

Pseudo-Op CMPPS Implementation

VCMPEQPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 0

VCMPLTPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 1

VCMPLEPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 2

VCMPUNORDPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 3

VCMPNEQPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 4

VCMPNLTPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 5

VCMPNLEPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 6

VCMPORDPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 7

VCMPEQ_UQPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 8

VCMPNGEPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 9

VCMPNGTPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 0AH

VCMPFALSEPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 0BH

VCMPNEQ_OQPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 0CH

VCMPGEPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 0DH

VCMPGTPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 0EH

VCMPTRUEPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 0FH

Table 5-12. Pseudo-Op and CMPPS Implementation

Pseudo-Op CMPPS Implementation
Ref. # 319433-004 69

INSTRUCTION SET REFERENCE
Operation
CASE (COMPARISON PREDICATE) OF

0: OP3 Å EQ_OQ; OP5 Å EQ_OQ;
1: OP3 Å LT_OS; OP5 Å LT_OS;
2: OP3 Å LE_OS; OP5 Å LE_OS;
3: OP3 Å UNORD_Q; OP5 Å UNORD_Q;
4: OP3 Å NEQ_UQ; OP5 Å NEQ_UQ;
5: OP3 Å NLT_US; OP5 Å NLT_US;
6: OP3 Å NLE_US; OP5 Å NLE_US;
7: OP3 Å ORD_Q; OP5 Å ORD_Q;
8: OP5 Å EQ_UQ;
9: OP5 Å NGE_US;
10: OP5 Å NGT_US;
11: OP5 Å FALSE_OQ;
12: OP5 Å NEQ_OQ;
13: OP5 Å GE_OS;
14: OP5 Å GT_OS;

VCMPEQ_OSPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 10H

VCMPLT_OQPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 11H

VCMPLE_OQPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 12H

VCMPUNORD_SPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 13H

VCMPNEQ_USPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 14H

VCMPNLT_UQPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 15H

VCMPNLE_UQPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 16H

VCMPORD_SPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 17H

VCMPEQ_USPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 18H

VCMPNGE_UQPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 19H

VCMPNGT_UQPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 1AH

VCMPFALSE_OSPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 1BH

VCMPNEQ_OSPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 1CH

VCMPGE_OQPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 1DH

VCMPGT_OQPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 1EH

VCMPTRUE_USPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 1FH

Table 5-13. Pseudo-Op and VCMPPS Implementation

Pseudo-Op CMPPS Implementation
70 Ref. # 319433-004

INSTRUCTION SET REFERENCE
15: OP5 Å TRUE_UQ;
16: OP5 Å EQ_OS;
17: OP5 Å LT_OQ;
18: OP5 Å LE_OQ;
19: OP5 Å UNORD_S;
20: OP5 Å NEQ_US;
21: OP5 Å NLT_UQ;
22: OP5 Å NLE_UQ;
23: OP5 Å ORD_S;
24: OP5 Å EQ_US;
25: OP5 Å NGE_UQ;
26: OP5 Å NGT_UQ;
27: OP5 Å FALSE_OS;
28: OP5 Å NEQ_OS;
29: OP5 Å GE_OQ;
30: OP5 Å GT_OQ;
31: OP5 Å TRUE_US;
DEFAULT: Reserved

ESAC;

VCMPPS (VEX.256 encoded version)
CMP0 Å SRC1[31:0] OP5 SRC2[31:0];
CMP1 Å SRC1[63:32] OP5 SRC2[63:32];
CMP2 Å SRC1[95:64] OP5 SRC2[95:64];
CMP3 Å SRC1[127:96] OP5 SRC2[127:96];
CMP4 Å SRC1[159:128] OP5 SRC2[159:128];
CMP5 Å SRC1[191:160] OP5 SRC2[191:160];
CMP6 Å SRC1[223:192] OP5 SRC2[223:192];
CMP7 Å SRC1[255:224] OP5 SRC2[255:224];
IF CMP0 = TRUE

THEN DEST[31:0] ÅFFFFFFFFH;
ELSE DEST[31:0] Å 000000000H; FI;

IF CMP1 = TRUE
THEN DEST[63:32] Å FFFFFFFFH;
ELSE DEST[63:32] Å000000000H; FI;

IF CMP2 = TRUE
THEN DEST[95:64] Å FFFFFFFFH;
ELSE DEST[95:64] Å 000000000H; FI;

IF CMP3 = TRUE
THEN DEST[127:96] Å FFFFFFFFH;
ELSE DEST[127:96] Å 000000000H; FI;

IF CMP4 = TRUE
THEN DEST[159:128] Å FFFFFFFFH;
Ref. # 319433-004 71

INSTRUCTION SET REFERENCE
ELSE DEST[159:128] Å 000000000H; FI;
IF CMP5 = TRUE

THEN DEST[191:160] Å FFFFFFFFH;
ELSE DEST[191:160] Å 000000000H; FI;

IF CMP6 = TRUE
THEN DEST[223:192] Å FFFFFFFFH;
ELSE DEST[223:192] Å000000000H; FI;

IF CMP7 = TRUE
THEN DEST[255:224] Å FFFFFFFFH;
ELSE DEST[255:224] Å 000000000H; FI;

VCMPPS (VEX.128 encoded version)
CMP0 Å SRC1[31:0] OP5 SRC2[31:0];
CMP1 Å SRC1[63:32] OP5 SRC2[63:32];
CMP2 Å SRC1[95:64] OP5 SRC2[95:64];
CMP3 Å SRC1[127:96] OP5 SRC2[127:96];
IF CMP0 = TRUE

THEN DEST[31:0] ÅFFFFFFFFH;
ELSE DEST[31:0] Å 000000000H; FI;

IF CMP1 = TRUE
THEN DEST[63:32] Å FFFFFFFFH;
ELSE DEST[63:32] Å 000000000H; FI;

IF CMP2 = TRUE
THEN DEST[95:64] Å FFFFFFFFH;
ELSE DEST[95:64] Å 000000000H; FI;

IF CMP3 = TRUE
THEN DEST[127:96] Å FFFFFFFFH;
ELSE DEST[127:96] Å000000000H; FI;

DEST[255:128] Å 0

CMPPS (128-bit Legacy SSE version)
CMP0 Å SRC1[31:0] OP3 SRC2[31:0];
CMP1 Å SRC1[63:32] OP3 SRC2[63:32];
CMP2 Å SRC1[95:64] OP3 SRC2[95:64];
CMP3 Å SRC1[127:96] OP3 SRC2[127:96];
IF CMP0 = TRUE

THEN DEST[31:0] ÅFFFFFFFFH;
ELSE DEST[31:0] Å 000000000H; FI;

IF CMP1 = TRUE
THEN DEST[63:32] Å FFFFFFFFH;
ELSE DEST[63:32] Å 000000000H; FI;

IF CMP2 = TRUE
THEN DEST[95:64] Å FFFFFFFFH;
72 Ref. # 319433-004

INSTRUCTION SET REFERENCE
ELSE DEST[95:64] Å 000000000H; FI;
IF CMP3 = TRUE

THEN DEST[127:96] Å FFFFFFFFH;
ELSE DEST[127:96] Å000000000H; FI;

DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VCMPPS __m256 _mm256_cmp_ps(__m256 a, __m256 b, const int imm)

VCMPPS __m128 _mm_cmp_ps(__m128 a, __m128 b, const int imm)

SIMD Floating-Point Exceptions
Invalid if SNaN operand and invalid if QNaN and predicate as listed in Table 5-9.

Denormal

Other Exceptions
See Exceptions Type 2
Ref. # 319433-004 73

INSTRUCTION SET REFERENCE
CMPSD- Compare Scalar Double-Precision Floating-Point Values

Description
Compares the low double-precision floating-point values in the second source
operand and the first source operand and returns the results in of the comparison to
the destination operand. The comparison predicate operand (immediate operand)
specifies the type of comparison performed. The comparison result is a quadword
mask of all 1s (comparison true) or all 0s (comparison false).

128-bit Legacy SSE version: The first source and destination operand (first operand)
is an XMM register. The second source operand (second operand) can be an XMM
register or 64-bit memory location. Bits (255:64) of the corresponding YMM destina-
tion register remain unchanged.

VEX.128 encoded version: The first source operand (second operand) is an XMM
register. The second source operand (third operand) can be an XMM register or a 64-
bit memory location. The result is stored in the low quadword of the destination
operand; the high quadword is filled with the contents of the high quadword of the
first source operand. Bits (255:128) of the destination YMM register are zeroed.

The comparison predicate operand is an 8-bit immediate:

• For instructions encoded using the VEX prefix, bits 4:0 define the type of
comparison to be performed (see Table 5-9). Bits 5 through 7 of the immediate
are reserved.

• For instruction encodings that do not use VEX prefix, bits 2:0 define the type of
comparison to be made (see the first 8 rows of Table 5-9). Bits 3 through 7 of the
immediate are reserved.

The unordered relationship is true when at least one of the two source operands
being compared is a NaN; the ordered relationship is true when neither source
operand is a NaN.

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

F2 0F C2 /r ib V/V SSE2 Compare low double precision
floating-point value in xmm2/m64
and xmm1 using bits 2:0 of imm8
as comparison predicate

CMPSD xmm1, xmm2/m64, imm8

VEX.NDS.128.F2.0F C2 /r ib V/V AVX Compare low double precision
floating-point value in xmm3/m64
and xmm2 using bits 4:0 of imm8
as comparison predicate

VCMPSD xmm1, xmm2,
xmm3/m64, imm8
74 Ref. # 319433-004

INSTRUCTION SET REFERENCE
A subsequent computational instruction that uses the mask result in the destination
operand as an input operand will not generate an exception, because a mask of all 0s
corresponds to a floating-point value of +0.0 and a mask of all 1s corresponds to a
QNaN.

Note that processors with “CPUID.1H:ECX.AVX =0” do not implement the “greater-
than”, “greater-than-or-equal”, “not-greater than”, and “not-greater-than-or-equal
relations” predicates. These comparisons can be made either by using the inverse
relationship (that is, use the “not-less-than-or-equal” to make a “greater-than”
comparison) or by using software emulation. When using software emulation, the
program must swap the operands (copying registers when necessary to protect the
data that will now be in the destination), and then perform the compare using a
different predicate. The predicate to be used for these emulations is listed in the first
8 rows of Table 3-7 (Intel 64 and IA-32 Architectures Software Developer’s Manual
Volume 2A) under the heading Emulation.

Compilers and assemblers may implement the following two-operand pseudo-ops in
addition to the three-operand CMPSD instruction, for processors with
“CPUID.1H:ECX.AVX =0”. See Table 5-14. Compiler should treat reserved Imm8
values as illegal syntax.
:

The greater-than relations that the processor does not implement require more than
one instruction to emulate in software and therefore should not be implemented as
pseudo-ops. (For these, the programmer should reverse the operands of the corre-
sponding less than relations and use move instructions to ensure that the mask is
moved to the correct destination register and that the source operand is left intact.)

Processors with “CPUID.1H:ECX.AVX =1” implement the full complement of 32 pred-
icates shown in Table 5-15, software emulation is no longer needed. Compilers and
assemblers may implement the following three-operand pseudo-ops in addition to
the four-operand VCMPSD instruction. See Table 5-15, where the notations of reg1
reg2, and reg3 represent either XMM registers or YMM registers. Compiler should
treat reserved Imm8 values as illegal syntax. Alternately, intrinsics can map the
pseudo-ops to pre-defined constants to support a simpler intrinsic interface.

Table 5-14. Pseudo-Op and CMPSD Implementation

Pseudo-Op CMPSD Implementation

CMPEQSD xmm1, xmm2 CMPSD xmm1, xmm2, 0

CMPLTSD xmm1, xmm2 CMPSD xmm1, xmm2, 1

CMPLESD xmm1, xmm2 CMPSD xmm1, xmm2, 2

CMPUNORDSD xmm1, xmm2 CMPSD xmm1, xmm2, 3

CMPNEQSD xmm1, xmm2 CMPSD xmm1, xmm2, 4

CMPNLTSD xmm1, xmm2 CMPSD xmm1, xmm2, 5

CMPNLESD xmm1, xmm2 CMPSD xmm1, xmm2, 6

CMPORDSD xmm1, xmm2 CMPSD xmm1, xmm2, 7
Ref. # 319433-004 75

INSTRUCTION SET REFERENCE
:

Table 5-15. Pseudo-Op and VCMPSD Implementation

Pseudo-Op CMPSD Implementation

VCMPEQSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 0

VCMPLTSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 1

VCMPLESD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 2

VCMPUNORDSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 3

VCMPNEQSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 4

VCMPNLTSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 5

VCMPNLESD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 6

VCMPORDSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 7

VCMPEQ_UQSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 8

VCMPNGESD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 9

VCMPNGTSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 0AH

VCMPFALSESD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 0BH

VCMPNEQ_OQSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 0CH

VCMPGESD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 0DH

VCMPGTSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 0EH

VCMPTRUESD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 0FH

VCMPEQ_OSSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 10H

VCMPLT_OQSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 11H

VCMPLE_OQSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 12H

VCMPUNORD_SSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 13H

VCMPNEQ_USSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 14H

VCMPNLT_UQSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 15H

VCMPNLE_UQSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 16H

VCMPORD_SSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 17H

VCMPEQ_USSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 18H

VCMPNGE_UQSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 19H

VCMPNGT_UQSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 1AH

VCMPFALSE_OSSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 1BH

VCMPNEQ_OSSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 1CH

VCMPGE_OQSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 1DH
76 Ref. # 319433-004

INSTRUCTION SET REFERENCE
Software should ensure VCMPSD is encoded with VEX.L=0. Encoding VCMPSD with
VEX.L=1 may encounter unpredictable behavior across different processor genera-
tions.

Operation
CASE (COMPARISON PREDICATE) OF

0: OP3 Å EQ_OQ; OP5 Å EQ_OQ;
1: OP3 Å LT_OS; OP5 Å LT_OS;
2: OP3 Å LE_OS; OP5 Å LE_OS;
3: OP3 Å UNORD_Q; OP5 Å UNORD_Q;
4: OP3 Å NEQ_UQ; OP5 Å NEQ_UQ;
5: OP3 Å NLT_US; OP5 Å NLT_US;
6: OP3 Å NLE_US; OP5 Å NLE_US;
7: OP3 Å ORD_Q; OP5 Å ORD_Q;
8: OP5 Å EQ_UQ;
9: OP5 Å NGE_US;
10: OP5 Å NGT_US;
11: OP5 Å FALSE_OQ;
12: OP5 Å NEQ_OQ;
13: OP5 Å GE_OS;
14: OP5 Å GT_OS;
15: OP5 Å TRUE_UQ;
16: OP5 Å EQ_OS;
17: OP5 Å LT_OQ;
18: OP5 Å LE_OQ;
19: OP5 Å UNORD_S;
20: OP5 Å NEQ_US;
21: OP5 Å NLT_UQ;
22: OP5 Å NLE_UQ;
23: OP5 Å ORD_S;
24: OP5 Å EQ_US;
25: OP5 Å NGE_UQ;
26: OP5 Å NGT_UQ;
27: OP5 Å FALSE_OS;
28: OP5 Å NEQ_OS;
29: OP5 Å GE_OQ;
30: OP5 Å GT_OQ;
31: OP5 Å TRUE_US;

VCMPGT_OQSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 1EH

VCMPTRUE_USSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 1FH

Table 5-15. Pseudo-Op and VCMPSD Implementation

Pseudo-Op CMPSD Implementation
Ref. # 319433-004 77

INSTRUCTION SET REFERENCE
DEFAULT: Reserved
ESAC;

CMPSD (128-bit Legacy SSE version)
CMP0 Å DEST[63:0] OP3 SRC[63:0];
IF CMP0 = TRUE
THEN DEST[63:0] Å FFFFFFFFFFFFFFFFH;
ELSE DEST[63:0] Å 0000000000000000H; FI;
DEST[255:64] (Unmodified)

VCMPSD (VEX.128 encoded version)
CMP0 Å SRC1[63:0] OP5 SRC2[63:0];
IF CMP0 = TRUE
THEN DEST[63:0] Å FFFFFFFFFFFFFFFFH;
ELSE DEST[63:0] Å 0000000000000000H; FI;
DEST[127:64] Å SRC1[127:64]
DEST[255:128] Å 0

Intel C/C++ Compiler Intrinsic Equivalent

VCMPSD __m128 _mm_cmp_sd(__m128 a, __m128 b, const int imm)

SIMD Floating-Point Exceptions
Invalid if SNaN operand, Invalid if QNaN and predicate as listed in Table 5-9
Denormal.

Other Exceptions
See Exceptions Type 3
78 Ref. # 319433-004

INSTRUCTION SET REFERENCE
CMPSS- Compare Scalar Single-Precision Floating-Point Values

Description
Compares the low single-precision floating-point values in the second source
operand and the first source operand and returns the results of the comparison to the
destination operand. The comparison predicate operand (immediate operand) speci-
fies the type of comparison performed. The comparison result is a doubleword mask
of all 1s (comparison true) or all 0s (comparison false).

128-bit Legacy SSE version: The first source and destination operand (first operand)
is an XMM register. The second source operand (second operand) can be an XMM
register or 32-bit memory location. Bits (255:32) of the corresponding YMM destina-
tion register remain unchanged.

VEX.128 encoded version: The first source operand (second operand) is an XMM
register. The second source operand (third operand) can be an XMM register or a 32-
bit memory location. The result is stored in the low 32 bits of the destination
operand; bits 128:32 of the destination operand are copied from the first source
operand. Bits (255:128) of the destination YMM register are zeroed.

The comparison predicate operand is an 8-bit immediate:

• For instructions encoded using the VEX prefix, bits 4:0 define the type of
comparison to be performed (see Table 5-9). Bits 5 through 7 of the immediate
are reserved.

• For instruction encodings that do not use VEX prefix, bits 2:0 define the type of
comparison to be made (see the first 8 rows of Table 5-9). Bits 3 through 7 of the
immediate are reserved.

The unordered relationship is true when at least one of the two source operands
being compared is a NaN; the ordered relationship is true when neither source
operand is a NaN.

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

F3 0F C2 /r ib V/V SSE Compare low single precision
floating-point value in xmm2/m32
and xmm1 using bits 2:0 of imm8
as comparison predicate.

CMPSS xmm1, xmm2/m32, imm8

VEX.NDS.128.F3.0F C2 /r ib V/V AVX Compare low single precision
floating-point value in xmm2/m32
and xmm1 using bits 4:0 of imm8
as comparison predicate.

VCMPSS xmm1, xmm2, xmm3/m32,
imm8
Ref. # 319433-004 79

INSTRUCTION SET REFERENCE
A subsequent computational instruction that uses the mask result in the destination
operand as an input operand will not generate an exception, because a mask of all 0s
corresponds to a floating-point value of +0.0 and a mask of all 1s corresponds to a
QNaN.

Note that processors with “CPUID.1H:ECX.AVX =0” do not implement the “greater-
than”, “greater-than-or-equal”, “not-greater than”, and “not-greater-than-or-equal
relations” predicates. These comparisons can be made either by using the inverse
relationship (that is, use the “not-less-than-or-equal” to make a “greater-than”
comparison) or by using software emulation. When using software emulation, the
program must swap the operands (copying registers when necessary to protect the
data that will now be in the destination), and then perform the compare using a
different predicate. The predicate to be used for these emulations is listed in the first
8 rows of Table 3-7 (Intel 64 and IA-32 Architectures Software Developer’s Manual
Volume 2A) under the heading Emulation.

Compilers and assemblers may implement the following two-operand pseudo-ops in
addition to the three-operand CMPSS instruction, for processors with
“CPUID.1H:ECX.AVX =0”. See Table 5-16. Compiler should treat reserved Imm8
values as illegal syntax.
:

The greater-than relations that the processor does not implement require more than
one instruction to emulate in software and therefore should not be implemented as
pseudo-ops. (For these, the programmer should reverse the operands of the corre-
sponding less than relations and use move instructions to ensure that the mask is
moved to the correct destination register and that the source operand is left intact.)

Processors with “CPUID.1H:ECX.AVX =1” implement the full complement of 32 pred-
icates shown in Table 5-15, software emulation is no longer needed. Compilers and
assemblers may implement the following three-operand pseudo-ops in addition to
the four-operand VCMPSS instruction. See Table 5-17, where the notations of reg1
reg2, and reg3 represent either XMM registers or YMM registers. Compiler should
treat reserved Imm8 values as illegal syntax. Alternately, intrinsics can map the
pseudo-ops to pre-defined constants to support a simpler intrinsic interface.

Table 5-16. Pseudo-Op and CMPSS Implementation

Pseudo-Op CMPSS Implementation

CMPEQSS xmm1, xmm2 CMPSS xmm1, xmm2, 0

CMPLTSS xmm1, xmm2 CMPSS xmm1, xmm2, 1

CMPLESS xmm1, xmm2 CMPSS xmm1, xmm2, 2

CMPUNORDSS xmm1, xmm2 CMPSS xmm1, xmm2, 3

CMPNEQSS xmm1, xmm2 CMPSS xmm1, xmm2, 4

CMPNLTSS xmm1, xmm2 CMPSS xmm1, xmm2, 5

CMPNLESS xmm1, xmm2 CMPSS xmm1, xmm2, 6

CMPORDSS xmm1, xmm2 CMPSS xmm1, xmm2, 7
80 Ref. # 319433-004

INSTRUCTION SET REFERENCE
:

Table 5-17. Pseudo-Op and VCMPSS Implementation

Pseudo-Op CMPSS Implementation

VCMPEQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 0

VCMPLTSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 1

VCMPLESS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 2

VCMPUNORDSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 3

VCMPNEQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 4

VCMPNLTSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 5

VCMPNLESS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 6

VCMPORDSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 7

VCMPEQ_UQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 8

VCMPNGESS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 9

VCMPNGTSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 0AH

VCMPFALSESS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 0BH

VCMPNEQ_OQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 0CH

VCMPGESS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 0DH

VCMPGTSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 0EH

VCMPTRUESS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 0FH

VCMPEQ_OSSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 10H

VCMPLT_OQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 11H

VCMPLE_OQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 12H

VCMPUNORD_SSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 13H

VCMPNEQ_USSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 14H

VCMPNLT_UQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 15H

VCMPNLE_UQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 16H

VCMPORD_SSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 17H

VCMPEQ_USSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 18H

VCMPNGE_UQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 19H

VCMPNGT_UQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 1AH

VCMPFALSE_OSSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 1BH

VCMPNEQ_OSSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 1CH

VCMPGE_OQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 1DH
Ref. # 319433-004 81

INSTRUCTION SET REFERENCE
Software should ensure VCMPSS is encoded with VEX.L=0. Encoding VCMPSS with
VEX.L=1 may encounter unpredictable behavior across different processor genera-
tions.

Operation
CASE (COMPARISON PREDICATE) OF

0: OP3 Å EQ_OQ; OP5 Å EQ_OQ;
1: OP3 Å LT_OS; OP5 Å LT_OS;
2: OP3 Å LE_OS; OP5 Å LE_OS;
3: OP3 Å UNORD_Q; OP5 Å UNORD_Q;
4: OP3 Å NEQ_UQ; OP5 Å NEQ_UQ;
5: OP3 Å NLT_US; OP5 Å NLT_US;
6: OP3 Å NLE_US; OP5 Å NLE_US;
7: OP3 Å ORD_Q; OP5 Å ORD_Q;
8: OP5 Å EQ_UQ;
9: OP5 Å NGE_US;
10: OP5 Å NGT_US;
11: OP5 Å FALSE_OQ;
12: OP5 Å NEQ_OQ;
13: OP5 Å GE_OS;
14: OP5 Å GT_OS;
15: OP5 Å TRUE_UQ;
16: OP5 Å EQ_OS;
17: OP5 Å LT_OQ;
18: OP5 Å LE_OQ;
19: OP5 Å UNORD_S;
20: OP5 Å NEQ_US;
21: OP5 Å NLT_UQ;
22: OP5 Å NLE_UQ;
23: OP5 Å ORD_S;
24: OP5 Å EQ_US;
25: OP5 Å NGE_UQ;
26: OP5 Å NGT_UQ;
27: OP5 Å FALSE_OS;
28: OP5 Å NEQ_OS;
29: OP5 Å GE_OQ;
30: OP5 Å GT_OQ;
31: OP5 Å TRUE_US;

VCMPGT_OQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 1EH

VCMPTRUE_USSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 1FH

Table 5-17. Pseudo-Op and VCMPSS Implementation

Pseudo-Op CMPSS Implementation
82 Ref. # 319433-004

INSTRUCTION SET REFERENCE
DEFAULT: Reserved
ESAC;

CMPSS (128-bit Legacy SSE version)
CMP0 Å DEST[31:0] OP3 SRC[31:0];
IF CMP0 = TRUE
THEN DEST[31:0] Å FFFFFFFFH;
ELSE DEST[31:0] Å 00000000H; FI;
DEST[255:32] (Unmodified)

VCMPSS (VEX.128 encoded version)
CMP0 Å SRC1[31:0] OP5 SRC2[31:0];
IF CMP0 = TRUE
THEN DEST[31:0] Å FFFFFFFFH;
ELSE DEST[31:0] Å 00000000H; FI;
DEST[127:32] Å SRC1[127:32]
DEST[255:128] Å 0

Intel C/C++ Compiler Intrinsic Equivalent

VCMPSS __m128 _mm_cmp_ss(__m128 a, __m128 b, const int imm)

SIMD Floating-Point Exceptions
Invalid if SNaN operand, Invalid if QNaN and predicate as listed in Table 5-9,
Denormal.

Other Exceptions
See Exceptions Type 3
Ref. # 319433-004 83

INSTRUCTION SET REFERENCE
COMISD- Compare Scalar Ordered Double-Precision Floating-Point Values
and Set EFLAGS

Description
Compares the double-precision floating-point values in the low quadwords of
operand 1 (first operand) and operand 2 (second operand), and sets the ZF, PF, and
CF flags in the EFLAGS register according to the result (unordered, greater than, less
than, or equal). The OF, SF and AF flags in the EFLAGS register are set to 0. The unor-
dered result is returned if either source operand is a NaN (QNaN or SNaN).

Operand 1 is an XMM register; operand 2 can be an XMM register or a 64 bit memory

location. The COMISD instruction differs from the UCOMISD instruction in that it
signals a SIMD floating-point invalid operation exception (#I) when a source operand
is either a QNaN or SNaN. The UCOMISD instruction signals an invalid numeric
exception only if a source operand is an SNaN.

The EFLAGS register is not updated if an unmasked SIMD floating-point exception is
generated.

Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise
instructions will #UD.

Software should ensure VCOMISD is encoded with VEX.L=0. Encoding VCOMISD with
VEX.L=1 may encounter unpredictable behavior across different processor genera-
tions.

Operation
COMISD (all versions)

RESULT Å OrderedCompare(DEST[63:0] <> SRC[63:0]) {

(* Set EFLAGS *) CASE (RESULT) OF

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 2F /r V/V SSE2 Compare low double precision
floating-point values in xmm1 and
xmm2/mem64 and set the
EFLAGS flags accordingly.

COMISD xmm1, xmm2/m64

VEX.128.66.0F 2F /r V/V AVX Compare low double precision
floating-point values in xmm1 and
xmm2/mem64 and set the
EFLAGS flags accordingly.

VCOMISD xmm1, xmm2/m64
84 Ref. # 319433-004

INSTRUCTION SET REFERENCE
UNORDERED: ZF,PF,CF Å 111;

GREATER_THAN: ZF,PF,CF Å 000;

LESS_THAN: ZF,PF,CF Å 001;

EQUAL: ZF,PF,CF Å 100;

ESAC;

OF, AF, SF Å 0; }

Intel C/C++ Compiler Intrinsic Equivalent

int _mm_comieq_sd (__m128d a, __m128d b)

int _mm_comilt_sd (__m128d a, __m128d b)

int _mm_comile_sd (__m128d a, __m128d b)

int _mm_comigt_sd (__m128d a, __m128d b)

int _mm_comige_sd (__m128d a, __m128d b)

int _mm_comineq_sd (__m128d a, __m128d b)

SIMD Floating-Point Exceptions
Invalid (if SNaN or QNaN operands), Denormal.

Other Exceptions
See Exceptions Type 3; additionally

#UD If VEX.vvvv != 1111B.
Ref. # 319433-004 85

INSTRUCTION SET REFERENCE
COMISS- Compare Scalar Ordered Single-Precision Floating-Point Values and
Set EFLAGS

Description
Compares the single-precision floating-point values in the low quadwords of operand
1 (first operand) and operand 2 (second operand), and sets the ZF, PF, and CF flags
in the EFLAGS register according to the result (unordered, greater than, less than, or
equal). The OF, SF and AF flags in the EFLAGS register are set to 0. The unordered
result is returned if either source operand is a NaN (QNaN or SNaN).

Operand 1 is an XMM register; operand 2 can be an XMM register or a 32 bit memory
location.

The COMISS instruction differs from the UCOMISS instruction in that it signals a
SIMD floating-point invalid operation exception (#I) when a source operand is either
a QNaN or SNaN. The UCOMISS instruction signals an invalid numeric exception only
if a source operand is an SNaN.

The EFLAGS register is not updated if an unmasked SIMD floating-point exception is
generated.

Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise
instructions will #UD.

Software should ensure VCOMISS is encoded with VEX.L=0. Encoding VCOMISS with
VEX.L=1 may encounter unpredictable behavior across different processor genera-
tions.

Operation
COMISS (all versions)

RESULT Å OrderedCompare(DEST[31:0] <> SRC[31:0]) {

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 2F /r V/V SSE Compare low single precision
floating-point values in xmm1 and
xmm2/mem32 and set the
EFLAGS flags accordingly.

COMISS xmm1, xmm2/m32

VEX.128.0F 2F /r V/V AVX Compare low single precision
floating-point values in xmm1 and
xmm2/mem32 and set the
EFLAGS flags accordingly.

VCOMISS xmm1, xmm2/m32
86 Ref. # 319433-004

INSTRUCTION SET REFERENCE
(* Set EFLAGS *) CASE (RESULT) OF

UNORDERED: ZF,PF,CF Å 111;

GREATER_THAN: ZF,PF,CF Å 000;

LESS_THAN: ZF,PF,CF Å 001;

EQUAL: ZF,PF,CF Å 100;

ESAC;

OF, AF, SF Å 0; }

Intel C/C++ Compiler Intrinsic Equivalent

int _mm_comieq_ss (__m128 a, __m128 b)

int _mm_comilt_ss (__m128 a, __m128 b)

int _mm_comile_ss (__m128 a, __m128 b)

int _mm_comigt_ss (__m128 a, __m128 b)

int _mm_comige_ss (__m128 a, __m128 b)

int _mm_comineq_ss (__m128 a, __m128 b)

SIMD Floating-Point Exceptions
Invalid (if SNaN or QNaN operands), Denormal.

Other Exceptions
See Exceptions Type 3; additionally

#UD If VEX.vvvv != 1111B.
Ref. # 319433-004 87

INSTRUCTION SET REFERENCE
CVTDQ2PD- Convert Packed Doubleword Integers to Packed Double-
Precision Floating-Point Values

Description
Converts two or four packed signed doubleword integers in the source operand
(second operand) to two or four packed double-precision floating-point values in the
destination operand (first operand).

VEX.256 encoded version: The source operand is an XMM register or 128- bit
memory location. The destination operation is a YMM register.

VEX.128 encoded version: The source operand is an XMM register or 64- bit memory
location. The destination operation is a YMM register. The upper bits (255:128) of the
corresponding YMM register destination are zeroed.

128-bit Legacy SSE version: The source operand is an XMM register or 64- bit
memory location. The destination operation is an XMM register. The upper bits
(255:128) of the corresponding YMM register destination are unmodified.

Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise
instructions will #UD.

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

F3 0F E6 /r V/V SSE2 Convert two packed signed dou-
bleword integers from xmm2/mem
to two packed double-precision
floating-point values in xmm1

CVTDQ2PD xmm1, xmm2/m64

VEX.128.F3.0F E6 /r V/V AVX Convert two packed signed dou-
bleword integers from xmm2/mem
to two packed double-precision
floating-point values in xmm1

VCVTDQ2PD xmm1, xmm2/m64

VEX.256.F3.0F E6 /r V/V AVX Convert four packed signed dou-
bleword integers from xmm2/mem
to four packed double-precision
floating-point values in ymm1

VCVTDQ2PD ymm1, xmm2/m128
88 Ref. # 319433-004

INSTRUCTION SET REFERENCE
Figure 5-5. CVTDQ2PD (VEX.256 encoded version)

Operation
VCVTDQ2PD (VEX.256 encoded version)
DEST[63:0] Å Convert_Integer_To_Double_Precision_Floating_Point(SRC[31:0])
DEST[127:64] Å Convert_Integer_To_Double_Precision_Floating_Point(SRC[63:32])
DEST[191:128] Å Convert_Integer_To_Double_Precision_Floating_Point(SRC[95:64])
DEST[255:192] Å Convert_Integer_To_Double_Precision_Floating_Point(SRC[127:96)

VCVTDQ2PD (VEX.128 encoded version)
DEST[63:0] Å Convert_Integer_To_Double_Precision_Floating_Point(SRC[31:0])
DEST[127:64] Å Convert_Integer_To_Double_Precision_Floating_Point(SRC[63:32])
DEST[255:128] Å 0

CVTDQ2PD (128-bit Legacy SSE version)
DEST[63:0] Å Convert_Integer_To_Double_Precision_Floating_Point(SRC[31:0])
DEST[127:64] Å Convert_Integer_To_Double_Precision_Floating_Point(SRC[63:32])
DEST[255:128] (unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VCVTDQ2PD __m256d _mm256_cvtepi32_pd (__m128i src)

CVTDQ2PD __m128d _mm_cvtepi32_pd (__m128i src)

Other Exceptions
See Exceptions Type 5; additionally

#UD If VEX.vvvv != 1111B.

DEST

SRC X0X1X2X3

X3 X2 X1 X0
Ref. # 319433-004 89

INSTRUCTION SET REFERENCE
CVTDQ2PS- Convert Packed Doubleword Integers to Packed Single-
Precision Floating-Point Values

Description
Converts four or eight packed signed doubleword integers in the source operand to
four or eight packed single-precision floating-point values in the destination operand.

VEX.256 encoded version: The source operand is a YMM register or 256- bit memory
location. The destination operation is a YMM register.

VEX.128 encoded version: The source operand is an XMM register or 128- bit
memory location. The destination operation is a YMM register. The upper bits
(255:128) of the corresponding YMM register destination are zeroed.

128-bit Legacy SSE version: The source operand is an XMM register or 128- bit
memory location. The destination operation is an XMM register. The upper bits
(255:128) of the corresponding YMM register destination are unmodified.

Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise
instructions will #UD.

Operation
VCVTDQ2PS (VEX.256 encoded version)
DEST[31:0] Å Convert_Integer_To_Single_Precision_Floating_Point(SRC[31:0])
DEST[63:32] Å Convert_Integer_To_Single_Precision_Floating_Point(SRC[63:32])

Opcode
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 5B /r V/V SSE2 Convert four packed signed dou-
bleword integers from xmm2/mem
to four packed single-precision
floating-point values in xmm1

CVTDQ2PS xmm1, xmm2/m128

VEX.128.0F 5B /r V/V AVX Convert four packed signed dou-
bleword integers from xmm2/mem
to four packed single-precision
floating-point values in xmm1

VCVTDQ2PS xmm1, xmm2/m128

VEX.256.0F 5B /r V/V AVX Convert eight packed signed dou-
bleword integers from ymm2/mem
to eight packed single-precision
floating-point values in ymm1

VCVTDQ2PS ymm1, ymm2/m256
90 Ref. # 319433-004

INSTRUCTION SET REFERENCE
DEST[95:64] Å Convert_Integer_To_Single_Precision_Floating_Point(SRC[95:64])
DEST[127:96] Å Convert_Integer_To_Single_Precision_Floating_Point(SRC[127z:96)
DEST[159:128] Å Convert_Integer_To_Single_Precision_Floating_Point(SRC[159:128])
DEST[191:160] Å Convert_Integer_To_Single_Precision_Floating_Point(SRC[191:160])
DEST[223:192] Å Convert_Integer_To_Single_Precision_Floating_Point(SRC[223:192])
DEST[255:224] Å Convert_Integer_To_Single_Precision_Floating_Point(SRC[255:224)

VCVTDQ2PS (VEX.128 encoded version)
DEST[31:0] Å Convert_Integer_To_Single_Precision_Floating_Point(SRC[31:0])
DEST[63:32] Å Convert_Integer_To_Single_Precision_Floating_Point(SRC[63:32])
DEST[95:64] Å Convert_Integer_To_Single_Precision_Floating_Point(SRC[95:64])
DEST[127:96] Å Convert_Integer_To_Single_Precision_Floating_Point(SRC[127z:96)
DEST[255:128] Å 0

CVTDQ2PS (128-bit Legacy SSE version)
DEST[31:0] Å Convert_Integer_To_Single_Precision_Floating_Point(SRC[31:0])
DEST[63:32] Å Convert_Integer_To_Single_Precision_Floating_Point(SRC[63:32])
DEST[95:64] Å Convert_Integer_To_Single_Precision_Floating_Point(SRC[95:64])
DEST[127:96] Å Convert_Integer_To_Single_Precision_Floating_Point(SRC[127z:96)
DEST[255:128] (unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VCVTDQ2PS __m256 _mm256_cvtepi32_ps (__m256i src)

CVTDQ2PS __m128 _mm_cvtepi32_ps (__m128i src)

SIMD Floating-Point Exceptions
Precision

Other Exceptions
See Exceptions Type 2; additionally

#UD If VEX.vvvv != 1111B.
Ref. # 319433-004 91

INSTRUCTION SET REFERENCE
CVTPD2DQ- Convert Packed Double-Precision Floating-point values to
Packed Doubleword Integers

Description
Converts two or four packed double-precision floating-point values in the source
operand (second operand) to two or four packed signed doubleword integers in the
destination operand (first operand).

When a conversion is inexact, the value returned is rounded according to the
rounding control bits in the MXCSR register. If a converted result is larger than the
maximum signed doubleword integer, the floating-point invalid exception is raised,
and if this exception is masked, the indefinite integer value (80000000H) is returned

VEX.256 encoded version: The source operand is a YMM register or 256- bit memory
location. The destination operation is an XMM register. The upper bits (255:128) of
the corresponding YMM register destination are zeroed.

VEX.128 encoded version: The source operand is an XMM register or 128- bit
memory location. The destination operation is a YMM register. The upper bits
(255:64) of the corresponding YMM register destination are zeroed.

128-bit Legacy SSE version: The source operand is an XMM register or 128- bit
memory location. The destination operation is an XMM register. Bits[127:64] of the
destination XMM register are zeroed. However, the upper bits (255:128) of the corre-
sponding YMM register destination are unmodified.

Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise
instructions will #UD.

Opcode
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

F2 0F E6 /r V/V SSE2 Convert two packed double-preci-
sion floating-point values in
xmm2/mem to two signed double-
word integers in xmm1

CVTPD2DQ xmm1, xmm2/m128

VEX.128.F2.0F E6 /r V/V AVX Convert two packed double-preci-
sion floating-point values in
xmm2/mem to two signed double-
word integers in xmm1

VCVTPD2DQ xmm1, xmm2/m128

VEX.256.F2.0F E6 /r V/V AVX Convert four packed double-preci-
sion floating-point values in
ymm2/mem to four signed double-
word integers in xmm1

VCVTPD2DQ xmm1, ymm2/m256
92 Ref. # 319433-004

INSTRUCTION SET REFERENCE
Figure 5-6. VCVTPD2DQ (VEX.256 encoded version)

Operation
VCVTPD2DQ (VEX.256 encoded version)
DEST[31:0] Å Convert_Double_Precision_Floating_Point_To_Integer(SRC[63:0])
DEST[63:32] Å Convert_Double_Precision_Floating_Point_To_Integer(SRC[127:64])
DEST[95:64] Å Convert_Double_Precision_Floating_Point_To_Integer(SRC[191:128])
DEST[127:96] Å Convert_Double_Precision_Floating_Point_To_Integer(SRC[255:192)
DEST[255:128]Å 0

VCVTPD2DQ (VEX.128 encoded version)
DEST[31:0] Å Convert_Double_Precision_Floating_Point_To_Integer(SRC[63:0])
DEST[63:32] Å Convert_Double_Precision_Floating_Point_To_Integer(SRC[127:64])
DEST[255:64]Å 0

CVTPD2DQ (128-bit Legacy SSE version)
DEST[31:0] Å Convert_Double_Precision_Floating_Point_To_Integer(SRC[63:0])
DEST[63:32] Å Convert_Double_Precision_Floating_Point_To_Integer(SRC[127:64])
DEST[127:64] Å 0
DEST[255:128] (unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

CVTPD2DQ __m128i _mm256_cvtpd_epi32 (__m256d src)

CVTPD2DQ __m128i _mm_cvtpd_epi32 (__m128d src)

DEST

SRC

X0X1X2X3

X3 X2 X1 X0

0

Ref. # 319433-004 93

INSTRUCTION SET REFERENCE
SIMD Floating-Point Exceptions
Invalid, Precision

Other Exceptions
See Exceptions Type 2; additionally

#UD If VEX.vvvv != 1111B.
94 Ref. # 319433-004

INSTRUCTION SET REFERENCE
CVTPD2PS- Convert Packed Double-Precision Floating-point values to
Packed Single-Precision Floating-Point Values

Description
Converts two or four packed double-precision floating-point values in the source
operand (second operand) to two or four packed single-precision floating-point
values in the destination operand (first operand).

When a conversion is inexact, the value returned is rounded according to the
rounding control bits in the MXCSR register.

VEX.256 encoded version: The source operand is a YMM register or 256- bit memory
location. The destination operation is an XMM register. The upper bits (255:128) of
the corresponding YMM register destination are zeroed.

VEX.128 encoded version: The source operand is an XMM register or 128- bit
memory location. The destination operation is a YMM register. The upper bits
(255:64) of the corresponding YMM register destination are zeroed.

128-bit Legacy SSE version: The source operand is an XMM register or 128- bit
memory location. The destination operation is an XMM register. Bits[127:64] of the
destination XMM register are zeroed. However, the upper bits (255:128) of the corre-
sponding YMM register destination are unmodified.

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 5A /r V/V SSE2 Convert two packed double-preci-
sion floating-point values in
xmm2/mem to two single-preci-
sion floating-point values in
xmm1

CVTPD2PS xmm1, xmm2/m128

VEX.128.66.0F 5A /r V/V AVX Convert two packed double-preci-
sion floating-point values in
xmm2/mem to two single-preci-
sion floating-point values in
xmm1

VCVTPD2PS xmm1, xmm2/m128

 VEX.256.66.0F 5A /r V/V AVX Convert four packed double-preci-
sion floating-point values in
ymm2/mem to four single-preci-
sion floating-point values in
xmm1

VCVTPD2PS xmm1, ymm2/m256
Ref. # 319433-004 95

INSTRUCTION SET REFERENCE
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise
instructions will #UD.

Figure 5-7. VCVTPD2PS (VEX.256 encoded version)

Operation
VCVTPD2PS (VEX.256 encoded version)
DEST[31:0] Å Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC[63:0])
DEST[63:32] Å Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC[127:64])
DEST[95:64] Å Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC[191:128])
DEST[127:96] Å Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC[255:192)
DEST[255:128]Å 0

VCVTPD2PS (VEX.128 encoded version)
DEST[31:0] Å Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC[63:0])
DEST[63:32] Å Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC[127:64])
DEST[255:64] Å 0

CVTPD2PS (128-bit Legacy SSE version)
DEST[31:0] Å Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC[63:0])
DEST[63:32] Å Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC[127:64])
DEST[127:64] Å 0
DEST[255:128] (unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

CVTPD2PS __m256 _mm256_cvtpd_ps (__m256d a)

CVTPD2PS __m128 _mm_cvtpd_ps (__m128d a)

DEST

SRC

X0X1X2X3

X3 X2 X1 X0

0

96 Ref. # 319433-004

INSTRUCTION SET REFERENCE
SIMD Floating-Point Exceptions
Invalid, Precision, Underflow, Overflow, Denormal

Other Exceptions
See Exceptions Type 2; additionally

#UD If VEX.vvvv != 1111B.
Ref. # 319433-004 97

INSTRUCTION SET REFERENCE
CVTPS2DQ- Convert Packed Single Precision Floating-Point Values to
Packed Singed Doubleword Integer Values

Description
Converts four or eight packed single-precision floating-point values in the source
operand to four or eight signed doubleword integers in the destination operand.

When a conversion is inexact, the value returned is rounded according to the
rounding control bits in the MXCSR register. If a converted result is larger than the
maximum signed doubleword integer, the floating-point invalid exception is raised,
and if this exception is masked, the indefinite integer value (80000000H) is returned.

VEX.256 encoded version: The source operand is a YMM register or 256- bit memory
location. The destination operation is a YMM register.

VEX.128 encoded version: The source operand is an XMM register or 128- bit
memory location. The destination operation is a YMM register. The upper bits
(255:128) of the corresponding YMM register destination are zeroed.

128-bit Legacy SSE version: The source operand is an XMM register or 128- bit
memory location. The destination operation is an XMM register. The upper bits
(255:128) of the corresponding YMM register destination are unmodified.

Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise
instructions will #UD.

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 5B /r V/V SSE2 Convert four packed single preci-
sion floating-point values from
xmm2/mem to four packed signed
doubleword values in xmm1

CVTPS2DQ xmm1, xmm2/m128

VEX.128.66.0F 5B /r V/V AVX Convert four packed single preci-
sion floating-point values from
xmm2/mem to four packed signed
doubleword values in xmm1

VCVTPS2DQ xmm1, xmm2/m128

VEX.256.66.0F 5B /r V/V AVX Convert eight packed single preci-
sion floating-point values from
ymm2/mem to eight packed
signed doubleword values in
ymm1

VCVTPS2DQ ymm1, ymm2/m256
98 Ref. # 319433-004

INSTRUCTION SET REFERENCE
Operation
VCVTPS2DQ (VEX.256 encoded version)
DEST[31:0] Å Convert_Single_Precision_Floating_Point_To_Integer(SRC[31:0])
DEST[63:32] Å Convert_Single_Precision_Floating_Point_To_Integer(SRC[63:32])
DEST[95:64] Å Convert_Single_Precision_Floating_Point_To_Integer(SRC[95:64])
DEST[127:96] Å Convert_Single_Precision_Floating_Point_To_Integer(SRC[127:96)
DEST[159:128] Å Convert_Single_Precision_Floating_Point_To_Integer(SRC[159:128])
DEST[191:160] Å Convert_Single_Precision_Floating_Point_To_Integer(SRC[191:160])
DEST[223:192] Å Convert_Single_Precision_Floating_Point_To_Integer(SRC[223:192])
DEST[255:224] Å Convert_Single_Precision_Floating_Point_To_Integer(SRC[255:224])

VCVTPS2DQ (VEX.128 encoded version)
DEST[31:0] Å Convert_Single_Precision_Floating_Point_To_Integer(SRC[31:0])
DEST[63:32] Å Convert_Single_Precision_Floating_Point_To_Integer(SRC[63:32])
DEST[95:64] Å Convert_Single_Precision_Floating_Point_To_Integer(SRC[95:64])
DEST[127:96] Å Convert_Single_Precision_Floating_Point_To_Integer(SRC[127:96])
DEST[255:128] Å 0

CVTPS2DQ (128-bit Legacy SSE version)
DEST[31:0] Å Convert_Single_Precision_Floating_Point_To_Integer(SRC[31:0])
DEST[63:32] Å Convert_Single_Precision_Floating_Point_To_Integer(SRC[63:32])
DEST[95:64] Å Convert_Single_Precision_Floating_Point_To_Integer(SRC[95:64])
DEST[127:96] Å Convert_Single_Precision_Floating_Point_To_Integer(SRC[127:96])
DEST[255:128] (unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VCVTPS2DQ __ m256i _mm256_cvtps_epi32 (__m256 a)

CVTPS2DQ __m128i _mm_cvtps_epi32 (__m128 a)

SIMD Floating-Point Exceptions
Invalid, Precision

Other Exceptions
See Exceptions Type 2; additionally

#UD If VEX.vvvv != 1111B.
Ref. # 319433-004 99

INSTRUCTION SET REFERENCE
CVTPS2PD- Convert Packed Single Precision Floating-point values to
Packed Double Precision Floating-Point Values

Description
Converts two or four packed single-precision floating-point values in the source
operand (second operand) to two or four packed double-precision floating-point
values in the destination operand (first operand).

VEX.256 encoded version: The source operand is an XMM register or 128- bit
memory location. The destination operation is a YMM register.

VEX.128 encoded version: The source operand is an XMM register or 64- bit memory
location. The destination operation is a YMM register. The upper bits (255:128) of the
corresponding YMM register destination are zeroed.

128-bit Legacy SSE version: The source operand is an XMM register or 64- bit
memory location. The destination operation is an XMM register. The upper bits
(255:128) of the corresponding YMM register destination are unmodified.

Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise
instructions will #UD.

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 5A /r V/V SSE2 Convert two packed single-preci-
sion floating-point values in
xmm2/mem to two packed double-
precision floating-point values in
xmm1

CVTPS2PD xmm1, xmm2/m64

VEX.128.0F 5A /r V/V AVX Convert two packed single-preci-
sion floating-point values in
xmm2/mem to two packed double-
precision floating-point values in
xmm1

VCVTPS2PD xmm1, xmm2/m64

VEX.256.0F 5A /r V/V AVX Convert four packed single-preci-
sion floating-point values in
xmm2/mem to four packed dou-
ble-precision floating-point val-
ues in ymm1

VCVTPS2PD ymm1, xmm2/m128
100 Ref. # 319433-004

INSTRUCTION SET REFERENCE
Figure 5-8. CVTPS2PD (VEX.256 encoded version)

Operation
VCVTPS2PD (VEX.256 encoded version)
DEST[63:0] Å Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[31:0])
DEST[127:64] Å Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[63:32])
DEST[191:128] Å Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[95:64])
DEST[255:192] Å Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[127:96)

VCVTPS2PD (VEX.128 encoded version)
DEST[63:0] Å Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[31:0])
DEST[127:64] Å Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[63:32])
DEST[255:128] Å 0

CVTPS2PD (128-bit Legacy SSE version)
DEST[63:0] Å Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[31:0])
DEST[127:64] Å Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[63:32])
DEST[255:128] (unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VCVTPS2PD __m256d _mm256_cvtps_pd (__m128 a)

CVTPS2PD __m128d _mm_cvtps_pd (__m128 a)

DEST

SRC X0X1X2X3

X3 X2 X1 X0
Ref. # 319433-004 101

INSTRUCTION SET REFERENCE
SIMD Floating-Point Exceptions
Invalid, Denormal

Other Exceptions
See Exceptions Type 3; additionally

#UD If VEX.vvvv != 1111B.
102 Ref. # 319433-004

INSTRUCTION SET REFERENCE
CVTSD2SI- Convert Scalar Double-Precision Floating-Point Value to
Doubleword Integer

Description
Converts a double-precision floating-point value in the source operand (second
operand) to a signed doubleword integer in the destination operand (first operand).
The source operand can be an XMM register or a 64-bit memory location. The desti-
nation operand is a general-purpose register. When the source operand is an XMM
register, the double-precision floating-point value is contained in the low quadword of
the register.

When a conversion is inexact, the value returned is rounded according to the
rounding control bits in the MXCSR register. If a converted result is larger than the
maximum signed doubleword integer, the floating-point invalid exception is raised,
and if this exception is masked, the indefinite integer value (80000000H) is returned.

Legacy SSE instructions: Use of the REX.W prefix promotes the instruction to 64-bit
operation. See the summary chart at the beginning of this section for encoding data
and limits.

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

F2 0F 2D /r V/V SSE2 Convert one double precision
floating-point value from
xmm1/m64 to one signed
doubleword integer r32.

CVTSD2SI r32, xmm1/m64

F2 REX.W 0F 2D /r V/N.E. SSE2 Convert one double precision
floating-point value from
xmm/m64 to one signed quadword
integer sign-extended into r64.

CVTSD2SI r64, xmm1/m64

VEX.128.F2.0F.W0 2D /r V/V AVX Convert one double precision
floating-point value from
xmm1/m64 to one signed
doubleword integer r32.

VCVTSD2SI r32, xmm1/m64

VEX.128.F2.0F.W1 2D /r V/N.E. AVX Convert one double precision
floating-point value from
xmm1/m64 to one signed
quadword integer sign-extended
into r64.

VCVTSD2SI r64, xmm1/m64
Ref. # 319433-004 103

INSTRUCTION SET REFERENCE
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise
instructions will #UD.

Software should ensure VCVTSD2SI is encoded with VEX.L=0. Encoding VCVTSD2SI
with VEX.L=1 may encounter unpredictable behavior across different processor
generations.

Operation
(V)CVTSD2SI
IF 64-Bit Mode and OperandSize = 64
THEN

DEST[63:0] Å Convert_Double_Precision_Floating_Point_To_Integer(SRC[63:0]);
ELSE

DEST[31:0] Å Convert_Double_Precision_Floating_Point_To_Integer(SRC[63:0]);
FI;

Intel C/C++ Compiler Intrinsic Equivalent

int _mm_cvtsd_si32(__m128d a)

SIMD Floating-Point Exceptions
Invalid, Precision

Other Exceptions
See Exceptions Type 3; additionally

#UD If VEX.vvvv != 1111B.
104 Ref. # 319433-004

INSTRUCTION SET REFERENCE
CVTSD2SS- Convert Scalar Double-Precision Floating-Point Value to Scalar
Single-Precision Floating-Point Value

Description
Converts a double-precision floating-point value in the second source operand to a
single-precision floating-point value in the destination operand.

When the second source operand is an XMM register, the double-precision floating-
point value is contained in the low quadword of the register. The result is stored in the
low doubleword of the destination operand, and the upper 3 doublewords are copied
from the upper 3 doublewords of the first source operand. When the conversion is
inexact, the value returned is rounded according to the rounding control bits in the
MXCSR register.

The second source operand can be an XMM register or a 64-bit memory location. The
first source and destination operands are XMM registers.

128-bit Legacy SSE version: The destination and first source operand are the same.
Bits (255:64) of the corresponding YMM destination register remain unchanged.

VEX.128 encoded version: Bits (127:64) of the XMM register destination are copied
from corresponding bits in the first source operand. Bits (255:128) of the destination
YMM register are zeroed.

Software should ensure VCVTSD2SS is encoded with VEX.L=0. Encoding VCVTSD2SS
with VEX.L=1 may encounter unpredictable behavior across different processor
generations.

Operation
VCVTSD2SS (VEX.128 encoded version)
DEST[31:0] Å Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC2[63:0]);
DEST[127:32] Å SRC1[127:32]

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

F2 0F 5A /r V/V SSE2 Convert one double-precision
floating-point value in xmm2/m64
to one single-precision floating-
point value in xmm1.

CVTSD2SS xmm1, xmm2/m64

VEX.NDS.128.F2.0F 5A /r V/V AVX Convert one double-precision
floating-point value in xmm3/m64
to one single-precision floating-
point value and merge with high
bits in xmm2.

VCVTSD2SS xmm1,xmm2,
xmm3/m64
Ref. # 319433-004 105

INSTRUCTION SET REFERENCE
DEST[255:128] Å 0

CVTSD2SS (128-bit Legacy SSE version)
DEST[31:0] Å Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC[63:0]);
(* DEST[255:32] Unmodified *)

Intel C/C++ Compiler Intrinsic Equivalent

CVTSD2SS __m128_mm_cvtsd_ss(__m128 a, __m128d b)

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions
See Exceptions Type 3
106 Ref. # 319433-004

INSTRUCTION SET REFERENCE
CVTSI2SD- Convert Doubleword Integer to Scalar Double-Precision
Floating-Point Value

Description
Converts a signed doubleword integer (or signed quadword integer if operand size is
64 bits) in the second source operand to a double-precision floating-point value in
the destination operand. The result is stored in the low quadword of the destination
operand, and the high quadword left unchanged. When conversion is inexact, the
value returned is rounded according to the rounding control bits in the MXCSR
register.

Legacy SSE instructions: Use of the REX.W prefix promotes the instruction to 64-bit
operands. See the summary chart at the beginning of this section for encoding data
and limits.

The second source operand can be a general-purpose register or a 32/64-bit memory
location. The first source and destination operands are XMM registers.

128-bit Legacy SSE version: The destination and first source operand are the same.
Bits (255:64) of the corresponding YMM destination register remain unchanged.

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

F2 0F 2A /r V/V SSE2 Convert one signed doubleword
integer from r32/m32 to one
double-precision floating-point
value in xmm1.

CVTSI2SD xmm1, r32/m32

F2 REX.W 0F 2A /r V/N.E. SSE2 Convert one signed quadword
integer from r/m64 to one double-
precision floating-point value in
xmm1.

CVTSI2SD xmm1, r/m64

VEX.NDS.128.F2.0F.W0 2A /r V/V AVX Convert one signed doubleword
integer from r/m32 to one double-
precision floating-point value in
xmm1.

VCVTSI2SD xmm1, xmm2, r/m32

VEX.NDS.128.F2.0F.W1 2A /r V/N.E. AVX Convert one signed quadword
integer from r/m64 to one double-
precision floating-point value in
xmm1.

VCVTSI2SD xmm1, xmm2, r/m64
Ref. # 319433-004 107

INSTRUCTION SET REFERENCE
VEX.128 encoded version: Bits (127:64) of the XMM register destination are copied
from corresponding bits in the first source operand. Bits (255:128) of the destination
YMM register are zeroed.

Software should ensure VCVTSI2SD is encoded with VEX.L=0. Encoding VCVTSI2SD
with VEX.L=1 may encounter unpredictable behavior across different processor
generations.

Operation
VCVTSI2SD
IF 64-Bit Mode And OperandSize = 64
THEN

DEST[63:0] Å Convert_Integer_To_Double_Precision_Floating_Point(SRC2[63:0]);
ELSE

DEST[63:0] Å Convert_Integer_To_Double_Precision_Floating_Point(SRC2[31:0]);
FI;
DEST[127:64] Å SRC1[127:64]
DEST[255:128] Å 0

CVTSI2SD
IF 64-Bit Mode And OperandSize = 64
THEN

DEST[63:0] Å Convert_Integer_To_Double_Precision_Floating_Point(SRC[63:0]);
ELSE

DEST[63:0] Å Convert_Integer_To_Double_Precision_Floating_Point(SRC[31:0]);
FI;

DEST[255:64] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

CVTSI2SD __m128d_mm_cvtsi32_sd(__m128d a, int b)

SIMD Floating-Point Exceptions
Precision

Other Exceptions
See Exceptions Type 3
108 Ref. # 319433-004

INSTRUCTION SET REFERENCE
CVTSI2SS- Convert Doubleword Integer to Scalar Single-Precision Floating-
Point Value

Description
Converts a signed doubleword integer (or signed quadword integer if operand size is
64 bits) in the source operand (second operand) to a single-precision floating-point
value in the destination operand (first operand). The source operand can be a
general-purpose register or a memory location. The destination operand is an XMM
register. The result is stored in the low doubleword of the destination operand, and
the upper three doublewords are left unchanged. When a conversion is inexact, the
value returned is rounded according to the rounding control bits in the MXCSR
register.

Legacy SSE instructions: In 64-bit mode, Use of the REX.W prefix promotes the
instruction to 64-bit operands. See the summary chart at the beginning of this
section for encoding data and limits.

The second source operand can be a general-purpose register or a 32/64-bit memory
location. The first source and destination operands are XMM registers.

128-bit Legacy SSE version: The destination and first source operand are the same.
Bits (255:32) of the corresponding YMM destination register remain unchanged.

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

F3 0F 2A /r V/V SSE Convert one signed doubleword
integer from r/m32 to one single-
precision floating-point value in
xmm1.

CVTSI2SS xmm1, r/m32

F3 REX.W 0F 2A /r V/N.E. SSE Convert one signed quadword
integer from r/m64 to one single-
precision floating-point value in
xmm1.

CVTSI2SS xmm1, r/m64

VEX.NDS.128.F3.0F.W0 2A /r V/V AVX Convert one signed doubleword
integer from r/m32 to one single-
precision floating-point value in
xmm1.

VCVTSI2SS xmm1, xmm2, r/m32

VEX.NDS.128.F3.0F.W1 2A /r V/N.E. AVX Convert one signed quadword
integer from r/m64 to one single-
precision floating-point value in
xmm1.

VCVTSI2SS xmm1, xmm2, r/m64
Ref. # 319433-004 109

INSTRUCTION SET REFERENCE
VEX.128 encoded version: Bits (127:32) of the XMM register destination are copied
from corresponding bits in the first source operand. Bits (255:128) of the destination
YMM register are zeroed.

Software should ensure VCVTSI2SS is encoded with VEX.L=0. Encoding VCVTSI2SS
with VEX.L=1 may encounter unpredictable behavior across different processor
generations.

Operation
VCVTSI2SS (VEX.128 encoded version)
IF 64-Bit Mode And OperandSize = 64
THEN

DEST[31:0] Å Convert_Integer_To_Single_Precision_Floating_Point(SRC[63:0]);
ELSE

DEST[31:0] Å Convert_Integer_To_Single_Precision_Floating_Point(SRC[31:0]);
FI;
DEST[127:32] Å SRC1[127:32]
DEST[255:128] Å 0

CVTSI2SS (128-bit Legacy SSE version)
IF 64-Bit Mode And OperandSize = 64
THEN

DEST[31:0] Å Convert_Integer_To_Single_Precision_Floating_Point(SRC[63:0]);
ELSE

DEST[31:0] Å Convert_Integer_To_Single_Precision_Floating_Point(SRC[31:0]);
FI;
DEST[255:32] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

CVTSI2SS __m128_mm_cvtsi32_ss(__m128 a, int b)

SIMD Floating-Point Exceptions
Precision

Other Exceptions
See Exceptions Type 3
110 Ref. # 319433-004

INSTRUCTION SET REFERENCE
CVTSS2SD- Convert Scalar Single-Precision Floating-Point Value to Scalar
Double-Precision Floating-Point Value

Description
Converts a single-precision floating-point value in the second source operand to a
double-precision floating-point value in the destination operand. When the second
source operand is an XMM register, the single-precision floating-point value is
contained in the low doubleword of the register. The result is stored in the low quad-
word of the destination operand, and the high quadword is copied from the first
source operand.

The second source operand can be an XMM register or a 32-bit memory location. The
first source and destination operands are XMM registers.

128-bit Legacy SSE version: The destination and first source operand are the same.
Bits (255:64) of the corresponding YMM destination register remain unchanged.

VEX.128 encoded version: Bits (127:64) of the XMM register destination are copied
from corresponding bits in the first source operand. Bits (255:128) of the destination
YMM register are zeroed.

Software should ensure VCVTSS2SD is encoded with VEX.L=0. Encoding VCVTSS2SD
with VEX.L=1 may encounter unpredictable behavior across different processor
generations.

Operation
VCVTSS2SD (VEX.128 encoded version)
DEST[63:0] Å Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC2[31:0])
DEST[127:64] Å SRC1[127:64]
DEST[255:128] Å 0

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

F3 0F 5A /r V/V SSE2 Convert one single-precision
floating-point value in xmm2/m32
to one double-precision floating-
point value in xmm1.

CVTSS2SD xmm1, xmm2/m32

VEX.NDS.128.F3.0F 5A /r V/V AVX Convert one single-precision
floating-point value in xmm3/m32
to one double-precision floating-
point value and merge with high
bits of xmm2.

VCVTSS2SD xmm1, xmm2,
xmm3/m32
Ref. # 319433-004 111

INSTRUCTION SET REFERENCE
CVTSS2SD (128-bit Legacy SSE version)
DEST[63:0] Å Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[31:0]);
DEST[255:64] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

CVTSS2SD __m128d_mm_cvtss_sd(__m128d a, __m128 b)

SIMD Floating-Point Exceptions
Invalid, Denormal

Other Exceptions
See Exceptions Type 3
112 Ref. # 319433-004

INSTRUCTION SET REFERENCE
CVTSS2SI- Convert Scalar Single-Precision Floating-Point Value to
Doubleword Integer

Description
Converts a single-precision floating-point value in the source operand (second
operand) to a signed doubleword integer (or signed quadword integer if operand size
is 64 bits) in the destination operand (first operand). The source operand can be an
XMM register or a memory location. The destination operand is a general-purpose
register. When the source operand is an XMM register, the single-precision floating
point value is contained in the low doubleword of the register.

When a conversion is inexact, the value returned is rounded according to the
rounding control bits in the MXCSR register. If a converted result is larger than the
maximum signed doubleword integer, the floating-point invalid exception is raised,
and if this exception is masked, the indefinite integer value (80000000H) is returned.

Legacy SSE instructions: In 64-bit mode, Use of the REX.W prefix promotes the
instruction to 64-bit operands. See the summary chart at the beginning of this
section for encoding data and limits.

Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise
instructions will #UD.

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

F3 0F 2D /r V/V SSE Convert one single-precision
floating-point value from
xmm1/m32 to one signed
doubleword integer in r32.

CVTSS2SI r32, xmm1/m32

F3 REX.W 0F 2D /r V/N.E. SSE Convert one single-precision
floating-point value from
xmm1/m32 to one signed
quadword integer in r64.

CVTSS2SI r64, xmm1/m32

VEX.128.F3.0F.W0 2D /r V/V AVX Convert one single-precision
floating-point value from
xmm1/m32 to one signed
doubleword integer in r32.

VCVTSS2SI r32, xmm1/m32

VEX.128.F3.0F.W1 2D /r V/N.E. AVX Convert one single-precision
floating-point value from
xmm1/m32 to one signed
quadword integer in r64.

VCVTSS2SI r64, xmm1/m32
Ref. # 319433-004 113

INSTRUCTION SET REFERENCE
Software should ensure VCVTSS2SI is encoded with VEX.L=0. Encoding VCVTSS2SI
with VEX.L=1 may encounter unpredictable behavior across different processor
generations.

Operation
CVTSS2SI
IF 64-bit Mode and OperandSize = 64
THEN

DEST[63:0] Å Convert_Single_Precision_Floating_Point_To_Integer(SRC[31:0]);
ELSE

DEST[31:0] Å Convert_Single_Precision_Floating_Point_To_Integer(SRC[31:0]);
FI;

Intel C/C++ Compiler Intrinsic Equivalent

int _mm_cvtss_si32(__m128 a)

SIMD Floating-Point Exceptions
Invalid, Precision

Other Exceptions
See Exceptions Type 3; additionally

#UD If VEX.vvvv != 1111B.
114 Ref. # 319433-004

INSTRUCTION SET REFERENCE
CVTTPD2DQ- Convert with Truncation Packed Double-Precision Floating-
point values to Packed Doubleword Integers

Description
Converts two or four packed double-precision floating-point values in the source
operand (second operand) to two or four packed signed doubleword integers in the
destination operand (first operand).

When a conversion is inexact, a truncated (round toward zero) value is returned.If a
converted result is larger than the maximum signed doubleword integer, the floating-
point invalid exception is raised, and if this exception is masked, the indefinite
integer value (80000000H) is returned.

VEX.256 encoded version: The source operand is a YMM register or 256- bit memory
location. The destination operation is an XMM register. The upper bits (255:128) of
the corresponding YMM register destination are zeroed.

VEX.128 encoded version: The source operand is an XMM register or 128- bit
memory location. The destination operation is a YMM register. The upper bits
(255:128) of the corresponding YMM register destination are zeroed.

128-bit Legacy SSE version: The source operand is an XMM register or 128- bit
memory location. The destination operation is an XMM register. The upper bits
(255:128) of the corresponding YMM register destination are unmodified.

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F E6 /r V/V SSE2 Convert two packed double-preci-
sion floating-point values in
xmm2/mem to two signed double-
word integers in xmm1 using trun-
cation

CVTTPD2DQ xmm1, xmm2/m128

VEX.128.66.0F E6 /r V/V AVX Convert two packed double-preci-
sion floating-point values in
xmm2/mem to two signed double-
word integers in xmm1 using trun-
cation

VCVTTPD2DQ xmm1, xmm2/m128

VEX.256.66.0F E6 /r V/V AVX Convert four packed double-preci-
sion floating-point values in
ymm2/mem to four signed double-
word integers in xmm1 using trun-
cation

VCVTTPD2DQ xmm1, ymm2/m256
Ref. # 319433-004 115

INSTRUCTION SET REFERENCE
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise
instructions will #UD.

Figure 5-9. VCVTTPD2DQ (VEX.256 encoded version)

Operation
VCVTTPD2DQ (VEX.256 encoded version)
DEST[31:0] Å Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[63:0])
DEST[63:32] Å Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[127:64])
DEST[95:64] Å Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[191:128])
DEST[127:96] Å Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[255:192)
DEST[255:128]Å 0

VCVTTPD2DQ (VEX.128 encoded version)
DEST[31:0] Å Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[63:0])
DEST[63:32] Å Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[127:64])
DEST[255:64]Å 0

CVTTPD2DQ (128-bit Legacy SSE version)
DEST[31:0] Å Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[63:0])
DEST[63:32] Å Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[127:64])
DEST[127:64] Å 0
DEST[255:128] (unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VCVTTPD2DQ __m128i _mm256_cvttpd_epi32 (__m256d src)

DEST

SRC

X0X1X2X3

X3 X2 X1 X0

0

116 Ref. # 319433-004

INSTRUCTION SET REFERENCE
CVTTDQ2PD __m128i _mm_cvttpd_epi32 (__m128d src)

SIMD Floating-Point Exceptions
Invalid, Precision

Other Exceptions
See Exceptions Type 2; additionally

#UD If VEX.vvvv != 1111B.
Ref. # 319433-004 117

INSTRUCTION SET REFERENCE
CVTTPS2DQ- Convert with Truncation Packed Single Precision Floating-
Point Values to Packed Singed Doubleword Integer Values

Description
Converts four or eight packed single-precision floating-point values in the source
operand to four or eight signed doubleword integers in the destination operand.

When a conversion is inexact, a truncated (round toward zero) value is returned.If a
converted result is larger than the maximum signed doubleword integer, the floating-
point invalid exception is raised, and if this exception is masked, the indefinite
integer value (80000000H) is returned.

VEX.256 encoded version: The source operand is a YMM register or 256- bit memory
location. The destination operation is a YMM register.

VEX.128 encoded version: The source operand is an XMM register or 128- bit
memory location. The destination operation is a YMM register. The upper bits
(255:128) of the corresponding YMM register destination are zeroed.

128-bit Legacy SSE version: The source operand is an XMM register or 128- bit
memory location. The destination operation is an XMM register. The upper bits
(255:128) of the corresponding YMM register destination are unmodified.

Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise
instructions will #UD.

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

F3 0F 5B /r V/V SSE2 Convert four packed single preci-
sion floating-point values from
xmm2/mem to four packed signed
doubleword values in xmm1 using
truncation

CVTTPS2DQ xmm1, xmm2/m128

VEX.128.F3.0F 5B /r V/V AVX Convert four packed single preci-
sion floating-point values from
xmm2/mem to four packed signed
doubleword values in xmm1 using
truncation

VCVTTPS2DQ xmm1, xmm2/m128

VEX.256.F3.0F 5B /r V/V AVX Convert eight packed single preci-
sion floating-point values from
ymm2/mem to eight packed
signed doubleword values in
ymm1 using truncation

VCVTTPS2DQ ymm1, ymm2/m256
118 Ref. # 319433-004

INSTRUCTION SET REFERENCE
Operation
VCVTTPS2DQ (VEX.256 encoded version)
DEST[31:0] Å Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[31:0])
DEST[63:32] Å Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[63:32])
DEST[95:64] Å Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[95:64])
DEST[127:96] Å Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[127:96)
DEST[159:128] Å Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[159:128])
DEST[191:160] Å Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[191:160])
DEST[223:192] Å Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[223:192])
DEST[255:224] Å Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[255:224])

VCVTTPS2DQ (VEX.128 encoded version)
DEST[31:0] Å Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[31:0])
DEST[63:32] Å Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[63:32])
DEST[95:64] Å Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[95:64])
DEST[127:96] Å Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[127:96])
DEST[255:128] Å 0

CVTTPS2DQ (128-bit Legacy SSE version)
DEST[31:0] Å Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[31:0])
DEST[63:32] Å Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[63:32])
DEST[95:64] Å Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[95:64])
DEST[127:96] Å Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[127:96])
DEST[255:128] (unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VCVTTPS2DQ __m256i _mm256_cvttps_epi32 (__m256 a)

CVTTPS2DQ __m128i _mm_cvttps_epi32 (__m128 a)

SIMD Floating-Point Exceptions
Invalid, Precision

Other Exceptions
See Exceptions Type 2; additionally

#UD If VEX.vvvv != 1111B.
Ref. # 319433-004 119

INSTRUCTION SET REFERENCE
CVTTSD2SI- Convert with Truncation Scalar Double-Precision Floating-
Point Value to Signed Doubleword Integer

Description
Converts a double-precision floating-point value in the source operand (second
operand) to a signed doubleword integer (or signed quadword integer if operand size
is 64 bits) in the destination operand (first operand). The source operand can be an
XMM register or a 64-bit memory location. The destination operand is a general
purpose register. When the source operand is an XMM register, the double-precision
floating-point value is contained in the low quadword of the register.

When a conversion is inexact, a truncated (round toward zero) result is returned. If a
converted result is larger than the maximum signed doubleword integer, the floating
point invalid exception is raised. If this exception is masked, the indefinite integer
value (80000000H) is returned.

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

F2 0F 2C /r V/V SSE2 Convert one double-precision
floating-point value from
xmm1/m64 to one signed
doubleword integer in r32 using
truncation.

CVTTSD2SI r32, xmm1/m64

F2 REX.W 0F 2C /r V/N.E. SSE2 Convert one double precision
floating-point value from
xmm1/m64 to one signed
quadword integer in r64 using
truncation.

CVTTSD2SI r64, xmm1/m64

VEX.128.F2.0F.W0 2C /r V/V AVX Convert one double-precision
floating-point value from
xmm1/m64 to one signed
doubleword integer in r32 using
truncation.

VCVTTSD2SI r32, xmm1/m64

VEX.128.F2.0F.W1 2C /r V/N.E. AVX Convert one double precision
floating-point value from
xmm1/m64 to one signed
quadword integer in r64 using
truncation.

VCVTTSD2SI r64, xmm1/m64
120 Ref. # 319433-004

INSTRUCTION SET REFERENCE
Legacy SSE instructions: In 64-bit mode, Use of the REX.W prefix promotes the
instruction to 64-bit operation. See the summary chart at the beginning of this
section for encoding data and limits.

Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise
instructions will #UD.

Software should ensure VCVTTSD2SI is encoded with VEX.L=0. Encoding
VCVTTSD2SI with VEX.L=1 may encounter unpredictable behavior across different
processor generations.

Operation
CVTTSD2SI
IF 64-Bit Mode and OperandSize = 64
THEN

DEST[63:0] Å Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[63:0]);
ELSE

DEST[31:0] Å Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[63:0]);
FI;

Intel C/C++ Compiler Intrinsic Equivalent

int _mm_cvttsd_si32(__m128d a)

SIMD Floating-Point Exceptions
Invalid, Precision

Other Exceptions
See Exceptions Type 3; additionally

#UD If VEX.vvvv != 1111B.
Ref. # 319433-004 121

INSTRUCTION SET REFERENCE
CVTTSS2SI- Convert with Truncation Scalar Single-Precision Floating-Point
Value to Doubleword Integer

Description
Converts a single-precision floating-point value in the source operand (second
operand) to a signed doubleword integer (or signed quadword integer if operand size
is 64 bits) in the destination operand (first operand). The source operand can be an
XMM register or a 32-bit memory location. The destination operand is a general
purpose register. When the source operand is an XMM register, the single-precision
floating-point value is contained in the low doubleword of the register.

When a conversion is inexact, a truncated (round toward zero) result is returned. If a
converted result is larger than the maximum signed doubleword integer, the floating
point invalid exception is raised. If this exception is masked, the indefinite integer
value (80000000H) is returned.

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

F3 0F 2C /r V/V SSE Convert one single-precision
floating-point value from
xmm1/m32 to one signed
doubleword integer in r32 using
truncation.

CVTTSS2SI r32, xmm1/m32

F3 REX.W 0F 2C /r V/N.E. SSE Convert one single-precision
floating-point value from
xmm1/m32 to one signed
quadword integer in r64 using
truncation.

CVTTSS2SI r64, xmm1/m32

VEX.128.F3.0F.W0 2C /r V/V AVX Convert one single-precision
floating-point value from
xmm1/m32 to one signed
doubleword integer in r32 using
truncation.

VCVTTSS2SI r32, xmm1/m32

VEX.128.F3.0F.W1 2C /r V/N.E. AVX Convert one single-precision
floating-point value from
xmm1/m32 to one signed
quadword integer in r64 using
truncation.

VCVTTSS2SI r64, xmm1/m32
122 Ref. # 319433-004

INSTRUCTION SET REFERENCE
Legacy SSE instructions: In 64-bit mode, Use of the REX.W prefix promotes the
instruction to 64-bit operation. See the summary chart at the beginning of this
section for encoding data and limits.

Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise
instructions will #UD.

Software should ensure VCVTTSS2SI is encoded with VEX.L=0. Encoding
VCVTTSS2SI with VEX.L=1 may encounter unpredictable behavior across different
processor generations.

Operation
CVTTSS2SI
IF 64-Bit Mode and OperandSize = 64
THEN

DEST[63:0] Å Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[31:0]);
ELSE

DEST[31:0] Å Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[31:0]);
FI;

Intel C/C++ Compiler Intrinsic Equivalent

int _mm_cvttss_si32(__m128 a)

SIMD Floating-Point Exceptions
Invalid, Precision

Other Exceptions
See Exceptions Type 3; additionally

#UD If VEX.vvvv != 1111B.
Ref. # 319433-004 123

INSTRUCTION SET REFERENCE
DIVPD- Divide Packed Double-Precision Floating-Point Values

Description
Performs an SIMD divide of the two or four packed double-precision floating-point
values in the first source operand by the two or four packed double-precision
floating-point values in the second source operand.

VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

VEX.128 encoded version: the first source operand second source operand is an XMM
register or 128-bit memory location. The destination operand is an XMM register. The
upper bits (255:128) of the corresponding YMM register destination are zeroed.

128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (255:128) of the corresponding YMM register destination are
unmodified.

Operation
VDIVPD (VEX.256 encoded version)
DEST[63:0] Å SRC1[63:0] / SRC2[63:0]
DEST[127:64] Å SRC1[127:64] / SRC2[127:64]
DEST[191:128] Å SRC1[191:128] / SRC2[191:128]
DEST[255:192] Å SRC1[255:192] / SRC2[255:192]

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 5E /r V/V SSE2 Divide packed double-precision
floating-point values in xmm1 by
packed double-precision floating-
point values in xmm2/mem

DIVPD xmm1, xmm3/m128

VEX.NDS.128.66.0F 5E /r V/V AVX Divide packed double-precision
floating-point values in xmm2 by
packed double-precision floating-
point values in xmm3/mem

VDIVPD xmm1, xmm2, xmm3/m128

VEX.NDS.256.66.0F 5E /r V/V AVX Divide packed double-precision
floating-point values in ymm2 by
packed double-precision floating-
point values in ymm3/mem

VDIVPD ymm1, ymm2, ymm3/m256
124 Ref. # 319433-004

INSTRUCTION SET REFERENCE
VDIVPD (VEX.128 encoded version)
DEST[63:0] Å SRC1[63:0] / SRC2[63:0]
DEST[127:64] Å SRC1[127:64] / SRC2[127:64]
DEST[255:128] Å 0
DIVPD (128-bit Legacy SSE version)
DEST[63:0] Å SRC1[63:0] / SRC2[63:0]
DEST[127:64] Å SRC1[127:64] / SRC2[127:64]
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VDIVPD __m256d _mm256_div_pd (__m256d a, __m256d b);

DIVPD __m128d _mm_div_pd (__m128d a, __m128d b);

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Divide-by-Zero, Precision, Denormal

Other Exceptions
See Exceptions Type 2
Ref. # 319433-004 125

INSTRUCTION SET REFERENCE
DIVPS- Divide Packed Single-Precision Floating-Point Values

Description
Performs an SIMD divide of the four or eight packed single-precision floating-point
values in the first source operand by the four or eight packed single-precision
floating-point values in the second source operand.

VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

VEX.128 encoded version: the first source operand second source operand is an XMM
register or 128-bit memory location. The destination operand is an XMM register. The
upper bits (255:128) of the corresponding YMM register destination are zeroed.

128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (255:128) of the corresponding YMM register destination are
unmodified.

Operation
VDIVPS (VEX.256 encoded version)
DEST[31:0] Å SRC1[31:0] / SRC2[31:0]
DEST[63:32] Å SRC1[63:32] / SRC2[63:32]
DEST[95:64] Å SRC1[95:64] / SRC2[95:64]
DEST[127:96] Å SRC1[127:96] / SRC2[127:96]

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 5E /r V/V SSE Divide packed single-precision
floating-point values in xmm1 by
packed double-precision floating-
point values in xmm2/mem

DIVPS xmm1, xmm2/m128

VEX.NDS.128.0F 5E /r V/V AVX Divide packed single-precision
floating-point values in xmm2 by
packed double-precision floating-
point values in xmm3/mem

VDIVPS xmm1, xmm2, xmm3/m128

VEX.NDS.256.0F 5E /r V/V AVX Divide packed single-precision
floating-point values in ymm2 by
packed double-precision floating-
point values in ymm3/mem

VDIVPS ymm1, ymm2, ymm3/m256
126 Ref. # 319433-004

INSTRUCTION SET REFERENCE
DEST[159:128] Å SRC1[159:128] / SRC2[159:128]
DEST[191:160]Å SRC1[191:160] / SRC2[191:160]
DEST[223:192] Å SRC1[223:192] / SRC2[223:192]
DEST[255:224] Å SRC1[255:224] / SRC2[255:224].

VDIVPS (VEX.128 encoded version)
DEST[31:0] Å SRC1[31:0] / SRC2[31:0]
DEST[63:32] Å SRC1[63:32] / SRC2[63:32]
DEST[95:64] Å SRC1[95:64] / SRC2[95:64]
DEST[127:96] Å SRC1[127:96] / SRC2[127:96]
DEST[255:128] Å 0

DIVPS (128-bit Legacy SSE version)
DEST[31:0] Å SRC1[31:0] / SRC2[31:0]
DEST[63:32] Å SRC1[63:32] / SRC2[63:32]
DEST[95:64] Å SRC1[95:64] / SRC2[95:64]
DEST[127:96] Å SRC1[127:96] / SRC2[127:96]
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VDIVPS __m256 _mm256_div_ps (__m256 a, __m256 b);

DIVPS __m128 _mm_div_ps (__m128 a, __m128 b);

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Divide-by-Zero, Precision, Denormal

Other Exceptions
See Exceptions Type 2
Ref. # 319433-004 127

INSTRUCTION SET REFERENCE
DIVSD- Divide Scalar Double-Precision Floating-Point Values

Description
Divides the low double-precision floating-point value in the first source operand by
the low double-precision floating-point value in the second source operand, and
stores the double-precision floating-point result in the destination operand. The
second source operand can be an XMM register or a 64-bit memory location. The first
source and destination hyperons are XMM registers. The high quadword of the desti-
nation operand is copied from the high quadword of the first source operand. See
Chapter 11 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1, for an overview of a scalar double-precision floating-point operation.

128-bit Legacy SSE version: The first source operand and the destination operand
are the same. Bits (255:64) of the corresponding YMM destination register remain
unchanged.

VEX.128 encoded version: Bits (255:128) of the destination YMM register are zeroed.

Software should ensure VDIVSD is encoded with VEX.L=0. Encoding VDIVSD with
VEX.L=1 may encounter unpredictable behavior across different processor genera-
tions.

Operation
VDIVSD (VEX.128 encoded version)
DEST[63:0] Å SRC1[63:0] / SRC2[63:0]
DEST[127:64] Å SRC1[127:64]
DEST[255:128] Å 0

DIVSD (128-bit Legacy SSE version)
DEST[63:0] Å DEST[63:0] / SRC[63:0]

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

F2 0F 5E /r V/V SSE2 Divide low double-precision
floating point values in xmm1 by
low double precision floating-
point value in xmm2/mem64.

DIVSD xmm1, xmm2/m64

VEX.NDS.128.F2.0F 5E /r V/V AVX Divide low double-precision
floating point values in xmm2 by
low double precision floating-
point value in xmm3/mem64.

VDIVSD xmm1, xmm2, xmm3/m64
128 Ref. # 319433-004

INSTRUCTION SET REFERENCE
DEST[255:64] (Unmodified)

Intel C/C++ 6Compiler Intrinsic Equivalent

DIVSD __m128d _mm_div_sd (__m128d a, __m128d b)

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Divide-by-Zero, Precision, Denormal

Other Exceptions
See Exceptions Type 3
Ref. # 319433-004 129

INSTRUCTION SET REFERENCE
DIVSS- Divide Scalar Single-Precision Floating-Point Values

Description
Divides the low single-precision floating-point value in the first source operand by the
low single-precision floating-point value in the second source operand, and stores
the single-precision floating-point result in the destination operand. The second
source operand can be an XMM register or a 32-bit memory location. The first source
and destination operands are XMM registers. The three high-order doublewords of
the destination are copied from the same dwords of the first source operand. See
Chapter 10 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1, for an overview of a scalar single-precision floating-point operation.

128-bit Legacy SSE version: The first source operand and the destination operand
are the same. Bits (255:32) of the corresponding YMM destination register remain
unchanged.

VEX.128 encoded version: Bits (255:128) of the destination YMM register are zeroed.

Software should ensure VDIVSS is encoded with VEX.L=0. Encoding VDIVSS with
VEX.L=1 may encounter unpredictable behavior across different processor genera-
tions.

Operation
VDIVSS (VEX.128 encoded version)
DEST[31:0] Å SRC1[31:0] / SRC2[31:0]
DEST[127:32] Å SRC1[127:32]
DEST[255:128] Å 0

DIVSS (128-bit Legacy SSE version)
DEST[31:0] Å DEST[31:0] / SRC[31:0]

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

F3 0F 5E /r V/V SSE Divide low single-precision
floating point value in xmm1 by
low single precision floating-point
value in xmm2/m32.

DIVSS xmm1, xmm2/m32

VEX.NDS.128.F3.0F 5E /r V/V AVX Divide low single-precision
floating point value in xmm2 by
low single precision floating-point
value in xmm3/m32.

VDIVSS xmm1, xmm2, xmm3/m32
130 Ref. # 319433-004

INSTRUCTION SET REFERENCE
DEST[255:32] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

DIVSS __m128 _mm_div_ss(__m128 a, __m128 b)

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Divide-by-Zero, Precision, Denormal

Other Exceptions
See Exceptions Type 3
Ref. # 319433-004 131

INSTRUCTION SET REFERENCE
DPPD- Dot Product of Packed Double-Precision Floating-Point Values

Description
Conditionally multiplies the packed double precision floating-point values in the
destination operand (first operand) with the packed double-precision floating-point
values in the source (second operand) depending on a mask extracted from bits 4-5
of the immediate operand. Each of the two resulting double-precision values is
summed and this sum is conditionally broadcast to each of 2 positions in the destina-
tion operand if the corresponding bit of the mask selected from bits 0-1 of the imme-
diate operand is "1". If the corresponding low bit 0-1 of the mask is zero, the
destination is set to zero. DPPD follows the NaN forwarding rules stated in the Soft-
ware Developer’s Manual, vol. 1, table 4.7. These rules do not cover horizontal prior-
itization of NaNs. Horizontal propagation of NaNs to the destination and the
positioning of those NaNs in the destination is implementation dependent. NaNs on
the input sources or computationaly generated NaNs will have at least one NaN prop-
agated to the destination.

VEX.128 encoded version: the first source operand second source operand is an XMM
register or 128-bit memory location. The destination operand is an XMM register. The
upper bits (255:128) of the corresponding YMM register destination are zeroed.

128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (255:128) of the corresponding YMM register destination are
unmodified.

If VDPPD is encoded with VEX.L= 1, an attempt to execute the instruction encoded
with VEX.L= 1 will cause an #UD exception.

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 3A 41 /r ib V/V SSE4_1 Selectively multiply packed DP
floating-point values from xmm1
with packed DP floating-point val-
ues from xmm2, add and selec-
tively store the packed DP
floating-point values to xmm1

DPPD xmm1, xmm3/m128, imm8

VEX.NDS.128.66.0F3A 41 /r ib V/V AVX Selectively multiply packed DP
floating-point values from xmm2
with packed DP floating-point val-
ues from xmm3, add and selec-
tively store the packed DP
floating-point values to xmm1

VDPPD xmm1,xmm2, xmm3/m128,
imm8
132 Ref. # 319433-004

INSTRUCTION SET REFERENCE
Operation
DP_primitive (SRC1, SRC2)
IF (imm8[4] == 1) THEN Temp1[63:0] Å SRC1[63:0] * SRC2[63:0];
ELSE Temp1[63:0] Å +0.0;
IF (imm8[5] == 1) THEN Temp1[127:64] Å SRC1[127:64] * SRC2[127:64];
ELSE Temp1[127:64] Å +0.0;
Temp2[63:0] Å Temp1[63:0] + Temp1[127:64];
IF (imm8[0] == 1) THEN DEST[63:0] Å Temp2[63:0];
ELSE DEST[63:0] Å +0.0;
IF (imm8[1] == 1) THEN DEST[127:64] Å Temp2[63:0];
ELSE DEST[127:64] Å +0.0;

VDPPD (VEX.128 encoded version)
DEST[127:0]ÅDP_Primitive(SRC1[127:0], SRC2[127:0]);
DEST[255:128] Å 0

DPPD (128-bit Legacy SSE version)
DEST[127:0]ÅDP_Primitive(SRC1[127:0], SRC2[127:0]);
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

DPPD __m128d _mm_dp_pd (__m128d a, __m128d b, const int mask);

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal

Exceptions are determined separately for each add and multiply operation.
Unmasked exceptions will leave the destination untouched

Other Exceptions
See Exceptions Type 2; additionally

#UD If VEX.L=1
Ref. # 319433-004 133

INSTRUCTION SET REFERENCE
DPPS- Dot Product of Packed Single-Precision Floating-Point Values

Description
Multiplies the packed single precision floating point values in the first source operand
(second operand) with the packed single-precision floats in the second source (third
operand). Each of the four resulting single-precision values is conditionally summed
depending on a mask extracted from the high 4 bits of the immediate operand. This
sum is broadcast to each of 4 positions in the destination operand (first operand) if
the corresponding bit of the mask selected from the low 4 bits of the immediate
operand is "1". If the corresponding low bit 0-3 of the mask is zero, the destination is
set to zero.

The process is replicated for the high elements of the destination YMM.

DPPS follows the NaN forwarding rules stated in the Software Developer’s Manual,
vol. 1, table 4.7. These rules do not cover horizontal prioritization of NaNs. Horizontal
propagation of NaNs to the destination and the positioning of those NaNs in the desti-
nation is implementation dependent. NaNs on the input sources or computationaly
generated NaNs will have at least one NaN propagated to the destination.

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 3A 40 /r ib V/V SSE4_1 Multiply packed SP floating point
values from xmm1 with packed SP
floating point values from
xmm3/mem selectively add and
store to xmm1

DPPS xmm1, xmm3/m128, imm8

VEX.NDS.128.66.0F3A 40 /r ib V/V AVX Multiply packed SP floating point
values from xmm1 with packed SP
floating point values from
xmm2/mem selectively add and
store to xmm1

VDPPS xmm1,xmm2, xmm3/m128,
imm8

VEX.NDS.256.66.0F3A 40 /r ib V/V AVX Multiply packed single-precision
floating-point values from ymm2
with packed SP floating point val-
ues from ymm3/mem, selectively
add pairs of elements and store to
ymm1

VDPPS ymm1, ymm2, ymm3/m256,
imm8
134 Ref. # 319433-004

INSTRUCTION SET REFERENCE
VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

VEX.128 encoded version: the first source operand second source operand is an XMM
register or 128-bit memory location. The destination operand is an XMM register. The
upper bits (255:128) of the corresponding YMM register destination are zeroed.

128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (255:128) of the corresponding YMM register destination are
unmodified.

Operation
DP_primitive (SRC1, SRC2)
IF (imm8[4] == 1) THEN Temp1[31:0] Å SRC1[31:0] * SRC2[31:0];

ELSE Temp1[31:0] Å +0.0;
IF (imm8[5] == 1) THEN Temp1[63:32] Å SRC1[63:32] * SRC[63:32];

ELSE Temp1[63:32] Å +0.0;
IF (imm8[6] == 1) THEN Temp1[95:64] Å SRC1[95:64] * SRC2[95:64];

ELSE Temp1[95:64] Å +0.0;
IF (imm8[7] == 1) THEN Temp1[127:96] Å SRC1[127:96] * SRC2[127:96];

ELSE Temp1[127:96] Å +0.0;

Temp2[31:0] Å Temp1[31:0] + Temp1[63:32];
Temp3[31:0] Å Temp1[95:64] + Temp1[127:96];
Temp4[31:0] Å Temp2[31:0] + Temp3[31:0];

IF (imm8[0] == 1) THEN DEST[31:0] Å Temp4[31:0];
ELSE DEST[31:0] Å +0.0;

IF (imm8[1] == 1) THEN DEST[63:32] Å Temp4[31:0];
ELSE DEST[63:32] Å +0.0;

IF (imm8[2] == 1) THEN DEST[95:64] Å Temp4[31:0];
ELSE DEST[95:64] Å +0.0;

IF (imm8[3] == 1) THEN DEST[127:96] Å Temp4[31:0];
ELSE DEST[127:96] Å +0.0;

VDPPS (VEX.256 encoded version)
DEST[127:0]ÅDP_Primitive(SRC1[127:0], SRC2[127:0]);
DEST[255:128]ÅDP_Primitive(SRC1[255:128], SRC2[255:128]);

VDPPS (VEX.128 encoded version)
DEST[127:0]ÅDP_Primitive(SRC1[127:0], SRC2[127:0]);
DEST[255:128] Å 0
Ref. # 319433-004 135

INSTRUCTION SET REFERENCE
DPP (128-bit Legacy SSE version)
DEST[127:0]ÅDP_Primitive(SRC1[127:0], SRC2[127:0]);
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VDPPS __m256 _mm256_dp_ps (__m256 a, __m256 b, const int mask);

(V)DPPS __m128 _mm_dp_ps (__m128 a, __m128 b, const int mask);

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal

Exceptions are determined separately for each add and multiply operation.
Unmasked exceptions will leave the destination untouched

Other Exceptions
See Exceptions Type 2
136 Ref. # 319433-004

INSTRUCTION SET REFERENCE
VEXTRACTF128- Extract packed floating-point values

Description
Extracts 128-bits of packed floating-point values from the source operand (second
operand) at an 128-bit offset from imm8[0] into the destination operand (first
operand). The destination may be either an XMM register or an 128-bit memory loca-
tion.

VEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

The high 7 bits of the immediate are ignored.

If VEXTRACTF128 is encoded with VEX.L= 0, an attempt to execute the instruction
encoded with VEX.L= 0 will cause an #UD exception.

Operation
VEXTRACTF128 (memory destination form)
CASE (imm8[0]) OF

0: DEST[127:0] Å SRC1[127:0]
1: DEST[127:0] Å SRC1[255:128]

ESAC.

VEXTRACTF128 (register destination form)
CASE (imm8[0]) OF

0: DEST[127:0] Å SRC1[127:0]
1: DEST[127:0] Å SRC1[255:128]

ESAC.
DEST[255:128] Å 0

Intel C/C++ Compiler Intrinsic Equivalent

VEXTRACTF128 __m128 _mm256_extractf128_ps (__m256 a, int offset);

VEXTRACTF128 __m128d _mm256_extractf128_pd (__m256d a, int offset);

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

VEX.256.66.0F3A 19 /r ib V/V AVX Extract 128 bits of packed float-
ing-point values from ymm2 and
store results in xmm1/mem

VEXTRACTF128 xmm1/m128,
ymm2, imm8
Ref. # 319433-004 137

INSTRUCTION SET REFERENCE
VEXTRACTF128 __m128i_mm256_extractf128_si256(__m256i a, int offset);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 6; additionally

#UD IF VEX.L = 0
138 Ref. # 319433-004

INSTRUCTION SET REFERENCE
EXTRACTPS- Extract packed floating-point values

Description
Extracts a single-precision floating-point value from the source operand (second
operand) at the 32-bit offset specified from imm8. Immediate bits higher than the
most significant offset for the vector length are ignored.

The extracted single-precision floating-point value is stored in the low 32-bits of the
destination operand

In 64-bit mode, destination register operand has default operand size of 64 bits. The
upper 32-bits of the register are filled with zero. REX.W is ignored.

VEX.128 encoded version: When VEX.128.66.0F3A.W1 17 form is used in 64-bit
mode with a general purpose register (GPR) as a destination operand, the packed
single quantity is zero extended to 64 bits. VEX.vvvv is reserved and must be 1111b
otherwise instructions will #UD.

128-bit Legacy SSE version: When a REX.W prefix is used in 64-bit mode with a
general purpose register (GPR) as a destination operand, the packed single quantity
is zero extended to 64 bits.

The source register is an XMM register. Imm8[1:0] determine the starting DWORD
offset from which to extract the 32-bit floating-point value.

If VEXTRACTPS is encoded with VEX.L= 1, an attempt to execute the instruction
encoded with VEX.L= 1 will cause an #UD exception.

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 3A 17 /r ib VV SSE4_1 Extract one single-precision float-
ing-point value from xmm1 at the
offset specified by imm8 and store
the result in reg or m32. Zero
extend the results in 64-bit register
if applicable.

EXTRACTPS reg/m32, xmm1, imm8

VEX.128.66.0F3A 17 /r ib V/V AVX Extract one single-precision float-
ing-point value from xmm1 at the
offset specified by imm8 and store
the result in reg or m32. Zero
extend the results in 64-bit register
if applicable.

VEXTRACTPS r/m32, xmm1, imm8
Ref. # 319433-004 139

INSTRUCTION SET REFERENCE
Operation
VEXTRACTPS (VEX.128 encoded version)
SRC_OFFSET Å IMM8[1:0]
IF (64-Bit Mode and DEST is register)

DEST[31:0] Å (SRC[127:0] >> (SRC_OFFET*32)) AND 0FFFFFFFFh
DEST[63:32] Å 0

ELSE
DEST[31:0] Å (SRC[127:0] >> (SRC_OFFET*32)) AND 0FFFFFFFFh

FI

EXTRACTPS (128-bit Legacy SSE version)
SRC_OFFSET Å IMM8[1:0]
IF (64-Bit Mode and DEST is register)

DEST[31:0] Å (SRC[127:0] >> (SRC_OFFET*32)) AND 0FFFFFFFFh
DEST[63:32] Å 0

ELSE
DEST[31:0] Å (SRC[127:0] >> (SRC_OFFET*32)) AND 0FFFFFFFFh

FI

Intel C/C++ Compiler Intrinsic Equivalent

EXTRACTPS _mm_extractmem_ps (float *dest, __m128 a, const int nidx);

EXTRACTPS __m128 _mm_extract_ps (__m128 a, const int nidx);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 5; Additionally

#UD IF VEX.L = 1
140 Ref. # 319433-004

INSTRUCTION SET REFERENCE
HADDPD- Add Horizontal Double Precision Floating-Point Values

Description
Adds pairs of adjacent double-precision floating-point values in the first source
operand and second source operand and stores results in the destination.

Figure 5-10. VHADDPD operation

VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 7C /r V/V SSE3 Horizontal add packed double-pre-
cision floating-point values from
xmm1 and xmm2/mem

HADDPD xmm1, xmm2/m128

VEX.NDS.128.66.0F 7C /r V/V AVX Horizontal add packed double-pre-
cision floating-point values from
xmm2 and xmm3/mem

VHADDPD xmm1,xmm2,
xmm3/m128

VEX.NDS.256.66.0F 7C /r V/V AVX Horizontal add packed double-pre-
cision floating-point values from
ymm2 and ymm3/mem

VHADDPD ymm1, ymm2,
ymm3/m256

Y2 + Y3 X2 + X3 Y0 + Y1 X0 + X1DEST

X3 X2SRC1 X1 X0

Y3 Y2 Y1 Y0SRC2
Ref. # 319433-004 141

INSTRUCTION SET REFERENCE
VEX.128 encoded version: the first source operand second source operand is an XMM
register or 128-bit memory location. The destination operand is an XMM register. The
upper bits (255:128) of the corresponding YMM register destination are zeroed.

128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (255:128) of the corresponding YMM register destination are
unmodified.

Operation
VHADDPD (VEX.256 encoded version)
DEST[63:0] Å SRC1[127:64] + SRC1[63:0]
DEST[127:64] Å SRC2[127:64] + SRC2[63:0]
DEST[191:128] Å SRC1[255:192] + SRC1[191:128]
DEST[255:192] Å SRC2[255:192] + SRC2[191:128]

VHADDPD (VEX.128 encoded version)
DEST[63:0] Å SRC1[127:64] + SRC1[63:0]
DEST[127:64] Å SRC2[127:64] + SRC2[63:0]
DEST[255:128] Å 0

HADDPD (128-bit Legacy SSE version)
DEST[63:0] Å SRC1[127:64] + SRC1[63:0]
DEST[127:64] Å SRC2[127:64] + SRC2[63:0]
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VHADDPD __m256d _mm256_hadd_pd (__m256d a, __m256d b);

HADDPD __m128d _mm_hadd_pd (__m128d a, __m128d b);

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions
See Exceptions Type 2
142 Ref. # 319433-004

INSTRUCTION SET REFERENCE
HADDPS- Add Horizontal Single Precision Floating-Point Values

Description
Adds pairs of adjacent single-precision floating-point values in the first source
operand and second source operand and stores results in the destination.

Figure 5-11. VHADDPS operation

VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

F2 0F 7C /r V/V SSE3 Horizontal add packed single-pre-
cision floating-point values from
xmm1 and xmm2/mem

HADDPS xmm1, xmm2/m128

VEX.NDS.128.F2.0F 7C /r V/V AVX Horizontal add packed single-pre-
cision floating-point values from
xmm2 and xmm3/mem

VHADDPS xmm1, xmm2,
xmm3/m128

VEX.NDS.256.F2.0F 7C /r V/V AVX Horizontal add packed single-pre-
cision floating-point values from
ymm2 and ymm3/mem

VHADDPS ymm1, ymm2,
ymm3/m256

Y6+Y7 X6+X7 Y2+Y3 X2+X3DEST

SRC1 X0

SRC2

X1X2X3X4X5X6X7

Y0Y1Y2Y3Y4Y5Y6Y7

X0+X1Y4+Y5 X4+X5 Y0+Y1
Ref. # 319433-004 143

INSTRUCTION SET REFERENCE
VEX.128 encoded version: the first source operand second source operand is an XMM
register or 128-bit memory location. The destination operand is an XMM register. The
upper bits (255:128) of the corresponding YMM register destination are zeroed.

128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (255:128) of the corresponding YMM register destination are
unmodified.

Operation
VHADDPS (VEX.256 encoded version)
DEST[31:0] Å SRC1[63:32] + SRC1[31:0]
DEST[63:32] Å SRC1[127:96] + SRC1[95:64]
DEST[95:64] Å SRC2[63:32] + SRC2[31:0]
DEST[127:96] Å SRC2[127:96] + SRC2[95:64]
DEST[159:128] Å SRC1[191:160] + SRC1[159:128]
DEST[191:160] Å SRC1[255:224] + SRC1[223:192]
DEST[223:192] Å SRC2[191:160] + SRC2[159:128]
DEST[255:224] Å SRC2[255:224] + SRC2[223:192]

VHADDPS (VEX.128 encoded version)
DEST[31:0] Å SRC1[63:32] + SRC1[31:0]
DEST[63:32] Å SRC1[127:96] + SRC1[95:64]
DEST[95:64] Å SRC2[63:32] + SRC2[31:0]
DEST[127:96] Å SRC2[127:96] + SRC2[95:64]
DEST[255:128] Å 0

HADDPS (128-bit Legacy SSE version)
DEST[31:0] Å SRC1[63:32] + SRC1[31:0]
DEST[63:32] Å SRC1[127:96] + SRC1[95:64]
DEST[95:64] Å SRC2[63:32] + SRC2[31:0]
DEST[127:96] Å SRC2[127:96] + SRC2[95:64]
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VHADDPS __m256 _mm256_hadd_ps (__m256 a, __m256 b);

HADDPS __m128 _mm_hadd_ps (__m128 a, __m128 b);

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal
144 Ref. # 319433-004

INSTRUCTION SET REFERENCE
Other Exceptions
See Exceptions Type 2
Ref. # 319433-004 145

INSTRUCTION SET REFERENCE
HSUBPD- Subtract Horizontal Double Precision Floating-Point Values

Description
Subtract pairs of adjacent double-precision floating-point values in the first source
operand and second source operand and stores results in the destination.

Figure 5-12. VHSUBPD operation

VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 7D /r V/V SSE3 Horizontal subtract packed dou-
ble-precision floating-point val-
ues from xmm1 and xmm2/mem

HSUBPD xmm1, xmm2/m128

VEX.NDS.128.66.0F 7D /r V/V AVX Horizontal subtract packed dou-
ble-precision floating-point val-
ues from xmm2 and xmm3/mem

VHSUBPD xmm1,xmm2,
xmm3/m128

VEX.NDS.256.66.0F 7D /r V/V AVX Horizontal subtract packed dou-
ble-precision floating-point val-
ues from ymm2 and ymm3/mem

VHSUBPD ymm1, ymm2,
ymm3/m256

Y2 - Y3 X2 - X3 Y0 - Y1 X0 - X1DEST

X3 X2SRC1 X1 X0

Y3 Y2 Y1 Y0SRC2
146 Ref. # 319433-004

INSTRUCTION SET REFERENCE
VEX.128 encoded version: the first source operand second source operand is an XMM
register or 128-bit memory location. The destination operand is an XMM register. The
upper bits (255:128) of the corresponding YMM register destination are zeroed.

128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (255:128) of the corresponding YMM register destination are
unmodified.

Operation
VHSUBPD (VEX.256 encoded version)
DEST[63:0] Å SRC1[63:0] - SRC1[127:64]
DEST[127:64] Å SRC2[63:0] - SRC2[127:64]
DEST[191:128] Å SRC1[191:128] - SRC1[255:192]
DEST[255:192] Å SRC2[191:128] - SRC2[255:192]

VHSUBPD (VEX.128 encoded version)
DEST[63:0] Å SRC1[63:0] - SRC1[127:64]
DEST[127:64] Å SRC2[63:0] - SRC2[127:64]
DEST[255:128] Å 0

HSUBPD (128-bit Legacy SSE version)
DEST[63:0] Å SRC1[63:0] - SRC1[127:64]
DEST[127:64] Å SRC2[63:0] - SRC2[127:64]
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VHSUBPD __m256d _mm256_hsub_pd (__m256d a, __m256d b);

HSUBPD __m128d _mm_hsub_pd (__m128d a, __m128d b);

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions
See Exceptions Type 2
Ref. # 319433-004 147

INSTRUCTION SET REFERENCE
HSUBPS- Subtract Horizontal Single Precision Floating-Point Values

Description
Subtract pairs of adjacent single-precision floating-point values in the first source
operand and second source operand and stores results in the destination.

Figure 5-13. VHSUBPS operation

VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

F2 0F 7D /r V/V SSE3 Horizontal subtract packed single-
precision floating-point values
from xmm1 and xmm2/mem

HSUBPS xmm1, xmm2/m128

VEX.NDS.128.F2.0F 7D /r V/V AVX Horizontal subtract packed single-
precision floating-point values
from xmm2 and xmm3/mem

VHSUBPS xmm1, xmm2,
xmm3/m128

VEX.NDS.256.F2.0F 7D /r V/V AVX Horizontal subtract packed single-
precision floating-point values
from ymm2 and ymm3/mem

VHSUBPS ymm1, ymm2,
ymm3/m256

Y6-Y7 X6-X7 Y2-Y3 X2-X3DEST

SRC1 X0

SRC2

X1X2X3X4X5X6X7

Y0Y1Y2Y3Y4Y5Y6Y7

X0-X1Y4-Y5 X4-X5 Y0-Y1
148 Ref. # 319433-004

INSTRUCTION SET REFERENCE
VEX.128 encoded version: the first source operand second source operand is an XMM
register or 128-bit memory location. The destination operand is an XMM register. The
upper bits (255:128) of the corresponding YMM register destination are zeroed.

128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (255:128) of the corresponding YMM register destination are
unmodified.

Operation
VHSUBPS (VEX.256 encoded version)
DEST[31:0] Å SRC1[31:0] - SRC1[63:32]
DEST[63:32] Å SRC1[95:64] - SRC1[127:96]
DEST[95:64] Å SRC2[31:0] - SRC2[63:32]
DEST[127:96] Å SRC2[95:64] - SRC2[127:96]
DEST[159:128] Å SRC1[159:128] - SRC1[191:160]
DEST[191:160] Å SRC1[223:192] - SRC1[255:224]
DEST[223:192] Å SRC2[159:128] - SRC2[191:160]
DEST[255:224] Å SRC2[223:192] - SRC2[255:224]

VHSUBPS (VEX.128 encoded version)
DEST[31:0] Å SRC1[31:0] - SRC1[63:32]
DEST[63:32] Å SRC1[95:64] - SRC1[127:96]
DEST[95:64] Å SRC2[31:0] - SRC2[63:32]
DEST[127:96] Å SRC2[95:64] - SRC2[127:96]
DEST[255:128] Å 0

HSUBPS (128-bit Legacy SSE version)
DEST[31:0] Å SRC1[31:0] - SRC1[63:32]
DEST[63:32] Å SRC1[95:64] - SRC1[127:96]
DEST[95:64] Å SRC2[31:0] - SRC2[63:32]
DEST[127:96] Å SRC2[95:64] - SRC2[127:96]
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VHSUBPS __m256 _mm256_hsub_ps (__m256 a, __m256 b);

HSUBPS __m128 _mm_hsub_ps (__m128 a, __m128 b);

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal
Ref. # 319433-004 149

INSTRUCTION SET REFERENCE
Other Exceptions
See Exceptions Type 2
150 Ref. # 319433-004

INSTRUCTION SET REFERENCE
VINSERTF128- Insert packed floating-point values

Description
Performs an insertion of 128-bits of packed floating-point values from the second
source operand (third operand) into an the destination operand (first operand) at an
128-bit offset from imm8[0]. The remaining portions of the destination are written
by the corresponding fields of the first source operand (second operand). The second
source operand can be either an XMM register or a 128-bit memory location.

The high 7 bits of the immediate are ignored.

Operation
INSERTF128
TEMP[255:0] Å SRC1[255:0]
CASE (imm8[0]) OF

0: TEMP[127:0] Å SRC2[127:0]
1: TEMP[255:128] Å SRC2[127:0]

ESAC
DEST ÅTEMP

Intel C/C++ Compiler Intrinsic Equivalent

INSERTF128 __m256 _mm256_insertf128_ps (__m256 a, __m128 b, int offset);

INSERTF128 __m256d _mm256_insertf128_pd (__m256d a, __m128d b, int offset);

INSERTF128 __m256i _mm256_insertf128_si256 (__m256i a, __m128i b, int offset);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 6

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

VEX.NDS.256.66.0F3A 18 /r ib V/V AVX Insert 128-bits of packed floating-
point values from xmm3/mem and
the remaining values from ymm2
into ymm1

VINSERTF128 ymm1, ymm2,
xmm3/m128, imm8
Ref. # 319433-004 151

INSTRUCTION SET REFERENCE
INSERTPS- Insert Scalar Single Precision Floating-Point Value

Description
(register source form)

Select a single precision floating-point element from second source as indicated by
Count_S bits of the immediate operand and insert it into the first source at the loca-
tion indicated by the Count_D bits of the immediate operand. Store in the destination
and zero out destination elements based on the ZMask bits of the immediate
operand.

(memory source form)

Load a floating-point element from a 32-bit memory location and insert it into the
first source at the location indicated by the Count_D bits of the immediate operand.
Store in the destination and zero out destination elements based on the ZMask bits
of the immediate operand.

128-bit Legacy SSE version: The first source register is an XMM register. The second
source operand is either an XMM register or a 32-bit memory location. The destina-
tion is not distinct from the first source XMM register and the upper bits (255:128) of
the corresponding YMM register destination are unmodified.

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 3A 21 /r ib V/V SSE4_1 Insert a single precision floating
point value selected by imm8 from
xmm2/m32 into xmm1 at the spec-
ified destination element specified
by imm8 and zero out destination
elements in xmm1 as indicated in
imm8.

INSERTPS xmm1, xmm2/m32, imm8

VEX.NDS.128.66.0F3A 21 /r ib V/V AVX Insert a single precision floating
point value selected by imm8 from
xmm3/m32 and merge into xmm2
at the specified destination ele-
ment specified by imm8 and zero
out destination elements in xmm1
as indicated in imm8.

VINSERTPS xmm1, xmm2,
xmm3/m32, imm8
152 Ref. # 319433-004

INSTRUCTION SET REFERENCE
VEX.128 encoded version. The destination and first source register is an XMM
register. The second source operand is either an XMM register or a 32-bit memory
location. The upper bits (255:128) of the corresponding YMM register destination are
zeroed.

If VINSERTPS is encoded with VEX.L= 1, an attempt to execute the instruction
encoded with VEX.L= 1 will cause an #UD exception.

Operation
VINSERTPS (VEX.128 encoded version)
IF (SRC == REG) THEN COUNT_S Å imm8[7:6]

ELSE COUNT_S Å 0
COUNT_D Å imm8[5:4]
ZMASK Å imm8[3:0]
CASE (COUNT_S) OF

0: TMP Å SRC2[31:0]
1: TMP Å SRC2[63:32]
2: TMP Å SRC2[95:64]
3: TMP Å SRC2[127:96]

ESAC;
CASE (COUNT_D) OF

0: TMP2[31:0] Å TMP
TMP2[127:32] Å SRC1[127:32]

1: TMP2[63:32] Å TMP
TMP2[31:0] Å SRC1[31:0]
TMP2[127:64] Å SRC1[127:64]

2: TMP2[95:64] Å TMP
TMP2[63:0] Å SRC1[63:0]
TMP2[127:96] Å SRC1[127:96]

3: TMP2[127:96] Å TMP
TMP2[95:0] Å SRC1[95:0]

ESAC;

IF (ZMASK[0] == 1) THEN DEST[31:0] Å 00000000H
ELSE DEST[31:0] Å TMP2[31:0]

IF (ZMASK[1] == 1) THEN DEST[63:32] Å 00000000H
ELSE DEST[63:32] Å TMP2[63:32]

IF (ZMASK[2] == 1) THEN DEST[95:64] Å 00000000H
ELSE DEST[95:64] Å TMP2[95:64]

IF (ZMASK[3] == 1) THEN DEST[127:96] Å 00000000H
ELSE DEST[127:96] Å TMP2[127:96]

DEST[255:128] Å 0
Ref. # 319433-004 153

INSTRUCTION SET REFERENCE
INSERTPS (128-bit Legacy SSE version)
IF (SRC == REG) THEN COUNT_S Å imm8[7:6]

ELSE COUNT_S Å 0
COUNT_D Å imm8[5:4]
ZMASK Å imm8[3:0]
CASE (COUNT_S) OF

0: TMP Å SRC[31:0]
1: TMP Å SRC[63:32]
2: TMP Å SRC[95:64]
3: TMP Å SRC[127:96]

ESAC;

CASE (COUNT_D) OF
0: TMP2[31:0] Å TMP

TMP2[127:32] Å DEST[127:32]
1: TMP2[63:32] Å TMP

TMP2[31:0] Å DEST[31:0]
TMP2[127:64] Å DEST[127:64]

2: TMP2[95:64] Å TMP
TMP2[63:0] Å DEST[63:0]
TMP2[127:96] Å DEST[127:96]

3: TMP2[127:96] Å TMP
TMP2[95:0] Å DEST[95:0]

ESAC;

IF (ZMASK[0] == 1) THEN DEST[31:0] Å 00000000H
ELSE DEST[31:0] Å TMP2[31:0]

IF (ZMASK[1] == 1) THEN DEST[63:32] Å 00000000H
ELSE DEST[63:32] Å TMP2[63:32]

IF (ZMASK[2] == 1) THEN DEST[95:64] Å 00000000H
ELSE DEST[95:64] Å TMP2[95:64]

IF (ZMASK[3] == 1) THEN DEST[127:96] Å 00000000H
ELSE DEST[127:96] Å TMP2[127:96]

DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

INSETRTPS __m128 _mm_insert_ps(__m128 dst, __m128 src, const int nidx);

SIMD Floating-Point Exceptions
None
154 Ref. # 319433-004

INSTRUCTION SET REFERENCE
Other Exceptions
See Exceptions Type 5
Ref. # 319433-004 155

INSTRUCTION SET REFERENCE
LDDQU- Move Unaligned Integer

Description
The instruction is functionally similar to VMOVDQU YMM, m256 for loading from
memory. That is: 32 bytes of data starting at an address specified by the source
memory operand (second operand) are fetched from memory and placed in a desti-
nation register (first operand). The source operand need not be aligned on a 32-byte
boundary. Up to 64 bytes may be loaded from memory; this is implementation
dependent.

This instruction may improve performance relative to VMOVDQU if the source
operand crosses a cache line boundary. In situations that require the data loaded by
VLDDQU be modified and stored to the same location, use VMOVDQU or VMOVDQA
instead of VLDDQU. To move double quadwords to or from memory locations that are
known to be aligned on 32-byte boundaries, use the VMOVDQA instruction.

Implementation Notes

• If the source is aligned to a 32-byte boundary, based on the implementation, the 32
bytes may be loaded more than once. For that reason, the usage of VLDDQU should
be avoided when using uncached or write-combining (WC) memory regions. For
uncached or WC memory regions, keep using VMOVDQU.

• This instruction is a replacement for VMOVDQU (load) in situations where cache line
splits significantly affect performance. It should not be used in situations where
store-load forwarding is performance critical. If performance of store-load
forwarding is critical to the application, use VMOVDQA store-load pairs when data is
256-bit aligned or VMOVDQU store-load pairs when data is 256-bit unaligned.

• If the memory address is not aligned on 32-byte boundary, some implementations
may load up to 64 bytes and return 32 bytes in the destination. Some processor
implementations may issue multiple loads to access the appropriate 32 bytes. Devel-
opers of multi-threaded or multi-processor software should be aware that on these
processors the loads will be performed in a non-atomic way.

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

F2 0F F0 /r V/V SSE3 Load unaligned packed integer
values from mem to xmm1 LDDQU xmm1, m128

VEX.128.F2.0F F0 /r V/V AVX Load unaligned packed integer
values from mem to xmm1 VLDDQU xmm1, m128

VEX.256.F2.0F F0 /r V/V AVX Load unaligned packed integer
values from mem to ymm1 VLDDQU ymm1, m256
156 Ref. # 319433-004

INSTRUCTION SET REFERENCE
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise
instructions will #UD.

Operation
VLDDQU (VEX.256 encoded version)
DEST[255:0] Å SRC[255:0]

VLDDQU (VEX.128 encoded version)
DEST[127:0] Å SRC[127:0]
DEST[255:128] Å 0

LDDQU (128-bit Legacy SSE version)
DEST[127:0] Å SRC[127:0]
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

LDDQU __m128i _mm_lddqu_si128 (__m128i * p);

LDDQU __m256i _mm256_lddqu_si256 (__m256i * p);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4

Note treatment of #AC varies
Ref. # 319433-004 157

INSTRUCTION SET REFERENCE
VLDMXCSR—Load MXCSR Register

Description

Loads the source operand into the MXCSR control/status register. The source
operand is a 32-bit memory location.

The VLDMXCSR instruction is typically used in conjunction with the VSTMXCSR
instruction for software that use instruction set extensions operating on the YMM
state.

The default MXCSR value at reset is 1F80H.

If a VLDMXCSR instruction clears a SIMD floating-point exception mask bit and sets
the corresponding exception flag bit, a SIMD floating-point exception will not be
immediately generated. The exception will be generated only upon the execution of
the next instruction that meets both conditions below:

• the instruction must operate on an XMM or YMM register operand,

• the instruction causes that particular SIMD floating-point exception to be
reported.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

If VLDMXCSR is encoded with VEX.L= 1, an attempt to execute the instruction
encoded with VEX.L= 1 will cause an #UD exception.

Operation

MXCSR ← m32;

C/C++ Compiler Intrinsic Equivalent

_mm_setcsr(unsigned int i)

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 9; additionally

#GP For an attempt to set reserved bits in MXCSR

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature Flag

Description

VEX.128.0F AE /2
VLDMXCSR m32

V/V AVX Load MXCSR register from m32.
158 Ref. # 319433-004

INSTRUCTION SET REFERENCE
MASKMOVDQU- Store Selected Bytes of Double Quadword with NT Hint

Description
Stores selected bytes from the source operand (first operand) into an 128-bit
memory location. The mask operand (second operand) selects which bytes from the
source operand are written to memory. The source and mask operands are XMM
registers. The location of the first byte of the memory location is specified by
DI/EDI/RDI and DS registers. The memory location does not need to be aligned on a
natural boundary. (The size of the store address depends on the address-size
attribute.)

The most significant bit in each byte of the mask operand determines whether the
corresponding byte in the source operand is written to the corresponding byte loca-
tion in memory: 0 indicates no write and 1 indicates write.

The MASKMOVDQU instruction generates a non-temporal hint to the processor to
minimize cache pollution. The non-temporal hint is implemented by using a write
combining (WC) memory type protocol (see “Caching of Temporal vs. Non-Temporal
Data” in Chapter 10, of the IA-32 Intel® Architecture Software Developer’s Manual,
Volume 1). Because the WC protocol uses a weakly-ordered memory consistency
model, a fencing operation implemented with the SFENCE or MFENCE instruction
should be used in conjunction with MASKMOVDQU instructions if multiple processors
might use different memory types to read/write the destination memory locations.

Behavior with a mask of all 0s is as follows:

• No data will be written to memory.

• Signaling of breakpoints (code or data) is not guaranteed; different processor
implementations may signal or not signal these breakpoints.

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F F7 /r V/V SSE2 Selectively write bytes from
xmm1 to memory location using
the byte mask in xmm2. The
default memory location is
specified by DS:DI/EDI/RDI

MASKMOVDQU xmm1, xmm2

VEX.128.66.0F F7 /r V/V AVX Selectively write bytes from
xmm1 to memory location using
the byte mask in xmm2. The
default memory location is
specified by DS:DI/EDI/RDI

VMASKMOVDQU xmm1, xmm2
Ref. # 319433-004 159

INSTRUCTION SET REFERENCE
• Exceptions associated with addressing memory and page faults may still be
signaled (implementation dependent).

• If the destination memory region is mapped as UC or WP, enforcement of associ-
ated semantics for these memory types is not guaranteed (that is, is reserved) and is
implementation- specific.

Instruction behavior on alignment check reporting with mask bits of less than all 1s
are the same as with mask bits of all 1s.

The MASKMOVDQU instruction can be used to improve performance of algorithms
that need to merge data on a byte-by-byte basis. MASKMOVDQU should not cause a
read for ownership; doing so generates unnecessary bandwidth since data is to be
written directly using the bytemask without allocating old data prior to the store.

Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise
instructions will #UD.

If VMASKMOVDQU is encoded with VEX.L= 1, an attempt to execute the instruction
encoded with VEX.L= 1 will cause an #UD exception.

Operation
MASKMOVDQU
IF (MASK[7] = 1)

THEN DEST[DS:DI/EDI/RDI] Å SRC[7:0] ELSE (* Memory location unchanged *); FI;
IF (MASK[15] = 1)

THEN DEST[DS:DI/EDI/RDI +1] Å SRC[15:8] ELSE (* Memory location unchanged *); FI;
(* Repeat operation for 3rd through 14th bytes in source operand *)
IF (MASK[127] = 1)

THEN DEST[DS:DI/EDI/RDI+15] Å SRC[127:120] ELSE (* Memory location unchanged *); FI;

Intel C/C++ Compiler Intrinsic Equivalent

void _mm_maskmoveu_si128(__m128i d, __m128i n, char * p)

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4; additionally

#UD If VEX.L= 1.

If VEX.vvvv != 1111B.
160 Ref. # 319433-004

INSTRUCTION SET REFERENCE
VMASKMOV- Conditional SIMD Packed Loads and Stores

Description
Conditionally moves packed data elements from the second source operand into the
corresponding data element of the destination operand, depending on the mask bits

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

VEX.NDS.128.66.0F38 2C /r V/V AVX Conditionally load packed single-
precision values from m128 using
mask in xmm2 and store in xmm1

VMASKMOVPS xmm1, xmm2,
m128

VEX.NDS.256.66.0F38 2C /r V/V AVX Conditionally load packed single-
precision values from m256 using
mask in ymm2 and store in ymm1

VMASKMOVPS ymm1, ymm2,
m256

VEX.NDS.128.66.0F38 2D /r V/V AVX Conditionally load packed double-
precision values from m128 using
mask in xmm2 and store in xmm1

VMASKMOVPD xmm1, xmm2,
m128

VEX.NDS.256.66.0F38 2D /r V/V AVX Conditionally load packed double-
precision values from m256 using
mask in ymm2 and store in ymm1

VMASKMOVPD ymm1, ymm2,
m256

VEX.NDS.128.66.0F38 2E /r V/V AVX Conditionally store packed single-
precision values from xmm2 using
mask in xmm1

VMASKMOVPS m128, xmm1,
xmm2

VEX.NDS.256.66.0F38 2E /r V/V AVX Conditionally store packed single-
precision values from ymm2 using
mask in ymm1

VMASKMOVPS m256, ymm1,
ymm2

VEX.NDS.128.66.0F38 2F /r V/V AVX Conditionally store packed dou-
ble-precision values from xmm2
using mask in xmm1

VMASKMOVPD m128, xmm1,
xmm2

VEX.NDS.256.66.0F38 2F /r V/V AVX Conditionally store packed dou-
ble-precision values from ymm2
using mask in ymm1

VMASKMOVPD m256, ymm1,
ymm2
Ref. # 319433-004 161

INSTRUCTION SET REFERENCE
associated with each data element. The mask bits are specified in the first source
operand.

The mask bit for each data element is the most significant bit of that element in the
first source operand. If a mask is 1, the corresponding data element is copied from
the second source operand to the destination operand. If the mask is 0, the corre-
sponding data element is set to zero in the load form of these instructions, and
unmodified in the store form.

The second source operand is a memory address for the load form of these instruc-
tion. The destination operand is a memory address for the store form of these
instructions. The other operands are both XMM registers (for VEX.128 version) or
YMM registers (for VEX.256 version).

Faults occur only due to mask-bit required memory accesses that caused the faults.
Faults will not occur due to referencing any memory location if the corresponding
mask bit for that memory location is 0. For example, no faults will be detected if the
mask bits are all zero.

Unlike previous MASKMOV instructions (MASKMOVQ and MASKMOVDQU), a nontem-
poral hint is not applied to these instructions

Instruction behavior on alignment check reporting with mask bits of less than all 1s
are the same as with mask bits of all 1s.

VMASKMOV should not be used to access memory mapped I/O as the ordering of the
individual loads or stores it does is implementation specific.

In cases where mask bits indicate data should not be loaded or stored paging A and
D bits will be set in an implementation dependent way. However, A and D bits are
always set for pages where data is actually loaded/stored.

Note: for load forms, the first source (the mask) is encoded in VEX.vvvv; the second
source is encoded in rm_field, and the destination register is encoded in reg_field.

Note: for store forms, the first source (the mask) is encoded in VEX.vvvv; the second
source register is encoded in reg_field, and the destination memory location is
encoded in rm_field.

Operation
VMASKMOVPS - 256-bit load
DEST[31:0] Å IF (SRC1[31]) Load_32(mem) ELSE 0
DEST[63:32] Å IF (SRC1[63]) Load_32(mem + 4) ELSE 0
DEST[95:64] Å IF (SRC1[95]) Load_32(mem + 8) ELSE 0
DEST[127:96] Å IF (SRC1[127]) Load_32(mem + 12) ELSE 0
DEST[159:128] Å IF (SRC1[159]) Load_32(mem + 16) ELSE 0
DEST[191:160] Å IF (SRC1[191]) Load_32(mem + 20) ELSE 0
DEST[223:192] Å IF (SRC1[223]) Load_32(mem + 24) ELSE 0
DEST[255:224] Å IF (SRC1[255]) Load_32(mem + 28) ELSE 0

VMASKMOVPS -128-bit load
DEST[31:0] Å IF (SRC1[31]) Load_32(mem) ELSE 0
162 Ref. # 319433-004

INSTRUCTION SET REFERENCE
DEST[63:32] Å IF (SRC1[63]) Load_32(mem + 4) ELSE 0
DEST[95:64] Å IF (SRC1[95]) Load_32(mem + 8) ELSE 0
DEST[127:97] Å IF (SRC1[127]) Load_32(mem + 12) ELSE 0
DEST[255:128] Å 0

VMASKMOVPD - 256-bit load
DEST[63:0] Å IF (SRC1[63]) Load_64(mem) ELSE 0
DEST[127:64] Å IF (SRC1[127]) Load_64(mem + 8) ELSE 0
DEST[195:128] Å IF (SRC1[191]) Load_64(mem + 16) ELSE 0
DEST[255:196] Å IF (SRC1[255]) Load_64(mem + 24) ELSE 0

VMASKMOVPD - 128-bit load
DEST[63:0] Å IF (SRC1[63]) Load_64(mem) ELSE 0
DEST[127:64] Å IF (SRC1[127]) Load_64(mem + 16) ELSE 0
DEST[255:128] Å 0

VMASKMOVPS - 256-bit store
IF (SRC1[31]) DEST[31:0] Å SRC2[31:0]
IF (SRC1[63]) DEST[63:32] Å SRC2[63:32]
IF (SRC1[95]) DEST[95:64] Å SRC2[95:64]
IF (SRC1[127]) DEST[127:96] Å SRC2[127:96]
IF (SRC1[159]) DEST[159:128] ÅSRC2[159:128]
IF (SRC1[191]) DEST[191:160] Å SRC2[191:160]
IF (SRC1[223]) DEST[223:192] Å SRC2[223:192]
IF (SRC1[255]) DEST[255:224] Å SRC2[255:224]

VMASKMOVPS - 128-bit store
IF (SRC1[31]) DEST[31:0] Å SRC2[31:0]
IF (SRC1[63]) DEST[63:32] Å SRC2[63:32]
IF (SRC1[95]) DEST[95:64] Å SRC2[95:64]
IF (SRC1[127]) DEST[127:96] Å SRC2[127:96]

VMASKMOVPD - 256-bit store
IF (SRC1[63]) DEST[63:0] Å SRC2[63:0]
IF (SRC1[127]) DEST[127:64] ÅSRC2[127:64]
IF (SRC1[191]) DEST[191:128] Å SRC2[191:128]
IF (SRC1[255]) DEST[255:192] Å SRC2[255:192]

VMASKMOVPD - 128-bit store
IF (SRC1[63]) DEST[63:0] Å SRC2[63:0]
IF (SRC1[127]) DEST[127:64] ÅSRC2[127:64]
Ref. # 319433-004 163

INSTRUCTION SET REFERENCE
Intel C/C++ Compiler Intrinsic Equivalent

__m256 _mm256_maskload_ps(float const *a, __m256i mask)

void _mm256_maskstore_ps(float *a, __m256i mask, __m256 b)

__m256d _mm256_maskload_pd(double *a, __m256i mask);

void _mm256_maskstore_pd(double *a, __m256i mask, __m256d b);

__m128 _mm256_maskload_ps(float const *a, __m128i mask)

void _mm256_maskstore_ps(float *a, __m128i mask, __m128 b)

__m128d _mm256_maskload_pd(double *a, __m128i mask);

void _mm256_maskstore_pd(double *a, __m128i mask, __m128d b);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 6 (No AC# reported for any mask bit combinations)
164 Ref. # 319433-004

INSTRUCTION SET REFERENCE
MAXPD- Maximum of Packed Double Precision Floating-Point Values

Description
Performs an SIMD compare of the packed double-precision floating-point values in
the first source operand and the second source operand and returns the maximum
value for each pair of values to the destination operand.

If the values being compared are both 0.0s (of either sign), the value in the second
operand (source operand) is returned. If a value in the second operand is an SNaN,
that SNaN is forwarded unchanged to the destination (that is, a QNaN version of the
SNaN is not returned).

If only one value is a NaN (SNaN or QNaN) for this instruction, the second operand
(source operand), either a NaN or a valid floating-point value, is written to the result.
If instead of this behavior, it is required that the NaN source operand (from either the
first or second operand) be returned, the action of MAXPD can be emulated using a
sequence of instructions, such as, a comparison followed by AND, ANDN and OR.

VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

VEX.128 encoded version: the first source operand second source operand is an XMM
register or 128-bit memory location. The destination operand is an XMM register. The
upper bits (255:128) of the corresponding YMM register destination are zeroed.

128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (255:128) of the corresponding YMM register destination are
unmodified.

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 5F /r V/V SSE2 Return the maximum double-
precision floating-point values
between xmm1 and xmm2/mem

MAXPD xmm1, xmm2/m128

VEX.NDS.128.66.0F 5F /r V/V AVX Return the maximum double-
precision floating-point values
between xmm2 and xmm3/mem

VMAXPD xmm1,xmm2,
xmm3/m128

VEX.NDS.256.66.0F 5F /r V/V AVX Return the maximum packed
double-precision floating-point
values between ymm2 and
ymm3/mem

VMAXPD ymm1, ymm2,
ymm3/m256
Ref. # 319433-004 165

INSTRUCTION SET REFERENCE
Operation
MAX(SRC1, SRC2)
{

IF ((SRC1 = 0.0) and (SRC2 = 0.0)) THEN DEST Å SRC2;
ELSE IF (SRC1 = SNaN) THEN DEST Å SRC2; FI;
ELSE IF (SRC2 = SNaN) THEN DEST Å SRC2; FI;
ELSE IF (SRC1 > SRC2) THEN DEST Å SRC1;
ELSE DEST Å SRC2;

FI;
}

VMAXPD (VEX.256 encoded version)
DEST[63:0] Å MAX(SRC1[63:0], SRC2[63:0])
DEST[127:64] Å MAX(SRC1[127:64], SRC2[127:64])
DEST[191:128] Å MAX(SRC1[191:128], SRC2[191:128])
DEST[255:192] Å MAX(SRC1[255:192], SRC2[255:192])

VMAXPD (VEX.128 encoded version)
DEST[63:0] Å MAX(SRC1[63:0], SRC2[63:0])
DEST[127:64] Å MAX(SRC1[127:64], SRC2[127:64])
DEST[255:128] Å 0

MAXPD (128-bit Legacy SSE version)
DEST[63:0] Å MAX(DEST[63:0], SRC[63:0])
DEST[127:64] Å MAX(DEST[127:64], SRC[127:64])
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VMAXPD __m256d _mm256_max_pd (__m256d a, __m256d b);

(V)MAXPD __m128d _mm_max_pd (__m128d a, __m128d b);

SIMD Floating-Point Exceptions
Invalid (including QNaN Source Operand), Denormal

Other Exceptions
See Exceptions Type 2
166 Ref. # 319433-004

INSTRUCTION SET REFERENCE
MAXPS- Minimum of Packed Single Precision Floating-Point Values

Description
Performs an SIMD compare of the packed single-precision floating-point values in the
first source operand and the second source operand and returns the maximum value
for each pair of values to the destination operand.

If the values being compared are both 0.0s (of either sign), the value in the second
operand (source operand) is returned. If a value in the second operand is an SNaN,
that SNaN is forwarded unchanged to the destination (that is, a QNaN version of the
SNaN is not returned).

If only one value is a NaN (SNaN or QNaN) for this instruction, the second operand
(source operand), either a NaN or a valid floating-point value, is written to the result.
If instead of this behavior, it is required that the NaN source operand (from either the
first or second operand) be returned, the action of MAXPS can be emulated using a
sequence of instructions, such as, a comparison followed by AND, ANDN and OR.

VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

VEX.128 encoded version: the first source operand second source operand is an XMM
register or 128-bit memory location. The destination operand is an XMM register. The
upper bits (255:128) of the corresponding YMM register destination are zeroed.

128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (255:128) of the corresponding YMM register destination are
unmodified.

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 5F /r V/V SSE Return the maximum single-preci-
sion floating-point values between
xmm1 and xmm2/mem

MAXPS xmm1, xmm2/m128

VEX.NDS.128.0F 5F /r V/V AVX Return the maximum single-preci-
sion floating-point values between
xmm2 and xmm3/mem

VMAXPS xmm1,xmm2,
xmm3/m128

VEX.NDS.256.0F 5F /r V/V AVX Return the maximum single dou-
ble-precision floating-point val-
ues between ymm2 and
ymm3/mem

VMAXPS ymm1, ymm2,
ymm3/m256
Ref. # 319433-004 167

INSTRUCTION SET REFERENCE
Operation
MAX(SRC1, SRC2)
{

IF ((SRC1 = 0.0) and (SRC2 = 0.0)) THEN DEST Å SRC2;
ELSE IF (SRC1 = SNaN) THEN DEST Å SRC2; FI;
ELSE IF SRC2 = SNaN) THEN DEST Å SRC2; FI;
ELSE IF (SRC1 > SRC2) THEN DEST Å SRC1;
ELSE DEST Å SRC2;

FI;
}

VMAXPS (VEX.256 encoded version)
DEST[31:0] Å MAX(SRC1[31:0], SRC2[31:0])
DEST[63:32] Å MAX(SRC1[63:32], SRC2[63:32])
DEST[95:64] Å MAX(SRC1[95:64], SRC2[95:64])
DEST[127:96] Å MAX(SRC1[127:96], SRC2[127:96])
DEST[159:128] Å MAX(SRC1[159:128], SRC2[159:128])
DEST[191:160] Å MAX(SRC1[191:160], SRC2[191:160])
DEST[223:192] Å MAX(SRC1[223:192], SRC2[223:192])
DEST[255:224] Å MAX(SRC1[255:224], SRC2[255:224])

VMAXPS (VEX.128 encoded version)
DEST[31:0] Å MAX(SRC1[31:0], SRC2[31:0])
DEST[63:32] Å MAX(SRC1[63:32], SRC2[63:32])
DEST[95:64] Å MAX(SRC1[95:64], SRC2[95:64])
DEST[127:96] Å MAX(SRC1[127:96], SRC2[127:96])
DEST[255:128] Å 0

MAXPS (128-bit Legacy SSE version)
DEST[31:0] Å MAX(DEST[31:0], SRC[31:0])
DEST[63:32] Å MAX(DEST[63:32], SRC[63:32])
DEST[95:64] Å MAX(DEST[95:64], SRC[95:64])
DEST[127:96] Å MAX(DEST[127:96], SRC[127:96])
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VMAXPS __m256 _mm256_max_ps (__m256 a, __m256 b);

MAXPS __m128 _mm_max_ps (__m128 a, __m128 b);
168 Ref. # 319433-004

INSTRUCTION SET REFERENCE
SIMD Floating-Point Exceptions
Invalid (including QNaN Source Operand), Denormal

Other Exceptions
See Exceptions Type 2
Ref. # 319433-004 169

INSTRUCTION SET REFERENCE
MAXSD- Return Maximum Scalar Double-Precision Floating-Point Value

Description
Compares the low double-precision floating-point values in the first source operand
and second the source operand, and returns the maximum value to the low quad-
word of the destination operand. The second source operand can be an XMM register
or a 64-bit memory location. The first source and destination operands are XMM
registers. When the second source operand is a memory operand, only 64 bits are
accessed. The high quadword of the destination operand is copied from the same bits
of first source operand.

If the values being compared are both 0.0s (of either sign), the value in the second
source operand is returned. If a value in the second source operand is an SNaN, that
SNaN is returned unchanged to the destination (that is, a QNaN version of the SNaN
is not returned).

If only one value is a NaN (SNaN or QNaN) for this instruction, the second source
operand, either a NaN or a valid floating-point value, is written to the result. If
instead of this behavior, it is required that the NaN of either source operand be
returned, the action of MAXSD can be emulated using a sequence of instructions,
such as, a comparison followed by AND, ANDN and OR.

The second source operand can be an XMM register or a 64-bit memory location. The
first source and destination operands are XMM registers.

128-bit Legacy SSE version: The destination and first source operand are the same.
Bits (255:64) of the corresponding YMM destination register remain unchanged.

VEX.128 encoded version: Bits (127:64) of the XMM register destination are copied
from corresponding bits in the first source operand. Bits (255:128) of the destination
YMM register are zeroed.

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

F2 0F 5F /r V/V SSE2 Return the maximum scalar
double-precision floating-point
value between xmm2/mem64 and
xmm1.

MAXSD xmm1, xmm2/m64

VEX.NDS.128.F2.0F 5F /r V/V AVX Return the maximum scalar
double-precision floating-point
value between xmm3/mem64 and
xmm2.

VMAXSD xmm1, xmm2, xmm3/m64
170 Ref. # 319433-004

INSTRUCTION SET REFERENCE
Software should ensure VMAXSD is encoded with VEX.L=0. Encoding VMAXSD with
VEX.L=1 may encounter unpredictable behavior across different processor genera-
tions.

Operation
MAX(SRC1, SRC2)
{

IF ((SRC1 = 0.0) and (SRC2 = 0.0)) THEN DEST Å SRC2;
ELSE IF (SRC1 = SNaN) THEN DEST Å SRC2; FI;
ELSE IF SRC2 = SNaN) THEN DEST Å SRC2; FI;
ELSE IF (SRC1 > SRC2) THEN DEST Å SRC1;
ELSE DEST Å SRC2;

FI;
}

VMAXSD (VEX.128 encoded version)
DEST[63:0] ÅMAX(SRC1[63:0], SRC2[63:0])
DEST[127:64] ÅSRC1[127:64]
DEST[255:128] Å 0

MAXSD (128-bit Legacy SSE version)
DEST[63:0] ÅMAX(DEST[63:0], SRC[63:0])
DEST[255:64] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

MAXSD __m128d _mm_max_sd(__m128d a, __m128d b)

SIMD Floating-Point Exceptions
Invalid (Including QNaN Source Operand), Denormal

Other Exceptions
See Exceptions Type 3
Ref. # 319433-004 171

INSTRUCTION SET REFERENCE
MAXSS- Return Maximum Scalar Single-Precision Floating-Point Value

Description
Compares the low single-precision floating-point values in the first source operand
and the second source operand, and returns the maximum value to the low double-
word of the destination operand.

If the values being compared are both 0.0s (of either sign), the value in the second
source operand is returned. If a value in the second source operand is an SNaN, that
SNaN is returned unchanged to the destination (that is, a QNaN version of the SNaN
is not returned).

If only one value is a NaN (SNaN or QNaN) for this instruction, the second source
operand, either a NaN or a valid floating-point value, is written to the result. If
instead of this behavior, it is required that the NaN from either source operand be
returned, the action of MAXSS can be emulated using a sequence of instructions,
such as, a comparison followed by AND, ANDN and OR.

The second source operand can be an XMM register or a 32-bit memory location. The
first source and destination operands are XMM registers.

128-bit Legacy SSE version: The destination and first source operand are the same.
Bits (255:32) of the corresponding YMM destination register remain unchanged.

VEX.128 encoded version: Bits (127:32) of the XMM register destination are copied
from corresponding bits in the first source operand. Bits (255:128) of the destination
YMM register are zeroed.

Software should ensure VMAXSS is encoded with VEX.L=0. Encoding VMAXSS with
VEX.L=1 may encounter unpredictable behavior across different processor genera-
tions.

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

F3 0F 5F /r V/V SSE Return the maximum scalar
single-precision floating-point
value between xmm2/mem32 and
xmm1.

MAXSS xmm1, xmm2/m32

VEX.NDS.128.F3.0F 5F /r V/V AVX Return the maximum scalar
single-precision floating-point
value between xmm3/mem32 and
xmm2.

VMAXSS xmm1, xmm2, xmm3/m32
172 Ref. # 319433-004

INSTRUCTION SET REFERENCE
Operation
MAX(SRC1, SRC2)
{

IF ((SRC1 = 0.0) and (SRC2 = 0.0)) THEN DEST Å SRC2;
ELSE IF (SRC1 = SNaN) THEN DEST Å SRC2; FI;
ELSE IF SRC2 = SNaN) THEN DEST Å SRC2; FI;
ELSE IF (SRC1 > SRC2) THEN DEST Å SRC1;
ELSE DEST Å SRC2;

FI;
}

VMAXSS (VEX.128 encoded version)
DEST[31:0] ÅMAX(SRC1[31:0], SRC2[31:0])
DEST[127:32] ÅSRC1[127:32]
DEST[255:128] Å 0

MAXSS (128-bit Legacy SSE version)
DEST[31:0] ÅMAX(DEST[31:0], SRC[31:0])
DEST[255:32] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

__m128 _mm_max_ss(__m128 a, __m128 b)

SIMD Floating-Point Exceptions
Invalid (Including QNaN Source Operand), Denormal

Other Exceptions
See Exceptions Type 3
Ref. # 319433-004 173

INSTRUCTION SET REFERENCE
MINPD- Minimum of Packed Double Precision Floating-Point Values

Description
Performs an SIMD compare of the packed double-precision floating-point values in
the first source operand and the second source operand and returns the minimum
value for each pair of values to the destination operand.

If the values being compared are both 0.0s (of either sign), the value in the second
operand (source operand) is returned. If a value in the second operand is an SNaN,
that SNaN is forwarded unchanged to the destination (that is, a QNaN version of the
SNaN is not returned).

If only one value is a NaN (SNaN or QNaN) for this instruction, the second operand
(source operand), either a NaN or a valid floating-point value, is written to the result.
If instead of this behavior, it is required that the NaN source operand (from either the
first or second operand) be returned, the action of MINPD can be emulated using a
sequence of instructions, such as, a comparison followed by AND, ANDN and OR.

VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

VEX.128 encoded version: the first source operand second source operand is an XMM
register or 128-bit memory location. The destination operand is an XMM register. The
upper bits (255:128) of the corresponding YMM register destination are zeroed.

128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (255:128) of the corresponding YMM register destination are
unmodified.

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 5D /r V/V SSE2 Return the minimum double-
precision floating-point values
between xmm1 and xmm2/mem

MINPD xmm1, xmm2/m128

VEX.NDS.128.66.0F 5D /r V/V AVX Return the minimum double-
precision floating-point values
between xmm2 and xmm3/mem

VMINPD xmm1,xmm2, xmm3/m128

VEX.NDS.256.66.0F 5D /r V/V AVX Return the minimum packed
double-precision floating-point
values between ymm2 and
ymm3/mem

VMINPD ymm1, ymm2,
ymm3/m256
174 Ref. # 319433-004

INSTRUCTION SET REFERENCE
Operation
MIN(SRC1, SRC2)
{

IF ((SRC1 = 0.0) and (SRC2 = 0.0)) THEN DEST Å SRC2;
ELSE IF (SRC1 = SNaN) THEN DEST Å SRC2; FI;
ELSE IF (SRC2 = SNaN) THEN DEST Å SRC2; FI;
ELSE IF (SRC1 < SRC2) THEN DEST Å SRC1;
ELSE DEST Å SRC2;

FI;
}

VMINPD (VEX.256 encoded version)
DEST[63:0] Å MIN(SRC1[63:0], SRC2[63:0])
DEST[127:64] Å MIN(SRC1[127:64], SRC2[127:64])
DEST[191:128] Å MIN(SRC1[191:128], SRC2[191:128])
DEST[255:192] Å MIN(SRC1[255:192], SRC2[255:192])

VMINPD (VEX.128 encoded version)
DEST[63:0] Å MIN(SRC1[63:0], SRC2[63:0])
DEST[127:64] Å MIN(SRC1[127:64], SRC2[127:64])
DEST[255:128] Å 0

MINPD (128-bit Legacy SSE version)
DEST[63:0] Å MIN(SRC1[63:0], SRC2[63:0])
DEST[127:64] Å MIN(SRC1[127:64], SRC2[127:64])
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VMINPD __m256d _mm256_min_pd (__m256d a, __m256d b);

MINPD __m128d _mm_min_pd (__m128d a, __m128d b);

SIMD Floating-Point Exceptions
Invalid (including QNaN Source Operand), Denormal

Other Exceptions
See Exceptions Type 2
Ref. # 319433-004 175

INSTRUCTION SET REFERENCE
MINPS- Minimum of Packed Single Precision Floating-Point Values

Description
Performs an SIMD compare of the packed single-precision floating-point values in the
first source operand and the second source operand and returns the minimum value
for each pair of values to the destination operand.

If the values being compared are both 0.0s (of either sign), the value in the second
operand (source operand) is returned. If a value in the second operand is an SNaN,
that SNaN is forwarded unchanged to the destination (that is, a QNaN version of the
SNaN is not returned).

If only one value is a NaN (SNaN or QNaN) for this instruction, the second operand
(source operand), either a NaN or a valid floating-point value, is written to the result.
If instead of this behavior, it is required that the NaN source operand (from either the
first or second operand) be returned, the action of MINPS can be emulated using a
sequence of instructions, such as, a comparison followed by AND, ANDN and OR.

VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

VEX.128 encoded version: the first source operand second source operand is an XMM
register or 128-bit memory location. The destination operand is an XMM register. The
upper bits (255:128) of the corresponding YMM register destination are zeroed.

128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (255:128) of the corresponding YMM register destination are
unmodified.

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 5D /r V/V SSE Return the minimum single-
precision floating-point values
between xmm1 and xmm2/mem

MINPS xmm1, xmm2/m128

VEX.NDS.128.0F 5D /r V/V AVX Return the minimum single-
precision floating-point values
between xmm2 and xmm3/mem

VMINPS xmm1,xmm2, xmm3/m128

VEX.NDS.256.0F 5D /r V/V AVX Return the minimum single
double-precision floating-point
values between ymm2 and
ymm3/mem

VMINPS ymm1, ymm2, ymm3/m256
176 Ref. # 319433-004

INSTRUCTION SET REFERENCE
Operation
MIN(SRC1, SRC2)
{

IF ((SRC1 = 0.0) and (SRC2 = 0.0)) THEN DEST Å SRC2;
ELSE IF (SRC1 = SNaN) THEN DEST Å SRC2; FI;
ELSE IF (SRC2 = SNaN) THEN DEST Å SRC2; FI;
ELSE IF (SRC1 < SRC2) THEN DEST Å SRC1;
ELSE DEST Å SRC2;

FI;
}

VMINPS (VEX.256 encoded version)
DEST[31:0] Å MIN(SRC1[31:0], SRC2[31:0])
DEST[63:32] Å MIN(SRC1[63:32], SRC2[63:32])
DEST[95:64] Å MIN(SRC1[95:64], SRC2[95:64])
DEST[127:96] Å MIN(SRC1[127:96], SRC2[127:96])
DEST[159:128] Å MIN(SRC1[159:128], SRC2[159:128])
DEST[191:160] Å MIN(SRC1[191:160], SRC2[191:160])
DEST[223:192] Å MIN(SRC1[223:192], SRC2[223:192])
DEST[255:224] Å MIN(SRC1[255:224], SRC2[255:224])

VMINPS (VEX.128 encoded version)
DEST[31:0] Å MIN(SRC1[31:0], SRC2[31:0])
DEST[63:32] Å MIN(SRC1[63:32], SRC2[63:32])
DEST[95:64] Å MIN(SRC1[95:64], SRC2[95:64])
DEST[127:96] Å MIN(SRC1[127:96], SRC2[127:96])
DEST[255:128] Å 0

MINPS (128-bit Legacy SSE version)
DEST[31:0] Å MIN(SRC1[31:0], SRC2[31:0])
DEST[63:32] Å MIN(SRC1[63:32], SRC2[63:32])
DEST[95:64] Å MIN(SRC1[95:64], SRC2[95:64])
DEST[127:96] Å MIN(SRC1[127:96], SRC2[127:96])
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VMINPS __m256 _mm256_min_ps (__m256 a, __m256 b);

MINPS __m128 _mm_min_ps (__m128 a, __m128 b);
Ref. # 319433-004 177

INSTRUCTION SET REFERENCE
SIMD Floating-Point Exceptions
Invalid (including QNaN Source Operand), Denormal

Other Exceptions
See Exceptions Type 2
178 Ref. # 319433-004

INSTRUCTION SET REFERENCE
MINSD- Return Minimum Scalar Double-Precision Floating-Point Value

Description
Compares the low double-precision floating-point values in the first source operand
and the second source operand, and returns the minimum value to the low quadword
of the destination operand. When the source operand is a memory operand, only the
64 bits are accessed. The high quadword of the destination operand is copied from
the same bits in the first source operand.

If the values being compared are both 0.0s (of either sign), the value in the second
source operand is returned. If a value in the second source operand is an SNaN, that
SNaN is returned unchanged to the destination (that is, a QNaN version of the SNaN
is not returned).

If only one value is a NaN (SNaN or QNaN) for this instruction, the second source
operand, either a NaN or a valid floating-point value, is written to the result. If
instead of this behavior, it is required that the NaN source operand (from either the
first or second source) be returned, the action of MINSD can be emulated using a
sequence of instructions, such as, a comparison followed by AND, ANDN and OR.

The second source operand can be an XMM register or a 64-bit memory location. The
first source and destination operands are XMM registers.

128-bit Legacy SSE version: The destination and first source operand are the same.
Bits (255:64) of the corresponding YMM destination register remain unchanged.

VEX.128 encoded version: Bits (127:64) of the XMM register destination are copied
from corresponding bits in the first source operand. Bits (255:128) of the destination
YMM register are zeroed.

Software should ensure VMINSD is encoded with VEX.L=0. Encoding VMINSD with
VEX.L=1 may encounter unpredictable behavior across different processor genera-
tions.

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

F2 0F 5D /r V/V SSE2 Return the minimum scalar double
precision floating-point value
between xmm2/mem64 and
xmm1.

MINSD xmm1, xmm2/m64

VEX.NDS.128.F2.0F 5D /r V/V AVX Return the minimum scalar double
precision floating-point value
between xmm3/mem64 and
xmm2.

VMINSD xmm1, xmm2, xmm3/m64
Ref. # 319433-004 179

INSTRUCTION SET REFERENCE
Operation
MIN(SRC1, SRC2)
{

IF ((SRC1 = 0.0) and (SRC2 = 0.0)) THEN DEST Å SRC2;
ELSE IF (SRC1 = SNaN) THEN DEST Å SRC2; FI;
ELSE IF SRC2 = SNaN) THEN DEST Å SRC2; FI;
ELSE IF (SRC1 < SRC2) THEN DEST Å SRC1;
ELSE DEST Å SRC2;

FI;
}

MINSD (VEX.128 encoded version)
DEST[63:0] Å MIN(SRC1[63:0], SRC2[63:0])
DEST[127:64] Å SRC1[127:64]
DEST[255:128] Å 0

MINSD (128-bit Legacy SSE version)
DEST[63:0] Å MIN(SRC1[63:0], SRC2[63:0])
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

MINSD __m128d _mm_min_sd(__m128d a, __m128d b)

SIMD Floating-Point Exceptions
Invalid (including QNaN Source Operand), Denormal

Other Exceptions
See Exceptions Type 3
180 Ref. # 319433-004

INSTRUCTION SET REFERENCE
MINSS- Return Minimum Scalar Single-Precision Floating-Point Value

Description
Compares the low single-precision floating-point values in the first source operand
and the second source operand and returns the minimum value to the low double-
word of the destination operand.

If the values being compared are both 0.0s (of either sign), the value in the second
source operand is returned. If a value in the second operand is an SNaN, that SNaN
is returned unchanged to the destination (that is, a QNaN version of the SNaN is not
returned).

If only one value is a NaN (SNaN or QNaN) for this instruction, the second source
operand, either a NaN or a valid floating-point value, is written to the result. If
instead of this behavior, it is required that the NaN in either source operand be
returned, the action of MINSD can be emulated using a sequence of instructions,
such as, a comparison followed by AND, ANDN and OR.

The second source operand can be an XMM register or a 32-bit memory location. The
first source and destination operands are XMM registers.

128-bit Legacy SSE version: The destination and first source operand are the same.
Bits (255:32) of the corresponding YMM destination register remain unchanged.

VEX.128 encoded version: Bits (127:32) of the XMM register destination are copied
from corresponding bits in the first source operand. Bits (255:128) of the destination
YMM register are zeroed.

Software should ensure VMINSD is encoded with VEX.L=0. Encoding VMINSD with
VEX.L=1 may encounter unpredictable behavior across different processor genera-
tions.

Operation
MIN(SRC1, SRC2)

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

F3 0F 5D /r V/V SSE Return the minimum scalar single
precision floating-point value
between xmm2/mem32 and
xmm1.

MINSS xmm1,xmm2/m32

VEX.NDS.128.F3.0F 5D /r V/V AVX Return the minimum scalar single
precision floating-point value
between xmm3/mem32 and
xmm2.

VMINSS xmm1,xmm2, xmm3/m32
Ref. # 319433-004 181

INSTRUCTION SET REFERENCE
{
IF ((SRC1 = 0.0) and (SRC2 = 0.0)) THEN DEST Å SRC2;

ELSE IF (SRC1 = SNaN) THEN DEST Å SRC2; FI;
ELSE IF SRC2 = SNaN) THEN DEST Å SRC2; FI;
ELSE IF (SRC1 < SRC2) THEN DEST Å SRC1;
ELSE DEST Å SRC2;

FI;
}

VMINSS (VEX.128 encoded version)
DEST[31:0] Å MIN(SRC1[31:0], SRC2[31:0])
DEST[127:32] Å SRC1[127:32]
DEST[255:128] Å 0

MINSS (128-bit Legacy SSE version)
DEST[31:0] Å MIN(SRC1[31:0], SRC2[31:0])
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

MINSS __m128 _mm_min_ss(__m128 a, __m128 b)

SIMD Floating-Point Exceptions
Invalid (Including QNaN Source Operand), Denormal

Other Exceptions
See Exceptions Type 3
182 Ref. # 319433-004

INSTRUCTION SET REFERENCE
MOVAPD- Move Aligned Packed Double-Precision Floating-Point Values

Description
Moves 2 or 4 double-precision floating-point values from the source operand (second
operand) to the destination operand (first operand). This instruction can be used to
load an XMM or YMM register from an 128-bit or 256-bit memory location, to store
the contents of an XMM or YMM register into a 128-bit or 256-bit memory location, or
to move data between two XMM or two YMM registers. When the source or destina-
tion operand is a memory operand, the operand must be aligned on a 16-byte (128-
bit version) or 32-byte (VEX.256 encoded version) boundary or a general-protection
exception (#GP) will be generated. To move double-precision floating-point values to
and from unaligned memory locations, use the VMOVUPD instruction.

Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise
instructions will #UD.

VEX.256 encoded version:

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 28 /r V/V SSE2 Move aligned packed double-pre-
cision floating-point values from
xmm2/mem to xmm1

MOVAPD xmm1, xmm2/m128

66 0F 29 /r V/V SSE2 Move aligned packed double-pre-
cision floating-point values from
xmm1 to xmm2/mem

MOVAPD xmm2/m128, xmm1

VEX.128.66.0F 28 /r V/V AVX Move aligned packed double-pre-
cision floating-point values from
xmm2/mem to xmm1

VMOVAPD xmm1, xmm2/m128

VEX.128.66.0F 29 /r V/V AVX Move aligned packed double-pre-
cision floating-point values from
xmm1 to xmm2/mem

VMOVAPD xmm2/m128, xmm1

VEX.256.66.0F 28 /r V/V AVX Move aligned packed double-pre-
cision floating-point values from
ymm2/mem to ymm1

VMOVAPD ymm1, ymm2/m256

VEX.256.66.0F 29 /r V/V AVX Move aligned packed double-pre-
cision floating-point values from
ymm1 to ymm2/mem

VMOVAPD ymm2/m256, ymm1
Ref. # 319433-004 183

INSTRUCTION SET REFERENCE
Moves 256 bits of packed double-precision floating-point values from the source
operand (second operand) to the destination operand (first operand). This instruction
can be used to load a YMM register from a 256-bit memory location, to store the
contents of a YMM register into a 256-bit memory location, or to move data between
two YMM registers. When the source or destination operand is a memory operand,
the operand must be aligned on a 32-byte boundary or a general-protection excep-
tion (#GP) will be generated. To move single-precision floating-point values to and
from unaligned memory locations, use the VMOVUPD instruction.

128-bit versions:

Moves 128 bits of packed double-precision floating-point values from the source
operand (second operand) to the destination operand (first operand). This instruction
can be used to load an XMM register from a 128-bit memory location, to store the
contents of an XMM register into a 128-bit memory location, or to move data
between two XMM registers. When the source or destination operand is a memory
operand, the operand must be aligned on a 16-byte boundary or a general-protection
exception (#GP) will be generated. To move single-precision floating-point values to
and from unaligned memory locations, use the VMOVUPD instruction.

128-bit Legacy SSE version: Bits (255:128) of the corresponding YMM destination
register remain unchanged.

VEX.128 encoded version: Bits (255:128) of the destination YMM register destination
are zeroed.

Operation
VMOVAPD (VEX.256 encoded version)
DEST[255:0] Å SRC[255:0]

VMOVAPD (VEX.128 encoded version)
DEST[127:0] Å SRC[127:0]
DEST[255:128] Å 0

MOVAPD (128-bit load- and register-copy- form Legacy SSE version)
DEST[127:0] Å SRC[127:0]
DEST[255:128] (Unmodified)

(V)MOVAPD (128-bit store-form version)
DEST[127:0] Å SRC[127:0]

Intel C/C++ Compiler Intrinsic Equivalent

VMOVAPD __m256d _mm256_load_pd (double const * p);

VMOVAPD _mm256_store_pd(double * p, __m256d a);
184 Ref. # 319433-004

INSTRUCTION SET REFERENCE
MOVAPD __m128d _mm_load_pd (double const * p);

MOVAPD _mm_store_pd(double * p, __m128d a);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type1.SSE2; additionally

#UD If VEX.vvvv != 1111B.
Ref. # 319433-004 185

INSTRUCTION SET REFERENCE
MOVAPS- Move Aligned Packed Single-Precision Floating-Point Values

Description
Moves 4 or8 single-precision floating-point values from the source operand (second
operand) to the destination operand (first operand). This instruction can be used to
load an XMM or YMM register from an 128-bit or 256-bit memory location, to store
the contents of an XMM or YMM register into a 128-bit or 256-bit memory location, or
to move data between two XMM or two YMM registers. When the source or destina-
tion operand is a memory operand, the operand must be aligned on a 16-byte (128-
bit version) or 32-byte (VEX.256 encoded version) boundary or a general-protection
exception (#GP) will be generated. To move single-precision floating-point values to
and from unaligned memory locations, use the VMOVUPS instruction.

Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise
instructions will #UD.

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 28 /r V/V SSE Move aligned packed single-preci-
sion floating-point values from
xmm2/mem to xmm1

MOVAPS xmm1, xmm2/m128

0F 29 /r V/V SSE Move aligned packed single-preci-
sion floating-point values from
xmm1 to xmm2/mem

MOVAPS xmm2/m128, xmm1

VEX.128.0F 28 /r V/V AVX Move aligned packed single-preci-
sion floating-point values from
xmm2/mem to xmm1

VMOVAPS xmm1, xmm2/m128

VEX.128.0F 29 /r V/V AVX Move aligned packed single-preci-
sion floating-point values from
xmm1 to xmm2/mem

VMOVAPS xmm2/m128, xmm1

VEX.256.0F 28 /r V/V AVX Move aligned packed single-preci-
sion floating-point values from
ymm2/mem to ymm1

VMOVAPS ymm1, ymm2/m256

VEX.256.0F 29 /r V/V AVX Move aligned packed single-preci-
sion floating-point values from
ymm1 to ymm2/mem

VMOVAPS ymm2/m256, ymm1
186 Ref. # 319433-004

INSTRUCTION SET REFERENCE
VEX.256 encoded version:

Moves 256 bits of packed single-precision floating-point values from the source
operand (second operand) to the destination operand (first operand). This instruction
can be used to load a YMM register from a 256-bit memory location, to store the
contents of a YMM register into a 256-bit memory location, or to move data between
two YMM registers.

128-bit versions:

Moves 128 bits of packed single-precision floating-point values from the source
operand (second operand) to the destination operand (first operand). This instruction
can be used to load an XMM register from a 128-bit memory location, to store the
contents of an XMM register into a 128-bit memory location, or to move data
between two XMM registers. When the source or destination operand is a memory
operand, the operand must be aligned on a 16-byte boundary or a general-protection
exception (#GP) will be generated. To move single-precision floating-point values to
and from unaligned memory locations, use the VMOVUPS instruction.

128-bit Legacy SSE version: Bits (255:128) of the corresponding YMM destination
register remain unchanged.

VEX.128 encoded version: Bits (255:128) of the destination YMM register are zeroed.

Operation
VMOVAPS (VEX.256 encoded version)
DEST[255:0] Å SRC[255:0]

VMOVAPS (VEX.128 encoded version)
DEST[127:0] Å SRC[127:0]
DEST[255:128] Å 0

MOVAPS (128-bit load- and register-copy- form Legacy SSE version)
DEST[127:0] Å SRC[127:0]
DEST[255:128] (Unmodified)

(V)MOVAPS (128-bit store form)
DEST[127:0] Å SRC[127:0]

Intel C/C++ Compiler Intrinsic Equivalent

VMOVAPS __m256 _mm256_load_ps (float const * p);

VMOVAPS _mm256_store_ps(float * p, __m256 a);

MOVAPS __m128 _mm_load_ps (float const * p);
Ref. # 319433-004 187

INSTRUCTION SET REFERENCE
MOVAPS _mm_store_ps(float * p, __m128 a);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type1.SSE; additionally

#UD If VEX.vvvv != 1111B.
188 Ref. # 319433-004

INSTRUCTION SET REFERENCE
MOVD/MOVQ- Move Doubleword and Quadword

Description
MOVD/Q with XMM destination:

Moves a dword integer from the source operand and stores it in the low 32-bits of the
destination XMM register. The upper bits of the destination are zeroed. The source
operand can be a 32-bit register or 32-bit memory location. A REX.W prefix promotes
this to copy qword integers.

128-bit Legacy SSE version: Bits (255:128) of the corresponding YMM destination
register remain unchanged.

VEX.128 encoded version: Bits (255:128) of the destination YMM register are zeroed.

MOVD/Q with r32/m32 or r64/m64 destination:

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 6E /r V/V SSE2 Move doubleword from r/m32 to
xmm1MOVD xmm1, r32/m32

66 REX.W 0F 6E /r V/N.E. SSE2 Move quadword from r/m64 to
xmm1MOVQ xmm1, r64/m64

VEX.128.66.0F.W0 6E /r V/V AVX Move doubleword from r/m32 to
xmm1VMOVD xmm1, r32/m32

VEX.128.66.0F.W1 6E /r V/N.E. AVX Move quadword from r/m64 to
xmm1VMOVQ xmm1, r64/m64

66 0F 7E /r V/V SSE2 Move doubleword from xmm1
register to r/m32MOVD r32/m32, xmm1

66 REX.W 0F 7E /r V/N.E. SSE2 Move quadword from xmm1
register to r/m64MOVQ r64/m64, xmm1

VEX.128.66.0F.W0 7E /r V/V AVX Move doubleword from xmm1
register to r/m32VMOVD r32/m32, xmm1

VEX.128.66.0F.W1 7E /r V/N.E. AVX Move quadword from xmm1
register to r/m64VMOVQ r64/m64, xmm1
Ref. # 319433-004 189

INSTRUCTION SET REFERENCE
Stores 32 (64) bits from the low bits of the source XMM register.

Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise
instructions will #UD.

If VMOVD or VMOVQ is encoded with VEX.L= 1, an attempt to execute the instruction
encoded with VEX.L= 1 will cause an #UD exception.

Operation
MOVD (Legacy SSE version when destination is an XMM register)
DEST[31:0] Å SRC[31:0]
DEST[127:32] Å 0H
DEST[255:128] (Unmodified)

VMOVD (VEX-encoded version when destination is an XMM register)
DEST[31:0] Å SRC[31:0]
DEST[255:32] Å 0H

MOVQ (Legacy SSE version when destination is an XMM register)
DEST[63:0] Å SRC[63:0]
DEST[127:64] Å 0H
DEST[255:128] (Unmodified)

VMOVQ (VEX-encoded version when destination is an XMM register)
DEST[63:0] Å SRC[63:0]
DEST[255:64] Å 0H

MOVD / VMOVD (when destination is not an XMM register)
DEST[31:0] Å SRC[31:0]

MOVQ / VMOVQ (when destination is not an XMM register)
DEST[63:0] Å SRC[63:0]

Intel C/C++ Compiler Intrinsic Equivalent

MOVD __m128i _mm_cvtsi32_si128(int a)

MOVD int _mm_cvtsi128_si32(__m128i a)

MOVQ __m128i _mm_cvtsi64_si128(__int64 a)

MOVQ __int64 _mm_cvtsi128_si64(__m128i a)
190 Ref. # 319433-004

INSTRUCTION SET REFERENCE
SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 5; additionally

#UD If VEX.L = 1.

If VEX.vvvv != 1111B.
Ref. # 319433-004 191

INSTRUCTION SET REFERENCE
MOVQ- Move Quadword

Description
Copies a quadword from the source operand (second operand) to the destination
operand (first operand). The source and destination operands can be an XMM
register or a 64-bit memory locations. This instruction can be used to move data
between two XMM registers or between an XMM register and a 64-bit memory loca-
tion. The instruction cannot be used to transfer data between memory locations.

When the source operand is an XMM register, the low quadword is moved; when the
destination operand is an XMM register, the quadword is stored to the low quadword
of the register, and the high quadword is cleared to all 0s.

Note: In VEX.128.66.0F D6 instruction version, VEX.vvvv is reserved and must be
1111b otherwise instructions will #UD.

Note: In VEX.128.F3.0F 7E version, VEX.vvvv is reserved and must be 1111b, other-
wise instructions will #UD.

If VMOVQ is encoded with VEX.L= 1, an attempt to execute the instruction encoded
with VEX.L= 1 will cause an #UD exception.

Operation
MOVQ (F3 0F 7E and 66 0F D6) with XMM register source and destination:
DEST[63:0] Å SRC[63:0]
DEST[127:64] Å 0

Opcode Instruction 64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

F3 0F 7E /r V/V SSE2 Move quadword from xmm2/m64
to xmm1MOVQ xmm1, xmm2/m64

VEX.128.F3.0F 7E /r V/V AVX Move quadword from xmm2 to
xmm1VMOVQ xmm1, xmm2

VEX.128.F3.0F 7E /r V/V AVX Load quadword from m64 to
xmm1VMOVQ xmm1, m64

66 0F D6 /r V/V SSE2 Move quadword from xmm2
register to xmm1/m64MOVQ xmm1/m64, xmm2

VEX.128.66.0F D6 /r V/V AVX Move quadword from xmm2
register to xmm1/m64VMOVQ xmm1/m64, xmm2
192 Ref. # 319433-004

INSTRUCTION SET REFERENCE
DEST[255:128] (Unmodified)

VMOVQ (VEX.NDS.128.F3.0F 7E) with XMM register source and destination:
DEST[63:0] Å SRC[63:0]
DEST[255:64] Å 0

VMOVQ (VEX.128.66.0F D6) with XMM register source and destination:
DEST[63:0] Å SRC[63:0]
DEST[255:64] Å 0

MOVQ (7E) with memory source:
DEST[63:0] Å SRC[63:0]
DEST[127:64] Å 0000000000000000H
DEST[255:128] (Unmodified)

VMOVQ (7E) with memory source:
DEST[63:0] Å SRC[63:0]
DEST[255:64] Å 0000000000000000H

MOVQ (D6) with memory dest:
DEST[63:0] Å SRC[63:0]

VMOVQ (D6) with memory dest:
DEST[63:0] Å SRC2[63:0]

Intel C/C++ Compiler Intrinsic Equivalent

MOVQ __m128i_mm_move_epi64(__m128i a);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 5; additionally

#UD If VEX.L = 1.

If VEX.vvvv != 1111B.
Ref. # 319433-004 193

INSTRUCTION SET REFERENCE
MOVDDUP- Replicate Double FP Values

Description
VEX.256 encoded version:

Duplicates even-indexed double-precision floating-point values from the source
operand (second operand).

128-bit versions:

Duplicates a single double-precision floating-point value into the destination.

128-bit Legacy SSE version: Bits (255:128) of the corresponding YMM destination
register remain unchanged.

VEX.128 encoded version: Bits (255:128) of the destination YMM register are zeroed.

Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise
instructions will #UD.

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

F2 0F 12 /r V/V SSE3 Move double-precision floating-
point values from xmm2/mem and
duplicate into xmm1

MOVDDUP xmm1, xmm2/m64

VEX.128.F2.0F 12 /r V/V AVX Move double-precision floating-
point values from xmm2/mem and
duplicate into xmm1

VMOVDDUP xmm1, xmm2/m64

VEX.256.F2.0F 12 /r V/V AVX Move even index double-precision
floating-point values from
ymm2/mem and duplicate each
element into ymm1

VMOVDDUP ymm1, ymm2/m256
194 Ref. # 319433-004

INSTRUCTION SET REFERENCE
Figure 5-14. VMOVDDUP Operation

Operation
VMOVDDUP (VEX.256 encoded version)
DEST[63:0] Å SRC[63:0]
DEST[127:64] Å SRC[63:0]
DEST[191:128] Å SRC[191:128]
DEST[255:192] Å SRC[191:128]

VMOVDDUP (VEX.128 encoded version)
DEST[63:0] Å SRC[63:0]
DEST[127:64] Å SRC[63:0]
DEST[255:128] Å 0

MOVDDUP (128-bit Legacy SSE version)
DEST[63:0] Å SRC[63:0]
DEST[127:64] Å SRC[63:0]
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

MOVDDUP __m256d _mm256_movedup_pd (__m256d a);

MOVDDUP __m128d _mm_movedup_pd (__m128d a);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 5; additionally

#UD If VEX.vvvv != 1111B.

X2 X2 X0 X0DEST

X3 X2SRC X1 X0
Ref. # 319433-004 195

INSTRUCTION SET REFERENCE
MOVDQA- Move Aligned Packed Integer Values

Description
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise
instructions will #UD.

VEX.256 encoded version:

Moves 256 bits of packed integer values from the source operand (second operand)
to the destination operand (first operand). This instruction can be used to load a YMM
register from a 256-bit memory location, to store the contents of a YMM register into
a 256-bit memory location, or to move data between two YMM registers.

When the source or destination operand is a memory operand, the operand must be
aligned on a 32-byte boundary or a general-protection exception (#GP) will be
generated. To move integer data to and from unaligned memory locations, use the
VMOVDQU instruction.

128-bit versions:

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 6F /r V/V SSE2 Move aligned packed integer val-
ues from xmm2/mem to xmm1 MOVDQA xmm1, xmm2/m128

66 0F 7F /r V/V SSE2 Move aligned packed integer val-
ues from xmm1 to xmm2/mem MOVDQA xmm2/m128, xmm1

VEX.128.66.0F 6F /r V/V AVX Move aligned packed integer val-
ues from xmm2/mem to xmm1 VMOVDQA xmm1, xmm2/m128

VEX.128.66.0F 7F /r V/V AVX Move aligned packed integer val-
ues from xmm1 to xmm2/mem VMOVDQA xmm2/m128, xmm1

VEX.256.66.0F 6F /r V/V AVX Move aligned packed integer val-
ues from ymm2/mem to ymm1 VMOVDQA ymm1, ymm2/m256

VEX.256.66.0F 7F /r V/V AVX Move aligned packed integer val-
ues from ymm1 to ymm2/mem VMOVDQA ymm2/m256, ymm1
196 Ref. # 319433-004

INSTRUCTION SET REFERENCE
Moves 128 bits of packed integer values from the source operand (second operand)
to the destination operand (first operand). This instruction can be used to load an
XMM register from a 128-bit memory location, to store the contents of an XMM
register into a 128-bit memory location, or to move data between two XMM registers.

When the source or destination operand is a memory operand, the operand must be
aligned on a 16-byte boundary or a general-protection exception (#GP) will be
generated. To move integer data to and from unaligned memory locations, use the
VMOVDQU instruction.

128-bit Legacy SSE version: Bits (255:128) of the corresponding YMM destination
register remain unchanged.

VEX.128 encoded version: Bits (255:128) of the destination YMM register are zeroed.

Operation
VMOVDQA (VEX.256 encoded version)
DEST[255:0] Å SRC[255:0]

VMOVDQA (VEX.128 encoded version)
DEST[127:0] Å SRC[127:0]
DEST[255:128] Å 0

MOVDQA (128-bit load- and register- form Legacy SSE version)
DEST[127:0] Å SRC[127:0]
DEST[255:128] (Unmodified)

(V)MOVDQA (128-bit store forms)
DEST[127:0] Å SRC[127:0]

Intel C/C++ Compiler Intrinsic Equivalent

VMOVDQA __m256i _mm256_load_si256 (__m256i * p);

VMOVDQA _mm256_store_si256(_m256i *p, __m256i a);

MOVDQA __m128i _mm_load_si128 (__m128i * p);

MOVDQA _mm_store_si128(__m128i *p, __m128i a);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type1.SSE2; additionally

#UD If VEX.vvvv != 1111B.
Ref. # 319433-004 197

INSTRUCTION SET REFERENCE
MOVDQU- Move Unaligned Packed Integer Values

Description
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise
instructions will #UD.

VEX.256 encoded version:

Moves 256 bits of packed integer values from the source operand (second operand)
to the destination operand (first operand). This instruction can be used to load a YMM
register from a 256-bit memory location, to store the contents of a YMM register into
a 256-bit memory location, or to move data between two YMM registers.

128-bit versions:

Moves 128 bits of packed integer values from the source operand (second operand)
to the destination operand (first operand). This instruction can be used to load an
XMM register from a 128-bit memory location, to store the contents of an XMM
register into a 128-bit memory location, or to move data between two XMM registers.

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

F3 0F 6F /r V/V SSE2 Move unaligned packed integer
values from xmm2/mem to xmm1 MOVDQU xmm1, xmm2/m128

F3 0F 7F /r V/V SSE2 Move unaligned packed integer
values from xmm1 to xmm2/mem MOVDQU xmm2/m128, xmm1

VEX.128.F3.0F 6F /r V/V AVX Move unaligned packed integer
values from xmm2/mem to xmm1 VMOVDQU xmm1, xmm2/m128

VEX.128.F3.0F 7F /r V/V AVX Move unaligned packed integer
values from xmm1 to xmm2/mem VMOVDQU xmm2/m128, xmm1

VEX.256.F3.0F 6F /r V/V AVX Move unaligned packed integer
values from ymm2/mem to ymm1 VMOVDQU ymm1, ymm2/m256

VEX.256.F3.0F 7F /r V/V AVX Move unaligned packed integer
values from ymm1 to ymm2/mem VMOVDQU ymm2/m256, ymm1
198 Ref. # 319433-004

INSTRUCTION SET REFERENCE
128-bit Legacy SSE version: Bits (255:128) of the corresponding YMM destination
register remain unchanged.

When the source or destination operand is a memory operand, the operand may be
unaligned to any alignment without causing a general-protection exception (#GP) to
be generated

VEX.128 encoded version: Bits (255:128) of the destination YMM register are
zeroed.

Operation
VMOVDQU (VEX.256 encoded version)
DEST[255:0] Å SRC[255:0]

VMOVDQU (VEX.128 encoded version)
DEST[127:0] Å SRC[127:0]
DEST[255:128] Å 0

MOVDQU load and register copy (128-bit Legacy SSE version)
DEST[127:0] Å SRC[127:0]
DEST[255:128] (Unmodified)

(V)MOVDQU 128-bit store-form versions
DEST[127:0] Å SRC[127:0]

Intel C/C++ Compiler Intrinsic Equivalent

VMOVDQU __m256i _mm256_loadu_si256 (__m256i * p);

VMOVDQU _mm256_storeu_si256(_m256i *p, __m256i a);

MOVDQU __m128i _mm_loadu_si128 (__m128i * p);

MOVDQU _mm_storeu_si128(__m128i *p, __m128i a);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4; additionally

#UD If VEX.vvvv != 1111B.
Ref. # 319433-004 199

INSTRUCTION SET REFERENCE
MOVHLPS - Move Packed Single-Precision Floating-Point Values High to
Low

Description
This instruction cannot be used for memory to register moves.

128-bit two-argument form:

Moves two packed single-precision floating-point values from the high quadword of
the second XMM argument (second operand) to the low quadword of the first XMM
register (first argument). The high quadword of the destination operand is left
unchanged. The upper 128 bits of the corresponding YMM destination register are
unmodified.

128-bit three-argument form

Moves two packed single-precision floating-point values from the high quadword of
the third XMM argument (third operand) to the low quadword of the destination (first
operand). Copies the high quadword from the second XMM argument (second
operand) to the high quadword of the destination (first operand). The upper 128-bits
of the destination YMM register are zeroed.

If VMOVHLPS is encoded with VEX.L= 1, an attempt to execute the instruction
encoded with VEX.L= 1 will cause an #UD exception.

Operation
MOVHLPS (128-bit two-argument form)
DEST[63:0] Å SRC[127:64]
DEST[255:64] (Unmodified)

VMOVHLPS (128-bit three-argument form)

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 12 /r V/V SSE Move two packed single-precision
floating-point values from high
quadword of xmm2 to low
quadword of xmm1.

MOVHLPS xmm1, xmm2

VEX.NDS.128.0F 12 /r V/V AVX Merge two packed single-
precision floating-point values
from high quadword of xmm3 and
low quadword of xmm2.

VMOVHLPS xmm1, xmm2, xmm3
200 Ref. # 319433-004

INSTRUCTION SET REFERENCE
DEST[63:0] Å SRC2[127:64]
DEST[127:64] Å SRC1[127:64]
DEST[255:128] Å 0

Intel C/C++ Compiler Intrinsic Equivalent
MOVHLPS __m128 _mm_movehl_ps(__m128 a, __m128 b)

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 7; additionally

#UD If VEX.L = 1
Ref. # 319433-004 201

INSTRUCTION SET REFERENCE
MOVHPD- Move High Packed Double-Precision Floating-Point Values

Description
This instruction cannot be used for register to register or memory to memory moves.

128-bit Legacy SSE load:

Moves a double-precision floating-point value from the source 64-bit memory
operand and stores it in the high 64-bits of the destination XMM register. The lower
64bits of the XMM register are preserved. The upper 128-bits of the corresponding
YMM destination register are preserved.

VEX.128 encoded load:

Loads a double-precision floating-point value from the source 64-bit memory
operand (third operand) and stores it in the upper 64-bits of the destination XMM
register (first operand). The low 64-bits from second XMM register (second operand)
are stored in the lower 64-bits of the destination. The upper 128-bits of the destina-
tion YMM register are zeroed.

128-bit store:

Stores a double-precision floating-point value from the high 64-bits of the XMM
register source (second operand) to the 64-bit memory location (first operand).

Note: VMOVHPD (store) (VEX.128.66.0F 17 /r) is legal and has the same behavior as
the existing 66 0F 17 store. For VMOVHPD (store) (VEX.128.66.0F 17 /r) instruction
version, VEX.vvvv is reserved and must be 1111b otherwise instruction will #UD.

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 16 /r V/V SSE2 Move double-precision floating-
point values from m64 to high
quadword of xmm1.

MOVHPD xmm1, m64

VEX.NDS.128.66.0F 16 /r V/V AVX Merge double-precision floating-
point value from m64 and the low
quadword of xmm1.

VMOVHPD xmm2, xmm1, m64

66 0F 17/r V/V SSE2 Move double-precision floating-
point values from high quadword
of xmm1 to m64.

MOVHPD m64, xmm1

VEX128.66.0F 17/r V/V AVX Move double-precision floating-
point values from high quadword
of xmm1 to m64.

VMOVHPD m64, xmm1
202 Ref. # 319433-004

INSTRUCTION SET REFERENCE
If VMOVHPD is encoded with VEX.L= 1, an attempt to execute the instruction
encoded with VEX.L= 1 will cause an #UD exception.

Operation
MOVHPD (128-bit Legacy SSE load)
DEST[63:0] (Unmodified)
DEST[127:64] Å SRC[63:0]
DEST[255:128] (Unmodified)

VMOVHPD (VEX.128 encoded load)
DEST[63:0] Å SRC1[63:0]
DEST[127:64] Å SRC2[63:0]
DEST[255:128] Å 0

VMOVHPD (store)
DEST[63:0] Å SRC[127:64]

Intel C/C++ Compiler Intrinsic Equivalent
MOVHPD __m128d _mm_loadh_pd (__m128d a, double *p)
MOVHPD void _mm_storeh_pd (double *p, __m128d a)

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 5; additionally

#UD If VEX.L = 1.
Ref. # 319433-004 203

INSTRUCTION SET REFERENCE
MOVHPS- Move High Packed Single-Precision Floating-Point Values

Description
This instruction cannot be used for register to register or memory to memory moves.

128-bit Legacy SSE load:

Moves two packed single-precision floating-point values from the source 64-bit
memory operand and stores them in the high 64-bits of the destination XMM register.
The lower 64bits of the XMM register are preserved. The upper 128-bits of the corre-
sponding YMM destination register are preserved.

VEX.128 encoded load:

Loads two single-precision floating-point values from the source 64-bit memory
operand (third operand) and stores it in the upper 64-bits of the destination XMM
register (first operand). The low 64-bits from second XMM register (second operand)
are stored in the lower 64-bits of the destination. The upper 128-bits of the destina-
tion YMM register are zeroed.

128-bit store:

Stores two packed single-precision floating-point values from the high 64-bits of the
XMM register source (second operand) to the 64-bit memory location (first operand).

Note: VMOVHPS (store) (VEX.NDS.128.0F 17 /r) is legal and has the same behavior
as the existing 0F 17 store. For VMOVHPS (store) (VEX.NDS.128.0F 17 /r) instruc-

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 16 /r V/V SSE Move two packed single-precision
floating-point values from m64 to
high quadword of xmm1.

MOVHPS xmm1, m64

VEX.NDS.128.0F 16 /r V/V AVX Merge two packed single-
precision floating-point values
from m64 and the low quadword
of xmm1.

VMOVHPS xmm2, xmm1, m64

0F 17/r V/V SSE Move two packed single-precision
floating-point values from high
quadword of xmm1 to m64.

MOVHPS m64, xmm1

VEX.128.0F 17/r V/V AVX Move two packed single-precision
floating-point values from high
quadword of xmm1to m64.

VMOVHPS m64, xmm1
204 Ref. # 319433-004

INSTRUCTION SET REFERENCE
tion version, VEX.vvvv is reserved and must be 1111b otherwise instruction will
#UD.

If VMOVHPS is encoded with VEX.L= 1, an attempt to execute the instruction
encoded with VEX.L= 1 will cause an #UD exception.

Operation
MOVHPS (128-bit Legacy SSE load)
DEST[63:0] (Unmodified)
DEST[127:64] Å SRC[63:0]
DEST[255:128] (Unmodified)

VMOVHPS (VEX.128 encoded load)
DEST[63:0] Å SRC1[63:0]
DEST[127:64] Å SRC2[63:0]
DEST[255:128] Å 0

VMOVHPS (store)
DEST[63:0] Å SRC[127:64]

Intel C/C++ Compiler Intrinsic Equivalent
MOVHPS __m128d _mm_loadh_pi (__m128d a, __m64 *p)
MOVHPS void _mm_storeh_pi (__m64 *p, __m128d a)

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 5; additionally

#UD If VEX.L = 1.
Ref. # 319433-004 205

INSTRUCTION SET REFERENCE
MOVLHPS - Move Packed Single-Precision Floating-Point Values Low to
High

Description
This instruction cannot be used for memory to register moves.

128-bit two-argument form:

Moves two packed single-precision floating-point values from the low quadword of
the second XMM argument (second operand) to the high quadword of the first XMM
register (first argument). The low quadword of the destination operand is left
unchanged. The upper 128 bits of the corresponding YMM destination register are
unmodified.

128-bit three-argument form

Moves two packed single-precision floating-point values from the low quadword of
the third XMM argument (third operand) to the high quadword of the destination
(first operand). Copies the low quadword from the second XMM argument (second
operand) to the low quadword of the destination (first operand). The upper 128-bits
of the destination YMM register are zeroed.

If VMOVLHPS is encoded with VEX.L= 1, an attempt to execute the instruction
encoded with VEX.L= 1 will cause an #UD exception.

Operation
MOVLHPS (128-bit two-argument form)
DEST[63:0] (Unmodified)
DEST[127:64] Å SRC[63:0]
DEST[255:128] (Unmodified)

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 16 /r V/V SSE Move two packed single-precision
floating-point values from low
quadword of xmm2 to high
quadword of xmm1.

MOVLHPS xmm1, xmm2

VEX.NDS.128.0F 16 /r V/V AVX Merge two packed single-
precision floating-point values
from low quadword of xmm3 and
low quadword of xmm2.

VMOVLHPS xmm1, xmm2, xmm3
206 Ref. # 319433-004

INSTRUCTION SET REFERENCE
VMOVLHPS (128-bit three-argument form)
DEST[63:0] Å SRC1[63:0]
DEST[127:64] Å SRC2[63:0]
DEST[255:128] Å 0

Intel C/C++ Compiler Intrinsic Equivalent
MOVLHPS __m128 _mm_movelh_ps(__m128 a, __m128 b)

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 7; additionally

#UD IF VEX.L = 1.
Ref. # 319433-004 207

INSTRUCTION SET REFERENCE
MOVLPD- Move Low Packed Double-Precision Floating-Point Values

Description
This instruction cannot be used for register to register or memory to memory moves.

128-bit Legacy SSE load:

Moves a double-precision floating-point value from the source 64-bit memory
operand and stores it in the low 64-bits of the destination XMM register. The upper
64bits of the XMM register are preserved. The upper 128-bits of the corresponding
YMM destination register are preserved.

VEX.128 encoded load:

Loads a double-precision floating-point value from the source 64-bit memory
operand (third operand), merges it with the upper 64-bits of the first source XMM
register (second operand), and stores it in the low 128-bits of the destination XMM
register (first operand). The upper 128-bits of the destination YMM register are
zeroed.

128-bit store:

Stores a double-precision floating-point value from the low 64-bits of the XMM
register source (second operand) to the 64-bit memory location (first operand).

Note: VMOVLPD (store) (VEX.128.66.0F 13 /r) is legal and has the same behavior as
the existing 66 0F 13 store. For VMOVLPD (store) (VEX.128.66.0F 13 /r) instruction
version, VEX.vvvv is reserved and must be 1111b otherwise instruction will #UD.

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 12 /r V/V SSE2 Move double-precision floating-
point values from m64 to low
quadword of xmm1.

MOVLPD xmm1, m64

VEX.NDS.128.66.0F 12 /r V/V AVX Merge double-precision floating-
point value from m64 and the high
quadword of xmm1.

VMOVLPD xmm2, xmm1, m64

66 0F 13/r V/V SSE2 Move double-precision floating-
point values from low quadword
of xmm1 to m64.

MOVLPD m64, xmm1

VEX.128.66.0F 13/r V/V AVX Move double-precision floating-
point values from low quadword
of xmm1 to m64.

VMOVLPD m64, xmm1
208 Ref. # 319433-004

INSTRUCTION SET REFERENCE
If VMOVLPD is encoded with VEX.L= 1, an attempt to execute the instruction
encoded with VEX.L= 1 will cause an #UD exception.

Operation
MOVLPD (128-bit Legacy SSE load)
DEST[63:0] Å SRC[63:0]
DEST[255:64] (Unmodified)

VMOVLPD (VEX.128 encoded load)
DEST[63:0] Å SRC2[63:0]
DEST[127:64] Å SRC1[127:64]
DEST[255:128] Å 0

VMOVLPD (store)
DEST[63:0] Å SRC[63:0]

Intel C/C++ Compiler Intrinsic Equivalent
MOVLPD __m128d _mm_loadl_pd (__m128d a, double *p)
MOVLPD void _mm_storel_pd (double *p, __m128d a)

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 5; additionally

#UD If VEX.L = 1.

If VEX.vvvv != 1111B.
Ref. # 319433-004 209

INSTRUCTION SET REFERENCE
MOVLPS- Move Low Packed Single-Precision Floating-Point Values

Description
This instruction cannot be used for register to register or memory to memory moves.

128-bit Legacy SSE load:

Moves two packed single-precision floating-point values from the source 64-bit
memory operand and stores them in the low 64-bits of the destination XMM register.
The upper 64bits of the XMM register are preserved. The upper 128-bits of the corre-
sponding YMM destination register are preserved.

VEX.128 encoded load:

Loads two packed single-precision floating-point values from the source 64-bit
memory operand (third operand), merges them with the upper 64-bits of the first
source XMM register (second operand), and stores them in the low 128-bits of the
destination XMM register (first operand). The upper 128-bits of the destination YMM
register are zeroed.

128-bit store:

Loads two packed single-precision floating-point values from the low 64-bits of the
XMM register source (second operand) to the 64-bit memory location (first operand).

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 12 /r V/V SSE Move two packed single-precision
floating-point values from m64 to
low quadword of xmm1.

MOVLPS xmm1, m64

VEX.NDS.128.0F 12 /r V/V AVX Merge two packed single-
precision floating-point values
from m64 and the high quadword
of xmm1.

VMOVLPS xmm2, xmm1, m64

0F 13/r V/V SSE Move two packed single-precision
floating-point values from low
quadword of xmm1 to m64.

MOVLPS m64, xmm1

VEX.128.0F 13/r V/V AVX Move two packed single-precision
floating-point values from low
quadword of xmm1 to m64.

VMOVLPS m64, xmm1
210 Ref. # 319433-004

INSTRUCTION SET REFERENCE
Note: VMOVLPS (store) (VEX.128.0F 13 /r) is legal and has the same behavior as the
existing 0F 13 store. For VMOVLPS (store) (VEX.128.0F 13 /r) instruction version,
VEX.vvvv is reserved and must be 1111b otherwise instruction will #UD.

If VMOVLPS is encoded with VEX.L= 1, an attempt to execute the instruction encoded
with VEX.L= 1 will cause an #UD exception.

Operation
MOVLPS (128-bit Legacy SSE load)
DEST[63:0] Å SRC[63:0]
DEST[255:64] (Unmodified)

VMOVLPS (VEX.128 encoded load)
DEST[63:0] Å SRC2[63:0]
DEST[127:64] Å SRC1[127:64]
DEST[255:128] Å 0

VMOVLPS (store)
DEST[63:0] Å SRC[63:0]

Intel C/C++ Compiler Intrinsic Equivalent
MOVLPS __m128 _mm_loadl_pi (__m128 a, __m64 *p)
MOVLPS void _mm_storel_pi (__m64 *p, __m128 a)

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 5; additionally

#UD If VEX.L = 1.

If VEX.vvvv != 1111B.
Ref. # 319433-004 211

INSTRUCTION SET REFERENCE
MOVMSKPD- Extract Double-Precision Floating-Point Sign mask

Description
Extracts the sign bits from the packed double-precision floating-point values in the
source operand (second operand), formats them into a 2- or 4-bit mask, and stores
the mask in the destination operand (first operand). The source operand is an XMM
or YMM register, and the destination operand is a general-purpose register. The mask
is stored in the 2 or 4 low-order bits of the destination operand. The upper bits of the
destination operand beyond the mask are filled with zeros.

In 64-bit mode, the default operand size of the destination register is 64 bit.

VEX.256 encoded version: The source operand is a YMM register. The destination
operand is a general purpose register.

128-bit versions: The source operand is a YMM register. The destination operand is a
general purpose register.

Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise
instructions will #UD.

Operation
VMOVMSKPD (VEX.256 encoded version)
DEST[0] Å SRC[63]
DEST[1] Å SRC[127]
DEST[2] Å SRC[191]
DEST[3] Å SRC[255]
IF DEST = r32

THEN DEST[31:4] Å 0;
ELSE DEST[63:4] Å 0;

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 50 /r V/V SSE2 Extract 2-bit sign mask from
xmm2 and store in reg. The upper
bits of r32 or r64 are zero’ed.

MOVMSKPD reg, xmm2

VEX.128.66.0F 50 /r V/V AVX Extract 2-bit sign mask from
xmm2 and store in reg. The upper
bits of r32 or r64 are zero’ed.

VMOVMSKPD reg, xmm2

VEX.256.66.0F 50 /r V/V AVX Extract 4-bit sign mask from
ymm2 and store in reg. The upper
bits of r32 or r64 are zero’ed.

VMOVMSKPD reg, ymm2
212 Ref. # 319433-004

INSTRUCTION SET REFERENCE
FI

(V)MOVMSKPD (128-bit versions)
DEST[0] Å SRC[63]
DEST[1] Å SRC[127]
IF DEST = r32

THEN DEST[31:2] Å 0;
ELSE DEST[63:2] Å 0;

FI

Intel C/C++ Compiler Intrinsic Equivalent

int _mm256_movemask_pd(__m256d a)

int _mm_movemask_pd(__m128d a)

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 7; additionally

#UD If VEX.vvvv != 1111B.
Ref. # 319433-004 213

INSTRUCTION SET REFERENCE
MOVMSKPS- Extract Single-Precision Floating-Point Sign mask

Description
Extracts the sign bits from the packed single-precision floating-point values in the
source operand (second operand), formats them into a 4- or 8-bit mask, and stores
the mask in the destination operand (first operand). The source operand is an XMM
or YMM register, and the destination operand is a general-purpose register. The mask
is stored in the 4 or 8 low-order bits of the destination operand. The upper bits of the
destination operand beyond the mask are filled with zeros.

In 64-bit mode, the default operand size of the destination register is 64 bit.

VEX.256 encoded version: The source operand is a YMM register. The destination
operand is a general purpose register.

128-bit versions: The source operand is a YMM register. The destination operand is a
general purpose register.

Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise
instructions will #UD.

Operation
VMOVMSKPS (VEX.256 encoded version)
DEST[0] Å SRC[31]
DEST[1] Å SRC[63]
DEST[2] Å SRC[95]
DEST[3] Å SRC[127]
DEST[4] Å SRC[159]
DEST[5] Å SRC[191]
DEST[6] Å SRC[223]

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 50 /r V/V SSE Extract 4-bit sign mask from
xmm2 and store in reg. The upper
bits of r32 or r64 are zero’ed.

MOVMSKPS reg, xmm2

VEX.128.0F 50 /r V/V AVX Extract 4-bit sign mask from
xmm2 and store in reg. The upper
bits of r32 or r64 are zero’ed.

VMOVMSKPS reg, xmm2

VEX.256.0F 50 /r V/V AVX Extract 8-bit sign mask from
ymm2 and store in reg. The upper
bits of r32 or r64 are zero’ed.

VMOVMSKPS reg, ymm2
214 Ref. # 319433-004

INSTRUCTION SET REFERENCE
DEST[7] Å SRC[255]
IF DEST = r32

THEN DEST[31:8] Å 0;
ELSE DEST[63:8] Å 0;

FI

(V)MOVMSKPS (128-bit version)
DEST[0] Å SRC[31]
DEST[1] Å SRC[63]
DEST[2] Å SRC[95]
DEST[3] Å SRC[127]
IF DEST = r32

THEN DEST[31:4] Å 0;
ELSE DEST[63:4] Å 0;

FI

Intel C/C++ Compiler Intrinsic Equivalent

int _mm256_movemask_ps(__m256 a)

int _mm_movemask_ps(__m128 a)

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 7; additionally

#UD If VEX.vvvv != 1111B.
Ref. # 319433-004 215

INSTRUCTION SET REFERENCE
MOVNTDQ- Store Packed Integers Using Non-Temporal Hint

Description
Moves the packed integers in the source operand (second operand) to the destination
operand (first operand) using a non-temporal hint to prevent caching of the data
during the write to memory. The source operand is an XMM register or YMM register,
which is assumed to contain integer data (packed bytes, words, doublewords, or
quadwords). The destination operand is a 128-bit or 256-bit memory location. The
memory operand must be aligned on a 16-byte (128-bit version) or 32-byte
(VEX.256 encoded version) boundary otherwise a general-protection exception
(#GP) will be generated.

The non-temporal hint is implemented by using a write combining (WC) memory
type protocol when writing the data to memory. Using this protocol, the processor
does not write the data into the cache hierarchy, nor does it fetch the corresponding
cache line from memory into the cache hierarchy. The memory type of the region
being written to can override the non-temporal hint, if the memory address specified
for the non-temporal store is in an uncacheable (UC) or write protected (WP)
memory region. For more information on non-temporal stores, see “Caching of
Temporal vs. Non-Temporal Data” in Chapter 10 in the IA-32 Intel Architecture Soft-
ware Developer’s Manual, Volume 1.

Because the WC protocol uses a weakly-ordered memory consistency model, a
fencing operation implemented with the SFENCE or MFENCE instruction should be
used in conjunction with VMOVNTDQ instructions if multiple processors might use
different memory types to read/write the destination memory locations.

Note: In VEX-128 encoded versions, VEX.vvvv is reserved and must be 1111b, VEX.L
must be 0; otherwise instructions will #UD.

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F E7 /r V/V SSE2 Move packed integer values in
xmm1 to m128 using non-tempo-
ral hint

MOVNTDQ m128, xmm1

VEX.128.66.0F E7 /r V/V AVX Move packed integer values in
xmm1 to m128 using non-tempo-
ral hint

VMOVNTDQ m128, xmm1

VEX.256.66.0F E7 /r
VMOVNTDQ m256, ymm1

V/V AVX Move packed integer values in
ymm1 to m256 using non-tempo-
ral hint
216 Ref. # 319433-004

INSTRUCTION SET REFERENCE
Operation
MOVNTDQ
DEST Å SRC

Intel C/C++ Compiler Intrinsic Equivalent

VMOVNTDQ void _mm256_stream_si256 (__m256i * p, __m256i a);

MOVNTDQ void _mm_stream_si128 (__m128i * p, __m128i a);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type1.SSE2; additionally

#UD If VEX.vvvv != 1111B.
Ref. # 319433-004 217

INSTRUCTION SET REFERENCE
MOVNTDQA- Load Double Quadword Non-Temporal Aligned Hint

Description
MOVNTDQA loads a double quadword from the source operand (second operand) to
the destination operand (first operand) using a non-temporal hint if the memory
source is WC (write combining) memory type. For WC memory type, the nontem-
poral hint may be implemented by loading a temporary internal buffer with the
equivalent of an aligned cache line without filling this data to the cache. Any
memory-type aliased lines in the cache will be snooped and flushed. Subsequent
MOVNTDQA reads to unread portions of the WC cache line will receive data from the
temporary internal buffer if data is available. The temporary internal buffer may be
flushed by the processor at any time for any reason, for example:

• A load operation other than a MOVNTDQA which references memory already resi-
dent in a temporary internal buffer.

• A non-WC reference to memory already resident in a temporary internal buffer.

• Interleaving of reads and writes to a single temporary internal buffer.

• Repeated (V)MOVNTDQA loads of a particular 16-byte item in a streaming line.

• Certain micro-architectural conditions including resource shortages, detection of

a mis-speculation condition, and various fault conditions

The non-temporal hint is implemented by using a write combining (WC) memory
type protocol when reading the data from memory. Using this protocol, the processor

does not read the data into the cache hierarchy, nor does it fetch the corresponding
cache line from memory into the cache hierarchy. The memory type of the region
being read can override the non-temporal hint, if the memory address specified for
the non-temporal read is not a WC memory region. Information on non-temporal
reads and writes can be found in “Caching of Temporal vs. Non-Temporal Data” in
Chapter 10 in the Intel® 64 and IA-32 Architecture Software Developer’s Manual,
Volume 3A.

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 38 2A /r V/V SSE4_1 Move double quadword from
m128 to xmm1 using non-tempo-
ral hint if WC memory type.

MOVNTDQA xmm1, m128

VEX.128.66.0F38 2A /r V/V AVX Move double quadword from
m128 to xmm using non-temporal
hint if WC memory type.

VMOVNTDQA xmm1, m128
218 Ref. # 319433-004

INSTRUCTION SET REFERENCE
Because the WC protocol uses a weakly-ordered memory consistency model, a
fencing operation implemented with a MFENCE instruction should be used in conjunc-
tion with MOVNTDQA instructions if multiple processors might use different memory
types for the referenced memory locations or to synchronize reads of a processor
with writes by other agents in the system. A processor’s implementation of the
streaming load hint does not override the effective memory type, but the implemen-
tation of the hint is processor dependent. For example, a processor implementation
may choose to ignore the hint and process the instruction as a normal MOVDQA for
any memory type. Alternatively, another implementation may optimize cache reads
generated by MOVNTDQA on WB memory type to reduce cache evictions.

The 128-bit (V)MOVNTDQA addresses must be 16-byte aligned or the instruction will
cause a #GP.

Note: In VEX-128 encoded versions, VEX.vvvv is reserved and must be 1111b, VEX.L
must be 0; otherwise instructions will #UD.

Operation
MOVNTDQA (128bit- Legacy SSE form)
DEST Å SRC
DEST[255:128] (Unmodified)

VMOVNTDQA (VEX.128 encoded form)
DEST Å SRC
DEST[255:128] Å 0

Intel C/C++ Compiler Intrinsic Equivalent

MOVNTDQA __m128i _mm_stream_load_si128 (__m128i *p);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type1.SSE4.1; additionally

#UD If VEX.vvvv != 1111B.

If VEX.L = 1.
Ref. # 319433-004 219

INSTRUCTION SET REFERENCE
MOVNTPD- Store Packed Double-Precision Floating-Point Values Using Non-
Temporal Hint

Description
Moves the packed double-precision floating-point values in the source operand
(second operand) to the destination operand (first operand) using a non-temporal
hint to prevent caching of the data during the write to memory. The source operand
is an XMM register or YMM register, which is assumed to contain packed double-preci-
sion, floating-pointing data. The destination operand is a 128-bit or 256-bit memory
location. The memory operand must be aligned on a 16-byte (128-bit version) or 32-
byte (VEX.256 encoded version) boundary otherwise a general-protection exception
(#GP) will be generated.

The non-temporal hint is implemented by using a write combining (WC) memory
type protocol when writing the data to memory. Using this protocol, the processor
does not write the data into the cache hierarchy, nor does it fetch the corresponding
cache line from memory into the cache hierarchy. The memory type of the region
being written to can override the non-temporal hint, if the memory address specified
for the non-temporal store is in an uncacheable (UC) or write protected (WP)
memory region. For more information on non-temporal stores, see “Caching of
Temporal vs. Non-Temporal Data” in Chapter 10 in the IA-32 Intel Architecture Soft-
ware Developer’s Manual, Volume 1.

Because the WC protocol uses a weakly-ordered memory consistency model, a
fencing operation implemented with the SFENCE or MFENCE instruction should be
used in conjunction with MOVNTPD instructions if multiple processors might use
different memory types to read/write the destination memory locations.

Note: In VEX-128 encoded versions, VEX.vvvv is reserved and must be 1111b, VEX.L
must be 0; otherwise instructions will #UD.

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 2B /r V/V SSE2 Move packed double-precision
values in xmm1 to m128 using
non-temporal hint

MOVNTPD m128, xmm1

VEX.128.66.0F 2B /r V/V AVX Move packed double-precision
values in xmm1 to m128 using
non-temporal hint

VMOVNTPD m128, xmm1

VEX.256.66.0F 2B /r
VMOVNTPD m256, ymm1

V/V AVX Move packed double-precision
values in ymm1 to m256 using
non-temporal hint
220 Ref. # 319433-004

INSTRUCTION SET REFERENCE
Operation
MOVNTPD
DEST Å SRC

Intel C/C++ Compiler Intrinsic Equivalent

VMOVNTPD void _mm256_stream_pd (double * p, __m256d a);

MOVNTPD void _mm_stream_pd (double * p, __m128d a);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type1.SSE2; additionally

#UD If VEX.vvvv != 1111B.
Ref. # 319433-004 221

INSTRUCTION SET REFERENCE
MOVNTPS- Store Packed Single-Precision Floating-Point Values Using Non-
Temporal Hint

Description
Moves the packed single-precision floating-point values in the source operand
(second operand) to the destination operand (first operand) using a non-temporal
hint to prevent caching of the data during the write to memory. The source operand
is an XMM register or YMM register, which is assumed to contain packed single-preci-
sion, floating-pointing. The destination operand is a 128-bit or 256-bitmemory loca-
tion. The memory operand must be aligned on a 16-byte (128-bit version) or 32-byte
(VEX.256 encoded version) boundary otherwise a general-protection exception
(#GP) will be generated.

The non-temporal hint is implemented by using a write combining (WC) memory
type protocol when writing the data to memory. Using this protocol, the processor
does not write the data into the cache hierarchy, nor does it fetch the corresponding
cache line from memory into the cache hierarchy. The memory type of the region
being written to can override the non-temporal hint, if the memory address specified
for the non-temporal store is in an uncacheable (UC) or write protected (WP)
memory region. For more information on non-temporal stores, see “Caching of
Temporal vs. Non-Temporal Data” in Chapter 10 in the IA-32 Intel Architecture Soft-
ware Developer’s Manual, Volume 1.

Because the WC protocol uses a weakly-ordered memory consistency model, a
fencing operation implemented with the SFENCE or MFENCE instruction should be
used in conjunction with MOVNTPS instructions if multiple processors might use
different memory types to read/write the destination memory locations.

Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise
instructions will #UD.

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 2B /r V/V SSE Move packed single-precision val-
ues xmm1 to mem using non-tem-
poral hint

MOVNTPS m128, xmm1

VEX.128.0F 2B /r V/V AVX Move packed single-precision val-
ues xmm1 to mem using non-tem-
poral hint

VMOVNTPS m128, xmm1

VEX.256.0F 2B /r
VMOVNTPS m256, ymm1

V/V AVX Move packed single-precision val-
ues ymm1 to mem using non-tem-
poral hint
222 Ref. # 319433-004

INSTRUCTION SET REFERENCE
Operation
MOVNTPS
DEST Å SRC

Intel C/C++ Compiler Intrinsic Equivalent

MOVNTPS void _mm_stream_ps (float * p, __m128d a);

VMOVNTPS void _mm256_stream_ps (float * p, __m256 a);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type1.SSE; additionally

#UD If VEX.vvvv != 1111B.
Ref. # 319433-004 223

INSTRUCTION SET REFERENCE
MOVSD- Move or Merge Scalar Double-Precision Floating-Point Value

Description
Moves a scalar double-precision floating-point value from the source operand
(second operand) to the destination operand (first operand). The source and destina-
tion operands can be XMM registers or 64-bit memory locations. This instruction can
be used to move a double-precision floating-point value to and from the low quad-
word of an XMM register and a 64-bit memory location, or to move a double-precision
floating-point value between the low quadwords of two XMM registers. The instruc-
tion cannot be used to transfer data between memory locations.

When the source and destination operands are XMM registers, the high quadword of
the destination operand remains unchanged. When the source operand is a memory

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

F2 0F 10 /r V/V SSE2 Merge or Move scalar double-pre-
cision floating-point value from
xmm2 to xmm1 register

MOVSD xmm1, xmm2

F2 0F 10 /r V/V SSE2 Merge or Move scalar double-pre-
cision floating-point value from
m64 to xmm1 register

MOVSD xmm1, m64

VEX.NDS.128.F2.0F 10 /r V/V AVX Merge scalar double-precision
floating-point value from xmm2
and xmm3 to xmm1 register

VMOVSD xmm1, xmm2, xmm3

VEX.128.F2.0F 10 /r V/V AVX Load scalar double-precision
floating-point value from m64 to
xmm1 register

VMOVSD xmm1, m64

F2 0F 11 /r V/V SSE2 Move scalar double-precision
floating-point value from xmm1
register to xmm2/m64

MOVSD xmm2/m64, xmm1

VEX.NDS.128.F2.0F 11 /r V/V AVX Merge scalar double-precision
floating-point value from xmm2
and xmm3 registers to xmm1

VMOVSD xmm1, xmm2, xmm3

VEX.128.F2.0F 11 /r V/V AVX Move scalar double-precision
floating-point value from xmm1
register to m64

VMOVSD m64, xmm1
224 Ref. # 319433-004

INSTRUCTION SET REFERENCE
location and destination operand is an XMM registers, the high quadword of the desti-
nation operand is cleared to all 0s.

Note: For the “VMOVSD m64, xmm1” (memory store form) instruction version,
VEX.vvvv is reserved and must be 1111b, otherwise instruction will #UD.

Note: For the “VMOVSD xmm1, m64” (memory load form) instruction version,
VEX.vvvv is reserved and must be 1111b otherwise instruction will #UD.

Software should ensure VMOVSD is encoded with VEX.L=0. Encoding VMOVSD with
VEX.L=1 may encounter unpredictable behavior across different processor genera-
tions.

Operation
MOVSD (128-bit Legacy SSE version: MOVSD XMM1, XMM2)
DEST[63:0] Å SRC[63:0]
DEST[255:64] (Unmodified)

VMOVSD (VEX.NDS.128.F2.0F 11 /r: VMOVSD xmm1, xmm2, xmm3)
DEST[63:0] Å SRC2[63:0]
DEST[127:64] Å SRC1[127:64]
DEST[255:128] Å 0

VMOVSD (VEX.NDS.128.F2.0F 10 /r: VMOVSD xmm1, xmm2, xmm3)
DEST[63:0] Å SRC2[63:0]
DEST[127:64] Å SRC1[127:64]
DEST[255:128] Å 0

VMOVSD (VEX.NDS.128.F2.0F 10 /r: VMOVSD xmm1, m64)
DEST[63:0] Å SRC[63:0]
DEST[255:64] Å 0

MOVSD/VMOVSD (128-bit versions: MOVSD m64, xmm1 or VMOVSD m64, xmm1)
DEST[63:0] Å SRC[63:0]

MOVSD (128-bit Legacy SSE version: MOVSD XMM1, m64)
DEST[63:0] Å SRC[63:0]
DEST[127:64] Å 0
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent
MOVSD __m128d _mm_load_sd (double *p)
MOVSD void _mm_store_sd (double *p, __m128d a)
MOVSD __m128d _mm_move_sd (__m128d a, __m128d b)
Ref. # 319433-004 225

INSTRUCTION SET REFERENCE
SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 5; additionally

#UD If VEX.vvvv != 1111B.
226 Ref. # 319433-004

INSTRUCTION SET REFERENCE
MOVSHDUP- Replicate Single FP Values

Description
Duplicates odd-indexed single-precision floating-point values from the source
operand (second operand). See Figure 5-15. The source operand is an XMM or YMM
register or 128 or 256-bit memory location and the destination operand is an XMM or
YMM register.

128-bit Legacy SSE version: Bits (255:128) of the corresponding YMM destination
register remain unchanged.

VEX.128 encoded version: Bits (255:128) of the destination YMM register are zeroed.

Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise
instructions will #UD.

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

F3 0F 16 /r V/V SSE3 Move odd index single-precision
floating-point values from
xmm2/mem and duplicate each
element into xmm1

MOVSHDUP xmm1, xmm2/m128

VEX.128.F3.0F 16 /r V/V AVX Move odd index single-precision
floating-point values from
xmm2/mem and duplicate each
element into xmm1

VMOVSHDUP xmm1, xmm2/m128

VEX.256.F3.0F 16 /r V/V AVX Move odd index single-precision
floating-point values from
ymm2/mem and duplicate each
element into ymm1

VMOVSHDUP ymm1, ymm2/m256
Ref. # 319433-004 227

INSTRUCTION SET REFERENCE
Figure 5-15. MOVSHDUP Operation

Operation
VMOVSHDUP (VEX.256 encoded version)
DEST[31:0] Å SRC[63:32]
DEST[63:32] Å SRC[63:32]
DEST[95:64] Å SRC[127:96]
DEST[127:96] Å SRC[127:96]
DEST[159:128] Å SRC[191:160]
DEST[191:160] Å SRC[191:160]
DEST[223:192] Å SRC[255:224]
DEST[255:224] Å SRC[255:224]

VMOVSHDUP (VEX.128 encoded version)
DEST[31:0] Å SRC[63:32]
DEST[63:32] Å SRC[63:32]
DEST[95:64] Å SRC[127:96]
DEST[127:96] Å SRC[127:96]
DEST[255:128] Å 0

MOVSHDUP (128-bit Legacy SSE version)
DEST[31:0] Å SRC[63:32]
DEST[63:32] Å SRC[63:32]
DEST[95:64] Å SRC[127:96]
DEST[127:96] Å SRC[127:96]
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent
VMOVSHDUP __m256 _mm256_movehdup_ps (__m256 a);
VMOVSHDUP __m128 _mm_movehdup_ps (__m128 a);

DEST

SRC X4X5X6X7

X1X1X3X3X5X5X7X7

X0X1X2X3
228 Ref. # 319433-004

INSTRUCTION SET REFERENCE
SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 2
Ref. # 319433-004 229

INSTRUCTION SET REFERENCE
MOVSLDUP- Replicate Single FP Values

Description
Duplicates even-indexed single-precision floating-point values from the source
operand (second operand). See Figure 5-16. The source operand is an XMM or YMM
register or 128 or 256-bit memory location and the destination operand is an XMM or
YMM register.

128-bit Legacy SSE version: Bits (255:128) of the corresponding YMM destination
register remain unchanged.

VEX.128 encoded version: Bits (255:128) of the destination YMM register are zeroed.

Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise
instructions will #UD.

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

F3 0F 12 /r V/V SSE3 Move even index single-precision
floating-point values from
xmm2/mem and duplicate each
element into xmm1

MOVSLDUP xmm1, xmm2/m128

VEX.128.F3.0F 12 /r V/V AVX Move even index single-precision
floating-point values from
xmm2/mem and duplicate each
element into xmm1

VMOVSLDUP xmm1, xmm2/m128

VEX.256.F3.0F 12 /r V/V AVX Move even index single-precision
floating-point values from
ymm2/mem and duplicate each
element into ymm1

VMOVSLDUP ymm1, ymm2/m256
230 Ref. # 319433-004

INSTRUCTION SET REFERENCE
Figure 5-16. MOVSLDUP Operation

Operation
VMOVSLDUP (VEX.256 encoded version)
DEST[31:0] Å SRC[31:0]
DEST[63:32] Å SRC[31:0]
DEST[95:64] Å SRC[95:64]
DEST[127:96] Å SRC[95:64]
DEST[159:128] Å SRC[159:128]
DEST[191:160] Å SRC[159:128]
DEST[223:192] Å SRC[223:192]
DEST[255:224] Å SRC[223:192]

VMOVSLDUP (VEX.128 encoded version)
DEST[31:0] Å SRC[31:0]
DEST[63:32] Å SRC[31:0]
DEST[95:64] Å SRC[95:64]
DEST[127:96] Å SRC[95:64]
DEST[255:128] Å 0

MOVSLDUP (128-bit Legacy SSE version)
DEST[31:0] Å SRC[31:0]
DEST[63:32] Å SRC[31:0]
DEST[95:64] Å SRC[95:64]
DEST[127:96] Å SRC[95:64]
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent
VMOVSLDUP __m256 _mm256_moveldup_ps (__m256 a);
VMOVSLDUP __m128 _mm_moveldup_ps (__m128 a);

DEST

SRC X4X5X6X7

X0X0X2X2X4X4X6X6

X0X1X2X3
Ref. # 319433-004 231

INSTRUCTION SET REFERENCE
SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4; additionally

#UD If VEX.vvvv != 1111B.
232 Ref. # 319433-004

INSTRUCTION SET REFERENCE
MOVSS- Move or Merge Scalar Single-Precision Floating-Point Value

Description
Moves a scalar single-precision floating-point value from the source operand (second
operand) to the destination operand (first operand). The source and destination
operands can be XMM registers or 32-bit memory locations. This instruction can be
used to move a single-precision floating-point value to and from the low doubleword
of an XMM register and a 32-bit memory location, or to move a single-precision
floating-point value between the low doublewords of two XMM registers. The instruc-
tion cannot be used to transfer data between memory locations.

When the source and destination operands are XMM registers, the high doublewords
of the destination operand remains unchanged. When the source operand is a

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

F3 0F 10 /r V/V SSE Merge scalar single-precision
floating-point value from xmm2 to
xmm1 register

MOVSS xmm1, xmm2

F3 0F 10 /r V/V SSE Load scalar single-precision float-
ing-point value from m32 to
xmm1 register

MOVSS xmm1, m32

VEX.NDS.128.F3.0F 10 /r V/V AVX Merge scalar single-precision
floating-point value from xmm2
and xmm3 to xmm1 register

VMOVSS xmm1, xmm2, xmm3

VEX.128.F3.0F 10 /r V/V AVX Load scalar single-precision float-
ing-point value from m32 to
xmm1 register

VMOVSS xmm1, m32

F3 0F 11 /r V/V SSE Move scalar single-precision float-
ing-point value from xmm1 regis-
ter to xmm2/m32

MOVSS xmm2/m32, xmm1

VEX.NDS.128.F3.0F 11 /r V/V AVX Move scalar single-precision float-
ing-point value from xmm2 and
xmm3 to xmm1 register

VMOVSS xmm1, xmm2, xmm3

VEX.128.F3.0F 11 /r V/V AVX Move scalar single-precision float-
ing-point value from xmm1 regis-
ter to m32

VMOVSS m32, xmm1
Ref. # 319433-004 233

INSTRUCTION SET REFERENCE
memory location and destination operand is an XMM registers, the high doublewords
of the destination operand is cleared to all 0s.

Note: For the “VMOVSS m32, xmm1” (memory store form) instruction version,
VEX.vvvv is reserved and must be 1111b otherwise instruction will #UD.

Note: For the “VMOVSS xmm1, m32” (memory load form) instruction version,
VEX.vvvv is reserved and must be 1111b otherwise instruction will #UD.

Software should ensure VMOVSS is encoded with VEX.L=0. Encoding VMOVSS with
VEX.L=1 may encounter unpredictable behavior across different processor genera-
tions.

Operation
MOVSS (Legacy SSE version when the source and destination operands are both XMM registers)
DEST[31:0] Å SRC[31:0]
DEST[255:32] (Unmodified)

VMOVSS (VEX.NDS.128.F3.0F 11 /r where the destination is an XMM register)
DEST[31:0] Å SRC2[31:0]
DEST[127:32] Å SRC1[127:32]
DEST[255:128] Å 0

VMOVSS (VEX.NDS.128.F3.0F 10 /r where the source and destination are XMM registers)
DEST[31:0] Å SRC2[31:0]
DEST[127:32] Å SRC1[127:32]
DEST[255:128] Å 0

VMOVSS (VEX.NDS.128.F3.0F 10 /r when the source operand is memory and the destination is
an XMM register)
DEST[31:0] Å SRC[31:0]
DEST[255:32] Å 0

MOVSS/VMOVSS (when the source operand is an XMM register and the destination is memory)
DEST[31:0] Å SRC[31:0]

MOVSS (Legacy SSE version when the source operand is memory and the destination is an XMM
register)
DEST[31:0] Å SRC[31:0]
DEST[127:32] Å 0
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent
MOVSS __m128 _mm_load_ss(float * p)
234 Ref. # 319433-004

INSTRUCTION SET REFERENCE
MOVSS void_mm_store_ss(float * p, __m128 a)
MOVSS __m128 _mm_move_ss(__m128 a, __m128 b)

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 5; additionally

#UD If VEX.vvvv != 1111B.
Ref. # 319433-004 235

INSTRUCTION SET REFERENCE
MOVUPD- Move Unaligned Packed Double-Precision Floating-Point Values

Description
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise
instructions will #UD.

VEX.256 encoded version:

Moves 256 bits of packed double-precision floating-point values from the source
operand (second operand) to the destination operand (first operand). This instruction
can be used to load a YMM register from a 256-bit memory location, to store the
contents of a YMM register into a 256-bit memory location, or to move data between
two YMM registers.

128-bit versions:

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 10 /r V/V SSE2 Move unaligned packed double-
precision floating-point from
xmm2/mem to xmm1

MOVUPD xmm1, xmm2/m128

66 0F 11 /r V/V SSE2 Move unaligned packed double-
precision floating-point from
xmm1 to xmm2/mem

MOVUPD xmm2/m128, xmm1

VEX.128.66.0F 10 /r V/V AVX Move unaligned packed double-
precision floating-point from
xmm2/mem to xmm1

VMOVUPD xmm1, xmm2/m128

VEX.128.66.0F 11 /r V/V AVX Move unaligned packed double-
precision floating-point from
xmm1 to xmm2/mem

VMOVUPD xmm2/m128, xmm1

VEX.256.66.0F 10 /r V/V AVX Move unaligned packed double-
precision floating-point from
ymm2/mem to ymm1

VMOVUPD ymm1, ymm2/m256

VEX.256.66.0F 11 /r V/V AVX Move unaligned packed double-
precision floating-point from
ymm1 to ymm2/mem

VMOVUPD ymm2/m256, ymm1
236 Ref. # 319433-004

INSTRUCTION SET REFERENCE
Moves 128 bits of packed double-precision floating-point values from the source
operand (second operand) to the destination operand (first operand). This instruction
can be used to load an XMM register from a 128-bit memory location, to store the
contents of an XMM register into a 128-bit memory location, or to move data
between two XMM registers.

128-bit Legacy SSE version: Bits (255:128) of the corresponding YMM destination
register remain unchanged.

When the source or destination operand is a memory operand, the operand may be
unaligned on a 16-byte boundary without causing a general-protection exception
(#GP) to be generated

VEX.128 encoded version: Bits (255:128) of the destination YMM register are
zeroed.

Operation
VMOVUPD (VEX.256 encoded version)
DEST[255:0] Å SRC[255:0]

VMOVUPD (VEX.128 encoded version)
DEST[127:0] Å SRC[127:0]
DEST[255:128] Å 0

MOVUPD (128-bit load and register-copy form Legacy SSE version)
DEST[127:0] Å SRC[127:0]
DEST[255:128] (Unmodified)

(V)MOVUPD (128-bit store form)
DEST[127:0] Å SRC[127:0]

Intel C/C++ Compiler Intrinsic Equivalent

VMOVUPD __m256d _mm256_loadu_pd (__m256d * p);

VMOVUPD _mm256_storeu_pd(_m256d *p, __m256d a);

MOVUPD __m128d _mm_loadu_pd (__m128d * p);

MOVUPD _mm_storeu_pd(__m128d *p, __m128d a);

SIMD Floating-Point Exceptions
None
Ref. # 319433-004 237

INSTRUCTION SET REFERENCE
Other Exceptions
See Exceptions Type 4

Note treatment of #AC varies; additionally

#UD If VEX.vvvv != 1111B.
238 Ref. # 319433-004

INSTRUCTION SET REFERENCE
MOVUPS- Move Unaligned Packed Single-Precision Floating-Point Values

Description
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise
instructions will #UD.

VEX.256 encoded version:

Moves 256 bits of packed single-precision floating-point values from the source
operand (second operand) to the destination operand (first operand). This instruction
can be used to load a YMM register from a 256-bit memory location, to store the
contents of a YMM register into a 256-bit memory location, or to move data between
two YMM registers.

128-bit versions:

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 10 /r V/V SSE Move unaligned packed single-
precision floating-point from
xmm2/mem to xmm1

MOVUPS xmm1, xmm2/m128

0F 11 /r V/V SSE Move unaligned packed single-
precision floating-point from
xmm1 to xmm2/mem

MOVUPS xmm2/m128, xmm1

VEX.128.0F 10 /r V/V AVX Move unaligned packed single-
precision floating-point from
xmm2/mem to xmm1

VMOVUPS xmm1, xmm2/m128

VEX.128.0F 11 /r V/V AVX Move unaligned packed single-
precision floating-point from
xmm1 to xmm2/mem

VMOVUPS xmm2/m128, xmm1

VEX.256.0F 10 /r V/V AVX Move unaligned packed single-
precision floating-point from
ymm2/mem to ymm1

VMOVUPS ymm1, ymm2/m256

VEX.256.0F 11 /r V/V AVX Move unaligned packed single-
precision floating-point from
ymm1 to ymm2/mem

VMOVUPS ymm2/m256, ymm1
Ref. # 319433-004 239

INSTRUCTION SET REFERENCE
Moves 128 bits of packed single-precision floating-point values from the source
operand (second operand) to the destination operand (first operand). This instruction
can be used to load an XMM register from a 128-bit memory location, to store the
contents of an XMM register into a 128-bit memory location, or to move data
between two XMM registers.

128-bit Legacy SSE version: Bits (255:128) of the corresponding YMM destination
register remain unchanged.

When the source or destination operand is a memory operand, the operand may be
unaligned on a 16-byte boundary without causing a general-protection exception
(#GP) to be generated

VEX.128 encoded version: Bits (255:128) of the destination YMM register are
zeroed.

Operation
VMOVUPS (VEX.256 encoded version)
DEST[255:0] Å SRC[255:0]

VMOVUPS (VEX.128 encoded load-form)
DEST[127:0] Å SRC[127:0]
DEST[255:128] Å 0

MOVUPS (128-bit load and register-copy form Legacy SSE version)
DEST[127:0] Å SRC[127:0]
DEST[255:128] (Unmodified)

(V)MOVUPS (128-bit store form)
DEST[127:0] Å SRC[127:0]

Intel C/C++ Compiler Intrinsic Equivalent

VMOVUPS __m256 _mm256_loadu_ps (__m256 * p);

VMOVUPS _mm256_storeu_ps(_m256 *p, __m256 a);

MOVUPS __m128 _mm_loadu_ps (__m128 * p);

MOVUPS _mm_storeu_ps(__m128 *p, __m128 a);

SIMD Floating-Point Exceptions
None
240 Ref. # 319433-004

INSTRUCTION SET REFERENCE
Other Exceptions
See Exceptions Type 4

Note treatment of #AC varies; additionally

#UD If VEX.vvvv != 1111B.
Ref. # 319433-004 241

INSTRUCTION SET REFERENCE
MPSADBW - Multiple Sum of Absolute Differences

Description
MPSADBW sums the absolute difference of 4 unsigned bytes selected by immediate
bits 0-1 from the second source with sequential groups of 4 unsigned bytes in the
first source operand. The source bytes from the first source operand start at an offset
determined by bit 2 of the immediate. The operation is repeated 8 times, each time
using the same second source input but selecting the group of 4 bytes starting at the
next higher byte in the first source. Each 16-bit sum is written to dest.

The first source and destination operands are XMM registers. The second source
operand is either an XMM register or a 128-bit memory location.

128-bit Legacy SSE version: The first source and destination are the same. Bits
(255:128) of the corresponding YMM destination register remain unchanged.

VEX.128 encoded version: Bits (255:128) of the destination YMM register are zeroed.

If VMPSADBW is encoded with VEX.L= 1, an attempt to execute the instruction
encoded with VEX.L= 1 will cause an #UD exception.

Operation
VMPSADBW (VEX.128 encoded version)
SRC2_OFFSET Å imm8[1:0]*32
SRC1_OFFSET Å imm8[2]*32
SRC1_BYTE0 Å SRC1[SRC1_OFFSET+7:SRC1_OFFSET]

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 3A 42 /r ib V/V SSE4_1 Sums absolute 8-bit integer
difference of adjacent groups of 4
byte integers in xmm1 and
xmm2/m128 and writes the results
in xmm1. Starting offsets within
xmm1 and xmm2/m128 are
determined by imm8

MPSADBW xmm1, xmm2/m128,
imm8

VEX.NDS.128.66.0F3A 42 /r ib V/V AVX Sums absolute 8-bit integer
difference of adjacent groups of 4
byte integers in xmm2 and
xmm3/m128 and writes the results
in xmm1. Starting offsets within
xmm2 and xmm3/m128 are
determined by imm8

VMPSADBW xmm1, xmm2,
xmm3/m128, imm8
242 Ref. # 319433-004

INSTRUCTION SET REFERENCE
SRC1_BYTE1 Å SRC1[SRC1_OFFSET+15:SRC1_OFFSET+8]
SRC1_BYTE2 Å SRC1[SRC1_OFFSET+23:SRC1_OFFSET+16]
SRC1_BYTE3 Å SRC1[SRC1_OFFSET+31:SRC1_OFFSET+24]
SRC1_BYTE4 Å SRC1[SRC1_OFFSET+39:SRC1_OFFSET+32]
SRC1_BYTE5 Å SRC1[SRC1_OFFSET+47:SRC1_OFFSET+40]
SRC1_BYTE6 Å SRC1[SRC1_OFFSET+55:SRC1_OFFSET+48]
SRC1_BYTE7 Å SRC1[SRC1_OFFSET+63:SRC1_OFFSET+56]
SRC1_BYTE8 Å SRC1[SRC1_OFFSET+71:SRC1_OFFSET+64]
SRC1_BYTE9 Å SRC1[SRC1_OFFSET+79:SRC1_OFFSET+72]
SRC1_BYTE10 Å SRC1[SRC1_OFFSET+87:SRC1_OFFSET+80]

SRC2_BYTE0 ÅSRC2[SRC2_OFFSET+7:SRC2_OFFSET]
SRC2_BYTE1 Å SRC2[SRC2_OFFSET+15:SRC2_OFFSET+8]
SRC2_BYTE2 Å SRC2[SRC2_OFFSET+23:SRC2_OFFSET+16]
SRC2_BYTE3 Å SRC2[SRC2_OFFSET+31:SRC2_OFFSET+24]

TEMP0 Å ABS(SRC1_BYTE0 - SRC2_BYTE0)
TEMP1 Å ABS(SRC1_BYTE1 - SRC2_BYTE1)
TEMP2 Å ABS(SRC1_BYTE2 - SRC2_BYTE2)
TEMP3 Å ABS(SRC1_BYTE3 - SRC2_BYTE3)
DEST[15:0] Å TEMP0 + TEMP1 + TEMP2 + TEMP3
TEMP0 Å ABS(SRC1_BYTE1 - SRC2_BYTE0)
TEMP1 Å ABS(SRC1_BYTE2 - SRC2_BYTE1)
TEMP2 Å ABS(SRC1_BYTE3 - SRC2_BYTE2)
TEMP3 Å ABS(SRC1_BYTE4 - SRC2_BYTE3)
DEST[31:16] Å TEMP0 + TEMP1 + TEMP2 + TEMP3
TEMP0 Å ABS(SRC1_BYTE2 - SRC2_BYTE0)
TEMP1 Å ABS(SRC1_BYTE3 - SRC2_BYTE1)
TEMP2 Å ABS(SRC1_BYTE4 - SRC2_BYTE2)
TEMP3 Å ABS(SRC1_BYTE5 - SRC2_BYTE3)
DEST[47:32] Å TEMP0 + TEMP1 + TEMP2 + TEMP3
TEMP0 Å ABS(SRC1_BYTE3 - SRC2_BYTE0)
TEMP1 Å ABS(SRC1_BYTE4 - SRC2_BYTE1)
TEMP2 Å ABS(SRC1_BYTE5 - SRC2_BYTE2)
TEMP3 Å ABS(SRC1_BYTE6 - SRC2_BYTE3)
DEST[63:48] Å TEMP0 + TEMP1 + TEMP2 + TEMP3
TEMP0 Å ABS(SRC1_BYTE4 - SRC2_BYTE0)
TEMP1 Å ABS(SRC1_BYTE5 - SRC2_BYTE1)
TEMP2 Å ABS(SRC1_BYTE6 - SRC2_BYTE2)
TEMP3 Å ABS(SRC1_BYTE7 - SRC2_BYTE3)
DEST[79:64] Å TEMP0 + TEMP1 + TEMP2 + TEMP3
TEMP0 Å ABS(SRC1_BYTE5 - SRC2_BYTE0)
TEMP1 Å ABS(SRC1_BYTE6 - SRC2_BYTE1)
Ref. # 319433-004 243

INSTRUCTION SET REFERENCE
TEMP2 Å ABS(SRC1_BYTE7 - SRC2_BYTE2)
TEMP3 Å ABS(SRC1_BYTE8 - SRC2_BYTE3)
DEST[95:80] Å TEMP0 + TEMP1 + TEMP2 + TEMP3
TEMP0 Å ABS(SRC1_BYTE6 - SRC2_BYTE0)
TEMP1 Å ABS(SRC1_BYTE7 - SRC2_BYTE1)
TEMP2 Å ABS(SRC1_BYTE8 - SRC2_BYTE2)
TEMP3 Å ABS(SRC1_BYTE9 - SRC2_BYTE3)
DEST[111:96] Å TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 Å ABS(SRC1_BYTE7 - SRC2_BYTE0)
TEMP1 Å ABS(SRC1_BYTE8 - SRC2_BYTE1)
TEMP2 Å ABS(SRC1_BYTE9 - SRC2_BYTE2)
TEMP3 Å ABS(SRC1_BYTE10 - SRC2_BYTE3)
DEST[127:112] Å TEMP0 + TEMP1 + TEMP2 + TEMP3

DEST[255:128] Å 0

MPSADBW (128-bit Legacy SSE version)
SRC_OFFSET Å imm8[1:0]*32
DEST_OFFSET Å imm8[2]*32
DEST_BYTE0 Å DEST[DEST_OFFSET+7:DEST_OFFSET]
DEST_BYTE1 Å DEST[DEST_OFFSET+15:DEST_OFFSET+8]
DEST_BYTE2 Å DEST[DEST_OFFSET+23:DEST_OFFSET+16]
DEST_BYTE3 Å DEST[DEST_OFFSET+31:DEST_OFFSET+24]
DEST_BYTE4 Å DEST[DEST_OFFSET+39:DEST_OFFSET+32]
DEST_BYTE5 Å DEST[DEST_OFFSET+47:DEST_OFFSET+40]
DEST_BYTE6 Å DEST[DEST_OFFSET+55:DEST_OFFSET+48]
DEST_BYTE7 Å DEST[DEST_OFFSET+63:DEST_OFFSET+56]
DEST_BYTE8 Å DEST[DEST_OFFSET+71:DEST_OFFSET+64]
DEST_BYTE9 Å DEST[DEST_OFFSET+79:DEST_OFFSET+72]
DEST_BYTE10 Å DEST[DEST_OFFSET+87:DEST_OFFSET+80]

SRC_BYTE0 ÅSRC[SRC_OFFSET+7:SRC_OFFSET]
SRC_BYTE1 Å SRC[SRC_OFFSET+15:SRC_OFFSET+8]
SRC_BYTE2 Å SRC[SRC_OFFSET+23:SRC_OFFSET+16]
SRC_BYTE3 Å SRC[SRC_OFFSET+31:SRC_OFFSET+24]

TEMP0 Å ABS(DEST_BYTE0 - SRC_BYTE0)
TEMP1 Å ABS(DEST_BYTE1 - SRC_BYTE1)
TEMP2 Å ABS(DEST_BYTE2 - SRC_BYTE2)
TEMP3 Å ABS(DEST_BYTE3 - SRC_BYTE3)
DEST[15:0] Å TEMP0 + TEMP1 + TEMP2 + TEMP3
TEMP0 Å ABS(DEST_BYTE1 - SRC_BYTE0)
244 Ref. # 319433-004

INSTRUCTION SET REFERENCE
TEMP1 Å ABS(DEST_BYTE2 - SRC_BYTE1)
TEMP2 Å ABS(DEST_BYTE3 - SRC_BYTE2)
TEMP3 Å ABS(DEST_BYTE4 - SRC_BYTE3)
DEST[31:16] Å TEMP0 + TEMP1 + TEMP2 + TEMP3
TEMP0 Å ABS(DEST_BYTE2 - SRC_BYTE0)
TEMP1 Å ABS(DEST_BYTE3 - SRC_BYTE1)
TEMP2 Å ABS(DEST_BYTE4 - SRC_BYTE2)
TEMP3 Å ABS(DEST_BYTE5 - SRC_BYTE3)
DEST[47:32] Å TEMP0 + TEMP1 + TEMP2 + TEMP3
TEMP0 Å ABS(DEST_BYTE3 - SRC_BYTE0)
TEMP1 Å ABS(DEST_BYTE4 - SRC_BYTE1)
TEMP2 Å ABS(DEST_BYTE5 - SRC_BYTE2)
TEMP3 Å ABS(DEST_BYTE6 - SRC_BYTE3)
DEST[63:48] Å TEMP0 + TEMP1 + TEMP2 + TEMP3
TEMP0 Å ABS(DEST_BYTE4 - SRC_BYTE0)
TEMP1 Å ABS(DEST_BYTE5 - SRC_BYTE1)
TEMP2 Å ABS(DEST_BYTE6 - SRC_BYTE2)
TEMP3 Å ABS(DEST_BYTE7 - SRC_BYTE3)
DEST[79:64] Å TEMP0 + TEMP1 + TEMP2 + TEMP3
TEMP0 Å ABS(DEST_BYTE5 - SRC_BYTE0)
TEMP1 Å ABS(DEST_BYTE6 - SRC_BYTE1)
TEMP2 Å ABS(DEST_BYTE7 - SRC_BYTE2)
TEMP3 Å ABS(DEST_BYTE8 - SRC_BYTE3)
DEST[95:80] Å TEMP0 + TEMP1 + TEMP2 + TEMP3
TEMP0 Å ABS(DEST_BYTE6 - SRC_BYTE0)
TEMP1 Å ABS(DEST_BYTE7 - SRC_BYTE1)
TEMP2 Å ABS(DEST_BYTE8 - SRC_BYTE2)
TEMP3 Å ABS(DEST_BYTE9 - SRC_BYTE3)
DEST[111:96] Å TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 Å ABS(DEST_BYTE7 - SRC_BYTE0)
TEMP1 Å ABS(DEST_BYTE8 - SRC_BYTE1)
TEMP2 Å ABS(DEST_BYTE9 - SRC_BYTE2)
TEMP3 Å ABS(DEST_BYTE10 - SRC_BYTE3)
DEST[127:112] Å TEMP0 + TEMP1 + TEMP2 + TEMP3
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

MPSADBW __m128i _mm_mpsadbw_epu8 (__m128i s1, __m128i s2, const int mask);

SIMD Floating-Point Exceptions
None
Ref. # 319433-004 245

INSTRUCTION SET REFERENCE
Other Exceptions
See Exceptions Type 4; additionally

#UD If VEX.L = 1
246 Ref. # 319433-004

INSTRUCTION SET REFERENCE
MULPD- Multiply Packed Double Precision Floating-Point Values

Description
Performs a SIMD Multiply of the two or four packed double-precision floating-point
values from the first Source operand to the Second Source operand, and stores the
packed double-precision floating-point results in the destination operand.

VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

VEX.128 encoded version: the first source operand second source operand is an XMM
register or 128-bit memory location. The destination operand is an XMM register. The
upper bits (255:128) of the destination YMM register destination are zeroed.

128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (255:128) of the corresponding YMM register destination are
unmodified.

Operation
VMULPD (VEX.256 encoded version)
DEST[63:0] Å SRC1[63:0] * SRC2[63:0]
DEST[127:64] Å SRC1[127:64] * SRC2[127:64]
DEST[191:128] Å SRC1[191:128] * SRC2[191:128]
DEST[255:192] Å SRC1[255:192] * SRC2[255:192]

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 59 /r V/V SSE2 Multiply packed double-precision
floating-point values from
xmm2/mem to xmm1 and stores
result in xmm1

MULPD xmm1, xmm2/m128

VEX.NDS.128.66.0F 59 /r V/V AVX Multiply packed double-precision
floating-point values from
xmm3/mem to xmm2 and stores
result in xmm1

VMULPD xmm1,xmm2,
xmm3/m128

VEX.NDS.256.66.0F 59 /r V/V AVX Multiply packed double-precision
floating-point values from
ymm3/mem to ymm2 and stores
result in ymm1

VMULPD ymm1, ymm2,
ymm3/m256
Ref. # 319433-004 247

INSTRUCTION SET REFERENCE
.
VMULPD (VEX.128 encoded version)
DEST[63:0] Å SRC1[63:0] * SRC2[63:0]
DEST[127:64] Å SRC1[127:64] * SRC2[127:64]
DEST[255:128] Å 0

MULPD (128-bit Legacy SSE version)
DEST[63:0] Å DEST[63:0] * SRC[63:0]
DEST[127:64] Å DEST[127:64] * SRC[127:64]
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VMULPD __m256d _mm256_mul_pd (__m256d a, __m256d b);

MULPD __m128d _mm_mul_pd (__m128d a, __m128d b);

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions
See Exceptions Type 2
248 Ref. # 319433-004

INSTRUCTION SET REFERENCE
MULPS- Multiply Packed Single Precision Floating-Point Values

Description
Performs an SIMD multiply of the four or eight packed single-precision floating-point
values from the first Source operand to the Second Source operand, and stores the
packed double-precision floating-point results in the destination operand.

VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

VEX.128 encoded version: the first source operand second source operand is an XMM
register or 128-bit memory location. The destination operand is an XMM register. The
upper bits (255:128) of the destination YMM register destination are zeroed.

128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (255:128) of the corresponding YMM register destination are
unmodified.

Operation
VMULPS (VEX.256 encoded version)
DEST[31:0] Å SRC1[31:0] * SRC2[31:0]
DEST[63:32] Å SRC1[63:32] * SRC2[63:32]
DEST[95:64] Å SRC1[95:64] * SRC2[95:64]
DEST[127:96] Å SRC1[127:96] * SRC2[127:96]

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 59 /r V/V SSE Multiply packed single-precision
floating-point values from
xmm2/mem to xmm1 and stores
result in xmm1

MULPS xmm1, xmm2/m128

VEX.NDS.128.0F 59 /r V/V AVX Multiply packed single-precision
floating-point values from
xmm3/mem to xmm2 and stores
result in xmm1

VMULPS xmm1,xmm2, xmm3/m128

VEX.NDS.256.0F 59 /r V/V AVX Multiply packed single-precision
floating-point values from
ymm3/mem to ymm2 and stores
result in ymm1

VMULPS ymm1, ymm2,
ymm3/m256
Ref. # 319433-004 249

INSTRUCTION SET REFERENCE
DEST[159:128] Å SRC1[159:128] * SRC2[159:128]
DEST[191:160]Å SRC1[191:160] * SRC2[191:160]
DEST[223:192] Å SRC1[223:192] * SRC2[223:192]
DEST[255:224] Å SRC1[255:224] * SRC2[255:224].

VMULPS (VEX.128 encoded version)
DEST[31:0] Å SRC1[31:0] * SRC2[31:0]
DEST[63:32] Å SRC1[63:32] * SRC2[63:32]
DEST[95:64] Å SRC1[95:64] * SRC2[95:64]
DEST[127:96] Å SRC1[127:96] * SRC2[127:96]
DEST[255:128] Å 0

MULPS (128-bit Legacy SSE version)
DEST[31:0] Å SRC1[31:0] * SRC2[31:0]
DEST[63:32] Å SRC1[63:32] * SRC2[63:32]
DEST[95:64] Å SRC1[95:64] * SRC2[95:64]
DEST[127:96] Å SRC1[127:96] * SRC2[127:96]
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VMULPS __m256 _mm256_mul_ps (__m256 a, __m256 b);

MULPS __m128 _mm_mul_ps (__m128 a, __m128 b);

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions
See Exceptions Type 2
250 Ref. # 319433-004

INSTRUCTION SET REFERENCE
MULSD- Multiply Scalar Double-Precision Floating-Point Values

Description
Multiplies the low double-precision floating-point value in the second source operand
by the low double-precision floating-point value in the first source operand, and
stores the double-precision floating-point result in the destination operand. The
second source operand can be an XMM register or a 64-bit memory location. The first
source operand and the destination operands are XMM registers. The high quadword
of the destination operand is copied from the high bits of the first source operand.
See Figure 11-4 in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1, for an illustration of a scalar double-precision floating-point oper-
ation.

128-bit Legacy SSE version: The first source operand and the destination operand
are the same. Bits (255:64) of the corresponding YMM destination register remain
unchanged.

VEX.128 encoded version: Bits (255:128) of the destination YMM register are zeroed.

Software should ensure VMULSD is encoded with VEX.L=0. Encoding VMULSD with
VEX.L=1 may encounter unpredictable behavior across different processor genera-
tions.

Operation
VMULSD (VEX.128 encoded version)
DEST[63:0] Å SRC1[63:0] * SRC2[63:0]
DEST[127:64] Å SRC1[127:64]
DEST[255:128] Å 0

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

F2 0F 59 /r V/V SSE2 Multiply the low double-precision
floating-point value in
xmm2/mem64 by low double
precision floating-point value in
xmm1.

MULSD xmm1,xmm2/m64

VEX.NDS.128.F2.0F 59/r V/V AVX Multiply the low double-precision
floating-point value in
xmm3/mem64 by low double
precision floating-point value in
xmm2.

VMULSD xmm1,xmm2, xmm3/m64
Ref. # 319433-004 251

INSTRUCTION SET REFERENCE
MULSD (128-bit Legacy SSE version)
DEST[63:0] Å DEST[63:0] * SRC[63:0]
DEST[255:64] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

MULSD __m128d _mm_mul_sd (__m128d a, __m128d b)

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions
See Exceptions Type 3
252 Ref. # 319433-004

INSTRUCTION SET REFERENCE
MULSS- Multiply Scalar Single-Precision Floating-Point Values

Description
Multiplies the low single-precision floating-point value from the second source
operand by the low single-precision floating-point value in the first source operand,
and stores the single-precision floating-point result in the destination operand. The
second source operand can be an XMM register or a 32-bit memory location. The first
source operand and the destination operands are XMM registers. The three high-
order doublewords of the destination operand remain unchanged. See Figure 10-6 in
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for
an illustration of a scalar single-precision floating-point operation.

128-bit Legacy SSE version: The first source operand and the destination operand
are the same. Bits (255:32) of the corresponding YMM destination register remain
unchanged.

VEX.128 encoded version: Bits (255:128) of the destination YMM register are zeroed.

Software should ensure VMULSS is encoded with VEX.L=0. Encoding VMULSS with
VEX.L=1 may encounter unpredictable behavior across different processor genera-
tions.

Operation
VMULSS (VEX.128 encoded version)
DEST[31:0] Å SRC1[31:0] * SRC2[31:0]
DEST[127:32] Å SRC1[127:32]
DEST[255:128] Å 0

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

F3 0F 59 /r V/V SSE Multiply the low single-precision
floating-point value in
xmm2/mem by the low single-
precision floating-point value in
xmm1.

MULSS xmm1,xmm2/m32

VEX.NDS.128.F3.0F 59 /r V/V AVX Multiply the low single-precision
floating-point value in
xmm3/mem by the low single-
precision floating-point value in
xmm2.

VMULSS xmm1,xmm2, xmm3/m32
Ref. # 319433-004 253

INSTRUCTION SET REFERENCE
MULSS (128-bit Legacy SSE version)
DEST[31:0] Å DEST[31:0] * SRC[31:0]
DEST[255:32] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

MULSS __m128 _mm_mul_ss(__m128 a, __m128 b)

SIMD Floating-Point Exceptions
Underflow, Overflow, Invalid, Precision, Denormal

Other Exceptions
See Exceptions Type 3
254 Ref. # 319433-004

INSTRUCTION SET REFERENCE
ORPD- Bitwise Logical OR of Packed Double Precision Floating-Point Values

Description
Performs a bitwise logical OR of the two or four packed double-precision floating-
point values from the first source operand and the second source operand, and stores
the result in the destination operand

VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

VEX.128 encoded version: the first source operand second source operand is an XMM
register or 128-bit memory location. The destination operand is an XMM register. The
upper bits (255:128) of the destination YMM register destination are zeroed.

128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (255:128) of the corresponding YMM register destination are
unmodified.

If VORPD is encoded with VEX.L= 1, an attempt to execute the instruction encoded
with VEX.L= 1 will cause an #UD exception.

Operation
VORPD (VEX.256 encoded version)
DEST[63:0] Å SRC1[63:0] BITWISE OR SRC2[63:0]

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 56/r V/V SSE2 Return the bitwise logical OR of
packed double-precision floating-
point values in xmm1 and
xmm2/mem

ORPD xmm1, xmm2/m128

VEX.NDS.128.66.0F 56 /r V/V AVX Return the bitwise logical OR of
packed double-precision floating-
point values in xmm2 and
xmm3/mem

VORPD xmm1,xmm2, xmm3/m128

VEX.NDS.256.66.0F 56 /r V/V AVX Return the bitwise logical OR of
packed double-precision floating-
point values in ymm2 and
ymm3/mem

VORPD ymm1, ymm2, ymm3/m256
Ref. # 319433-004 255

INSTRUCTION SET REFERENCE
DEST[127:64] Å SRC1[127:64] BITWISE OR SRC2[127:64]
DEST[191:128] Å SRC1[191:128] BITWISE OR SRC2[191:128]
DEST[255:192] Å SRC1[255:192] BITWISE OR SRC2[255:192]
.
VORPD (VEX.128 encoded version)
DEST[63:0] Å SRC1[63:0] BITWISE OR SRC2[63:0]
DEST[127:64] Å SRC1[127:64] BITWISE OR SRC2[127:64]
DEST[255:128] Å 0

ORPD (128-bit Legacy SSE version)
DEST[63:0] Å DEST[63:0] BITWISE OR SRC[63:0]
DEST[127:64] Å DEST[127:64] BITWISE OR SRC[127:64]
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VORPD __m256d _mm256_or_pd (__m256d a, __m256d b);

ORPD __m128d _mm_or_pd (__m128d a, __m128d b);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4; additionally

#UD If VEX.L = 1.
256 Ref. # 319433-004

INSTRUCTION SET REFERENCE
ORPS- Bitwise Logical OR of Packed Single Precision Floating-Point Values

Description
Performs a bitwise logical OR of the four or eight packed single-precision floating-
point values from the first source operand and the second source operand, and stores
the result in the destination operand

VEX.256 Encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

VEX.128 encoded version: the first source operand second source operand is an XMM
register or 128-bit memory location. The destination operand is an XMM register. The
upper bits (255:128) of the destination YMM register destination are zeroed.

128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (255:128) of the corresponding YMM register destination are
unmodified.

If VORPS is encoded with VEX.L= 1, an attempt to execute the instruction encoded
with VEX.L= 1 will cause an #UD exception.

Operation
VORPS (VEX.256 encoded version)
DEST[31:0] Å SRC1[31:0] BITWISE OR SRC2[31:0]

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 56 /r V/V SSE Return the bitwise logical OR of
packed single-precision floating-
point values in xmm1 and
xmm2/mem

ORPS xmm1, xmm2/m128

VEX.NDS.128.0F 56 /r V/V AVX Return the bitwise logical OR of
packed single-precision floating-
point values in xmm2 and
xmm3/mem

VORPS xmm1,xmm2, xmm3/m128

VEX.NDS.256.0F 56 /r V/V AVX Return the bitwise logical OR of
packed single-precision floating-
point values in ymm2 and
ymm3/mem

VORPS ymm1, ymm2, ymm3/m256
Ref. # 319433-004 257

INSTRUCTION SET REFERENCE
DEST[63:32] Å SRC1[63:32] BITWISE OR SRC2[63:32]
DEST[95:64] Å SRC1[95:64] BITWISE OR SRC2[95:64]
DEST[127:96] Å SRC1[127:96] BITWISE OR SRC2[127:96]
DEST[159:128] Å SRC1[159:128] BITWISE OR SRC2[159:128]
DEST[191:160]Å SRC1[191:160] BITWISE OR SRC2[191:160]
DEST[223:192] Å SRC1[223:192] BITWISE OR SRC2[223:192]
DEST[255:224] Å SRC1[255:224] BITWISE OR SRC2[255:224].

VORPS (VEX.128 encoded version)
DEST[31:0] Å SRC1[31:0] BITWISE OR SRC2[31:0]
DEST[63:32] Å SRC1[63:32] BITWISE OR SRC2[63:32]
DEST[95:64] Å SRC1[95:64] BITWISE OR SRC2[95:64]
DEST[127:96] Å SRC1[127:96] BITWISE OR SRC2[127:96]
DEST[255:128] Å 0

ORPS (128-bit Legacy SSE version)
DEST[31:0] Å SRC1[31:0] BITWISE OR SRC2[31:0]
DEST[63:32] Å SRC1[63:32] BITWISE OR SRC2[63:32]
DEST[95:64] Å SRC1[95:64] BITWISE OR SRC2[95:64]
DEST[127:96] Å SRC1[127:96] BITWISE OR SRC2[127:96]
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VORPS __m256 _mm256_or_ps (__m256 a, __m256 b);

ORPS __m128 _mm_or_ps (__m128 a, __m128 b);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4
258 Ref. # 319433-004

INSTRUCTION SET REFERENCE
PABSB/PABSW/PABSD - Packed Absolute Value

Description
PABSB/W/D computes the absolute value of each data element of the source operand
and stores the UNSIGNED results in the destination operand. PABSB operates on
signed bytes, PABSW operates on signed 16-bit words, and PABSD operates on
signed 32-bit integers. The source is an XMM register or a 128-bit memory location.
The destination operand is an XMM register.

128-bit Legacy SSE version: Bits (255:128) of the corresponding YMM destination
register remain unchanged.

VEX.128 encoded version: Bits (255:128) of the destination YMM register are zeroed.
VEX.vvvv is reserved and must be 1111b, VEX.L must be 0; otherwise instructions
will #UD.

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 38 1C /r V/V SSSE3 Compute the absolute value of
bytes in xmm2/m128 and store
UNSIGNED result in xmm1.

PABSB xmm1, xmm2/m128

66 0F 38 1D /r V/V SSSE3 Compute the absolute value of 16-
bit integers in xmm2/m128 and
store UNSIGNED result in xmm1.

PABSW xmm1, xmm2/m128

66 0F 38 1E /r V/V SSSE3 Compute the absolute value of 32-
bit integers in xmm2/m128 and
store UNSIGNED result in xmm1.

PABSD xmm1, xmm2/m128

VEX.128.66.0F38 1C /r V/V AVX Compute the absolute value of
bytes in xmm2/m128 and store
UNSIGNED result in xmm1.

VPABSB xmm1, xmm2/m128

VEX.128.66.0F38 1D /r V/V AVX Compute the absolute value of 16-
bit integers in xmm2/m128 and
store UNSIGNED result in xmm1.

VPABSW xmm1, xmm2/m128

VEX.128.66.0F38 1E /r V/V AVX Compute the absolute value of 32-
bit integers in xmm2/m128 and
store UNSIGNED result in xmm1.

VPABSD xmm1, xmm2/m128
Ref. # 319433-004 259

INSTRUCTION SET REFERENCE
Operation
BYTE_ABS(SRC)
{

DEST [7:0]Å ABS(SRC[7:0])
.. repeat operation for 2nd through 15th bytes
DEST [127..120]Å ABS(SRC[127:120])

}

WORD_ABS(SRC)
{

DEST [15:0]Å ABS(SRC[15:0])
.. repeat operation for 2nd through 7th 16-bit words
DEST [127..112]Å ABS(SRC[127:112])

}

DWORD_ABS(SRC)
{

DEST [31:0]Å ABS(SRC[31:0])
DEST [63:32]Å ABS(SRC[63:32])
DEST [95:64]Å ABS(SRC[95:64])
DEST [127..96]Å ABS(SRC[127:96])

}

VPABSB (VEX.128 encoded version)
DEST[127:0] Å BYTE_ABS(SRC)
DEST[255:128] Å 0

PABSB (128-bit Legacy SSE version)
DEST[127:0] Å BYTE_ABS(SRC)
DEST[255:128] (Unmodified)

VPABSW (VEX.128 encoded version)
DEST[127:0] Å WORD_ABS(SRC)
DEST[255:128] Å 0

PABSW (128-bit Legacy SSE version)
DEST[127:0] Å WORD_ABS(SRC)
DEST[255:128] (Unmodified)

VPABSD (VEX.128 encoded version)
DEST[127:0] Å DWORD_ABS(SRC)
DEST[255:128] Å 0
260 Ref. # 319433-004

INSTRUCTION SET REFERENCE
PABSD (128-bit Legacy SSE version)
DEST[127:0] Å DWORD_ABS(SRC)
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

PABSB __m128i _mm_abs_epi8 (__m128i a)

PABSW __m128i _mm_abs_epi16 (__m128i a)

PABSD __m128i _mm_abs_epi32 (__m128i a)

SIMD Floating-Point Exceptions
none

Other Exceptions
See Exceptions Type 4; additionally

#UD If VEX.L = 1.

If VEX.vvvv != 1111B.
Ref. # 319433-004 261

INSTRUCTION SET REFERENCE
PACKSSWB/PACKSSDW- Pack with Signed Saturation

Description
Converts packed signed word integers into packed signed byte integers (PACKSSWB)
or converts packed signed doubleword integers into packed signed word integers
(PACKSSDW), using saturation to handle overflow conditions. See Figure 5-17 for an
example of the packing operation.

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 63 /r V/V SSE2 Converts 8 packed signed word
integers from xmm1 and from
xmm2/m128 into 16 packed
signed byte integers in xmm1
using signed saturation.

PACKSSWB xmm1,xmm2/m128

66 0F 6B /r V/V SSE2 Converts 4 packed signed
doubleword integers from xmm1
and from xmm2/m128 into 8
packed signed word integers in
xmm1 using signed saturation.

PACKSSDW xmm1,xmm2/m128

VEX.NDS.128.66.0F 63 /r V/V AVX Converts 8 packed signed word
integers from xmm2 and from
xmm3/m128 into 16 packed
signed byte integers in xmm1
using signed saturation.

VPACKSSWB xmm1,xmm2,
xmm3/m128

VEX.NDS.128.66.0F 6B /r V/V AVX Converts 4 packed signed
doubleword integers from xmm2
and from xmm3/m128 into 8
packed signed word integers in
xmm1 using signed saturation.

VPACKSSDW xmm1,xmm2,
xmm3/m128
262 Ref. # 319433-004

INSTRUCTION SET REFERENCE
Figure 5-17. PACKSSDW Instruction Operation using 64-bit Operands

The PACKSSWB instruction converts 8 signed word integers from the first source
operand and 8 signed word integers from the second source operand into 16 signed
byte integers and stores the result in the destination operand. If a signed word
integer value is beyond the range of a signed byte integer (that is, greater than 7FH
for a positive integer or greater than 80H for a negative integer), the saturated
signed byte integer value of 7FH or 80H, respectively, is stored in the destination.

The PACKSSDW instruction packs 4 signed doublewords from the first source
operand and 4 signed doublewords from the second source operand into 8 signed
words in the destination operand (see Figure 5-17).

If a signed doubleword integer value is beyond the range of a signed word (that is,
greater than 7FFFH for a positive integer or greater than 8000H for a negative
integer), the saturated signed word integer value of 7FFFH or 8000H, respectively, is
stored into the destination.

When operating on 128-bit operands, the first source and destination operands are
XMM registers. and the second source operand can be either an XMM register or a
128-bit memory location.

128-bit Legacy SSE version: Bits (255:128) of the corresponding YMM destination
register remain unchanged.

VEX.128 encoded version: Bits (255:128) of the destination YMM register are zeroed.
VEX.L must be 0, otherwise the instruction will #UD.

Operation
SATURATING_PACK_WB(SRC1, SRC2)
DEST[7:0] Å SaturateSignedWordToSignedByte (SRC1[15:0])
DEST[15:8] Å SaturateSignedWordToSignedByte (SRC1[31:16])
DEST[23:16] Å SaturateSignedWordToSignedByte (SRC1[47:32])
DEST[31:24] Å SaturateSignedWordToSignedByte (SRC1[63:48])
DEST[39:32] Å SaturateSignedWordToSignedByte (SRC1[79:64])
DEST[47:40] Å SaturateSignedWordToSignedByte (SRC1[95:80])
DEST[55:48] Å SaturateSignedWordToSignedByte (SRC1[111:96])
DEST[63:56] Å SaturateSignedWordToSignedByte (SRC1[127:112])
DEST[71:64] Å SaturateSignedWordToSignedByte (SRC2[15:0])

D C

64-Bit SRC

64-Bit DEST

D’ C’ B’ A’

64-Bit DEST

B A
Ref. # 319433-004 263

INSTRUCTION SET REFERENCE
DEST[79:72] Å SaturateSignedWordToSignedByte (SRC2[31:16])
DEST[87:80] Å SaturateSignedWordToSignedByte (SRC2[47:32])
DEST[95:88] Å SaturateSignedWordToSignedByte (SRC2[63:48])
DEST[103:96] Å SaturateSignedWordToSignedByte (SRC2[79:64])
DEST[111:104] Å SaturateSignedWordToSignedByte (SRC2[95:80])
DEST[119:112] Å SaturateSignedWordToSignedByte (SRC2[111:96])
DEST[127:120] Å SaturateSignedWordToSignedByte (SRC2[127:112])

SATURATING_PACK_DW(SRC1, SRC2)
DEST[15:0] Å SaturateSignedDwordToSignedWord (SRC1[31:0])
DEST[31:16] Å SaturateSignedDwordToSignedWord (SRC1[63:32])
DEST[47:32] Å SaturateSignedDwordToSignedWord (SRC1[95:64])
DEST[63:48] Å SaturateSignedDwordToSignedWord (SRC1[127:96])
DEST[79:64] Å SaturateSignedDwordToSignedWord (SRC2[31:0])
DEST[95:80] Å SaturateSignedDwordToSignedWord (SRC2[63:32])
DEST[111:96] Å SaturateSignedDwordToSignedWord (SRC2[95:64])
DEST[127:112] Å SaturateSignedDwordToSignedWord (SRC2[127:96])

PACKSSDW
DEST[127:0] Å SATURATING_PACK_DW(DEST, SRC)
DEST[255:128] (Unmodified)

VPACKSSDW
DEST[127:0] Å SATURATING_PACK_DW(SRC1, SRC2)
DEST[255:128] Å 0

PACKSSWB
DEST[127:0] Å SATURATING_PACK_WB(DEST, SRC)
DEST[255:128] (Unmodified)

VPACKSSWB
DEST[127:0] Å SATURATING_PACK_WB(SRC1, SRC2)
DEST[255:128] Å 0

Intel C/C++ Compiler Intrinsic Equivalent

PACKSSWB __m128i _mm_packs_epi16(__m128i m1, __m128i m2)

PACKSSDW __m128i _mm_packs_epi32(__m128i m1, __m128i m2)

SIMD Floating-Point Exceptions
none
264 Ref. # 319433-004

INSTRUCTION SET REFERENCE
Other Exceptions
See Exceptions Type 4; additionally

#UD If VEX.L = 1.
Ref. # 319433-004 265

INSTRUCTION SET REFERENCE
PACKUSWB/PACKUSDW- Pack with Unsigned Saturation

Description
packuswb:

Converts 8 signed word integers from the second source operand and 8 signed word
integers from the first source operand into 8 unsigned byte integers and stores the
result in the destination operand. (See Figure 5-17 for an example of the packing
operation.) If a signed word integer value is beyond the range of an unsigned byte
integer (that is, greater than FFH or less than 00H), the saturated unsigned byte
integer value of FFH or 00H, respectively, is stored in the destination.

The first source operand and destination operand must be an XMM register and the
second source operand can be either an XMM register or a 128-bit memory location.

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 67 /r V/V SSE2 Converts 8 signed word integers
from xmm1 and 8 signed word
integers from xmm2/m128 into 16
unsigned byte integers in xmm1
using unsigned saturation.

PACKUSWB xmm1,xmm2/m128

66 0F 38 2B /r V/V SSE4_1 Convert 4 packed signed
doubleword integers from xmm1
and 4 packed signed doubleword
integers from xmm2/m128 into 8
packed unsigned word integers in
xmm1 using unsigned saturation.

PACKUSDW xmm1, xmm2/m128

VEX.NDS.128.66.0F 67 /r V/V AVX Converts 8 signed word integers
from xmm2 and 8 signed word
integers from xmm3/m128 into 16
unsigned byte integers in xmm1
using unsigned saturation.

VPACKUSWB xmm1, xmm2,
xmm3/m128

VEX.NDS.128.66.0F38 2B /r V/V AVX Convert 4 packed signed
doubleword integers from xmm2
and 4 packed signed doubleword
integers from xmm3/m128 into 8
packed unsigned word integers in
xmm1 using unsigned saturation.

VPACKUSDW xmm1, xmm2,
xmm3/m128
266 Ref. # 319433-004

INSTRUCTION SET REFERENCE
packusdw:

Converts packed signed doubleword integers into packed unsigned word integers
using unsigned saturation to handle overflow conditions. If the signed doubleword
value is beyond the range of an unsigned word (that is, greater than FFFFH or less
than 0000H), the saturated unsigned word integer value of FFFFH or 0000H, respec-
tively stored in the destination.

128-bit Legacy SSE version: Bits (255:128) of the corresponding YMM destination
register remain unchanged.

VEX.128 encoded version: Bits (255:128) of the destination YMM register are zeroed.
VEX.L must be 0, otherwise the instruction will #UD.

Operation
StaurateSignedWordToUnsignedByte(SRC)
{

TMP Å SRC < 0 ? 0 : SRC
return SRC > FFH ? FFH: TMP

}

SaturateSignedDWordToUnsignedWord(SRC)
{

TMP Å SRC < 0 ? 0 : SRC
return SRC > FFFFH ? FFFFH: TMP

}

UNSIGNED_SATURATING_PACK_DW(SRC1, SRC2)
DEST[15:0] Å SaturateSignedDWordToUnsignedWord(SRC1[31:0])
DEST[31:16] Å SaturateSignedDWordToUnsignedWord(SRC1[63:32])
DEST[47:32] Å SaturateSignedDWordToUnsignedWord(SRC1[95:64])
DEST[63:48] Å SaturateSignedDWordToUnsignedWord(SRC1[127:96])
DEST[79:64] Å SaturateSignedDWordToUnsignedWord(SRC2[31:0])
DEST[95:80] Å SaturateSignedDWordToUnsignedWord(SRC2[63:32])
DEST[111:96] Å SaturateSignedDWordToUnsignedWord(SRC2[95:64])
DEST[127:112] Å SaturateSignedDWordToUnsignedWord(SRC2[127:96])

UNSIGNED_SATURATING_PACK_WB(SRC1, SRC2)
DEST[7:0] Å SaturateSignedWordToUnsignedByte (SRC1[15:0])
DEST[15:8] Å SaturateSignedWordToUnsignedByte (SRC1[31:16])
DEST[23:16] Å SaturateSignedWordToUnsignedByte (SRC1[47:32])
DEST[31:24] Å SaturateSignedWordToUnsignedByte (SRC1[63:48])
DEST[39:32] Å SaturateSignedWordToUnsignedByte (SRC1[79:64])
DEST[47:40] Å SaturateSignedWordToUnsignedByte (SRC1[95:80])
DEST[55:48] Å SaturateSignedWordToUnsignedByte (SRC1[111:96])
DEST[63:56] Å SaturateSignedWordToUnsignedByte (SRC1[127:112])
Ref. # 319433-004 267

INSTRUCTION SET REFERENCE
DEST[71:64] Å SaturateSignedWordToUnsignedByte (SRC2[15:0])
DEST[79:72] Å SaturateSignedWordToUnsignedByte (SRC2[31:16])
DEST[87:80] Å SaturateSignedWordToUnsignedByte (SRC2[47:32])
DEST[95:88] Å SaturateSignedWordToUnsignedByte (SRC2[63:48])
DEST[103:96] Å SaturateSignedWordToUnsignedByte (SRC2[79:64])
DEST[111:104] Å SaturateSignedWordToUnsignedByte (SRC2[95:80])
DEST[119:112] Å SaturateSignedWordToUnsignedByte (SRC2[111:96])
DEST[127:120] Å SaturateSignedWordToUnsignedByte (SRC2[127:112])

VPACKUSWB (VEX.128 encoded version)
DEST[127:0] Å UNSIGNED_SATURATING_PACK_WB(SRC1, SRC2)
DEST[255:128] Å 0

VPACKUSDW (VEX.128 encoded version)
DEST[127:0] Å UNSIGNED_SATURATING_PACK_DW(SRC1, SRC2)
DEST[255:128] Å 0

PACKUSWB (128-bit Legacy SSE version)
DEST[127:0] Å UNSIGNED_SATURATING_PACK_WB(DEST, SRC)
DEST[255:128] (Unmodified)

PACKUSDW (128-bit Legacy SSE version)
DEST[127:0] Å UNSIGNED_SATURATING_PACK_DW(DEST, SRC)
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

PACKUSDW __m128i _mm_packus_epi32(__m128i m1, __m128i m2);

PACKUSWB __m128i _mm_packus_epi16(__m128i m1, __m128i m2)

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4; additionally

#UD If VEX.L = 1.
268 Ref. # 319433-004

INSTRUCTION SET REFERENCE
PADDB/PADDW/PADDD/PADDQ- Add Packed Integers

Description
Adds the packed byte, word, doubleword, or quadword integers in the first source
operand to the second source operand and stores the result in the destination
operand. The second source operand is an XMM register or an 128-bit memory loca-
tion. The first source operand and destination operand are XMM registers. When a
result is too large to be represented in the 8/16/32/64 integer (overflow), the result
is wrapped around and the low bits are written to the destination element (that is,
the carry is ignored).

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F FC /r V/V SSE2 Add packed byte integers from
xmm2/m128 and xmm1.PADDB xmm1, xmm2/m128

66 0F FD /r V/V SSE2 Add packed word integers from
xmm2/m128 and xmm1.PADDW xmm1, xmm2/m128

66 0F FE /r V/V SSE2 Add packed doubleword integers
from xmm2/m128 and xmm1.PADDD xmm1, xmm2/m128

66 0F D4 /r V/V SSE2 Add packed quadword integers
xmm2/m128 and xmm1.PADDQ xmm1, xmm2/m128

VEX.NDS.128.66.0F FC /r V/V AVX Add packed byte integers from
xmm3/m128 and xmm2.VPADDB xmm1, xmm2,

xmm3/m128

VEX.NDS.128.66.0F FD /r V/V AVX Add packed word integers from
xmm3/m128 and xmm2.VPADDW xmm1, xmm2,

xmm3/m128

VEX.NDS.128.66.0F FE /r V/V AVX Add packed doubleword integers
from xmm3/m128 and xmm2.VPADDD xmm1, xmm2,

xmm3/m128

VEX.NDS.128.66.0F D4 /r V/V AVX Add packed quadword integers
xmm3/m128 and xmm2.VPADDQ xmm1, xmm2,

xmm3/m128
Ref. # 319433-004 269

INSTRUCTION SET REFERENCE
Note that these instructions can operate on either unsigned or signed (two’s comple-
ment notation) integers; however, it does not set bits in the EFLAGS register to indi-
cate overflow and/or a carry. To prevent undetected overflow conditions, software
must control the ranges of the values operated on.

128-bit Legacy SSE version: Bits (255:128) of the corresponding YMM destination
register remain unchanged.

VEX.128 encoded version: Bits (255:128) of the destination YMM register are zeroed.
VEX.L must be 0, otherwise the instruction will #UD.

Operation
VPADDB (VEX.128 encoded version)
DEST[7:0] Å SRC1[7:0]+SRC2[7:0]
DEST[15:8] Å SRC1[15:8]+SRC2[15:8]
DEST[23:16] Å SRC1[23:16]+SRC2[23:16]
DEST[31:24] Å SRC1[31:24]+SRC2[31:24]
DEST[39:32] Å SRC1[39:32]+SRC2[39:32]
DEST[47:40] Å SRC1[47:40]+SRC2[47:40]
DEST[55:48] Å SRC1[55:48]+SRC2[55:48]
DEST[63:56] Å SRC1[63:56]+SRC2[63:56]
DEST[71:64] Å SRC1[71:64]+SRC2[71:64]
DEST[79:72] Å SRC1[79:72]+SRC2[79:72]
DEST[87:80] Å SRC1[87:80]+SRC2[87:80]
DEST[95:88] Å SRC1[95:88]+SRC2[95:88]
DEST[103:96] Å SRC1[103:96]+SRC2[103:96]
DEST[111:104] Å SRC1[111:104]+SRC2[111:104]
DEST[119:112] Å SRC1[119:112]+SRC2[119:112]
DEST[127:120] Å SRC1[127:120]+SRC2[127:120]
DEST[255:128] Å 0

PADDB (128-bit Legacy SSE version)
DEST[7:0] Å DEST[7:0]+SRC[7:0]
DEST[15:8] Å DEST[15:8]+SRC[15:8]
DEST[23:16] Å DEST[23:16]+SRC[23:16]
DEST[31:24] Å DEST[31:24]+SRC[31:24]
DEST[39:32] Å DEST[39:32]+SRC[39:32]
DEST[47:40] Å DEST[47:40]+SRC[47:40]
DEST[55:48] Å DEST[55:48]+SRC[55:48]
DEST[63:56] Å DEST[63:56]+SRC[63:56]
DEST[71:64] Å DEST[71:64]+SRC[71:64]
DEST[79:72] Å DEST[79:72]+SRC[79:72]
DEST[87:80] Å DEST[87:80]+SRC[87:80]
DEST[95:88] Å DEST[95:88]+SRC[95:88]
DEST[103:96] Å DEST[103:96]+SRC[103:96]
270 Ref. # 319433-004

INSTRUCTION SET REFERENCE
DEST[111:104] Å DEST[111:104]+SRC[111:104]
DEST[119:112] Å DEST[119:112]+SRC[119:112]
DEST[127:120] Å DEST[127:120]+SRC[127:120]
DEST[255:128] (Unmodified)

VPADDW (VEX.128 encoded version)
DEST[15:0] Å SRC1[15:0]+SRC2[15:0]
DEST[31:16] Å SRC1[31:16]+SRC2[31:16]
DEST[47:32] Å SRC1[47:32]+SRC2[47:32]
DEST[63:48] Å SRC1[63:48]+SRC2[63:48]
DEST[79:64] Å SRC1[79:64]+SRC2[79:64]
DEST[95:80] Å SRC1[95:80]+SRC2[95:80]
DEST[111:96] Å SRC1[111:96]+SRC2[111:96]
DEST[127:112] Å SRC1[127:112]+SRC2[127:112]
DEST[255:128] Å 0

PADDW (128-bit Legacy SSE version)
DEST[15:0] Å DEST[15:0]+SRC[15:0]
DEST[31:16] Å DEST[31:16]+SRC[31:16]
DEST[47:32] Å DEST[47:32]+SRC[47:32]
DEST[63:48] Å DEST[63:48]+SRC[63:48]
DEST[79:64] Å DEST[79:64]+SRC[79:64]
DEST[95:80] Å DEST[95:80]+SRC[95:80]
DEST[111:96] Å DEST[111:96]+SRC[111:96]
DEST[127:112] Å DEST[127:112]+SRC[127:112]
DEST[255:128] (Unmodified)

VPADDD (VEX.128 encoded version)
DEST[31:0] Å SRC1[31:0]+SRC2[31:0]
DEST[63:32] Å SRC1[63:32]+SRC2[63:32]
DEST[95:64] Å SRC1[95:64]+SRC2[95:64]
DEST[127:96] Å SRC1[127:96]+SRC2[127:96]
DEST[255:128] Å 0

PADDD (128-bit Legacy SSE version)
DEST[31:0] Å DEST[31:0]+SRC[31:0]
DEST[63:32] Å DEST[63:32]+SRC[63:32]
DEST[95:64] Å DEST[95:64]+SRC[95:64]
DEST[127:96] Å DEST[127:96]+SRC[127:96]
DEST[255:128] (Unmodified)

VPADDQ (VEX.128 encoded version)
DEST[63:0] Å SRC1[63:0]+SRC2[63:0]
Ref. # 319433-004 271

INSTRUCTION SET REFERENCE
DEST[127:64] Å SRC1[127:64]+SRC2[127:64]
DEST[255:128] Å 0

PADDQ (128-bit Legacy SSE version)
DEST[63:0] Å DEST[63:0]+SRC[63:0]
DEST[127:64] Å DEST[127:64]+SRC[127:64]
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

PADDB __m128i_mm_add_epi8 (__m128ia,__m128ib)

PADDW __m128i _mm_add_epi16 (__m128i a, __m128i b)

PADDD __m128i _mm_add_epi32 (__m128i a, __m128i b)

PADDQ __m128i _mm_add_epi64 (__m128i a, __m128i b)

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4; additionally

#UD If VEX.L = 1.
272 Ref. # 319433-004

INSTRUCTION SET REFERENCE
PADDSB/PADDSW- Add Packed Signed Integers with Signed Saturation

Description
Performs a SIMD add of the packed signed integers from the second source operand
and the first source operand and stores the packed integer results in the destination
operand. See Figure 9-4 in the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 1, for an illustration of a SIMD operation.

Overflow is handled with signed saturation, as described in the following paragraphs.
The second source operand can be either an XMM register or a 128-bit memory loca-
tion. The first source and destination operands are XMM registers.

The PADDSB instruction adds packed signed byte integers. When an individual byte
result is beyond the range of a signed byte integer (that is, greater than 7FH or less
than 80H), the saturated value of 7FH or 80H, respectively, is written to the destina-
tion operand.

The PADDSW instruction adds packed signed word integers. When an individual word
result is beyond the range of a signed word integer (that is, greater than 7FFFH or
less than 8000H), the saturated value of 7FFFH or 8000H, respectively, is written to
the destination operand.

128-bit Legacy SSE version: Bits (255:128) of the corresponding YMM destination
register remain unchanged.

VEX.128 encoded version: Bits (255:128) of the destination YMM register are zeroed.
VEX.L must be 0, otherwise the instruction will #UD.

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F EC /r V/V SSE2 Add packed signed byte integers
from xmm2/m128 and xmm1
saturate the results.

PADDSB xmm1, xmm2/m128

66 0F ED /r V/V SSE2 Add packed signed word integers
from xmm2/m128 and xmm1 and
saturate the results.

PADDSW xmm1, xmm2/m128

VEX.NDS.128.66.0F EC /r V/V AVX Add packed signed byte integers
from xmm3/m128 and xmm2
saturate the results.

VPADDSB xmm1, xmm2,
xmm3/m128

VEX.NDS.128.66.0F ED /r V/V AVX Add packed signed word integers
from xmm3/m128 and xmm2 and
saturate the results.

VPADDSW xmm1, xmm2,
xmm3/m128
Ref. # 319433-004 273

INSTRUCTION SET REFERENCE
Operation
VPADDSB
DEST[7:0] Å SaturateToSignedByte (SRC1[7:0] + SRC2[7:0]);
(* Repeat subtract operation for 2nd through 14th bytes *)
DEST[127:120] Å SaturateToSignedByte (SRC1[111:120] + SRC2[127:120]);
DEST[255:128] Å 0

PADDSB
DEST[7:0] Å SaturateToSignedByte (DEST[7:0] + SRC[7:0]);
(* Repeat subtract operation for 2nd through 14th bytes *)
DEST[127:120] Å SaturateToSignedByte (DEST[111:120] + SRC[127:120]);
DEST[255:128] (Unmodified)

VPADDSW
DEST[15:0] Å SaturateToSignedWord (SRC1[15:0] + SRC2[15:0]);
(* Repeat subtract operation for 2nd through 7th words *)
DEST[127:112] Å SaturateToSignedWord (SRC1[127:112] + SRC2[127:112]);
DEST[255:128] Å 0

PADDSW
DEST[15:0] Å SaturateToSignedWord (DEST[15:0] + SRC[15:0]);
(* Repeat subtract operation for 2nd through 7th words *)
DEST[127:112] Å SaturateToSignedWord (DEST[127:112] + SRC[127:112]);
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

PADDSB __m128i _mm_adds_epi8 (__m128i a, __m128i b)

PADDSW __m128i _mm_adds_epi16 (__m128i a, __m128i b)

SIMD Floating-Point Exceptions
none

Other Exceptions
See Exceptions Type 4; additionally

#UD If VEX.L = 1.
274 Ref. # 319433-004

INSTRUCTION SET REFERENCE
PADDUSB/PADDUSW- Add Packed Unsigned Integers with Unsigned
Saturation

Description
Performs a SIMD add of the packed unsigned integers from the second source
operand and the first source operand and stores the packed integer results in the
destination operand. See Figure 9-4 in the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1, for an illustration of a SIMD operation. Overflow
is handled with unsigned saturation, as described in the following paragraphs.

The first source operand and the destination operands are XMM registers. The second
source operand is either an XMM register or a 128-bit memory location.

The PADDUSB instruction adds packed unsigned byte integers. When an individual
byte result is beyond the range of an unsigned byte integer (that is, greater than
FFH), the saturated value of FFH is written to the destination operand. The PADDUSW
instruction adds packed unsigned word integers. When an individual word result is
beyond the range of an unsigned word integer (that is, greater than FFFFH), the
saturated value of FFFFH is written to the destination operand.

128-bit Legacy SSE version: Bits (255:128) of the corresponding YMM destination
register remain unchanged.

VEX.128 encoded version: Bits (255:128) of the destination YMM register are zeroed.
VEX.L must be 0, otherwise the instruction will #UD.

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F DC /r V/V SSE2 Add packed unsigned byte
integers from xmm2/m128 and
xmm1 saturate the results.

PADDUSB xmm1, xmm2/m128

66 0F DD /r V/V SSE2 Add packed unsigned word
integers from xmm2/m128 to
xmm1 and saturate the results.

PADDUSW xmm1, xmm2/m128

VEX.NDS.128.660F DC /r V/V AVX Add packed unsigned byte
integers from xmm3/m128 and
xmm2 saturate the results.

VPADDUSB xmm1, xmm2,
xmm3/m128

VEX.NDS.128.66.0F DD /r V/V AVX Add packed unsigned word
integers from xmm3/m128 to
xmm2 and saturate the results.

VPADDUSW xmm1, xmm2,
xmm3/m128
Ref. # 319433-004 275

INSTRUCTION SET REFERENCE
Operation
VPADDUSB
DEST[7:0] Å SaturateToUnsignedByte (SRC1[7:0] + SRC2[7:0]);
(* Repeat subtract operation for 2nd through 14th bytes *)
DEST[127:120] Å SaturateToUnsignedByte (SRC1[111:120] + SRC2[127:120]);
DEST[255:128] Å 0

PADDUSB
DEST[7:0] Å SaturateToUnsignedByte (DEST[7:0] + SRC[7:0]);
(* Repeat subtract operation for 2nd through 14th bytes *)
DEST[127:120] Å SaturateToUnsignedByte (DEST[111:120] + SRC[127:120]);
DEST[255:128] (Unmodified)

VPADDUSW
DEST[15:0] Å SaturateToUnsignedWord (SRC1[15:0] + SRC2[15:0]);
(* Repeat subtract operation for 2nd through 7th words *)
DEST[127:112] Å SaturateToUnsignedWord (SRC1[127:112] + SRC2[127:112]);
DEST[255:128] Å 0

PADDUSW
DEST[15:0] Å SaturateToSUnsgnedWord (DEST[15:0] + SRC[15:0]);
(* Repeat subtract operation for 2nd through 7th words *)
DEST[127:112] Å SaturateToUnsignedWord (DEST[127:112] + SRC[127:112]);
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

PADDUSB __m128i _mm_adds_epu8 (__m128i a, __m128i b)

PADDUSW __m128i _mm_adds_epu16 (__m128i a, __m128i b)

SIMD Floating-Point Exceptions
none

Other Exceptions
See Exceptions Type 4; additionally

#UD If VEX.L = 1.
276 Ref. # 319433-004

INSTRUCTION SET REFERENCE
PALIGNR - Byte Align

Description
PALIGNR concatenates the first source operand and the second source operand into
an intermediate composite, shifts the composite at byte granularity to the right by a
constant immediate, and extracts the right aligned result into the destination. The
first source and destination operand are XMM registers. The second source operand
can be an XMM register or a 128-bit memory location. The immediate value is consid-
ered unsigned. Immediate shift counts larger than 32 for 128-bit operands produces
a zero result.

128-bit Legacy SSE version: Bits (255:128) of the corresponding YMM destination
register remain unchanged.

VEX.128 encoded version: Bits (255:128) of the destination YMM register are zeroed.
VEX.L must be 0, otherwise the instruction will #UD.

Operation
PALIGNR
temp1[255:0] Å CONCATENATE(DEST,SRC)>>(imm8*8)
DEST[127:0] Å temp1[127:0]
DEST[255:128] (Unmodified)

VPALIGNR
temp1[255:0] Å CONCATENATE(SRC1,SRC2)>>(imm8*8)
DEST[127:0] Å temp1[127:0]
DEST[255:128] Å 0

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 3A 0F /r ib V/V SSSE3 Concatenate destination and
source operands, extract byte
aligned result shifted to the right
by constant value in imm8 and
result is stored in xmm1

PALIGNR xmm1, xmm2/m128,
imm8

VEX.NDS.128.66.0F3A 0F /r ib V/V AVX Concatenate xmm2 and
xmm3/m128, extract byte aligned
result shifted to the right by
constant value in imm8 and result
is stored in xmm1

VPALIGNR xmm1, xmm2,
xmm3/m128, imm8
Ref. # 319433-004 277

INSTRUCTION SET REFERENCE
Intel C/C++ Compiler Intrinsic Equivalent

PALIGNR __m128i _mm_alignr_epi8 (__m128i a, __m128i b, int n)

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4; additionally

#UD If VEX.L = 1.
278 Ref. # 319433-004

INSTRUCTION SET REFERENCE
PAND- Logical AND

Description
Performs a bitwise logical AND operation on the second source operand and the first
source operand and stores the result in the destination operand. The second source
operand is an XMM register or a 128-bit memory location. The first source and desti-
nation operands can be XMM registers. Each bit of the result is set to 1 if the corre-
sponding bits of the first and second operands are 1; otherwise, it is set to 0.

128-bit Legacy SSE version: Bits (255:128) of the corresponding YMM destination
register remain unchanged.

VEX.128 encoded version: Bits (255:128) of the destination YMM register are zeroed.
VEX.L must be 0, otherwise the instruction will #UD.

Operation
VPAND (VEX.128 encoded version)
DEST Å SRC1 AND SRC2
DEST[255:128] Å 0

PAND (128-bit Legacy SSE version)
DEST Å DEST AND SRC
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

PAND __m128i _mm_and_si128 (__m128i a, __m128i b)

SIMD Floating-Point Exceptions
none

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F DB /r V/V SSE2 Bitwise AND of xmm2/m128 and
xmm1.PAND xmm1, xmm2/m128

VEX.NDS.128.66.0F DB /r V/V AVX Bitwise AND of xmm2/m128 and
xmm1.VPAND xmm1, xmm2, xmm3/m128
Ref. # 319433-004 279

INSTRUCTION SET REFERENCE
Other Exceptions
See Exceptions Type 4; additionally

#UD If VEX.L = 1.
280 Ref. # 319433-004

INSTRUCTION SET REFERENCE
PANDN- Logical AND NOT

Description
Performs a bitwise logical NOT operation on the first source operand and then
performs a bitwise logical AND with the second source operand and stores the result
in the destination operand. The second source operand is an XMM register or a 128-
bit memory location. The first source and destination operands can be XMM registers.
Each bit of the result is set to 1 if the corresponding bits of the first and second oper-
ands are 1; otherwise, it is set to 0.

128-bit Legacy SSE version: Bits (255:128) of the corresponding YMM destination
register remain unchanged.

VEX.128 encoded version: Bits (255:128) of the destination YMM register are zeroed.
VEX.L must be 0, otherwise the instruction will #UD.

Operation
VPANDN (VEX.128 encoded version)
DEST Å NOT(SRC1) AND SRC2
DEST[255:128] Å 0

PANDN(128-bit Legacy SSE version)
DEST Å NOT(DEST) AND SRC
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

PANDN __m128i _mm_andnot_si128 (__m128i a, __m128i b)

SIMD Floating-Point Exceptions
none

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F DF /r V/V SSE2 Bitwise AND NOT of
xmm2/m128 and xmm1.PANDN xmm1, xmm2/m128

VEX.NDS.128.66.0F DF /r V/V AVX Bitwise AND NOT of
xmm2/m128 and xmm1.VPANDN xmm1, xmm2,

xmm3/m128
Ref. # 319433-004 281

INSTRUCTION SET REFERENCE
Other Exceptions
See Exceptions Type 4; additionally

#UD If VEX.L = 1.
282 Ref. # 319433-004

INSTRUCTION SET REFERENCE
PAVGB/PAVGW - Average Packed Integers

Description
Performs a SIMD average of the packed unsigned integers from the second source
operand and the first source operand and stores the results in the destination
operand. For each corresponding pair of data elements in the first and second source
operands, the elements are added together, a 1 is added to the temporary sum, and
that result is shifted right one bit position. The destination and first source operands
are XMM registers. The second source operand is an XMM register or a 128-bit
memory location.

The PAVGB instruction operates on packed unsigned bytes and the PAVGW instruc-
tion operates on packed unsigned words.

128-bit Legacy SSE version: Bits (255:128) of the corresponding YMM destination
register remain unchanged.

VEX.128 encoded version: Bits (255:128) of the destination YMM register are zeroed.
VEX.L must be 0, otherwise the instruction will #UD.

Operation
VPAVGB (VEX.128 encoded version)
DEST[7:0] Å (SRC1[7:0] + SRC2[7:0] + 1) >> 1;
(* Repeat operation performed for bytes 2 through 15 *)
DEST[127:120] Å (SRC1[127:120] + SRC2[127:120] + 1) >> 1
DEST[255:128] Å 0

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F E0 /r V/V SSE2 Average packed unsigned byte
integers from xmm2/m128 and
xmm1 with rounding.

PAVGB xmm1, xmm2/m128

66 0F E3 /r V/V SSE2 Average packed unsigned word
integers from xmm2/m128 and
xmm1 with rounding.

PAVGW xmm1, xmm2/m128

VEX.NDS.128.66.0F E0 /r V/V AVX Average packed unsigned byte
integers from xmm3/m128 and
xmm2 with rounding.

VPAVGB xmm1, xmm2,
xmm3/m128

VEX.NDS.128.66.0F E3 /r V/V AVX Average packed unsigned word
integers from xmm3/m128 and
xmm2 with rounding.

VPAVGW xmm1, xmm2,
xmm3/m128
Ref. # 319433-004 283

INSTRUCTION SET REFERENCE
PAVGB (128-bit Legacy SSE version)
DEST[7:0] Å (SRC[7:0] + DEST[7:0] + 1) >> 1;
(* Repeat operation performed for bytes 2 through 15 *)
DEST[127:120] Å (SRC[127:120] + DEST[127:120] + 1) >> 1
DEST[255:128] (Unmodified)

VPAVGW (VEX.128 encoded version)
DEST[15:0] Å (SRC1[15:0] + SRC2[15:0] + 1) >> 1;
(* Repeat operation performed for 16-bit words 2 through 7 *)
DEST[127:112] Å (SRC1[127:112] + SRC2[127:112] + 1) >> 1
DEST[255:128] Å 0

PAVGW (128-bit Legacy SSE version)
DEST[15:0] Å (SRC[15:0] + DEST[15:0] + 1) >> 1;
(* Repeat operation performed for 16-bit words 2 through 7 *)
DEST[127:112 Å (SRC[127:112] + DEST[127:112] + 1) >> 1
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

PAVGB __m128i _mm_avg_epu8 (__m128i a, __m128i b)

PAVGW __m128i _mm_avg_epu16 (__m128i a, __m128i b)

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4; additionally

#UD If VEX.L = 1.
284 Ref. # 319433-004

INSTRUCTION SET REFERENCE
PBLENDVB - Variable Blend Packed Bytes

Description
Conditionally copy byte elements from the second source operand and the first
source operand depending on mask bits defined in the mask register operand. The
mask bits are the most significant bit in each byte element of the mask register.

Each byte element of the destination operand is copied from:

• the corresponding byte element in the second source operand, If a mask bit is
“1"; or

• the corresponding byte element in the first source operand, If a mask bit is “0"

The register assignment of the implicit third operand is defined to be the architectural
register XMM0

128-bit Legacy SSE version: The first source operand and the destination operand is
the same. Bits (255:128) of the corresponding YMM destination register remain
unchanged. The mask register operand is implicitly defined to be the architectural
register XMM0. An attempt to execute PBLENDVB with a VEX prefix will cause #UD.

VEX.128 encoded version: The first source operand and the destination operand are
XMM registers. The second source operand is an XMM register or 128-bit memory
location. The mask operand is the third source register, and encoded in bits[7:4] of
the immediate byte(imm8). The bits[3:0] of imm8 are ignored. In 32-bit mode,
imm8[7] is ignored. The upper bits (255:128) of the corresponding YMM register
(destination register) are zeroed. VEX.L must be 0, otherwise the instruction will
#UD. VEX.W must be 0, otherwise, the instruction will #UD.

VPBLENDVB permits the mask to be any XMM or YMM register. In contrast,
PBLENDVB treats XMM0 implicitly as the mask and do not support non-destructive
destination operation. An attempt to execute PBLENDVB encoded with a VEX prefix
will cause a #UD exception.

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 38 10 /r V/V SSE4_1 Select byte values from xmm1 and
xmm2/m128 using mask bits in
the implicit mask register, XMM0,
and store the values into xmm1

PBLENDVB xmm1, xmm2/m128,
<XMM0>

VEX.NDS.128.66.0F3A 4C /r /is4 V/V AVX Select byte values from xmm2 and
xmm3/m128 using mask bits in
the specified mask register, xmm4,
and store the values into xmm1

VPBLENDVB xmm1, xmm2,
xmm3/m128, xmm4
Ref. # 319433-004 285

INSTRUCTION SET REFERENCE
Operation
VPBLENDVB (VEX.128 encoded version)
MASK Å SRC3
IF (MASK[7] == 1) THEN DEST[7:0] Å SRC2[7:0];
ELSE DEST[7:0] Å SRC1[7:0];
IF (MASK[15] == 1) THEN DEST[15:8] Å SRC2[15:8];
ELSE DEST[15:8] Å SRC1[15:8];
IF (MASK[23] == 1) THEN DEST[23:16] Å SRC2[23:16]
ELSE DEST[23:16] Å SRC1[23:16];
IF (MASK[31] == 1) THEN DEST[31:24] Å SRC2[31:24]
ELSE DEST[31:24] Å SRC1[31:24];
IF (MASK[39] == 1) THEN DEST[39:32] Å SRC2[39:32]
ELSE DEST[39:32] Å SRC1[39:32];
IF (MASK[47] == 1) THEN DEST[47:40] Å SRC2[47:40]
ELSE DEST[47:40] Å SRC1[47:40];
IF (MASK[55] == 1) THEN DEST[55:48] Å SRC2[55:48]
ELSE DEST[55:48] Å SRC1[55:48];
IF (MASK[63] == 1) THEN DEST[63:56] Å SRC2[63:56]
ELSE DEST[63:56] Å SRC1[63:56];
IF (MASK[71] == 1) THEN DEST[71:64] Å SRC2[71:64]
ELSE DEST[71:64] Å SRC1[71:64];
IF (MASK[79] == 1) THEN DEST[79:72] Å SRC2[79:72]
ELSE DEST[79:72] Å SRC1[79:72];
IF (MASK[87] == 1) THEN DEST[87:80] Å SRC2[87:80]
ELSE DEST[87:80] Å SRC1[87:80];
IF (MASK[95] == 1) THEN DEST[95:88] Å SRC2[95:88]
ELSE DEST[95:88] Å SRC1[95:88];
IF (MASK[103] == 1) THEN DEST[103:96] Å SRC2[103:96]
ELSE DEST[103:96] Å SRC1[103:96];
IF (MASK[111] == 1) THEN DEST[111:104] Å SRC2[111:104]
ELSE DEST[111:104] Å SRC1[111:104];
IF (MASK[119] == 1) THEN DEST[119:112] Å SRC2[119:112]
ELSE DEST[119:112] Å SRC1[119:112];
IF (MASK[127] == 1) THEN DEST[127:120] Å SRC2[127:120]
ELSE DEST[127:120] Å SRC1[127:120])
DEST[255:128] Å 0

PBLENDVB (128-bit Legacy SSE version)
MASK Å XMM0
IF (MASK[7] == 1) THEN DEST[7:0] Å SRC[7:0];
ELSE DEST[7:0] Å DEST[7:0];
IF (MASK[15] == 1) THEN DEST[15:8] Å SRC[15:8];
ELSE DEST[15:8] Å DEST[15:8];
286 Ref. # 319433-004

INSTRUCTION SET REFERENCE
IF (MASK[23] == 1) THEN DEST[23:16] Å SRC[23:16]
ELSE DEST[23:16] Å DEST[23:16];
IF (MASK[31] == 1) THEN DEST[31:24] Å SRC[31:24]
ELSE DEST[31:24] Å DEST[31:24];
IF (MASK[39] == 1) THEN DEST[39:32] Å SRC[39:32]
ELSE DEST[39:32] Å DEST[39:32];
IF (MASK[47] == 1) THEN DEST[47:40] Å SRC[47:40]
ELSE DEST[47:40] Å DEST[47:40];
IF (MASK[55] == 1) THEN DEST[55:48] Å SRC[55:48]
ELSE DEST[55:48] Å DEST[55:48];
IF (MASK[63] == 1) THEN DEST[63:56] Å SRC[63:56]
ELSE DEST[63:56] Å DEST[63:56];
IF (MASK[71] == 1) THEN DEST[71:64] Å SRC[71:64]
ELSE DEST[71:64] Å DEST[71:64];
IF (MASK[79] == 1) THEN DEST[79:72] Å SRC[79:72]
ELSE DEST[79:72] Å DEST[79:72];
IF (MASK[87] == 1) THEN DEST[87:80] Å SRC[87:80]
ELSE DEST[87:80] Å DEST[87:80];
IF (MASK[95] == 1) THEN DEST[95:88] Å SRC[95:88]
ELSE DEST[95:88] Å DEST[95:88];
IF (MASK[103] == 1) THEN DEST[103:96] Å SRC[103:96]
ELSE DEST[103:96] Å DEST[103:96];
IF (MASK[111] == 1) THEN DEST[111:104] Å SRC[111:104]
ELSE DEST[111:104] Å DEST[111:104];
IF (MASK[119] == 1) THEN DEST[119:112] Å SRC[119:112]
ELSE DEST[119:112] Å DEST[119:112];
IF (MASK[127] == 1) THEN DEST[127:120] Å SRC[127:120]
ELSE DEST[127:120] Å DEST[127:120])

DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

PBLENDVB __m128i _mm_blendv_epi8 (__m128i v1, __m128i v2, __m128i mask);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4; additionally

#UD If VEX.L = 1.

If VEX.W = 1.
Ref. # 319433-004 287

INSTRUCTION SET REFERENCE
PBLENDW - Blend Packed Words

Description
Words from the source operand (second operand) are conditionally written to the
destination operand (first operand) depending on bits in the immediate operand
(third operand). The immediate bits (bits 7:0) form a mask that determines whether
the corresponding word in the destination is copied from the source. If a bit in the
mask, corresponding to a word, is “1", then the word is copied, else the word is
unchanged.

128-bit Legacy SSE version: Bits (255:128) of the corresponding YMM destination
register remain unchanged.

VEX.128 encoded version: Bits (255:128) of the destination YMM register are zeroed.
VEX.L must be 0, otherwise the instruction will #UD.

Operation
VPBLENDW (VEX.128 encoded version)
IF (imm8[0] == 1) THEN DEST[15:0] Å SRC2[15:0]
ELSE DEST[15:0] Å SRC1[15:0]
IF (imm8[1] == 1) THEN DEST[31:16] Å SRC2[31:16]
ELSE DEST[31:16] Å SRC1[31:16]
IF (imm8[2] == 1) THEN DEST[47:32] Å SRC2[47:32]
ELSE DEST[47:32] Å SRC1[47:32]
IF (imm8[3] == 1) THEN DEST[63:48] Å SRC2[63:48]
ELSE DEST[63:48] Å SRC1[63:48]
IF (imm8[4] == 1) THEN DEST[79:64] Å SRC2[79:64]
ELSE DEST[79:64] Å SRC1[79:64]
IF (imm8[5] == 1) THEN DEST[95:80] Å SRC2[95:80]
ELSE DEST[95:80] Å SRC1[95:80]

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 3A 0E /r ib V/V SSE4_1 Select words from xmm1 and
xmm2/m128 from mask specified
in imm8 and store the values into
xmm1

PBLENDW xmm1, xmm2/m128,
imm8

VEX.NDS.128.66.0F3A 0E /r ib V/V AVX Select words from xmm2 and
xmm3/m128 from mask specified
in imm8 and store the values into
xmm1

VPBLENDW xmm1, xmm2,
xmm3/m128, imm8
288 Ref. # 319433-004

INSTRUCTION SET REFERENCE
IF (imm8[6] == 1) THEN DEST[111:96] Å SRC2[111:96]
ELSE DEST[111:96] Å SRC1[111:96]
IF (imm8[7] == 1) THEN DEST[127:112] Å SRC2[127:112]
ELSE DEST[127:112] Å SRC1[127:112]
DEST[255:128] Å 0

PBLENDW (128-bit Legacy SSE version)
IF (imm8[0] == 1) THEN DEST[15:0] Å SRC[15:0]
ELSE DEST[15:0] Å DEST[15:0]
IF (imm8[1] == 1) THEN DEST[31:16] Å SRC[31:16]
ELSE DEST[31:16] Å DEST[31:16]
IF (imm8[2] == 1) THEN DEST[47:32] Å SRC[47:32]
ELSE DEST[47:32] Å DEST[47:32]
IF (imm8[3] == 1) THEN DEST[63:48] Å SRC[63:48]
ELSE DEST[63:48] Å DEST[63:48]
IF (imm8[4] == 1) THEN DEST[79:64] Å SRC[79:64]
ELSE DEST[79:64] Å DEST[79:64]
IF (imm8[5] == 1) THEN DEST[95:80] Å SRC[95:80]
ELSE DEST[95:80] Å DEST[95:80]
IF (imm8[6] == 1) THEN DEST[111:96] Å SRC[111:96]
ELSE DEST[111:96] Å DEST[111:96]
IF (imm8[7] == 1) THEN DEST[127:112] Å SRC[127:112]
ELSE DEST[127:112] Å DEST[127:112]

DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

PBLENDW __m128i _mm_blend_epi16 (__m128i v1, __m128i v2, const int mask)

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4; additionally

#UD If VEX.L = 1.
Ref. # 319433-004 289

INSTRUCTION SET REFERENCE
PCLMULQDQ - Carry-Less Multiplication Quadword

Description
Performs a carry-less multiplication of two quadwords, selected from the first source
and second source operand according to the value of the immediate byte. Bits 4 and
0 are used to select which 64-bit half of each operand to use according to Table 5-18,
other bits of the immediate byte are ignored.

 The first source operand and the destination operand are the same and must be an
XMM register. The second source operand can be an XMM register or a 128-bit
memory location. Bits (255:128) of the corresponding YMM destination register
remain unchanged.

Compilers and assemblers may implement the following pseudo-op syntax to simply
programming and emit the required encoding for Imm8.

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 3A 44 /r ib V/V CLMUL Carry-less multiplication of one
quadword of xmm1 by one quad-
word of xmm2/m128, stores the
128-bit result in xmm1. The
immediate is used to determine
which quadwords of xmm1 and
xmm2/m128 should be used

PCLMULQDQ xmm1, xmm2/m128,
imm8

Table 5-18. PCLMULQDQ Quadword Selection of Immediate Byte

Imm[4] Imm[0] PCLMULQDQ Operation

0 0 CL_MUL(SRC21[63:0], SRC1[63:0])

NOTES:
1. SRC2 denotes the second source operand, which can be a register or memory; SRC1 denotes

the first source and destination operand.

0 1 CL_MUL(SRC2[63:0], SRC1[127:64])

1 0 CL_MUL(SRC2[127:64], SRC1[63:0])

1 1 CL_MUL(SRC2[127:64], SRC1[127:64])
290 Ref. # 319433-004

INSTRUCTION SET REFERENCE
Operation

PCLMULQDQ
IF (Imm8[0] = 0)

THEN
TEMP1 Å SRC1 [63:0];

ELSE
TEMP1 Å SRC1 [127:64];

FI
IF (Imm8[4] = 0)

THEN
TEMP2 Å SRC2 [63:0];

ELSE
TEMP2 Å SRC2 [127:64];

FI
For i = 0 to 63 {

TmpB [i] Å (TEMP1[0] and TEMP2[i]);
For j = 1 to i {

TmpB [i] Å TmpB [i] xor (TEMP1[j] and TEMP2[i - j])
}
DEST[i] Å TmpB[i];

}
For i = 64 to 126 {

TmpB [i] Å 0;
For j = i - 63 to 63 {

TmpB [i] Å TmpB [i] xor (TEMP1[j] and TEMP2[i - j])
}
DEST[i] Å TmpB[i];

}
DEST[127] Å 0;

Table 5-19. Pseudo-Op and PCLMULQDQ
Implementation

Pseudo-Op Imm8 Encoding

PCLMULLQLQDQ xmm1, xmm2 0000_0000B

PCLMULHQLQDQ xmm1,
xmm2

0000_0001B

PCLMULLQHDQ xmm1, xmm2 0001_0000B

PCLMULHQHDQ xmm1, xmm2 0001_0001B
Ref. # 319433-004 291

INSTRUCTION SET REFERENCE
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

PCLMULQDQ __m128i _mm_clmulepi64_si128 (__m128i, __m128i, const int)

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4
292 Ref. # 319433-004

INSTRUCTION SET REFERENCE
PCMPESTRI - Packed Compare Explicit Length Strings, Return Index

Description
The instruction compares data from two strings based on the control encoded in the
imm8 byte (as described in Section 3.1.2 of Intel 64 and IA-32 Architectures Soft-
ware Developer’s Manual Volume 2A) generating an index stored to ECX. Each string
is represented by two values. The first value is an XMM (or possibly m128 for the
second operand) which contains the elements of the string (character data). The
second value is stored in EAX (for xmm1) or EDX (for xmm2/m128) and represents
the number of Bytes/Words which are valid for the respective xmm/m128 data. The
length of each input is interpreted as being the absolute-value of the value in EAX
(EDX). The absolute-value computation saturates to 16 (for bytes) and 8 (for words),
based on the value of imm8[bit3] when the value in EAX (EDX) is greater than 16 (8)
or less than -16 (-8).

At this point the comparisons and aggregation described in section Section 3.1.2 of
Intel 64 and IA-32 Architectures Software Developer’s Manual Volume 2A are
performed and the index of the first (or last, according to imm8[6]) set bit of IntRes2
is returned in ECX. If no bits are set in IntRes2, ECX is set to 16 (8).

Note that the Arithmetic Flags are written in a non-standard manner to supply the
most relevant information.

CFlag – Reset if IntRes2 is equal to zero, set otherwise

ZFlag – Set if absolute-value of EDX is < 16 (8), reset otherwise

SFlag – Set if absolute-value of EAX is < 16 (8), reset otherwise

OFlag – IntRes2[0]

AFlag – Reset

PFlag – Reset

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 3A 61 /r ib V/V SSE4_2 Perform a packed comparison of
string data with explicit lengths,
generating an index, and storing
the result in ECX

PCMPESTRI xmm1, xmm2/m128,
imm8

VEX.128.66.0F3A 61 /r ib V/V AVX Perform a packed comparison of
string data with explicit lengths,
generating an index, and storing
the result in ECX

VPCMPESTRI xmm1, xmm2/m128,
imm8
Ref. # 319433-004 293

INSTRUCTION SET REFERENCE
Note: In VEX.128 encoded versions, VEX.vvvv is reserved and must be 1111b, VEX.L
must be 0, otherwise the instruction will #UD.

Operation
See PCMPESTRI Intel 64 and IA-32 Architectures Software Developer’s Manual
Volume 2B.

Intel C/C++ Compiler Intrinsic Equivalent

int _mm_cmpestri (__m128i a, int la, __m128i b, int lb, const int mode);

Intel C/C++ Compiler Intrinsic Equivalent for reading EFLAG Results

int _mm_cmpestria (__m128i a, int la, __m128i b, int lb, const int mode);

int _mm_cmpestric (__m128i a, int la, __m128i b, int lb, const int mode);

int _mm_cmpestrio (__m128i a, int la, __m128i b, int lb, const int mode);

int _mm_cmpestris (__m128i a, int la, __m128i b, int lb, const int mode);

int _mm_cmpestriz (__m128i a, int la, __m128i b, int lb, const int mode);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4; additionally

#UD If VEX.L = 1.

If VEX.vvvv != 1111B.
294 Ref. # 319433-004

INSTRUCTION SET REFERENCE
PCMPESTRM - Packed Compare Explicit Length Strings, Return Mask

Description
The instruction compares data from two strings based on the control encoded in the
imm8 byte (as described in Section 3.1.2 of Intel 64 and IA-32 Architectures Soft-
ware Developer’s Manual Volume 2A) generating a mask stored to XMM0. Each string
is represented by two values. The first value is an XMM (or possibly m128 for the
second operand) which contains the elements of the string (character data). The
second value is stored in EAX (for xmm1) or EDX (for xmm2/m128) and represents
the number of Bytes/Words which are valid for the respective xmm/m128 data. The
length of each input is interpreted as being the absolute-value of the value in EAX
(EDX). The absolute-value computation saturates to 16 (for bytes) and 8 (for words),
based on the value of imm8[bit3] when the value in EAX (EDX) is greater than 16 (8)
or less than -16 (-8).

At this point the comparisons and aggregation described in Section 3.1.2 of Intel 64
and IA-32 Architectures Software Developer’s Manual Volume 2A are performed. As
defined by imm8[6], IntRes2 is then either stored to the least significant bits of
XMM0 (zero extended to 128 bits) or expanded into a byte/word-mask and then
stored to XMM0.

Note that the Arithmetic Flags are written in a non-standard manner to supply the
most relevant information

CFlag – Reset if IntRes2 is equal to zero, set otherwise

ZFlag – Set if absolute-value of EDX is < 16 (8), reset otherwise

SFlag – Set if absolute-value of EAX is < 16 (8), reset otherwise

OFlag –IntRes2[0]

AFlag – Reset

PFlag – Reset

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 3A 60 /r ib V/V SSE4_2 Perform a packed comparison of
string data with explicit lengths,
generating a mask, and storing the
result in XMM0

PCMPESTRM xmm1, xmm2/m128,
imm8

VEX.128.66.0F3A 60 /r ib V/V AVX Perform a packed comparison of
string data with explicit lengths,
generating a mask, and storing the
result in XMM0

VPCMPESTRM xmm1,
xmm2/m128, imm8
Ref. # 319433-004 295

INSTRUCTION SET REFERENCE
Note: In VEX.128 encoded versions, VEX.vvvv is reserved and must be 1111b, VEX.L
must be 1, otherwise the instruction will #UD.

Operation
See PCMPESTRM Intel 64 and IA-32 Architectures Software Developer’s Manual
Volume 2B.

Intel C/C++ Compiler Intrinsic Equivalent

__m128i _mm_cmpestrm (__m128i a, int la, __m128i b, int lb, const int mode);

Intel C/C++ Compiler Intrinsic Equivalent for reading EFLAG Results

int _mm_cmpestrma (__m128i a, int la, __m128i b, int lb, const int mode);

int _mm_cmpestrmc (__m128i a, int la, __m128i b, int lb, const int mode);

int _mm_cmpestrmo (__m128i a, int la, __m128i b, int lb, const int mode);

int _mm_cmpestrms (__m128i a, int la, __m128i b, int lb, const int mode);

int _mm_cmpestrmz (__m128i a, int la, __m128i b, int lb, const int mode);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4; additionally

#UD If VEX.L = 1.

If VEX.vvvv != 1111B.
296 Ref. # 319433-004

INSTRUCTION SET REFERENCE
PCMPISTRI - Packed Compare Implicit Length Strings, Return Index

Description
The instruction compares data from two strings based on the control encoded in the
imm8 byte (as described in Section 3.1.2 of Intel 64 and IA-32 Architectures Soft-
ware Developer’s Manual Volume 2A) generating an index stored to ECX. Each string
is represented by a single value. The value is an XMM (or possibly m128 for the
second operand) which contains the elements of the string (character data). Each
input byte/word is augmented with a valid/invalid tag. A byte/word is considered
valid only if it has a lower index than the least significant null byte/word. (The least
significant null byte/word is also considered invalid.) At this point the comparisons
and aggregation described in Section 3.1.2 of Intel 64 and IA-32 Architectures Soft-
ware Developer’s Manual Volume 2A are performed and the index of the first (or last,
according to imm8[6]) set bit of IntRes2 is returned in ECX. If no bits are set in
IntRes2, ECX is set to 16 (8).

Note that the Arithmetic Flags are written in a non-standard manner to supply the
most relevant information.

CFlag – Reset if IntRes2 is equal to zero, set otherwise

ZFlag – Set if any byte/word of xmm2/mem128 is null, reset otherwise

SFlag – Set if any byte/word of xmm1 is null, reset otherwise

OFlag –IntRes2[0]

AFlag – Reset

PFlag – Reset

Note: In VEX.128 encoded version, VEX.vvvv is reserved and must be 1111b, VEX.L
must be 0, otherwise the instruction will #UD.

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 3A 63 /r ib V/V SSE4_2 Perform a packed comparison of
string data with implicit lengths,
generating an index, and storing
the result in ECX

PCMPISTRI xmm1, xmm2/m128,
imm8

VEX.128.66.0F3A 63 /r ib V/V AVX Perform a packed comparison of
string data with implicit lengths,
generating an index, and storing
the result in ECX

VPCMPISTRI xmm1, xmm2/m128,
imm8
Ref. # 319433-004 297

INSTRUCTION SET REFERENCE
Operation
See PCMPISTRI Intel 64 and IA-32 Architectures Software Developer’s Manual
Volume 2B.

Intel C/C++ Compiler Intrinsic Equivalent

int _mm_cmpistri (__m128i a, __m128i b, const int mode);

Intel C/C++ Compiler Intrinsic Equivalent for reading EFLAG Results

int _mm_cmpistria (__m128i a, __m128i b, const int mode);

int _mm_cmpistric (__m128i a, __m128i b, const int mode);

int _mm_cmpistrio (__m128i a, __m128i b, const int mode);

int _mm_cmpistris (__m128i a, __m128i b, const int mode);

int _mm_cmpistriz (__m128i a, __m128i b, const int mode);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4; additionally

#UD If VEX.L = 1.

If VEX.vvvv != 1111B.
298 Ref. # 319433-004

INSTRUCTION SET REFERENCE
PCMPISTRM - Packed Compare Implicit Length Strings, Return Mask

Description
The instruction compares data from two strings based on the control encoded in the
imm8 byte (as described in Section 3.1.2 of Intel 64 and IA-32 Architectures Soft-
ware Developer’s Manual Volume 2A) generating a mask stored to XMM0. Each string
is represented by a single value. The value is an XMM (or possibly m128 for the
second operand) which contains the elements of the string (character data). Each
input byte/word is augmented with a valid/invalid tag. A byte/word is considered
valid only if it has a lower index than the least significant null byte/word. (The least
significant null byte/word is also considered invalid.)

At this point the comparisons and aggregation described in Section 3.1.2 of Intel 64
and IA-32 Architectures Software Developer’s Manual Volume 2A are performed. As
defined by imm8[6], IntRes2 is then either stored to the least significant bits of
XMM0 (zero extended to 128 bits) or expanded into a byte/word-mask and then
stored to XMM0.

Note that the Arithmetic Flags are written in a non-standard manner to supply the
most relevant information.

CFlag – Reset if IntRes2 is equal to zero, set otherwise

ZFlag – Set if any byte/word of xmm2/mem128 is null, reset otherwise

SFlag – Set if any byte/word of xmm1 is null, reset otherwise

OFlag – IntRes2[0]

AFlag – Reset

PFlag – Reset

Note: In VEX.128 encoded version, VEX.vvvv is reserved and must be 1111b, VEX.L
must be 0, otherwise the instruction will #UD.

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 3A 62 /r ib V/V SSE4_2 Perform a packed comparison of
string data with implicit lengths,
generating a Mask, and storing the
result in XMM0

PCMPISTRM xmm1, xmm2/m128,
imm8

VEX.128.66.0F3A 62 /r ib V/V AVX Perform a packed comparison of
string data with implicit lengths,
generating a Mask, and storing the
result in XMM0

VPCMPISTRM xmm1, xmm2/m128,
imm8
Ref. # 319433-004 299

INSTRUCTION SET REFERENCE
Operation
See PCMPESTRM Intel 64 and IA-32 Architectures Software Developer’s Manual
Volume 2B.

Intel C/C++ Compiler Intrinsic Equivalent

__m128i _mm_cmpistrm (__m128i a, __m128i b, const int mode)

Intel C/C++ Compiler Intrinsic Equivalent for reading EFLAG Results

int _mm_cmpistrma (__m128i a, __m128i b, const int mode);

int _mm_cmpistrmc (__m128i a, __m128i b, const int mode);

int _mm_cmpistrmo (__m128i a, __m128i b, const int mode);

int _mm_cmpistrms (__m128i a, __m128i b, const int mode);

int _mm_cmpistrmz (__m128i a, __m128i b, const int mode);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4; additionally

#UD If VEX.L = 1.

If VEX.vvvv != 1111B.
300 Ref. # 319433-004

INSTRUCTION SET REFERENCE
PCMPEQB/PCMPEQW/PCMPEQD/PCMPEQQ- Compare Packed Integers for
Equality

Description
Performs a SIMD compare for equality of the packed bytes, words, doublewords, or
quadwords in the first source operand and the second source operand. If a pair of
data elements is equal, the corresponding data element in the destination operand is
set to all 1s; otherwise, it is set to all 0s. The second source operand can be an XMM

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 74 /r V/V SSE2 Compare packed bytes in
xmm2/m128 and xmm1 for
equality.

PCMPEQB xmm1, xmm2/m128

66 0F 75 /r V/V SSE2 Compare packed words in
xmm2/m128 and xmm1 for
equality.

PCMPEQW xmm1, xmm2/m128

66 0F 76 /r V/V SSE2 Compare packed doublewords in
xmm2/m128 and xmm1 for
equality.

PCMPEQD xmm1, xmm2/m128

66 0F 38 29 /r V/V SSE4_1 Compare packed quadwords in
xmm2/m128 and xmm1 for
equality.

PCMPEQQ xmm1, xmm2/m128

VEX.NDS.128.66.0F 74 /r V/V AVX Compare packed bytes in
xmm3/m128 and xmm2 for
equality.

VPCMPEQB xmm1, xmm2, xmm3
/m128

VEX.NDS.128.66.0F 75 /r V/V AVX Compare packed words in
xmm3/m128 and xmm2 for
equality.

VPCMPEQW xmm1, xmm2,
xmm3/m128

VEX.NDS.128.66.0F 76 /r V/V AVX Compare packed doublewords in
xmm3/m128 and xmm2 for
equality.

VPCMPEQD xmm1, xmm2,
xmm3/m128

VEX.NDS.128.66.0F38 29 /r V/V AVX Compare packed quadwords in
xmm3/m128 and xmm2 for
equality.

VPCMPEQQ xmm1, xmm2,
xmm3/m128
Ref. # 319433-004 301

INSTRUCTION SET REFERENCE
register or a 128-bit memory location. The first source and destination operands are
XMM registers.

The PCMPEQB instruction compares the corresponding bytes in the destination and
source operands; the PCMPEQW instruction compares the corresponding words in
the destination and source operands; the PCMPEQD instruction compares the corre-
sponding doublewords in the destination and source operands, and the PCMPEQQ
instruction compares the corresponding quadwords in the destination and source
operands.

128-bit Legacy SSE version: Bits (255:128) of the corresponding YMM destination
register remain unchanged.

VEX.128 encoded version: Bits (255:128) of the destination YMM register are zeroed.
VEX.L must be 0, otherwise the instruction will #UD.

Operation
COMPARE_BYTES_EQUAL (SRC1, SRC2)

IF SRC1[7:0] = SRC2[7:0]
THEN DEST[7:0] Å FFH;
ELSE DEST[7:0] Å 0; FI;

(* Continue comparison of 2nd through 15th bytes in SRC1 and SRC2 *)
IF SRC1[127:120] = SRC2[127:120]
THEN DEST[127:120] Å FFH;
ELSE DEST[127:120] Å 0; FI;

COMPARE_WORDS_EQUAL (SRC1, SRC2)
IF SRC1[15:0] = SRC2[15:0]
THEN DEST[15:0] Å FFFFH;
ELSE DEST[15:0] Å 0; FI;

(* Continue comparison of 2nd through 7th 16-bit words in SRC1 and SRC2 *)
IF SRC1[127:112] = SRC2[127:112]
THEN DEST[127:112] Å FFFFH;
ELSE DEST[127:112] Å 0; FI;

COMPARE_DWORDS_EQUAL (SRC1, SRC2)
IF SRC1[31:0] = SRC2[31:0]
THEN DEST[31:0] Å FFFFFFFFH;
ELSE DEST[31:0] Å 0; FI;

(* Continue comparison of 2nd through 3rd 32-bit dwords in SRC1 and SRC2 *)
IF SRC1[127:96] = SRC2[127:96]
THEN DEST[127:96] Å FFFFFFFFH;
ELSE DEST[127:96] Å 0; FI;

COMPARE_QWORDS_EQUAL (SRC1, SRC2)
302 Ref. # 319433-004

INSTRUCTION SET REFERENCE
IF SRC1[63:0] = SRC2[63:0]
THEN DEST[63:0] Å FFFFFFFFFFFFFFFFH;
ELSE DEST[63:0] Å 0; FI;
IF SRC1[127:64] = SRC2[127:64]
THEN DEST[127:64] Å FFFFFFFFFFFFFFFFH;
ELSE DEST[127:64] Å 0; FI;

VPCMPEQB (VEX.128 encoded version)
DEST[127:0] ÅCOMPARE_BYTES_EQUAL(SRC1,SRC2)
DEST[255:128] Å 0

PCMPEQB (128-bit Legacy SSE version)
DEST[127:0] ÅCOMPARE_BYTES_EQUAL(DEST,SRC)
DEST[255:128] (Unmodified)

VPCMPEQW (VEX.128 encoded version)
DEST[127:0] ÅCOMPARE_WORDS_EQUAL(SRC1,SRC2)
DEST[255:128] Å 0

PCMPEQW (128-bit Legacy SSE version)
DEST[127:0] ÅCOMPARE_WORDS_EQUAL(DEST,SRC)
DEST[255:128] (Unmodified)

VPCMPEQD (VEX.128 encoded version)
DEST[127:0] ÅCOMPARE_DWORDS_EQUAL(SRC1,SRC2)
DEST[255:128] Å 0

PCMPEQD (128-bit Legacy SSE version)
DEST[127:0] ÅCOMPARE_DWORDS_EQUAL(DEST,SRC)
DEST[255:128] (Unmodified)

VPCMPEQQ (VEX.128 encoded version)
DEST[127:0] ÅCOMPARE_QWORDS_EQUAL(SRC1,SRC2)
DEST[255:128] Å 0

PCMPEQQ (128-bit Legacy SSE version)
DEST[127:0] ÅCOMPARE_QWORDS_EQUAL(DEST,SRC)
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

PCMPEQB __m128i _mm_cmpeq_epi8 (__m128i a, __m128i b)

PCMPEQW __m128i _mm_cmpeq_epi16 (__m128i a, __m128i b)
Ref. # 319433-004 303

INSTRUCTION SET REFERENCE
PCMPEQD __m128i _mm_cmpeq_epi32 (__m128i a, __m128i b)

PCMPEQQ __m128i _mm_cmpeq_epi64(__m128i a, __m128i b);

SIMD Floating-Point Exceptions
none

Other Exceptions
See Exceptions Type 4; additionally

#UD If VEX.L = 1.
304 Ref. # 319433-004

INSTRUCTION SET REFERENCE
PCMPGTB/PCMPGTW/PCMPGTD/PCMPGTQ- Compare Packed Integers for
Greater Than

Description
Performs a SIMD signed compare for the greater value of the packed byte, word,
doubleword, or quadword integers in the first source operand and the second source
operand. If a data element in the first source operand is greater than the corre-
sponding date element in the second source operand, the corresponding data

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 64 /r V/V SSE2 Compare packed signed byte
integers in xmm1 and
xmm2/m128 for greater than.

PCMPGTB xmm1, xmm2/m128

66 0F 65 /r V/V SSE2 Compare packed signed word
integers in xmm1 and
xmm2/m128 for greater than.

PCMPGTW xmm1, xmm2/m128

66 0F 66 /r V/V SSE2 Compare packed signed
doubleword integers in xmm1 and
xmm2/m128 for greater than.

PCMPGTD xmm1, xmm2/m128

66 0F 38 37 /r V/V SSE4_2 Compare packed qwords in
xmm2/m128 and xmm1 for
greater than.

PCMPGTQ xmm1, xmm2/m128

VEX.NDS.128.66.0F 64 /r V/V AVX Compare packed signed byte
integers in xmm2 and
xmm3/m128 for greater than.

VPCMPGTB xmm1, xmm2,
xmm3/m128

VEX.NDS.128.66.0F 65 /r V/V AVX Compare packed signed word
integers in xmm2 and
xmm3/m128 for greater than.

VPCMPGTW xmm1, xmm2,
xmm3/m128

VEX.NDS.128.66.0F 66 /r V/V AVX Compare packed signed
doubleword integers in xmm2 and
xmm3/m128 for greater than.

VPCMPGTD xmm1, xmm2,
xmm3/m128

VEX.NDS.128.66.0F38 37 /r V/V AVX Compare packed signed qwords in
xmm2 and xmm3/m128 for
greater than.

VPCMPGTQ xmm1, xmm2,
xmm3/m128
Ref. # 319433-004 305

INSTRUCTION SET REFERENCE
element in the destination operand is set to all 1s; otherwise, it is set to all 0s. The
second source operand can be an XMM register or a 128-bit memory location. The
first source operand and destination operand are XMM registers.

The PCMPGTB instruction compares the corresponding signed byte integers in the
first and second source operands; the PCMPGTW instruction compares the corre-
sponding signed word integers in the first and second source operands; the
PCMPGTD instruction compares the corresponding signed doubleword integers in the
first and second source operands, and the PCMPGTQ instruction compares the corre-
sponding signed qword integers in the first and second source operands.

128-bit Legacy SSE version: Bits (255:128) of the corresponding YMM destination
register remain unchanged.

VEX.128 encoded version: Bits (255:128) of the destination YMM register are zeroed.
VEX.L must be 0, otherwise the instruction will #UD.

Operation
COMPARE_BYTES_GREATER (SRC1, SRC2)

IF SRC1[7:0] > SRC2[7:0]
THEN DEST[7:0] Å FFH;
ELSE DEST[7:0] Å 0; FI;

(* Continue comparison of 2nd through 15th bytes in SRC1 and SRC2 *)
IF SRC1[127:120] > SRC2[127:120]
THEN DEST[127:120] Å FFH;
ELSE DEST[127:120] Å 0; FI;

COMPARE_WORDS_GREATER (SRC1, SRC2)
IF SRC1[15:0] > SRC2[15:0]
THEN DEST[15:0] Å FFFFH;
ELSE DEST[15:0] Å 0; FI;

(* Continue comparison of 2nd through 7th 16-bit words in SRC1 and SRC2 *)
IF SRC1[127:112] > SRC2[127:112]
THEN DEST[127:112] Å FFFFH;
ELSE DEST[127:112] Å 0; FI;

COMPARE_DWORDS_GREATER (SRC1, SRC2)
IF SRC1[31:0] > SRC2[31:0]
THEN DEST[31:0] Å FFFFFFFFH;
ELSE DEST[31:0] Å 0; FI;

(* Continue comparison of 2nd through 3rd 32-bit dwords in SRC1 and SRC2 *)
IF SRC1[127:96] > SRC2[127:96]
THEN DEST[127:96] ÅFFFFFFFFH;
ELSE DEST[127:96] Å 0; FI;
306 Ref. # 319433-004

INSTRUCTION SET REFERENCE
COMPARE_QWORDS_GREATER (SRC1, SRC2)
IF SRC1[63:0] > SRC2[63:0]
THEN DEST[63:0] Å FFFFFFFFFFFFFFFFH;
ELSE DEST[63:0] Å 0; FI;
IF SRC1[127:64] > SRC2[127:64]
THEN DEST[127:64] Å FFFFFFFFFFFFFFFFH;
ELSE DEST[127:64] Å 0; FI;

VPCMPGTB (VEX.128 encoded version)
DEST[127:0] ÅCOMPARE_BYTES_GREATER(SRC1,SRC2)
DEST[255:128] Å 0

PCMPGTB (128-bit Legacy SSE version)
DEST[127:0] ÅCOMPARE_BYTES_GREATER(DEST,SRC)
DEST[255:128] (Unmodified)

VPCMPGTW (VEX.128 encoded version)
DEST[127:0] ÅCOMPARE_WORDS_GREATER(SRC1,SRC2)
DEST[255:128] Å 0

PCMPGTW (128-bit Legacy SSE version)
DEST[127:0] ÅCOMPARE_WORDS_GREATER(DEST,SRC)
DEST[255:128] (Unmodified)

VPCMPGTD (VEX.128 encoded version)
DEST[127:0] ÅCOMPARE_DWORDS_GREATER(SRC1,SRC2)
DEST[255:128] Å 0

PCMPGTD (128-bit Legacy SSE version)
DEST[127:0] ÅCOMPARE_DWORDS_GREATER(DEST,SRC)
DEST[255:128] (Unmodified)

VPCMPGTQ (VEX.128 encoded version)
DEST[127:0] ÅCOMPARE_QWORDS_GREATER(SRC1,SRC2)
DEST[255:128] Å 0

PCMPGTQ (128-bit Legacy SSE version)
DEST[127:0] ÅCOMPARE_QWORDS_GREATER(DEST,SRC)
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

PCMPGTB __m128i _mm_cmpgt_epi8 (__m128i a, __m128i b)
Ref. # 319433-004 307

INSTRUCTION SET REFERENCE
PCMPGTW __m128i _mm_cmpgt_epi16 (__m128i a, __m128i b)

PCMPGTD __m128i _mm_cmpgt_epi32 (__m128i a, __m128i b)

PCMPGTQ __m128i _mm_cmpgt_epi64(__m128i a, __m128i b);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4; additionally

#UD If VEX.L = 1.
308 Ref. # 319433-004

INSTRUCTION SET REFERENCE
VPERMILPD- Permute Double-Precision Floating-Point Values

Description
Permute double-precision floating-point values in the first source operand (second
operand) using 8-bit control fields in the low bytes of the second source operand
(third operand) and store results in the destination operand (first operand). The first
source operand is a YMM register, the second source operand is a YMM register or a
256-bit memory location, and the destination operand is a YMM register.

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

VEX.NDS.128.66.0F38 0D /r V/V AVX Permute double-precision float-
ing-point values in xmm2 using
controls from xmm3/mem and
store result in xmm1

VPERMILPD xmm1, xmm2,
xmm3/m128

VEX.NDS.256.66.0F38 0D /r V/V AVX Permute double-precision float-
ing-point values in ymm2 using
controls from ymm3/mem and
store result in ymm1

VPERMILPD ymm1, ymm2,
ymm3/m256

VEX.128.66.0F3A 05 /r ib V/V AVX Permute double-precision float-
ing-point values in xmm2/mem
using controls from imm8

VPERMILPD xmm1, xmm2/m128,
imm8

VEX.256.66.0F3A 05 /r ib V/V AVX Permute double-precision float-
ing-point values in ymm2/mem
using controls from imm8

VPERMILPD ymm1, ymm2/m256,
imm8
Ref. # 319433-004 309

INSTRUCTION SET REFERENCE
Figure 5-18. VPERMILPD operation

There is one control byte per destination double-precision element. Each control byte
is aligned with the low 8 bits of the corresponding double-precision destination
element. Each control byte contains a 1-bit select field (see Figure 5-19) that deter-
mines which of the source elements are selected. Source elements are restricted to
lie in the same source 128-bit region as the destination.

Figure 5-19. VPERMILPD Shuffle Control

(immediate control version)

Permute double-precision floating-point values in the first source operand (second
operand) using two, 1-bit control fields in the low 2 bits of the 8-bit immediate and
store results in the destination operand (first operand). The source operand is a YMM
register or 256-bit memory location and the destination operand is a YMM register.

Note: For the VEX.128.66.0F3A 05 instruction version, VEX.vvvv is reserved and
must be 1111b otherwise instruction will #UD.

X2..X3 X2..X3 X0..X1 X0..X1DEST

X3 X2SRC1 X1 X0

1

sel

Bit

. . .ignored

Control Field1Control Field 2Control Field 4
ig

no
re

d

65

sel

ig
no

re
d

194 193

sel

ig
no

re
d

255

ignored

66127

ignored

263
310 Ref. # 319433-004

INSTRUCTION SET REFERENCE
Note: For the VEX.256.66.0F3A 05 instruction version, VEX.vvvv is reserved and
must be 1111b otherwise instruction will #UD.

Operation
VPERMILPD (256-bit immediate version)
IF (imm8[0] = 0) THEN DEST[63:0]ÅSRC1[63:0]
IF (imm8[0] = 1) THEN DEST[63:0]ÅSRC1[127:64]
IF (imm8[1] = 0) THEN DEST[127:64]ÅSRC1[63:0]
IF (imm8[1] = 1) THEN DEST[127:64]ÅSRC1[127:64]
IF (imm8[2] = 0) THEN DEST[191:128]ÅSRC1[191:128]
IF (imm8[2] = 1) THEN DEST[191:128]ÅSRC1[255:192]
IF (imm8[3] = 0) THEN DEST[255:192]ÅSRC1[191:128]
IF (imm8[3] = 1) THEN DEST[255:192]ÅSRC1[255:192]

VPERMILPD (128-bit immediate version)
IF (imm8[0] = 0) THEN DEST[63:0]ÅSRC1[63:0]
IF (imm8[0] = 1) THEN DEST[63:0]ÅSRC1[127:64]
IF (imm8[1] = 0) THEN DEST[127:64]ÅSRC1[63:0]
IF (imm8[1] = 1) THEN DEST[127:64]ÅSRC1[127:64]
DEST[255:128]Å0

VPERMILPD (256-bit variable version)
IF (SRC2[1] = 0) THEN DEST[63:0]ÅSRC1[63:0]
IF (SRC2[1] = 1) THEN DEST[63:0]ÅSRC1[127:64]
IF (SRC2[65] = 0) THEN DEST[127:64]ÅSRC1[63:0]
IF (SRC2[65] = 1) THEN DEST[127:64]ÅSRC1[127:64]
IF (SRC2[129] = 0) THEN DEST[191:128]ÅSRC1[191:128]
IF (SRC2[129] = 1) THEN DEST[191:128]ÅSRC1[255:192]
IF (SRC2[193] = 0) THEN DEST[255:192]ÅSRC1[191:128]
IF (SRC2[193] = 1) THEN DEST[255:192]ÅSRC1[255:192]

VPERMILPD (128-bit variable version)
IF (SRC2[1] = 0) THEN DEST[63:0]ÅSRC1[63:0]
IF (SRC2[1] = 1) THEN DEST[63:0]ÅSRC1[127:64]
IF (SRC2[65] = 0) THEN DEST[127:64]ÅSRC1[63:0]
IF (SRC2[65] = 1) THEN DEST[127:64]ÅSRC1[127:64]

DEST[255:128]Å0
Ref. # 319433-004 311

INSTRUCTION SET REFERENCE
Intel C/C++ Compiler Intrinsic Equivalent

VPERMILPD __m128d _mm_permute_pd (__m128d a, int control)

VPERMILPD __m256d _mm256_permute_pd (__m256d a, int control)

VPERMILPD __m128d _mm_permutevar_pd (__m128d a, __m128i control);

VPERMILPD __m256d _mm256_permutevar_pd (__m256d a, __m256i control);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 6
312 Ref. # 319433-004

INSTRUCTION SET REFERENCE
VPERMILPS- Permute Single-Precision Floating-Point Values

Description
(variable control version)

Permute single-precision floating-point values in the first source operand (second
operand) using 8-bit control fields in the low bytes of corresponding elements the
shuffle control (third operand) and store results in the destination operand (first
operand). The first source operand is a YMM register, the second source operand is a
YMM register or a 256-bit memory location, and the destination operand is a YMM
register.

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

VEX.NDS.128.66.0F38 0C /r V/V AVX Permute single-precision floating-
point values in xmm2 using con-
trols from xmm3/mem and store
result in xmm1

VPERMILPS xmm1, xmm2,
xmm3/m128

VEX.128.66.0F3A 04 /r ib V/V AVX Permute single-precision floating-
point values in xmm2/mem using
controls from imm8 and store
result in xmm1

VPERMILPS xmm1, xmm2/m128,
imm8

VEX.NDS.256.66.0F38 0C /r V/V AVX Permute single-precision floating-
point values in ymm2 using con-
trols from ymm3/mem and store
result in ymm1

VPERMILPS ymm1, ymm2,
ymm3/m256

VEX.256.66.0F3A 04 /r ib V/V AVX Permute single-precision floating-
point values in ymm2/mem using
controls from imm8 and store
result in ymm1

VPERMILPS ymm1, ymm2/m256,
imm8
Ref. # 319433-004 313

INSTRUCTION SET REFERENCE
Figure 5-20. VPERMILPS Operation

There is one control byte per destination single-precision element. Each control byte
is aligned with the low 8 bits of the corresponding single-precision destination
element. Each control byte contains a 2-bit select field (see Figure 5-21) that deter-
mines which of the source elements are selected. Source elements are restricted to
lie in the same source 128-bit region as the destination.

Figure 5-21. VPERMILPS Shuffle Control

(immediate control version)

Permute single-precision floating-point values in the first source operand (second
operand) using four 2-bit control fields in the 8-bit immediate and store results in the
destination operand (first operand). The source operand is a YMM register or 256-bit
memory location and the destination operand is a YMM register. This is similar to a
wider version of PSHUFD, just operating on single-precision floating-point values.

X7 .. X4 X7 .. X4 X3 ..X0 X3 .. X0DEST

SRC1 X0X1X2X3X4X5X6X7

X3 .. X0X7 .. X4 X7 .. X4 X3 ..X0

sel

Bit
34 33 32

sel . . .

226 225 224

sel ignored

Control Field 1Control Field 2Control Field 7

1 0255

ignored ignored

63 31
314 Ref. # 319433-004

INSTRUCTION SET REFERENCE
Note: For the VEX.128.66.0F3A 04 instruction version, VEX.vvvv is reserved and
must be 1111b otherwise instruction will #UD.

Note: For the VEX.256.66.0F3A 04 instruction version, VEX.vvvv is reserved and
must be 1111b otherwise instruction will #UD.

Operation

Select4(SRC, control) {
CASE (control[1:0]) OF

0: TMP Å SRC[31:0];
1: TMP Å SRC[63:32];
2: TMP Å SRC[95:64];
3: TMP Å SRC[127:96];

ESAC;
RETURN TMP
}

VPERMILPS (256-bit immediate version)
DEST[31:0] Å Select4(SRC1[127:0], imm8[1:0]);
DEST[63:32] Å Select4(SRC1[127:0], imm8[3:2]);
DEST[95:64] Å Select4(SRC1[127:0], imm8[5:4]);
DEST[127:96] Å Select4(SRC1[127:0], imm8[7:6]);
DEST[159:128] Å Select4(SRC1[255:128], imm8[1:0]);
DEST[191:160] Å Select4(SRC1[255:128], imm8[3:2]);
DEST[223:192] Å Select4(SRC1[255:128], imm8[5:4]);
DEST[255:224] Å Select4(SRC1[255:128], imm8[7:6]);

VPERMILPS (128-bit immediate version)
DEST[31:0] Å Select4(SRC1[127:0], imm8[1:0]);
DEST[63:32] Å Select4(SRC1[127:0], imm8[3:2]);
DEST[95:64] Å Select4(SRC1[127:0], imm8[5:4]);
DEST[127:96] Å Select4(SRC1[127:0], imm8[7:6]);
DEST[255:128]Å0

VPERMILPS (256-bit variable version)
DEST[31:0] Å Select4(SRC1[127:0], SRC2[1:0]);
DEST[63:32] Å Select4(SRC1[127:0], SRC2[33:32]);
DEST[95:64] Å Select4(SRC1[127:0], SRC2[65:64]);
DEST[127:96] Å Select4(SRC1[127:0], SRC2[97:96]);
DEST[159:128] Å Select4(SRC1[255:128], SRC2[129:128]);
DEST[191:160] Å Select4(SRC1[255:128], SRC2[161:160]);
DEST[223:192] Å Select4(SRC1[255:128], SRC2[193:192]);
DEST[255:224] Å Select4(SRC1[255:128], SRC2[225:224]);
Ref. # 319433-004 315

INSTRUCTION SET REFERENCE
VPERMILPS (128-bit variable version)
DEST[31:0] Å Select4(SRC1[127:0], SRC2[1:0]);
DEST[63:32] Å Select4(SRC1[127:0], SRC2[33:32]);
DEST[95:64] Å Select4(SRC1[127:0], SRC2[65:64]);
DEST[127:96] Å Select4(SRC1[127:0], SRC2[97:96]);
DEST[255:128]Å0

Intel C/C++ Compiler Intrinsic Equivalent

VPERM1LPS __m128 _mm_permute_ps (__m128 a, int control);

VPERM1LPS __m256 _mm256_permute_ps (__m256 a, int control);

VPERM1LPS __m128 _mm_permutevar_ps (__m128 a, __m128i control);

VPERM1LPS __m256 _mm256_permutevar_ps (__m256 a, __m256i control);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 6
316 Ref. # 319433-004

INSTRUCTION SET REFERENCE
VPERM2F128- Permute Floating-Point Values

Description

Permute 128 bit floating-point-containing fields from the first source operand
(second operand) and second source operand (third operand) using bits in the 8-bit
immediate and store results in the destination operand (first operand). The first
source operand is a YMM register, the second source operand is a YMM register or a
256-bit memory location, and the destination operand is a YMM register.

Figure 5-22. VPERM2F128 Operation

Imm8[1:0] select the source for the first destination 128-bit field, imm8[5:4] select
the source for the second destination field. If imm8[3] is set, the low 128-bit field is
zeroed. If imm8[7] is set, the high 128-bit field is zeroed.

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

VEX.NDS.256.66.0F3A 06 /r ib V/V AVX Permute 128-bit floating-point
fields in ymm2 and ymm3/mem
using controls from imm8 and
store result in ymm1

VPERM2F128 ymm1, ymm2,
ymm3/m256, imm8

DEST

SRC1 X0X1

X0, X1, Y0, or Y1

Y0Y1

X0, X1, Y0, or Y1

SRC2
Ref. # 319433-004 317

INSTRUCTION SET REFERENCE
VEX.L must be 1, otherwise the instruction will #UD.

Operation
VPERM2F128
CASE IMM8[1:0] of
0: DEST[127:0] Å SRC1[127:0]
1: DEST[127:0] Å SRC1[255:128]
2: DEST[127:0] Å SRC2[127:0]
3: DEST[127:0] Å SRC2[255:128]
ESAC

CASE IMM8[5:4] of
0: DEST[255:128] Å SRC1[127:0]
1: DEST[255:128] Å SRC1[255:128]
2: DEST[255:128] Å SRC2[127:0]
3: DEST[255:128] Å SRC2[255:128]
ESAC
IF (imm8[3])
DEST[127:0] Å 0
FI

IF (imm8[7])
DEST[255:128] Å 0
FI

Intel C/C++ Compiler Intrinsic Equivalent

VPERM2F128 __m256 _mm256_permute2f128_ps (__m256 a, __m256 b, int control)

VPERM2F128 __m256d _mm256_permute2f128_pd (__m256d a, __m256d b, int control)

VPERM2F128 __m256i _mm256_permute2f128_si256 (__m256i a, __m256i b, int control)

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 6; additionally

#UD If VEX.L = 0.
318 Ref. # 319433-004

INSTRUCTION SET REFERENCE
PEXTRB/PEXTRW/PEXTRD/PEXTRQ- Extract Integer
Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 3A 14 /r ib V/V SSE4_1 Extract a byte integer value from
xmm2 at the source byte offset
specified by imm8 into reg or m8.
The upper bits of r64/r32 is filled
with zeros.

PEXTRB reg/m8, xmm2, imm8

66 0F C5 /r ib V/V SSE2 Extract the word specified by
imm8 from xmm1 and move it to
reg, bits 15:0. The upper bits of
r64/r32 is filled with zeros.

PEXTRW reg, xmm1, imm8

66 0F 3A 15 /r ib V/V SSE4_1 Extract a word integer value from
xmm2 at the source word offset
specified by imm8 into reg or
m16. The upper bits of r64/r32 is
filled with zeros.

PEXTRW reg/m16, xmm2, imm8

66 0F 3A 16 /r ib V/V SSE4_1 Extract a dword integer value from
xmm2 at the source dword offset
specified by imm8 into r32/m32.

PEXTRD r32/m32, xmm2, imm8

66 REX.W 0F 3A 16 /r ib N.E./V SSE4_1 Extract a qword integer value from
xmm2 at the source dword offset
specified by imm8 into r64/m64.

PEXTRQ r64/m64, xmm2, imm8

VEX.128.66.0F3A 14 /r ib V/V AVX Extract a byte integer value from
xmm2 at the source byte offset
specified by imm8 into reg or m8.
The upper bits of r64/r32 is filled
with zeros.

VPEXTRB reg/m8, xmm2, imm8

VEX.128.66.0F C5 /r ib V/V AVX Extract the word specified by
imm8 from xmm1 and move it to
reg, bits 15:0. Zero-extend the
result. The upper bits of r64/r32 is
filled with zeros.

VPEXTRW reg, xmm1, imm8
Ref. # 319433-004 319

INSTRUCTION SET REFERENCE
Description
Extract a byte/word/dword/qword integer value from the source XMM register at a
byte/word/dword/qword offset determined from imm8[3:0]. The destination can be
a register or byte/word/dword/qword memory location. If the destination is a
register, the upper bits of the register are zero extended.

In 64-bit mode, if the destination operand is a register, default operand size is 64
bits. The bits above the least significant dword/word/byte data element are filled
with zeros

Note: In VEX.128 encoded versions, VEX.vvvv is reserved and must be 1111b, VEX.L
must be 0, otherwise the instruction will #UD.

Operation
(V)PEXTRTD/(V)PEXTRQ
IF (64-Bit Mode and 64-bit dest operand)
THEN

Src_Offset Å Imm8[0]
r64/m64 Å(Src >> Src_Offset * 64)

ELSE
Src_Offset Å Imm8[1:0]
r32/m32 Å ((Src >> Src_Offset *32) AND 0FFFFFFFFh);

FI

(V)PEXTRW (dest=m16)
SRC_Offset Å Imm8[2:0]
Mem16 Å (Src >> Src_Offset*16)

VEX.128.66.0F3A 15 /r ib V/V AVX Extract a word integer value from
xmm2 at the source word offset
specified by imm8 into reg or
m16. The upper bits of r64/r32 is
filled with zeros.

VPEXTRW reg/m16, xmm2, imm8

VEX.128.66.0F3A.W0 16 /r ib V/V AVX Extract a dword integer value from
xmm2 at the source dword offset
specified by imm8 into r32/m32.

VPEXTRD r32/m32, xmm2, imm8

VEX.128.66.0F3A.W1 16 /r ib N.E./V AVX Extract a qword integer value from
xmm2 at the source dword offset
specified by imm8 into r64/m64.

VPEXTRQ r64/m64, xmm2, imm8

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description
320 Ref. # 319433-004

INSTRUCTION SET REFERENCE
(V)PEXTRW (dest=reg)
IF (64-Bit Mode)
THEN

SRC_Offset Å Imm8[2:0]
DEST[15:0] Å ((Src >> Src_Offset*16) AND 0FFFFh)
DEST[63:16] Å ZERO_FILL;

ELSE
SRC_Offset Å Imm8[2:0]
DEST[15:0] Å ((Src >> Src_Offset*16) AND 0FFFFh)
DEST[31:16] Å ZERO_FILL;

FI

(V)PEXTRB (dest=m8)
SRC_Offset Å Imm8[3:0]
Mem8 Å (Src >> Src_Offset*8)

(V)PEXTRB (dest=reg)
IF (64-Bit Mode)
THEN

SRC_Offset Å Imm8[3:0]
DEST[7:0] Å ((Src >> Src_Offset*8) AND 0FFh)
DEST[63:8] Å ZERO_FILL;

ELSE
SRC_Offset Å. Imm8[3:0];
DEST[7:0] Å ((Src >> Src_Offset*8) AND 0FFh);
DEST[31:8] Å ZERO_FILL;

FI

Intel C/C++ Compiler Intrinsic Equivalent

PEXTRB int _mm_extract_epi8 (__m128i src, const int ndx);

PEXTRW int _mm_extract_epi16 (__m128i src, int ndx);

PEXTRD int _mm_extract_epi32 (__m128i src, const int ndx);

PEXTRQ __int64 _mm_extract_epi64 (__m128i src, const int ndx);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 5; additionally
Ref. # 319433-004 321

INSTRUCTION SET REFERENCE
#UD If VEX.L = 1.

If VEX.vvvv != 1111B.
322 Ref. # 319433-004

INSTRUCTION SET REFERENCE
PHADDW/PHADDD - Packed Horizontal Add

Description
PHADDW adds two adjacent 16-bit signed integers horizontally from the second
source operand and the first source operand and packs the 16-bit signed results to
the destination operand. PHADDD adds two adjacent 32-bit signed integers horizon-
tally from the second source operand and the first source operand and packs the 32-
bit signed results to the destination operand. The first source and destination oper-
ands are XMM registers. The second source operand is an XMM register or a 128-bit
memory location.

128-bit Legacy SSE version: Bits (255:128) of the corresponding YMM destination
register remain unchanged.

VEX.128 encoded version: Bits (255:128) of the destination YMM register are zeroed.
VEX.L must be 0, otherwise the instruction will #UD.

Operation
VPHADDW (VEX.128 encoded version)
DEST[15:0] Å SRC1[31:16] + SRC1[15:0]
DEST[31:16] Å SRC1[63:48] + SRC1[47:32]
DEST[47:32] Å SRC1[95:80] + SRC1[79:64]
DEST[63:48] Å SRC1[127:112] + SRC1[111:96]
DEST[79:64] Å SRC2[31:16] + SRC2[15:0]
DEST[95:80] Å SRC2[63:48] + SRC2[47:32]
DEST[111:96] Å SRC2[95:80] + SRC2[79:64]
DEST[127:112] Å SRC2[127:112] + SRC2[111:96]

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 38 01 /r V/V SSSE3 Add 16-bit signed integers
horizontally, pack to xmm1.PHADDW xmm1, xmm2/m128

66 0F 38 02 /r V/V SSSE3 Add 32-bit signed integers
horizontally, pack to xmm1.PHADDD xmm1, xmm2/m128

VEX.NDS.128.66.0F38 01 /r V/V AVX Add 16-bit signed integers
horizontally, pack to xmm1.VPHADDW xmm1, xmm2,

xmm3/m128

VEX.NDS.128.66.0F38 02 /r V/V AVX Add 32-bit signed integers
horizontally, pack to xmm1.VPHADDD xmm1, xmm2,

xmm3/m128
Ref. # 319433-004 323

INSTRUCTION SET REFERENCE
DEST[255:128] Å 0

VPHADDD (VEX.128 encoded version)
DEST[31-0] Å SRC1[63-32] + SRC1[31-0]
DEST[63-32] Å SRC1[127-96] + SRC1[95-64]
DEST[95-64] Å SRC2[63-32] + SRC2[31-0]
DEST[127-96] Å SRC2[127-96] + SRC2[95-64]
DEST[255:128] Å 0

PHADDW (128-bit Legacy SSE version)
DEST[15:0] Å DEST[31:16] + DEST[15:0]
DEST[31:16] Å DEST[63:48] + DEST[47:32]
DEST[47:32] Å DEST[95:80] + DEST[79:64]
DEST[63:48] Å DEST[127:112] + DEST[111:96]
DEST[79:64] Å SRC[31:16] + SRC[15:0]
DEST[95:80] Å SRC[63:48] + SRC[47:32]
DEST[111:96] Å SRC[95:80] + SRC[79:64]
DEST[127:112] Å SRC[127:112] + SRC[111:96]
DEST[255:128] (Unmodified)

PHADDD (128-bit Legacy SSE version)
DEST[31-0] Å DEST[63-32] + DEST[31-0]
DEST[63-32] Å DEST[127-96] + DEST[95-64]
DEST[95-64] Å SRC[63-32] + SRC[31-0]
DEST[127-96] Å SRC[127-96] + SRC[95-64]
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

PHADDW __m128i _mm_hadd_epi16 (__m128i a, __m128i b)

PHADDD __m128i _mm_hadd_epi32 (__m128i a, __m128i b)

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4; additionally

#UD If VEX.L = 1.
324 Ref. # 319433-004

INSTRUCTION SET REFERENCE
PHADDSW - Packed Horizontal Add with Saturation

Description
PHADDSW adds two adjacent signed 16-bit integers horizontally from the second
source and first source operands and saturates the signed results; packs the signed,
saturated 16-bit results to the destination operand. The first source and destination
operands are XMM registers. The second source operand is an XMM register or a 128-
bit memory location.

128-bit Legacy SSE version: Bits (255:128) of the corresponding YMM destination
register remain unchanged.

VEX.128 encoded version: Bits (255:128) of the destination YMM register are zeroed.
VEX.L must be 0, otherwise the instruction will #UD.

Operation
VPHADDSW (VEX.128 encoded version)
DEST[15:0]= SaturateToSignedWord(SRC1[31:16] + SRC1[15:0])
DEST[31:16] = SaturateToSignedWord(SRC1[63:48] + SRC1[47:32])
DEST[47:32] = SaturateToSignedWord(SRC1[95:80] + SRC1[79:64])
DEST[63:48] = SaturateToSignedWord(SRC1[127:112] + SRC1[111:96])
DEST[79:64] = SaturateToSignedWord(SRC2[31:16] + SRC2[15:0])
DEST[95:80] = SaturateToSignedWord(SRC2[63:48] + SRC2[47:32])
DEST[111:96] = SaturateToSignedWord(SRC2[95:80] + SRC2[79:64])
DEST[127:112] = SaturateToSignedWord(SRC2[127:112] + SRC2[111:96])
DEST[255:128] Å 0

PHADDSW (128-bit Legacy SSE version)
DEST[15:0]= SaturateToSignedWord(DEST[31:16] + DEST[15:0])
DEST[31:16] = SaturateToSignedWord(DEST[63:48] + DEST[47:32])
DEST[47:32] = SaturateToSignedWord(DEST[95:80] + DEST[79:64])
DEST[63:48] = SaturateToSignedWord(DEST[127:112] + DEST[111:96])

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 38 03 /r V/V SSSE3 Add 16-bit signed integers
horizontally, pack saturated
integers to xmm1.

PHADDSW xmm1, xmm2/m128

VEX.NDS.128.66.0F38 03 /r V/V AVX Add 16-bit signed integers
horizontally, pack saturated
integers to xmm1.

VPHADDSW xmm1, xmm2,
xmm3/m128
Ref. # 319433-004 325

INSTRUCTION SET REFERENCE
DEST[79:64] = SaturateToSignedWord(SRC[31:16] + SRC[15:0])
DEST[95:80] = SaturateToSignedWord(SRC[63:48] + SRC[47:32])
DEST[111:96] = SaturateToSignedWord(SRC[95:80] + SRC[79:64])
DEST[127:112] = SaturateToSignedWord(SRC[127:112] + SRC[111:96])
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

PHADDSW __m128i _mm_hadds_epi16 (__m128i a, __m128i b)

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4; additionally

#UD If VEX.L = 1.
326 Ref. # 319433-004

INSTRUCTION SET REFERENCE
PHMINPOSUW - Horizontal Minimum and Position

Description
Determine the minimum unsigned word value in the source operand and place the
unsigned word in the low word (bits 0-15) of the destination operand. The word index
of the minimum value is stored in bits 16-18 of the destination operand. The
remaining upper bits of the destination are set to zero.

128-bit Legacy SSE version: Bits (255:128) of the corresponding YMM destination
register remain unchanged.

VEX.128 encoded version: Bits (255:128) of the destination YMM register are zeroed.
VEX.vvvv is reserved and must be 1111b, VEX.L must be 0, otherwise the instruction
will #UD.

Operation
VPHMINPOSUW (VEX.128 encoded version)
INDEX Å 0
MIN Å SRC[15:0]
IF (SRC[31:16] < MIN) THEN INDEX Å 1; MIN Å SRC[31:16]
IF (SRC[47:32] < MIN) THEN INDEX Å 2; MIN Å SRC[47:32]
* Repeat operation for words 3 through 6
IF (SRC[127:112] < MIN) THEN INDEX Å 7; MIN Å SRC[127:112]
DEST[15:0] Å MIN
DEST[18:16] Å INDEX
DEST[127:19] Å 0000000000000000000000000000H
DEST[255:128] Å 0

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 38 41 /r V/V SSE4_1 Find the minimum unsigned word
in xmm2/m128 and place its value
in the low word of xmm1 and its
index in the second-lowest word
of xmm1

PHMINPOSUW xmm1, xmm2/m128

VEX.128.66.0F38 41 /r V/V AVX Find the minimum unsigned word
in xmm2/m128 and place its value
in the low word of xmm1 and its
index in the second-lowest word
of xmm1

VPHMINPOSUW xmm1,
xmm2/m128
Ref. # 319433-004 327

INSTRUCTION SET REFERENCE
PHMINPOSUW (128-bit Legacy SSE version)
INDEX Å 0
MIN Å SRC[15:0]
IF (SRC[31:16] < MIN) THEN INDEX Å 1; MIN Å SRC[31:16]
IF (SRC[47:32] < MIN) THEN INDEX Å 2; MIN Å SRC[47:32]
* Repeat operation for words 3 through 6
IF (SRC[127:112] < MIN) THEN INDEX Å 7; MIN Å SRC[127:112]
DEST[15:0] Å MIN
DEST[18:16] Å INDEX
DEST[127:19] Å 0000000000000000000000000000H
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

PHMINPOSUW __m128i _mm_minpos_epu16(__m128i packed_words)

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4; additionally

#UD If VEX.L = 1.

If VEX.vvvv != 1111B.
328 Ref. # 319433-004

INSTRUCTION SET REFERENCE
PHSUBW/PHSUBD - Packed Horizontal Subtract

Description
PHSUBW performs horizontal subtraction on each adjacent pair of 16-bit signed inte-
gers by subtracting the most significant word from the least significant word of each
pair in the second source operand and destination operands, and packs the signed
16-bit results to the destination operand. PHSUBD performs horizontal subtraction
on each adjacent pair of 32-bit signed integers by subtracting the most significant
doubleword from the least significant doubleword of each pair, and packs the signed
32-bit result to the destination operand.

The first source and destination operands are XMM registers. The second source
operand is an XMM register or a 128-bit memory location.

128-bit Legacy SSE version: Bits (255:128) of the corresponding YMM destination
register remain unchanged.

VEX.128 encoded version: Bits (255:128) of the destination YMM register are zeroed.
VEX.L must be 0, otherwise the instruction will #UD.

Operation
VPHSUBW (VEX.128 encoded version)
DEST[15:0] Å SRC1[15:0] - SRC1[31:16]
DEST[31:16] Å SRC1[47:32] - SRC1[63:48]
DEST[47:32] Å SRC1[79:64] - SRC1[95:80]
DEST[63:48] Å SRC1[111:96] - SRC1[127:112]

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 38 05 /r V/V SSSE3 Subtract 16-bit signed integers
horizontally, pack to xmm1.PHSUBW xmm1, xmm2/m128

66 0F 38 06 /r V/V SSSE3 Subtract 32-bit signed integers
horizontally, pack to xmm1.PHSUBD xmm1, xmm2/m128

VEX.NDS.128.66.0F38 05 /r V/V AVX Subtract 16-bit signed integers
horizontally, pack to xmm1.VPHSUBW xmm1, xmm2,

xmm3/m128

VEX.NDS.128.66.0F38 06 /r V/V AVX Subtract 32-bit signed integers
horizontally, pack to xmm1.VPHSUBD xmm1, xmm2,

xmm3/m128
Ref. # 319433-004 329

INSTRUCTION SET REFERENCE
DEST[79:64] Å SRC2[15:0] - SRC2[31:16]
DEST[95:80] Å SRC2[47:32] - SRC2[63:48]
DEST[111:96] Å SRC2[79:64] - SRC2[95:80]
DEST[127:112] Å SRC2[111:96] - SRC2[127:112]
DEST[255:128] Å 0

VPHSUBD (VEX.128 encoded version)
DEST[31-0] Å SRC1[31-0] - SRC1[63-32]
DEST[63-32] Å SRC1[95-64] - SRC1[127-96]
DEST[95-64] Å SRC2[31-0] - SRC2[63-32]
DEST[127-96] Å SRC2[95-64] - SRC2[127-96]
DEST[255:128] Å 0

PHSUBW (128-bit Legacy SSE version)
DEST[15:0] Å DEST[15:0] - DEST[31:16]
DEST[31:16] Å DEST[47:32] - DEST[63:48]
DEST[47:32] Å DEST[79:64] - DEST[95:80]
DEST[63:48] Å DEST[111:96] - DEST[127:112]
DEST[79:64] Å SRC[15:0] - SRC[31:16]
DEST[95:80] Å SRC[47:32] - SRC[63:48]
DEST[111:96] Å SRC[79:64] - SRC[95:80]
DEST[127:112] Å SRC[111:96] - SRC[127:112]
DEST[255:128] (Unmodified)

PHSUBD (128-bit Legacy SSE version)
DEST[31-0] Å DEST[31-0] - DEST[63-32]
DEST[63-32] Å DEST[95-64] - DEST[127-96]
DEST[95-64] Å SRC[31-0] - SRC[63-32]
DEST[127-96] Å SRC[95-64] - SRC[127-96]
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

PHSUBW __m128i _mm_hsub_epi16 (__m128i a, __m128i b)

PHSUBD __m128i _mm_hsub_epi32 (__m128i a, __m128i b)

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4; additionally

#UD If VEX.L = 1.
330 Ref. # 319433-004

INSTRUCTION SET REFERENCE
PHSUBSW - Packed Horizontal Subtract with Saturation

Description
PHSUBSW performs horizontal subtraction on each adjacent pair of 16-bit signed
integers by subtracting the most significant word from the least significant word of
each pair in the second source and first source operands. The signed, saturated 16-
bit results are packed to the destination operand. The destination and first source
operand are XMM registers. The second operand can be an XMM register or a 128-bit
memory location.

128-bit Legacy SSE version: Bits (255:128) of the corresponding YMM destination
register remain unchanged.

VEX.128 encoded version: Bits (255:128) of the destination YMM register are zeroed.
VEX.L must be 0, otherwise the instruction will #UD.

Operation
VPHSUBSW (VEX.128 encoded version)
DEST[15:0]= SaturateToSignedWord(SRC1[15:0] - SRC1[31:16])
DEST[31:16] = SaturateToSignedWord(SRC1[47:32] - SRC1[63:48])
DEST[47:32] = SaturateToSignedWord(SRC1[79:64] - SRC1[95:80])
DEST[63:48] = SaturateToSignedWord(SRC1[111:96] - SRC1[127:112])
DEST[79:64] = SaturateToSignedWord(SRC2[15:0] - SRC2[31:16])
DEST[95:80] = SaturateToSignedWord(SRC2[47:32] - SRC2[63:48])
DEST[111:96] = SaturateToSignedWord(SRC2[79:64] - SRC2[95:80])
DEST[127:112] = SaturateToSignedWord(SRC2[111:96] - SRC2[127:112])
DEST[255:128] Å 0

PHSUBSW (128-bit Legacy SSE version)
DEST[15:0]= SaturateToSignedWord(DEST[15:0] - DEST[31:16])
DEST[31:16] = SaturateToSignedWord(DEST[47:32] - DEST[63:48])
DEST[47:32] = SaturateToSignedWord(DEST[79:64]) - DEST[95:80]

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 38 07 /r V/V SSSE3 Subtract 16-bit signed integer
horizontally, pack saturated
integers to xmm1

PHSUBSW xmm1, xmm2/m128

VEX.NDS.128.66.0F38 07 /r V/V AVX Subtract 16-bit signed integer
horizontally, pack saturated
integers to xmm1

VPHSUBSW xmm1, xmm2,
xmm3/m128
Ref. # 319433-004 331

INSTRUCTION SET REFERENCE
DEST[63:48] = SaturateToSignedWord(DEST[111:96] - DEST[127:112])
DEST[79:64] = SaturateToSignedWord(SRC[15:0] - SRC[31:16])
DEST[95:80] = SaturateToSignedWord(SRC[47:32] - SRC[63:48])
DEST[111:96] = SaturateToSignedWord(SRC[79:64] - SRC[95:80])
DEST[127:112] = SaturateToSignedWord(SRC[SRC[111:96] - 127:112])
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

PHSUBSW __m128i _mm_hsubs_epi16 (__m128i a, __m128i b)

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4; additionally

#UD If VEX.L = 1.
332 Ref. # 319433-004

INSTRUCTION SET REFERENCE
PINSRB/PINSRW/PINSRD/PINSRQ- Insert Integer

Description
Copies a byte/word/dword/qword from the second source operand and inserts it into
the destination operand at the byte/word/dword/qword offset specified with the
immediate operand (third operand). The other bytes/words/dwords/qwords in the
destination register are copied from the first source operand. The byte select is spec-
ified by the 4/3/2/1 least-significant bits of the immediate.

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 3A 20 /r ib V/V SSE4_1 Insert a byte integer value from
r32/m8 into xmm1 at the byte
offset in imm8

PINSRB xmm1, r32/m8, imm8

66 0F C4 /r ib V/V SSE2 Insert a word integer value from
r32/m16 into xmm1 at the word
offset in imm8

PINSRW xmm1, r32/m16, imm8

66 0F 3A 22 /r ib V/V SSE4_1 Insert a dword integer value from
r32/m32 into xmm1 at the dword
offset in imm8

PINSRD xmm1, r32/m32, imm8

66 REX.W 0F 3A 22 /r ib N.E./V SSE4_1 Insert a qword integer value from
r64/m64 into xmm1 at the qword
offset in imm8

PINSRQ xmm1, r64/m64, imm8

VEX.NDS.128.66.0F3A 20 /r ib V/V AVX Merge a byte integer value from
r32/m8 and rest from xmm2 into
xmm1 at the byte offset in imm8

VPINSRB xmm1, xmm2, r32/m8,
imm8

VEX.NDS.128.66.0F C4 /r ib V/V AVX Insert a word integer value from
r32/m16 and rest from xmm2 into
xmm1 at the word offset in imm8

VPINSRW xmm1, xmm2, r32/m16,
imm8

VEX.NDS.128.66.0F3A.W0 22 /r ib V/V AVX Insert a dword integer value from
r32/m32 and rest from xmm2 into
xmm1 at the dword offset in imm8

VPINSRD xmm1, xmm2, r32/m32,
imm8

VEX.NDS.128.66.0F3A.W1 22 /r ib N.E./V AVX Insert a qword integer value from
r64/m64 and rest from xmm2 into
xmm1 at the qword offset in imm8

VPINSRQ xmm1, xmm2, r64/m64,
imm8
Ref. # 319433-004 333

INSTRUCTION SET REFERENCE
The first source operand and destination operands are XMM registers. The second
source operand is a r32 register or an 8-/16-/32-/ or 64-bit memory location. For
PINSRW, REX.W causes the source to be an r64 instead of an r32. REX.W distin-
guishes between PINSRD and PINSRQ (PINSRQ is not encodable in 32-bit modes).

128-bit Legacy SSE version: Bits (255:128) of the corresponding YMM destination
register remain unchanged.

VEX.128 encoded version: Bits (255:128) of the destination YMM register are zeroed.
VEX.L must be 0, otherwise the instruction will #UD.

Operation
write_q_element(position, val, src)
{
TEMP Å SRC
CASE (position)
0: TEMP[63:0] Å val
1: TEMP[127:64] Å val
ESAC
return TEMP
}

write_d_element(position, val, src)
{
TEMP Å SRC
CASE (position)
0: TEMP[31:0] Å val
1: TEMP[63:32] Å val
2: TEMP[95:64] Å val
3: TEMP[127:96] Å val
ESAC
return TEMP
}

write_w_element(position, val, src)
{
TEMP Å SRC
CASE (position)
0: TEMP[15:0] Å val
1: TEMP[31:16] Å val
2: TEMP[47:32] Å val
3: TEMP[63:48] Å val
4: TEMP[79:64] Å val
5: TEMP[95:80] Å val
6: TEMP[111:96] Å val
334 Ref. # 319433-004

INSTRUCTION SET REFERENCE
7: TEMP[127:112] Å val
ESAC
return TEMP
}

write_b_element(position, val, src)
{
TEMP Å SRC
CASE (position)
0: TEMP[7:0] Å val
1: TEMP[15:8] Å val
2: TEMP[23:16] Å val
3: TEMP[31:24] Å val
4: TEMP[39:32] Å val
5: TEMP[47:40] Å val
6: TEMP[55:48] Å val
7: TEMP[63:56] Å val
8: TEMP[71:64] Å val
9: TEMP[79:72] Å val
10: TEMP[87:80] Å val
11: TEMP[95:88] Å val
12: TEMP[103:96] Å val
13: TEMP[111:104] Å val
14: TEMP[119:112] Å val
15: TEMP[127:120] Å val
ESAC
return TEMP
}
VPINSRQ (VEX.128 encoded version)
SEL Å imm8[0]
DEST[127:0] Å write_q_element(SEL, SRC2, SRC1)
DEST[255:128] Å 0

VPINSRD (VEX.128 encoded version)
SEL Å imm8[1:0]
DEST[127:0] Å write_d_element(SEL, SRC2, SRC1)
DEST[255:128] Å 0

VPINSRW (VEX.128 encoded version)
SEL Å imm8[2:0]
DEST[127:0] Å write_w_element(SEL, SRC2, SRC1)
DEST[255:128] Å 0
Ref. # 319433-004 335

INSTRUCTION SET REFERENCE
VPINSRB (VEX.128 encoded version)
SEL Å imm8[3:0]
DEST[127:0] Å write_b_element(SEL, SRC2, SRC1)
DEST[255:128] Å 0

PINSRQ (Legacy SSE version)
SEL Å imm8[0]
DEST[127:0] Å write_q_element(SEL, SRC, DEST)
DEST[255:128] (Unmodified)

PINSRD (Legacy SSE version)
SEL Å imm8[1:0]
DEST[127:0] Å write_d_element(SEL, SRC, DEST)
DEST[255:128] (Unmodified)

PINSRW (Legacy SSE version)
SEL Å imm8[2:0]
DEST[127:0] Å write_w_element(SEL, SRC, DEST)
DEST[255:128] (Unmodified)

PINSRB (Legacy SSE version)
SEL Å imm8[3:0]
DEST[127:0] Å write_b_element(SEL, SRC, DEST)
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

PINSRB __m128i _mm_insert_epi8 (__m128i s1, int s2, const int ndx);

PINSRW __m128i _mm_insert_epi16 (__m128i a, int b, int imm)

PINSRD __m128i _mm_insert_epi32 (__m128i s2, int s, const int ndx);

PINSRQ __m128i _mm_insert_epi64(__m128i s2, __int64 s, const int ndx);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 5; additionally

#UD If VEX.L = 1.
336 Ref. # 319433-004

INSTRUCTION SET REFERENCE
PMADDWD- Multiply and Add Packed Integers

Description
Multiplies the individual signed words of the first source operand by the corre-
sponding signed words of the second source operand, producing temporary signed,
doubleword results. The adjacent doubleword results are then summed and stored in
the destination operand. For example, the corresponding low-order words (15:0) and
(31-16) in the second source and first source operands are multiplied by one another
and the doubleword results are added together and stored in the low doubleword of
the destination register (31-0). The same operation is performed on the other pairs
of adjacent words. The second source operand is an XMM register or a 128-bit
memory location.

The first source and destination operands are XMM registers. The PMADDWD instruc-
tion wraps around only in one situation: when the 2 pairs of words being operated on
in a group are all 8000H. In this case, the result wraps around to 80000000H.

128-bit Legacy SSE version: Bits (255:128) of the corresponding YMM destination
register remain unchanged.

VEX.128 encoded version: Bits (255:128) of the destination YMM register are zeroed.
VEX.L must be 0, otherwise the instruction will #UD.

Operation
VPMADDWD (VEX.128 encoded version)
DEST[31:0] Å (SRC1[15:0] * SRC2[15:0]) + (SRC1[31:16] * SRC2[31:16])
DEST[63:32] Å (SRC1[47:32] * SRC2[47:32]) + (SRC1[63:48] * SRC2[63:48])
DEST[95:64] Å (SRC1[79:64] * SRC2[79:64]) + (SRC1[95:80] * SRC2[95:80])
DEST[127:96] Å (SRC1[111:96] * SRC2[111:96]) + (SRC1[127:112] * SRC2[127:112])
DEST[255:128] Å 0

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F F5 /r V/V SSE2 Multiply the packed word integers
in xmm1 by the packed word
integers in xmm2/m128, add
adjacent doubleword results, and
store in xmm1.

PMADDWD xmm1, xmm2/m128

VEX.NDS.128.66.0F F5 /r V/V AVX Multiply the packed word integers
in xmm2 by the packed word
integers in xmm3/m128, add
adjacent doubleword results, and
store in xmm1.

VPMADDWD xmm1, xmm2,
xmm3/m128
Ref. # 319433-004 337

INSTRUCTION SET REFERENCE
PMADDWD (128-bit Legacy SSE version)
DEST[31:0] Å (DEST[15:0] * SRC[15:0]) + (DEST[31:16] * SRC[31:16])
DEST[63:32] Å (DEST[47:32] * SRC[47:32]) + (DEST[63:48] * SRC[63:48])
DEST[95:64] Å (DEST[79:64] * SRC[79:64]) + (DEST[95:80] * SRC[95:80])
DEST[127:96] Å (DEST[111:96] * SRC[111:96]) + (DEST[127:112] * SRC[127:112])
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

PMADDWD __m128i _mm_madd_epi16 (__m128i a, __m128i b)

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4; additionally

#UD If VEX.L = 1.
338 Ref. # 319433-004

INSTRUCTION SET REFERENCE
PMADDUBSW- Multiply and Add Packed Integers

Description
PMADDUBSW multiplies vertically each unsigned byte of the first source operand
with the corresponding signed byte of the second source operand, producing inter-
mediate signed 16-bit integers. Each adjacent pair of signed words is added and the
saturated result is packed to the destination operand. For example, the lowest-order
bytes (bits 7:0) in the first source and second source operands are multiplied and the
intermediate signed word result is added with the corresponding intermediate result
from the 2nd lowest-order bytes (bits 15:8) of the operands; the sign-saturated
result is stored in the lowest word of the destination register (15:0). The same oper-
ation is performed on the other pairs of adjacent bytes. The second source operand
can be an XMM register or 128-bit memory location. The first source operand and
destination operands are XMM registers.

128-bit Legacy SSE version: Bits (255:128) of the corresponding YMM destination
register remain unchanged.

VEX.128 encoded version: Bits (255:128) of the destination YMM register are zeroed.
VEX.L must be 0, otherwise the instruction will #UD.

Operation
VPMADDUBSW (VEX.128 encoded version)
DEST[15:0] Å SaturateToSignedWord(SRC2[15:8]* SRC1[15:8]+SRC2[7:0]*SRC1[7:0])
// Repeat operation for 2nd through 7th word
DEST[127:112] Å SaturateToSignedWord(SRC2[127:120]*SRC1[127:120]+ SRC2[119:112]*
SRC1[119:112])
DEST[255:128] Å 0

PMADDUBSW (128-bit Legacy SSE version)
DEST[15:0] Å SaturateToSignedWord(SRC[15:8]* DEST[15:8]+SRC[7:0]*DEST[7:0]);
// Repeat operation for 2nd through 7th word

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 38 04 /r V/V SSSE3 Multiply signed and unsigned
bytes, add horizontal pair of
signed words, pack saturated
signed-words to xmm1.

PMADDUBSW xmm1, xmm2/m128

VEX.NDS.128.66.0F38 04 /r V/V AVX Multiply signed and unsigned
bytes, add horizontal pair of
signed words, pack saturated
signed-words to xmm1.

VPMADDUBSW xmm1, xmm2,
xmm3/m128
Ref. # 319433-004 339

INSTRUCTION SET REFERENCE
DEST[127:112] Å SaturateToSignedWord(SRC[127:120]*DEST[127:120]+ SRC[119:112]*
DEST[119:112]);
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

PMADDUBSW __m128i _mm_maddubs_epi16 (__m128i a, __m128i b)

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4; additionally

#UD If VEX.L = 1.
340 Ref. # 319433-004

INSTRUCTION SET REFERENCE
PMAXSB/PMAXSW/PMAXSD- Maximum of Packed Signed Integers

Description
Performs a SIMD compare of the packed signed byte, word, or dword integers in the
second source operand and the first source operand and returns the maximum value
for each pair of integers to the destination operand. The first source and destination
operand is an XMM register; The second source operand is an XMM register or a 128-
bit memory location.

128-bit Legacy SSE version: Bits (255:128) of the corresponding YMM destination
register remain unchanged.

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 38 3C /r V/V SSE4_1 Compare packed signed byte
integers in xmm1 and
xmm2/m128 and store packed
maximum values in xmm1.

PMAXSB xmm1, xmm2/m128

66 0F EE /r V/V SSE2 Compare packed signed word
integers in xmm2/m128 and
xmm1 and stores maximum
packed values in xmm1.

PMAXSW xmm1, xmm2/m128

66 0F 38 3D /r V/V SSE4_1 Compare packed signed dword
integers in xmm1 and
xmm2/m128 and store packed
maximum values in xmm1.

PMAXSD xmm1, xmm2/m128

VEX.NDS.128.66.0F38 3C /r V/V AVX Compare packed signed byte
integers in xmm2 and
xmm3/m128 and store packed
maximum values in xmm1.

VPMAXSB xmm1, xmm2,
xmm3/m128

VEX.NDS.128.66.0F EE /r V/V AVX Compare packed signed word
integers in xmm3/m128 and
xmm2 and store packed maximum
values in xmm1.

VPMAXSW xmm1, xmm2,
xmm3/m128

VEX.NDS.128.66.0F38 3D /r V/V AVX Compare packed signed dword
integers in xmm2 and
xmm3/m128 and store packed
maximum values in xmm1.

VPMAXSD xmm1, xmm2,
xmm3/m128
Ref. # 319433-004 341

INSTRUCTION SET REFERENCE
VEX.128 encoded version: Bits (255:128) of the destination YMM register are zeroed.
VEX.L must be 0, otherwise the instruction will #UD.

Operation
PMAXSB (128-bit Legacy SSE version)

IF DEST[7:0] >SRC[7:0] THEN
DEST[7:0] Å DEST[7:0];

ELSE
DEST[15:0] Å SRC[7:0]; FI;

(* Repeat operation for 2nd through 15th bytes in source and destination operands *)
IF DEST[127:120] >SRC[127:120] THEN

DEST[127:120] Å DEST[127:120];
ELSE

DEST[127:120] Å SRC[127:120]; FI;
DEST[255:128] (Unmodified)

VPMAXSB (VEX.128 encoded version)
IF SRC1[7:0] >SRC2[7:0] THEN

DEST[7:0] Å SRC1[7:0];
ELSE

DEST[7:0] Å SRC2[7:0]; FI;
(* Repeat operation for 2nd through 15th bytes in source and destination operands *)
IF SRC1[127:120] >SRC2[127:120] THEN

DEST[127:120] Å SRC1[127:120];
ELSE

DEST[127:120] Å SRC2[127:120]; FI;
DEST[255:128] Å 0

PMAXSW (128-bit Legacy SSE version)
IF DEST[15:0] >SRC[15:0] THEN

DEST[15:0] Å DEST[15:0];
ELSE

DEST[15:0] Å SRC[15:0]; FI;
(* Repeat operation for 2nd through 7th words in source and destination operands *)
IF DEST[127:112] >SRC[127:112] THEN

DEST[127:112] Å DEST[127:112];
ELSE

DEST[127:112] Å SRC[127:112]; FI;
DEST[255:128] (Unmodified)

VPMAXSW (VEX.128 encoded version)
IF SRC1[15:0] > SRC2[15:0] THEN

DEST[15:0] Å SRC1[15:0];
342 Ref. # 319433-004

INSTRUCTION SET REFERENCE
ELSE
DEST[15:0] Å SRC2[15:0]; FI;

(* Repeat operation for 2nd through 7th words in source and destination operands *)
IF SRC1[127:112] >SRC2[127:112] THEN

DEST[127:112] Å SRC1[127:112];
ELSE

DEST[127:112] Å SRC2[127:112]; FI;
DEST[255:128] Å 0

PMAXSD (128-bit Legacy SSE version)
IF DEST[31:0] >SRC[31:0] THEN

DEST[31:0] Å DEST[31:0];
ELSE

DEST[31:0] Å SRC[31:0]; FI;
(* Repeat operation for 2nd through 7th words in source and destination operands *)
IF DEST[127:95] >SRC[127:95] THEN

DEST[127:95] Å DEST[127:95];
ELSE

DEST[127:95] Å SRC[127:95]; FI;
DEST[255:128] (Unmodified)

VPMAXSD (VEX.128 encoded version)
IF SRC1[31:0] > SRC2[31:0] THEN

DEST[31:0] Å SRC1[31:0];
ELSE

DEST[31:0] Å SRC2[31:0]; FI;
(* Repeat operation for 2nd through 3rd dwords in source and destination operands *)
IF SRC1[127:95] > SRC2[127:95] THEN

DEST[127:95] Å SRC1[127:95];
ELSE

DEST[127:95] Å SRC2[127:95]; FI;
DEST[255:128] Å 0

Intel C/C++ Compiler Intrinsic Equivalent

PMAXSB __m128i _mm_max_epi8 (__m128i a, __m128i b);

PMAXSW __m128i _mm_max_epi16 (__m128i a, __m128i b)

PMAXSD __m128i _mm_max_epi32 (__m128i a, __m128i b);

SIMD Floating-Point Exceptions
None
Ref. # 319433-004 343

INSTRUCTION SET REFERENCE
Other Exceptions
See Exceptions Type 4; additionally

#UD If VEX.L = 1.
344 Ref. # 319433-004

INSTRUCTION SET REFERENCE
PMAXUB/PMAXUW/PMAXUD- Maximum of Packed Unsigned Integers

Description
Performs a SIMD compare of the packed unsigned byte, word, or dword integers in
the second source operand and the first source operand and returns the maximum
value for each pair of integers to the destination operand. The first source and desti-
nation operand is an XMM register; The second source operand is an XMM register or
a 128-bit memory location.

128-bit Legacy SSE version: Bits (255:128) of the corresponding YMM destination
register remain unchanged.

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F DE /r V/V SSE2 Compare packed unsigned byte
integers in xmm1 and
xmm2/m128 and store packed
maximum values in xmm1.

PMAXUB xmm1, xmm2/m128

66 0F 38 3E/r V/V SSE4_1 Compare packed unsigned word
integers in xmm2/m128 and
xmm1 and stores maximum
packed values in xmm1.

PMAXUW xmm1, xmm2/m128

66 0F 38 3F /r V/V SSE4_1 Compare packed unsigned dword
integers in xmm1 and
xmm2/m128 and store packed
maximum values in xmm1.

PMAXUD xmm1, xmm2/m128

VEX.NDS.128.66.0F DE /r V/V AVX Compare packed unsigned byte
integers in xmm2 and
xmm3/m128 and store packed
maximum values in xmm1.

VPMAXUB xmm1, xmm2,
xmm3/m128

VEX.NDS.128.66.0F38 3E/r V/V AVX Compare packed unsigned word
integers in xmm3/m128 and
xmm2 and store maximum packed
values in xmm1.

VPMAXUW xmm1, xmm2,
xmm3/m128

VEX.NDS.128.66.0F38 3F /r V/V AVX Compare packed unsigned dword
integers in xmm2 and
xmm3/m128 and store packed
maximum values in xmm1.

VPMAXUD xmm1, xmm2,
xmm3/m128
Ref. # 319433-004 345

INSTRUCTION SET REFERENCE
VEX.128 encoded version: Bits (255:128) of the destination YMM register are zeroed.
VEX.L must be 0, otherwise the instruction will #UD.

Operation
PMAXUB (128-bit Legacy SSE version)

IF DEST[7:0] >SRC[7:0] THEN
DEST[7:0] Å DEST[7:0];

ELSE
DEST[15:0] Å SRC[7:0]; FI;

(* Repeat operation for 2nd through 15th bytes in source and destination operands *)
IF DEST[127:120] >SRC[127:120] THEN

DEST[127:120] Å DEST[127:120];
ELSE

DEST[127:120] Å SRC[127:120]; FI;
DEST[255:128] (Unmodified)

VPMAXUB (VEX.128 encoded version)
IF SRC1[7:0] >SRC2[7:0] THEN

DEST[7:0] Å SRC1[7:0];
ELSE

DEST[7:0] Å SRC2[7:0]; FI;
(* Repeat operation for 2nd through 15th bytes in source and destination operands *)
IF SRC1[127:120] >SRC2[127:120] THEN

DEST[127:120] Å SRC1[127:120];
ELSE

DEST[127:120] Å SRC2[127:120]; FI;
DEST[255:128] Å 0

PMAXUW (128-bit Legacy SSE version)
IF DEST[15:0] >SRC[15:0] THEN

DEST[15:0] Å DEST[15:0];
ELSE

DEST[15:0] Å SRC[15:0]; FI;
(* Repeat operation for 2nd through 7th words in source and destination operands *)
IF DEST[127:112] >SRC[127:112] THEN

DEST[127:112] Å DEST[127:112];
ELSE

DEST[127:112] Å SRC[127:112]; FI;
DEST[255:128] (Unmodified)

VPMAXUW (VEX.128 encoded version)
IF SRC1[15:0] > SRC2[15:0] THEN

DEST[15:0] Å SRC1[15:0];
346 Ref. # 319433-004

INSTRUCTION SET REFERENCE
ELSE
DEST[15:0] Å SRC2[15:0]; FI;

(* Repeat operation for 2nd through 7th words in source and destination operands *)
IF SRC1[127:112] >SRC2[127:112] THEN

DEST[127:112] Å SRC1[127:112];
ELSE

DEST[127:112] Å SRC2[127:112]; FI;
DEST[255:128] Å 0

PMAXUD (128-bit Legacy SSE version)
IF DEST[31:0] >SRC[31:0] THEN

DEST[31:0] Å DEST[31:0];
ELSE

DEST[31:0] Å SRC[31:0]; FI;
(* Repeat operation for 2nd through 7th words in source and destination operands *)
IF DEST[127:95] >SRC[127:95] THEN

DEST[127:95] Å DEST[127:95];
ELSE

DEST[127:95] Å SRC[127:95]; FI;
DEST[255:128] (Unmodified)

VPMAXUD (VEX.128 encoded version)
IF SRC1[31:0] > SRC2[31:0] THEN

DEST[31:0] Å SRC1[31:0];
ELSE

DEST[31:0] Å SRC2[31:0]; FI;
(* Repeat operation for 2nd through 3rd dwords in source and destination operands *)
IF SRC1[127:95] > SRC2[127:95] THEN

DEST[127:95] Å SRC1[127:95];
ELSE

DEST[127:95] Å SRC2[127:95]; FI;
DEST[255:128] Å 0

Intel C/C++ Compiler Intrinsic Equivalent

PMAXUB __m128i _mm_max_epu8 (__m128i a, __m128i b);

PMAXUW __m128i _mm_max_epu16 (__m128i a, __m128i b)

PMAXUD __m128i _mm_max_epu32 (__m128i a, __m128i b);

SIMD Floating-Point Exceptions
None
Ref. # 319433-004 347

INSTRUCTION SET REFERENCE
Other Exceptions
See Exceptions Type 4; additionally

#UD If VEX.L = 1.
348 Ref. # 319433-004

INSTRUCTION SET REFERENCE
PMINSB/PMINSW/PMINSD- Minimum of Packed Signed Integers

Description
Performs a SIMD compare of the packed signed byte, word, or dword integers in the
second source operand and the first source operand and returns the minimum value
for each pair of integers to the destination operand. The first source and destination
operand is an XMM register; The second source operand is an XMM register or a 128-
bit memory location.

128-bit Legacy SSE version: Bits (255:128) of the corresponding YMM destination
register remain unchanged.

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 38 38 /r V/V SSE4_1 Compare packed signed byte
integers in xmm1 and
xmm2/m128 and store packed
minimum values in xmm1.

PMINSB xmm1, xmm2/m128

66 0F EA /r V/V SSE2 Compare packed signed word
integers in xmm2/m128 and
xmm1 and store packed minimum
values in xmm1.

PMINSW xmm1, xmm2/m128

66 0F 38 39 /r V/V SSE4_1 Compare packed signed dword
integers in xmm1 and
xmm2/m128 and store packed
minimum values in xmm1.

PMINSD xmm1, xmm2/m128

VEX.NDS.128.66.0F38 38 /r V/V AVX Compare packed signed byte
integers in xmm2 and
xmm3/m128 and store packed
minimum values in xmm1.

VPMINSB xmm1, xmm2,
xmm3/m128

VEX.NDS.128.66.0F EA /r V/V AVX Compare packed signed word
integers in xmm3/m128 and
xmm2 and return packed
minimum values in xmm1.

VPMINSW xmm1, xmm2,
xmm3/m128

VEX.NDS.128.66.0F38 39 /r V/V AVX Compare packed signed dword
integers in xmm2 and
xmm3/m128 and store packed
minimum values in xmm1.

VPMINSD xmm1, xmm2,
xmm3/m128
Ref. # 319433-004 349

INSTRUCTION SET REFERENCE
VEX.128 encoded version: Bits (255:128) of the destination YMM register are zeroed.
VEX.L must be 0, otherwise the instruction will #UD.

Operation
PMINSB (128-bit Legacy SSE version)

IF DEST[7:0] < SRC[7:0] THEN
DEST[7:0] Å DEST[7:0];

ELSE
DEST[15:0] Å SRC[7:0]; FI;

(* Repeat operation for 2nd through 15th bytes in source and destination operands *)
IF DEST[127:120] < SRC[127:120] THEN

DEST[127:120] Å DEST[127:120];
ELSE

DEST[127:120] Å SRC[127:120]; FI;
DEST[255:128] (Unmodified)

VPMINSB (VEX.128 encoded version)
IF SRC1[7:0] < SRC2[7:0] THEN

DEST[7:0] Å SRC1[7:0];
ELSE

DEST[7:0] Å SRC2[7:0]; FI;
(* Repeat operation for 2nd through 15th bytes in source and destination operands *)
IF SRC1[127:120] < SRC2[127:120] THEN

DEST[127:120] Å SRC1[127:120];
ELSE

DEST[127:120] Å SRC2[127:120]; FI;
DEST[255:128] Å 0

PMINSW (128-bit Legacy SSE version)
IF DEST[15:0] < SRC[15:0] THEN

DEST[15:0] Å DEST[15:0];
ELSE

DEST[15:0] Å SRC[15:0]; FI;
(* Repeat operation for 2nd through 7th words in source and destination operands *)
IF DEST[127:112] < SRC[127:112] THEN

DEST[127:112] Å DEST[127:112];
ELSE

DEST[127:112] Å SRC[127:112]; FI;
DEST[255:128] (Unmodified)

VPMINSW (VEX.128 encoded version)
IF SRC1[15:0] < SRC2[15:0] THEN

DEST[15:0] Å SRC1[15:0];
350 Ref. # 319433-004

INSTRUCTION SET REFERENCE
ELSE
DEST[15:0] Å SRC2[15:0]; FI;

(* Repeat operation for 2nd through 7th words in source and destination operands *)
IF SRC1[127:112] < SRC2[127:112] THEN

DEST[127:112] Å SRC1[127:112];
ELSE

DEST[127:112] Å SRC2[127:112]; FI;
DEST[255:128] Å 0

PMINSD (128-bit Legacy SSE version)
IF DEST[31:0] < SRC[31:0] THEN

DEST[31:0] Å DEST[31:0];
ELSE

DEST[31:0] Å SRC[31:0]; FI;
(* Repeat operation for 2nd through 7th words in source and destination operands *)
IF DEST[127:95] < SRC[127:95] THEN

DEST[127:95] Å DEST[127:95];
ELSE

DEST[127:95] Å SRC[127:95]; FI;
DEST[255:128] (Unmodified)

VPMINSD (VEX.128 encoded version)
IF SRC1[31:0] < SRC2[31:0] THEN

DEST[31:0] Å SRC1[31:0];
ELSE

DEST[31:0] Å SRC2[31:0]; FI;
(* Repeat operation for 2nd through 3rd dwords in source and destination operands *)
IF SRC1[127:95] < SRC2[127:95] THEN

DEST[127:95] Å SRC1[127:95];
ELSE

DEST[127:95] Å SRC2[127:95]; FI;
DEST[255:128] Å 0

Intel C/C++ Compiler Intrinsic Equivalent

PMINSB __m128i _mm_min_epi8 (__m128i a, __m128i b);

PMINSW __m128i _mm_min_epi16 (__m128i a, __m128i b)

PMINSD __m128i _mm_min_epi32 (__m128i a, __m128i b);

SIMD Floating-Point Exceptions
None
Ref. # 319433-004 351

INSTRUCTION SET REFERENCE
Other Exceptions
See Exceptions Type 4; additionally

#UD If VEX.L = 1.
352 Ref. # 319433-004

INSTRUCTION SET REFERENCE
PMINUB/PMINUW/PMINUD- Minimum of Packed Unsigned Integers

Description
Performs a SIMD compare of the packed unsigned byte, word, or dword integers in
the second source operand and the first source operand and returns the minimum
value for each pair of integers to the destination operand. The first source and desti-
nation operand is an XMM register; The second source operand is an XMM register or
a 128-bit memory location.

128-bit Legacy SSE version: Bits (255:128) of the corresponding YMM destination
register remain unchanged.

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F DA /r V/V SSE2 Compare packed unsigned byte
integers in xmm1 and
xmm2/m128 and store packed
minimum values in xmm1.

PMINUB xmm1, xmm2/m128

66 0F 38 3A/r V/V SSE4_1 Compare packed unsigned word
integers in xmm2/m128 and
xmm1 and store packed minimum
values in xmm1.

PMINUW xmm1, xmm2/m128

66 0F 38 3B /r V/V SSE4_1 Compare packed unsigned dword
integers in xmm1 and
xmm2/m128 and store packed
minimum values in xmm1.

PMINUD xmm1, xmm2/m128

VEX.NDS.128.66.0F DA /r V/V AVX Compare packed unsigned byte
integers in xmm2 and
xmm3/m128 and store packed
minimum values in xmm1.

VPMINUB xmm1, xmm2,
xmm3/m128

VEX.NDS.128.66.0F38 3A/r V/V AVX Compare packed unsigned word
integers in xmm3/m128 and
xmm2 and return packed
minimum values in xmm1.

VPMINUW xmm1, xmm2,
xmm3/m128

VEX.NDS.128.66.0F38 3B /r V/V AVX Compare packed unsigned dword
integers in xmm2 and
xmm3/m128 and store packed
minimum values in xmm1.

VPMINUD xmm1, xmm2,
xmm3/m128
Ref. # 319433-004 353

INSTRUCTION SET REFERENCE
VEX.128 encoded version: Bits (255:128) of the destination YMM register are zeroed.
VEX.L must be 0, otherwise the instruction will #UD.

Operation
PMINUB (128-bit Legacy SSE version)
PMINUB instruction for 128-bit operands:

IF DEST[7:0] < SRC[7:0] THEN
DEST[7:0] Å DEST[7:0];

ELSE
DEST[15:0] Å SRC[7:0]; FI;

(* Repeat operation for 2nd through 15th bytes in source and destination operands *)
IF DEST[127:120] < SRC[127:120] THEN

DEST[127:120] Å DEST[127:120];
ELSE

DEST[127:120] Å SRC[127:120]; FI;
DEST[255:128] (Unmodified)

VPMINUB (VEX.128 encoded version)
VPMINUB instruction for 128-bit operands:

IF SRC1[7:0] < SRC2[7:0] THEN
DEST[7:0] Å SRC1[7:0];

ELSE
DEST[7:0] Å SRC2[7:0]; FI;

(* Repeat operation for 2nd through 15th bytes in source and destination operands *)
IF SRC1[127:120] < SRC2[127:120] THEN

DEST[127:120] Å SRC1[127:120];
ELSE

DEST[127:120] Å SRC2[127:120]; FI;
DEST[255:128] Å 0

PMINUW (128-bit Legacy SSE version)
PMINUW instruction for 128-bit operands:

IF DEST[15:0] < SRC[15:0] THEN
DEST[15:0] Å DEST[15:0];

ELSE
DEST[15:0] Å SRC[15:0]; FI;

(* Repeat operation for 2nd through 7th words in source and destination operands *)
IF DEST[127:112] < SRC[127:112] THEN

DEST[127:112] Å DEST[127:112];
ELSE

DEST[127:112] Å SRC[127:112]; FI;
DEST[255:128] (Unmodified)
354 Ref. # 319433-004

INSTRUCTION SET REFERENCE
VPMINUW (VEX.128 encoded version)
VPMINUW instruction for 128-bit operands:

IF SRC1[15:0] < SRC2[15:0] THEN
DEST[15:0] Å SRC1[15:0];

ELSE
DEST[15:0] Å SRC2[15:0]; FI;

(* Repeat operation for 2nd through 7th words in source and destination operands *)
IF SRC1[127:112] < SRC2[127:112] THEN

DEST[127:112] Å SRC1[127:112];
ELSE

DEST[127:112] Å SRC2[127:112]; FI;
DEST[255:128] Å 0

PMINUD (128-bit Legacy SSE version)
PMINUD instruction for 128-bit operands:

IF DEST[31:0] < SRC[31:0] THEN
DEST[31:0] Å DEST[31:0];

ELSE
DEST[31:0] Å SRC[31:0]; FI;

(* Repeat operation for 2nd through 7th words in source and destination operands *)
IF DEST[127:95] < SRC[127:95] THEN

DEST[127:95] Å DEST[127:95];
ELSE

DEST[127:95] Å SRC[127:95]; FI;
DEST[255:128] (Unmodified)

VPMINUD (VEX.128 encoded version)
VPMINUD instruction for 128-bit operands:

IF SRC1[31:0] < SRC2[31:0] THEN
DEST[31:0] Å SRC1[31:0];

ELSE
DEST[31:0] Å SRC2[31:0]; FI;

(* Repeat operation for 2nd through 3rd dwords in source and destination operands *)
IF SRC1[127:95] < SRC2[127:95] THEN

DEST[127:95] Å SRC1[127:95];
ELSE

DEST[127:95] Å SRC2[127:95]; FI;
DEST[255:128] Å 0

Intel C/C++ Compiler Intrinsic Equivalent

PMINUB __m128i _mm_min_epu8 (__m128i a, __m128i b)
Ref. # 319433-004 355

INSTRUCTION SET REFERENCE
PMINUW __m128i _mm_min_epu16 (__m128i a, __m128i b);

PMINUD __m128i _mm_min_epu32 (__m128i a, __m128i b);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4; additionally

#UD If VEX.L = 1.
356 Ref. # 319433-004

INSTRUCTION SET REFERENCE
PMOVMSKB- Move Byte Mask

Description
Creates a mask made up of the most significant bit of each byte of the source
operand (second operand) and stores the result in the low byte or word of the desti-
nation operand (first operand). The source operand is an XMM register; the destina-
tion operand is a general-purpose register. The byte mask is 16-bits.

The destination operand is a general-purpose register. In 64-bit mode, the default
operand size of the destination operand is 64 bits. The upper bits above bit 15 are
filled with zeros. REX.W is ignored

VEX.128 encodings are valid but identical in function. VEX.vvvv is reserved and must
be 1111b, VEX.L must be 0, otherwise the instruction will #UD.

Operation

(V)PMOVMSKB instruction with 128-bit source operand and r32:
r32[0] Å SRC[7];
r32[1] Å SRC[15];
(* Repeat operation for bytes 2 through 14 *)
r32[15] Å SRC[127];
r32[31:16] Å ZERO_FILL;

(V)PMOVMSKB instruction with 128-bit source operand and r64:
r64[0] Å SRC[7];
r64[1] Å SRC[15];
(* Repeat operation for bytes 2 through 14 *)
r64[15] Å SRC[127];
r64[63:16] Å ZERO_FILL;

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F D7 /r V/V SSE2 Move a byte mask of xmm1 to reg.
The upper bits of r32 or r64 are
filled with zeros.

PMOVMSKB reg, xmm1

VEX.128.66.0F D7 /r V/V AVX Move a byte mask of xmm1 to reg.
The upper bits of r32 or r64 are
filled with zeros.

VPMOVMSKB reg, xmm1
Ref. # 319433-004 357

INSTRUCTION SET REFERENCE
Intel C/C++ Compiler Intrinsic Equivalent

PMOVMSKB int _mm_movemask_epi8 (__m128i a)

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 7; additionally

#UD If VEX.L = 1.

If VEX.vvvv != 1111B.
358 Ref. # 319433-004

INSTRUCTION SET REFERENCE
PMOVSX - Packed Move with Sign Extend
Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0f 38 20 /r V/V SSE4_1 Sign extend 8 packed 8-bit
integers in the low 8 bytes of
xmm2/m64 to 8 packed 16-bit
integers in xmm1

PMOVSXBW xmm1, xmm2/m64

66 0f 38 21 /r V/V SSE4_1 Sign extend 4 packed 8-bit
integers in the low 4 bytes of
xmm2/m32 to 4 packed 32-bit
integers in xmm1

PMOVSXBD xmm1, xmm2/m32

66 0f 38 22 /r V/V SSE4_1 Sign extend 2 packed 8-bit
integers in the low 2 bytes of
xmm2/m16 to 2 packed 64-bit
integers in xmm1

PMOVSXBQ xmm1, xmm2/m16

66 0f 38 23/r V/V SSE4_1 Sign extend 4 packed 16-bit
integers in the low 8 bytes of
xmm2/m64 to 4 packed 32-bit
integers in xmm1

PMOVSXWD xmm1, xmm2/m64

66 0f 38 24 /r V/V SSE4_1 Sign extend 2 packed 16-bit
integers in the low 4 bytes of
xmm2/m32 to 2 packed 64-bit
integers in xmm1

PMOVSXWQ xmm1, xmm2/m32

66 0f 38 25 /r V/V SSE4_1 Sign extend 2 packed 32-bit
integers in the low 8 bytes of
xmm2/m64 to 2 packed 64-bit
integers in xmm1

PMOVSXDQ xmm1, xmm2/m64

VEX.128.66.0F38 20 /r V/V AVX Sign extend 8 packed 8-bit
integers in the low 8 bytes of
xmm2/m64 to 8 packed 16-bit
integers in xmm1

VPMOVSXBW xmm1, xmm2/m64

VEX.128.66.0F38 21 /r V/V AVX Sign extend 4 packed 8-bit
integers in the low 4 bytes of
xmm2/m32 to 4 packed 32-bit
integers in xmm1

VPMOVSXBD xmm1, xmm2/m32
Ref. # 319433-004 359

INSTRUCTION SET REFERENCE
Description
Packed byte, word, or dword integers in the low bytes of the source operand (second
operand) are sign extended to word, dword, or quadword integers and stored in
packed signed bytes the destination operand.

128-bit Legacy SSE version: Bits (255:128) of the corresponding YMM destination
register remain unchanged.

VEX.128 encoded version: Bits (255:128) of the destination YMM register are
zeroed. VEX.vvvv is reserved and must be 1111b, VEX.L must be 0, otherwise the
instruction will #UD.

Operation
Packed_Sign_Extend_BYTE_to_WORD
DEST[15:0] Å SignExtend(SRC[7:0]);
DEST[31:16] Å SignExtend(SRC[15:8]);
DEST[47:32] Å SignExtend(SRC[23:16]);
DEST[63:48] Å SignExtend(SRC[31:24]);
DEST[79:64] Å SignExtend(SRC[39:32]);
DEST[95:80] Å SignExtend(SRC[47:40]);

VEX.128.66.0F38 22 /r V/V AVX Sign extend 2 packed 8-bit
integers in the low 2 bytes of
xmm2/m16 to 2 packed 64-bit
integers in xmm1

VPMOVSXBQ xmm1, xmm2/m16

VEX.128.66.0F38 23 /r V/V AVX Sign extend 4 packed 16-bit
integers in the low 8 bytes of
xmm2/m64 to 4 packed 32-bit
integers in xmm1

VPMOVSXWD xmm1, xmm2/m64

VEX.128.66.0F38 24 /r V/V AVX Sign extend 2 packed 16-bit
integers in the low 4 bytes of
xmm2/m32 to 2 packed 64-bit
integers in xmm1

VPMOVSXWQ xmm1, xmm2/m32

VEX.128.66.0F38 25 /r V/V AVX Sign extend 2 packed 32-bit
integers in the low 8 bytes of
xmm2/m64 to 2 packed 64-bit
integers in xmm1

VPMOVSXDQ xmm1, xmm2/m64

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description
360 Ref. # 319433-004

INSTRUCTION SET REFERENCE
DEST[111:96] Å SignExtend(SRC[55:48]);
DEST[127:112] Å SignExtend(SRC[63:56]);

Packed_Sign_Extend_BYTE_to_DWORD
DEST[31:0] Å SignExtend(SRC[7:0]);
DEST[63:32] Å SignExtend(SRC[15:8]);
DEST[95:64] Å SignExtend(SRC[23:16]);
DEST[127:96] Å SignExtend(SRC[31:24]);

Packed_Sign_Extend_BYTE_to_QWORD
DEST[63:0] Å SignExtend(SRC[7:0]);
DEST[127:64] Å SignExtend(SRC[15:8]);

Packed_Sign_Extend_WORD_to_DWORD
DEST[31:0] Å SignExtend(SRC[15:0]);
DEST[63:32] Å SignExtend(SRC[31:16]);
DEST[95:64] Å SignExtend(SRC[47:32]);
DEST[127:96] Å SignExtend(SRC[63:48]);

Packed_Sign_Extend_WORD_to_QWORD
DEST[63:0] Å SignExtend(SRC[15:0]);
DEST[127:64] Å SignExtend(SRC[31:16]);

Packed_Sign_Extend_DWORD_to_QWORD
DEST[63:0] Å SignExtend(SRC[31:0]);
DEST[127:64] Å SignExtend(SRC[63:32]);

VPMOVSXBW
Packed_Sign_Extend_BYTE_to_WORD()
DEST[255:128] Å 0

VPMOVSXBD
Packed_Sign_Extend_BYTE_to_DWORD()
DEST[255:128] Å 0

VPMOVSXBQ
Packed_Sign_Extend_BYTE_to_QWORD()
DEST[255:128] Å 0

VPMOVSXWD
Packed_Sign_Extend_WORD_to_DWORD()
DEST[255:128] Å 0
Ref. # 319433-004 361

INSTRUCTION SET REFERENCE
VPMOVSXWQ
Packed_Sign_Extend_WORD_to_QWORD()
DEST[255:128] Å 0

VPMOVSXDQ
Packed_Sign_Extend_DWORD_to_QWORD()
DEST[255:128] Å 0

PMOVSXBW
Packed_Sign_Extend_BYTE_to_WORD()
DEST[255:128] (Unmodified)

PMOVSXBD
Packed_Sign_Extend_BYTE_to_DWORD()
DEST[255:128] (Unmodified)

PMOVSXBQ
Packed_Sign_Extend_BYTE_to_QWORD()
DEST[255:128] (Unmodified)

PMOVSXWD
Packed_Sign_Extend_WORD_to_DWORD()
DEST[255:128] (Unmodified)

PMOVSXWQ
Packed_Sign_Extend_WORD_to_QWORD()
DEST[255:128] (Unmodified)

PMOVSXDQ
Packed_Sign_Extend_DWORD_to_QWORD()
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

PMOVSXBW __m128i _mm_ cvtepi8_epi16 (__m128i a);

PMOVSXBD __m128i _mm_ cvtepi8_epi32 (__m128i a);

PMOVSXBQ __m128i _mm_ cvtepi8_epi64 (__m128i a);

PMOVSXWD __m128i _mm_ cvtepi16_epi32 (__m128i a);

PMOVSXWQ __m128i _mm_ cvtepi16_epi64 (__m128i a);
362 Ref. # 319433-004

INSTRUCTION SET REFERENCE
PMOVSXDQ __m128i _mm_ cvtepi32_epi64 (__m128i a);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 5; additionally

#UD If VEX.L = 1.

If VEX.vvvv != 1111B.
Ref. # 319433-004 363

INSTRUCTION SET REFERENCE
PMOVZX - Packed Move with Zero Extend
Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0f 38 30 /r V/V SSE4_1 Zero extend 8 packed 8-bit
integers in the low 8 bytes of
xmm2/m64 to 8 packed 16-bit
integers in xmm1

PMOVZXBW xmm1, xmm2/m64

66 0f 38 31 /r V/V SSE4_1 Zero extend 4 packed 8-bit
integers in the low 4 bytes of
xmm2/m32 to 4 packed 32-bit
integers in xmm1

PMOVZXBD xmm1, xmm2/m32

66 0f 38 32 /r V/V SSE4_1 Zero extend 2 packed 8-bit
integers in the low 2 bytes of
xmm2/m16 to 2 packed 64-bit
integers in xmm1

PMOVZXBQ xmm1, xmm2/m16

66 0f 38 33 /r V/V SSE4_1 Zero extend 4 packed 16-bit
integers in the low 8 bytes of
xmm2/m64 to 4 packed 32-bit
integers in xmm1

PMOVZXWD xmm1, xmm2/m64

66 0f 38 34 /r V/V SSE4_1 Zero extend 2 packed 16-bit
integers in the low 4 bytes of
xmm2/m32 to 2 packed 64-bit
integers in xmm1

PMOVZXWQ xmm1, xmm2/m32

66 0f 38 35 /r V/V SSE4_1 Zero extend 2 packed 32-bit
integers in the low 8 bytes of
xmm2/m64 to 2 packed 64-bit
integers in xmm1

PMOVZXDQ xmm1, xmm2/m64

VEX.128.66.0F38 30 /r V/V AVX Zero extend 8 packed 8-bit
integers in the low 8 bytes of
xmm2/m64 to 8 packed 16-bit
integers in xmm1

VPMOVZXBW xmm1, xmm2/m64

VEX.128.66.0F38 31 /r V/V AVX Zero extend 4 packed 8-bit
integers in the low 4 bytes of
xmm2/m32 to 4 packed 32-bit
integers in xmm1

VPMOVZXBD xmm1, xmm2/m32
364 Ref. # 319433-004

INSTRUCTION SET REFERENCE
Description
Packed byte, word, or dword integers in the low bytes of the source operand (second
operand) are zero extended to word, dword, or quadword integers and stored in
packed signed bytes the destination operand.

128-bit Legacy SSE version: Bits (255:128) of the corresponding YMM destination
register remain unchanged.

VEX.128 encoded version: Bits (255:128) of the destination YMM register are zeroed.
VEX.vvvv is reserved and must be 1111b, VEX.L must be 0, otherwise the instruction
will #UD.

Operation
Packed_Zero_Extend_BYTE_to_WORD
DEST[15:0] Å ZeroExtend(SRC[7:0]);
DEST[31:16] Å ZeroExtend(SRC[15:8]);
DEST[47:32] Å ZeroExtend(SRC[23:16]);
DEST[63:48] Å ZeroExtend(SRC[31:24]);
DEST[79:64] Å ZeroExtend(SRC[39:32]);
DEST[95:80] Å ZeroExtend(SRC[47:40]);
DEST[111:96] Å ZeroExtend(SRC[55:48]);

VEX.128.66.0F38 32 /r V/V AVX Zero extend 2 packed 8-bit
integers in the low 2 bytes of
xmm2/m16 to 2 packed 64-bit
integers in xmm1

VPMOVZXBQ xmm1, xmm2/m16

VEX.128.66.0F38 33 /r V/V AVX Zero extend 4 packed 16-bit
integers in the low 8 bytes of
xmm2/m64 to 4 packed 32-bit
integers in xmm1

VPMOVZXWD xmm1, xmm2/m64

VEX.128.66.0F38 34 /r V/V AVX Zero extend 2 packed 16-bit
integers in the low 4 bytes of
xmm2/m32 to 2 packed 64-bit
integers in xmm1

VPMOVZXWQ xmm1, xmm2/m32

VEX.128.66.0F38 35 /r V/V AVX Zero extend 2 packed 32-bit
integers in the low 8 bytes of
xmm2/m64 to 2 packed 64-bit
integers in xmm1

VPMOVZXDQ xmm1, xmm2/m64

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description
Ref. # 319433-004 365

INSTRUCTION SET REFERENCE
DEST[127:112] Å ZeroExtend(SRC[63:56]);

Packed_Zero_Extend_BYTE_to_DWORD
DEST[31:0] Å ZeroExtend(SRC[7:0]);
DEST[63:32] Å ZeroExtend(SRC[15:8]);
DEST[95:64] Å ZeroExtend(SRC[23:16]);
DEST[127:96] Å ZeroExtend(SRC[31:24]);

Packed_Zero_Extend_BYTE_to_QWORD
DEST[63:0] Å ZeroExtend(SRC[7:0]);
DEST[127:64] Å ZeroExtend(SRC[15:8]);

Packed_Zero_Extend_WORD_to_DWORD
DEST[31:0] Å ZeroExtend(SRC[15:0]);
DEST[63:32] Å ZeroExtend(SRC[31:16]);
DEST[95:64] Å ZeroExtend(SRC[47:32]);
DEST[127:96] Å ZeroExtend(SRC[63:48]);

Packed_Zero_Extend_WORD_to_QWORD
DEST[63:0] Å ZeroExtend(SRC[15:0]);
DEST[127:64] Å ZeroExtend(SRC[31:16]);

Packed_Zero_Extend_DWORD_to_QWORD
DEST[63:0] Å ZeroExtend(SRC[31:0]);
DEST[127:64] Å ZeroExtend(SRC[63:32]);

VPMOVZXBW
Packed_Zero_Extend_BYTE_to_WORD()
DEST[255:128] Å 0

VPMOVZXBD
Packed_Zero_Extend_BYTE_to_DWORD()
DEST[255:128] Å 0

VPMOVZXBQ
Packed_Zero_Extend_BYTE_to_QWORD()
DEST[255:128] Å 0

VPMOVZXWD
Packed_Zero_Extend_WORD_to_DWORD()
DEST[255:128] Å 0

VPMOVZXWQ
366 Ref. # 319433-004

INSTRUCTION SET REFERENCE
Packed_Zero_Extend_WORD_to_QWORD()
DEST[255:128] Å 0

VPMOVZXDQ
Packed_Zero_Extend_DWORD_to_QWORD()
DEST[255:128] Å 0

PMOVZXBW
Packed_Zero_Extend_BYTE_to_WORD()
DEST[255:128] (Unmodified)

PMOVZXBD
Packed_Zero_Extend_BYTE_to_DWORD()
DEST[255:128] (Unmodified)

PMOVZXBQ
Packed_Zero_Extend_BYTE_to_QWORD()
DEST[255:128] (Unmodified)

PMOVZXWD
Packed_Zero_Extend_WORD_to_DWORD()
DEST[255:128] (Unmodified)

PMOVZXWQ
Packed_Zero_Extend_WORD_to_QWORD()
DEST[255:128] (Unmodified)

PMOVZXDQ
Packed_Zero_Extend_DWORD_to_QWORD()
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

PMOVZXBW __m128i _mm_ cvtepu8_epi16 (__m128i a);

PMOVZXBD __m128i _mm_ cvtepu8_epi32 (__m128i a);

PMOVZXBQ __m128i _mm_ cvtepu8_epi64 (__m128i a);

PMOVZXWD __m128i _mm_ cvtepu16_epi32 (__m128i a);

PMOVZXWQ __m128i _mm_ cvtepu16_epi64 (__m128i a);

PMOVZXDQ __m128i _mm_ cvtepu32_epi64 (__m128i a);
Ref. # 319433-004 367

INSTRUCTION SET REFERENCE
SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 5; additionally

#UD If VEX.L = 1.

If VEX.vvvv != 1111B.
368 Ref. # 319433-004

INSTRUCTION SET REFERENCE
PMULHUW - Multiply Packed Unsigned Integers and Store High Result

Description
Performs a SIMD unsigned multiply of the packed unsigned word integers in the first
source operand and the second source operand, and stores the high 16 bits of each
32-bit intermediate results in the destination operand.

The second source operand is an XMM register or a 128-bit memory location. The
destination operand and first source operands are XMM registers.

128-bit Legacy SSE version: Bits (255:128) of the corresponding YMM destination
register remain unchanged.

VEX.128 encoded version: Bits (255:128) of the destination YMM register are zeroed.
VEX.L must be 0, otherwise the instruction will #UD.

Operation
PMULHUW (VEX.128 encoded version)
TEMP0[31:0] Å SRC1[15:0] * SRC2[15:0]
TEMP1[31:0] Å SRC1[31:16] * SRC2[31:16]
TEMP2[31:0] Å SRC1[47:32] * SRC2[47:32]
TEMP3[31:0] Å SRC1[63:48] * SRC2[63:48]
TEMP4[31:0] Å SRC1[79:64] * SRC2[79:64]
TEMP5[31:0] Å SRC1[95:80] * SRC2[95:80]
TEMP6[31:0] Å SRC1[111:96] * SRC2[111:96]
TEMP7[31:0] Å SRC1[127:112] * SRC2[127:112]
DEST[15:0] Å TEMP0[31:16]
DEST[31:16] Å TEMP1[31:16]
DEST[47:32] Å TEMP2[31:16]
DEST[63:48] Å TEMP3[31:16]
DEST[79:64] Å TEMP4[31:16]
DEST[95:80] Å TEMP5[31:16]

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F E4 /r V/V SSE2 Multiply the packed unsigned
word integers in xmm1 and
xmm2/m128, and store the high 16
bits of the results in xmm1.

PMULHUW xmm1, xmm2/m128

VEX.NDS.128.66.0F E4 /r V/V AVX Multiply the packed unsigned
word integers in xmm2 and
xmm3/m128, and store the high 16
bits of the results in xmm1.

VPMULHUW xmm1, xmm2,
xmm3/m128
Ref. # 319433-004 369

INSTRUCTION SET REFERENCE
DEST[111:96] Å TEMP6[31:16]
DEST[127:112] Å TEMP7[31:16]
DEST[255:128] Å 0

PMULHUW (128-bit Legacy SSE version)
TEMP0[31:0] Å DEST[15:0] * SRC[15:0]
TEMP1[31:0] Å DEST[31:16] * SRC[31:16]
TEMP2[31:0] Å DEST[47:32] * SRC[47:32]
TEMP3[31:0] Å DEST[63:48] * SRC[63:48]
TEMP4[31:0] Å DEST[79:64] * SRC[79:64]
TEMP5[31:0] Å DEST[95:80] * SRC[95:80]
TEMP6[31:0] Å DEST[111:96] * SRC[111:96]
TEMP7[31:0] Å DEST[127:112] * SRC[127:112]
DEST[15:0] Å TEMP0[31:16]
DEST[31:16] Å TEMP1[31:16]
DEST[47:32] Å TEMP2[31:16]
DEST[63:48] Å TEMP3[31:16]
DEST[79:64] Å TEMP4[31:16]
DEST[95:80] Å TEMP5[31:16]
DEST[111:96] Å TEMP6[31:16]
DEST[127:112] Å TEMP7[31:16]
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

PMULHUW __m128i _mm_mulhi_epu16 (__m128i a, __m128i b)

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4; additionally

#UD If VEX.L = 1.
370 Ref. # 319433-004

INSTRUCTION SET REFERENCE
PMULHRSW - Multiply Packed Unsigned Integers with Round and Shift

Description
PMULHRSW multiplies vertically each signed 16-bit integer from the first source
operand with the corresponding signed 16-bit integer of the second source operand,
producing intermediate, signed 32-bit integers. Each intermediate 32-bit integer is
truncated to the 18 most significant bits. Rounding is always performed by adding 1
to the least significant bit of the 18-bit intermediate result. The final result is
obtained by selecting the 16 bits immediately to the right of the most significant bit
of each 18-bit intermediate result and packed to the destination operand. The first
source and destination operands are XMM registers. The second source operand is an
XMM register or 128-bit memory location.

128-bit Legacy SSE version: Bits (255:128) of the corresponding YMM destination
register remain unchanged.

VEX.128 encoded version: Bits of the destination YMM register are zeroed. VEX.L
must be 0, otherwise the instruction will #UD.

Operation
VPMULHRSW (VEX.128 encoded version)
temp0[31:0] Å INT32 ((SRC1[15:0] * SRC2[15:0]) >>14) + 1
temp1[31:0] Å INT32 ((SRC1[31:16] * SRC2[31:16]) >>14) + 1
temp2[31:0] Å INT32 ((SRC1[47:32] * SRC2[47:32]) >>14) + 1
temp3[31:0] Å INT32 ((SRC1[63:48] * SRC2[63:48]) >>14) + 1
temp4[31:0] Å INT32 ((SRC1[79:64] * SRC2[79:64]) >>14) + 1
temp5[31:0] Å INT32 ((SRC1[95:80] * SRC2[95:80]) >>14) + 1
temp6[31:0] Å INT32 ((SRC1[111:96] * SRC2[111:96]) >>14) + 1
temp7[31:0] Å INT32 ((SRC1[127:112] * SRC2[127:112) >>14) + 1
DEST[15:0] Å temp0[16:1]
DEST[31:16] Å temp1[16:1]
DEST[47:32] Å temp2[16:1]

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 38 0B /r V/V SSSE3 Multiply 16-bit signed words,
scale and round signed
doublewords, pack high 16 bits to
xmm1.

PMULHRSW xmm1, xmm2/m128

VEX.NDS.128.66.0F38 0B /r V/V AVX Multiply 16-bit signed words,
scale and round signed
doublewords, pack high 16 bits to
xmm1.

VPMULHRSW xmm1, xmm2,
xmm3/m128
Ref. # 319433-004 371

INSTRUCTION SET REFERENCE
DEST[63:48] Å temp3[16:1]
DEST[79:64] Å temp4[16:1]
DEST[95:80] Å temp5[16:1]
DEST[111:96] Å temp6[16:1]
DEST[127:112] Å temp7[16:1]
DEST[255:128] Å 0

PMULHRSW (128-bit Legacy SSE version)
temp0[31:0] Å INT32 ((DEST[15:0] * SRC[15:0]) >>14) + 1
temp1[31:0] Å INT32 ((DEST[31:16] * SRC[31:16]) >>14) + 1
temp2[31:0] Å INT32 ((DEST[47:32] * SRC[47:32]) >>14) + 1
temp3[31:0] Å INT32 ((DEST[63:48] * SRC[63:48]) >>14) + 1
temp4[31:0] Å INT32 ((DEST[79:64] * SRC[79:64]) >>14) + 1
temp5[31:0] Å INT32 ((DEST[95:80] * SRC[95:80]) >>14) + 1
temp6[31:0] Å INT32 ((DEST[111:96] * SRC[111:96]) >>14) + 1
temp7[31:0] Å INT32 ((DEST[127:112] * SRC[127:112) >>14) + 1
DEST[15:0] Å temp0[16:1]
DEST[31:16] Å temp1[16:1]
DEST[47:32] Å temp2[16:1]
DEST[63:48] Å temp3[16:1]
DEST[79:64] Å temp4[16:1]
DEST[95:80] Å temp5[16:1]
DEST[111:96] Å temp6[16:1]
DEST[127:112] Å temp7[16:1]
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

PMULHRSW __m128i _mm_mulhrs_epi16 (__m128i a, __m128i b)

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4; additionally

#UD If VEX.L = 1.
372 Ref. # 319433-004

INSTRUCTION SET REFERENCE
PMULHW - Multiply Packed Integers and Store High Result

Description
Performs a SIMD signed multiply of the packed signed word integers in the first
source operand and the second source operand, and stores the high 16 bits of each
intermediate 32-bit result in the destination operand. The second source operand can
be an XMM register or a 128-bit memory location. The first source and destination
operands are XMM registers.

128-bit Legacy SSE version: Bits (255:128) of the corresponding YMM destination
register remain unchanged.

VEX.128 encoded version: Bits (255:128) of the destination YMM register are zeroed.
VEX.L must be 0, otherwise the instruction will #UD.

Operation
PMULHW (VEX.128 encoded version)
TEMP0[31:0] Å SRC1[15:0] * SRC2[15:0] (*Signed Multiplication*)
TEMP1[31:0] Å SRC1[31:16] * SRC2[31:16]
TEMP2[31:0] Å SRC1[47:32] * SRC2[47:32]
TEMP3[31:0] Å SRC1[63:48] * SRC2[63:48]
TEMP4[31:0] Å SRC1[79:64] * SRC2[79:64]
TEMP5[31:0] Å SRC1[95:80] * SRC2[95:80]
TEMP6[31:0] Å SRC1[111:96] * SRC2[111:96]
TEMP7[31:0] Å SRC1[127:112] * SRC2[127:112]
DEST[15:0] Å TEMP0[31:16]
DEST[31:16] Å TEMP1[31:16]
DEST[47:32] Å TEMP2[31:16]
DEST[63:48] Å TEMP3[31:16]
DEST[79:64] Å TEMP4[31:16]
DEST[95:80] Å TEMP5[31:16]

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F E5 /r V/V SSE2 Multiply the packed signed word
integers in xmm1 and
xmm2/m128, and store the high 16
bits of the results in xmm1.

PMULHW xmm1, xmm2/m128

VEX.NDS.128.66.0F E5 /r V/V AVX Multiply the packed signed word
integers in xmm2 and
xmm3/m128, and store the high 16
bits of the results in xmm1.

VPMULHW xmm1, xmm2,
xmm3/m128
Ref. # 319433-004 373

INSTRUCTION SET REFERENCE
DEST[111:96] Å TEMP6[31:16]
DEST[127:112] Å TEMP7[31:16]
DEST[255:128] Å 0

PMULHW (128-bit Legacy SSE version)
TEMP0[31:0] Å DEST[15:0] * SRC[15:0] (*Signed Multiplication*)
TEMP1[31:0] Å DEST[31:16] * SRC[31:16]
TEMP2[31:0] Å DEST[47:32] * SRC[47:32]
TEMP3[31:0] Å DEST[63:48] * SRC[63:48]
TEMP4[31:0] Å DEST[79:64] * SRC[79:64]
TEMP5[31:0] Å DEST[95:80] * SRC[95:80]
TEMP6[31:0] Å DEST[111:96] * SRC[111:96]
TEMP7[31:0] Å DEST[127:112] * SRC[127:112]
DEST[15:0] Å TEMP0[31:16]
DEST[31:16] Å TEMP1[31:16]
DEST[47:32] Å TEMP2[31:16]
DEST[63:48] Å TEMP3[31:16]
DEST[79:64] Å TEMP4[31:16]
DEST[95:80] Å TEMP5[31:16]
DEST[111:96] Å TEMP6[31:16]
DEST[127:112] Å TEMP7[31:16]
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

PMULHW __m128i _mm_mulhi_epi16 (__m128i a, __m128i b)

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4; additionally

#UD If VEX.L = 1.
374 Ref. # 319433-004

INSTRUCTION SET REFERENCE
PMULLW/PMULLD - Multiply Packed Integers and Store Low Result

Description
Performs a SIMD signed multiply of the packed signed word (dword) integers in the
first source operand and the second source operand and stores the low 16(32) bits of
each intermediate 32-bit(64-bit) result in the destination operand. (Figure 4-4 in the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B,shows
this operation when using 64-bit operands.) The second source operand can be an
XMM register or a 128-bit memory location. The first source and destination oper-
ands are XMM registers.

128-bit Legacy SSE version: Bits (255:128) of the corresponding YMM destination
register remain unchanged.

VEX.128 encoded version: Bits (255:128) of the destination YMM register are zeroed.
VEX.L must be 0, otherwise the instruction will #UD.

Operation
VPMULLD (VEX.128 encoded version)
Temp0[63:0] Å SRC1[31:0] * SRC2[31:0]
Temp1[63:0] Å SRC1[63:32] * SRC2[63:32]
Temp2[63:0] Å SRC1[95:64] * SRC2[95:64]

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F D5 /r V/V SSE2 Multiply the packed signed word
integers in xmm1 and
xmm2/m128, and store the low 16
bits of the results in xmm1.

PMULLW xmm1, xmm2/m128

66 0F 38 40 /r V/V SSE4_1 Multiply the packed dword signed
integers in xmm1 and
xmm2/m128 and store the low 32
bits of each product in xmm1

PMULLD xmm1, xmm2/m128

VEX.NDS.128.66.0F D5 /r V/V AVX Multiply the packed signed word
integers in xmm2 and
xmm3/m128, and store the low 16
bits of the results in xmm1.

VPMULLW xmm1, xmm2,
xmm3/m128

VEX.NDS.128.66.0F38 40 /r V/V AVX Multiply the packed dword signed
integers in xmm2 and
xmm3/m128 and store the low 32
bits of each product in xmm1

VPMULLD xmm1, xmm2,
xmm3/m128
Ref. # 319433-004 375

INSTRUCTION SET REFERENCE
Temp3[63:0] Å SRC1[127:96] * SRC2[127:96]
DEST[31:0] Å Temp0[31:0]
DEST[63:32] Å Temp1[31:0]
DEST[95:64] Å Temp2[31:0]
DEST[127:96] Å Temp3[31:0]
DEST[255:128] Å 0

PMULLD (128-bit Legacy SSE version)
Temp0[63:0] Å DEST[31:0] * SRC[31:0]
Temp1[63:0] Å DEST[63:32] * SRC[63:32]
Temp2[63:0] Å DEST[95:64] * SRC[95:64]
Temp3[63:0] Å DEST[127:96] * SRC[127:96]
DEST[31:0] Å Temp0[31:0]
DEST[63:32] Å Temp1[31:0]
DEST[95:64] Å Temp2[31:0]
DEST[127:96] Å Temp3[31:0]
DEST[255:128] (Unmodified)

VPMULLW (VEX.128 encoded version)
Temp0[31:0] Å SRC1[15:0] * SRC2[15:0]
Temp1[31:0] Å SRC1[31:16] * SRC2[31:16]
Temp2[31:0] Å SRC1[47:32] * SRC2[47:32]
Temp3[31:0] Å SRC1[63:48] * SRC2[63:48]
Temp4[31:0] Å SRC1[79:64] * SRC2[79:64]
Temp5[31:0] Å SRC1[95:80] * SRC2[95:80]
Temp6[31:0] Å SRC1[111:96] * SRC2[111:96]
Temp7[31:0] Å SRC1[127:112] * SRC2[127:112]
DEST[15:0] Å Temp0[15:0]
DEST[31:16] Å Temp1[15:0]
DEST[47:32] Å Temp2[15:0]
DEST[63:48] Å Temp3[15:0]
DEST[79:64] Å Temp4[15:0]
DEST[95:80] Å Temp5[15:0]
DEST[111:96] Å Temp6[15:0]
DEST[127:112] Å Temp7[15:0]
DEST[255:128] Å 0

PMULLW (128-bit Legacy SSE version)
Temp0[31:0] Å DEST[15:0] * SRC[15:0]
Temp1[31:0] Å DEST[31:16] * SRC[31:16]
Temp2[31:0] Å DEST[47:32] * SRC[47:32]
Temp3[31:0] Å DEST[63:48] * SRC[63:48]
Temp4[31:0] Å DEST[79:64] * SRC[79:64]
376 Ref. # 319433-004

INSTRUCTION SET REFERENCE
Temp5[31:0] Å DEST[95:80] * SRC[95:80]
Temp6[31:0] Å DEST[111:96] * SRC[111:96]
Temp7[31:0] Å DEST[127:112] * SRC[127:112]
DEST[15:0] Å Temp0[15:0]
DEST[31:16] Å Temp1[15:0]
DEST[47:32] Å Temp2[15:0]
DEST[63:48] Å Temp3[15:0]
DEST[79:64] Å Temp4[15:0]
DEST[95:80] Å Temp5[15:0]
DEST[111:96] Å Temp6[15:0]
DEST[127:112] Å Temp7[15:0]
DEST[127:96] Å Temp3[31:0];
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

PMULLW __m128i _mm_mullo_epi16 (__m128i a, __m128i b)

PMULLUD __m128i _mm_mullo_epi32(__m128i a, __m128i b);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4; additionally

#UD If VEX.L = 1.
Ref. # 319433-004 377

INSTRUCTION SET REFERENCE
PMULUDQ - Multiply Packed Unsigned Doubleword Integers

Description
Multiplies the first source operand by the second source operand and stores the
result in the destination operand. The second source operand is two packed unsigned
doubleword integers stored in the first (low) and third doublewords of an XMM
register or an 128-bit memory location. The first source operand is two packed
doubleword integers stored in the first and third doublewords of an XMM register. The
destination contains two packed unsigned quadword integers stored in an XMM
register. When a quadword result is too large to be represented in 64 bits (overflow),
the result is wrapped around and the low 64 bits are written to the destination
element (that is, the carry is ignored).

For 128-bit memory operands, 128 bits are fetched from memory, but only the first
and third doublewords are used in the computation.

128-bit Legacy SSE version: Bits (255:128) of the corresponding YMM destination
register remain unchanged.

VEX.128 encoded version: Bits (255:128) of the destination YMM register are zeroed.
VEX.L must be 0, otherwise the instruction will #UD.

Operation
VPMULUDQ (VEX.128 encoded version)
DEST[63:0] Å SRC1[31:0] * SRC2[31:0]
DEST[127:64] Å SRC1[95:64] * SRC2[95:64]
DEST[255:128] Å 0

PMULUDQ (128-bit Legacy SSE version)
DEST[63:0] Å DEST[31:0] * SRC[31:0]
DEST[127:64] Å DEST[95:64] * SRC[95:64]

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F F4 /r V/V SSE2 Multiply packed unsigned
doubleword integers in xmm1 by
packed unsigned doubleword
integers in xmm2/m128, and store
the quadword results in xmm1.

PMULUDQ xmm1, xmm2/m128

VEX.NDS.128.66.0F F4 /r V/V AVX Multiply packed unsigned
doubleword integers in xmm2 by
packed unsigned doubleword
integers in xmm3/m128, and store
the quadword results in xmm1.

VPMULUDQ xmm1, xmm2,
xmm3/m128
378 Ref. # 319433-004

INSTRUCTION SET REFERENCE
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

PMULUDQ __m128i _mm_mul_epu32 (__m128i a, __m128i b)

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4; additionally

#UD If VEX.L = 1.
Ref. # 319433-004 379

INSTRUCTION SET REFERENCE
PMULDQ - Multiply Packed Doubleword Integers

Description
Multiplies the first source operand by the second source operand and stores the
result in the destination operand. The second source operand is two packed signed
doubleword integers stored in the first (low) and third doublewords of an XMM
register or an 128-bit memory location. The first source operand is two packed
signed doubleword integers stored in the first and third doublewords of an XMM
register. The destination contains two packed signed quadword integers stored in an
XMM register. When a quadword result is too large to be represented in 64 bits (over-
flow), the result is wrapped around and the low 64 bits are written to the destination
element (that is, the carry is ignored).

For 128-bit memory operands, 128 bits are fetched from memory, but only the first
and third doublewords are used in the computation.

128-bit Legacy SSE version: Bits (255:128) of the corresponding YMM destination
register remain unchanged.

VEX.128 encoded version: Bits (255:128) of the destination YMM register are zeroed.
VEX.L must be 0, otherwise the instruction will #UD.

Operation
VPMULDQ (VEX.128 encoded version)
DEST[63:0] Å SRC1[31:0] * SRC2[31:0]
DEST[127:64] Å SRC1[95:64] * SRC2[95:64]
DEST[255:128] Å 0

PMULDQ (128-bit Legacy SSE version)
DEST[63:0] Å DEST[31:0] * SRC[31:0]
DEST[127:64] Å DEST[95:64] * SRC[95:64]

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 38 28 /r V/V SSE4_1 Multiply packed signed
doubleword integers in xmm1 by
packed signed doubleword
integers in xmm2/m128, and store
the quadword results in xmm1.

PMULDQ xmm1, xmm2/m128

VEX.NDS.128.66.0F38 28 /r V/V AVX Multiply packed signed
doubleword integers in xmm2 by
packed signed doubleword
integers in xmm3/m128, and store
the quadword results in xmm1.

VPMULDQ xmm1, xmm2,
xmm3/m128
380 Ref. # 319433-004

INSTRUCTION SET REFERENCE
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

PMULDQ __m128i _mm_mul_epi32(__m128i a, __m128i b);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4; additionally

#UD If VEX.L = 1.
Ref. # 319433-004 381

INSTRUCTION SET REFERENCE
POR - Bitwise Logical Or

Description
Performs a bitwise logical OR operation on the second source operand and the first
source operand and stores the result in the destination operand. The second source
operand is an XMM register or a 128-bit memory location. The first source and desti-
nation operands can be XMM registers. Each bit of the result is set to 1 if either or
both of the corresponding bits of the first and second operands are 1; otherwise, it is
set to 0.

128-bit Legacy SSE version: Bits (255:128) of the corresponding YMM destination
register remain unchanged.

VEX.128 encoded version: Bits (255:128) of the destination YMM register are zeroed.
VEX.L must be 0, otherwise the instruction will #UD.

Operation
VPOR (VEX.128 encoded version)
DEST Å SRC1 OR SRC2
DEST[255:128] Å 0

POR (128-bit Legacy SSE version)
DEST Å DEST OR SRC
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

POR __m128i _mm_or_si128 (__m128i a, __m128i b)

SIMD Floating-Point Exceptions
none

Other Exceptions
See Exceptions Type 4; additionally

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F EB /r V/V SSE2 Bitwise OR of xmm2/m128 and
xmm1.POR xmm1, xmm2/m128

VEX.NDS.128.66.0F EB /r V/V AVX Bitwise OR of xmm2/m128 and
xmm3.VPOR xmm1, xmm2, xmm3/m128
382 Ref. # 319433-004

INSTRUCTION SET REFERENCE
#UD If VEX.Ll = 1.
Ref. # 319433-004 383

INSTRUCTION SET REFERENCE
PSADBW - Compute Sum of Absolute Differences

Description
Computes the absolute value of the difference of packed groups of 8 unsigned byte
integers from the second operand and from the first source operand. The first 8
differences are summed to produce an unsigned word integer that is stored in the low
word of the destination; the second 8 differences are summed to produce an
unsigned word in bit 79:64 of the destination. The remaining words of the destination
are set to 0.

128-bit Legacy SSE version: Bits (255:128) of the corresponding YMM destination
register remain unchanged.

VEX.128 encoded version: Bits (255:128) of the destination YMM register are zeroed.
VEX.L must be 0, otherwise the instruction will #UD.

Operation
VPSADBW (VEX.128 encoded version)
TEMP0 Å ABS(SRC1[7:0] - SRC2[7:0])
(* Repeat operation for bytes 2 through 14 *)
TEMP15 Å ABS(SRC1[127:120] - SRC2[127:120])
DEST[15:0] ÅSUM(TEMP0:TEMP7)
DEST[63:16] Å 000000000000H
DEST[79:64] Å SUM(TEMP8:TEMP15)
DEST[127:80] Å 00000000000
DEST[255:128] Å 0

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F F6 /r V/V SSE2 Computes the absolute differences
of the packed unsigned byte
integers from xmm2 /m128 and
xmm1; the 8 low differences and 8
high differences are then summed
separately to produce two
unsigned word integer results.

PSADBW xmm1, xmm2/m128

VEX.NDS.128.66.0F F6 /r V/V AVX Computes the absolute differences
of the packed unsigned byte
integers from xmm3 /m128 and
xmm2; the 8 low differences and 8
high differences are then summed
separately to produce two
unsigned word integer results.

VPSADBW xmm1, xmm2,
xmm3/m128
384 Ref. # 319433-004

INSTRUCTION SET REFERENCE
PSADBW (128-bit Legacy SSE version)
TEMP0 Å ABS(DEST[7:0] - SRC[7:0])
(* Repeat operation for bytes 2 through 14 *)
TEMP15 Å ABS(DEST[127:120] - SRC[127:120])
DEST[15:0] ÅSUM(TEMP0:TEMP7)
DEST[63:16] Å 000000000000H
DEST[79:64] Å SUM(TEMP8:TEMP15)
DEST[127:80] Å 00000000000

DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

PSADBW __m128i _mm_sad_epu8(__m128i a, __m128i b)

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4; additionally

#UD If VEX.L = 1.
Ref. # 319433-004 385

INSTRUCTION SET REFERENCE
PSHUFB - Packed Shuffle Bytes

Description
Shuffles bytes in the first source operand according to the shuffle control mask in the
second source operand. The instruction permutes byte data in the first source
operand, leaving the shuffle mask unaffected. If the most significant bit (bit[7]) of
each byte of the shuffle control mask is set, then constant zero is written in the result
byte. Each byte element in the shuffle control mask provides an index field to select
the byte element in the first source operand. The index field is defined as the least
significant 4 bits of each byte element of the shuffle control mask. The first source
and destination operands are XMM registers. The second source operand is either an
XMM register or a 128-bit memory location.

128-bit Legacy SSE version: The first source operand and the destination operand
are the same. Bits (255:128) of the corresponding YMM destination register remain
unchanged.

VEX.128 encoded version: The destination operand is the first operand, the first
source operand is the second operand, the second source operand is the third
operand. Bits (255:128) of the destination YMM register are zeroed. VEX.L must be
0, otherwise the instruction will #UD.

Operation
VPSHUFB (VEX.128 encoded version)
for i = 0 to 15 {

if (SRC2[(i * 8)+7] == 1) then
DEST[(i*8)+7..(i*8)+0] Å 0;
else
index[3..0] Å SRC2[(i*8)+3 .. (i*8)+0];
DEST[(i*8)+7..(i*8)+0] Å SRC1[(index*8+7)..(index*8+0)];

endif
}
DEST[255:128] Å 0

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 38 00 /r V/V SSSE3 Shuffle bytes in xmm1 according
to contents of xmm2/m128.PSHUFB xmm1, xmm2/m128

VEX.NDS.128.66.0F38 00 /r V/V AVX Shuffle bytes in xmm2 according
to contents of xmm3/m128.VPSHUFB xmm1, xmm2,

xmm3/m128
386 Ref. # 319433-004

INSTRUCTION SET REFERENCE
PSHUFB (128-bit Legacy SSE version)
for i = 0 to 15 {

if (SRC[(i * 8)+7] == 1) then
DEST[(i*8)+7..(i*8)+0] Å 0;
else
index[3..0] Å SRC[(i*8)+3 .. (i*8)+0];
DEST[(i*8)+7..(i*8)+0] Å DEST[(index*8+7)..(index*8+0)];

endif
}
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

PSHUFB __m128i _mm_shuffle_epi8(__m128i a, __m128i b)

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4; additionally

#UD If VEX.L = 1.
Ref. # 319433-004 387

INSTRUCTION SET REFERENCE
PSHUFD - Shuffle Packed Doublewords

Description
Copies doublewords from source operand and inserts them in the destination
operand at the locations selected with the immediate control operand. Figure 5-23
shows the operation of the PSHUFD instruction and the encoding of the order
operand. Each 2-bit field in the order operand selects the contents of one doubleword
location in the destination operand. For example, bits 0 and 1 of the order operand
select the contents of doubleword 0 of the destination operand. The encoding of bits
0 and 1 of the order operand (see the field encoding in Figure 5-23) determines
which doubleword from the source operand will be copied to doubleword 0 of the
destination operand.

Figure 5-23. PSHUFD Instruction Operation

The source operand can be an XMM register or a 128-bit memory location. The desti-
nation operand is an XMM register. The order operand is an 8-bit immediate. Note

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 70 /r ib V/V SSE2 Shuffle the doublewords in
xmm2/m128 based on the
encoding in imm8 and store the
result in xmm1.

PSHUFD xmm1, xmm2/m128, imm8

VEX.128.66.0F 70 /r ib V/V AVX Shuffle the doublewords in
xmm2/m128 based on the
encoding in imm8 and store the
result in xmm1.

VPSHUFD xmm1, xmm2/m128,
imm8

X3 X2 X1 X0SRC

DEST Y3 Y2 Y1 Y0

ORDER
00B - X0
01B - X1
10B - X2
11B - X3

Encoding
of Fields in

ORDER01234567
Operand
388 Ref. # 319433-004

INSTRUCTION SET REFERENCE
that this instruction permits a doubleword in the source operand to be copied to more
than one doubleword location in the destination operand.

128-bit Legacy SSE version: Bits (255:128) of the corresponding YMM destination
register remain unchanged.

VEX.128 encoded version: Bits (255:128) of the destination YMM register are zeroed.
VEX.vvvv is reserved and must be 1111b, VEX.L must be 0, otherwise the instruction
will #UD.

Operation
VPSHUFD (VEX.128 encoded version)
DEST[31:0] Å (SRC >> (ORDER[1:0] * 32))[31:0];
DEST[63:32] Å (SRC >> (ORDER[3:2] * 32))[31:0];
DEST[95:64] Å (SRC >> (ORDER[5:4] * 32))[31:0];
DEST[127:96] Å (SRC >> (ORDER[7:6] * 32))[31:0];
DEST[255:128] Å 0

PSHUFD (128-bit Legacy SSE version)
DEST[31:0] Å (SRC >> (ORDER[1:0] * 32))[31:0];
DEST[63:32] Å (SRC >> (ORDER[3:2] * 32))[31:0];
DEST[95:64] Å (SRC >> (ORDER[5:4] * 32))[31:0];
DEST[127:96] Å (SRC >> (ORDER[7:6] * 32))[31:0];
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

PSHUFD __m128i _mm_shuffle_epi32(__m128i a, int n)

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4; additionally

#UD If VEX.L = 1.

If VEX.vvvv != 1111B.
Ref. # 319433-004 389

INSTRUCTION SET REFERENCE
PSHUFHW - Shuffle Packed High Words

Description
Copies words from the high quadword of the source operand and inserts them in the
high quadword of the destination operand at word locations selected with the imme-
diate operand. This operation is similar to the operation used by the PSHUFD instruc-
tion, which is illustrated in Figure 4-7 in the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 2B. For the PSHUFHW instruction, each 2-bit
field in the immediate operand selects the contents of one word location in the high
quadword of the destination operand. The binary encodings of the immediate
operand fields select words (0, 1, 2 or 3) from the high quadword of the source
operand to be copied to the destination operand. The low quadword of the source
operand is copied to the low quadword of the destination operand.

The destination operand is an XMM register. The source operand can be an XMM
register or a 128-bit memory location. Note that this instruction permits a word in
the high quadword of the source operand to be copied to more than one word loca-
tion in the high quadword of the destination operand.

128-bit Legacy SSE version: Bits (255:128) of the corresponding YMM destination
register remain unchanged.

VEX.128 encoded version: Bits (255:128) of the destination YMM register are zeroed.
VEX.vvvv is reserved and must be 1111b, VEX.L must be 0, otherwise the instruction
will #UD.

Operation
VPSHUFHW (VEX.128 encoded version)
DEST[63:0] Å SRC1[63:0]
DEST[79:64] Å (SRC1 >> (imm[1:0] *16))[79:64]
DEST[95:80] Å (SRC1 >> (imm[3:2] * 16))[79:64]
DEST[111:96] Å (SRC1 >> (imm[5:4] * 16))[79:64]
DEST[127:112] Å (SRC1 >> (imm[7:6] * 16))[79:64]

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

F3 0F 70 /r ib V/V SSE2 Shuffle the high words in
xmm2/m128 based on the
encoding in imm8 and store the
result in xmm1.

PSHUFHW xmm1, xmm2/m128,
imm8

VEX.128.F3.0F 70 /r ib V/V AVX Shuffle the high words in
xmm2/m128 based on the
encoding in imm8 and store the
result in xmm1.

VPSHUFHW xmm1, xmm2/m128,
imm8
390 Ref. # 319433-004

INSTRUCTION SET REFERENCE
DEST[255:128] Å 0

PSHUFHW (128-bit Legacy SSE version)
DEST[63:0] Å SRC[63:0]
DEST[79:64] Å (SRC >> (imm[1:0] *16))[79:64]
DEST[95:80] Å (SRC >> (imm[3:2] * 16))[79:64]
DEST[111:96] Å (SRC >> (imm[5:4] * 16))[79:64]
DEST[127:112] Å (SRC >> (imm[7:6] * 16))[79:64]
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

PSHUFHW __m128i _mm_shufflehi_epi16(__m128i a, int n)

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4; additionally

#UD If VEX.L = 1.

If VEX.vvvv != 1111B.
Ref. # 319433-004 391

INSTRUCTION SET REFERENCE
PSHUFLW - Shuffle Packed Low Words

Description
Copies words from the low quadword of the source operand and inserts them in the
low quadword of the destination operand at word locations selected with the imme-
diate operand. This operation is similar to the operation used by the PSHUFD instruc-
tion, which is illustrated in Figure 5-23. For the PSHUFLW instruction, each 2-bit field
in the immediate operand selects the contents of one word location in the low quad-
word of the destination operand. The binary encodings of the immediate operand
fields select words (0, 1, 2 or 3) from the low quadword of the source operand to be
copied to the destination operand. The high quadword of the source operand is
copied to the high quadword of the destination operand.

The destination operand is an XMM register. The source operand can be an XMM
register or a 128-bit memory location. Note that this instruction permits a word in
the low quadword of the source operand to be copied to more than one word location
in the low quadword of the destination operand.

128-bit Legacy SSE version: Bits (255:128) of the corresponding YMM destination
register remain unchanged.

VEX.128 encoded version: Bits (255:128) of the destination YMM register are zeroed.
VEX.vvvv is reserved and must be 1111b, VEX.L must be 0, otherwise instructions
will #UD.

Operation
VPSHUFLW (VEX.128 encoded version)
DEST[15:0] Å (SRC1 >> (imm[1:0] *16))[15:0]
DEST[31:16] Å (SRC1 >> (imm[3:2] * 16))[15:0]
DEST[47:32] Å (SRC1 >> (imm[5:4] * 16))[15:0]
DEST[63:48] Å (SRC1 >> (imm[7:6] * 16))[15:0]
DEST[127:64] Å SRC[127:64]
DEST[255:128] Å 0

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

F2 0F 70 /r ib V/V SSE2 Shuffle the low words in
xmm2/m128 based on the
encoding in imm8 and store the
result in xmm1.

PSHUFLW xmm1, xmm2/m128,
imm8

VEX.128.F2.0F 70 /r ib V/V AVX Shuffle the low words in
xmm2/m128 based on the
encoding in imm8 and store the
result in xmm1.

VPSHUFLW xmm1, xmm2/m128,
imm8
392 Ref. # 319433-004

INSTRUCTION SET REFERENCE
PSHUFLW (128-bit Legacy SSE version)
DEST[15:0] Å (SRC >> (imm[1:0] *16))[15:0]
DEST[31:16] Å (SRC >> (imm[3:2] * 16))[15:0]
DEST[47:32] Å (SRC >> (imm[5:4] * 16))[15:0]
DEST[63:48] Å (SRC >> (imm[7:6] * 16))[15:0]
DEST[127:64] Å SRC[127:64]
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

PSHUFLW __m128i _mm_shufflelo_epi16(__m128i a, int n)

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4; additionally

#UD If VEX.L = 1.

If VEX.vvvv != 1111B.
Ref. # 319433-004 393

INSTRUCTION SET REFERENCE
PSIGNB/PSIGNW/PSIGND - Packed SIGN

Description
PSIGNB/PSIGNW/PSIGND negates each data element of the first source operand if
the signed integer value of the corresponding data element in the second source
operand is less than zero. If the signed integer value of a data element in the second
source operand is positive, the corresponding data element in the first source
operand is unchanged. If a data element in the second source operand is zero, the
corresponding data element in the first source operand is set to zero.

PSIGNB operates on signed bytes. PSIGNW operates on 16-bit signed words.
PSIGND operates on signed 32-bit integers.

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 38 08 /r V/V SSSE3 Negate/zero/preserve packed byte
integers in xmm1 depending on
the corresponding sign in
xmm2/m128.

PSIGNB xmm1, xmm2/m128

66 0F 38 09 /r V/V SSSE3 Negate/zero/preserve packed word
integers in xmm1 depending on
the corresponding sign in
xmm2/m128.

PSIGNW xmm1, xmm2/m128

66 0F 38 0A /r V/V SSSE3 Negate/zero/preserve packed
doubleword integers in xmm1
depending on the corresponding
sign in xmm2/m128.

PSIGND xmm1, xmm2/m128

VEX.NDS.128.66.0F38 08 /r V/V AVX Negate/zero/preserve packed byte
integers in xmm2 depending on
the corresponding sign in
xmm3/m128.

VPSIGNB xmm1, xmm2,
xmm3/m128

VEX.NDS.128.66.0F38 09 /r V/V AVX Negate/zero/preserve packed word
integers in xmm2 depending on
the corresponding sign in
xmm3/m128.

VPSIGNW xmm1, xmm2,
xmm3/m128

VEX.NDS.128.66.0F38 0A /r V/V AVX Negate/zero/preserve packed
doubleword integers in xmm2
depending on the corresponding
sign in xmm3/m128.

VPSIGND xmm1, xmm2,
xmm3/m128
394 Ref. # 319433-004

INSTRUCTION SET REFERENCE
128-bit Legacy SSE version: Bits (255:128) of the corresponding YMM destination
register remain unchanged.

VEX.128 encoded version: Bits (255:128) of the destination YMM register are zeroed.
VEX.L must be 0, otherwise instructions will #UD.

Operation
BYTE_SIGN(SRC1, SRC2)

if (SRC2[7..0] < 0)
DEST[7...0] Å Neg(SRC1[7...0])

else if(SRC2[7..0] == 0)
DEST[7...0] Å 0

else if(SRC2[7..0] > 0)
DEST[7...0] Å SRC1[7...0]

Repeat operation for 2nd through 15th bytes
if (SRC2[127..120] < 0)

DEST[127...120] Å Neg(SRC1[127...120])
else if(SRC2[127.. 120] == 0)

DEST[127...120] Å 0
else if(SRC2[127.. 120] > 0)

DEST[127...120] Å SRC1[127...120]

WORD_SIGN(SRC1, SRC2)
if (SRC2[15..0] < 0)

DEST[15...0] Å Neg(SRC1[15...0])
else if(SRC2[15..0] == 0)

DEST[15...0] Å 0
else if(SRC2[15..0] > 0)

DEST[15...0] Å SRC1[15...0]
Repeat operation for 2nd through 7th words

if (SRC2[127..112] < 0)
DEST[127...112] Å Neg(SRC1[127...112])

else if(SRC2[127.. 112] == 0)
DEST[127...112] Å 0

else if(SRC2[127.. 112] > 0)
DEST[127...112] Å SRC1[127...112]

DWORD_SIGN(SRC1, SRC2)
if (SRC2[31..0] < 0)

DEST[31...0] Å Neg(SRC1[31...0])
else if(SRC2[31..0] == 0)

DEST[31...0] Å 0
else if(SRC2[31..0] > 0)

DEST[31...0] Å SRC1[31...0]
Ref. # 319433-004 395

INSTRUCTION SET REFERENCE
Repeat operation for 2nd through 3rd double words
if (SRC2[127..96] < 0)

DEST[127...96] Å Neg(SRC1[127...96])
else if(SRC2[127.. 96] == 0)

DEST[127...96] Å0
else if(SRC2[127.. 96] > 0)

DEST[127...96] Å SRC1[127...96]

VPSIGNB (VEX.128 encoded version)
DEST[127:0] ÅBYTE_SIGN(SRC1, SRC2)
DEST[255:128] Å 0

PSIGNB (128-bit Legacy SSE version)
DEST[127:0] ÅBYTE_SIGN(DEST, SRC)
DEST[255:128] (Unmodified)

VPSIGNW (VEX.128 encoded version)
DEST[127:0] ÅWORD_SIGN(SRC1, SRC2)
DEST[255:128] Å 0

PSIGNW (128-bit Legacy SSE version)
DEST[127:0] ÅWORD_SIGN(DEST, SRC)
DEST[255:128] (Unmodified)

VPSIGND (VEX.128 encoded version)
DEST[127:0] ÅDWORD_SIGN(SRC1, SRC2)
DEST[255:128] Å 0

PSIGND (128-bit Legacy SSE version)
DEST[127:0] ÅDWORD_SIGN(DEST, SRC)
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

PSIGNB __m128i _mm_sign_epi8 (__m128i a, __m128i b)

PSIGNW __m128i _mm_sign_epi16 (__m128i a, __m128i b)

PSIGND __m128i _mm_sign_epi32 (__m128i a, __m128i b)
396 Ref. # 319433-004

INSTRUCTION SET REFERENCE
SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4; additionally

#UD If VEX.L = 1.
Ref. # 319433-004 397

INSTRUCTION SET REFERENCE
PSLLDQ - Byte Shift Left

Description
Shifts the source operand to the left by the number of bytes specified in the count
operand. The empty low-order bytes are cleared (set to all 0s). If the value specified
by the count operand is greater than 15, the destination operand is set to all 0s.

The source and destination operands are XMM registers. The count operand is an 8-
bit immediate.

128-bit Legacy SSE version: The source and destination operands are the same. Bits
(255:128) of the corresponding YMM destination register remain unchanged.

VEX.128 encoded version: Bits (255:128) of the destination YMM register are zeroed.
VEX.vvvv encodes the destination register, and VEX.B + ModRM.r/m encodes the
source register. VEX.L must be 0, otherwise instructions will #UD.

Operation
VPSLLDQ (VEX.128 encoded version)
TEMP Å COUNT
IF (TEMP > 15) THEN TEMP Å 16; FI
DEST Å SRC << (TEMP * 8)
DEST[255:128] Å 0

PSLLDQ(128-bit Legacy SSE version)
TEMP Å COUNT
IF (TEMP > 15) THEN TEMP Å 16; FI
DEST Å DEST << (TEMP * 8)
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

PSLLDQ __m128i _mm_slli_si128 (__m128i a, int imm)

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 73 /7 ib V/V SSE2 Shift xmm1 left by imm8 bytes
while shifting in 0s.PSLLDQ xmm1, imm8

VEX.NDD.128.66.0F 73 /7 ib V/V AVX Shift xmm2 left by imm8 bytes
while shifting in 0s and store result
in xmm1.

VPSLLDQ xmm1, xmm2, imm8
398 Ref. # 319433-004

INSTRUCTION SET REFERENCE
SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 7; additionally

#UD If VEX.L = 1.
Ref. # 319433-004 399

INSTRUCTION SET REFERENCE
PSRLDQ - Byte Shift Right

Description
Shifts the source operand to the right by the number of bytes specified in the count
operand. The empty high-order bytes are cleared (set to all 0s). If the value specified
by the count operand is greater than 15, the destination operand is set to all 0s.

The source and destination operands are XMM registers. The count operand is an 8-
bit immediate.

128-bit Legacy SSE version: The source and destination operands are the same. Bits
(255:128) of the corresponding YMM destination register remain unchanged.

VEX.128 encoded version: Bits (255:128) of the destination YMM register are zeroed.
VEX.vvvv encodes the destination register, and VEX.B + ModRM.r/m encodes the
source register. VEX.L must be 0, otherwise instructions will #UD.

Operation
VPSRLDQ (VEX.128 encoded version)
TEMP Å COUNT
IF (TEMP > 15) THEN TEMP Å 16; FI
DEST Å SRC >> (TEMP * 8)
DEST[255:128] Å 0

PSRLDQ(128-bit Legacy SSE version)
TEMP Å COUNT
IF (TEMP > 15) THEN TEMP Å 16; FI
DEST Å DEST >> (TEMP * 8)
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

PSRLDQ __m128i _mm_srli_si128 (__m128i a, int imm)

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 73 /3 ib V/V SSE2 Shift xmm1 right by imm8 bytes
while shifting in 0s.PSRLDQ xmm1, imm8

VEX.NDD.128.66.0F 73 /3 ib V/V AVX Shift xmm1 right by imm8 bytes
while shifting in 0s.VPSRLDQ xmm1, xmm2, imm8
400 Ref. # 319433-004

INSTRUCTION SET REFERENCE
SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 7; additionally

#UD If VEX.L = 1.
Ref. # 319433-004 401

INSTRUCTION SET REFERENCE
PSLLW/PSLLD/PSLLQ - Bit Shift Left
Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F F1/r V/V SSE2 Shift words in xmm1 left by
amount specified in xmm2/m128
while shifting in 0s.

PSLLW xmm1, xmm2/m128

66 0F 71 /6 ib V/V SSE2 Shift words in xmm1 left by imm8
while shifting in 0s.PSLLW xmm1, imm8

66 0F F2 /r V/V SSE2 Shift doublewords in xmm1 left by
amount specified in xmm2/m128
while shifting in 0s.

PSLLD xmm1, xmm2/m128

66 0F 72 /6 ib V/V SSE2 Shift doublewords in xmm1 left by
imm8 while shifting in 0s.PSLLD xmm1, imm8

66 0F F3 /r V/V SSE2 Shift quadwords in xmm1 left by
amount specified in xmm2/m128
while shifting in 0s.

PSLLQ xmm1, xmm2/m128

66 0F 73 /6 ib V/V SSE2 Shift quadwords in xmm1 left by
imm8 while shifting in 0s.PSLLQ xmm1, imm8

VEX.NDS.128.66.0F F1 /r V/V AVX Shift words in xmm2 left by
amount specified in xmm3/m128
while shifting in 0s.

VPSLLW xmm1, xmm2,
xmm3/m128

VEX.NDD.128.66.0F 71 /6 ib V/V AVX Shift words in xmm2 left by imm8
while shifting in 0s.VPSLLW xmm1, xmm2, imm8

VEX.NDS.128.66.0F F2 /r V/V AVX Shift doublewords in xmm2 left by
amount specified in xmm3/m128
while shifting in 0s.

VPSLLD xmm1, xmm2, xmm3/m128

VEX.NDD.128.66.0F 72 /6 ib V/V AVX Shift doublewords in xmm2 left by
imm8 while shifting in 0s.VPSLLD xmm1, xmm2, imm8
402 Ref. # 319433-004

INSTRUCTION SET REFERENCE
Description
Shifts the bits in the individual data elements (words, doublewords, or quadword) in
the first source operand to the left by the number of bits specified in the count
operand. As the bits in the data elements are shifted left, the empty low-order bits
are cleared (set to 0). If the value specified by the count operand is greater than 15
(for words), 31 (for doublewords), or 63 (for a quadword), then the destination
operand is set to all 0s.

The destination and first source operands are XMM registers. The count operand can
be either an XMM register or a 128-bit memory location or an 8-bit immediate. Note
that only the first 64-bits of a 128-bit count operand are checked to compute the
count.

The PSLLW instruction shifts each of the words in the first source operand to the left
by the number of bits specified in the count operand; the PSLLD instruction shifts
each of the doublewords in the first source operand; and the PSLLQ instruction shifts
the quadword (or quadwords) in the first source operand.

128-bit Legacy SSE version: Bits (255:128) of the corresponding YMM destination
register remain unchanged. If the count operand is a memory address, 128 bits are
loaded but the upper 64 bits are ignored.

VEX.128 encoded version: Bits (255:128) of the destination YMM register are zeroed.
For shifts with an immediate count (VEX.128.66.0F 71-73 /6), VEX.vvvv encodes the
destination register, and VEX.B + ModRM.r/m encodes the source register. VEX.L
must be 0, otherwise instructions will #UD. If the count operand is a memory
address, 128 bits are loaded but the upper 64 bits are ignored.

Operation
LOGICAL_LEFT_SHIFT_WORDS(SRC, COUNT_SRC)
COUNT Å COUNT_SRC[63:0];
IF (COUNT > 15)
THEN

DEST[127:0] Å 00000000000000000000000000000000H
ELSE

DEST[15:0] Å ZeroExtend(SRC[15:0] << COUNT);

VEX.NDS.128.66.0F F3 /r V/V AVX Shift quadwords in xmm2 left by
amount specified in xmm3/m128
while shifting in 0s.

VPSLLQ xmm1, xmm2, xmm3/m128

VEX.NDD.128.66.0F 73 /6 ib V/V AVX Shift quadwords in xmm2 left by
imm8 while shifting in 0s.VPSLLQ xmm1, xmm2, imm8

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description
Ref. # 319433-004 403

INSTRUCTION SET REFERENCE
(* Repeat shift operation for 2nd through 7th words *)
DEST[127:112] Å ZeroExtend(SRC[127:112] << COUNT);

FI;

LOGICAL_LEFT_SHIFT_DWORDS(SRC, COUNT_SRC)
COUNT Å COUNT_SRC[63:0];
IF (COUNT > 31)
THEN

DEST[127:0] Å 00000000000000000000000000000000H
ELSE

DEST[31:0] Å ZeroExtend(SRC[31:0] << COUNT);
(* Repeat shift operation for 2nd through 3rd words *)
DEST[127:96] Å ZeroExtend(SRC[127:96] << COUNT);

FI;

LOGICAL_LEFT_SHIFT_QWORDS(SRC, COUNT_SRC)
COUNT Å COUNT_SRC[63:0];
IF (COUNT > 63)
THEN

DEST[127:0] Å 00000000000000000000000000000000H
ELSE

DEST[63:0] Å ZeroExtend(SRC[63:0] << COUNT);
DEST[127:64] Å ZeroExtend(SRC[127:64] << COUNT);

FI;

VPSLLW (xmm, xmm, xmm/m128)
DEST[127:0] Å LOGICAL_LEFT_SHIFT_WORDS(SRC1, SRC2)
DEST[255:128] Å 0

VPSLLW (xmm, imm8)
DEST[127:0] Å LOGICAL_LEFT_SHIFT_WORDS(SRC1, imm8)
DEST[255:128] Å 0

PSLLW (xmm, xmm, xmm/m128)
DEST[127:0] Å LOGICAL_LEFT_SHIFT_WORDS(DEST, SRC)
DEST[255:128] (Unmodified)

PSLLW (xmm, imm8)
DEST[127:0] Å LOGICAL_LEFT_SHIFT_WORDS(DEST, imm8)
DEST[255:128] (Unmodified)

VPSLLD (xmm, xmm, xmm/m128)
DEST[127:0] Å LOGICAL_LEFT_SHIFT_DWORDS(SRC1, SRC2)
404 Ref. # 319433-004

INSTRUCTION SET REFERENCE
DEST[255:128] Å 0

VPSLLD (xmm, imm8)
DEST[127:0] Å LOGICAL_LEFT_SHIFT_DWORDS(SRC1, imm8)
DEST[255:128] Å 0

PSLLD (xmm, xmm, xmm/m128)
DEST[127:0] Å LOGICAL_LEFT_SHIFT_DWORDS(DEST, SRC)
DEST[255:128] (Unmodified)

PSLLD (xmm, imm8)
DEST[127:0] Å LOGICAL_LEFT_SHIFT_DWORDS(DEST, imm8)
DEST[255:128] (Unmodified)

VPSLLQ (xmm, xmm, xmm/m128)
DEST[127:0] Å LOGICAL_LEFT_SHIFT_QWORDS(SRC1, SRC2)
DEST[255:128] Å 0

VPSLLQ (xmm, imm8)
DEST[127:0] Å LOGICAL_LEFT_SHIFT_QWORDS(SRC1, imm8)
DEST[255:128] Å 0

PSLLQ (xmm, xmm, xmm/m128)
DEST[127:0] Å LOGICAL_LEFT_SHIFT_QWORDS(DEST, SRC)
DEST[255:128] (Unmodified)

PSLLQ (xmm, imm8)
DEST[127:0] Å LOGICAL_LEFT_SHIFT_QWORDS(DEST, imm8)
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

PSLLW __m128i _mm_slli_epi16 (__m128i m, int count)

PSLLW __m128i _mm_sll_epi16 (__m128i m, __m128i count)

PSLLD __m128i _mm_slli_epi32 (__m128i m, int count)

PSLLD __m128i _mm_sll_epi32 (__m128i m, __m128i count)

PSLLQ __m128i _mm_slli_epi64 (__m128i m, int count)

PSLLQ __m128i _mm_sll_epi64 (__m128i m, __m128i count)
Ref. # 319433-004 405

INSTRUCTION SET REFERENCE
SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4 and 7 for non-VEX-encoded instructions.

#UD If VEX.L l= 1.
406 Ref. # 319433-004

INSTRUCTION SET REFERENCE
PSRAW/PSRAD - Bit Shift Arithmetic Right

Description
Shifts the bits in the individual data elements (words, doublewords, or quadword) in
the first source operand to the right by the number of bits specified in the count
operand. As the bits in the data elements are shifted left, the empty high-order bits
are filled with the initial value of the sign bit of the data. If the value specified by the

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F E1/r V/V SSE2 Shift words in xmm1 right by
amount specified in xmm2/m128
while shifting in sign bits.

PSRAW xmm1, xmm2/m128

66 0F 71 /4 ib V/V SSE2 Shift words in xmm1 right by
imm8 while shifting in sign bits.PSRAW xmm1, imm8

66 0F E2 /r V/V SSE2 Shift doublewords in xmm1 right
by amount specified in
xmm2/m128 while shifting in sign
bits.

PSRAD xmm1, xmm2/m128

66 0F 72 /4 ib V/V SSE2 Shift doublewords in xmm1 right
by imm8 while shifting in sign
bits.

PSRAD xmm1, imm8

VEX.NDS.128.66.0F E1 /r V/V AVX Shift words in xmm2 right by
amount specified in xmm3/m128
while shifting in sign bits.

VPSRAW xmm1, xmm2,
xmm3/m128

VEX.NDD.128.66.0F 71 /4 ib V/V AVX Shift words in xmm2 right by
imm8 while shifting in sign bits.VPSRAW xmm1, xmm2, imm8

VEX.NDS.128.66.0F E2 /r V/V AVX Shift doublewords in xmm2 right
by amount specified in
xmm3/m128 while shifting in sign
bits.

VPSRAD xmm1, xmm2,
xmm3/m128

VEX.NDD.128.66.0F 72 /4 ib V/V AVX Shift doublewords in xmm2 right
by imm8 while shifting in sign
bits.

VPSRAD xmm1, xmm2, imm8
Ref. # 319433-004 407

INSTRUCTION SET REFERENCE
count operand is greater than 15 (for words), 31 (for doublewords), or 63 (for a
quadword), then the destination operand is filled with the initial value of the sign bit.

The destination and first source operands are XMM registers. The count operand can
be either an XMM register or a 128-bit memory location or an 8-bit immediate. Note
that only the first 64-bits of a 128-bit count operand are checked to compute the
count.

The PSRAW instruction shifts each of the words in the first source operand to the
right by the number of bits specified in the count operand; the PSRAD instruction
shifts each of the doublewords in the first source operand; and the PSRAQ instruction
shifts the quadword (or quadwords) in the first source operand.

128-bit Legacy SSE version: Bits (255:128) of the corresponding YMM destination
register remain unchanged. : Bits (255:128) of the corresponding YMM destination
register remain unchanged. If the count operand is a memory address, 128 bits are
loaded but the upper 64 bits are ignored.

VEX.128 encoded version: Bits (255:128) of the destination YMM register are zeroed.
For shifts with an immediate count (VEX.128.66.0F 71-73 /4), VEX.vvvv encodes the
destination register, and VEX.B + ModRM.r/m encodes the source register. VEX.L
must be 0, otherwise instructions will #UD. : Bits (255:128) of the corresponding
YMM destination register remain unchanged. If the count operand is a memory
address, 128 bits are loaded but the upper 64 bits are ignored.

Operation
ARITHMETIC_RIGHT_SHIFT_WORDS(SRC, COUNT_SRC)
COUNT Å COUNT_SRC[63:0];
IF (COUNT > 15)
THEN

COUNT Å 16
FI
DEST[15:0] Å SignExtend(SRC[15:0] >> COUNT);
(* Repeat shift operation for 2nd through 7th words *)
DEST[127:112] Å SignExtend(SRC[127:112] >> COUNT);

ARITHMETIC_RIGHT_SHIFT_DWORDS(SRC, COUNT_SRC)
COUNT Å COUNT_SRC[63:0];
IF (COUNT > 31)
THEN

COUNT Å 32
FI
DEST[31:0] Å SignExtend(SRC[31:0] >> COUNT);
(* Repeat shift operation for 2nd through 3rd words *)
DEST[127:96] Å SignExtend(SRC[127:96] >> COUNT);

VPSRAW (xmm, xmm, xmm/m128)
408 Ref. # 319433-004

INSTRUCTION SET REFERENCE
DEST[127:0] Å ARITHMETIC_RIGHT_SHIFT_WORDS(SRC1, SRC2)
DEST[255:128] Å 0

VPSRAW (xmm, imm8)
DEST[127:0] Å ARITHMETIC_RIGHT_SHIFT_WORDS(SRC1, imm8)
DEST[255:128] Å 0

PSRAW (xmm, xmm, xmm/m128)
DEST[127:0] Å ARITHMETIC_RIGHT_SHIFT_WORDS(DEST, SRC)
DEST[255:128] (Unmodified)

PSRAW (xmm, imm8)
DEST[127:0] Å ARITHMETIC_RIGHT_SHIFT_WORDS(DEST, imm8)
DEST[255:128] (Unmodified)

VPSRAD (xmm, xmm, xmm/m128)
DEST[127:0] Å ARITHMETIC_RIGHT_SHIFT_DWORDS(SRC1, SRC2)
DEST[255:128] Å 0

VPSRAD (xmm, imm8)
DEST[127:0] Å ARITHMETIC_RIGHT_SHIFT_DWORDS(SRC1, imm8)
DEST[255:128] Å 0

PSRAD (xmm, xmm, xmm/m128)
DEST[127:0] Å ARITHMETIC_RIGHT_SHIFT_DWORDS(DEST, SRC)
DEST[255:128] (Unmodified)

PSRAD (xmm, imm8)
DEST[127:0] Å ARITHMETIC_RIGHT_SHIFT_DWORDS(DEST, imm8)
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

PSRAW __m128i _mm_srai_epi16 (__m128i m, int count)

PSRAW __m128i _mm_sra_epi16 (__m128i m, __m128i count)

PSRAD __m128i _mm_srai_epi32 (__m128i m, int count)

PSRAD __m128i _mm_sra_epi32 (__m128i m, __m128i count)

SIMD Floating-Point Exceptions
None
Ref. # 319433-004 409

INSTRUCTION SET REFERENCE
Other Exceptions
See Exceptions Type 4 and 7 for non-VEX-encoded instructions.

#UD If VEX.L = 1.
410 Ref. # 319433-004

INSTRUCTION SET REFERENCE
PSRLW/PSRLD/PSRLQ - Shift Packed Data Right Logical
Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F D1 /r V/V SSE2 Shift words in xmm1 right by
amount specified in xmm2/m128
while shifting in 0s.

PSRLW xmm1, xmm2/m128

66 0F 71 /2 ib V/V SSE2 Shift words in xmm1 right by
imm8 while shifting in 0s.PSRLW xmm1, imm8

66 0F D2 /r V/V SSE2 Shift doublewords in xmm1 right
by amount specified in
xmm2/m128 while shifting in 0s.

PSRLD xmm1, xmm2/m128

66 0F 72 /2 ib V/V SSE2 Shift doublewords in xmm1 right
by imm8 while shifting in 0s.PSRLD xmm1, imm8

66 0F D3 /r V/V SSE2 Shift quadwords in xmm1 right by
amount specified in xmm2/m128
while shifting in 0s.

PSRLQ xmm1, xmm2/m128

66 0F 73 /2 ib V/V SSE2 Shift quadwords in xmm1 right by
imm8 while shifting in 0s.PSRLQ xmm1, imm8

VEX.NDS.128.66.0F D1 /r V/V AVX Shift words in xmm2 right by
amount specified in xmm3/m128
while shifting in 0s.

VPSRLW xmm1, xmm2,
xmm3/m128

VEX.NDD.128.66.0F 71 /2 ib V/V AVX Shift words in xmm2 right by
imm8 while shifting in 0s.VPSRLW xmm1, xmm2, imm8

VEX.NDS.128.66.0F D2 /r V/V AVX Shift doublewords in xmm2 right
by amount specified in
xmm3/m128 while shifting in 0s.

VPSRLD xmm1, xmm2, xmm3/m128

VEX.NDD.128.66.0F 72 /2 ib V/V AVX Shift doublewords in xmm2 right
by imm8 while shifting in 0s.VPSRLD xmm1, xmm2, imm8
Ref. # 319433-004 411

INSTRUCTION SET REFERENCE
Description
Shifts the bits in the individual data elements (words, doublewords, or quadword) in
the first source operand to the right by the number of bits specified in the count
operand. As the bits in the data elements are shifted right, the empty high-order bits
are cleared (set to 0). If the value specified by the count operand is greater than 15
(for words), 31 (for doublewords), or 63 (for a quadword), then the destination
operand is set to all 0s.

The destination and first source operands are XMM registers. The count operand can
be either an XMM register or a 128-bit memory location or an 8-bit immediate. Note
that only the first 64-bits of a 128-bit count operand are checked to compute the
count.

The PSRLW instruction shifts each of the words in the first source operand to the right
by the number of bits specified in the count operand; the PSRLD instruction shifts
each of the doublewords in the first source operand; and the PSRLQ instruction shifts
the quadword (or quadwords) in the first source operand.

128-bit Legacy SSE version: Bits (255:128) of the corresponding YMM destination
register remain unchanged. If the count operand is a memory address, 128 bits are
loaded but the upper 64 bits are ignored.

VEX.128 encoded version: Bits (255:128) of the destination YMM register are zeroed.
For shifts with an immediate count (VEX.128.66.0F 71-73 /2), VEX.vvvv encodes the
destination register, and VEX.B + ModRM.r/m encodes the source register. VEX.L
must be 0, otherwise instructions will #UD. If the count operand is a memory
address, 128 bits are loaded but the upper 64 bits are ignored.

Operation
LOGICAL_RIGHT_SHIFT_WORDS(SRC, COUNT_SRC)
COUNT Å COUNT_SRC[63:0];
IF (COUNT > 15)
THEN

DEST[127:0] Å 00000000000000000000000000000000H
ELSE

DEST[15:0] Å ZeroExtend(SRC[15:0] >> COUNT);

VEX.NDS.128.66.0F D3 /r V/V AVX Shift quadwords in xmm2 right by
amount specified in xmm3/m128
while shifting in 0s.

VPSRLQ xmm1, xmm2, xmm3/m128

VEX.NDD.128.66.0F 73 /2 ib V/V AVX Shift quadwords in xmm2 right by
imm8 while shifting in 0s.VPSRLQ xmm1, xmm2, imm8

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description
412 Ref. # 319433-004

INSTRUCTION SET REFERENCE
(* Repeat shift operation for 2nd through 7th words *)
DEST[127:112] Å ZeroExtend(SRC[127:112] >> COUNT);

FI;

LOGICAL_RIGHT_SHIFT_DWORDS(SRC, COUNT_SRC)
COUNT Å COUNT_SRC[63:0];
IF (COUNT > 31)
THEN

DEST[127:0] Å 00000000000000000000000000000000H
ELSE

DEST[31:0] Å ZeroExtend(SRC[31:0] >> COUNT);
(* Repeat shift operation for 2nd through 3rd words *)
DEST[127:96] Å ZeroExtend(SRC[127:96] >> COUNT);

FI;

LOGICAL_RIGHT_SHIFT_QWORDS(SRC, COUNT_SRC)
COUNT Å COUNT_SRC[63:0];
IF (COUNT > 63)
THEN

DEST[127:0] Å 00000000000000000000000000000000H
ELSE

DEST[63:0] Å ZeroExtend(SRC[63:0] >> COUNT);
DEST[127:64] Å ZeroExtend(SRC[127:64] >> COUNT);

FI;

VPSRLW (xmm, xmm, xmm/m128)
DEST[127:0] Å LOGICAL_RIGHT_SHIFT_WORDS(SRC1, SRC2)
DEST[255:128] Å 0

VPSRLW (xmm, imm8)
DEST[127:0] Å LOGICAL_RIGHT_SHIFT_WORDS(SRC1, imm8)
DEST[255:128] Å 0

PSRLW (xmm, xmm, xmm/m128)
DEST[127:0] Å LOGICAL_RIGHT_SHIFT_WORDS(DEST, SRC)
DEST[255:128] (Unmodified)

PSRLW (xmm, imm8)
DEST[127:0] Å LOGICAL_RIGHT_SHIFT_WORDS(DEST, imm8)
DEST[255:128] (Unmodified)

VPSRLD (xmm, xmm, xmm/m128)
DEST[127:0] Å LOGICAL_RIGHT_SHIFT_DWORDS(SRC1, SRC2)
Ref. # 319433-004 413

INSTRUCTION SET REFERENCE
DEST[255:128] Å 0

VPSRLD (xmm, imm8)
DEST[127:0] Å LOGICAL_RIGHT_SHIFT_DWORDS(SRC1, imm8)
DEST[255:128] Å 0

PSRLD (xmm, xmm, xmm/m128)
DEST[127:0] Å LOGICAL_RIGHT_SHIFT_DWORDS(DEST, SRC)
DEST[255:128] (Unmodified)

PSRLD (xmm, imm8)
DEST[127:0] Å LOGICAL_RIGHT_SHIFT_DWORDS(DEST, imm8)
DEST[255:128] (Unmodified)

VPSRLQ (xmm, xmm, xmm/m128)
DEST[127:0] Å LOGICAL_RIGHT_SHIFT_QWORDS(SRC1, SRC2)
DEST[255:128] Å 0

VPSRLQ (xmm, imm8)
DEST[127:0] Å LOGICAL_RIGHT_SHIFT_QWORDS(SRC1, imm8)
DEST[255:128] Å 0

PSRLQ (xmm, xmm, xmm/m128)
DEST[127:0] Å LOGICAL_RIGHT_SHIFT_QWORDS(DEST, SRC)
DEST[255:128] (Unmodified)

PSRLQ (xmm, imm8)
DEST[127:0] Å LOGICAL_RIGHT_SHIFT_QWORDS(DEST, imm8)
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

PSRLW __m128i _mm_srli_epi16 (__m128i m, int count)

PSRLW __m128i _mm_srl_epi16 (__m128i m, __m128i count)

PSRLD __m128i _mm_srli_epi32 (__m128i m, int count)

PSRLD __m128i _mm_srl_epi32 (__m128i m, __m128i count)

PSRLQ __m128i _mm_srli_epi64 (__m128i m, int count)

PSRLQ __m128i _mm_srl_epi64 (__m128i m, __m128i count)
414 Ref. # 319433-004

INSTRUCTION SET REFERENCE
SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4 and 7 for non-VEX-encoded instructions.

#UD If VEX.L = 1.
Ref. # 319433-004 415

INSTRUCTION SET REFERENCE
PTEST- Packed Bit Test

Description
PTEST and VPTEST set the ZF flag if all bits in the result are 0 of the bitwise AND of
the first source operand (first operand) and the second source operand (second
operand). VPTEST sets the CF flag if all bits in the result are 0 of the bitwise AND of
the second source operand (second operand) and the logical NOT of the destination
operand.

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 38 17 /r V/V SSE4_1 Set ZF and CF depending on bit-
wise AND and ANDN of sourcesPTEST xmm1, xmm2/m128

VEX.128.66.0F38 17 /r V/V AVX Set ZF and CF depending on bit-
wise AND and ANDN of sourcesVPTEST xmm1, xmm2/m128

VEX.256.66.0F38 17 /r V/V AVX Set ZF and CF depending on bit-
wise AND and ANDN of sourcesVPTEST ymm1, ymm2/m256

VEX.128.66.0F38 0E /r V/V AVX Set ZF and CF depending on sign
bit AND and ANDN of packed
single-precision floating-point
sources

VTESTPS xmm1, xmm2/m128

VEX.256.66.0F38 0E /r V/V AVX Set ZF and CF depending on sign
bit AND and ANDN of packed
single-precision floating-point
sources

VTESTPS ymm1, ymm2/m256

VEX.128.66.0F38 0F /r V/V AVX Set ZF and CF depending on sign
bit AND and ANDN of packed
double-precision floating-point
sources

VTESTPD xmm1, xmm2/m128

VEX.256.66.0F38 0F /r V/V AVX Set ZF and CF depending on sign
bit AND and ANDN of packed
double-precision floating-point
sources

VTESTPD ymm1, ymm2/m256
416 Ref. # 319433-004

INSTRUCTION SET REFERENCE
VTESTPS performs a bitwise comparison of all the sign bits of the packed single-
precision elements in the first source operation and corresponding sign bits in the
second source operand. If the AND of the source sign bits with the dest sign bits
produces all zeros, the ZF is set else the ZF is clear. If the AND of the inverted source
sign bits with the dest sign bits produces all zeros the CF is set else the CF is clear.

VTESTPD performs a bitwise comparison of all the sign bits of the double-precision
elements in the first source operation and corresponding sign bits in the second
source operand. If the AND of the source sign bits with the dest sign bits produces all
zeros, the ZF is set else the ZF is clear. If the AND the inverted source sign bits with
the dest sign bits produces all zeros the CF is set else the CF is clear.

The first source register is specified by the ModR/M reg field.

VEX.256 encoded version: The first source register is a YMM register. The second
source register can be a YMM register or a 256-bit memory location. The destination
register is not modified.

128-bit version: The first source register is an XMM register. The second source
register can be an XMM register or a 256-bit memory location. The destination
register is not modified.

Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise
instructions will #UD.

Operation
VPTEST (VEX.256 encoded version)
IF (SRC[255:0] BITWISE AND DEST[255:0] == 0) THEN ZF Å 1;

ELSE ZF Å 0;
IF (SRC[255:0] BITWISE AND NOT DEST[255:0] == 0) THEN CF Å 1;

ELSE CF Å 0;
DEST (unmodified)
AF Å OF Å PF Å SF Å 0;

PTEST (128-bit versions)
IF (SRC[127:0] BITWISE AND DEST[127:0] == 0)

THEN ZF Å 1;
ELSE ZF Å 0;

IF (SRC[127:0] BITWISE AND NOT DEST[127:0] == 0)
THEN CF Å 1;
ELSE CF Å 0;

DEST (unmodified)
AF Å OF Å PF Å SF Å 0;

VTESTPS (VEX.256 encoded version)
TEMP[255:0] Å SRC[255:0] AND DEST[255:0]
Ref. # 319433-004 417

INSTRUCTION SET REFERENCE
IF (TEMP[31] = TEMP[63] = TEMP[95] = TEMP[127]= TEMP[160] =TEMP[191] = TEMP[224] =
TEMP[255] = 0)

THEN ZF Å1;
ELSE ZF Å 0;

TEMP[255:0] Å SRC[255:0] AND NOT DEST[255:0]
IF (TEMP[31] = TEMP[63] = TEMP[95] = TEMP[127]= TEMP[160] =TEMP[191] = TEMP[224] =
TEMP[255] = 0)

THEN CF Å1;
ELSE CF Å 0;

DEST (unmodified)
AF Å OF Å PF Å SF Å 0;

VTESTPD (VEX.256 encoded version)
TEMP[255:0] Å SRC[255:0] AND DEST[255:0]
IF (TEMP[63] = TEMP[127] = TEMP[191] = TEMP[255] = 0)

THEN ZF Å1;
ELSE ZF Å 0;

TEMP[255:0] Å SRC[255:0] AND NOT DEST[255:0]
IF (TEMP[63] = TEMP[127] = TEMP[191] = TEMP[255] = 0)

THEN CF Å1;
ELSE CF Å 0;

DEST (unmodified)
AF Å OF Å PF Å SF Å 0;

Intel C/C++ Compiler Intrinsic Equivalent

VPTEST

int _mm256_testz_si256 (__m256i s1, __m256i s2);

int _mm256_testc_si256 (__m256i s1, __m256i s2);

int _mm256_testnzc_si256 (__m256i s1, __m256i s2);

int _mm_testz_si128 (__m128i s1, __m128i s2);

int _mm_testc_si128 (__m128i s1, __m128i s2);

int _mm_testnzc_si128 (__m128i s1, __m128i s2);

VTESTPS
418 Ref. # 319433-004

INSTRUCTION SET REFERENCE
int _mm256_testz_ps (__m256 s1, __m256 s2);

int _mm256_testc_ps (__m256 s1, __m256 s2);

int _mm256_testnzc_ps (__m256 s1, __m128 s2);

int _mm_testz_ps (__m128 s1, __m128 s2);

int _mm_testc_ps (__m128 s1, __m128 s2);

int _mm_testnzc_ps (__m128 s1, __m128 s2);

VTESTPD

int _mm256_testz_pd (__m256d s1, __m256d s2);

int _mm256_testc_pd (__m256d s1, __m256d s2);

int _mm256_testnzc_pd (__m256d s1, __m256d s2);

int _mm_testz_pd (__m128d s1, __m128d s2);

int _mm_testc_pd (__m128d s1, __m128d s2);

int _mm_testnzc_pd (__m128d s1, __m128d s2);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4; additionally

#UD If VEX.vvvv != 1111.
Ref. # 319433-004 419

INSTRUCTION SET REFERENCE
PSUBB/PSUBW/PSUBD/PSUBQ -Packed Integer Subtract

Description
Subtracts the packed byte, word, doubleword, or quadword integers in the second
source operand from the first source operand and stores the result in the destination
operand. The second source operand is an XMM register or an 128-bit memory loca-
tion. The first source operand and destination operands are XMM registers. When a

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F F8 /r V/V SSE2 Subtract packed byte integers in
xmm2/m128 from xmm1.PSUBB xmm1, xmm2/m128

66 0F F9 /r V/V SSE2 Subtract packed word integers in
xmm2/m128 from xmm1.PSUBW xmm1, xmm2/m128

66 0F FA /r V/V SSE2 Subtract packed doubleword
integers in xmm2/m128 from
xmm1.

PSUBD xmm1, xmm2/m128

66 0F FB/r V/V SSE2 Subtract packed quadword
integers in xmm2/m128 from
xmm1.

PSUBQ xmm1, xmm2/m128

VEX.NDS.128.66.0F F8 /r V/V AVX Subtract packed byte integers in
xmm3/m128 from xmm2.VPSUBB xmm1, xmm2,

xmm3/m128

VEX.NDS.128.66.0F F9 /r V/V AVX Subtract packed word integers in
xmm3/m128 from xmm2.VPSUBW xmm1, xmm2,

xmm3/m128

VEX.NDS.128.66.0F FA /r V/V AVX Subtract packed doubleword
integers in xmm3/m128 from
xmm2.

VPSUBD xmm1, xmm2,
xmm3/m128

VEX.NDS.128.66.0F FB/r V/V AVX Subtract packed quadword
integers in xmm3/m128 from
xmm2.

VPSUBQ xmm1, xmm2,
xmm3/m128
420 Ref. # 319433-004

INSTRUCTION SET REFERENCE
result is too large to be represented in the 8/16/32/64 integer (overflow), the result
is wrapped around and the low bits are written to the destination element (that is,
the carry is ignored).

Note that these instructions can operate on either unsigned or signed (two’s comple-
ment notation) integers; however, it does not set bits in the EFLAGS register to indi-
cate overflow and/or a carry. To prevent undetected overflow conditions, software
must control the ranges of the values operated on.

128-bit Legacy SSE version: Bits (255:128) of the corresponding YMM destination
register remain unchanged.

VEX.128 encoded version: Bits (255:128) of the destination YMM register are zeroed.
VEX.L must be 0, otherwise instructions will #UD.

Operation
VPSUBB (VEX.128 encoded version)
DEST[7:0] Å SRC1[7:0]-SRC2[7:0]
DEST[15:8] Å SRC1[15:8]-SRC2[15:8]
DEST[23:16] Å SRC1[23:16]-SRC2[23:16]
DEST[31:24] Å SRC1[31:24]-SRC2[31:24]
DEST[39:32] Å SRC1[39:32]-SRC2[39:32]
DEST[47:40] Å SRC1[47:40]-SRC2[47:40]
DEST[55:48] Å SRC1[55:48]-SRC2[55:48]
DEST[63:56] Å SRC1[63:56]-SRC2[63:56]
DEST[71:64] Å SRC1[71:64]-SRC2[71:64]
DEST[79:72] Å SRC1[79:72]-SRC2[79:72]
DEST[87:80] Å SRC1[87:80]-SRC2[87:80]
DEST[95:88] Å SRC1[95:88]-SRC2[95:88]
DEST[103:96] Å SRC1[103:96]-SRC2[103:96]
DEST[111:104] Å SRC1[111:104]-SRC2[111:104]
DEST[119:112] Å SRC1[119:112]-SRC2[119:112]
DEST[127:120] Å SRC1[127:120]-SRC2[127:120]
DEST[255:128] Å 0

PSUBB (128-bit Legacy SSE version)
DEST[7:0] Å DEST[7:0]-SRC[7:0]
DEST[15:8] Å DEST[15:8]-SRC[15:8]
DEST[23:16] Å DEST[23:16]-SRC[23:16]
DEST[31:24] Å DEST[31:24]-SRC[31:24]
DEST[39:32] Å DEST[39:32]-SRC[39:32]
DEST[47:40] Å DEST[47:40]-SRC[47:40]
DEST[55:48] Å DEST[55:48]-SRC[55:48]
DEST[63:56] Å DEST[63:56]-SRC[63:56]
DEST[71:64] Å DEST[71:64]-SRC[71:64]
DEST[79:72] Å DEST[79:72]-SRC[79:72]
Ref. # 319433-004 421

INSTRUCTION SET REFERENCE
DEST[87:80] Å DEST[87:80]-SRC[87:80]
DEST[95:88] Å DEST[95:88]-SRC[95:88]
DEST[103:96] Å DEST[103:96]-SRC[103:96]
DEST[111:104] Å DEST[111:104]-SRC[111:104]
DEST[119:112] Å DEST[119:112]-SRC[119:112]
DEST[127:120] Å DEST[127:120]-SRC[127:120]
DEST[255:128] (Unmodified)

VPSUBW (VEX.128 encoded version)
DEST[15:0] Å SRC1[15:0]-SRC2[15:0]
DEST[31:16] Å SRC1[31:16]-SRC2[31:16]
DEST[47:32] Å SRC1[47:32]-SRC2[47:32]
DEST[63:48] Å SRC1[63:48]-SRC2[63:48]
DEST[79:64] Å SRC1[79:64]-SRC2[79:64]
DEST[95:80] Å SRC1[95:80]-SRC2[95:80]
DEST[111:96] Å SRC1[111:96]-SRC2[111:96]
DEST[127:112] Å SRC1[127:112]-SRC2[127:112]
DEST[255:128] Å 0

PSUBW (128-bit Legacy SSE version)
DEST[15:0] Å DEST[15:0]-SRC[15:0]
DEST[31:16] Å DEST[31:16]-SRC[31:16]
DEST[47:32] Å DEST[47:32]-SRC[47:32]
DEST[63:48] Å DEST[63:48]-SRC[63:48]
DEST[79:64] Å DEST[79:64]-SRC[79:64]
DEST[95:80] Å DEST[95:80]-SRC[95:80]
DEST[111:96] Å DEST[111:96]-SRC[111:96]
DEST[127:112] Å DEST[127:112]-SRC[127:112]
DEST[255:128] (Unmodified)

VPSUBD (VEX.128 encoded version)
DEST[31:0] Å SRC1[31:0]-SRC2[31:0]
DEST[63:32] Å SRC1[63:32]-SRC2[63:32]
DEST[95:64] Å SRC1[95:64]-SRC2[95:64]
DEST[127:96] Å SRC1[127:96]-SRC2[127:96]
DEST[255:128] Å 0

PSUBD (128-bit Legacy SSE version)
DEST[31:0] Å DEST[31:0]-SRC[31:0]
DEST[63:32] Å DEST[63:32]-SRC[63:32]
DEST[95:64] Å DEST[95:64]-SRC[95:64]
DEST[127:96] Å DEST[127:96]-SRC[127:96]
DEST[255:128] (Unmodified)
422 Ref. # 319433-004

INSTRUCTION SET REFERENCE
VPSUBQ (VEX.128 encoded version)
DEST[63:0] Å SRC1[63:0]-SRC2[63:0]
DEST[127:64] Å SRC1[127:64]-SRC2[127:64]
DEST[255:128] Å 0

PSUBQ (128-bit Legacy SSE version)
DEST[63:0] Å DEST[63:0]-SRC[63:0]
DEST[127:64] Å DEST[127:64]-SRC[127:64]
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

PSUBB __m128i _mm_sub_epi8 (__m128i a, __m128i b)

PSUBW __m128i _mm_sub_epi16 (__m128i a, __m128i b)

PSUBD __m128i _mm_sub_epi32 (__m128i a, __m128i b)

PSUBQ __m128i _mm_sub_epi64(__m128i m1, __m128i m2)

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4; additionally

#UD If VEX.L = 1
Ref. # 319433-004 423

INSTRUCTION SET REFERENCE
PSUBSB/PSUBSW -Subtract Packed Signed Integers with Signed Saturation

Description
Performs a SIMD subtract of the packed signed integers of the second source
operand from the packed signed integers of the first source operand, and stores the
packed integer results in the destination operand. See Figure 9-4 in the Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 1, for an illustration of
a SIMD operation. Overflow is handled with signed saturation, as described in the
following paragraphs.

The first source and destination operands are XMM registers and the second source
operand is either an XMM register or a 128-bit memory location.

The PSUBSB instruction subtracts packed signed byte integers. When an individual
byte result is beyond the range of a signed byte integer (that is, greater than 7FH or
less than 80H), the saturated value of 7FH or 80H, respectively, is written to the
destination operand.

The PSUBSW instruction subtracts packed signed word integers. When an individual
word result is beyond the range of a signed word integer (that is, greater than 7FFFH
or less than 8000H), the saturated value of 7FFFH or 8000H, respectively, is written
to the destination operand.

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F E8 /r V/V SSE2 Subtract packed signed byte
integers in xmm2/m128 from
packed signed byte integers in
xmm1 and saturate results.

PSUBSB xmm1, xmm2/m128

66 0F E9 /r V/V SSE2 Subtract packed signed word
integers in xmm2/m128 from
packed signed word integers in
xmm1 and saturate results.

PSUBSW xmm1, xmm2/m128

VEX.NDS.128.66.0F E8 /r V/V AVX Subtract packed signed byte
integers in xmm3/m128 from
packed signed byte integers in
xmm2 and saturate results.

VPSUBSB xmm1, xmm2,
xmm3/m128

VEX.NDS.128.66.0F E9 /r V/V AVX Subtract packed signed word
integers in xmm3/m128 from
packed signed word integers in
xmm2 and saturate results.

VPSUBSW xmm1, xmm2,
xmm3/m128
424 Ref. # 319433-004

INSTRUCTION SET REFERENCE
128-bit Legacy SSE version: Bits (255:128) of the corresponding YMM destination
register remain unchanged.

VEX.128 encoded version: Bits (255:128) of the destination YMM register are zeroed.
VEX.L must be 0, otherwise instructions will #UD.

Operation

VPSUBSB
DEST[7:0] Å SaturateToSignedByte (SRC1[7:0] - SRC2[7:0]);
(* Repeat subtract operation for 2nd through 14th bytes *)
DEST[127:120] Å SaturateToSignedByte (SRC1[127:120] - SRC2[127:120]);
DEST[255:128] Å 0

PSUBSB
DEST[7:0] Å SaturateToSignedByte (DEST[7:0] - SRC[7:0]);
(* Repeat subtract operation for 2nd through 14th bytes *)
DEST[127:120] Å SaturateToSignedByte (DEST[127:120] - SRC[127:120]);
DEST[255:128] (Unmodified)

VPSUBSW
DEST[15:0] Å SaturateToSignedWord (SRC1[15:0] - SRC2[15:0]);
(* Repeat subtract operation for 2nd through 7th words *)
DEST[127:112] Å SaturateToSignedWord (SRC1[127:112] - SRC2[127:112]);
DEST[255:128] Å 0

PSUBSW
DEST[15:0] Å SaturateToSignedWord (DEST[15:0] - SRC[15:0]);
(* Repeat subtract operation for 2nd through 7th words *)
DEST[127:112] Å SaturateToSignedWord (DEST[127:112] - SRC[127:112]);
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

PSUBSB __m128i _mm_subs_epi8(__m128i m1, __m128i m2)

PSUBSW __m128i _mm_subs_epi16(__m128i m1, __m128i m2)

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4; additionally

#UD if VEX.L = 1.
Ref. # 319433-004 425

INSTRUCTION SET REFERENCE
PSUBUSB/PSUBUSW -Subtract Packed Unsigned Integers with Unsigned
Saturation

Description
Performs a SIMD subtract of the packed unsigned integers of the second source
operand from the packed unsigned integers of the first source operand and stores the
packed unsigned integer results in the destination operand. See Figure 9-4 in the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for an
illustration of a SIMD operation. Overflow is handled with unsigned saturation, as
described in the following paragraphs.

The first source and destination operands are XMM registers. The second source
operand can be either an XMM register or a 128-bit memory location.

The PSUBUSB instruction subtracts packed unsigned byte integers. When an indi-
vidual byte result is less than zero, the saturated value of 00H is written to the desti-
nation operand.

The PSUBUSW instruction subtracts packed unsigned word integers. When an indi-
vidual word result is less than zero, the saturated value of 0000H is written to the
destination operand.

128-bit Legacy SSE version: Bits (255:128) of the corresponding YMM destination
register remain unchanged.

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F D8 /r V/V SSE2 Subtract packed unsigned byte
integers in xmm2/m128 from
packed unsigned byte integers in
xmm1 and saturate result.

PSUBUSB xmm1, xmm2/m128

66 0F D9 /r V/V SSE2 Subtract packed unsigned word
integers in xmm2/m128 from
packed unsigned word integers in
xmm1 and saturate result.

PSUBUSW xmm1, xmm2/m128

VEX.NDS.128.66.0F D8 /r V/V AVX Subtract packed unsigned byte
integers in xmm3/m128 from
packed unsigned byte integers in
xmm2 and saturate result.

VPSUBUSB xmm1, xmm2,
xmm3/m128

VEX.NDS.128.66.0F D9 /r V/V AVX Subtract packed unsigned word
integers in xmm3/m128 from
packed unsigned word integers in
xmm2 and saturate result.

VPSUBUSW xmm1, xmm2,
xmm3/m128
426 Ref. # 319433-004

INSTRUCTION SET REFERENCE
VEX.128 encoded version: Bits (255:128) of the destination YMM register are zeroed.
VEX.L must be 0, otherwise instructions will #UD.

Operation
VPSUBUSB
DEST[7:0] Å SaturateToUnsignedByte (SRC1[7:0] - SRC2[7:0]);
(* Repeat subtract operation for 2nd through 14th bytes *)
DEST[127:120] Å SaturateToUnsignedByte (SRC1[127:120] - SRC2[127:120]);
DEST[255:128] Å 0

PSUBUSB
DEST[7:0] Å SaturateToUnsignedByte (DEST[7:0] - SRC[7:0]);
(* Repeat subtract operation for 2nd through 14th bytes *)
DEST[127:120] Å SaturateToUnsignedByte (DEST[127:120] - SRC[127:120]);
DEST[255:128] (Unmodified)

VPSUBUSW
DEST[15:0] Å SaturateToUnsignedWord (SRC1[15:0] - SRC2[15:0]);
(* Repeat subtract operation for 2nd through 7th words *)
DEST[127:112] Å SaturateToUnsignedWord (SRC1[127:112] - SRC2[127:112]);
DEST[255:128] Å 0

PSUBUSW
DEST[15:0] Å SaturateToUnsignedWord (DEST[15:0] - SRC[15:0]);
(* Repeat subtract operation for 2nd through 7th words *)
DEST[127:112] Å SaturateToUnsignedWord (DEST[127:112] - SRC[127:112]);
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

PSUBUSB __m128i _mm_subs_epu8(__m128i m1, __m128i m2)

PSUBUSW __m128i _mm_subs_epu16(__m128i m1, __m128i m2)

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4; additionally

#UD If VEX.L = 1.
Ref. # 319433-004 427

INSTRUCTION SET REFERENCE
PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ - Unpack High
Data

Description
Unpacks and interleaves the high-order data elements (bytes, words, doublewords,
and quadwords) of the first source operand and second source operand into the

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 68/r V/V SSE2 Interleave high-order bytes from
xmm1 and xmm2/m128 into
xmm1.

PUNPCKHBW xmm1,xmm2/m128

66 0F 69/r V/V SSE2 Interleave high-order words from
xmm1 and xmm2/m128 into
xmm1.

PUNPCKHWD xmm1,xmm2/m128

66 0F 6A/r V/V SSE2 Interleave high-order doublewords
from xmm1 and xmm2/m128 into
xmm1.

PUNPCKHDQ xmm1, xmm2/m128

66 0F 6D/r V/V SSE2 Interleave high-order quadword
from xmm1 and xmm2/m128 into
xmm1 register.

PUNPCKHQDQ xmm1, xmm2/m128

VEX.NDS.128.66.0F 68/r V/V AVX Interleave high-order bytes from
xmm2 and xmm3/m128 into
xmm1.

VPUNPCKHBW xmm1,xmm2,
xmm3/m128

VEX.NDS.128.66.0F 69/r V/V AVX Interleave high-order words from
xmm2 and xmm3/m128 into
xmm1.

VPUNPCKHWD xmm1,xmm2,
xmm3/m128

VEX.NDS.128.66.0F 6A/r V/V AVX Interleave high-order doublewords
from xmm2 and xmm3/m128 into
xmm1.

VPUNPCKHDQ xmm1, xmm2,
xmm3/m128

VEX.NDS.128.66.0F 6D/r V/V AVX Interleave high-order quadword
from xmm2 and xmm3/m128 into
xmm1 register.

VPUNPCKHQDQ xmm1, xmm2,
xmm3/m128
428 Ref. # 319433-004

INSTRUCTION SET REFERENCE
destination operand. (Figure 5-24 shows the unpack operation for bytes in 64-bit
operands.). The low-order data elements are ignored.

128-bit Legacy SSE version: The first source operand and the destination operand
are the same.

Figure 5-24. PUNPCKHDQ Instruction Operation

The second source operand can be an XMM register or a 128-bit memory location.
The first source and destination operands are XMM registers. When the source data
comes from a 128-bit memory operand, an implementation may fetch only the
appropriate 64 bits; however, alignment to a 16-byte boundary and normal segment
checking will still be enforced.

The PUNPCKHBW instruction interleaves the high-order bytes of the source and
destination operands, the PUNPCKHWD instruction interleaves the high-order words
of the source and destination operands, the PUNPCKHDQ instruction interleaves the
high order doubleword (or doublewords) of the source and destination operands, and
the PUNPCKHQDQ instruction interleaves the high-order quadwords of the source
and destination operands.

128-bit Legacy SSE versions: Bits (255:128) of the corresponding YMM destination
register remain unchanged.

VEX.128 encoded versions: Bits (255:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise instructions will #UD.

Operation
INTERLEAVE_HIGH_BYTES (SRC1, SRC2)
DEST[7:0] Å SRC1[71:64]
DEST[15:8] Å SRC2[71:64]
DEST[23:16] Å SRC2[79:72]
DEST[31:24] Å SRC2[79:72]
DEST[39:32] Å SRC1[87:80]
DEST[47:40] Å SRC2[87:80]
DEST[55:48] Å SRC1[95:88]
DEST[63:56] ÅSRC2[95:88]
DEST[71:64] Å SRC1[103:96]

X2X3Y3 Y2

X0X1Y0Y1 X2X3Y2Y3SRC DEST

DEST
Ref. # 319433-004 429

INSTRUCTION SET REFERENCE
DEST[79:72] Å SRC2[103:96]
DEST[87:80] Å SRC1[111:104]
DEST[95:88] Å SRC2[111:104]
DEST[103:96] Å SRC1[119:112]
DEST[111:104] Å SRC2[119:112]
DEST[119:112] Å SRC1[127:120]
DEST[127:120] Å SRC2[127:120]

INTERLEAVE_HIGH_WORDS (SRC1, SRC2)
DEST[15:0] Å SRC1[79:64]
DEST[31:16] Å SRC2[79:64]
DEST[47:32] Å SRC1[95:80]
DEST[63:48] Å SRC2[95:80]
DEST[79:64] Å SRC1[111:96]
DEST[95:80] Å SRC2[111:96]
DEST[111:96] Å SRC1[127:112]
DEST[127:112] Å SRC2[127:112]

INTERLEAVE_HIGH_DWORDS(SRC1, SRC2)
DEST[31:0] Å SRC1[95:64]
DEST[63:32] Å SRC2[95:64]
DEST[95:64] Å SRC1[127:96]
DEST[127:96] Å SRC2[127:96]

INTERLEAVE_HIGH_QWORDS(SRC1, SRC2)
DEST[63:0] Å SRC1[127:64]
DEST[127:64] Å SRC2[127:64]

PUNPCKHBW
DEST[127:0] Å INTERLEAVE_HIGH_BYTES(DEST, SRC)
DEST[255:127] (Unmodified)

VPUNPCKHBW
DEST[127:0] Å INTERLEAVE_HIGH_BYTES(SRC1, SRC2)
DEST[255:127] Å 0

PUNPCKHWD
DEST[127:0] Å INTERLEAVE_HIGH_WORDS(DEST, SRC)
DEST[255:127] (Unmodified)

VPUNPCKHWD
DEST[127:0] Å INTERLEAVE_HIGH_WORDS(SRC1, SRC2)
DEST[255:127] Å 0
430 Ref. # 319433-004

INSTRUCTION SET REFERENCE
PUNPCKHDQ
DEST[127:0] Å INTERLEAVE_HIGH_DWORDS(DEST, SRC)
DEST[255:127] (Unmodified)

VPUNPCKHDQ
DEST[127:0] Å INTERLEAVE_HIGH_DWORDS(SRC1, SRC2)
DEST[255:127] Å 0

PUNPCKHQDQ
DEST[127:0] Å INTERLEAVE_HIGH_QWORDS(DEST, SRC)
DEST[255:127] (Unmodified)

VPUNPCKHQDQ
DEST[127:0] Å INTERLEAVE_HIGH_QWORDS(SRC1, SRC2)

DEST[255:127] Å 0

Intel C/C++ Compiler Intrinsic Equivalent

PUNPCKHBW __m128i _mm_unpackhi_epi8(__m128i m1, __m128i m2)

PUNPCKHWD __m128i _mm_unpackhi_epi16(__m128i m1,__m128i m2)

PUNPCKHDQ __m128i _mm_unpackhi_epi32(__m128i m1, __m128i m2)

PUNPCKHQDQ __m128i _mm_unpackhi_epi64 (__m128i a, __m128i b)

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4; additionally

#UD If VEX.L = 1.
Ref. # 319433-004 431

INSTRUCTION SET REFERENCE
PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ - Unpack Low Data

Description
Unpacks and interleaves the low-order data elements (bytes, words, doublewords,
and quadwords) of the first source operand and second source operand into the
destination operand. (Figure 5-25 shows the unpack operation for bytes in 64-bit
operands.). The high-order data elements are ignored.

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 60/r V/V SSE2 Interleave low-order bytes from
xmm1 and xmm2/m128 into
xmm1.

PUNPCKLBW xmm1,xmm2/m128

66 0F 61/r V/V SSE2 Interleave low-order words from
xmm1 and xmm2/m128 into
xmm1.

PUNPCKLWD xmm1,xmm2/m128

66 0F 62/r V/V SSE2 Interleave low-order doublewords
from xmm1 and xmm2/m128 into
xmm1.

PUNPCKLDQ xmm1, xmm2/m128

66 0F 6C/r V/V SSE2 Interleave low-order quadword
from xmm1 and xmm2/m128 into
xmm1 register.

PUNPCKLQDQ xmm1, xmm2/m128

VEX.NDS.128.66.0F 60/r V/V AVX Interleave low-order bytes from
xmm2 and xmm3/m128 into
xmm1.

VPUNPCKLBW xmm1,xmm2,
xmm3/m128

VEX.NDS.128.66.0F 61/r V/V AVX Interleave low-order words from
xmm2 and xmm3/m128 into
xmm1.

VPUNPCKLWD xmm1,xmm2,
xmm3/m128

VEX.NDS.128.66.0F 62/r V/V AVX Interleave low-order doublewords
from xmm2 and xmm3/m128 into
xmm1.

VPUNPCKLDQ xmm1, xmm2,
xmm3/m128

VEX.NDS.128.66.0F 6C/r V/V AVX Interleave low-order quadword
from xmm2 and xmm3/m128 into
xmm1 register.

VPUNPCKLQDQ xmm1, xmm2,
xmm3/m128
432 Ref. # 319433-004

INSTRUCTION SET REFERENCE
128-bit Legacy SSE version: The first source operand and the destination operand
are the same.

Figure 5-25. PUNPCKLBW Instruction Operation using 64-bit Operands

The second source operand can be an XMM register or a 128-bit memory location.
The first source and destination operands are XMM registers. When the source data
comes from a 128-bit memory operand, an implementation may fetch only the
appropriate 64 bits; however, alignment to a 16-byte boundary and normal segment
checking will still be enforced.

The PUNPCKLBW instruction interleaves the low-order bytes of the source and desti-
nation operands, the PUNPCKLWD instruction interleaves the low-order words of the
source and destination operands, the PUNPCKLDQ instruction interleaves the low
order doubleword (or doublewords) of the source and destination operands, and the
PUNPCKLQDQ instruction interleaves the low-order quadwords of the source and
destination operands.

128-bit Legacy SSE versions: Bits (255:128) of the corresponding YMM destination
register remain unchanged.

VEX.128 encoded versions: Bits (255:128) of the destination YMM register are
zeroed. VEX.L must be 0, otherwise instructions will #UD.

Operation
INTERLEAVE_BYTES (SRC1, SRC2)
DEST[7:0] Å SRC1[7:0]
DEST[15:8] Å SRC2[7:0]
DEST[23:16] Å SRC2[15:8]
DEST[31:24] Å SRC2[15:8]
DEST[39:32] Å SRC1[23:16]
DEST[47:40] Å SRC2[23:16]
DEST[55:48] Å SRC1[31:24]
DEST[63:56] ÅSRC2[31:24]
DEST[71:64] Å SRC1[39:32]
DEST[79:72] Å SRC2[39:32]
DEST[87:80] Å SRC1[47:40]
DEST[95:88] Å SRC2[47:40]

X0X3 X2 X1 Y0Y3 Y2 Y1

X0X3 X2 X1Y0Y3 Y2 Y1 X4X7 X6 X5Y4Y7 Y6 Y5SRC DEST

DEST
Ref. # 319433-004 433

INSTRUCTION SET REFERENCE
DEST[103:96] Å SRC1[55:48]
DEST[111:104] Å SRC2[55:48]
DEST[119:112] Å SRC1[63:56]
DEST[127:120] Å SRC2[63:56]

INTERLEAVE_WORDS (SRC1, SRC2)
DEST[15:0] Å SRC1[15:0]
DEST[31:16] Å SRC2[15:0]
DEST[47:32] Å SRC1[31:16]
DEST[63:48] Å SRC2[31:16]
DEST[79:64] Å SRC1[47:32]
DEST[95:80] Å SRC2[47:32]
DEST[111:96] Å SRC1[63:48]
DEST[127:112] Å SRC2[63:48]

INTERLEAVE_DWORDS(SRC1, SRC2)
DEST[31:0] Å SRC1[31:0]
DEST[63:32] Å SRC2[31:0]
DEST[95:64] Å SRC1[63:32]
DEST[127:96] Å SRC2[63:32]

INTERLEAVE_QWORDS(SRC1, SRC2)
DEST[63:0] Å SRC1[63:0]
DEST[127:64] Å SRC2[63:0]

PUNPCKLBW
DEST[127:0] Å INTERLEAVE_BYTES(DEST, SRC)
DEST[255:127] (Unmodified)

VPUNPCKLBW
DEST[127:0] Å INTERLEAVE_BYTES(SRC1, SRC2)
DEST[255:127] Å 0

PUNPCKLWD
DEST[127:0] Å INTERLEAVE_WORDS(DEST, SRC)
DEST[255:127] (Unmodified)

VPUNPCKLWD
DEST[127:0] Å INTERLEAVE_WORDS(SRC1, SRC2)
DEST[255:127] Å 0

PUNPCKLDQ
DEST[127:0] Å INTERLEAVE_DWORDS(DEST, SRC)
434 Ref. # 319433-004

INSTRUCTION SET REFERENCE
DEST[255:127] (Unmodified)

VPUNPCKLDQ
DEST[127:0] Å INTERLEAVE_DWORDS(SRC1, SRC2)
DEST[255:127] Å 0

PUNPCKLQDQ
DEST[127:0] Å INTERLEAVE_QWORDS(DEST, SRC)
DEST[255:127] (Unmodified)

VPUNPCKLQDQ
DEST[127:0] Å INTERLEAVE_QWORDS(SRC1, SRC2)
DEST[255:127] Å 0

Intel C/C++ Compiler Intrinsic Equivalent

PUNPCKLBW __m128i _mm_unpacklo_epi8 (__m128i m1, __m128i m2)

PUNPCKLWD __m128i _mm_unpacklo_epi16 (__m128i m1, __m128i m2)

PUNPCKLDQ __m128i _mm_unpacklo_epi32 (__m128i m1, __m128i m2)

PUNPCKLQDQ __m128i _mm_unpacklo_epi64 (__m128i m1, __m128i m2)

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4; additionally

#UD If VEX.L = 1.
Ref. # 319433-004 435

INSTRUCTION SET REFERENCE
PXOR - Exclusive Or

Description
Performs a bitwise logical XOR operation on the second source operand and the first
source operand and stores the result in the destination operand. The second source
operand is an XMM register or a 128-bit memory location. The first source and desti-
nation operands can be XMM registers. Each bit of the result is set to 1 if the corre-
sponding bits of the first and second operands are different; otherwise, each bit is 0
if the corresponding bits of the first and second operand are the same.

128-bit Legacy SSE version: Bits (255:128) of the corresponding YMM destination
register remain unchanged.

VEX.128 encoded version: Bits (255:128) of the destination YMM register are zeroed.
VEX.L must be 0, otherwise instructions will #UD.

Operation
VPXOR (VEX.128 encoded version)
DEST Å SRC1 XOR SRC2
DEST[255:128] Å 0

PXOR (128-bit Legacy SSE version)
DEST Å DEST XOR SRC
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

PXOR __m128i _mm_xor_si128 (__m128i a, __m128i b)

SIMD Floating-Point Exceptions
none

Other Exceptions
See Exceptions Type 4; additionally

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F EF /r V/V SSE2 Bitwise XOR of xmm2/m128 and
xmm1.PXOR xmm1, xmm2/m128

VEX.NDS.128.66.0F EF /r V/V AVX Bitwise XOR of xmm3/m128 and
xmm2.VPXOR xmm1, xmm2, xmm3/m128
436 Ref. # 319433-004

INSTRUCTION SET REFERENCE
#UD If VEX.L = 1.
Ref. # 319433-004 437

INSTRUCTION SET REFERENCE
RCPPS- Compute Approximate Reciprocals of Packed Single-Precision
Floating-Point Values

Description
Performs an SIMD computation of the approximate reciprocals of the four or eight
packed single precision floating-point values in the source operand (second operand)
and stores the packed single-precision floating-point results in the destination
operand. See Figure 10-5 in the IA-32 Intel Architecture Software Developer’s
Manual, Volume 1 for an illustration of an SIMD single-precision floating-point oper-
ation.

The relative error for this approximation is:

|Relative Error| < 1.5 *2^-12

The RCPPS instruction is not affected by the rounding control bits in the MXCSR
register.

When a source value is a 0.0, an Inf of the sign of the source value is returned.

A denormal source value is treated as a 0.0 (of the same sign).

Tiny results are always flushed to 0.0, with the sign of the operand:
• The result is guaranteed not to be tiny for inputs that are not greater than

(2125)*(2-3*2-10) in absolute value.
• The result is guaranteed to be flushed to 0 for values greater than

(2126)*(1+3*2-11) in absolute value.
• Input values in between this range may or may not produce tiny results,

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 53 /r V/V SSE Computes the approximate recip-
rocals of packed single-precision
values in xmm2/mem and stores
the results in xmm1

RCPPS xmm1, xmm2/m128

VEX.128.0F 53 /r V/V AVX Computes the approximate recip-
rocals of packed single-precision
values in xmm2/mem and stores
the results in xmm1

VRCPPS xmm1, xmm2/m128

VEX.256.0F 53 /r V/V AVX Computes the approximate recip-
rocals of packed single-precision
values in ymm2/mem and stores
the results in ymm1

VRCPPS ymm1, ymm2/m256
438 Ref. # 319433-004

INSTRUCTION SET REFERENCE
depending on the implementation.

When a source value is an SNaN or QNaN, the SNaN is converted to a QNaN or the
source QNaN is returned.

VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

VEX.128 encoded version: the first source operand second source operand is an XMM
register or 128-bit memory location. The destination operand is an XMM register. The
upper bits (255:128) of the corresponding YMM register destination are zeroed.

128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (255:128) of the corresponding YMM register destination are
unmodified.

Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise
instructions will #UD.

Operation
VRCPPS (VEX.256 encoded version)
DEST[31:0] Å APPROXIMATE(1/SRC[31:0])
DEST[63:32] Å APPROXIMATE(1/SRC[63:32])
DEST[95:64] Å APPROXIMATE(1/SRC[95:64])
DEST[127:96] Å APPROXIMATE(1/SRC[127:96])
DEST[159:128] Å APPROXIMATE(1/SRC[159:128])
DEST[191:160] Å APPROXIMATE(1/SRC[191:160])
DEST[223:192] Å APPROXIMATE(1/SRC[223:192])
DEST[255:224] Å APPROXIMATE(1/SRC[255:224])

VRCPPS (VEX.128 encoded version)
DEST[31:0] Å APPROXIMATE(1/SRC[31:0])
DEST[63:32] Å APPROXIMATE(1/SRC[63:32])
DEST[95:64] Å APPROXIMATE(1/SRC[95:64])
DEST[127:96] Å APPROXIMATE(1/SRC[127:96])
DEST[255:128] Å 0

RCPPS (128-bit Legacy SSE version)
DEST[31:0] Å APPROXIMATE(1/SRC[31:0])
DEST[63:32] Å APPROXIMATE(1/SRC[63:32])
DEST[95:64] Å APPROXIMATE(1/SRC[95:64])
DEST[127:96] Å APPROXIMATE(1/SRC[127:96])
Ref. # 319433-004 439

INSTRUCTION SET REFERENCE
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

RCPPS __m256 _mm256_rcp_ps (__m256 a);

RCPPS __m128 _mm_rcp_ps (__m128 a);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4; additionally

#UD If VEX.vvvv != 1111B.
440 Ref. # 319433-004

INSTRUCTION SET REFERENCE
RCPSS - Compute Reciprocal of Scalar Single-Precision Floating-Point Value

Description
Computes of an approximate reciprocal of the low single-precision floating-point
value in the second source operand and stores the single-precision floating-point
result in the destination operand. The second source operand can be an XMM register
or a 32-bit memory location. The first source operand and the destination operand
are XMM registers. The three high-order doublewords of the destination operand are
copied from the same bits of the first source operand. See Figure 10-6 in the Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for an illustra-
tion of a scalar single-precision floating-point operation.

The relative error for this approximation is:

|Relative Error| < 1.5 *2-12

The RCPSS instruction is not affected by the rounding control bits in the MXCSR
register. When a source value is a 0.0, an Inf of the sign of the source value is
returned.

A denormal source value is treated as a 0.0 (of the same sign).

Tiny results are always flushed to 0.0, with the sign of the operand:
• The result is guaranteed not to be tiny for inputs that are not greater than

(2125)*(2-3*2-10) in absolute value.
• The result is guaranteed to be flushed to 0 for values greater than

(2126)*(1+3*2-11) in absolute value.
• Input values in between this range may or may not produce tiny results,

depending on the implementation.

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

F3 0F 53 /r V/V SSE Computes the approximate
reciprocal of the scalar single-
precision floating-point value in
xmm2/m32 and stores the result in
xmm1.

RCPSS xmm1, xmm2/m32

VEX.NDS.128.F3.0F 53 /r V/V AVX Computes the approximate
reciprocal of the scalar single-
precision floating-point value in
xmm3/m32 and stores the result in
xmm1. Also, upper single
precision floating-point values
(bits[127:32]) from xmm2 are
copied to xmm1[127:32].

VRCPSS xmm1, xmm2, xmm3/m32
Ref. # 319433-004 441

INSTRUCTION SET REFERENCE
When a source value is an SNaN or QNaN, the SNaN is converted to a QNaN or the
source QNaN is returned.

128-bit Legacy SSE version: The first source operand and the destination operand
are the same. Bits (255:32) of the corresponding YMM destination register remain
unchanged.

VEX.128 encoded version: Bits (255:128) of the destination YMM register are zeroed.

Software should ensure VRCPSS is encoded with VEX.L=0. Encoding VRCPSS with
VEX.L=1 may encounter unpredictable behavior across different processor genera-
tions.

Operation
VRCPSS (VEX.128 encoded version)
DEST[31:0] Å APPROXIMATE(1/SRC2[31:0])
DEST[127:32] Å SRC1[127:32]
DEST[255:128] Å 0

RCPSS (128-bit Legacy SSE version)
DEST[31:0] Å APPROXIMATE(1/SRC[31:0])
DEST[255:32] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

RCPSS __m128 _mm_rcp_ss(__m128 a)

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 5
442 Ref. # 319433-004

INSTRUCTION SET REFERENCE
RSQRTPS - Compute Approximate Reciprocals of Square Roots of Packed
Single-Precision Floating-point Values

Description
Performs an SIMD computation of the approximate reciprocals of the square roots of
the four or eight packed single precision floating-point values in the source operand
(second operand) and stores the packed single-precision floating-point results in the
destination operand. See Figure 10-5 in the IA-32 Intel Architecture Software Devel-
oper’s Manual, Volume 1 for an illustration of an SIMD single-precision floating-point
operation.

|Relative Error| < 1.5 *2-12

The RSQRTPS instruction is not affected by the rounding control bits in the MXCSR
register.

When a source value is a 0.0, an Inf of the sign of the source value is returned.

A denormal source value is treated as a 0.0 (of the same sign).

When a source value is a negative value (other than 0.0), a floating-point indefinite
is returned.

When a source value is an SNaN or QNaN, the SNaN is converted to a QNaN or the
source QNaN is returned.

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 52 /r V/V SSE Computes the approximate recip-
rocals of the square roots of
packed single-precision values in
xmm2/mem and stores the results
in xmm1

RSQRTPS xmm1, xmm2/m128

VEX.128.0F 52 /r V/V AVX Computes the approximate recip-
rocals of the square roots of
packed single-precision values in
xmm2/mem and stores the results
in xmm1

VRSQRTPS xmm1, xmm2/m128

VEX.256.0F 52 /r V/V AVX Computes the approximate recip-
rocals of the square roots of
packed single-precision values in
ymm2/mem and stores the results
in ymm1

VRSQRTPS ymm1, ymm2/m256
Ref. # 319433-004 443

INSTRUCTION SET REFERENCE
VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

VEX.128 encoded version: the first source operand second source operand is an XMM
register or 128-bit memory location. The destination operand is an XMM register. The
upper bits (255:128) of the corresponding YMM register destination are zeroed.

128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (255:128) of the corresponding YMM register destination are
unmodified.

Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise
instructions will #UD.

Operation
VRSQRTPS (VEX.256 encoded version)
DEST[31:0] Å APPROXIMATE(1/SQRT(SRC[31:0]))
DEST[63:32] Å APPROXIMATE(1/SQRT(SRC1[63:32]))
DEST[95:64] Å APPROXIMATE(1/SQRT(SRC1[95:64]))
DEST[127:96] Å APPROXIMATE(1/SQRT(SRC2[127:96]))
DEST[159:128] Å APPROXIMATE(1/SQRT(SRC2[159:128]))
DEST[191:160] Å APPROXIMATE(1/SQRT(SRC2[191:160]))
DEST[223:192] Å APPROXIMATE(1/SQRT(SRC2[223:192]))
DEST[255:224] Å APPROXIMATE(1/SQRT(SRC2[255:224]))

VRSQRTPS (VEX.128 encoded version)
DEST[31:0] Å APPROXIMATE(1/SQRT(SRC[31:0]))
DEST[63:32] Å APPROXIMATE(1/SQRT(SRC1[63:32]))
DEST[95:64] Å APPROXIMATE(1/SQRT(SRC1[95:64]))
DEST[127:96] Å APPROXIMATE(1/SQRT(SRC2[127:96]))
DEST[255:128] Å 0

RSQRTPS (128-bit Legacy SSE version)
DEST[31:0] Å APPROXIMATE(1/SQRT(SRC[31:0]))
DEST[63:32] Å APPROXIMATE(1/SQRT(SRC1[63:32]))
DEST[95:64] Å APPROXIMATE(1/SQRT(SRC1[95:64]))
DEST[127:96] Å APPROXIMATE(1/SQRT(SRC2[127:96]))
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent
RSQRTPS __m256 _mm256_rsqrt_ps (__m256 a);
444 Ref. # 319433-004

INSTRUCTION SET REFERENCE
RSQRTPS __m128 _mm_rsqrt_ps (__m128 a);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4; additionally

#UD If VEX.vvvv != 1111B.
Ref. # 319433-004 445

INSTRUCTION SET REFERENCE
RSQRTSS - Compute Reciprocal of Square Root of Scalar Single-Precision
Floating-Point Value

Description
Computes an approximate reciprocal of the square root of the low single-precision
floating-point value in the second source operand stores the single-precision
floating-point result in the destination operand. The second source operand can be
an XMM register or a 32-bit memory location. The first source and destination oper-
ands are XMM registers. The three high-order doublewords of the destination
operand are copied from the same bits of the first source operand. See Figure 10-6 in
the Intel 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for an
illustration of a scalar single-precision floating point operation. The relative error for
this approximation is:

Relative Error| < 1.5 *2-12

The RSQRTSS instruction is not affected by the rounding control bits in the MXCSR
register.

When a source value is a 0.0, an Inf of the sign of the source value is returned.

A denormal source value is treated as a 0.0 (of the same sign).

When a source value is a negative value (other than 0.0), a floating-point indefinite
is returned.

When a source value is an SNaN or QNaN, the SNaN is converted to a QNaN or the
source QNaN is returned.

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

F3 0F 52 /r V/V SSE Computes the approximate
reciprocal of the square root of the
low single precision floating-point
value in xmm2/m32 and stores the
results in xmm1.

RSQRTSS xmm1, xmm2/m32

VEX.NDS.128.F3.0F 52 /r V/V AVX Computes the approximate
reciprocal of the square root of the
low single precision floating-point
value in xmm3/m32 and stores the
results in xmm1. Also, upper
single precision floating-point
values (bits[127:32]) from xmm2
are copied to xmm1[127:32].

VRSQRTSS xmm1, xmm2,
xmm3/m32
446 Ref. # 319433-004

INSTRUCTION SET REFERENCE
128-bit Legacy SSE version: The first source operand and the destination operand
are the same. Bits (255:32) of the corresponding YMM destination register remain
unchanged.

VEX.128 encoded version: Bits (255:128) of the destination YMM register are zeroed.

Software should ensure VRSQRTSS is encoded with VEX.L=0. Encoding VRSQRTSS
with VEX.L=1 may encounter unpredictable behavior across different processor
generations.

Operation
VRSQRTSS (VEX.128 encoded version)
DEST[31:0] Å APPROXIMATE(1/SQRT(SRC2[31:0]))
DEST[127:32] Å SRC1[31:0]
DEST[255:128] Å0

RSQRTSS (128-bit Legacy SSE version)
DEST[31:0] Å APPROXIMATE(1/SQRT(SRC2[31:0]))
DEST[255:32] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

RSQRTSS __m128 _mm_rsqrt_ss(__m128 a)

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 5
Ref. # 319433-004 447

INSTRUCTION SET REFERENCE
ROUNDPD- Round Packed Double-Precision Floating-Point Values

Description
Round the four double-precision floating-point values in the source operand (second
operand) by the rounding mode specified in the immediate operand (third operand)
and place the result in the destination operand (first operand). The rounding process
rounds the input to an integral value and returns the result as a double-precision
floating-point value.

The immediate operand specifies control fields for the rounding operation, three bit
fields are defined and shown in Figure 5-26. Bit 3 of the immediate byte controls
processor behavior for a precision exception, bit 2 selects the source of rounding
mode control. Bits 1:0 specify a non-sticky rounding-mode value (Figure 5-26 lists
the encoded values for rounding-mode field).

The Precision Floating-Point Exception is signaled according to the immediate
operand. If any source operand is an SNaN then it will be converted to a QNaN. If
DAZ is set to ‘1 then denormals will be converted to zero before rounding.

VEX.256 encoded version: The source operand is a YMM register or a 256-bit
memory location. The destination operand is a YMM register.

VEX.128 encoded version: the source operand second source operand or a 128-bit
memory location. The destination operand is an XMM register. The upper bits
(255:128) of the corresponding YMM register destination are zeroed.

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 3A 09 /r ib V/V SSE4_1 Round packed double-precision
floating-point values in
xmm2/m128 and place the result
in xmm1. The rounding mode is
determined by imm8

ROUNDPD xmm1, xmm2/m128,
imm8

VEX.128.66.0F3A 09 /r ib V/V AVX Round packed double-precision
floating-point values in
xmm2/m128 and place the result
in xmm1. The rounding mode is
determined by imm8

VROUNDPD xmm1, xmm2/m128,
imm8

VEX.256.66.0F3A 09 /r ib V/V AVX Round packed double-precision
floating-point values in
ymm2/m256 and place the result
in ymm1. The rounding mode is
determined by imm8

VROUNDPD ymm1, ymm2/m256,
imm8
448 Ref. # 319433-004

INSTRUCTION SET REFERENCE
128-bit Legacy SSE version: The second source can be an XMM register or 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (255:128) of the corresponding YMM register destination are
unmodified.

Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise
instructions will #UD.

Figure 5-26. VROUNDxx immediate control field definition

Operation
RoundToNearestIntegralValue(value, control) {

rounding_direction Å MXCSR:RC
if (control[2] == 1)

rounding_direction Å MXCSR:RC
else

rounding_direction Å control[1:0]

47

Reserved

3 2 1 0

p o RC

00: Nearest
01: Down / toward -INF
10: Up / toward +INF
11: truncate

1: use MXCSR:RC
0: use IMM8[1:0]

0: normal behavior
1: Inexact (Precision) field is not
updated and no precision exception
will be taken if unmasked
Ref. # 319433-004 449

INSTRUCTION SET REFERENCE
fi
case (rounding_direction)

00: dest Å round_to_nearest_even_integer(value)
01: dest Å round_to_equal_or_smaller_integer(value)
10: dest Å round_to_equal_or_larger_integer(value)
11: dest Å round_to_nearest_smallest_magnitude_integer(value)

esac

if (control[3] = 0)
{

if (value != dest)
{

set_precision()
}

}
return(dest)

}

VROUNDPD (VEX.256 encoded version)
DEST[63:0] Å RoundToNearestIntegralValue(SRC[63:0], ROUND_CONTROL)
DEST[127:64] Å RoundToNearestIntegralValue(SRC[127:64]], ROUND_CONTROL)
DEST[191:128] Å RoundToNearestIntegralValue(SRC[191:128]], ROUND_CONTROL)
DEST[255:192] Å RoundToNearestIntegralValue(SRC[255:192]], ROUND_CONTROL)

VROUNDPD (VEX.128 encoded version)
DEST[63:0] Å RoundToNearestIntegralValue(SRC[63:0]], ROUND_CONTROL)
DEST[127:64] Å RoundToNearestIntegralValue(SRC[127:64]], ROUND_CONTROL)
DEST[255:128] Å 0

ROUNDPD (128-bit Legacy SSE version)
DEST[63:0] Å RoundToNearestIntegralValue(SRC[63:0]], ROUND_CONTROL)
DEST[127:64] Å RoundToNearestIntegralValue(SRC[127:64]], ROUND_CONTROL)
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

__m256 _mm256_round_pd(__m256d s1, int iRoundMode);

__m256 _mm256_floor_pd(__m256d s1);

__m256 _mm256_ceil_pd(__m256d s1)

__m128 _mm_round_pd(__m128d s1, int iRoundMode);
450 Ref. # 319433-004

INSTRUCTION SET REFERENCE
__m128 _mm_floor_pd(__m128d s1);

__m128 _mm_ceil_pd(__m128d s1)

SIMD Floating-Point Exceptions
Precision, Invalid

Other Exceptions
See Exceptions Type 2; additionally

#UD If VEX.vvvv != 1111B.
Ref. # 319433-004 451

INSTRUCTION SET REFERENCE
ROUNDPS- Round Packed Single-Precision Floating-Point Values

Description
Round the four or eight single-precision floating-point values in the source operand
(second operand) by the rounding mode specified in the immediate operand (third
operand) and place the result in the destination operand (first operand). The
rounding process rounds the input to an integral value and returns the result as a
single-precision floating-point value.

The immediate operand specifies control fields for the rounding operation, three bit
fields are defined and shown in Figure 5-26. Bit 3 of the immediate byte controls
processor behavior for a precision exception, bit 2 selects the source of rounding
mode control. Bits 1:0 specify a non-sticky rounding-mode value (Figure 5-26 lists
the encoded values for rounding-mode field).

The Precision Floating-Point Exception is signaled according to the immediate
operand. If any source operand is an SNaN then it will be converted to a QNaN. If
DAZ is set to ‘1 then denormals will be converted to zero before rounding.

VEX.256 encoded version: The source operand is a YMM register or a 256-bit
memory location. The destination operand is a YMM register.

VEX.128 encoded version: the source operand second source operand or a 128-bit
memory location. The destination operand is an XMM register. The upper bits
(255:128) of the corresponding YMM register destination are zeroed.

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 3A 08 /r ib V/V SSE4_1 Round packed single-precision
floating-point values in
xmm2/m128 and place the result
in xmm1. The rounding mode is
determined by imm8

ROUNDPS xmm1, xmm2/m128,
imm8

VEX.128.66.0F3A 08 /r ib V/V AVX Round packed single-precision
floating-point values in
xmm2/m128 and place the result
in xmm1. The rounding mode is
determined by imm8

VROUNDPS xmm1, xmm2/m128,
imm8

VEX.256.66.0F3A 08 /r ib V/V AVX Round packed single-precision
floating-point values in
ymm2/m256 and place the result
in ymm1. The rounding mode is
determined by imm8

VROUNDPS ymm1, ymm2/m256,
imm8
452 Ref. # 319433-004

INSTRUCTION SET REFERENCE
128-bit Legacy SSE version: The second source can be an XMM register or 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (255:128) of the corresponding YMM register destination are
unmodified.

Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise
instructions will #UD.

Operation
(see ROUNDPD for definition of RoundToNearestIntegralValue)

VROUNDPS (VEX.256 encoded version)
DEST[31:0] Å RoundToNearestIntegralValue(SRC[31:0], ROUND_CONTROL)
DEST[63:32] Å RoundToNearestIntegralValue(SRC[63:32], ROUND_CONTROL)
DEST[95:64] Å RoundToNearestIntegralValue(SRC[95:64]], ROUND_CONTROL)
DEST[127:96] Å RoundToNearestIntegralValue(SRC[127:96]], ROUND_CONTROL)
DEST[159:128] Å RoundToNearestIntegralValue(SRC[159:128]], ROUND_CONTROL)
DEST[191:160] Å RoundToNearestIntegralValue(SRC[191:160]], ROUND_CONTROL)
DEST[223:192] Å RoundToNearestIntegralValue(SRC[223:192]], ROUND_CONTROL)
DEST[255:224] Å RoundToNearestIntegralValue(SRC[255:224]], ROUND_CONTROL)

VROUNDPS (VEX.128 encoded version)
DEST[31:0] Å RoundToNearestIntegralValue(SRC[31:0], ROUND_CONTROL)
DEST[63:32] Å RoundToNearestIntegralValue(SRC[63:32], ROUND_CONTROL)
DEST[95:64] Å RoundToNearestIntegralValue(SRC[95:64]], ROUND_CONTROL)
DEST[127:96] Å RoundToNearestIntegralValue(SRC[127:96]], ROUND_CONTROL)
DEST[255:128] Å 0

ROUNDPS(128-bit Legacy SSE version)
DEST[31:0] Å RoundToNearestIntegralValue(SRC[31:0], ROUND_CONTROL)
DEST[63:32] Å RoundToNearestIntegralValue(SRC[63:32], ROUND_CONTROL)
DEST[95:64] Å RoundToNearestIntegralValue(SRC[95:64]], ROUND_CONTROL)
DEST[127:96] Å RoundToNearestIntegralValue(SRC[127:96]], ROUND_CONTROL)
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

__m256 _mm256_round_ps(__m256 s1, int iRoundMode);

__m256 _mm256_floor_ps(__m256 s1);

__m256 _mm256_ceil_ps(__m256 s1)

__m128 _mm_round_ps(__m128 s1, int iRoundMode);

__m128 _mm_floor_ps(__m128 s1);
Ref. # 319433-004 453

INSTRUCTION SET REFERENCE
__m128 _mm_ceil_ps(__m128 s1)

SIMD Floating-Point Exceptions
Precision, Invalid

Other Exceptions
See Exceptions Type 2; additionally

#UD If VEX.vvvv != 1111B.
454 Ref. # 319433-004

INSTRUCTION SET REFERENCE
ROUNDSD - Round Scalar Double-Precision Value

Description
Round the DP FP value in the second source operand by the rounding mode specified
in the immediate operand and place the result in the destination operand. The
rounding process rounds the lowest double precision floating-point input to an inte-
gral value and returns the result as a double precision floating-point value in the
lowest position. The upper double precision floating-point value in the destination is
retained.

The immediate operand specifies control fields for the rounding operation, three bit
fields are defined and shown in Figure 5-26. Bit 3 of the immediate byte controls
processor behavior for a precision exception, bit 2 selects the source of rounding
mode control. Bits 1:0 specify a non-sticky rounding-mode value (Figure 5-26 lists
the encoded values for rounding-mode field).

The Precision Floating-Point Exception is signaled according to the immediate
operand. If any source operand is an SNaN then it will be converted to a QNaN. If
DAZ is set to ‘1 then denormals will be converted to zero before rounding.

128-bit Legacy SSE version: The first source operand and the destination operand
are the same. Bits (255:64) of the corresponding YMM destination register remain
unchanged.

VEX.128 encoded version: Bits (255:128) of the destination YMM register are zeroed.

Software should ensure VROUNDSD is encoded with VEX.L=0. Encoding VROUNDSD
with VEX.L=1 may encounter unpredictable behavior across different processor
generations.

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 3A 0B /r ib V/V SSE4_1 Round the low packed double
precision floating-point value in
xmm2/m64 and place the result in
xmm1. The rounding mode is
determined by imm8.

ROUNDSD xmm1, xmm2/m64,
imm8

VEX.NDS.128.66.0F3A 0B /r ib V/V AVX Round the low packed double
precision floating-point value in
xmm3/m64 and place the result in
xmm1. The rounding mode is
determined by imm8. Upper
packed double precision floating-
point value (bits[127:64]) from
xmm2 is copied to xmm1[127:64].

VROUNDSD xmm1, xmm2,
xmm3/m64, imm8
Ref. # 319433-004 455

INSTRUCTION SET REFERENCE
Operation
VROUNDSD (VEX.128 encoded version)
DEST[63:0] Å RoundToNearestIntegralValue(SRC2[63:0], ROUND_CONTROL)
DEST[127:64] Å SRC1[127:64]
DEST[255:128] Å 0

ROUNDSD (128-bit Legacy SSE version)
DEST[63:0] Å RoundToNearestIntegralValue(SRC[63:0], ROUND_CONTROL)
DEST[255:64] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

ROUNDSD __m128d _mm_round_sd(__m128d dst, __m128d s1, int iRoundMode);

__m128d _mm_floor_sd(__m128d dst, __m128d s1);

__m128d _mm_ceil_sd(__m128d dst, __m128d s1);

SIMD Floating-Point Exceptions
Invalid (signaled only if SRC = SNaN), Precision (signaled only if imm[3] == ‘0; if

imm[3] == ‘1, then the Precision Mask in the MXSCSR is ignored.)

Note that Denormal is not signaled by ROUNDSD.

Other Exceptions
See Exceptions Type 3
456 Ref. # 319433-004

INSTRUCTION SET REFERENCE
ROUNDSS - Round Scalar Single-Precision Value

Description
Round the single precision floating-point value in the second source operand by the
rounding mode specified in the immediate operand and place the result in the desti-
nation operand. The rounding process rounds the lowest single precision floating-
point input to an integral value and returns the result as a single precision floating-
point value in the lowest position. The upper three single precision floating-point
values in the destination are copied from the first source operand.

The immediate operand specifies control fields for the rounding operation, three bit
fields are defined and shown in Figure 5-26. Bit 3 of the immediate byte controls
processor behavior for a precision exception, bit 2 selects the source of rounding
mode control. Bits 1:0 specify a non-sticky rounding-mode value (Figure 5-26 lists
the encoded values for rounding-mode field).

The Precision Floating-Point Exception is signaled according to the immediate
operand. If any source operand is an SNaN then it will be converted to a QNaN. If
DAZ is set to ‘1 then denormals will be converted to zero before rounding.

128-bit Legacy SSE version: The first source operand and the destination operand
are the same. Bits (255:32) of the corresponding YMM destination register remain
unchanged.

VEX.128 encoded version: Bits (255:128) of the destination YMM register are zeroed.

Software should ensure VROUNDSS is encoded with VEX.L=0. Encoding VROUNDSS
with VEX.L=1 may encounter unpredictable behavior across different processor
generations.

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 3A 0A ib V/V SSE4_1 Round the low packed single
precision floating-point value in
xmm2/m32 and place the result in
xmm1. The rounding mode is
determined by imm8.

ROUNDSS xmm1, xmm2/m32,
imm8

VEX.NDS.128.66.0F3A 0A ib V/V AVX Round the low packed single
precision floating-point value in
xmm3/m32 and place the result in
xmm1. The rounding mode is
determined by imm8. Also, upper
packed single precision floating-
point values (bits[127:32]) from
xmm2 are copied to
xmm1[127:32].

VROUNDSS xmm1, xmm2,
xmm3/m32, imm8
Ref. # 319433-004 457

INSTRUCTION SET REFERENCE
Operation
VROUNDSS (VEX.128 encoded version)
DEST[31:0] Å RoundToNearestIntegralValue(SRC2[31:0], ROUND_CONTROL)
DEST[127:32] Å SRC1[127:32]
DEST[255:128] Å 0

ROUNDSS (128-bit Legacy SSE version)
DEST[31:0] Å RoundToNearestIntegralValue(SRC[31:0], ROUND_CONTROL)
DEST[255:32] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

ROUNDSS __m128 _mm_round_ss(__m128 dst, __m128 s1, int iRoundMode);

__m128 _mm_floor_ss(__m128 dst, __m128 s1);

__m128 _mm_ceil_ss(__m128 dst, __m128 s1);

SIMD Floating-Point Exceptions
Invalid (signaled only if SRC = SNaN), Precision (signaled only if imm[3] == ‘0; if

imm[3] == ‘1, then the Precision Mask in the MXSCSR is ignored.)

Note that Denormal is not signaled by ROUNDSS.

Other Exceptions
See Exceptions Type 3
458 Ref. # 319433-004

INSTRUCTION SET REFERENCE
SHUFPD - Shuffle Packed Double Precision Floating-Point Values

Description
Moves either of the two packed double-precision floating-point values from each
double quadword in the first source operand (second operand) into the low quadword
of each double quadword of the destination operand (first operand); moves either of
the two packed double-precision floating-point values from the second source
operand (third operand) into the high quadword of each double quadword of the
destination operand (see Figure 5-27). The immediate determines which values are
moved to the destination operand.

VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

VEX.128 encoded version: the first source operand second source operand is an XMM
register or 128-bit memory location. The destination operand is an XMM register. The
upper bits (255:128) of the corresponding YMM register destination are zeroed.

128-bit Legacy SSE version: The source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (255:128) of the corresponding YMM register destination are
unmodified.

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F C6 /r ib V/V SSE2 Shuffle Packed double-precision
floating-point values selected by
imm8 from xmm1 and
xmm2/mem

SHUFPD xmm1, xmm2/m128, imm8

VEX.NDS.128.66.0F C6 /r ib V/V AVX Shuffle Packed double-precision
floating-point values selected by
imm8 from xmm1 and
xmm2/mem

VSHUFPD xmm1, xmm2,
xmm3/m128, imm8

VEX.NDS.256.66.0F C6 /r ib V/V AVX Shuffle Packed double-precision
floating-point values selected by
imm8 from ymm2 and
ymm3/mem

VSHUFPD ymm1, ymm2,
ymm3/m256, imm8
Ref. # 319433-004 459

INSTRUCTION SET REFERENCE
Figure 5-27. VSHUFPD Operation

Operation
VSHUFPD (VEX.256 encoded version)
IF IMM0[0] = 0

THEN DEST[63:0] Å SRC1[63:0]
ELSE DEST[63:0] Å SRC1[127:64] FI;

IF IMM0[1] = 0
THEN DEST[127:64] Å SRC2[63:0]
ELSE DEST[127:64] Å SRC2[127:64] FI;

IF IMM0[2] = 0
THEN DEST[191:128] Å SRC1[191:128]
ELSE DEST[191:128] Å SRC1[255:192] FI;

IF IMM0[3] = 0
THEN DEST[255:192] Å SRC2[191:128]
ELSE DEST[255:192] Å SRC2[255:192] FI;

VSHUFPD (VEX.128 encoded version)
IF IMM0[0] = 0

THEN DEST[63:0] Å SRC1[63:0]
ELSE DEST[63:0] Å SRC1[127:64] FI;

IF IMM0[1] = 0
THEN DEST[127:64] Å SRC2[63:0]
ELSE DEST[127:64] Å SRC2[127:64] FI;

DEST[255:128] Å 0

VSHUFPD (128-bit Legacy SSE version)
IF IMM0[0] = 0

THEN DEST[63:0] Å SRC1[63:0]

Y2 or Y3 X2 or X3 Y0 or Y1 X0 or X1DEST

X3 X2SRC1 X1 X0

Y3 Y2 Y1 Y0SRC2
460 Ref. # 319433-004

INSTRUCTION SET REFERENCE
ELSE DEST[63:0] Å SRC1[127:64] FI;
IF IMM0[1] = 0

THEN DEST[127:64] Å SRC2[63:0]
ELSE DEST[127:64] Å SRC2[127:64] FI;

DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VSHUFPD __m256d _mm256_shuffle_pd (__m256d a, __m256d b, const int select);
SHUFPD __m128d _mm_shuffle_pd (__m128d a, __m128d b, const int select);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4
Ref. # 319433-004 461

INSTRUCTION SET REFERENCE
SHUFPS - Shuffle Packed Single Precision Floating-Point Values

Description
Moves two of the four packed single-precision floating-point values from each double
qword of the first source operand (second operand) into the low quadword of each
double qword of the destination operand (first operand); moves two of the four
packed single-precision floating-point values from each double qword of the second
source operand (third operand) into to the high quadword of each double qword of
the destination operand (see Figure 5-28). The selector operand (third operand)
determines which values are moved to the destination operand.

VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

VEX.128 encoded version: the first source operand second source operand is an XMM
register or 128-bit memory location. The destination operand is an XMM register. The
upper bits (255:128) of the corresponding YMM register destination are zeroed.

128-bit Legacy SSE version: The source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (255:128) of the corresponding YMM register destination are
unmodified.

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F C6 /r ib V/V SSE Shuffle Packed single-precision
floating-point values selected by
imm8 from xmm1 and
xmm2/mem

SHUFPS xmm1, xmm3/m128, imm8

VEX.NDS.128.0F C6 /r ib V/V AVX Shuffle Packed single-precision
floating-point values selected by
imm8 from xmm1 and
xmm2/mem

VSHUFPS xmm1, xmm2,
xmm3/m128, imm8

VEX.NDS.256.0F C6 /r ib V/V AVX Shuffle Packed single-precision
floating-point values selected by
imm8 from ymm2 and
ymm3/mem

VSHUFPS ymm1, ymm2,
ymm3/m256, imm8
462 Ref. # 319433-004

INSTRUCTION SET REFERENCE
Figure 5-28. VSHUFPS Operation

Operation
Select4(SRC, control) {
CASE (control[1:0]) OF

0: TMP Å SRC[31:0];
1: TMP Å SRC[63:32];
2: TMP Å SRC[95:64];
3: TMP Å SRC[127:96];

ESAC;
RETURN TMP
}

VSHUFPS (VEX.256 encoded version)
DEST[31:0] Å Select4(SRC1[127:0], imm8[1:0]);
DEST[63:32] Å Select4(SRC1[127:0], imm8[3:2]);
DEST[95:64] Å Select4(SRC2[127:0], imm8[5:4]);
DEST[127:96] Å Select4(SRC2[127:0], imm8[7:6]);
DEST[159:128] Å Select4(SRC1[255:128], imm8[1:0]);
DEST[191:160] Å Select4(SRC1[255:128], imm8[3:2]);
DEST[223:192] Å Select4(SRC2[255:128], imm8[5:4]);
DEST[255:224] Å Select4(SRC2[255:128], imm8[7:6]);

VSHUFPS (VEX.128 encoded version)
DEST[31:0] Å Select4(SRC1[127:0], imm8[1:0]);
DEST[63:32] Å Select4(SRC1[127:0], imm8[3:2]);
DEST[95:64] Å Select4(SRC2[127:0], imm8[5:4]);
DEST[127:96] Å Select4(SRC2[127:0], imm8[7:6]);
DEST[255:128] Å 0

Y7 .. Y4 X7 .. X4 Y3 ..Y0 X3 .. X0DEST

SRC1 X0

SRC2

X1X2X3X4X5X6X7

Y0Y1Y2Y3Y4Y5Y6Y7

X3 .. X0Y7 .. Y4 X7 .. X4 Y3 ..Y0
Ref. # 319433-004 463

INSTRUCTION SET REFERENCE
SHUFPS (128-bit Legacy SSE version)
DEST[31:0] Å Select4(SRC1[127:0], imm8[1:0]);
DEST[63:32] Å Select4(SRC1[127:0], imm8[3:2]);
DEST[95:64] Å Select4(SRC2[127:0], imm8[5:4]);
DEST[127:96] Å Select4(SRC2[127:0], imm8[7:6]);
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VSHUFPS __m256 _mm256_shuffle_ps (__m256 a, __m256 b, const int select);
SHUFPS __m128 _mm_shuffle_ps (__m128 a, __m128 b, const int select);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4
464 Ref. # 319433-004

INSTRUCTION SET REFERENCE
SQRTPD- Square Root of Double-Precision Floating-Point Values

Description
Performs an SIMD computation of the square roots of the two or four packed double-
precision floating-point values in the source operand (second operand) stores the
packed double-precision floating-point results in the destination operand.

VEX.256 encoded version: The source operand is a YMM register or a 256-bit
memory location. The destination operand is a YMM register.

VEX.128 encoded version: the source operand second source operand or a 128-bit
memory location. The destination operand is an XMM register. The upper bits
(255:128) of the corresponding YMM register destination are zeroed.

128-bit Legacy SSE version: The second source can be an XMM register or 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (255:128) of the corresponding YMM register destination are
unmodified.

Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise
instructions will #UD.

Operation
VSQRTPD (VEX.256 encoded version)

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 51 /r V/V SSE2 Computes Square Roots of the
packed double-precision floating-
point values in xmm2/m128 and
stores the result in xmm1

SQRTPD xmm1, xmm2/m128

VEX.128.66.0F 51 /r V/V AVX Computes Square Roots of the
packed double-precision floating-
point values in xmm2/m128 and
stores the result in xmm1

VSQRTPD xmm1, xmm2/m128

VEX.256.66.0F 51/r V/V AVX Computes Square Roots of the
packed double-precision floating-
point values in ymm2/m256 and
stores the result in ymm1

VSQRTPD ymm1, ymm2/m256
Ref. # 319433-004 465

INSTRUCTION SET REFERENCE
DEST[63:0] Å SQRT(SRC[63:0])
DEST[127:64] Å SQRT(SRC[127:64])
DEST[191:128] Å SQRT(SRC[191:128])
DEST[255:192] Å SQRT(SRC[255:192])
.
VSQRTPD (VEX.128 encoded version)
DEST[63:0] Å SQRT(SRC[63:0])
DEST[127:64] Å SQRT(SRC[127:64])
DEST[255:128] Å 0

SQRTPD (128-bit Legacy SSE version)
DEST[63:0] Å SQRT(SRC[63:0])
DEST[127:64] Å SQRT(SRC[127:64])
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

SQRTPD __m256d _mm256_sqrt_pd (__m256d a);

SQRTPD __m128d _mm_sqrt_pd (__m128d a);

SIMD Floating-Point Exceptions
Invalid, Precision, Denormal

Other Exceptions
See Exceptions Type 2; additionally

#UD If VEX.vvvv != 1111B.
466 Ref. # 319433-004

INSTRUCTION SET REFERENCE
SQRTPS- Square Root of Single-Precision Floating-Point Values

Description
Performs an SIMD computation of the square roots of the four or eight packed single-
precision floating-point values in the source operand (second operand) stores the
packed double-precision floating-point results in the destination operand.

VEX.256 encoded version: The source operand is a YMM register or a 256-bit
memory location. The destination operand is a YMM register.

VEX.128 encoded version: the source operand second source operand or a 128-bit
memory location. The destination operand is an XMM register. The upper bits
(255:128) of the corresponding YMM register destination are zeroed.

128-bit Legacy SSE version: The second source can be an XMM register or 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (255:128) of the corresponding YMM register destination are
unmodified.

Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise
instructions will #UD.

Operation
VSQRTPS (VEX.256 encoded version)
DEST[31:0] Å SQRT(SRC[31:0])
DEST[63:32] Å SQRT(SRC[63:32])

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 51 /r V/V SSE Computes Square Roots of the
packed single-precision floating-
point values in xmm2/m128 and
stores the result in xmm1

SQRTPS xmm1, xmm2/m128

VEX.128.0F 51 /r V/V AVX Computes Square Roots of the
packed single-precision floating-
point values in xmm2/m128 and
stores the result in xmm1

VSQRTPS xmm1, xmm2/m128

VEX.256.0F 51/r V/V AVX Computes Square Roots of the
packed single-precision floating-
point values in ymm2/m256 and
stores the result in ymm1

VSQRTPS ymm1, ymm2/m256
Ref. # 319433-004 467

INSTRUCTION SET REFERENCE
DEST[95:64] Å SQRT(SRC[95:64])
DEST[127:96] Å SQRT(SRC[127:96])
DEST[159:128] Å SQRT(SRC[159:128])
DEST[191:160] Å SQRT(SRC[191:160])
DEST[223:192] Å SQRT(SRC[223:192])
DEST[255:224] Å SQRT(SRC[255:224])

VSQRTPS (VEX.128 encoded version)
DEST[31:0] Å SQRT(SRC[31:0])
DEST[63:32] Å SQRT(SRC[63:32])
DEST[95:64] Å SQRT(SRC[95:64])
DEST[127:96] Å SQRT(SRC[127:96])
DEST[255:128] Å 0

SQRTPS (128-bit Legacy SSE version)
DEST[31:0] Å SQRT(SRC[31:0])
DEST[63:32] Å SQRT(SRC[63:32])
DEST[95:64] Å SQRT(SRC[95:64])
DEST[127:96] Å SQRT(SRC[127:96])
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

SQRTPS __m256 _mm256_sqrt_ps (__m256 a);

SQRTPS __m128 _mm_sqrt_ps (__m128 a);

SIMD Floating-Point Exceptions
Invalid, Precision, Denormal

Other Exceptions
See Exceptions Type 2; additionally

#UD If VEX.vvvv != 1111B.
468 Ref. # 319433-004

INSTRUCTION SET REFERENCE
SQRTSD - Compute Square Root of Scalar Double-Precision Floating-Point
Value

Description
Computes the square root of the low double-precision floating-point value in the
second source operand and stores the double-precision floating-point result in the
destination operand. The second source operand can be an XMM register or a 64-bit
memory location. The first source and destination operands are XMM registers. The
high quadword of the destination operand remains unchanged. See Figure 11-4 in
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for
an illustration of a scalar double-precision floating-point operation.

128-bit Legacy SSE version: The first source operand and the destination operand
are the same. Bits (255:64) of the corresponding YMM destination register remain
unchanged.

VEX.128 encoded version: Bits (255:128) of the destination YMM register are zeroed.

Software should ensure VSQRTSD is encoded with VEX.L=0. Encoding VSQRTSD with
VEX.L=1 may encounter unpredictable behavior across different processor genera-
tions.

Operation
VSQRTSD (VEX.128 encoded version)
DEST[63:0] Å SQRT(SRC2[63:0])
DEST[127:64] Å SRC1[127:64]
DEST[255:128] Å 0

SQRTSD (128-bit Legacy SSE version)
DEST[63:0] Å SQRT(SRC[63:0])

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

F2 0F 51/ V/V SSE2 Computes square root of the low
double-precision floating point
value in xmm2/m64 and stores the
results in xmm1.

SQRTSD xmm1,xmm2/m64

VEX.NDS.128.F2.0F 51/ V/V AVX Computes square root of the low
double-precision floating point
value in xmm3/m64 and stores the
results in xmm2. Also, upper dou-
ble precision floating-point value
(bits[127:64]) from xmm2 is cop-
ied to xmm1[127:64].

VSQRTSD xmm1,xmm2, xmm3/m64
Ref. # 319433-004 469

INSTRUCTION SET REFERENCE
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

SQRTSD __m128d _mm_sqrt_sd (__m128d a, __m128d b)

SIMD Floating-Point Exceptions
Invalid, Precision, Denormal

Other Exceptions
See Exceptions Type 3
470 Ref. # 319433-004

INSTRUCTION SET REFERENCE
SQRTSS - Compute Square Root of Scalar Single-Precision Value

Description
Computes the square root of the low single-precision floating-point value in the
second source operand and stores the single-precision floating-point result in the
destination operand. The second source operand can be an XMM register or a 32-bit
memory location. The first source and destination operands is an XMM register. The
three high order doublewords of the destination operand remain unchanged. See
Figure 10-6 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1, for an illustration of a scalar single-precision floating-point operation.

128-bit Legacy SSE version: The first source operand and the destination operand
are the same. Bits (255:32) of the corresponding YMM destination register remain
unchanged.

VEX.128 encoded version: Bits (255:128) of the destination YMM register are zeroed.

Software should ensure VSQRTSS is encoded with VEX.L=0. Encoding VSQRTSS with
VEX.L=1 may encounter unpredictable behavior across different processor genera-
tions.

Operation
VSQRTSS (VEX.128 encoded version)
DEST[31:0] Å SQRT(SRC2[31:0])
DEST[127:32] Å SRC1[127:32]
DEST[255:128] Å 0

SQRTSS (128-bit Legacy SSE version)

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

F3 0F 51 V/V SSE Computes square root of the low
single-precision floating-point
value in xmm2/m32 and stores the
results in xmm1.

SQRTSS xmm1, xmm2/m32

VEX.NDS.128.F3.0F 51 V/V AVX Computes square root of the low
single-precision floating-point
value in xmm3/m32 and stores the
results in xmm1. Also, upper
single precision floating-point
values (bits[127:32]) from xmm2
are copied to xmm1[127:32].

VSQRTSS xmm1, xmm2, xmm3/m32
Ref. # 319433-004 471

INSTRUCTION SET REFERENCE
DEST[31:0] Å SQRT(SRC2[31:0])
DEST[255:32] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

SQRTSS __m128 _mm_sqrt_ss(__m128 a)

SIMD Floating-Point Exceptions
Invalid, Precision, Denormal

Other Exceptions
See Exceptions Type 3
472 Ref. # 319433-004

INSTRUCTION SET REFERENCE
VSTMXCSR—Store MXCSR Register State

Description

Stores the contents of the MXCSR control and status register to the destination
operand. The destination operand is a 32-bit memory location. The reserved bits in
the MXCSR register are stored as 0s.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

VEX.L must be 0, otherwise instructions will #UD.

Operation

m32 ← MXCSR;

Intel C/C++ Compiler Intrinsic Equivalent

_mm_getcsr(void)

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 9

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature Flag

Description

VEX.128.0F AE /3 V/V AVX Store contents of MXCSR register to
m32.VSTMXCSR m32
Ref. # 319433-004 473

INSTRUCTION SET REFERENCE
SUBPD- Subtract Packed Double Precision Floating-Point Values

Description
Performs an SIMD subtract of the four or eight packed double-precision floating-point
values of the second Source operand from the first Source operand, and stores the
packed double-precision floating-point results in the destination operand.

VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

VEX.128 encoded version: the first source operand second source operand is an XMM
register or 128-bit memory location. The destination operand is an XMM register. The
upper bits (255:128) of the corresponding YMM register destination are zeroed.

128-bit Legacy SSE version: T second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (255:128) of the corresponding YMM register destination are
unmodified.

Operation
VSUBPD (VEX.256 encoded version)
DEST[63:0] Å SRC1[63:0] - SRC2[63:0]
DEST[127:64] Å SRC1[127:64] - SRC2[127:64]
DEST[191:128] Å SRC1[191:128] - SRC2[191:128]
DEST[255:192] Å SRC1[255:192] - SRC2[255:192]

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 5C /r V/V SSE2 Subtract packed double-precision
floating-point values in
xmm2/mem from xmm1 and
stores result in xmm1

SUBPD xmm1, xmm2/m128

VEX.NDS.128.66.0F 5C /r V/V AVX Subtract packed double-precision
floating-point values in
xmm3/mem from xmm2 and
stores result in xmm1

VSUBPD xmm1,xmm2, xmm3/m128

VEX.NDS.256.66.0F 5C /r V/V AVX Subtract packed double-precision
floating-point values in
ymm3/mem from ymm2 and
stores result in ymm1

VSUBPD ymm1, ymm2,
ymm3/m256
474 Ref. # 319433-004

INSTRUCTION SET REFERENCE
.
VSUBPD (VEX.128 encoded version)
DEST[63:0] Å SRC1[63:0] - SRC2[63:0]
DEST[127:64] Å SRC1[127:64] - SRC2[127:64]
DEST[255:128] Å 0

SUBPD (128-bit Legacy SSE version)
DEST[63:0] Å DEST[63:0] - SRC[63:0]
DEST[127:64] Å DEST[127:64] - SRC[127:64]
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VSUBPD __m256d _mm256_sub_pd (__m256d a, __m256d b);

SUBPD __m128d _mm_sub_pd (__m128d a, __m128d b);

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions
See Exceptions Type 2
Ref. # 319433-004 475

INSTRUCTION SET REFERENCE
SUBPS- Subtract Packed Single Precision Floating-Point Values

Description
Performs an SIMD subtract of the eight or sixteen packed single-precision floating-
point values in the second Source operand from the First Source operand, and stores
the packed single-precision floating-point results in the destination operand.

VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

VEX.128 encoded version: the first source operand second source operand is an XMM
register or 128-bit memory location. The destination operand is an XMM register. The
upper bits (255:128) of the corresponding YMM register destination are zeroed.

128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (255:128) of the corresponding YMM register destination are
unmodified.

Operation
VSUBPS (VEX.256 encoded version)
DEST[31:0] Å SRC1[31:0] - SRC2[31:0]
DEST[63:32] Å SRC1[63:32] - SRC2[63:32]
DEST[95:64] Å SRC1[95:64] - SRC2[95:64]
DEST[127:96] Å SRC1[127:96] - SRC2[127:96]

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 5C /r V/V SSE Subtract packed single-precision
floating-point values in
xmm2/mem from xmm1 and
stores result in xmm1

SUBPS xmm1, xmm2/m128

VEX.NDS.128.0F 5C /r V/V AVX Subtract packed single-precision
floating-point values in
xmm3/mem from xmm2 and
stores result in xmm1

VSUBPS xmm1,xmm2, xmm3/m128

VEX.NDS.256.0F 5C /r V/V AVX Subtract packed single-precision
floating-point values in
ymm3/mem from ymm2 and
stores result in ymm1

VSUBPS ymm1, ymm2, ymm3/m256
476 Ref. # 319433-004

INSTRUCTION SET REFERENCE
DEST[159:128] Å SRC1[159:128] - SRC2[159:128]
DEST[191:160]Å SRC1[191:160] - SRC2[191:160]
DEST[223:192] Å SRC1[223:192] - SRC2[223:192]
DEST[255:224] Å SRC1[255:224] - SRC2[255:224].

VSUBPS (VEX.128 encoded version)
DEST[31:0] Å SRC1[31:0] - SRC2[31:0]
DEST[63:32] Å SRC1[63:32] - SRC2[63:32]
DEST[95:64] Å SRC1[95:64] - SRC2[95:64]
DEST[127:96] Å SRC1[127:96] - SRC2[127:96]
DEST[255:128] Å 0

SUBPS (128-bit Legacy SSE version)
DEST[31:0] Å SRC1[31:0] - SRC2[31:0]
DEST[63:32] Å SRC1[63:32] - SRC2[63:32]
DEST[95:64] Å SRC1[95:64] - SRC2[95:64]
DEST[127:96] Å SRC1[127:96] - SRC2[127:96]
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VSUBPS __m256 _mm256_sub_ps (__m256 a, __m256 b);

SUBPS __m128 _mm_sub_ps (__m128 a, __m128 b);

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions
See Exceptions Type 2
Ref. # 319433-004 477

INSTRUCTION SET REFERENCE
SUBSD- Subtract Scalar Double Precision Floating-Point Values

Description
Subtract the low double-precision floating-point values in the second source operand
from the first source operand and stores the double-precision floating-point result in
the destination operand.

The second source operand can be an XMM register or a 64-bit memory location. The
first source and destination operands are XMM registers.

128-bit Legacy SSE version: The destination and first source operand are the same.
Bits (255:64) of the corresponding YMM destination register remain unchanged.

VEX.128 encoded version: Bits (127:64) of the XMM register destination are copied
from corresponding bits in the first source operand. Bits (255:128) of the destination
YMM register are zeroed.

Software should ensure VSUBSD is encoded with VEX.L=0. Encoding VSUBSD with
VEX.L=1 may encounter unpredictable behavior across different processor genera-
tions.

Operation
VSUBSD (VEX.128 encoded version)
DEST[63:0] Å SRC1[63:0] - SRC2[63:0]
DEST[127:64] Å SRC1[127:64]
DEST[255:128] Å 0

SUBSD (128-bit Legacy SSE version)
DEST[63:0] Å DEST[63:0] - SRC[63:0]
DEST[255:64] (Unmodified)

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

F2 0F 5C /r V/V SSE2 Subtract the low double-precision
floating-point value in
xmm2/mem from xmm1 and store
the result in xmm1

SUBSD xmm1, xmm2/m64

VEX.NDS.128.F2.0F 5C /r V/V AVX Subtract the low double-precision
floating-point value in
xmm3/mem from xmm2 and store
the result in xmm1

VSUBSD xmm1,xmm2, xmm3/m64
478 Ref. # 319433-004

INSTRUCTION SET REFERENCE
Intel C/C++ Compiler Intrinsic Equivalent

SUBSD __m128d _mm_sub_sd (__m128d a, __m128d b);

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions
See Exceptions Type 3
Ref. # 319433-004 479

INSTRUCTION SET REFERENCE
SUBSS- Subtract Scalar Single Precision Floating-Point Values

Description
Subtract the low single-precision floating-point values from the second source
operand and the first source operand and store the double-precision floating-point
result in the destination operand.

The second source operand can be an XMM register or a 32-bit memory location. The
first source and destination operands are XMM registers.

128-bit Legacy SSE version: The destination and first source operand are the same.
Bits (255:32) of the corresponding YMM destination register remain unchanged.

VEX.128 encoded version: Bits (127:32) of the XMM register destination are copied
from corresponding bits in the first source operand. Bits (255:128) of the destination
YMM register are zeroed.

Software should ensure VSUBSD is encoded with VEX.L=0. Encoding VSUBSD with
VEX.L=1 may encounter unpredictable behavior across different processor genera-
tions.

Operation
VSUBSS (VEX.128 encoded version)
DEST[31:0] Å SRC1[31:0] - SRC2[31:0]
DEST[127:32] Å SRC1[127:32]
DEST[255:128] Å 0

SUBSS (128-bit Legacy SSE version)
DEST[31:0] Å DEST[31:0] - SRC[31:0]
DEST[255:32] (Unmodified)

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

F3 0F 5C /r V/V SSE Subtract the low single-precision
floating-point value in
xmm2/mem from xmm1 and store
the result in xmm1

SUBSS xmm1, xmm2/m32

VEX.NDS.128.F3.0F 5C /r V/V AVX Subtract the low single-precision
floating-point value in
xmm3/mem from xmm2 and store
the result in xmm1

VSUBSS xmm1,xmm2, xmm3/m32
480 Ref. # 319433-004

INSTRUCTION SET REFERENCE
Intel C/C++ Compiler Intrinsic Equivalent

SUBSS __m128 _mm_sub_ss (__m128 a, __m128 b);

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions
See Exceptions Type 3
Ref. # 319433-004 481

INSTRUCTION SET REFERENCE
UCOMISD - Unordered Compare Scalar Double-Precision Floating-Point
Values and Set EFLAGS

Description
Performs an unordered compare of the double-precision floating-point values in the
low quadwords of operand 1 (first operand) and operand 2 (second operand), and
sets the ZF, PF, and CF flags in the EFLAGS register according to the result (unor-
dered, greater than, less than, or equal). The OF, SF and AF flags in the EFLAGS
register are set to 0. The unordered result is returned if either source operand is a
NaN (QNaN or SNaN).

Operand 1 is an XMM register; operand 2 can be an XMM register or a 64 bit memory

location.

The UCOMISD instruction differs from the COMISD instruction in that it signals a
SIMD floating-point invalid operation exception (#I) only when a source operand is
an SNaN. The COMISD instruction signals an invalid numeric exception only if a
source operand is either an SNaN or a QNaN.

The EFLAGS register is not updated if an unmasked SIMD floating-point exception is
generated.

Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise
instructions will #UD.

Software should ensure VCOMISD is encoded with VEX.L=0. Encoding VCOMISD with
VEX.L=1 may encounter unpredictable behavior across different processor genera-
tions.

Operation
UCOMISD (all versions)

RESULT Å UnorderedCompare(DEST[63:0] <> SRC[63:0]) {

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 2E /r V/V SSE2 Compare low double precision
floating-point values in xmm1 and
xmm2/mem64 and set the
EFLAGS flags accordingly.

UCOMISD xmm1, xmm2/m64

VEX.128.66.0F 2E /r V/V AVX Compare low double precision
floating-point values in xmm1 and
xmm2/mem64 and set the
EFLAGS flags accordingly.

VUCOMISD xmm1, xmm2/m64
482 Ref. # 319433-004

INSTRUCTION SET REFERENCE
(* Set EFLAGS *) CASE (RESULT) OF

UNORDERED: ZF,PF,CF Å 111;

GREATER_THAN: ZF,PF,CF Å 000;

LESS_THAN: ZF,PF,CF Å 001;

EQUAL: ZF,PF,CF Å 100;

ESAC;
OF, AF, SF Å 0; }

Intel C/C++ Compiler Intrinsic Equivalent

int _mm_ucomieq_sd(__m128d a, __m128d b)

int _mm_ucomilt_sd(__m128d a, __m128d b)

int _mm_ucomile_sd(__m128d a, __m128d b)

int _mm_ucomigt_sd(__m128d a, __m128d b)

int _mm_ucomige_sd(__m128d a, __m128d b)

int _mm_ucomineq_sd(__m128d a, __m128d b)

SIMD Floating-Point Exceptions
Invalid (if SNaN operands), Denormal

Other Exceptions
See Exceptions Type 3; additionally

#UD If VEX.vvvv != 1111B.
Ref. # 319433-004 483

INSTRUCTION SET REFERENCE
UCOMISS - Unordered Compare Scalar Single-Precision Floating-Point
Values and Set EFLAGS

Description
Compares the single-precision floating-point values in the low quadwords of operand
1 (first operand) and operand 2 (second operand), and sets the ZF, PF, and CF flags
in the EFLAGS register according to the result (unordered, greater than, less than, or
equal). The OF, SF and AF flags in the EFLAGS register are set to 0. The unordered
result is returned if either source operand is a NaN (QNaN or SNaN).

Operand 1 is an XMM register; operand 2 can be an XMM register or a 32 bit memory
location.

The UCOMISS instruction differs from the COMISS instruction in that it signals a
SIMD floating-point invalid operation exception (#I) only if a source operand is an
SNaN. The COMISS instruction signals an invalid numeric exception when a source
operand is either a QNaN or SNaN.

The EFLAGS register is not updated if an unmasked SIMD floating-point exception is
generated.

Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise
instructions will #UD.

Software should ensure VCOMISS is encoded with VEX.L=0. Encoding VCOMISS with
VEX.L=1 may encounter unpredictable behavior across different processor genera-
tions.

Operation
UCOMISS (all versions)

RESULT Å UnorderedCompare(DEST[31:0] <> SRC[31:0]) {

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 2E /r V/V SSE Compare low single precision
floating-point values in xmm1 and
xmm2/mem32 and set the
EFLAGS flags accordingly.

UCOMISS xmm1, xmm2/m32

VEX.128.0F 2E /r V/V AVX Compare low single precision
floating-point values in xmm1 and
xmm2/mem32 and set the
EFLAGS flags accordingly.

VUCOMISS xmm1, xmm2/m32
484 Ref. # 319433-004

INSTRUCTION SET REFERENCE
(* Set EFLAGS *) CASE (RESULT) OF

UNORDERED: ZF,PF,CF Å 111;

GREATER_THAN: ZF,PF,CF Å 000;

LESS_THAN: ZF,PF,CF Å 001;

EQUAL: ZF,PF,CF Å 100;

ESAC;
OF, AF, SF Å 0; }

Intel C/C++ Compiler Intrinsic Equivalent

int _mm_ucomieq_ss(__m128 a, __m128 b)

int _mm_ucomilt_ss(__m128 a, __m128 b)

int _mm_ucomile_ss(__m128 a, __m128 b)

int _mm_ucomigt_ss(__m128 a, __m128 b)

int _mm_ucomige_ss(__m128 a, __m128 b)

int _mm_ucomineq_ss(__m128 a, __m128 b)

SIMD Floating-Point Exceptions
Invalid (if SNaN Operands), Denormal

Other Exceptions
See Exceptions Type 3; additionally

#UD If VEX.vvvv != 1111B.
Ref. # 319433-004 485

INSTRUCTION SET REFERENCE
UNPCKHPD- Unpack and Interleave High Packed Double-Precision Floating-
Point Values

Description
Performs an interleaved unpack of the high double-precision floating-point values
from the first source operand and the second source operand. See Figure 4-15 in
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B,.
128-bit versions
When unpacking from a memory operand, an implementation may fetch only the
appropriate 64 bits; however, alignment to 16-byte boundary and normal segment
checking will still be enforced

VEX.128 encoded version: the first source operand second source operand is an XMM
register or 128-bit memory location. The destination operand is an XMM register. The
upper bits (255:128) of the corresponding YMM register destination are zeroed.

128-bit Legacy SSE version: T second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (255:128) of the corresponding YMM register destination are
unmodified.

Operation
VUNPCKHPD (VEX.256 encoded version)
DEST[63:0] Å SRC1[127:64]

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 15 /r V/V SSE2 Unpacks and Interleaves double-
precision floating-point values
from high quadwords of xmm1
and xmm2/m128.

UNPCKHPD xmm1, xmm2/m128

VEX.NDS.128.66.0F 15 /r V/V AVX Unpacks and Interleaves double
precision floating-point values
from high quadwords of xmm2
and xmm3/m128.

VUNPCKHPD xmm1,xmm2,
xmm3/m128

VEX.NDS.256.66.0F 15 /r V/V AVX Unpacks and Interleaves double
precision floating-point values
from high quadwords of ymm2
and ymm3/m256.

VUNPCKHPD ymm1,ymm2,
ymm3/m256
486 Ref. # 319433-004

INSTRUCTION SET REFERENCE
DEST[127:64] Å SRC2[127:64]
DEST[191:128]ÅSRC1[255:192]
DEST[255:192]ÅSRC2[255:192]

VUNPCKHPD (VEX.128 encoded version)
DEST[63:0] Å SRC1[127:64]
DEST[127:64] Å SRC2[127:64]
DEST[255:128] Å 0

UNPCKHPD (128-bit Legacy SSE version)
DEST[63:0] Å SRC1[127:64]
DEST[127:64] Å SRC2[127:64]
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

UNPCKHPD __m256d _mm256_unpackhi_pd(__m256d a, __m256d b)

UNPCKHPD __m128d _mm_unpackhi_pd(__m128d a, __m128d b)

SIMD Floating-Point Exceptions

None

Other Exceptions
See Exceptions Type 4
Ref. # 319433-004 487

INSTRUCTION SET REFERENCE
UNPCKHPS- Unpack and Interleave High Packed Single-Precision Floating-
Point Values

Description
Performs an interleaved unpack of the high single-precision floating-point values
from the first source operand and the second source operand.

When unpacking from a memory operand, an implementation may fetch only the
appropriate 64 bits; however, alignment to 16-byte boundary and normal segment
checking will still be enforced

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 15 /r V/V SSE Unpacks and Interleaves single-
precision floating-point values
from high quadwords of xmm1
and xmm2/m128.

UNPCKHPS xmm1, xmm2/m128

VEX.NDS.128.0F 15 /r V/V AVX Unpacks and Interleaves single-
precision floating-point values
from high quadwords of xmm2
and xmm3/m128.

VUNPCKHPS xmm1,xmm2,
xmm3/m128

VEX.NDS.256.0F 15 /r V/V AVX Unpacks and Interleaves single-
precision floating-point values
from high quadwords of ymm2
and ymm3/m256.

VUNPCKHPS
ymm1,ymm2,ymm3/m256
488 Ref. # 319433-004

INSTRUCTION SET REFERENCE
Figure 5-29. VUNPCKHPS Operation

VEX.128 encoded version: the first source operand second source operand is an XMM
register or 128-bit memory location. The destination operand is an XMM register. The
upper bits (255:128) of the corresponding YMM register destination are zeroed.

128-bit Legacy SSE version: T second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (255:128) of the corresponding YMM register destination are
unmodified.

Operation
VUNPCKHPS (VEX.256 encoded version)
DEST[31:0] Å SRC1[95:64]
DEST[63:32] Å SRC2[95:64]
DEST[95:64] Å SRC1[127:96]
DEST[127:96] Å SRC2[127:96]
DEST[159:128] Å SRC1[223:192]
DEST[191:160] Å SRC2[223:192]
DEST[223:192] Å SRC1[255:224]
DEST[255:224] Å SRC2[255:224]

VUNPCKHPS (VEX.128 encoded version)
DEST[31:0] Å SRC1[95:64]
DEST[63:32] Å SRC2[95:64]
DEST[95:64] Å SRC1[127:96]
DEST[127:96] Å SRC2[127:96]
DEST[255:128] Å 0

UNPCKHPS (128-bit Legacy SSE version)

DEST

SRC1

SRC2

X0X1X2X3

Y0Y1Y2Y3

X2Y2X3Y3X6Y6X7Y7

X4X5X6X7

Y4Y5Y6Y7
Ref. # 319433-004 489

INSTRUCTION SET REFERENCE
DEST[31:0] Å SRC1[95:64]
DEST[63:32] Å SRC2[95:64]
DEST[95:64] Å SRC1[127:96]
DEST[127:96] Å SRC2[127:96]
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

UNPCKHPS __m256 _mm256_unpackhi_ps (__m256 a, __m256 b);

UNPCKHPS __m128 _mm_unpackhi_ps (__m128 a, __m128 b);

SIMD Floating-Point Exceptions

None

Other Exceptions
See Exceptions Type 4
490 Ref. # 319433-004

INSTRUCTION SET REFERENCE
UNPCKLPD- Unpack and Interleave Low Packed Double-Precision Floating-
Point Values

Description
Performs an interleaved unpack of the low double-precision floating-point values
from the first source operand and the second source operand

128-bit versions:
When unpacking from a memory operand, an implementation may fetch only the
appropriate 64 bits; however, alignment to 16-byte boundary and normal segment
checking will still be enforced.

VEX.128 encoded version: the first source operand second source operand is an XMM
register or 128-bit memory location. The destination operand is an XMM register. The
upper bits (255:128) of the corresponding YMM register destination are zeroed.

128-bit Legacy SSE version: T second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (255:128) of the corresponding YMM register destination are
unmodified.

Operation
VUNPCKLPD (VEX.256 encoded version)
DEST[63:0] Å SRC1[63:0]

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 14 /r V/V SSE2 Unpacks and Interleaves double-
precision floating-point values
from low quadwords of xmm1 and
xmm2/m128.

UNPCKLPD xmm1, xmm2/m128

VEX.NDS.128.66.0F 14 /r V/V AVX Unpacks and Interleaves double
precision floating-point values low
high quadwords of xmm2 and
xmm3/m128.

VUNPCKLPD xmm1,xmm2,
xmm3/m128

VEX.NDS.256.66.0F 14 /r V/V AVX Unpacks and Interleaves double
precision floating-point values low
high quadwords of ymm2 and
ymm3/m256.

VUNPCKLPD ymm1,ymm2,
ymm3/m256
Ref. # 319433-004 491

INSTRUCTION SET REFERENCE
DEST[127:64] Å SRC2[63:0]
DEST[191:128] Å SRC1[191:128]
DEST[255:192] Å SRC2[191:128]

VUNPCKLPD (VEX.128 encoded version)
DEST[63:0] Å SRC1[63:0]
DEST[127:64] Å SRC2[63:0]
DEST[255:128] Å 0

UNPCKLPD (128-bit Legacy SSE version)
DEST[63:0] Å SRC1[63:0]
DEST[127:64] Å SRC2[63:0]
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

UNPCKLPD __m256d _mm256_unpacklo_pd(__m256d a, __m256d b)

UNPCKLPD __m128d _mm_unpacklo_pd(__m128d a, __m128d b)

SIMD Floating-Point Exceptions

None

Other Exceptions
See Exceptions Type 4
492 Ref. # 319433-004

INSTRUCTION SET REFERENCE
UNPCKLPS- Unpack and Interleave Low Packed Single-Precision Floating-
Point Values

Description
Performs an interleaved unpack of the low single-precision floating-point values
from the first source operand and the second source operand

When unpacking from a memory operand, an implementation may fetch only the
appropriate 64 bits; however, alignment to 16-byte boundary and normal segment
checking will still be enforced

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 14 /r V/V SSE Unpacks and Interleaves single-
precision floating-point values
from low quadwords of xmm1 and
xmm2/m128.

UNPCKLPS xmm1, xmm2/m128

VEX.NDS.128.0F 14 /r V/V AVX Unpacks and Interleaves single-
precision floating-point values
from low quadwords of xmm2 and
xmm3/m128.

VUNPCKLPS xmm1,xmm2,
xmm3/m128

VEX.NDS.256.0F 14 /r V/V AVX Unpacks and Interleaves single-
precision floating-point values
from low quadwords of ymm2 and
ymm3/m256.

VUNPCKLPS
ymm1,ymm2,ymm3/m256
Ref. # 319433-004 493

INSTRUCTION SET REFERENCE
Figure 5-30. VUNPCKLPS Operation

VEX.128 encoded version: the first source operand second source operand is an XMM
register or 128-bit memory location. The destination operand is an XMM register. The
upper bits (255:128) of the corresponding YMM register destination are zeroed.

128-bit Legacy SSE version: T second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (255:128) of the corresponding YMM register destination are
unmodified.

Operation
UNPCKLPS (VEX.256 encoded version)
DEST[31:0] Å SRC1[31:0]
DEST[63:32] Å SRC2[31:0]
DEST[95:64] Å SRC1[63:32]
DEST[127:96] Å SRC2[63:32]
DEST[159:128] Å SRC1[159:128]
DEST[191:160] Å SRC2[159:128]
DEST[223:192] Å SRC1[191:160]
DEST[255:224] Å SRC2[191:160]

VUNPCKLPS (VEX.128 encoded version)
DEST[31:0] Å SRC1[31:0]
DEST[63:32] Å SRC2[31:0]
DEST[95:64] Å SRC1[63:32]
DEST[127:96] Å SRC2[63:32]
DEST[255:128] Å 0

UNPCKLPS (128-bit Legacy SSE version)

DEST

SRC1

SRC2

X0X1X2X3

Y0Y1Y2Y3

X0Y0X1Y1X4Y4X5Y5

X4X5X6X7

Y4Y5Y6Y7
494 Ref. # 319433-004

INSTRUCTION SET REFERENCE
DEST[31:0] Å SRC1[31:0]
DEST[63:32] Å SRC2[31:0]
DEST[95:64] Å SRC1[63:32]
DEST[127:96] Å SRC2[63:32]
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

UNPCKLPS __m256 _mm256_unpacklo_ps (__m256 a, __m256 b);

UNPCKLPS __m128 _mm_unpacklo_ps (__m128 a, __m128 b);

SIMD Floating-Point Exceptions

None

Other Exceptions
See Exceptions Type 4
Ref. # 319433-004 495

INSTRUCTION SET REFERENCE
XORPD- Bitwise Logical XOR of Packed Double Precision Floating-Point
Values

Description
Performs a bitwise logical XOR of the two or four packed double-precision floating-
point values from the first source operand and the second source operand, and stores
the result in the destination operand

VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

VEX.128 encoded version: the first source operand second source operand is an XMM
register or 128-bit memory location. The destination operand is an XMM register. The
upper bits (255:128) of the corresponding YMM register destination are zeroed.

128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (255:128) of the corresponding YMM register destination are
unmodified.

Operation
VXORPD (VEX.256 encoded version)
DEST[63:0] Å SRC1[63:0] BITWISE XOR SRC2[63:0]
DEST[127:64] Å SRC1[127:64] BITWISE XOR SRC2[127:64]
DEST[191:128] Å SRC1[191:128] BITWISE XOR SRC2[191:128]

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 57/r V/V SSE2 Return the bitwise logical XOR of
packed double-precision floating-
point values in xmm1 and
xmm2/mem

XORPD xmm1, xmm2/m128

VEX.NDS.128.66.0F 57 /r V/V AVX Return the bitwise logical XOR of
packed double-precision floating-
point values in xmm2 and
xmm3/mem

VXORPD xmm1,xmm2,
xmm3/m128

VEX.NDS.256.66.0F 57 /r V/V AVX Return the bitwise logical XOR of
packed double-precision floating-
point values in ymm2 and
ymm3/mem

VXORPD ymm1, ymm2,
ymm3/m256
496 Ref. # 319433-004

INSTRUCTION SET REFERENCE
DEST[255:192] Å SRC1[255:192] BITWISE XOR SRC2[255:192]

VXORPD (VEX.128 encoded version)
DEST[63:0] Å SRC1[63:0] BITWISE XOR SRC2[63:0]
DEST[127:64] Å SRC1[127:64] BITWISE XOR SRC2[127:64]
DEST[255:128] Å 0

XORPD (128-bit Legacy SSE version)
DEST[63:0] Å DEST[63:0] BITWISE XOR SRC[63:0]
DEST[127:64] Å DEST[127:64] BITWISE XOR SRC[127:64]
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VXORPD __m256d _mm256_xor_pd (__m256d a, __m256d b);

XORPD __m128d _mm_xor_pd (__m128d a, __m128d b);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4
Ref. # 319433-004 497

INSTRUCTION SET REFERENCE
XORPS- Bitwise Logical XOR of Packed Single Precision Floating-Point
Values

Description
Performs a bitwise logical XOR of the four or eight packed single-precision floating-
point values from the first source operand and the second source operand, and stores
the result in the destination operand

VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

VEX.128 encoded version: the first source operand second source operand is an XMM
register or 128-bit memory location. The destination operand is an XMM register. The
upper bits (255:128) of the corresponding YMM register destination are zeroed.

128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (255:128) of the corresponding YMM register destination are
unmodified.

Operation
VXORPS (VEX.256 encoded version)
DEST[31:0] Å SRC1[31:0] BITWISE XOR SRC2[31:0]
DEST[63:32] Å SRC1[63:32] BITWISE XOR SRC2[63:32]
DEST[95:64] Å SRC1[95:64] BITWISE XOR SRC2[95:64]

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 57 /r
XORPS xmm1, xmm2/m128

V/V SSE Return the bitwise logical XOR of
packed single-precision floating-
point values in xmm1 and
xmm2/mem

VEX.NDS.128.0F 57 /r
VXORPS xmm1,xmm2, xmm3/m128

V/V AVX Return the bitwise logical XOR of
packed single-precision floating-
point values in xmm2 and
xmm3/mem

VEX.NDS.256.0F 57 /r
VXORPS ymm1, ymm2,
ymm3/m256

V/V AVX Return the bitwise logical XOR of
packed single-precision floating-
point values in ymm2 and
ymm3/mem
498 Ref. # 319433-004

INSTRUCTION SET REFERENCE
DEST[127:96] Å SRC1[127:96] BITWISE XOR SRC2[127:96]
DEST[159:128] Å SRC1[159:128] BITWISE XOR SRC2[159:128]
DEST[191:160]Å SRC1[191:160] BITWISE XOR SRC2[191:160]
DEST[223:192] Å SRC1[223:192] BITWISE XOR SRC2[223:192]
DEST[255:224] Å SRC1[255:224] BITWISE XOR SRC2[255:224].

VXORPS (VEX.128 encoded version)
DEST[31:0] Å SRC1[31:0] BITWISE XOR SRC2[31:0]
DEST[63:32] Å SRC1[63:32] BITWISE XOR SRC2[63:32]
DEST[95:64] Å SRC1[95:64] BITWISE XOR SRC2[95:64]
DEST[127:96] Å SRC1[127:96] BITWISE XOR SRC2[127:96]
DEST[255:128] Å 0

XORPS (128-bit Legacy SSE version)
DEST[31:0] Å SRC1[31:0] BITWISE XOR SRC2[31:0]
DEST[63:32] Å SRC1[63:32] BITWISE XOR SRC2[63:32]
DEST[95:64] Å SRC1[95:64] BITWISE XOR SRC2[95:64]
DEST[127:96] Å SRC1[127:96] BITWISE XOR SRC2[127:96]
DEST[255:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VXORPS __m256 _mm256_xor_ps (__m256 a, __m256 b);

XORPS __m128 _mm_xor_ps (__m128 a, __m128 b);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4
Ref. # 319433-004 499

INSTRUCTION SET REFERENCE
VZEROALL- Zero All YMM registers

Description
The instruction zeros contents of all XMM or YMM registers.

Note: VEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.

In Compatibility and legacy 32-bit mode only the lower 8 registers are modified.

Operation
VZEROALL (VEX.256 encoded version)
IF (64-bit mode)

YMM0[255:0] Å 0
YMM1[255:0] Å 0
YMM2[255:0] Å 0
YMM3[255:0] Å 0
YMM4[255:0] Å 0
YMM5[255:0] Å 0
YMM6[255:0] Å 0
YMM7[255:0] Å 0
YMM8[255:0] Å 0
YMM9[255:0] Å 0
YMM10[255:0] Å 0
YMM11[255:0] Å 0
YMM12[255:0] Å 0
YMM13[255:0] Å 0
YMM14[255:0] Å 0
YMM15[255:0] Å 0

ELSE
YMM0[255:0] Å 0
YMM1[255:0] Å 0
YMM2[255:0] Å 0
YMM3[255:0] Å 0
YMM4[255:0] Å 0
YMM5[255:0] Å 0
YMM6[255:0] Å 0

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

VEX.256.0F 77 V/V AVX Zero all YMM registers
VZEROALL
500 Ref. # 319433-004

INSTRUCTION SET REFERENCE
YMM7[255:0] Å 0
YMM8-15: Unmodified

FI

Intel C/C++ Compiler Intrinsic Equivalent

VZEROALL _mm256_zeroall()

SIMD Floating-Point Exceptions
None

Other Exceptions

See Exceptions Type 8
Ref. # 319433-004 501

INSTRUCTION SET REFERENCE
VZEROUPPER- Zero Upper bits of YMM registers

Description
The instruction zeros the upper 128 bits of all YMM registers. The lower 128-bits of
the registers (the corresponding XMM registers) are unmodified.

This instruction is recommended when transitioning between AVX and legacy SSE
code - it will eliminate performance penalties caused by false dependencies.

Note: VEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

In Compatibility and legacy 32-bit mode only the lower 8 registers are modified.

Operation
VZEROUPPER
IF (64-bit mode)

YMM0[255:128] Å 0
YMM1[255:128] Å 0
YMM2[255:128] Å 0
YMM3[255:128] Å 0
YMM4[255:128] Å 0
YMM5[255:128] Å 0
YMM6[255:128] Å 0
YMM7[255:128] Å 0
YMM8[255:128] Å 0
YMM9[255:128] Å 0
YMM10[255:128] Å 0
YMM11[255:128] Å 0
YMM12[255:128] Å 0
YMM13[255:128] Å 0
YMM14[255:128] Å 0
YMM15[255:128] Å 0

ELSE
YMM0[255:128] Å 0
YMM1[255:128] Å 0
YMM2[255:128] Å 0
YMM3[255:128] Å 0

Opcode/
Instruction

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

VEX.128.0F 77 V/V AVX Zero upper 128 bits of all YMM
registersVZEROUPPER
502 Ref. # 319433-004

INSTRUCTION SET REFERENCE
YMM4[255:128] Å 0
YMM5[255:128] Å 0
YMM6[255:128] Å 0
YMM7[255:128] Å 0
YMM8-15: unmodified

FI

Intel C/C++ Compiler Intrinsic Equivalent

VZEROUPPER _mm256_zeroupper()

SIMD Floating-Point Exceptions
None

Other Exceptions

See Exceptions Type 8
Ref. # 319433-004 503

INSTRUCTION SET REFERENCE
504 Ref. # 319433-004

INSTRUCTION SET REFERENCE - FMA
CHAPTER 6
INSTRUCTION SET REFERENCE - FMA

6.1 FMA INSTRUCTION SET REFERENCE
This section describes FMA instructions in details. Conventions and notations of
instruction format can be found in Section 5.1.
Ref. # 319433-004 1

INSTRUCTION SET REFERENCE - FMA
VFMADD132PD/VFMADD213PD/VFMADD231PD - Fused Multiply-Add of
Packed Double-Precision Floating-Point Values

Description
Performs a set of SIMD multiply-add computation on packed double-precision
floating-point values using three source operands and writes the multiply-add results
in the destination operand. The destination operand is also the first source operand.
The second operand must be a SIMD register. The third source operand can be a
SIMD register or a memory location.

VFMADD132PD: Multiplies the two or four packed double-precision floating-point
values from the first source operand to the two or four packed double-precision
floating-point values in the third source operand, adds the infinite precision interme-
diate result to the two or four packed double-precision floating-point values in the
second source operand, performs rounding and stores the resulting two or four

Opcode/
Instruction

Mode
Support

CPUID
Feature
Flag

Description

VEX.DDS.128.66.0F38.W1 98 /r V/V FMA Multiply packed double-precision
floating-point values from xmm0
and xmm2/mem, add to xmm1 and
put result in xmm0.

VFMADD132PD xmm0, xmm1,
xmm2/m128

VEX.DDS.128.66.0F38.W1 A8 /r V/V FMA Multiply packed double-precision
floating-point values from xmm0
and xmm1, add to xmm2/mem and
put result in xmm0.

VFMADD213PD xmm0, xmm1,
xmm2/m128

VEX.DDS.128.66.0F38.W1 B8 /r V/V FMA Multiply packed double-precision
floating-point values from xmm1
and xmm2/mem, add to xmm0 and
put result in xmm0.

VFMADD231PD xmm0, xmm1,
xmm2/m128

VEX.DDS.256.66.0F38.W1 98 /r V/V FMA Multiply packed double-precision
floating-point values from ymm0
and ymm2/mem, add to ymm1 and
put result in ymm0.

VFMADD132PD ymm0, ymm1,
ymm2/m256

VEX.DDS.256.66.0F38.W1 A8 /r V/V FMA Multiply packed double-precision
floating-point values from ymm0
and ymm1, add to ymm2/mem and
put result in ymm0.

VFMADD213PD ymm0, ymm1,
ymm2/m256

VEX.DDS.256.66.0F38.W1 B8 /r V/V FMA Multiply packed double-precision
floating-point values from ymm1
and ymm2/mem, add to ymm0 and
put result in ymm0.

VFMADD231PD ymm0, ymm1,
ymm2/m256
2 Ref. # 319433-004

INSTRUCTION SET REFERENCE - FMA
packed double-precision floating-point values to the destination operand (first source
operand).

VFMADD213PD: Multiplies the two or four packed double-precision floating-point
values from the second source operand to the two or four packed double-precision
floating-point values in the first source operand, adds the infinite precision interme-
diate result to the two or four packed double-precision floating-point values in the
third source operand, performs rounding and stores the resulting two or four packed
double-precision floating-point values to the destination operand (first source
operand).

VFMADD231PD: Multiplies the two or four packed double-precision floating-point
values from the second source to the two or four packed double-precision floating-
point values in the third source operand, adds the infinite precision intermediate
result to the two or four packed double-precision floating-point values in the first
source operand, performs rounding and stores the resulting two or four packed
double-precision floating-point values to the destination operand (first source
operand).

VEX.256 encoded version: The destination operand (also first source operand) is a
YMM register and encoded in reg_field. The second source operand is a YMM register
and encoded in VEX.vvvv. The third source operand is a YMM register or a 256-bit
memory location and encoded in rm_field.

VEX.128 encoded version: The destination operand (also first source operand) is a
XMM register and encoded in reg_field. The second source operand is a XMM register
and encoded in VEX.vvvv. The third source operand is a XMM register or a 128-bit
memory location and encoded in rm_field. The upper 128 bits of the YMM destination
register are zeroed.

Compiler tools may optionally support a complementary mnemonic for each instruc-
tion mnemonic listed in the opcode/instruction column of the summary table. The
behavior of the complementary mnemonic in situations involving NANs are governed
by the definition of the instruction mnemonic defined in the opcode/instruction
column. See also Section 2.3.1, “FMA Instruction Operand Order and Arithmetic
Behavior”.

Operation
In the operations below, “+” and “*” symbols represent multiplication and addition with infinite
precision inputs and outputs (no rounding)

VFMADD132PD DEST, SRC2, SRC3
IF (VEX.128) THEN

MAXVL =2
ELSEIF (VEX.256)

MAXVL = 4
FI
For i = 0 to MAXVL-1 {

n = 64*i;
Ref. # 319433-004 3

INSTRUCTION SET REFERENCE - FMA
DEST[n+63:n] Å RoundFPControl_MXCSR(DEST[n+63:n]*SRC3[n+63:n] + SRC2[n+63:n])
}
IF (VEX.128) THEN
DEST[255:128] Å 0
FI

VFMADD213PD DEST, SRC2, SRC3
IF (VEX.128) THEN

MAXVL =2
ELSEIF (VEX.256)

MAXVL = 4
FI
For i = 0 to MAXVL-1 {

n = 64*i;
DEST[n+63:n] Å RoundFPControl_MXCSR(SRC2[n+63:n]*DEST[n+63:n] + SRC3[n+63:n])

}
IF (VEX.128) THEN
DEST[255:128] Å 0
FI

VFMADD231PD DEST, SRC2, SRC3
IF (VEX.128) THEN

MAXVL =2
ELSEIF (VEX.256)

MAXVL = 4
FI
For i = 0 to MAXVL-1 {

n = 64*i;
DEST[n+63:n] Å RoundFPControl_MXCSR(SRC2[n+63:n]*SRC3[n+63:n] + DEST[n+63:n])

}
IF (VEX.128) THEN
DEST[255:128] Å 0
FI

Intel C/C++ Compiler Intrinsic Equivalent

VFMADD132PD __m128d _mm_fmadd_pd (__m128d a, __m128d b, __m128d c);

VFMADD213PD __m128d _mm_fmadd_pd (__m128d a, __m128d b, __m128d c);

VFMADD231PD __m128d _mm_fmadd_pd (__m128d a, __m128d b, __m128d c);

VFMADD132PD __m256d _mm256_fmadd_pd (__m256d a, __m256d b, __m256d c);

VFMADD213PD __m256d _mm256_fmadd_pd (__m256d a, __m256d b, __m256d c);
4 Ref. # 319433-004

INSTRUCTION SET REFERENCE - FMA
VFMADD231PD __m256d _mm256_fmadd_pd (__m256d a, __m256d b, __m256d c);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions
See Exceptions Type 2
Ref. # 319433-004 5

INSTRUCTION SET REFERENCE - FMA
VFMADD132PS/VFMADD213PS/VFMADD231PS - Fused Multiply-Add of
Packed Single-Precision Floating-Point Values

Description
Performs a set of SIMD multiply-add computation on packed single-precision
floating-point values using three source operands and writes the multiply-add results
in the destination operand. The destination operand is also the first source operand.
The second operand must be a SIMD register. The third source operand can be a
SIMD register or a memory location.

VFMADD132PS: Multiplies the four or eight packed single-precision floating-point
values from the first source operand to the four or eight packed single-precision
floating-point values in the third source operand, adds the infinite precision interme-
diate result to the four or eight packed single-precision floating-point values in the
second source operand, performs rounding and stores the resulting four or eight

Opcode/
Instruction

Mode
Support

CPUID
Feature
Flag

Description

VEX.DDS.128.66.0F38.W0 98 /r V/V FMA Multiply packed single-precision
floating-point values from xmm0
and xmm2/mem, add to xmm1 and
put result in xmm0.

VFMADD132PS xmm0, xmm1,
xmm2/m128

VEX.DDS.128.66.0F38.W0 A8 /r V/V FMA Multiply packed single-precision
floating-point values from xmm0
and xmm1, add to xmm2/mem and
put result in xmm0.

VFMADD213PS xmm0, xmm1,
xmm2/m128

VEX.DDS.128.66.0F38.W0 B8 /r V/V FMA Multiply packed single-precision
floating-point values from xmm1
and xmm2/mem, add to xmm0 and
put result in xmm0.

VFMADD231PS xmm0, xmm1,
xmm2/m128

VEX.DDS.256.66.0F38.W0 98 /r V/V FMA Multiply packed single-precision
floating-point values from ymm0
and ymm2/mem, add to ymm1 and
put result in ymm0.

VFMADD132PS ymm0, ymm1,
ymm2/m256

VEX.DDS.256.66.0F38.W0 A8 /r V/V FMA Multiply packed single-precision
floating-point values from ymm0
and ymm1, add to ymm2/mem and
put result in ymm0.

VFMADD213PS ymm0, ymm1,
ymm2/m256

VEX.DDS.256.66.0F38.0 B8 /r V/V FMA Multiply packed single-precision
floating-point values from ymm1
and ymm2/mem, add to ymm0 and
put result in ymm0.

VFMADD231PS ymm0, ymm1,
ymm2/m256
6 Ref. # 319433-004

INSTRUCTION SET REFERENCE - FMA
packed single-precision floating-point values to the destination operand (first source
operand).

VFMADD213PS: Multiplies the four or eight packed single-precision floating-point
values from the second source operand to the four or eight packed single-precision
floating-point values in the first source operand, adds the infinite precision interme-
diate result to the four or eight packed single-precision floating-point values in the
third source operand, performs rounding and stores the resulting the four or eight
packed single-precision floating-point values to the destination operand (first source
operand).

VFMADD231PS: Multiplies the four or eight packed single-precision floating-point
values from the second source operand to the four or eight packed single-precision
floating-point values in the third source operand, adds the infinite precision interme-
diate result to the four or eight packed single-precision floating-point values in the
first source operand, performs rounding and stores the resulting four or eight packed
single-precision floating-point values to the destination operand (first source
operand).

VEX.256 encoded version: The destination operand (also first source operand) is a
YMM register and encoded in reg_field. The second source operand is a YMM register
and encoded in VEX.vvvv. The third source operand is a YMM register or a 256-bit
memory location and encoded in rm_field.

VEX.128 encoded version: The destination operand (also first source operand) is a
XMM register and encoded in reg_field. The second source operand is a XMM register
and encoded in VEX.vvvv. The third source operand is a XMM register or a 128-bit
memory location and encoded in rm_field. The upper 128 bits of the YMM destination
register are zeroed.

Compiler tools may optionally support a complementary mnemonic for each instruc-
tion mnemonic listed in the opcode/instruction column of the summary table. The
behavior of the complementary mnemonic in situations involving NANs are governed
by the definition of the instruction mnemonic defined in the opcode/instruction
column. See also Section 2.3.1, “FMA Instruction Operand Order and Arithmetic
Behavior”

Operation
In the operations below, “+” and “*” symbols represent multiplication and addition with infinite
precision inputs and outputs (no rounding)
VFMADD132PS DEST, SRC2, SRC3
IF (VEX.128) THEN

MAXVL =4
ELSEIF (VEX.256)

MAXVL = 8
FI
For i = 0 to MAXVL-1 {

n = 32*i;
DEST[n+31:n] Å RoundFPControl_MXCSR(DEST[n+31:n]*SRC3[n+31:n] + SRC2[n+31:n])
Ref. # 319433-004 7

INSTRUCTION SET REFERENCE - FMA
}
IF (VEX.128) THEN

DEST[255:128] Å 0
FI

VFMADD213PS DEST, SRC2, SRC3
IF (VEX.128) THEN

MAXVL =4
ELSEIF (VEX.256)

MAXVL = 8
FI
For i = 0 to MAXVL-1 {

n = 32*i;
DEST[n+31:n] Å RoundFPControl_MXCSR(SRC2[n+31:n]*DEST[n+31:n] + SRC3[n+31:n])

}
IF (VEX.128) THEN

DEST[255:128] Å 0
FI

VFMADD231PS DEST, SRC2, SRC3
IF (VEX.128) THEN

MAXVL =4
ELSEIF (VEX.256)

MAXVL = 8
FI
For i = 0 to MAXVL-1 {

n = 32*i;
DEST[n+31:n] Å RoundFPControl_MXCSR(SRC2[n+31:n]*SRC3[n+31:n] + DEST[n+31:n])

}
IF (VEX.128) THEN

DEST[255:128] Å 0
FI

Intel C/C++ Compiler Intrinsic Equivalent

VFMADD132PS __m128 _mm_fmadd_ps (__m128 a, __m128 b, __m128 c);

VFMADD213PS __m128 _mm_fmadd_ps (__m128 a, __m128 b, __m128 c);

VFMADD231PS __m128 _mm_fmadd_ps (__m128 a, __m128 b, __m128 c);

VFMADD132PS __m256 _mm256_fmadd_ps (__m256 a, __m256 b, __m256 c);

VFMADD213PS __m256 _mm256_fmadd_ps (__m256 a, __m256 b, __m256 c);
8 Ref. # 319433-004

INSTRUCTION SET REFERENCE - FMA
VFMADD231PS __m256 _mm256_fmadd_ps (__m256 a, __m256 b, __m256 c);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions
See Exceptions Type 2
Ref. # 319433-004 9

INSTRUCTION SET REFERENCE - FMA
VFMADD132SD/VFMADD213SD/VFMADD231SD - Fused Multiply-Add of
Scalar Double-Precision Floating-Point Values

Description
Performs a SIMD multiply-add computation on the low packed double-precision
floating-point values using three source operands and writes the multiply-add result
in the destination operand. The destination operand is also the first source operand.
The second operand must be a SIMD register. The third source operand can be a
SIMD register or a memory location.

VFMADD132SD: Multiplies the low packed double-precision floating-point value from
the first source operand to the low packed double-precision floating-point value in
the third source operand, adds the infinite precision intermediate result to the low
packed double-precision floating-point values in the second source operand,
performs rounding and stores the resulting packed double-precision floating-point
value to the destination operand (first source operand).

VFMADD213SD: Multiplies the low packed double-precision floating-point value from
the second source operand to the low packed double-precision floating-point value in
the first source operand, adds the infinite precision intermediate result to the low
packed double-precision floating-point value in the third source operand, performs
rounding and stores the resulting packed double-precision floating-point value to the
destination operand (first source operand).

VFMADD231SD: Multiplies the low packed double-precision floating-point value from
the second source to the low packed double-precision floating-point value in the third
source operand, adds the infinite precision intermediate result to the low packed
double-precision floating-point value in the first source operand, performs rounding
and stores the resulting packed double-precision floating-point value to the destina-
tion operand (first source operand).

Opcode/
Instruction

Mode
Support

CPUID
Feature
Flag

Description

VEX.DDS.128.66.0F38.W1 99 /r V/V FMA Multiply scalar double-precision
floating-point value from xmm0
and xmm2/mem, add to xmm1 and
put result in xmm0.

VFMADD132SD xmm0, xmm1,
xmm2/m64

VEX.DDS.128.66.0F38.W1 A9 /r V/V FMA Multiply scalar double-precision
floating-point value from xmm0
and xmm1, add to xmm2/mem and
put result in xmm0.

VFMADD213SD xmm0, xmm1,
xmm2/m64

VEX.DDS.128.66.0F38.W1 B9 /r V/V FMA Multiply scalar double-precision
floating-point value from xmm1
and xmm2/mem, add to xmm0 and
put result in xmm0.

VFMADD231SD xmm0, xmm1,
xmm2/m64
10 Ref. # 319433-004

INSTRUCTION SET REFERENCE - FMA
VEX.128 encoded version: The destination operand (also first source operand) is a
XMM register and encoded in reg_field. The second source operand is a XMM register
and encoded in VEX.vvvv. The third source operand is a XMM register or a 64-bit
memory location and encoded in rm_field. The upper bits ([255:128]) of the YMM
destination register are zeroed.

Compiler tools may optionally support a complementary mnemonic for each instruc-
tion mnemonic listed in the opcode/instruction column of the summary table. The
behavior of the complementary mnemonic in situations involving NANs are governed
by the definition of the instruction mnemonic defined in the opcode/instruction
column. See also Section 2.3.1, “FMA Instruction Operand Order and Arithmetic
Behavior”

Operation
In the operations below, “+” and “*” symbols represent multiplication and addition with infinite
precision inputs and outputs (no rounding)

VFMADD132SD DEST, SRC2, SRC3
DEST[63:0] Å RoundFPControl_MXCSR(DEST[63:0]*SRC3[63:0] + SRC2[63:0])
DEST[127:64] Å DEST[127:64]
DEST[255:128] Å 0

VFMADD213SD DEST, SRC2, SRC3
DEST[63:0] Å RoundFPControl_MXCSR(SRC2[63:0]*DEST[63:0] + SRC3[63:0])
DEST[127:64] Å DEST[127:64]
DEST[255:128] Å 0

VFMADD231SD DEST, SRC2, SRC3
DEST[63:0] Å RoundFPControl_MXCSR(SRC2[63:0]*SRC3[63:0] + DEST[63:0])
DEST[127:64] Å DEST[127:64]
DEST[255:128] Å 0

Intel C/C++ Compiler Intrinsic Equivalent

VFMADD132SD __m128d _mm_fmadd_sd (__m128d a, __m128d b, __m128d c);

VFMADD213SD __m128d _mm_fmadd_sd (__m128d a, __m128d b, __m128d c);

VFMADD231SD __m128d _mm_fmadd_sd (__m128d a, __m128d b, __m128d c);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions
See Exceptions Type 3
Ref. # 319433-004 11

INSTRUCTION SET REFERENCE - FMA
VFMADD132SS/VFMADD213SS/VFMADD231SS - Fused Multiply-Add of
Scalar Single-Precision Floating-Point Values

Description
Performs a SIMD multiply-add computation on packed single-precision floating-point
values using three source operands and writes the multiply-add results in the desti-
nation operand. The destination operand is also the first source operand. The second
operand must be a SIMD register. The third source operand can be a SIMD register or
a memory location.

VFMADD132SS: Multiplies the low packed single-precision floating-point value from
the first source operand to the low packed single-precision floating-point value in the
third source operand, adds the infinite precision intermediate result to the low
packed single-precision floating-point value in the second source operand, performs
rounding and stores the resulting packed single-precision floating-point value to the
destination operand (first source operand).

VFMADD213SS: Multiplies the low packed single-precision floating-point value from
the second source operand to the low packed single-precision floating-point value in
the first source operand, adds the infinite precision intermediate result to the low
packed single-precision floating-point value in the third source operand, performs
rounding and stores the resulting packed single-precision floating-point value to the
destination operand (first source operand).

VFMADD231SS: Multiplies the low packed single-precision floating-point value from
the second source operand to the low packed single-precision floating-point value in
the third source operand, adds the infinite precision intermediate result to the low
packed single-precision floating-point value in the first source operand, performs
rounding and stores the resulting packed single-precision floating-point value to the
destination operand (first source operand).

Opcode/
Instruction

Mode
Support

CPUID
Feature
Flag

Description

VEX.DDS.128.66.0F38.W0 99 /r V/V FMA Multiply scalar single-precision
floating-point value from xmm0
and xmm2/mem, add to xmm1 and
put result in xmm0.

VFMADD132SS xmm0, xmm1,
xmm2/m32

VEX.DDS.128.66.0F38.W0 A9 /r V/V FMA Multiply scalar single-precision
floating-point value from xmm0
and xmm1, add to xmm2/mem and
put result in xmm0.

VFMADD213SS xmm0, xmm1,
xmm2/m32

VEX.DDS.128.66.0F38.W0 B9 /r V/V FMA Multiply scalar single-precision
floating-point value from xmm1
and xmm2/mem, add to xmm0 and
put result in xmm0.

VFMADD231SS xmm0, xmm1,
xmm2/m32
12 Ref. # 319433-004

INSTRUCTION SET REFERENCE - FMA
VEX.128 encoded version: The destination operand (also first source operand) is a
XMM register and encoded in reg_field. The second source operand is a XMM register
and encoded in VEX.vvvv. The third source operand is a XMM register or a 32-bit
memory location and encoded in rm_field. The upper bits ([255:128]) of the YMM
destination register are zeroed.

Compiler tools may optionally support a complementary mnemonic for each instruc-
tion mnemonic listed in the opcode/instruction column of the summary table. The
behavior of the complementary mnemonic in situations involving NANs are governed
by the definition of the instruction mnemonic defined in the opcode/instruction
column. See also Section 2.3.1, “FMA Instruction Operand Order and Arithmetic
Behavior”

Operation
In the operations below, “+” and “*” symbols represent multiplication and addition with infinite
precision inputs and outputs (no rounding)

VFMADD132SS DEST, SRC2, SRC3
DEST[31:0] Å RoundFPControl_MXCSR(DEST[31:0]*SRC3[31:0] + SRC2[31:0])
DEST[127:32] Å DEST[127:32]
DEST[255:128] Å 0

VFMADD213SS DEST, SRC2, SRC3
DEST[31:0] Å RoundFPControl_MXCSR(SRC2[31:0]*DEST[31:0] + SRC3[31:0])
DEST[127:32] Å DEST[127:32]
DEST[255:128] Å 0

VFMADD231SS DEST, SRC2, SRC3
DEST[31:0] Å RoundFPControl_MXCSR(SRC2[31:0]*SRC3[63:0] + DEST[31:0])
DEST[127:32] Å DEST[127:32]
DEST[255:128] Å 0

Intel C/C++ Compiler Intrinsic Equivalent

VFMADD132SS __m128 _mm_fmadd_ss (__m128 a, __m128 b, __m128 c);

VFMADD213SS __m128 _mm_fmadd_ss (__m128 a, __m128 b, __m128 c);

VFMADD231SS __m128 _mm_fmadd_ss (__m128 a, __m128 b, __m128 c);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal
Ref. # 319433-004 13

INSTRUCTION SET REFERENCE - FMA
Other Exceptions
See Exceptions Type 3
14 Ref. # 319433-004

INSTRUCTION SET REFERENCE - FMA
VFMADDSUB132PD/VFMADDSUB213PD/VFMADDSUB231PD - Fused
Multiply-Alternating Add/Subtract of Packed Double-Precision Floating-
Point Values

Description
VFMADDSUB132PD: Multiplies the two or four packed double-precision floating-point
values from the first source operand to the two or four packed double-precision
floating-point values in the third source operand. From the infinite precision interme-
diate result, adds the odd double-precision floating-point elements and subtracts the

Opcode/
Instruction

Mode
Support

CPUID
Feature
Flag

Description

VEX.DDS.128.66.0F38.W1 96 /r V/V FMA Multiply packed double-precision
floating-point values from xmm0
and xmm2/mem, add/subtract ele-
ments in xmm1 and put result in
xmm0.

VFMADDSUB132PD xmm0, xmm1,
xmm2/m128

VEX.DDS.128.66.0F38.W1 A6 /r V/V FMA Multiply packed double-precision
floating-point values from xmm0
and xmm1, add/subtract elements
in xmm2/mem and put result in
xmm0.

VFMADDSUB213PD xmm0, xmm1,
xmm2/m128

VEX.DDS.128.66.0F38.W1 B6 /r V/V FMA Multiply packed double-precision
floating-point values from xmm1
and xmm2/mem, add/subtract ele-
ments in xmm0 and put result in
xmm0.

VFMADDSUB231PD xmm0, xmm1,
xmm2/m128

VEX.DDS.256.66.0F38.W1 96 /r V/V FMA Multiply packed double-precision
floating-point values from ymm0
and ymm2/mem, add/subtract ele-
ments in ymm1 and put result in
ymm0.

VFMADDSUB132PD ymm0, ymm1,
ymm2/m256

VEX.DDS.256.66.0F38.W1 A6 /r V/V FMA Multiply packed double-precision
floating-point values from ymm0
and ymm1, add/subtract elements
in ymm2/mem and put result in
ymm0.

VFMADDSUB213PD ymm0, ymm1,
ymm2/m256

VEX.DDS.256.66.0F38.W1 B6 /r V/V FMA Multiply packed double-precision
floating-point values from ymm1
and ymm2/mem, add/subtract ele-
ments in ymm0 and put result in
ymm0.

VFMADDSUB231PD ymm0, ymm1,
ymm2/m256
Ref. # 319433-004 15

INSTRUCTION SET REFERENCE - FMA
even double-precision floating-point values in the second source operand, performs
rounding and stores the resulting two or four packed double-precision floating-point
values to the destination operand (first source operand).

VFMADDSUB213PD: Multiplies the two or four packed double-precision floating-point
values from the second source operand to the two or four packed double-precision
floating-point values in the first source operand. From the infinite precision interme-
diate result, adds the odd double-precision floating-point elements and subtracts the
even double-precision floating-point values in the third source operand, performs
rounding and stores the resulting two or four packed double-precision floating-point
values to the destination operand (first source operand).

VFMADDSUB231PD: Multiplies the two or four packed double-precision floating-point
values from the second source operand to the two or four packed double-precision
floating-point values in the third source operand. From the infinite precision interme-
diate result, adds the odd double-precision floating-point elements and subtracts the
even double-precision floating-point values in the first source operand, performs
rounding and stores the resulting two or four packed double-precision floating-point
values to the destination operand (first source operand).

VEX.256 encoded version: The destination operand (also first source operand) is a
YMM register and encoded in reg_field. The second source operand is a YMM register
and encoded in VEX.vvvv. The third source operand is a YMM register or a 256-bit
memory location and encoded in rm_field.

VEX.128 encoded version: The destination operand (also first source operand) is a
XMM register and encoded in reg_field. The second source operand is a XMM register
and encoded in VEX.vvvv. The third source operand is a XMM register or a 128-bit
memory location and encoded in rm_field. The upper 128 bits of the YMM destination
register are zeroed.

Compiler tools may optionally support a complementary mnemonic for each instruc-
tion mnemonic listed in the opcode/instruction column of the summary table. The
behavior of the complementary mnemonic in situations involving NANs are governed
by the definition of the instruction mnemonic defined in the opcode/instruction
column. See also Section 2.3.1, “FMA Instruction Operand Order and Arithmetic
Behavior”

Operation
In the operations below, “+” and “*” symbols represent multiplication and addition with infinite
precision inputs and outputs (no rounding)
VFMADDSUB132PD DEST, SRC2, SRC3
IF (VEX.128) THEN

DEST[63:0] Å RoundFPControl_MXCSR(DEST[63:0]*SRC3[63:0] - SRC2[63:0])
DEST[127:64] Å RoundFPControl_MXCSR(DEST[127:64]*SRC3[127:64] + SRC2[127:64])
DEST[255:128] Å 0

ELSEIF (VEX.256)
DEST[63:0] Å RoundFPControl_MXCSR(DEST[63:0]*SRC3[63:0] - SRC2[63:0])
DEST[127:64] Å RoundFPControl_MXCSR(DEST[127:64]*SRC3[127:64] + SRC2[127:64])
16 Ref. # 319433-004

INSTRUCTION SET REFERENCE - FMA
DEST[191:128] Å RoundFPControl_MXCSR(DEST[191:128]*SRC3[191:128] - SRC2[191:128])
DEST[255:192] Å RoundFPControl_MXCSR(DEST[255:192]*SRC3[255:192] + SRC2[255:192]

FI

VFMADDSUB213PD DEST, SRC2, SRC3
IF (VEX.128) THEN

DEST[63:0] Å RoundFPControl_MXCSR(SRC2[63:0]*DEST[63:0] - SRC3[63:0])
DEST[127:64] Å RoundFPControl_MXCSR(SRC2[127:64]*DEST[127:64] + SRC3[127:64])
DEST[255:128] Å 0

ELSEIF (VEX.256)
DEST[63:0] Å RoundFPControl_MXCSR(SRC2[63:0]*DEST[63:0] - SRC3[63:0])
DEST[127:64] Å RoundFPControl_MXCSR(SRC2[127:64]*DEST[127:64] + SRC3[127:64])
DEST[191:128] Å RoundFPControl_MXCSR(SRC2[191:128]*DEST[191:128] - SRC3[191:128])
DEST[255:192] Å RoundFPControl_MXCSR(SRC2[255:192]*DEST[255:192] + SRC3[255:192]

FI

VFMADDSUB231PD DEST, SRC2, SRC3
IF (VEX.128) THEN

DEST[63:0] Å RoundFPControl_MXCSR(SRC2[63:0]*SRC3[63:0] - DEST[63:0])
DEST[127:64] Å RoundFPControl_MXCSR(SRC2[127:64]*SRC3[127:64] + DEST[127:64])
DEST[255:128] Å 0

ELSEIF (VEX.256)
DEST[63:0] Å RoundFPControl_MXCSR(SRC2[63:0]*SRC3[63:0] - DEST[63:0])
DEST[127:64] Å RoundFPControl_MXCSR(SRC2[127:64]*SRC3[127:64] + DEST[127:64])
DEST[191:128] Å RoundFPControl_MXCSR(SRC2[191:128]*SRC3[191:128] - DEST[191:128])
DEST[255:192] Å RoundFPControl_MXCSR(SRC2[255:192]*SRC3[255:192] + DEST[255:192]

FI

Intel C/C++ Compiler Intrinsic Equivalent

VFMADDSUB132PD __m128d _mm_fmaddsub_pd (__m128d a, __m128d b, __m128d c);

VFMADDSUB213PD __m128d _mm_fmaddsub_pd (__m128d a, __m128d b, __m128d c);

VFMADDSUB231PD __m128d _mm_fmaddsub_pd (__m128d a, __m128d b, __m128d c);

VFMADDSUB132PD __m256d _mm256_fmaddsub_pd (__m256d a, __m256d b, __m256d c);

VFMADDSUB213PD __m256d _mm256_fmaddsub_pd (__m256d a, __m256d b, __m256d c);

VFMADDSUB231PD __m256d _mm256_fmaddsub_pd (__m256d a, __m256d b, __m256d c);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal
Ref. # 319433-004 17

INSTRUCTION SET REFERENCE - FMA
Other Exceptions
See Exceptions Type 2
18 Ref. # 319433-004

INSTRUCTION SET REFERENCE - FMA
VFMADDSUB132PS/VFMADDSUB213PS/VFMADDSUB231PS - Fused
Multiply-Alternating Add/Subtract of Packed Single-Precision Floating-Point
Values

Description
VFMADDSUB132PS: Multiplies the four or eight packed single-precision floating-
point values from the first source operand to the four or eight packed single-precision
floating-point values in the third source operand. From the infinite precision interme-
diate result, adds the odd single-precision floating-point elements and subtracts the

Opcode/
Instruction

Mode
Support

CPUID
Feature
Flag

Description

VEX.DDS.128.66.0F38.W0 96 /r V/V FMA Multiply packed single-precision
floating-point values from xmm0
and xmm2/mem, add/subtract ele-
ments in xmm1 and put result in
xmm0.

VFMADDSUB132PS xmm0, xmm1,
xmm2/m128

VEX.DDS.128.66.0F38.W0 A6 /r V/V FMA Multiply packed single-precision
floating-point values from xmm0
and xmm1, add/subtract elements
in xmm2/mem and put result in
xmm0.

VFMADDSUB213PS xmm0, xmm1,
xmm2/m128

VEX.DDS.128.66.0F38.W0 B6 /r V/V FMA Multiply packed single-precision
floating-point values from xmm1
and xmm2/mem, add/subtract ele-
ments in xmm0 and put result in
xmm0.

VFMADDSUB231PS xmm0, xmm1,
xmm2/m128

VEX.DDS.256.66.0F38.W0 96 /r V/V FMA Multiply packed single-precision
floating-point values from ymm0
and ymm2/mem, add/subtract ele-
ments in ymm1 and put result in
ymm0.

VFMADDSUB132PS ymm0, ymm1,
ymm2/m256

VEX.DDS.256.66.0F38.W0 A6 /r V/V FMA Multiply packed single-precision
floating-point values from ymm0
and ymm1, add/subtract elements
in ymm2/mem and put result in
ymm0.

VFMADDSUB213PS ymm0, ymm1,
ymm2/m256

VEX.DDS.256.66.0F38.W0 B6 /r V/V FMA Multiply packed single-precision
floating-point values from ymm1
and ymm2/mem, add/subtract ele-
ments in ymm0 and put result in
ymm0.

VFMADDSUB231PS ymm0, ymm1,
ymm2/m256
Ref. # 319433-004 19

INSTRUCTION SET REFERENCE - FMA
even single-precision floating-point values in the second source operand, performs
rounding and stores the resulting four or eight packed single-precision floating-point
values to the destination operand (first source operand).

VFMADDSUB213PS: Multiplies the four or eight packed single-precision floating-
point values from the second source operand to the four or eight packed single-preci-
sion floating-point values in the first source operand. From the infinite precision
intermediate result, adds the odd single-precision floating-point elements and
subtracts the even single-precision floating-point values in the third source operand,
performs rounding and stores the resulting four or eight packed single-precision
floating-point values to the destination operand (first source operand).

VFMADDSUB231PS: Multiplies the four or eight packed single-precision floating-
point values from the second source operand to the four or eight packed single-preci-
sion floating-point values in the third source operand. From the infinite precision
intermediate result, adds the odd single-precision floating-point elements and
subtracts the even single-precision floating-point values in the first source operand,
performs rounding and stores the resulting four or eight packed single-precision
floating-point values to the destination operand (first source operand).

VEX.256 encoded version: The destination operand (also first source operand) is a
YMM register and encoded in reg_field. The second source operand is a YMM register
and encoded in VEX.vvvv. The third source operand is a YMM register or a 256-bit
memory location and encoded in rm_field.

VEX.128 encoded version: The destination operand (also first source operand) is a
XMM register and encoded in reg_field. The second source operand is a XMM register
and encoded in VEX.vvvv. The third source operand is a XMM register or a 128-bit
memory location and encoded in rm_field. The upper 128 bits of the YMM destination
register are zeroed.

Compiler tools may optionally support a complementary mnemonic for each instruc-
tion mnemonic listed in the opcode/instruction column of the summary table. The
behavior of the complementary mnemonic in situations involving NANs are governed
by the definition of the instruction mnemonic defined in the opcode/instruction
column. See also Section 2.3.1, “FMA Instruction Operand Order and Arithmetic
Behavior”

Operation
In the operations below, “+” and “*” symbols represent multiplication and addition with infinite
precision inputs and outputs (no rounding)
VFMADDSUB132PS DEST, SRC2, SRC3
IF (VEX.128) THEN

MAXVL =2
ELSEIF (VEX.256)

MAXVL = 4
FI
For i = 0 to MAXVL -1{

n = 64*i;
20 Ref. # 319433-004

INSTRUCTION SET REFERENCE - FMA
DEST[n+31:n] Å RoundFPControl_MXCSR(DEST[n+31:n]*SRC3[n+31:n] - SRC2[n+31:n])
DEST[n+63:n+32] Å RoundFPControl_MXCSR(DEST[n+63:n+32]*SRC3[n+63:n+32] +

SRC2[n+63:n+32])
}
IF (VEX.128) THEN

DEST[255:128] Å 0
FI

VFMADDSUB213PS DEST, SRC2, SRC3
IF (VEX.128) THEN

MAXVL =2
ELSEIF (VEX.256)

MAXVL = 4
FI
For i = 0 to MAXVL -1{

n = 64*i;
DEST[n+31:n] Å RoundFPControl_MXCSR(SRC2[n+31:n]*DEST[n+31:n] - SRC3[n+31:n])
DEST[n+63:n+32] Å RoundFPControl_MXCSR(SRC2[n+63:n+32]*DEST[n+63:n+32] +

SRC3[n+63:n+32])
}
IF (VEX.128) THEN

DEST[255:128] Å 0
FI

VFMADDSUB231PS DEST, SRC2, SRC3
IF (VEX.128) THEN

MAXVL =2
ELSEIF (VEX.256)

MAXVL = 4
FI
For i = 0 to MAXVL -1{

n = 64*i;
DEST[n+31:n] Å RoundFPControl_MXCSR(SRC2[n+31:n]*SRC3[n+31:n] - DEST[n+31:n])
DEST[n+63:n+32] Å RoundFPControl_MXCSR(SRC2[n+63:n+32]*SRC3[n+63:n+32] +

DEST[n+63:n+32])
}
IF (VEX.128) THEN

DEST[255:128] Å 0
FI

Intel C/C++ Compiler Intrinsic Equivalent

VFMADDSUB132PS __m128 _mm_fmaddsub_ps (__m128 a, __m128 b, __m128 c);
Ref. # 319433-004 21

INSTRUCTION SET REFERENCE - FMA
VFMADDSUB213PS __m128 _mm_fmaddsub_ps (__m128 a, __m128 b, __m128 c);

VFMADDSUB231PS __m128 _mm_fmaddsub_ps (__m128 a, __m128 b, __m128 c);

VFMADDSUB132PS __m256 _mm256_fmaddsub_ps (__m256 a, __m256 b, __m256 c);

VFMADDSUB213PS __m256 _mm256_fmaddsub_ps (__m256 a, __m256 b, __m256 c);

VFMADDSUB231PS __m256 _mm256_fmaddsub_ps (__m256 a, __m256 b, __m256 c);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions
See Exceptions Type 2
22 Ref. # 319433-004

INSTRUCTION SET REFERENCE - FMA
VFMSUBADD132PD/VFMSUBADD213PD/VFMSUBADD231PD - Fused
Multiply-Alternating Subtract/Add of Packed Double-Precision Floating-
Point Values

Description
VFMSUBADD132PD: Multiplies the two or four packed double-precision floating-point
values from the first source operand to the two or four packed double-precision
floating-point values in the third source operand. From the infinite precision interme-
diate result, subtracts the odd double-precision floating-point elements and adds the

Opcode/
Instruction

Mode
Support

CPUID
Feature
Flag

Description

VEX.DDS.128.66.0F38.W1 97 /r V/V FMA Multiply packed double-precision
floating-point values from xmm0
and xmm2/mem, subtract/add ele-
ments in xmm1 and put result in
xmm0.

VFMSUBADD132PD xmm0, xmm1,
xmm2/m128

VEX.DDS.128.66.0F38.W1 A7 /r V/V FMA Multiply packed double-precision
floating-point values from xmm0
and xmm1, subtract/add elements
in xmm2/mem and put result in
xmm0.

VFMSUBADD213PD xmm0, xmm1,
xmm2/m128

VEX.DDS.128.66.0F38.W1 B7 /r V/V FMA Multiply packed double-precision
floating-point values from xmm1
and xmm2/mem, subtract/add ele-
ments in xmm0 and put result in
xmm0.

VFMSUBADD231PD xmm0, xmm1,
xmm2/m128

VEX.DDS.256.66.0F38.W1 97 /r V/V FMA Multiply packed double-precision
floating-point values from ymm0
and ymm2/mem, subtract/add ele-
ments in ymm1 and put result in
ymm0.

VFMSUBADD132PD ymm0, ymm1,
ymm2/m256

VEX.DDS.256.66.0F38.W1 A7 /r V/V FMA Multiply packed double-precision
floating-point values from ymm0
and ymm1, subtract/add elements
in ymm2/mem and put result in
ymm0.

VFMSUBADD213PD ymm0, ymm1,
ymm2/m256

VEX.DDS.256.66.0F38.W1 B7 /r V/V FMA Multiply packed double-precision
floating-point values from ymm1
and ymm2/mem, subtract/add ele-
ments in ymm0 and put result in
ymm0.

VFMSUBADD231PD ymm0, ymm1,
ymm2/m256
Ref. # 319433-004 23

INSTRUCTION SET REFERENCE - FMA
even double-precision floating-point values in the second source operand, performs
rounding and stores the resulting two or four packed double-precision floating-point
values to the destination operand (first source operand).

VFMSUBADD213PD: Multiplies the two or four packed double-precision floating-point
values from the second source operand to the two or four packed double-precision
floating-point values in the first source operand. From the infinite precision interme-
diate result, subtracts the odd double-precision floating-point elements and adds the
even double-precision floating-point values in the third source operand, performs
rounding and stores the resulting two or four packed double-precision floating-point
values to the destination operand (first source operand).

VFMSUBADD231PD: Multiplies the two or four packed double-precision floating-point
values from the second source operand to the two or four packed double-precision
floating-point values in the third source operand. From the infinite precision interme-
diate result, subtracts the odd double-precision floating-point elements and adds the
even double-precision floating-point values in the first source operand, performs
rounding and stores the resulting two or four packed double-precision floating-point
values to the destination operand (first source operand).

VEX.256 encoded version: The destination operand (also first source operand) is a
YMM register and encoded in reg_field. The second source operand is a YMM register
and encoded in VEX.vvvv. The third source operand is a YMM register or a 256-bit
memory location and encoded in rm_field.

VEX.128 encoded version: The destination operand (also first source operand) is a
XMM register and encoded in reg_field. The second source operand is a XMM register
and encoded in VEX.vvvv. The third source operand is a XMM register or a 128-bit
memory location and encoded in rm_field. The upper 128 bits of the YMM destination
register are zeroed.

Compiler tools may optionally support a complementary mnemonic for each instruc-
tion mnemonic listed in the opcode/instruction column of the summary table. The
behavior of the complementary mnemonic in situations involving NANs are governed
by the definition of the instruction mnemonic defined in the opcode/instruction
column. See also Section 2.3.1, “FMA Instruction Operand Order and Arithmetic
Behavior”

Operation
In the operations below, “+” and “*” symbols represent multiplication and addition with infinite
precision inputs and outputs (no rounding)
VFMSUBADD132PD DEST, SRC2, SRC3
IF (VEX.128) THEN

DEST[63:0] Å RoundFPControl_MXCSR(DEST[63:0]*SRC3[63:0] + SRC2[63:0])
DEST[127:64] Å RoundFPControl_MXCSR(DEST[127:64]*SRC3[127:64] - SRC2[127:64])
DEST[255:128] Å 0

ELSEIF (VEX.256)
DEST[63:0] Å RoundFPControl_MXCSR(DEST[63:0]*SRC3[63:0] + SRC2[63:0])
DEST[127:64] Å RoundFPControl_MXCSR(DEST[127:64]*SRC3[127:64] - SRC2[127:64])
24 Ref. # 319433-004

INSTRUCTION SET REFERENCE - FMA
DEST[191:128] Å RoundFPControl_MXCSR(DEST[191:128]*SRC3[191:128] + SRC2[191:128])
DEST[255:192] Å RoundFPControl_MXCSR(DEST[255:192]*SRC3[255:192] - SRC2[255:192]

FI

VFMSUBADD213PD DEST, SRC2, SRC3
IF (VEX.128) THEN

DEST[63:0] Å RoundFPControl_MXCSR(SRC2[63:0]*DEST[63:0] + SRC3[63:0])
DEST[127:64] Å RoundFPControl_MXCSR(SRC2[127:64]*DEST[127:64] - SRC3[127:64])
DEST[255:128] Å 0

ELSEIF (VEX.256)
DEST[63:0] Å RoundFPControl_MXCSR(SRC2[63:0]*DEST[63:0] + SRC3[63:0])
DEST[127:64] Å RoundFPControl_MXCSR(SRC2[127:64]*DEST[127:64] - SRC3[127:64])
DEST[191:128] Å RoundFPControl_MXCSR(SRC2[191:128]*DEST[191:128] + SRC3[191:128])
DEST[255:192] Å RoundFPControl_MXCSR(SRC2[255:192]*DEST[255:192] - SRC3[255:192]

FI

VFMSUBADD231PD DEST, SRC2, SRC3
IF (VEX.128) THEN

DEST[63:0] Å RoundFPControl_MXCSR(SRC2[63:0]*SRC3[63:0] + DEST[63:0])
DEST[127:64] Å RoundFPControl_MXCSR(SRC2[127:64]*SRC3[127:64] - DEST[127:64])
DEST[255:128] Å 0

ELSEIF (VEX.256)
DEST[63:0] Å RoundFPControl_MXCSR(SRC2[63:0]*SRC3[63:0] + DEST[63:0])
DEST[127:64] Å RoundFPControl_MXCSR(SRC2[127:64]*SRC3[127:64] - DEST[127:64])
DEST[191:128] Å RoundFPControl_MXCSR(SRC2[191:128]*SRC3[191:128] + DEST[191:128])
DEST[255:192] Å RoundFPControl_MXCSR(SRC2[255:192]*SRC3[255:192] - DEST[255:192]

FI

Intel C/C++ Compiler Intrinsic Equivalent

VFMSUBADD132PD __m128d _mm_fmsubadd_pd (__m128d a, __m128d b, __m128d c);

VFMSUBADD213PD __m128d _mm_fmsubadd_pd (__m128d a, __m128d b, __m128d c);

VFMSUBADD231PD __m128d _mm_fmsubadd_pd (__m128d a, __m128d b, __m128d c);

VFMSUBADD132PD __m256d _mm256_fmsubadd_pd (__m256d a, __m256d b, __m256d c);

VFMSUBADD213PD __m256d _mm256_fmsubadd_pd (__m256d a, __m256d b, __m256d c);

VFMSUBADD231PD __m256d _mm256_fmsubadd_pd (__m256d a, __m256d b, __m256d c);
Ref. # 319433-004 25

INSTRUCTION SET REFERENCE - FMA
SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions
See Exceptions Type 2
26 Ref. # 319433-004

INSTRUCTION SET REFERENCE - FMA
VFMSUBADD132PS/VFMSUBADD213PS/VFMSUBADD231PS - Fused
Multiply-Alternating Subtract/Add of Packed Single-Precision Floating-Point
Values

Description
VFMSUBADD132PS: Multiplies the four or eight packed single-precision floating-
point values from the first source operand to the four or eight packed single-precision
floating-point values in the third source operand. From the infinite precision interme-
diate result, subtracts the odd single-precision floating-point elements and adds the

Opcode/
Instruction

Mode
Support

CPUID
Feature
Flag

Description

VEX.DDS.128.66.0F38.W0 97 /r V/V FMA Multiply packed single-precision
floating-point values from xmm0
and xmm2/mem, subtract/add ele-
ments in xmm1 and put result in
xmm0.

VFMSUBADD132PS xmm0, xmm1,
xmm2/m128

VEX.DDS.128.66.0F38.W0 A7 /r V/V FMA Multiply packed single-precision
floating-point values from xmm0
and xmm1, subtract/add elements
in xmm2/mem and put result in
xmm0.

VFMSUBADD213PS xmm0, xmm1,
xmm2/m128

VEX.DDS.128.66.0F38.W0 B7 /r V/V FMA Multiply packed single-precision
floating-point values from xmm1
and xmm2/mem, subtract/add ele-
ments in xmm0 and put result in
xmm0.

VFMSUBADD231PS xmm0, xmm1,
xmm2/m128

VEX.DDS.256.66.0F38.W0 97 /r V/V FMA Multiply packed single-precision
floating-point values from ymm0
and ymm2/mem, subtract/add ele-
ments in ymm1 and put result in
ymm0.

VFMSUBADD132PS ymm0, ymm1,
ymm2/m256

VEX.DDS.256.66.0F38.W0 A7 /r V/V FMA Multiply packed single-precision
floating-point values from ymm0
and ymm1, subtract/add elements
in ymm2/mem and put result in
ymm0.

VFMSUBADD213PS ymm0, ymm1,
ymm2/m256

VEX.DDS.256.66.0F38.W0 B7 /r V/V FMA Multiply packed single-precision
floating-point values from ymm1
and ymm2/mem, subtract/add ele-
ments in ymm0 and put result in
ymm0.

VFMSUBADD231PS ymm0, ymm1,
ymm2/m256
Ref. # 319433-004 27

INSTRUCTION SET REFERENCE - FMA
even single-precision floating-point values in the second source operand, performs
rounding and stores the resulting four or eight packed single-precision floating-point
values to the destination operand (first source operand).

VFMSUBADD213PS: Multiplies the four or eight packed single-precision floating-
point values from the second source operand to the four or eight packed single-preci-
sion floating-point values in the first source operand. From the infinite precision
intermediate result, subtracts the odd single-precision floating-point elements and
adds the even single-precision floating-point values in the third source operand,
performs rounding and stores the resulting four or eight packed single-precision
floating-point values to the destination operand (first source operand).

VFMSUBADD231PS: Multiplies the four or eight packed single-precision floating-
point values from the second source operand to the four or eight packed single-preci-
sion floating-point values in the third source operand. From the infinite precision
intermediate result, subtracts the odd single-precision floating-point elements and
adds the even single-precision floating-point values in the first source operand,
performs rounding and stores the resulting four or eight packed single-precision
floating-point values to the destination operand (first source operand).

VEX.256 encoded version: The destination operand (also first source operand) is a
YMM register and encoded in reg_field. The second source operand is a YMM register
and encoded in VEX.vvvv. The third source operand is a YMM register or a 256-bit
memory location and encoded in rm_field.

VEX.128 encoded version: The destination operand (also first source operand) is a
XMM register and encoded in reg_field. The second source operand is a XMM register
and encoded in VEX.vvvv. The third source operand is a XMM register or a 128-bit
memory location and encoded in rm_field. The upper 128 bits of the YMM destination
register are zeroed.

Compiler tools may optionally support a complementary mnemonic for each instruc-
tion mnemonic listed in the opcode/instruction column of the summary table. The
behavior of the complementary mnemonic in situations involving NANs are governed
by the definition of the instruction mnemonic defined in the opcode/instruction
column. See also Section 2.3.1, “FMA Instruction Operand Order and Arithmetic
Behavior”

Operation
In the operations below, “+” and “*” symbols represent multiplication and addition with infinite
precision inputs and outputs (no rounding)

VFMSUBADD132PS DEST, SRC2, SRC3
IF (VEX.128) THEN

MAXVL =2
ELSEIF (VEX.256)

MAXVL = 4
FI
For i = 0 to MAXVL -1{
28 Ref. # 319433-004

INSTRUCTION SET REFERENCE - FMA
n = 64*i;
DEST[n+31:n] Å RoundFPControl_MXCSR(DEST[n+31:n]*SRC3[n+31:n] + SRC2[n+31:n])
DEST[n+63:n+32] Å RoundFPControl_MXCSR(DEST[n+63:n+32]*SRC3[n+63:n+32] -

SRC2[n+63:n+32])
}
IF (VEX.128) THEN

DEST[255:128] Å 0
FI

VFMSUBADD213PS DEST, SRC2, SRC3
IF (VEX.128) THEN

MAXVL =2
ELSEIF (VEX.256)

MAXVL = 4
FI
For i = 0 to MAXVL -1{

n = 64*i;
DEST[n+31:n] Å RoundFPControl_MXCSR(SRC2[n+31:n]*DEST[n+31:n] +SRC3[n+31:n])
DEST[n+63:n+32] Å RoundFPControl_MXCSR(SRC2[n+63:n+32]*DEST[n+63:n+32] -

SRC3[n+63:n+32])
}
IF (VEX.128) THEN

DEST[255:128] Å 0
FI

VFMSUBADD231PS DEST, SRC2, SRC3
IF (VEX.128) THEN

MAXVL =2
ELSEIF (VEX.256)

MAXVL = 4
FI
For i = 0 to MAXVL -1{

n = 64*i;
DEST[n+31:n] Å RoundFPControl_MXCSR(SRC2[n+31:n]*SRC3[n+31:n] + DEST[n+31:n])
DEST[n+63:n+32] Å RoundFPControl_MXCSR(SRC2[n+63:n+32]*SRC3[n+63:n+32] -

DEST[n+63:n+32])
}
IF (VEX.128) THEN

DEST[255:128] Å 0
FI

Intel C/C++ Compiler Intrinsic Equivalent

VFMSUBADD132PS __m128 _mm_fmsubadd_ps (__m128 a, __m128 b, __m128 c);
Ref. # 319433-004 29

INSTRUCTION SET REFERENCE - FMA
VFMSUBADD213PS __m128 _mm_fmsubadd_ps (__m128 a, __m128 b, __m128 c);

VFMSUBADD231PS __m128 _mm_fmsubadd_ps (__m128 a, __m128 b, __m128 c);

VFMSUBADD132PS __m256 _mm256_fmsubadd_ps (__m256 a, __m256 b, __m256 c);

VFMSUBADD213PS __m256 _mm256_fmsubadd_ps (__m256 a, __m256 b, __m256 c);

VFMSUBADD231PS __m256 _mm256_fmsubadd_ps (__m256 a, __m256 b, __m256 c);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions
See Exceptions Type 2
30 Ref. # 319433-004

INSTRUCTION SET REFERENCE - FMA
VFMSUB132PD/VFMSUB213PD/VFMSUB231PD - Fused Multiply-Subtract
of Packed Double-Precision Floating-Point Values

Description
Performs a set of SIMD multiply-subtract computation on packed double-precision
floating-point values using three source operands and writes the multiply-subtract
results in the destination operand. The destination operand is also the first source
operand. The second operand must be a SIMD register. The third source operand can
be a SIMD register or a memory location.

VFMSUB132PD: Multiplies the two or four packed double-precision floating-point
values from the first source operand to the two or four packed double-precision
floating-point values in the third source operand. From the infinite precision interme-
diate result, subtracts the two or four packed double-precision floating-point values
in the second source operand, performs rounding and stores the resulting two or four

Opcode/
Instruction

Mode
Support

CPUID
Feature
Flag

Description

VEX.DDS.128.66.0F38.W1 9A /r V/V FMA Multiply packed double-precision
floating-point values from xmm0
and xmm2/mem, subtract xmm1
and put result in xmm0.

VFMSUB132PD xmm0, xmm1,
xmm2/m128

VEX.DDS.128.66.0F38.W1 AA /r V/V FMA Multiply packed double-precision
floating-point values from xmm0
and xmm1, subtract xmm2/mem
and put result in xmm0.

VFMSUB213PD xmm0, xmm1,
xmm2/m128

VEX.DDS.128.66.0F38.W1 BA /r V/V FMA Multiply packed double-precision
floating-point values from xmm1
and xmm2/mem, subtract xmm0
and put result in xmm0.

VFMSUB231PD xmm0, xmm1,
xmm2/m128

VEX.DDS.256.66.0F38.W1 9A /r V/V FMA Multiply packed double-precision
floating-point values from ymm0
and ymm2/mem, subtract ymm1
and put result in ymm0.

VFMSUB132PD ymm0, ymm1,
ymm2/m256

VEX.DDS.256.66.0F38.W1 AA /r V/V FMA Multiply packed double-precision
floating-point values from ymm0
and ymm1, subtract ymm2/mem
and put result in ymm0.

VFMSUB213PD ymm0, ymm1,
ymm2/m256

VEX.DDS.256.66.0F38.W1 BA /r V/V FMA Multiply packed double-precision
floating-point values from ymm1
and ymm2/mem, subtract ymm0
and put result in ymm0.

VFMSUB231PD ymm0, ymm1,
ymm2/m256
Ref. # 319433-004 31

INSTRUCTION SET REFERENCE - FMA
packed double-precision floating-point values to the destination operand (first source
operand).

VFMSUB213PD: Multiplies the two or four packed double-precision floating-point
values from the second source operand to the two or four packed double-precision
floating-point values in the first source operand. From the infinite precision interme-
diate result, subtracts the two or four packed double-precision floating-point values
in the third source operand, performs rounding and stores the resulting two or four
packed double-precision floating-point values to the destination operand (first source
operand).

VFMSUB231PD: Multiplies the two or four packed double-precision floating-point
values from the second source to the two or four packed double-precision floating-
point values in the third source operand. From the infinite precision intermediate
result, subtracts the two or four packed double-precision floating-point values in the
first source operand, performs rounding and stores the resulting two or four packed
double-precision floating-point values to the destination operand (first source
operand).VEX.256 encoded version: The destination operand (also first source
operand) is a YMM register and encoded in reg_field. The second source operand is a
YMM register and encoded in VEX.vvvv. The third source operand is a YMM register or
a 256-bit memory location and encoded in rm_field.

VEX.128 encoded version: The destination operand (also first source operand) is a
XMM register and encoded in reg_field. The second source operand is a XMM register
and encoded in VEX.vvvv. The third source operand is a XMM register or a 128-bit
memory location and encoded in rm_field. The upper 128 bits of the YMM destination
register are zeroed.

Compiler tools may optionally support a complementary mnemonic for each instruc-
tion mnemonic listed in the opcode/instruction column of the summary table. The
behavior of the complementary mnemonic in situations involving NANs are governed
by the definition of the instruction mnemonic defined in the opcode/instruction
column. See also Section 2.3.1, “FMA Instruction Operand Order and Arithmetic
Behavior”

Operation
In the operations below, “-” and “*” symbols represent multiplication and addition with infinite precision
inputs and outputs (no rounding)

VFMSUB132PD DEST, SRC2, SRC3
IF (VEX.128) THEN

MAXVL =2
ELSEIF (VEX.256)

MAXVL = 4
FI
For i = 0 to MAXVL-1 {

n = 64*i;
DEST[n+63:n] Å RoundFPControl_MXCSR(DEST[n+63:n]*SRC3[n+63:n] - SRC2[n+63:n])
32 Ref. # 319433-004

INSTRUCTION SET REFERENCE - FMA
}
IF (VEX.128) THEN
DEST[255:128] Å 0
FI

VFMSUB213PD DEST, SRC2, SRC3
IF (VEX.128) THEN

MAXVL =2
ELSEIF (VEX.256)

MAXVL = 4
FI
For i = 0 to MAXVL-1 {

n = 64*i;
DEST[n+63:n] Å RoundFPControl_MXCSR(SRC2[n+63:n]*DEST[n+63:n] - SRC3[n+63:n])

}
IF (VEX.128) THEN
DEST[255:128] Å 0
FI

VFMSUB231PD DEST, SRC2, SRC3
IF (VEX.128) THEN

MAXVL =2
ELSEIF (VEX.256)

MAXVL = 4
FI
For i = 0 to MAXVL-1 {

n = 64*i;
DEST[n+63:n] Å RoundFPControl_MXCSR(SRC2[n+63:n]*SRC3[n+63:n] - DEST[n+63:n])

}
IF (VEX.128) THEN
DEST[255:128] Å 0
FI

Intel C/C++ Compiler Intrinsic Equivalent

VFMSUB132PD __m128d _mm_fmsub_pd (__m128d a, __m128d b, __m128d c);

VFMSUB213PD __m128d _mm_fmsub_pd (__m128d a, __m128d b, __m128d c);

VFMSUB231PD __m128d _mm_fmsub_pd (__m128d a, __m128d b, __m128d c);

VFMSUB132PD __m256d _mm256_fmsub_pd (__m256d a, __m256d b, __m256d c);

VFMSUB213PD __m256d _mm256_fmsub_pd (__m256d a, __m256d b, __m256d c);
Ref. # 319433-004 33

INSTRUCTION SET REFERENCE - FMA
VFMSUB231PD __m256d _mm256_fmsub_pd (__m256d a, __m256d b, __m256d c);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions
See Exceptions Type 2
34 Ref. # 319433-004

INSTRUCTION SET REFERENCE - FMA
VFMSUB132PS/VFMSUB213PS/VFMSUB231PS - Fused Multiply-Subtract
of Packed Single-Precision Floating-Point Values

Description
Performs a set of SIMD multiply-subtract computation on packed single-precision
floating-point values using three source operands and writes the multiply-subtract
results in the destination operand. The destination operand is also the first source
operand. The second operand must be a SIMD register. The third source operand can
be a SIMD register or a memory location.

VFMSUB132PS: Multiplies the four or eight packed single-precision floating-point
values from the first source operand to the four or eight packed single-precision
floating-point values in the third source operand. From the infinite precision interme-
diate result, subtracts the four or eight packed single-precision floating-point values
in the second source operand, performs rounding and stores the resulting four or

Opcode/
Instruction

Mode
Support

CPUID
Feature
Flag

Description

VEX.DDS.128.66.0F38.W0 9A /r V/V FMA Multiply packed single-precision
floating-point values from xmm0
and xmm2/mem, subtract xmm1
and put result in xmm0.

VFMSUB132PS xmm0, xmm1,
xmm2/m128

VEX.DDS.128.66.0F38.W0 AA /r V/V FMA Multiply packed single-precision
floating-point values from xmm0
and xmm1, subtract xmm2/mem
and put result in xmm0.

VFMSUB213PS xmm0, xmm1,
xmm2/m128

VEX.DDS.128.66.0F38.W0 BA /r V/V FMA Multiply packed single-precision
floating-point values from xmm1
and xmm2/mem, subtract xmm0
and put result in xmm0.

VFMSUB231PS xmm0, xmm1,
xmm2/m128

VEX.DDS.256.66.0F38.W0 9A /r V/V FMA Multiply packed single-precision
floating-point values from ymm0
and ymm2/mem, subtract ymm1
and put result in ymm0.

VFMSUB132PS ymm0, ymm1,
ymm2/m256

VEX.DDS.256.66.0F38.W0 AA /r V/V FMA Multiply packed single-precision
floating-point values from ymm0
and ymm1, subtract ymm2/mem
and put result in ymm0.

VFMSUB213PS ymm0, ymm1,
ymm2/m256

VEX.DDS.256.66.0F38.0 BA /r V/V FMA Multiply packed single-precision
floating-point values from ymm1
and ymm2/mem, subtract ymm0
and put result in ymm0.

VFMSUB231PS ymm0, ymm1,
ymm2/m256
Ref. # 319433-004 35

INSTRUCTION SET REFERENCE - FMA
eight packed single-precision floating-point values to the destination operand (first
source operand).

VFMSUB213PS: Multiplies the four or eight packed single-precision floating-point
values from the second source operand to the four or eight packed single-precision
floating-point values in the first source operand. From the infinite precision interme-
diate result, subtracts the four or eight packed single-precision floating-point values
in the third source operand, performs rounding and stores the resulting four or eight
packed single-precision floating-point values to the destination operand (first source
operand).

VFMSUB231PS: Multiplies the four or eight packed single-precision floating-point
values from the second source to the four or eight packed single-precision floating-
point values in the third source operand. From the infinite precision intermediate
result, subtracts the four or eight packed single-precision floating-point values in the
first source operand, performs rounding and stores the resulting four or eight packed
single-precision floating-point values to the destination operand (first source
operand).

VEX.256 encoded version: The destination operand (also first source operand) is a
YMM register and encoded in reg_field. The second source operand is a YMM register
and encoded in VEX.vvvv. The third source operand is a YMM register or a 256-bit
memory location and encoded in rm_field.

VEX.128 encoded version: The destination operand (also first source operand) is a
XMM register and encoded in reg_field. The second source operand is a XMM register
and encoded in VEX.vvvv. The third source operand is a XMM register or a 128-bit
memory location and encoded in rm_field. The upper 128 bits of the YMM destination
register are zeroed.

Compiler tools may optionally support a complementary mnemonic for each instruc-
tion mnemonic listed in the opcode/instruction column of the summary table. The
behavior of the complementary mnemonic in situations involving NANs are governed
by the definition of the instruction mnemonic defined in the opcode/instruction
column. See also Section 2.3.1, “FMA Instruction Operand Order and Arithmetic
Behavior”.

Operation
In the operations below, “+” and “*” symbols represent multiplication and addition with infinite
precision inputs and outputs (no rounding)

VFMSUB132PS DEST, SRC2, SRC3
IF (VEX.128) THEN

MAXVL =4
ELSEIF (VEX.256)

MAXVL = 8
FI
For i = 0 to MAXVL-1 {

n = 32*i;
36 Ref. # 319433-004

INSTRUCTION SET REFERENCE - FMA
DEST[n+31:n] Å RoundFPControl_MXCSR(DEST[n+31:n]*SRC3[n+31:n] - SRC2[n+31:n])
}
IF (VEX.128) THEN

DEST[255:128] Å 0
FI

VFMSUB213PS DEST, SRC2, SRC3
IF (VEX.128) THEN

MAXVL =4
ELSEIF (VEX.256)

MAXVL = 8
FI
For i = 0 to MAXVL-1 {

n = 32*i;
DEST[n+31:n] Å RoundFPControl_MXCSR(SRC2[n+31:n]*DEST[n+31:n] - SRC3[n+31:n])

}
IF (VEX.128) THEN

DEST[255:128] Å 0
FI

VFMSUB231PS DEST, SRC2, SRC3
IF (VEX.128) THEN

MAXVL =4
ELSEIF (VEX.256)

MAXVL = 8
FI
For i = 0 to MAXVL-1 {

n = 32*i;
DEST[n+31:n] Å RoundFPControl_MXCSR(SRC2[n+31:n]*SRC3[n+31:n] - DEST[n+31:n])

}
IF (VEX.128) THEN

DEST[255:128] Å 0
FI

Intel C/C++ Compiler Intrinsic Equivalent

VFMSUB132PS __m128 _mm_fmsub_ps (__m128 a, __m128 b, __m128 c);

VFMSUB213PS __m128 _mm_fmsub_ps (__m128 a, __m128 b, __m128 c);

VFMSUB231PS __m128 _mm_fmsub_ps (__m128 a, __m128 b, __m128 c);

VFMSUB132PS __m256 _mm256_fmsub_ps (__m256 a, __m256 b, __m256 c);

VFMSUB213PS __m256 _mm256_fmsub_ps (__m256 a, __m256 b, __m256 c);
Ref. # 319433-004 37

INSTRUCTION SET REFERENCE - FMA
VFMSUB231PS __m256 _mm256_fmsub_ps (__m256 a, __m256 b, __m256 c);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions
See Exceptions Type 2
38 Ref. # 319433-004

INSTRUCTION SET REFERENCE - FMA
VFMSUB132SD/VFMSUB213SD/VFMSUB231SD - Fused Multiply-Subtract
of Scalar Double-Precision Floating-Point Values

Description
Performs a SIMD multiply-subtract computation on the low packed double-precision
floating-point values using three source operands and writes the multiply-add result
in the destination operand. The destination operand is also the first source operand.
The second operand must be a SIMD register. The third source operand can be a
SIMD register or a memory location.

VFMSUB132SD: Multiplies the low packed double-precision floating-point value from
the first source operand to the low packed double-precision floating-point value in
the third source operand. From the infinite precision intermediate result, subtracts
the low packed double-precision floating-point values in the second source operand,
performs rounding and stores the resulting packed double-precision floating-point
value to the destination operand (first source operand).

VFMSUB213SD: Multiplies the low packed double-precision floating-point value from
the second source operand to the low packed double-precision floating-point value in
the first source operand. From the infinite precision intermediate result, subtracts
the low packed double-precision floating-point value in the third source operand,
performs rounding and stores the resulting packed double-precision floating-point
value to the destination operand (first source operand).

VFMSUB231SD: Multiplies the low packed double-precision floating-point value from
the second source to the low packed double-precision floating-point value in the third
source operand. From the infinite precision intermediate result, subtracts the low
packed double-precision floating-point value in the first source operand, performs

Opcode/
Instruction

Mode
Support

CPUID
Feature
Flag

Description

VEX.DDS.128.66.0F38.W1 9B /r V/V FMA Multiply scalar double-precision
floating-point value from xmm0
and xmm2/mem, subtract xmm1
and put result in xmm0.

VFMSUB132SD xmm0, xmm1,
xmm2/m64

VEX.DDS.128.66.0F38.W1 AB /r V/V FMA Multiply scalar double-precision
floating-point value from xmm0
and xmm1, subtract xmm2/mem
and put result in xmm0.

VFMSUB213SD xmm0, xmm1,
xmm2/m64

VEX.DDS.128.66.0F38.W1 BB /r V/V FMA Multiply scalar double-precision
floating-point value from xmm1
and xmm2/mem, subtract xmm0
and put result in xmm0.

VFMSUB231SD xmm0, xmm1,
xmm2/m64
Ref. # 319433-004 39

INSTRUCTION SET REFERENCE - FMA
rounding and stores the resulting packed double-precision floating-point value to the
destination operand (first source operand).

VEX.128 encoded version: The destination operand (also first source operand) is a
XMM register and encoded in reg_field. The second source operand is a XMM register
and encoded in VEX.vvvv. The third source operand is a XMM register or a 64-bit
memory location and encoded in rm_field. The upper bits ([255:128]) of the YMM
destination register are zeroed.

Compiler tools may optionally support a complementary mnemonic for each instruc-
tion mnemonic listed in the opcode/instruction column of the summary table. The
behavior of the complementary mnemonic in situations involving NANs are governed
by the definition of the instruction mnemonic defined in the opcode/instruction
column. See also Section 2.3.1, “FMA Instruction Operand Order and Arithmetic
Behavior”.

Operation
In the operations below, “-” and “*” symbols represent multiplication and addition with infinite precision
inputs and outputs (no rounding)
VFMSUB132SD DEST, SRC2, SRC3
DEST[63:0] Å RoundFPControl_MXCSR(DEST[63:0]*SRC3[63:0] - SRC2[63:0])
DEST[127:64] Å DEST[127:64]
DEST[255:128] Å 0

VFMSUB213SD DEST, SRC2, SRC3
DEST[63:0] Å RoundFPControl_MXCSR(SRC2[63:0]*DEST[63:0] - SRC3[63:0])
DEST[127:64] Å DEST[127:64]
DEST[255:128] Å 0

VFMSUB231SD DEST, SRC2, SRC3
DEST[63:0] Å RoundFPControl_MXCSR(SRC2[63:0]*SRC3[63:0] - DEST[63:0])
DEST[127:64] Å DEST[127:64]
DEST[255:128] Å 0

Intel C/C++ Compiler Intrinsic Equivalent

VFMSUB132SD __m128d _mm_fmsub_sd (__m128d a, __m128d b, __m128d c);

VFMSUB213SD __m128d _mm_fmsub_sd (__m128d a, __m128d b, __m128d c);

VFMSUB231SD __m128d _mm_fmsub_sd (__m128d a, __m128d b, __m128d c);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal
40 Ref. # 319433-004

INSTRUCTION SET REFERENCE - FMA
Other Exceptions
See Exceptions Type 3
Ref. # 319433-004 41

INSTRUCTION SET REFERENCE - FMA
VFMSUB132SS/VFMSUB213SS/VFMSUB231SS - Fused Multiply-Subtract
of Scalar Single-Precision Floating-Point Values

Description
Performs a SIMD multiply-subtract computation on the low packed single-precision
floating-point values using three source operands and writes the multiply-add result
in the destination operand. The destination operand is also the first source operand.
The second operand must be a SIMD register. The third source operand can be a
SIMD register or a memory location.

VFMSUB132SS: Multiplies the low packed single-precision floating-point value from
the first source operand to the low packed single-precision floating-point value in the
third source operand. From the infinite precision intermediate result, subtracts the
the low packed single-precision floating-point values in the second source operand,
performs rounding and stores the resulting packed single-precision floating-point
value to the destination operand (first source operand).

VFMSUB213SS: Multiplies the low packed single-precision floating-point value from
the second source operand to the low packed single-precision floating-point value in
the first source operand. From the infinite precision intermediate result, subtracts
the low packed single-precision floating-point value in the third source operand,
performs rounding and stores the resulting packed single-precision floating-point
value to the destination operand (first source operand).

VFMSUB231SS: Multiplies the low packed single-precision floating-point value from
the second source to the low packed single-precision floating-point value in the third
source operand. From the infinite precision intermediate result, subtracts the low
packed single-precision floating-point value in the first source operand, performs

Opcode/
Instruction

Mode
Support

CPUID
Feature
Flag

Description

VEX.DDS.128.66.0F38.W0 9B /r V/V FMA Multiply scalar single-precision
floating-point value from xmm0
and xmm2/mem, subtract xmm1
and put result in xmm0.

VFMSUB132SS xmm0, xmm1,
xmm2/m32

VEX.DDS.128.66.0F38.W0 AB /r V/V FMA Multiply scalar single-precision
floating-point value from xmm0
and xmm1, subtract xmm2/mem
and put result in xmm0.

VFMSUB213SS xmm0, xmm1,
xmm2/m32

VEX.DDS.128.66.0F38.W0 BB /r V/V FMA Multiply scalar single-precision
floating-point value from xmm1
and xmm2/mem, subtract xmm0
and put result in xmm0.

VFMSUB231SS xmm0, xmm1,
xmm2/m32
42 Ref. # 319433-004

INSTRUCTION SET REFERENCE - FMA
rounding and stores the resulting packed single-precision floating-point value to the
destination operand (first source operand).

VEX.128 encoded version: The destination operand (also first source operand) is a
XMM register and encoded in reg_field. The second source operand is a XMM register
and encoded in VEX.vvvv. The third source operand is a XMM register or a 32-bit
memory location and encoded in rm_field. The upper bits ([255:128]) of the YMM
destination register are zeroed.

Compiler tools may optionally support a complementary mnemonic for each instruc-
tion mnemonic listed in the opcode/instruction column of the summary table. The
behavior of the complementary mnemonic in situations involving NANs are governed
by the definition of the instruction mnemonic defined in the opcode/instruction
column. See also Section 2.3.1, “FMA Instruction Operand Order and Arithmetic
Behavior”

Operation
In the operations below, “-” and “*” symbols represent multiplication and addition with infinite precision
inputs and outputs (no rounding)
VFMSUB132SS DEST, SRC2, SRC3
DEST[31:0] Å RoundFPControl_MXCSR(DEST[31:0]*SRC3[31:0] - SRC2[31:0])
DEST[127:32] Å DEST[127:32]
DEST[255:128] Å 0

VFMSUB213SS DEST, SRC2, SRC3
DEST[31:0] Å RoundFPControl_MXCSR(SRC2[31:0]*DEST[31:0] - SRC3[31:0])
DEST[127:32] Å DEST[127:32]
DEST[255:128] Å 0

VFMSUB231SS DEST, SRC2, SRC3
DEST[31:0] Å RoundFPControl_MXCSR(SRC2[31:0]*SRC3[63:0] - DEST[31:0])
DEST[127:32] Å DEST[127:32]
DEST[255:128] Å 0

Intel C/C++ Compiler Intrinsic Equivalent

VFMSUB132SS __m128 _mm_fmsub_ss (__m128 a, __m128 b, __m128 c);

VFMSUB213SS __m128 _mm_fmsub_ss (__m128 a, __m128 b, __m128 c);

VFMSUB231SS __m128 _mm_fmsub_ss (__m128 a, __m128 b, __m128 c);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal
Ref. # 319433-004 43

INSTRUCTION SET REFERENCE - FMA
Other Exceptions
See Exceptions Type 3
44 Ref. # 319433-004

INSTRUCTION SET REFERENCE - FMA
VFNMADD132PD/VFNMADD213PD/VFNMADD231PD - Fused Negative
Multiply-Add of Packed Double-Precision Floating-Point Values

Description
VFNMADD132PD: Multiplies the two or four packed double-precision floating-point
values from the first source operand to the two or four packed double-precision
floating-point values in the third source operand, adds the negated infinite precision
intermediate result to the two or four packed double-precision floating-point values
in the second source operand, performs rounding and stores the resulting two or four

Opcode/
Instruction

Mode
Support

CPUID
Feature
Flag

Description

VEX.DDS.128.66.0F38.W1 9C /r V/V FMA Multiply packed double-precision
floating-point values from xmm0
and xmm2/mem, negate the multi-
plication result and add to xmm1
and put result in xmm0.

VFNMADD132PD xmm0, xmm1,
xmm2/m128

VEX.DDS.128.66.0F38.W1 AC /r V/V FMA Multiply packed double-precision
floating-point values from xmm0
and xmm1, negate the multiplica-
tion result and add to xmm2/mem
and put result in xmm0.

VFNMADD213PD xmm0, xmm1,
xmm2/m128

VEX.DDS.128.66.0F38.W1 BC /r V/V FMA Multiply packed double-precision
floating-point values from xmm1
and xmm2/mem, negate the multi-
plication result and add to xmm0
and put result in xmm0.

VFNMADD231PD xmm0, xmm1,
xmm2/m128

VEX.DDS.256.66.0F38.W1 9C /r V/V FMA Multiply packed double-precision
floating-point values from ymm0
and ymm2/mem, negate the multi-
plication result and add to ymm1
and put result in ymm0.

VFNMADD132PD ymm0, ymm1,
ymm2/m256

VEX.DDS.256.66.0F38.W1 AC /r V/V FMA Multiply packed double-precision
floating-point values from ymm0
and ymm1, negate the multiplica-
tion result and add to ymm2/mem
and put result in ymm0.

VFNMADD213PD ymm0, ymm1,
ymm2/m256

VEX.DDS.256.66.0F38.W1 BC /r V/V FMA Multiply packed double-precision
floating-point values from ymm1
and ymm2/mem, negate the multi-
plication result and add to ymm0
and put result in ymm0.

VFNMADD231PD ymm0, ymm1,
ymm2/m256
Ref. # 319433-004 45

INSTRUCTION SET REFERENCE - FMA
packed double-precision floating-point values to the destination operand (first source
operand).

VFNMADD213PD: Multiplies the two or four packed double-precision floating-point
values from the second source operand to the two or four packed double-precision
floating-point values in the first source operand, adds the negated infinite precision
intermediate result to the two or four packed double-precision floating-point values
in the third source operand, performs rounding and stores the resulting two or four
packed double-precision floating-point values to the destination operand (first source
operand).

VFNMADD231PD: Multiplies the two or four packed double-precision floating-point
values from the second source to the two or four packed double-precision floating-
point values in the third source operand, adds the negated infinite precision interme-
diate result to the two or four packed double-precision floating-point values in the
first source operand, performs rounding and stores the resulting two or four packed
double-precision floating-point values to the destination operand (first source
operand).

VEX.256 encoded version: The destination operand (also first source operand) is a
YMM register and encoded in reg_field. The second source operand is a YMM register
and encoded in VEX.vvvv. The third source operand is a YMM register or a 256-bit
memory location and encoded in rm_field.

VEX.128 encoded version: The destination operand (also first source operand) is a
XMM register and encoded in reg_field. The second source operand is a XMM register
and encoded in VEX.vvvv. The third source operand is a XMM register or a 128-bit
memory location and encoded in rm_field. The upper 128 bits of the YMM destination
register are zeroed.

Compiler tools may optionally support a complementary mnemonic for each instruc-
tion mnemonic listed in the opcode/instruction column of the summary table. The
behavior of the complementary mnemonic in situations involving NANs are governed
by the definition of the instruction mnemonic defined in the opcode/instruction
column. See also Section 2.3.1, “FMA Instruction Operand Order and Arithmetic
Behavior”

Operation
In the operations below, “-” and “*” symbols represent multiplication and addition with infinite precision
inputs and outputs (no rounding)
VFNMADD132PD DEST, SRC2, SRC3
IF (VEX.128) THEN

MAXVL =2
ELSEIF (VEX.256)

MAXVL = 4
FI
For i = 0 to MAXVL-1 {

n = 64*i;
DEST[n+63:n] Å RoundFPControl_MXCSR(-(DEST[n+63:n]*SRC3[n+63:n]) + SRC2[n+63:n])
46 Ref. # 319433-004

INSTRUCTION SET REFERENCE - FMA
}
IF (VEX.128) THEN
DEST[255:128] Å 0
FI

VFNMADD213PD DEST, SRC2, SRC3
IF (VEX.128) THEN

MAXVL =2
ELSEIF (VEX.256)

MAXVL = 4
FI
For i = 0 to MAXVL-1 {

n = 64*i;
DEST[n+63:n] Å RoundFPControl_MXCSR(-(SRC2[n+63:n]*DEST[n+63:n]) + SRC3[n+63:n])

}
IF (VEX.128) THEN
DEST[255:128] Å 0
FI

VFNMADD231PD DEST, SRC2, SRC3
IF (VEX.128) THEN

MAXVL =2
ELSEIF (VEX.256)

MAXVL = 4
FI
For i = 0 to MAXVL-1 {

n = 64*i;
DEST[n+63:n] Å RoundFPControl_MXCSR(-(SRC2[n+63:n]*SRC3[n+63:n]) + DEST[n+63:n])

}
IF (VEX.128) THEN
DEST[255:128] Å 0
FI

Intel C/C++ Compiler Intrinsic Equivalent

VFNMADD132PD __m128d _mm_fnmadd_pd (__m128d a, __m128d b, __m128d c);

VFNMADD213PD __m128d _mm_fnmadd_pd (__m128d a, __m128d b, __m128d c);

VFNMADD231PD __m128d _mm_fnmadd_pd (__m128d a, __m128d b, __m128d c);

VFNMADD132PD __m256d _mm256_fnmadd_pd (__m256d a, __m256d b, __m256d c);

VFNMADD213PD __m256d _mm256_fnmadd_pd (__m256d a, __m256d b, __m256d c);
Ref. # 319433-004 47

INSTRUCTION SET REFERENCE - FMA
VFNMADD231PD __m256d _mm256_fnmadd_pd (__m256d a, __m256d b, __m256d c);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions
See Exceptions Type 2
48 Ref. # 319433-004

INSTRUCTION SET REFERENCE - FMA
VFNMADD132PS/VFNMADD213PS/VFNMADD231PS - Fused Negative
Multiply-Add of Packed Single-Precision Floating-Point Values

Description
VFNMADD132PS: Multiplies the four or eight packed single-precision floating-point
values from the first source operand to the four or eight packed single-precision
floating-point values in the third source operand, adds the negated infinite precision
intermediate result to the four or eight packed single-precision floating-point values
in the second source operand, performs rounding and stores the resulting four or

Opcode/
Instruction

Mode
Support

CPUID
Feature
Flag

Description

VEX.DDS.128.66.0F38.W0 9C /r V/V FMA Multiply packed single-precision
floating-point values from xmm0
and xmm2/mem, negate the multi-
plication result and add to xmm1
and put result in xmm0.

VFNMADD132PS xmm0, xmm1,
xmm2/m128

VEX.DDS.128.66.0F38.W0 AC /r V/V FMA Multiply packed single-precision
floating-point values from xmm0
and xmm1, negate the multiplica-
tion result and add to xmm2/mem
and put result in xmm0.

VFNMADD213PS xmm0, xmm1,
xmm2/m128

VEX.DDS.128.66.0F38.W0 BC /r V/V FMA Multiply packed single-precision
floating-point values from xmm1
and xmm2/mem, negate the multi-
plication result and add to xmm0
and put result in xmm0.

VFNMADD231PS xmm0, xmm1,
xmm2/m128

VEX.DDS.256.66.0F38.W0 9C /r V/V FMA Multiply packed single-precision
floating-point values from ymm0
and ymm2/mem, negate the multi-
plication result and add to ymm1
and put result in ymm0.

VFNMADD132PS ymm0, ymm1,
ymm2/m256

VEX.DDS.256.66.0F38.W0 AC /r V/V FMA Multiply packed single-precision
floating-point values from ymm0
and ymm1, negate the multiplica-
tion result and add to ymm2/mem
and put result in ymm0.

VFNMADD213PS ymm0, ymm1,
ymm2/m256

VEX.DDS.256.66.0F38.0 BC /r V/V FMA Multiply packed single-precision
floating-point values from ymm1
and ymm2/mem, negate the multi-
plication result and add to ymm0
and put result in ymm0.

VFNMADD231PS ymm0, ymm1,
ymm2/m256
Ref. # 319433-004 49

INSTRUCTION SET REFERENCE - FMA
eight packed single-precision floating-point values to the destination operand (first
source operand).

VFNMADD213PS: Multiplies the four or eight packed single-precision floating-point
values from the second source operand to the four or eight packed single-precision
floating-point values in the first source operand, adds the negated infinite precision
intermediate result to the four or eight packed single-precision floating-point values
in the third source operand, performs rounding and stores the resulting the four or
eight packed single-precision floating-point values to the destination operand (first
source operand).

VFNMADD231PS: Multiplies the four or eight packed single-precision floating-point
values from the second source operand to the four or eight packed single-precision
floating-point values in the third source operand, adds the negated infinite precision
intermediate result to the four or eight packed single-precision floating-point values
in the first source operand, performs rounding and stores the resulting four or eight
packed single-precision floating-point values to the destination operand (first source
operand).

VEX.256 encoded version: The destination operand (also first source operand) is a
YMM register and encoded in reg_field. The second source operand is a YMM register
and encoded in VEX.vvvv. The third source operand is a YMM register or a 256-bit
memory location and encoded in rm_field.

VEX.128 encoded version: The destination operand (also first source operand) is a
XMM register and encoded in reg_field. The second source operand is a XMM register
and encoded in VEX.vvvv. The third source operand is a XMM register or a 128-bit
memory location and encoded in rm_field. The upper 128 bits of the YMM destination
register are zeroed.

Compiler tools may optionally support a complementary mnemonic for each instruc-
tion mnemonic listed in the opcode/instruction column of the summary table. The
behavior of the complementary mnemonic in situations involving NANs are governed
by the definition of the instruction mnemonic defined in the opcode/instruction
column. See also Section 2.3.1, “FMA Instruction Operand Order and Arithmetic
Behavior”

Operation
In the operations below, “+” and “*” symbols represent multiplication and addition with infinite
precision inputs and outputs (no rounding)
VFNMADD132PS DEST, SRC2, SRC3
IF (VEX.128) THEN

MAXVL =4
ELSEIF (VEX.256)

MAXVL = 8
FI
For i = 0 to MAXVL-1 {

n = 32*i;
DEST[n+31:n] Å RoundFPControl_MXCSR(- (DEST[n+31:n]*SRC3[n+31:n]) + SRC2[n+31:n])
50 Ref. # 319433-004

INSTRUCTION SET REFERENCE - FMA
}
IF (VEX.128) THEN

DEST[255:128] Å 0
FI

VFNMADD213PS DEST, SRC2, SRC3
IF (VEX.128) THEN

MAXVL =4
ELSEIF (VEX.256)

MAXVL = 8
FI
For i = 0 to MAXVL-1 {

n = 32*i;
DEST[n+31:n] Å RoundFPControl_MXCSR(- (SRC2[n+31:n]*DEST[n+31:n]) + SRC3[n+31:n])

}
IF (VEX.128) THEN

DEST[255:128] Å 0
FI

VFNMADD231PS DEST, SRC2, SRC3
IF (VEX.128) THEN

MAXVL =4
ELSEIF (VEX.256)

MAXVL = 8
FI
For i = 0 to MAXVL-1 {

n = 32*i;
DEST[n+31:n] Å RoundFPControl_MXCSR(- (SRC2[n+31:n]*SRC3[n+31:n]) + DEST[n+31:n])

}
IF (VEX.128) THEN

DEST[255:128] Å 0
FI

Intel C/C++ Compiler Intrinsic Equivalent

VFNMADD132PS __m128 _mm_fnmadd_ps (__m128 a, __m128 b, __m128 c);

VFNMADD213PS __m128 _mm_fnmadd_ps (__m128 a, __m128 b, __m128 c);

VFNMADD231PS __m128 _mm_fnmadd_ps (__m128 a, __m128 b, __m128 c);

VFNMADD132PS __m256 _mm256_fnmadd_ps (__m256 a, __m256 b, __m256 c);

VFNMADD213PS __m256 _mm256_fnmadd_ps (__m256 a, __m256 b, __m256 c);
Ref. # 319433-004 51

INSTRUCTION SET REFERENCE - FMA
VFNMADD231PS __m256 _mm256_fnmadd_ps (__m256 a, __m256 b, __m256 c);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions
See Exceptions Type 2
52 Ref. # 319433-004

INSTRUCTION SET REFERENCE - FMA
VFNMADD132SD/VFNMADD213SD/VFNMADD231SD - Fused Negative
Multiply-Add of Scalar Double-Precision Floating-Point Values

Description
VFNMADD132SD: Multiplies the low packed double-precision floating-point value
from the first source operand to the low packed double-precision floating-point value
in the third source operand, adds the negated infinite precision intermediate result to
the low packed double-precision floating-point values in the second source operand,
performs rounding and stores the resulting packed double-precision floating-point
value to the destination operand (first source operand).

VFNMADD213SD: Multiplies the low packed double-precision floating-point value
from the second source operand to the low packed double-precision floating-point
value in the first source operand, adds the negated infinite precision intermediate
result to the low packed double-precision floating-point value in the third source
operand, performs rounding and stores the resulting packed double-precision
floating-point value to the destination operand (first source operand).

VFNMADD231SD: Multiplies the low packed double-precision floating-point value
from the second source to the low packed double-precision floating-point value in the
third source operand, adds the negated infinite precision intermediate result to the
low packed double-precision floating-point value in the first source operand,
performs rounding and stores the resulting packed double-precision floating-point
value to the destination operand (first source operand).

VEX.128 encoded version: The destination operand (also first source operand) is a
XMM register and encoded in reg_field. The second source operand is a XMM register
and encoded in VEX.vvvv. The third source operand is a XMM register or a 64-bit

Opcode/
Instruction

Mode
Support

CPUID
Feature
Flag

Description

VEX.DDS.128.66.0F38.W1 9D /r V/V FMA Multiply scalar double-precision
floating-point value from xmm0
and xmm2/mem, negate the multi-
plication result and add to xmm1
and put result in xmm0.

VFNMADD132SD xmm0, xmm1,
xmm2/m64

VEX.DDS.128.66.0F38.W1 AD /r V/V FMA Multiply scalar double-precision
floating-point value from xmm0
and xmm1, negate the multiplica-
tion result and add to xmm2/mem
and put result in xmm0.

VFNMADD213SD xmm0, xmm1,
xmm2/m64

VEX.DDS.128.66.0F38.W1 BD /r V/V FMA Multiply scalar double-precision
floating-point value from xmm1
and xmm2/mem, negate the multi-
plication result and add to xmm0
and put result in xmm0.

VFNMADD231SD xmm0, xmm1,
xmm2/m64
Ref. # 319433-004 53

INSTRUCTION SET REFERENCE - FMA
memory location and encoded in rm_field. The upper bits ([255:128]) of the YMM
destination register are zeroed.

Compiler tools may optionally support a complementary mnemonic for each instruc-
tion mnemonic listed in the opcode/instruction column of the summary table. The
behavior of the complementary mnemonic in situations involving NANs are governed
by the definition of the instruction mnemonic defined in the opcode/instruction
column. See also Section 2.3.1, “FMA Instruction Operand Order and Arithmetic
Behavior”.

.Operation
In the operations below, “+” and “*” symbols represent multiplication and addition with infinite
precision inputs and outputs (no rounding)

VFNMADD132SD DEST, SRC2, SRC3
DEST[63:0] Å RoundFPControl_MXCSR(- (DEST[63:0]*SRC3[63:0]) + SRC2[63:0])
DEST[127:64] Å DEST[127:64]
DEST[255:128] Å 0

VFNMADD213SD DEST, SRC2, SRC3
DEST[63:0] Å RoundFPControl_MXCSR(- (SRC2[63:0]*DEST[63:0]) + SRC3[63:0])
DEST[127:64] Å DEST[127:64]
DEST[255:128] Å 0

VFNMADD231SD DEST, SRC2, SRC3
DEST[63:0] Å RoundFPControl_MXCSR(- (SRC2[63:0]*SRC3[63:0]) + DEST[63:0])
DEST[127:64] Å DEST[127:64]
DEST[255:128] Å 0

Intel C/C++ Compiler Intrinsic Equivalent

VFNMADD132SD __m128d _mm_fnmadd_sd (__m128d a, __m128d b, __m128d c);

VFNMADD213SD __m128d _mm_fnmadd_sd (__m128d a, __m128d b, __m128d c);

VFNMADD231SD __m128d _mm_fnmadd_sd (__m128d a, __m128d b, __m128d c);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions
See Exceptions Type 3
54 Ref. # 319433-004

INSTRUCTION SET REFERENCE - FMA
VFNMADD132SS/VFNMADD213SS/VFNMADD231SS - Fused Negative
Multiply-Add of Scalar Single-Precision Floating-Point Values

Description
VFNMADD132SS: Multiplies the low packed single-precision floating-point value from
the first source operand to the low packed single-precision floating-point value in the
third source operand, adds the negated infinite precision intermediate result to the
low packed single-precision floating-point value in the second source operand,
performs rounding and stores the resulting packed single-precision floating-point
value to the destination operand (first source operand).

VFNMADD213SS: Multiplies the low packed single-precision floating-point value from
the second source operand to the low packed single-precision floating-point value in
the first source operand, adds the negated infinite precision intermediate result to
the low packed single-precision floating-point value in the third source operand,
performs rounding and stores the resulting packed single-precision floating-point
value to the destination operand (first source operand).

VFNMADD231SS: Multiplies the low packed single-precision floating-point value from
the second source operand to the low packed single-precision floating-point value in
the third source operand, adds the negated infinite precision intermediate result to
the low packed single-precision floating-point value in the first source operand,
performs rounding and stores the resulting packed single-precision floating-point
value to the destination operand (first source operand).

Opcode/
Instruction

Mode
Support

CPUID
Feature
Flag

Description

VEX.DDS.128.66.0F38.W0 9D /r V/V FMA Multiply scalar single-precision
floating-point value from xmm0
and xmm2/mem, negate the multi-
plication result and add to xmm1
and put result in xmm0.

VFNMADD132SS xmm0, xmm1,
xmm2/m32

VEX.DDS.128.66.0F38.W0 AD /r V/V FMA Multiply scalar single-precision
floating-point value from xmm0
and xmm1, negate the multiplica-
tion result and add to xmm2/mem
and put result in xmm0.

VFNMADD213SS xmm0, xmm1,
xmm2/m32

VEX.DDS.128.66.0F38.W0 BD /r V/V FMA Multiply scalar single-precision
floating-point value from xmm1
and xmm2/mem, negate the multi-
plication result and add to xmm0
and put result in xmm0.

VFNMADD231SS xmm0, xmm1,
xmm2/m32
Ref. # 319433-004 55

INSTRUCTION SET REFERENCE - FMA
VEX.128 encoded version: The destination operand (also first source operand) is a
XMM register and encoded in reg_field. The second source operand is a XMM register
and encoded in VEX.vvvv. The third source operand is a XMM register or a 32-bit
memory location and encoded in rm_field. The upper bits ([255:128]) of the YMM
destination register are zeroed.

Compiler tools may optionally support a complementary mnemonic for each instruc-
tion mnemonic listed in the opcode/instruction column of the summary table. The
behavior of the complementary mnemonic in situations involving NANs are governed
by the definition of the instruction mnemonic defined in the opcode/instruction
column. See also Section 2.3.1, “FMA Instruction Operand Order and Arithmetic
Behavior”.

Operation
In the operations below, “+” and “*” symbols represent multiplication and addition with infinite
precision inputs and outputs (no rounding)
VFNMADD132SS DEST, SRC2, SRC3
DEST[31:0] Å RoundFPControl_MXCSR(- (DEST[31:0]*SRC3[31:0]) + SRC2[31:0])
DEST[127:32] Å DEST[127:32]
DEST[255:128] Å 0

VFNMADD213SS DEST, SRC2, SRC3
DEST[31:0] Å RoundFPControl_MXCSR(- (SRC2[31:0]*DEST[31:0]) + SRC3[31:0])
DEST[127:32] Å DEST[127:32]
DEST[255:128] Å 0

VFNMADD231SS DEST, SRC2, SRC3
DEST[31:0] Å RoundFPControl_MXCSR(- (SRC2[31:0]*SRC3[63:0]) + DEST[31:0])
DEST[127:32] Å DEST[127:32]
DEST[255:128] Å 0

Intel C/C++ Compiler Intrinsic Equivalent

VFNMADD132SS __m128 _mm_fnmadd_ss (__m128 a, __m128 b, __m128 c);

VFNMADD213SS __m128 _mm_fnmadd_ss (__m128 a, __m128 b, __m128 c);

VFNMADD231SS __m128 _mm_fnmadd_ss (__m128 a, __m128 b, __m128 c);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions
See Exceptions Type 3
56 Ref. # 319433-004

INSTRUCTION SET REFERENCE - FMA
VFNMSUB132PD/VFNMSUB213PD/VFNMSUB231PD - Fused Negative
Multiply-Subtract of Packed Double-Precision Floating-Point Values

Description
VFNMSUB132PD: Multiplies the two or four packed double-precision floating-point
values from the first source operand to the two or four packed double-precision
floating-point values in the third source operand. From negated infinite precision

Opcode/
Instruction

Mode
Support

CPUID
Feature
Flag

Description

VEX.DDS.128.66.0F38.W1 9E /r V/V FMA Multiply packed double-precision
floating-point values from xmm0
and xmm2/mem, negate the multi-
plication result and subtract xmm1
and put result in xmm0.

VFNMSUB132PD xmm0, xmm1,
xmm2/m128

VEX.DDS.128.66.0F38.W1 AE /r V/V FMA Multiply packed double-precision
floating-point values from xmm0
and xmm1, negate the multiplica-
tion result and subtract
xmm2/mem and put result in
xmm0.

VFNMSUB213PD xmm0, xmm1,
xmm2/m128

VEX.DDS.128.66.0F38.W1 BE /r V/V FMA Multiply packed double-precision
floating-point values from xmm1
and xmm2/mem, negate the multi-
plication result and subtract xmm0
and put result in xmm0.

VFNMSUB231PD xmm0, xmm1,
xmm2/m128

VEX.DDS.256.66.0F38.W1 9E /r V/V FMA Multiply packed double-precision
floating-point values from ymm0
and ymm2/mem, negate the multi-
plication result and subtract ymm1
and put result in ymm0.

VFNMSUB132PD ymm0, ymm1,
ymm2/m256

VEX.DDS.256.66.0F38.W1 AE /r V/V FMA Multiply packed double-precision
floating-point values from ymm0
and ymm1, negate the multiplica-
tion result and subtract
ymm2/mem and put result in
ymm0.

VFNMSUB213PD ymm0, ymm1,
ymm2/m256

VEX.DDS.256.66.0F38.W1 BE /r V/V FMA Multiply packed double-precision
floating-point values from ymm1
and ymm2/mem, negate the multi-
plication result and subtract ymm0
and put result in ymm0.

VFNMSUB231PD ymm0, ymm1,
ymm2/m256
Ref. # 319433-004 57

INSTRUCTION SET REFERENCE - FMA
intermediate results, subtracts the two or four packed double-precision floating-point
values in the second source operand, performs rounding and stores the resulting two
or four packed double-precision floating-point values to the destination operand (first
source operand).

VFMSUB213PD: Multiplies the two or four packed double-precision floating-point
values from the second source operand to the two or four packed double-precision
floating-point values in the first source operand. From negated infinite precision
intermediate results, subtracts the two or four packed double-precision floating-point
values in the third source operand, performs rounding and stores the resulting two or
four packed double-precision floating-point values to the destination operand (first
source operand).

VFMSUB231PD: Multiplies the two or four packed double-precision floating-point
values from the second source to the two or four packed double-precision floating-
point values in the third source operand. From negated infinite precision interme-
diate results, subtracts the two or four packed double-precision floating-point values
in the first source operand, performs rounding and stores the resulting two or four
packed double-precision floating-point values to the destination operand (first source
operand).VEX.256 encoded version: The destination operand (also first source
operand) is a YMM register and encoded in reg_field. The second source operand is a
YMM register and encoded in VEX.vvvv. The third source operand is a YMM register or
a 256-bit memory location and encoded in rm_field.

VEX.128 encoded version: The destination operand (also first source operand) is a
XMM register and encoded in reg_field. The second source operand is a XMM regis-
ter and encoded in VEX.vvvv. The third source operand is a XMM register or a 128-
bit memory location and encoded in rm_field. The upper 128 bits of the YMM desti-
nation register are zeroed.

Compiler tools may optionally support a complementary mnemonic for each instruc-
tion mnemonic listed in the opcode/instruction column of the summary table. The
behavior of the complementary mnemonic in situations involving NANs are gov-
erned by the definition of the instruction mnemonic defined in the opcode/instruc-
tion column. See also Section 2.3.1, “FMA Instruction Operand Order and Arithmetic
Behavior”.

Operation
In the operations below, “-” and “*” symbols represent multiplication and addition with infinite precision
inputs and outputs (no rounding)
VFNMSUB132PD DEST, SRC2, SRC3
IF (VEX.128) THEN

MAXVL =2
ELSEIF (VEX.256)

MAXVL = 4
FI
For i = 0 to MAXVL-1 {
58 Ref. # 319433-004

INSTRUCTION SET REFERENCE - FMA
n = 64*i;
DEST[n+63:n] Å RoundFPControl_MXCSR(- (DEST[n+63:n]*SRC3[n+63:n]) - SRC2[n+63:n])

}
IF (VEX.128) THEN
DEST[255:128] Å 0
FI

VFNMSUB213PD DEST, SRC2, SRC3
IF (VEX.128) THEN

MAXVL =2
ELSEIF (VEX.256)

MAXVL = 4
FI
For i = 0 to MAXVL-1 {

n = 64*i;
DEST[n+63:n] Å RoundFPControl_MXCSR(- (SRC2[n+63:n]*DEST[n+63:n]) - SRC3[n+63:n])

}
IF (VEX.128) THEN
DEST[255:128] Å 0
FI

VFNMSUB231PD DEST, SRC2, SRC3
IF (VEX.128) THEN

MAXVL =2
ELSEIF (VEX.256)

MAXVL = 4
FI
For i = 0 to MAXVL-1 {

n = 64*i;
DEST[n+63:n] Å RoundFPControl_MXCSR(- (SRC2[n+63:n]*SRC3[n+63:n]) - DEST[n+63:n])

}
IF (VEX.128) THEN
DEST[255:128] Å 0
FI

Intel C/C++ Compiler Intrinsic Equivalent

VFNMSUB132PD __m128d _mm_fnmsub_pd (__m128d a, __m128d b, __m128d c);

VFNMSUB213PD __m128d _mm_fnmsub_pd (__m128d a, __m128d b, __m128d c);

VFNMSUB231PD __m128d _mm_fnmsub_pd (__m128d a, __m128d b, __m128d c);

VFNMSUB132PD __m256d _mm256_fnmsub_pd (__m256d a, __m256d b, __m256d c);
Ref. # 319433-004 59

INSTRUCTION SET REFERENCE - FMA
VFNMSUB213PD __m256d _mm256_fnmsub_pd (__m256d a, __m256d b, __m256d c);

VFNMSUB231PD __m256d _mm256_fnmsub_pd (__m256d a, __m256d b, __m256d c);

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions
See Exceptions Type 2
60 Ref. # 319433-004

INSTRUCTION SET REFERENCE - FMA
VFNMSUB132PS/VFNMSUB213PS/VFNMSUB231PS - Fused Negative
Multiply-Subtract of Packed Single-Precision Floating-Point Values

Description
VFNMSUB132PS: Multiplies the four or eight packed single-precision floating-point
values from the first source operand to the four or eight packed single-precision
floating-point values in the third source operand. From negated infinite precision

Opcode/
Instruction

Mode
Support

CPUID
Feature
Flag

Description

VEX.DDS.128.66.0F38.W0 9E /r V/V FMA Multiply packed single-precision
floating-point values from xmm0
and xmm2/mem, negate the multi-
plication result and subtract xmm1
and put result in xmm0.

VFNMSUB132PS xmm0, xmm1,
xmm2/m128

VEX.DDS.128.66.0F38.W0 AE /r V/V FMA Multiply packed single-precision
floating-point values from xmm0
and xmm1, negate the multiplica-
tion result and subtract
xmm2/mem and put result in
xmm0.

VFNMSUB213PS xmm0, xmm1,
xmm2/m128

VEX.DDS.128.66.0F38.W0 BE /r V/V FMA Multiply packed single-precision
floating-point values from xmm1
and xmm2/mem, negate the multi-
plication result and subtract xmm0
and put result in xmm0.

VFNMSUB231PS xmm0, xmm1,
xmm2/m128

VEX.DDS.256.66.0F38.W0 9E /r V/V FMA Multiply packed single-precision
floating-point values from ymm0
and ymm2/mem, negate the multi-
plication result and subtract ymm1
and put result in ymm0.

VFNMSUB132PS ymm0, ymm1,
ymm2/m256

VEX.DDS.256.66.0F38.W0 AE /r V/V FMA Multiply packed single-precision
floating-point values from ymm0
and ymm1, negate the multiplica-
tion result and subtract
ymm2/mem and put result in
ymm0.

VFNMSUB213PS ymm0, ymm1,
ymm2/m256

VEX.DDS.256.66.0F38.0 BE /r V/V FMA Multiply packed single-precision
floating-point values from ymm1
and ymm2/mem, negate the multi-
plication result and subtract ymm0
and put result in ymm0.

VFNMSUB231PS ymm0, ymm1,
ymm2/m256
Ref. # 319433-004 61

INSTRUCTION SET REFERENCE - FMA
intermediate results, subtracts the four or eight packed single-precision floating-
point values in the second source operand, performs rounding and stores the
resulting four or eight packed single-precision floating-point values to the destination
operand (first source operand).

VFNMSUB213PS: Multiplies the four or eight packed single-precision floating-point
values from the second source operand to the four or eight packed single-precision
floating-point values in the first source operand. From negated infinite precision
intermediate results, subtracts the four or eight packed single-precision floating-
point values in the third source operand, performs rounding and stores the resulting
four or eight packed single-precision floating-point values to the destination operand
(first source operand).

VFNMSUB231PS: Multiplies the four or eight packed single-precision floating-point
values from the second source to the four or eight packed single-precision floating-
point values in the third source operand. From negated infinite precision interme-
diate results, subtracts the four or eight packed single-precision floating-point values
in the first source operand, performs rounding and stores the resulting four or eight
packed single-precision floating-point values to the destination operand (first source
operand).

VEX.256 encoded version: The destination operand (also first source operand) is a
YMM register and encoded in reg_field. The second source operand is a YMM register
and encoded in VEX.vvvv. The third source operand is a YMM register or a 256-bit
memory location and encoded in rm_field.

VEX.128 encoded version: The destination operand (also first source operand) is a
XMM register and encoded in reg_field. The second source operand is a XMM register
and encoded in VEX.vvvv. The third source operand is a XMM register or a 128-bit
memory location and encoded in rm_field. The upper 128 bits of the YMM destination
register are zeroed.

Compiler tools may optionally support a complementary mnemonic for each instruc-
tion mnemonic listed in the opcode/instruction column of the summary table. The
behavior of the complementary mnemonic in situations involving NANs are governed
by the definition of the instruction mnemonic defined in the opcode/instruction
column. See also Section 2.3.1, “FMA Instruction Operand Order and Arithmetic
Behavior”.

Operation
In the operations below, “+” and “*” symbols represent multiplication and addition with infinite
precision inputs and outputs (no rounding)
VFNMSUB132PS DEST, SRC2, SRC3
IF (VEX.128) THEN

MAXVL =4
ELSEIF (VEX.256)

MAXVL = 8
FI
For i = 0 to MAXVL-1 {
62 Ref. # 319433-004

INSTRUCTION SET REFERENCE - FMA
n = 32*i;
DEST[n+31:n] Å RoundFPControl_MXCSR(- (DEST[n+31:n]*SRC3[n+31:n]) - SRC2[n+31:n])

}
IF (VEX.128) THEN

DEST[255:128] Å 0
FI

VFNMSUB213PS DEST, SRC2, SRC3
IF (VEX.128) THEN

MAXVL =4
ELSEIF (VEX.256)

MAXVL = 8
FI
For i = 0 to MAXVL-1 {

n = 32*i;
DEST[n+31:n] Å RoundFPControl_MXCSR(- (SRC2[n+31:n]*DEST[n+31:n]) - SRC3[n+31:n])

}
IF (VEX.128) THEN

DEST[255:128] Å 0
FI

VFNMSUB231PS DEST, SRC2, SRC3
IF (VEX.128) THEN

MAXVL =4
ELSEIF (VEX.256)

MAXVL = 8
FI
For i = 0 to MAXVL-1 {

n = 32*i;
DEST[n+31:n] Å RoundFPControl_MXCSR(- (SRC2[n+31:n]*SRC3[n+31:n]) - DEST[n+31:n])

}
IF (VEX.128) THEN

DEST[255:128] Å 0
FI

Intel C/C++ Compiler Intrinsic Equivalent

VFNMSUB132PS __m128 _mm_fnmsub_ps (__m128 a, __m128 b, __m128 c);

VFNMSUB213PS __m128 _mm_fnmsub_ps (__m128 a, __m128 b, __m128 c);

VFNMSUB231PS __m128 _mm_fnmsub_ps (__m128 a, __m128 b, __m128 c);

VFNMSUB132PS __m256 _mm256_fnmsub_ps (__m256 a, __m256 b, __m256 c);
Ref. # 319433-004 63

INSTRUCTION SET REFERENCE - FMA
VFNMSUB213PS __m256 _mm256_fnmsub_ps (__m256 a, __m256 b, __m256 c);

VFNMSUB231PS __m256 _mm256_fnmsub_ps (__m256 a, __m256 b, __m256 c);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions
See Exceptions Type 2
64 Ref. # 319433-004

INSTRUCTION SET REFERENCE - FMA
VFNMSUB132SD/VFNMSUB213SD/VFNMSUB231SD - Fused Negative
Multiply-Subtract of Scalar Double-Precision Floating-Point Values

Description
VFNMSUB132SD: Multiplies the low packed double-precision floating-point value
from the first source operand to the low packed double-precision floating-point value
in the third source operand. From negated infinite precision intermediate result,
subtracts the low double-precision floating-point value in the second source operand,
performs rounding and stores the resulting packed double-precision floating-point
value to the destination operand (first source operand).

VFNMSUB213SD: Multiplies the low packed double-precision floating-point value
from the second source operand to the low packed double-precision floating-point
value in the first source operand. From negated infinite precision intermediate result,
subtracts the low double-precision floating-point value in the third source operand,
performs rounding and stores the resulting packed double-precision floating-point
value to the destination operand (first source operand).

VFNMSUB231SD: Multiplies the low packed double-precision floating-point value
from the second source to the low packed double-precision floating-point value in the
third source operand. From negated infinite precision intermediate result, subtracts
the low double-precision floating-point value in the first source operand, performs
rounding and stores the resulting packed double-precision floating-point value to the
destination operand (first source operand).

Opcode/
Instruction

Mode
Support

CPUID
Feature
Flag

Description

VEX.DDS.128.66.0F38.W1 9F /r V/V FMA Multiply scalar double-precision
floating-point value from xmm0
and xmm2/mem, negate the multi-
plication result and subtract xmm1
and put result in xmm0.

VFNMSUB132SD xmm0, xmm1,
xmm2/m64

VEX.DDS.128.66.0F38.W1 AF /r V/V FMA Multiply scalar double-precision
floating-point value from xmm0
and xmm1, negate the multiplica-
tion result and subtract
xmm2/mem and put result in
xmm0.

VFNMSUB213SD xmm0, xmm1,
xmm2/m64

VEX.DDS.128.66.0F38.W1 BF /r V/V FMA Multiply scalar double-precision
floating-point value from xmm1
and xmm2/mem, negate the multi-
plication result and subtract xmm0
and put result in xmm0.

VFNMSUB231SD xmm0, xmm1,
xmm2/m64
Ref. # 319433-004 65

INSTRUCTION SET REFERENCE - FMA
VEX.128 encoded version: The destination operand (also first source operand) is a
XMM register and encoded in reg_field. The second source operand is a XMM register
and encoded in VEX.vvvv. The third source operand is a XMM register or a 64-bit
memory location and encoded in rm_field. The upper bits ([255:128]) of the YMM
destination register are zeroed.

Compiler tools may optionally support a complementary mnemonic for each instruc-
tion mnemonic listed in the opcode/instruction column of the summary table. The
behavior of the complementary mnemonic in situations involving NANs are governed
by the definition of the instruction mnemonic defined in the opcode/instruction
column. See also Section 2.3.1, “FMA Instruction Operand Order and Arithmetic
Behavior”.

Operation
In the operations below, “-” and “*” symbols represent multiplication and addition with infinite precision
inputs and outputs (no rounding)
VFNMSUB132SD DEST, SRC2, SRC3
DEST[63:0] Å RoundFPControl_MXCSR(- (DEST[63:0]*SRC3[63:0]) - SRC2[63:0])
DEST[127:64] Å DEST[127:64]
DEST[255:128] Å 0

VFNMSUB213SD DEST, SRC2, SRC3
DEST[63:0] Å RoundFPControl_MXCSR(- (SRC2[63:0]*DEST[63:0]) - SRC3[63:0])
DEST[127:64] Å DEST[127:64]
DEST[255:128] Å 0

VFNMSUB231SD DEST, SRC2, SRC3
DEST[63:0] Å RoundFPControl_MXCSR(- (SRC2[63:0]*SRC3[63:0]) - DEST[63:0])
DEST[127:64] Å DEST[127:64]
DEST[255:128] Å 0

Intel C/C++ Compiler Intrinsic Equivalent

VFNMSUB132SD __m128d _mm_fnmsub_sd (__m128d a, __m128d b, __m128d c);

VFNMSUB213SD __m128d _mm_fnmsub_sd (__m128d a, __m128d b, __m128d c);

VFNMSUB231SD __m128d _mm_fnmsub_sd (__m128d a, __m128d b, __m128d c);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions
See Exceptions Type 3
66 Ref. # 319433-004

INSTRUCTION SET REFERENCE - FMA
VFNMSUB132SS/VFNMSUB213SS/VFNMSUB231SS - Fused Negative
Multiply-Subtract of Scalar Single-Precision Floating-Point Values

Description
VFNMSUB132SS: Multiplies the low packed single-precision floating-point value from
the first source operand to the low packed single-precision floating-point value in the
third source operand. From negated infinite precision intermediate result, the low
single-precision floating-point value in the second source operand, performs
rounding and stores the resulting packed single-precision floating-point value to the
destination operand (first source operand).

VFNMSUB213SS: Multiplies the low packed single-precision floating-point value from
the second source operand to the low packed single-precision floating-point value in
the first source operand. From negated infinite precision intermediate result, the low
single-precision floating-point value in the third source operand, performs rounding
and stores the resulting packed single-precision floating-point value to the destina-
tion operand (first source operand).

VFNMSUB231SS: Multiplies the low packed single-precision floating-point value from
the second source to the low packed single-precision floating-point value in the third
source operand. From negated infinite precision intermediate result, the low single-
precision floating-point value in the first source operand, performs rounding and
stores the resulting packed single-precision floating-point value to the destination
operand (first source operand).

Opcode/
Instruction

Mode
Support

CPUID
Feature
Flag

Description

VEX.DDS.128.66.0F38.W0 9F /r V/V FMA Multiply scalar single-precision
floating-point value from xmm0
and xmm2/mem, negate the multi-
plication result and subtract xmm1
and put result in xmm0.

VFNMSUB132SS xmm0, xmm1,
xmm2/m32

VEX.DDS.128.66.0F38.W0 AF /r V/V FMA Multiply scalar single-precision
floating-point value from xmm0
and xmm1, negate the multiplica-
tion result and subtract
xmm2/mem and put result in
xmm0.

VFNMSUB213SS xmm0, xmm1,
xmm2/m32

VEX.DDS.128.66.0F38.W0 BF /r V/V FMA Multiply scalar single-precision
floating-point value from xmm1
and xmm2/mem, negate the multi-
plication result and subtract xmm0
and put result in xmm0.

VFNMSUB231SS xmm0, xmm1,
xmm2/m32
Ref. # 319433-004 67

INSTRUCTION SET REFERENCE - FMA
VEX.128 encoded version: The destination operand (also first source operand) is a
XMM register and encoded in reg_field. The second source operand is a XMM register
and encoded in VEX.vvvv. The third source operand is a XMM register or a 32-bit
memory location and encoded in rm_field. The upper bits ([255:128]) of the YMM
destination register are zeroed.

Compiler tools may optionally support a complementary mnemonic for each instruc-
tion mnemonic listed in the opcode/instruction column of the summary table. The
behavior of the complementary mnemonic in situations involving NANs are governed
by the definition of the instruction mnemonic defined in the opcode/instruction
column. See also Section 2.3.1, “FMA Instruction Operand Order and Arithmetic
Behavior”.

Operation
In the operations below, “-” and “*” symbols represent multiplication and addition with infinite precision
inputs and outputs (no rounding)
VFNMSUB132SS DEST, SRC2, SRC3
DEST[31:0] Å RoundFPControl_MXCSR(- (DEST[31:0]*SRC3[31:0]) - SRC2[31:0])
DEST[127:32] Å DEST[127:32]
DEST[255:128] Å 0

VFNMSUB213SS DEST, SRC2, SRC3
DEST[31:0] Å RoundFPControl_MXCSR(- (SRC2[31:0]*DEST[31:0]) - SRC3[31:0])
DEST[127:32] Å DEST[127:32]
DEST[255:128] Å 0

VFNMSUB231SS DEST, SRC2, SRC3
DEST[31:0] Å RoundFPControl_MXCSR(- (SRC2[31:0]*SRC3[63:0]) - DEST[31:0])
DEST[127:32] Å DEST[127:32]
DEST[255:128] Å 0

Intel C/C++ Compiler Intrinsic Equivalent

VFNMSUB132SS __m128 _mm_fnmsub_ss (__m128 a, __m128 b, __m128 c);

VFNMSUB213SS __m128 _mm_fnmsub_ss (__m128 a, __m128 b, __m128 c);

VFNMSUB231SS __m128 _mm_fnmsub_ss (__m128 a, __m128 b, __m128 c);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions
See Exceptions Type 3
68 Ref. # 319433-004

INSTRUCTION SET REFERENCE - FMA
This p
age was

intentionally left

blank.
Ref. # 319433-004 69

INSTRUCTION SET REFERENCE - FMA
70 Ref. # 319433-004

INSTRUCTION SUMMARY
APPENDIX A
INSTRUCTION SUMMARY

Most SSE/SSE2/SSE3/SSSE3/SSE4 Instructions have been promoted to support
VEX.128 encodings which, for non-memory-store versions implies support for
zeroing upper bits of YMM registers. Table A-1 summarizes the promotion status for
existing instructions. The column “VEX.256“ indicates whether 256-bit vector form of
the instruction using the VEX.256 prefix encoding is supported. The column
“VEX.128“ indicates whether the instruction using VEX.128 prefix encoding is
supported.
Ref. # 319433-004 1

INSTRUCTION SUMMARY
Table A-1. Promoted SSE/SSE2/SSE3/SSSE3/SSE4 Instructions
VEX.256
Encoding

VEX.128
Encoding group Instruction If No, Reason?

yes yes YY 0F 1X MOVUPS

no yes MOVSS scalar

yes yes MOVUPD

no yes MOVSD scalar

no yes MOVLPS Note 1

no yes MOVLPD Note 1

no yes MOVLHPS Redundant with VPER-
MILPS

yes yes MOVDDUP

yes yes MOVSLDUP

yes yes UNPCKLPS

yes yes UNPCKLPD

yes yes UNPCKHPS

yes yes UNPCKHPD

no yes MOVHPS Note 1

no yes MOVHPD Note 1

no yes MOVHLPS Redundant with VPER-
MILPS

yes yes MOVAPS

yes yes MOVSHDUP

yes yes MOVAPD

no no CVTPI2PS MMX

no yes CVTSI2SS scalar

no no CVTPI2PD MMX

no yes CVTSI2SD scalar

no yes MOVNTPS

no yes MOVNTPD

no no CVTTPS2PI MMX

no yes CVTTSS2SI scalar

no no CVTTPD2PI MMX

no yes CVTTSD2SI scalar

no no CVTPS2PI MMX

no yes CVTSS2SI scalar

no no CVTPD2PI MMX

no yes CVTSD2SI scalar
2 Ref. # 319433-004

INSTRUCTION SUMMARY
no yes UCOMISS scalar

no yes UCOMISD scalar

no yes COMISS scalar

no yes COMISD scalar

yes yes YY 0F 5X MOVMSKPS

yes yes MOVMSKPD

yes yes SQRTPS

no yes SQRTSS scalar

yes yes SQRTPD

no yes SQRTSD scalar

yes yes RSQRTPS

no yes RSQRTSS scalar

yes yes RCPPS

no yes RCPSS scalar

yes yes ANDPS

yes yes ANDPD

yes yes ANDNPS

yes yes ANDNPD

yes yes ORPS

yes yes ORPD

yes yes XORPS

yes yes XORPD

yes yes ADDPS

no yes ADDSS scalar

yes yes ADDPD

no yes ADDSD scalar

yes yes MULPS

no yes MULSS scalar

yes yes MULPD

no yes MULSD scalar

yes yes CVTPS2PD

no yes CVTSS2SD scalar

yes yes CVTPD2PS

no yes CVTSD2SS scalar

yes yes CVTDQ2PS

VEX.256
Encoding

VEX.128
Encoding group Instruction If No, Reason?
Ref. # 319433-004 3

INSTRUCTION SUMMARY
yes yes CVTPS2DQ

yes yes CVTTPS2DQ

yes yes SUBPS

no yes SUBSS scalar

yes yes SUBPD

no yes SUBSD scalar

yes yes MINPS

no yes MINSS scalar

yes yes MINPD

no yes MINSD scalar

yes yes DIVPS

no yes DIVSS scalar

yes yes DIVPD

no yes DIVSD scalar

yes yes MAXPS

no yes MAXSS scalar

yes yes MAXPD

no yes MAXSD scalar

no yes YY 0F 6X PUNPCKLBW VI

no yes PUNPCKLWD VI

no yes PUNPCKLDQ VI

no yes PACKSSWB VI

no yes PCMPGTB VI

no yes PCMPGTW VI

no yes PCMPGTD VI

no yes PACKUSWB VI

no yes PUNPCKHBW VI

no yes PUNPCKHWD VI

no yes PUNPCKHDQ VI

no yes PACKSSDW VI

no yes PUNPCKLQDQ VI

no yes PUNPCKHQDQ VI

no yes MOVD scalar

no yes MOVQ scalar

yes yes MOVDQA

VEX.256
Encoding

VEX.128
Encoding group Instruction If No, Reason?
4 Ref. # 319433-004

INSTRUCTION SUMMARY
yes yes MOVDQU

no yes YY 0F 7X PSHUFD VI

no yes PSHUFHW VI

no yes PSHUFLW VI

no yes PCMPEQB VI

no yes PCMPEQW VI

no yes PCMPEQD VI

yes yes HADDPD

yes yes HADDPS

yes yes HSUBPD

yes yes HSUBPS

no yes MOVD VI

no yes MOVQ VI

yes yes MOVDQA

yes yes MOVDQU

no yes YY 0F AX LDMXCSR

no yes STMXCSR

yes yes YY 0F CX CMPPS

no yes CMPSS scalar

yes yes CMPPD

no yes CMPSD scalar

no yes PINSRW VI

no yes PEXTRW VI

yes yes SHUFPS

yes yes SHUFPD

yes yes YY 0F DX ADDSUBPD

yes yes ADDSUBPS

no yes PSRLW VI

no yes PSRLD VI

no yes PSRLQ VI

no yes PADDQ VI

no yes PMULLW VI

no no MOVQ2DQ MMX

no no MOVDQ2Q MMX

no yes PMOVMSKB VI

VEX.256
Encoding

VEX.128
Encoding group Instruction If No, Reason?
Ref. # 319433-004 5

INSTRUCTION SUMMARY
no yes PSUBUSB VI

no yes PSUBUSW VI

no yes PMINUB VI

no yes PAND VI

no yes PADDUSB VI

no yes PADDUSW VI

no yes PMAXUB VI

no yes PANDN VI

no yes YY 0F EX PAVGB VI

no yes PSRAW VI

no yes PSRAD VI

no yes PAVGW VI

no yes PMULHUW VI

no yes PMULHW VI

yes yes CVTPD2DQ

yes yes CVTTPD2DQ

yes yes CVTDQ2PD

no yes MOVNTDQ VI

no yes PSUBSB VI

no yes PSUBSW VI

no yes PMINSW VI

no yes POR VI

no yes PADDSB VI

no yes PADDSW VI

no yes PMAXSW VI

no yes PXOR VI

yes yes YY 0F FX LDDQU VI

no yes PSLLW VI

no yes PSLLD VI

no yes PSLLQ VI

no yes PMULUDQ VI

no yes PMADDWD VI

no yes PSADBW VI

no yes MASKMOVDQU

no yes PSUBB VI

VEX.256
Encoding

VEX.128
Encoding group Instruction If No, Reason?
6 Ref. # 319433-004

INSTRUCTION SUMMARY
no yes PSUBW VI

no yes PSUBD VI

no yes PSUBQ VI

no yes PADDB VI

no yes PADDW VI

no yes PADDD VI

no yes SSSE3 PHADDW VI

no yes PHADDSW VI

no yes PHADDD VI

no yes PHSUBW VI

no yes PHSUBSW VI

no yes PHSUBD VI

no yes PMADDUBSW VI

no yes PALIGNR VI

no yes PSHUFB VI

no yes PMULHRSW VI

no yes PSIGNB VI

no yes PSIGNW VI

no yes PSIGND VI

no yes PABSB VI

no yes PABSW VI

no yes PABSD VI

yes yes SSE4.1 BLENDPS

yes yes BLENDPD

yes yes BLENDVPS Note 2

yes yes BLENDVPD Note 2

no yes DPPD

yes yes DPPS

no yes EXTRACTPS Note 3

no yes INSERTPS Note 3

no yes MOVNTDQA

no yes MPSADBW VI

no yes PACKUSDW VI

no yes PBLENDVB VI

no yes PBLENDW VI

VEX.256
Encoding

VEX.128
Encoding group Instruction If No, Reason?
Ref. # 319433-004 7

INSTRUCTION SUMMARY
Description of Column “If No, Reason?”

no yes PCMPEQQ VI

no yes PEXTRD VI

no yes PEXTRQ VI

no yes PEXTRB VI

no yes PEXTRW VI

no yes PHMINPOSUW VI

no yes PINSRB VI

no yes PINSRD VI

no yes PINSRQ VI

no yes PMAXSB VI

no yes PMAXSD VI

no yes PMAXUD VI

no yes PMAXUW VI

no yes PMINSB VI

no yes PMINSD VI

no yes PMINUD VI

no yes PMINUW VI

no yes PMOVSXxx VI

no yes PMOVZXxx VI

no yes PMULDQ VI

no yes PMULLD VI

yes yes PTEST

yes yes ROUNDPD

yes yes ROUNDPS

no yes ROUNDSD scalar

no yes ROUNDSS scalar

no yes SSE4.2 PCMPGTQ VI

no no SSE4.2 CRC32c integer

no yes PCMPESTRI VI

no yes PCMPESTRM VI

no yes PCMPISTRI VI

no yes PCMPISTRM VI

no no SSE4.2 POPCNT integer

VEX.256
Encoding

VEX.128
Encoding group Instruction If No, Reason?
8 Ref. # 319433-004

INSTRUCTION SUMMARY
MMX: Instructions referencing MMX registers do not support VEX

Scalar: Scalar instructions are not promoted to 256-bit

integer: integer instructions are not promoted.

VI: “Vector Integer” instructions are not promoted to 256-bit

Note 1: MOVLPD/PS and MOVHPD/PS are not promoted to 256-bit. The equivalent
functionality are provided by VINSERTF128 and VEXTRACTF128 instructions as the
existing instructions have no natural 256b extension

Note 2: BLENDVPD and BLENDVPS are superseded by the more flexible VBLENDVPD
and VBLENDVPS.

Note 3: It is expected that using 128-bit INSERTPS followed by a VINSERTF128
would be better than promoting INSERTPS to 256-bit (for example).
Ref. # 319433-004 9

INSTRUCTION SUMMARY
Table A-2. AVX, FMA and AES New Instructions
Opcode Instruction Description
66 0F 38 DE /r AESDEC xmm1, xmm2/m128 Perform 1 round of AES decryption of

xmm1 using the 128-bit round key from the
xmm2/m128.

66 0F 38 DF /r AESDECLAST xmm1,
xmm2/m128

Perform the last round of AES decryption of
xmm1 using the 128 bit round key from
xmm2/m128.

VEX.NDS.128.66.
0F38 DE /r

VAESDEC xmm1, xmm2,
xmm3/m128

Perform 1 round of AES decryption of
xmm2 using the 128-bit round key from the
xmm3/m128, and stores the result in xmm1.

VEX.NDS.128.66.
0F38 DF /r

VAESDECLAST xmm1,
xmm2, xmm3/m128

Perform the last round of AES decryption of
xmm2 using the 128 bit round key from
xmm3/m128, and stores the result in xmm1.

66 0F 38 DC /r AESENC xmm1, xmm2/m128 Perform 1 round of AES encryption of
xmm1 using the 128-bit round key from the
xmm2/m128.

66 0F 38 DD /r AESENCLAST xmm1,
xmm2/m128

Perform the last round of AES encryption of
xmm1 using the 128 bit round key from
xmm2/m128.

VEX.NDS.128.66.
0F38 DC /r

VAESENC xmm1, xmm2,
xmm3/m128

Perform 1 round of AES encryption of
xmm2 using the 128-bit round key from the
xmm3/m128, and stores the result in xmm1.

VEX.NDS.128.66.
0F38 DD /r

VAESENCLAST xmm1,
xmm2, xmm3/m128

Perform the last round of AES encryption of
xmm2 using the 128 bit round key from
xmm3/m128, and stores the result in xmm1.

66 0F 38 DB /r AESIMC xmm1, xmm2/m128 Perform the InvMixColumn operation using
xmm2/mem and store result in xmm1.

VEX.128.66.0F38
DB /r

VAESIMC xmm1,
xmm2/m128

Perform the InvMixColumn operation using
xmm2/mem and store result in xmm1.

66 0F 3A DF /r ib AESKEYGENASSIST xmm1,
xmm2/m128, imm8

Assist in AES round key generation using
an immediate round control byte, a key
specified in xmm2/m128 and stores the
result in xmm1.

VEX.128.66.0F3A
DF /r ib

VAESKEYGENASSIST
xmm1, xmm2/m128, imm8

Assist in AES round key generation using
an immediate round control byte, a key
specified in xmm2/m128 and stores the
result in xmm1.

VEX.256.66.0F38
1A /r

VBROADCASTF128 ymm1,
m128

Broadcast 128-bit floating-point values in
mem to low and high 128-bits in ymm1.

VEX.256.66.0F38
19/r

VBROADCASTSD ymm1,
m64

Broadcast double-precision floating-point
element in mem to four locations in ymm1.
10 Ref. # 319433-004

INSTRUCTION SUMMARY
VEX.256.66.0F38
18 /r

VBROADCASTSS ymm1,
m32

Broadcast single-precision floating-point
element in mem to eight locations in ymm1.

VEX.128.66.0F38
18/r

VBROADCASTSS xmm1,
m32

Broadcast single-precision floating-point
element in mem to four locations in xmm1.

VEX.256.66.0F3A
19 /r ib

VEXTRACTF128
xmm1/m128, ymm2, imm8

Extracts 128-bits of packed floating-
point values from ymm2 and store
results in xmm1/mem.

VEX.DDS.128.66.
0F38.W1 98 /r

VFMADD132PD xmm0,
xmm1, xmm2/m128

Multiply packed double-precision floating-
point values from xmm0 and xmm2/mem,
add to xmm1 and put result in xmm0.

VEX.DDS.128.66.
0F38.W1 A8 /r

VFMADD213PD xmm0,
xmm1, xmm2/m128

Multiply packed double-precision floating-
point values from xmm1 and xmm0, add to
xmm2/mem and put result in xmm0.

VEX.DDS.128.66.
0F38.W1 B8 /r

VFMADD231PD xmm0,
xmm1, xmm2/m128

Multiply packed double-precision floating-
point values from xmm1 and xmm2/mem,
add to xmm0 and put result in xmm0.

VEX.DDS.256.66.
0F38.W1 98 /r

VFMADD132PD ymm0,
ymm1, ymm2/m256

Multiply packed double-precision floating-
point values from ymm0 and ymm2/mem,
add to ymm1 and put result in ymm0.

VEX.DDS.256.66.
0F38.W1 A8 /r

VFMADD213PD ymm0,
ymm1, ymm2/m256

Multiply packed double-precision floating-
point values from ymm1 and ymm0, add to
ymm2/mem and put result in ymm0.

VEX.DDS.256.66.
0F38.W1 B8 /r

VFMADD231PD ymm0,
ymm1, ymm2/m256

Multiply packed double-precision floating-
point values from ymm1 and ymm2/mem,
add to ymm0 and put result in ymm0.

VEX.DDS.128.66.
0F38.W0 98 /r

VFMADD132PS xmm0,
xmm1, xmm2/m128

Multiply packed single-precision floating-
point values from xmm0 and xmm2/mem,
add to xmm1 and put result in xmm0.

VEX.DDS.128.66.
0F38.W0 A8 /r

VFMADD213PS xmm0,
xmm1, xmm2/m128

Multiply packed single-precision floating-
point values from xmm1 and xmm0, add to
xmm2/mem and put result in xmm0.

VEX.DDS.128.66.
0F38.W0 B8 /r

VFMADD231PS xmm0,
xmm1, xmm2/m128

Multiply packed single-precision floating-
point values from xmm1 and xmm2/mem,
add to xmm0 and put result in xmm0.

VEX.DDS.256.66.
0F38.W0 98 /r

VFMADD132PS ymm0,
ymm1, ymm2/m256, ymm3

Multiply packed single-precision floating-
point values from ymm0 and ymm2/mem,
add to ymm1 and put result in ymm0.

VEX.DDS.256.66.
0F38.W0 A8 /r

VFMADD213PS ymm0,
ymm1, ymm2/m256

Multiply packed single-precision floating-
point values from ymm1 and ymm0, add to
ymm2/mem and put result in ymm0.

Opcode Instruction Description
Ref. # 319433-004 11

INSTRUCTION SUMMARY
VEX.DDS.256.66.
0F38.W0 B8 /r

VFMADD231PS ymm0,
ymm1, ymm2/m256

Multiply packed single-precision floating-
point values from ymm1 and ymm2/mem,
add to ymm0 and put result in ymm0.

VEX.DDS.128.66.
0F38.W1 99 /r

VFMADD132SD xmm0,
xmm1, xmm2/m64

Multiply scalar double-precision floating-
point value in xmm0 and xmm2/mem, add
to xmm1 and put result in xmm0.

VEX.DDS.128.66.
0F38.W1 A9 /r

VFMADD213SD xmm0,
xmm1, xmm2/m64

Multiply scalar double-precision floating-
point value in xmm1 and xmm0, add to
xmm2/mem and put result in xmm0.

VEX.DDS.128.66.
0F38.W1 B9 /r

VFMADD231SD xmm0,
xmm1, xmm2/m64

Multiply scalar double-precision floating-
point value in xmm1 and xmm2/mem, add
to xmm0 and put result in xmm0.

VEX.DDS.128.66.
0F38.W0 99 /r

VFMADD132SS xmm0,
xmm1, xmm2/m32

Multiply scalar single-precision floating-
point value in xmm0 and xmm2/mem, add
to xmm1 and put result in xmm0.

VEX.DDS.128.66.
0F38.W0 A9 /r

VFMADD213SS xmm0,
xmm1, xmm2/m32

Multiply scalar single-precision floating-
point value in xmm1 and xmm0, add to
xmm2/mem and put result in xmm0.

VEX.DDS.128.66.
0F38.W0 B9 /r

VFMADD231SS xmm0,
xmm1, xmm2/m32

Multiply scalar single-precision floating-
point value in xmm1 and xmm2/mem, add
to xmm0 and put result in xmm0.

VEX.DDS.128.66.
0F38.W1 96 /r

VFMADDSUB132PD xmm0,
xmm1, xmm2/m128

Multiply packed double-precision floating-
point values from xmm0 and xmm2/mem,
add/subtract elements in xmm1 and put
result in xmm0.

VEX.DDS.128.66.
0F38.W1 A6 /r

VFMADDSUB213PD xmm0,
xmm1, xmm2/m128

Multiply packed double-precision floating-
point values from xmm1 and xmm0,
add/subtract elements in xmm2/mem and
put result in xmm0.

VEX.DDS.128.66.
0F38.W1 B6 /r

VFMADDSUB231PD xmm0,
xmm1, xmm2/m128

Multiply packed double-precision floating-
point values from xmm1 and xmm2/mem,
add/subtract elements in xmm0 and put
result in xmm0.

VEX.DDS.256.66.
0F38.W1 96 /r

VFMADDSUB132PD ymm0,
ymm1, ymm2/m256

Multiply packed double-precision floating-
point values from ymm0 and ymm2/mem,
add/subtract elements in ymm1 and put
result in ymm0.

VEX.DDS.256.66.
0F38.W1 A6 /r

VFMADDSUB213PD ymm0,
ymm1, ymm2/m256

Multiply packed double-precision floating-
point values from ymm1 and ymm0,
add/subtract elements in ymm2/mem and
put result in ymm0.

Opcode Instruction Description
12 Ref. # 319433-004

INSTRUCTION SUMMARY
VEX.DDS.256.66.
0F38.W1 B6 /r

VFMADDSUB231PD ymm0,
ymm1, ymm2/m256

Multiply packed double-precision floating-
point values from ymm0 and ymm1,
add/subtract elements in ymm2/mem and
put result in ymm0.

VEX.DDS.128.66.
0F38.W0 96 /r

VFMADDSUB132PS xmm0,
xmm1, xmm2/m128

Multiply packed single-precision floating-
point values from xmm0 and xmm2/mem,
add/subtract xmm1 and put result in xmm0.

VEX.DDS.128.66.
0F38.W0 A6 /r

VFMADDSUB213PS xmm0,
xmm1, xmm2/m128

Multiply packed single-precision floating-
point values from xmm1 and xmm0,
add/subtract xmm2/mem and put result in
xmm0.

VEX.DDS.128.66.
0F38.W0 B6 /r

VFMADDSUB231PS xmm0,
xmm1, xmm2/m128

Multiply packed single-precision floating-
point values from xmm1 and xmm2/mem,
add/subtract xmm0 and put result in xmm0.

VEX.DDS.256.66.
0F38.W0 96 /r

VFMADDSUB132PS ymm0,
ymm1, ymm2/m256

Multiply packed single-precision floating-
point values from ymm0 and ymm2/mem,
add/subtract ymm1 and put result in ymm0.

VEX.DDS.256.66.
0F38.W0 A6 /r

VFMADDSUB213PS ymm0,
ymm1, ymm2/m256

Multiply packed single-precision floating-
point values from ymm1 and ymm0,
add/subtract ymm2/mem and put result in
ymm0.

VEX.DDS.256.66.
0F38.W0 B6 /r

VFMADDSUB231PS ymm0,
ymm1, ymm2/m256

Multiply packed single-precision floating-
point values from ymm1 and ymm2/mem,
add/subtract ymm0 and put result in ymm0.

VEX.DDS.128.66.
0F38.W1 97 /r

VFMSUBADD132PD xmm0,
xmm1, xmm2/m128

Multiply packed double-precision floating-
point values from xmm0 and xmm2/mem,
subtract/add elements in xmm1 and put
result in xmm0.

VEX.DDS.128.66.
0F38.W1 A7 /r

VFMSUBADD213PD xmm0,
xmm1, xmm2/m128

Multiply packed double-precision floating-
point values from xmm1 and xmm0, sub-
tract/add elements in xmm2/mem and put
result in xmm0.

VEX.DDS.128.66.
0F38.W1 B7 /r

VFMSUBADD231PD xmm0,
xmm1, xmm2/m128

Multiply packed double-precision floating-
point values from xmm1 and xmm2/mem,
subtract/add elements in xmm0 and put
result in xmm0.

VEX.DDS.256.66.
0F38.W1 97 /r

VFMSUBADD132PD ymm0,
ymm1, ymm2/m256

Multiply packed double-precision floating-
point values from ymm0 and ymm2/mem,
subtract/add elements in ymm1 and put
result in ymm0.

Opcode Instruction Description
Ref. # 319433-004 13

INSTRUCTION SUMMARY
VEX.DDS.256.66.
0F38.W1 A7 /r

VFMSUBADD213PD ymm0,
ymm1, ymm2/m256

Multiply packed double-precision floating-
point values from ymm1 and ymm0,
subtract/add elements in ymm2/mem and
put result in ymm0.

VEX.DDS.256.66.
0F38.W1 B7 /r

VFMSUBADD231PD ymm0,
ymm1, ymm2/m256

Multiply packed double-precision floating-
point values from ymm1 and ymm2/mem,
subtract/add elements in ymm0 and put
result in ymm0.

VEX.DDS.128.66.
0F38.W0 97 /r

VFMSUBADD132PS xmm0,
xmm1, xmm2/m128

Multiply packed single-precision floating-
point values from xmm0 and xmm2/mem,
subtract/add xmm1 and put result in xmm0.

VEX.DDS.128.66.
0F38.W0 A7 /r

VFMSUBADD213PS xmm0,
xmm1, xmm2/m128

Multiply packed single-precision floating-
point values from xmm1 and xmm0, sub-
tract/add xmm2/mem and put result in
xmm0.

VEX.DDS.128.66.
0F38.W0 B7 /r

VFMSUBADD231PS xmm0,
xmm1, xmm2/m128

Multiply packed single-precision floating-
point values from xmm1 and xmm2/mem,
subtract/add xmm0 and put result in xmm0.

VEX.DDS.256.66.
0F38.W0 97 /r

VFMSUBADD132PS ymm0,
ymm1, ymm2/m256

Multiply packed single-precision floating-
point values from ymm0 and ymm2/mem,
subtract/add ymm1 and put result in ymm0.

VEX.DDS.256.66.
0F38.W0 A7 /r

VFMSUBADD213PS ymm0,
ymm1, ymm2/m256

Multiply packed single-precision floating-
point values from ymm1 and ymm0,
subtract/add ymm2/mem and put result in
ymm0.

VEX.DDS.256.66.
0F38.W0 B7 /r

VFMSUBADD231PS ymm0,
ymm1, ymm2/m256

Multiply packed single-precision floating-
point values from ymm1 and ymm2/mem,
subtract/add ymm0 and put result in ymm0.

VEX.DDS.128.66.
0F38.W1 9A /r

VFMSUB132PD xmm0,
xmm1, xmm2/m128

Multiply packed double-precision floating-
point values from xmm0 and xmm2/mem,
subtract xmm1 and put result in xmm0.

VEX.DDS.128.66.
0F38.W1 AA /r

VFMSUB213PD xmm0,
xmm1, xmm2/m128

Multiply packed double-precision floating-
point values from xmm1 and xmm0, sub-
tract xmm2/mem and put result in xmm0.

VEX.DDS.128.66.
0F38.W1 BA /r

VFMSUB231PD xmm0,
xmm1, xmm2/m128

Multiply packed double-precision floating-
point values from xmm1 and xmm2/mem,
subtract xmm0 and put result in xmm0.

VEX.DDS.256.66.
0F38.W1 9A /r

VFMSUB132PD ymm0,
ymm1, ymm2/m256

Multiply packed double-precision floating-
point values from ymm0 and ymm2/mem,
subtract ymm1 and put result in ymm0.

Opcode Instruction Description
14 Ref. # 319433-004

INSTRUCTION SUMMARY
VEX.DDS.256.66.
0F38.W1 AA /r

VFMSUB213PD ymm0,
ymm1, ymm2/m256

Multiply packed double-precision floating-
point values from ymm1 and ymm0,
subtract ymm2/mem and put result in
ymm0.

VEX.DDS.256.66.
0F38.W1 BA /r

VFMSUB231PD ymm0,
ymm1, ymm2/m256

Multiply packed double-precision floating-
point values from ymm1 and ymm2/mem,
subtract ymm0 and put result in ymm0.

VEX.DDS.128.66.
0F38.W0 9A /r

VFMSUB132PS xmm0,
xmm1, xmm2/m128

Multiply packed single-precision floating-
point values from xmm0 and xmm2/mem,
subtract xmm1 and put result in xmm0.

VEX.DDS.128.66.
0F38.W0 AA /r

VFMSUB213PS xmm0,
xmm1, xmm2/m128

Multiply packed single-precision floating-
point values from xmm1 and xmm0, sub-
tract xmm2/mem and put result in xmm0.

VEX.DDS.128.66.
0F38.W0 BA /r

VFMSUB231PS xmm0,
xmm1, xmm2/m128

Multiply packed single-precision floating-
point values from xmm1 and xmm2/mem,
subtract xmm0 and put result in xmm0.

VEX.DDS.256.66.
0F38.W0 9A /r

VFMSUB132PS ymm0,
ymm1, ymm2/m256

Multiply packed single-precision floating-
point values from ymm0 and ymm2/mem,
subtract ymm1 and put result in ymm0.

VEX.DDS.256.66.
0F38.W0 AA /r

VFMSUB213PS ymm0,
ymm1, ymm2/m256

Multiply packed single-precision floating-
point values from ymm1 and ymm0,
subtract ymm2/mem and put result in
ymm0.

VEX.DDS.256.66.
0F38.W0 BA /r

VFMSUB231PS ymm0,
ymm1, ymm2/m256

Multiply packed single-precision floating-
point values from ymm1 and ymm2/mem,
subtract ymm0 and put result in ymm0.

VEX.DDS.128.66.
0F38.W1 9B /r

VFMSUB132SD xmm0,
xmm1, xmm2/m64

Multiply scalar double-precision floating-
point value in xmm0 and xmm2/mem, sub-
tract xmm1 and put result in xmm0.

VEX.DDS.128.66.
0F38.W1 AB /r

VFMSUB213SD xmm0,
xmm1, xmm2/m64

Multiply scalar double-precision floating-
point value in xmm1 and xmm0, subtract
xmm2/mem and put result in xmm0.

VEX.DDS.128.66.
0F38.W1 BB /r

VFMSUB231SD xmm0,
xmm1, xmm2/m64

Multiply scalar double-precision floating-
point value in xmm1 and xmm2/mem, sub-
tract xmm0 and put result in xmm0.

VEX.DDS.128.66.
0F38.W0 9B /r

VFMSUB132SS xmm0,
xmm1, xmm2/m32

Multiply scalar single-precision floating-
point value in xmm0 and xmm2/mem, sub-
tract xmm1 and put result in xmm0.

VEX.DDS.128.66.
0F38.W0 AB /r

VFMSUB213SS xmm0,
xmm1, xmm2/m32

Multiply scalar single-precision floating-
point value in xmm1 and xmm0, subtract
xmm2/mem and put result in xmm0.

Opcode Instruction Description
Ref. # 319433-004 15

INSTRUCTION SUMMARY
VEX.DDS.128.66.
0F38.W0 BB /r

VFMSUB231SS xmm0,
xmm1, xmm2/m32

Multiply scalar single-precision floating-
point value in xmm1 and xmm2/mem, sub-
tract xmm0 and put result in xmm0.

VEX.DDS.128.66.
0F38.W1 9C /r

VFNMADD132PD xmm0,
xmm1, xmm2/m128

Multiply packed double-precision floating-
point values from xmm0 and xmm2/mem,
negate the multiplication result and add to
xmm1. Put the result in xmm0.

VEX.DDS.128.66.
0F38.W1 AC /r

VFNMADD213PD xmm0,
xmm1, xmm2/m128

Multiply packed double-precision floating-
point values from xmm1 and xmm0, negate
the multiplication result and add to
xmm2/mem. Put the result in xmm0.

VEX.DDS.128.66.
0F38.W1 BC /r

VFNMADD231PD xmm0,
xmm1, xmm2/m128

Multiply packed double-precision floating-
point values from xmm1 and xmm2/mem,
negate the multiplication result and add to
xmm0. Put the result in xmm0.

VEX.DDS.256.66.
0F38.W1 9C /r

VFNMADD132PD ymm0,
ymm1, ymm2/m256

Multiply packed double-precision floating-
point values from ymm0 and ymm2/mem,
negate the multiplication result and add to
ymm1. Put the result in ymm0.

VEX.DDS.256.66.
0F38.W1 AC /r

VFNMADD213PD ymm0,
ymm1, ymm2/m256

Multiply packed double-precision floating-
point values from ymm1 and ymm0, negate
the multiplication result and add to
ymm2/mem. Put the result in ymm0.

VEX.DDS.256.66.
0F38.W1 BC /r

VFNMADD231PD ymm0,
ymm1, ymm2/m256

Multiply packed double-precision floating-
point values from ymm1 and ymm2/mem,
negate the multiplication result and add to
ymm0. Put the result in ymm0.

VEX.DDS.128.66.
0F38.W0 9C /r

VFNMADD132PS xmm0,
xmm1, xmm2/m128

Multiply packed single-precision floating-
point values from xmm0 and xmm2/mem,
negate the multiplication result and add to
xmm1. Put the result in xmm0.

VEX.DDS.128.66.
0F38.W0 AC /r

VFNMADD213PS xmm0,
xmm1, xmm2/m128

Multiply packed single-precision floating-
point values from xmm1 and xmm0, negate
the multiplication result and add to
xmm2/mem. Put the result in xmm0.

VEX.DDS.128.66.
0F38.W0 BC /r

VFNMADD231PS xmm0,
xmm1, xmm2/m128

Multiply packed single-precision floating-
point values from xmm1 and xmm2/mem,
negate the multiplication result and add to
xmm0. Put the result in xmm0.

VEX.DDS.256.66.
0F38.W0 9C /r

VFNMADD132PS ymm0,
ymm1, ymm2/m256

Multiply packed single-precision floating-
point values from ymm0 and ymm2/mem,
negate the multiplication result and add to
ymm1. Put the result in ymm0.

Opcode Instruction Description
16 Ref. # 319433-004

INSTRUCTION SUMMARY
VEX.DDS.256.66.
0F38.W0 AC /r

VFNMADD213PS ymm0,
ymm1, ymm2/m256

Multiply packed single-precision floating-
point values from ymm1 and ymm0, negate
the multiplication result and add to
ymm2/mem. Put the result in ymm0.

VEX.DDS.256.66.
0F38.W0 BC /r

VFNMADD231PS ymm0,
ymm1, ymm2/m256

Multiply packed single-precision floating-
point values from ymm1 and ymm2/mem,
negate the multiplication result and add to
ymm0. Put the result in ymm0.

VEX.DDS.128.66.
0F38.W1 9D /r

VFNMADD132SD xmm0,
xmm1, xmm2/m64

Multiply scalar double-precision floating-
point value in xmm0 and xmm2/mem,
negate the multiplication result and add to
xmm1. Put the result in xmm0.

VEX.DDS.128.66.
0F38.W1 AD /r

VFNMADD213SD xmm0,
xmm1, xmm2/m64

Multiply scalar double-precision floating-
point value in xmm1 and xmm0, negate the
multiplication result and add to xmm2/mem.
Put the result in xmm0.

VEX.DDS.128.66.
0F38.W1 BD /r

VFNMADD231SD xmm0,
xmm1, xmm2/m64

Multiply scalar double-precision floating-
point value in xmm1 and xmm2/mem,
negate the multiplication result and add to
xmm0. Put the result in xmm0.

VEX.DDS.128.66.
0F38.W0 9D /r

VFNMADD132SS xmm0,
xmm1, xmm2/m32

Multiply scalar single-precision floating-
point value in xmm0 and xmm2/mem,
negate the multiplication result and add to
xmm1. Put the result in xmm0.

VEX.DDS.128.66.
0F38.W0 AD /r

VFNMADD213SS xmm0,
xmm1, xmm2/m32

Multiply scalar single-precision floating-
point value in xmm1 and xmm0, negate the
multiplication result and add to xmm2/mem.
Put the result in xmm0.

VEX.DDS.128.66.
0F38.W0 BD /r

VFNMADD231SS xmm0,
xmm1, xmm2/m32

Multiply scalar single-precision floating-
point value in xmm1 and xmm2/mem,
negate the multiplication result and add to
xmm0. Put the result in xmm0.

VEX.DDS.128.66.
0F38.W1 9E /r

VFNMSUB132PD xmm0,
xmm1, xmm2/m128

Multiply packed double-precision floating-
point values from xmm0 and xmm2/mem,
negate the multiplication result and subtract
xmm1. Put the result in xmm0.

VEX.DDS.128.66.
0F38.W1 AE /r

VFNMSUB213PD xmm0,
xmm1, xmm2/m128

Multiply packed double-precision floating-
point values from xmm1 and xmm0, negate
the multiplication result and subtract
xmm2/mem. Put the result in xmm0.

Opcode Instruction Description
Ref. # 319433-004 17

INSTRUCTION SUMMARY
VEX.DDS.128.66.
0F38.W1 BE /r

VFNMSUB231PD xmm0,
xmm1, xmm2/m128

Multiply packed double-precision floating-
point values from xmm1 and xmm2/mem,
negate the multiplication result and subtract
xmm0. Put the result in xmm0.

VEX.DDS.256.66.
0F38.W1 9E /r

VFNMSUB132PD ymm0,
ymm1, ymm2/m256

Multiply packed double-precision floating-
point values from ymm0 and ymm2/mem,
negate the multiplication result and subtract
ymm1. Put the result in ymm0.

VEX.DDS.256.66.
0F38.W1 AE /r

VFNMSUB213PD ymm0,
ymm1, ymm2/m256

Multiply packed double-precision floating-
point values from ymm1 and ymm0, negate
the multiplication result and subtract
ymm2/mem. Put the result in ymm0.

VEX.DDS.256.66.
0F38.W1 BE /r

VFNMSUB231PD ymm0,
ymm1, ymm2/m256

Multiply packed double-precision floating-
point values from ymm1 and ymm2/mem,
negate the multiplication result and subtract
ymm0. Put the result in ymm0.

VEX.DDS.128.66.
0F38.W0 9E /r

VFNMSUB132PS xmm0,
xmm1, xmm2/m128

Multiply packed single-precision floating-
point values from xmm0 and xmm2/mem,
negate the multiplication result and subtract
xmm1. Put the result in xmm0.

VEX.DDS.128.66.
0F38.W0 AE /r

VFNMSUB213PS xmm0,
xmm1, xmm2/m128

Multiply packed single-precision floating-
point values from xmm1 and xmm0, negate
the multiplication result and subtract
xmm2/mem. Put the result in xmm0.

VEX.DDS.128.66.
0F38.W0 BE /r

VFNMSUB231PS xmm0,
xmm1, xmm2/m128

Multiply packed single-precision floating-
point values from xmm1 and xmm2/mem,
negate the multiplication result and subtract
xmm0. Put the result in xmm0.

VEX.DDS.256.66.
0F38.W0 9E /r

VFNMSUB132PS ymm0,
ymm1, ymm2/m256

Multiply packed single-precision floating-
point values from ymm0 and ymm2/mem,
negate the multiplication result and subtract
ymm1. Put the result in ymm0.

VEX.DDS.256.66.
0F38.W0 AE /r

VFNMSUB213PS ymm0,
ymm1, ymm2/m256

Multiply packed single-precision floating-
point values from ymm1 and ymm0, negate
the multiplication result and subtract
ymm2/mem. Put the result in ymm0.

VEX.DDS.256.66.
0F38.W0 BE /r

VFNMSUB231PS ymm0,
ymm1, ymm2/m256

Multiply packed single-precision floating-
point values from ymm1 and ymm2/mem,
negate the multiplication result and subtract
ymm0. Put the result in ymm0.

Opcode Instruction Description
18 Ref. # 319433-004

INSTRUCTION SUMMARY
VEX.DDS.128.66.
0F38.W1 9F /r

VFNMSUB132SD xmm0,
xmm1, xmm2/m64

Multiply scalar double-precision floating-
point value in xmm0 and xmm2/mem,
negate the multiplication result and subtract
xmm1. Put the result in xmm0.

VEX.DDS.128.66.
0F38.W1 AF /r

VFNMSUB213SD xmm0,
xmm1, xmm2/m64

Multiply scalar double-precision floating-
point value in xmm1 and xmm0, negate the
multiplication result and subtract
xmm2/mem. Put the result in xmm0.

VEX.DDS.128.66.
0F38.W1 BF /r

VFNMSUB231SD xmm0,
xmm1, xmm2/m64

Multiply scalar double-precision floating-
point value in xmm1 and xmm2/mem,
negate the multiplication result and subtract
xmm0. Put the result in xmm0.

VEX.DDS.128.66.
0F38.W0 9F /r

VFNMSUB132SS xmm0,
xmm1, xmm2/m32

Multiply scalar single-precision floating-
point value in xmm0 and xmm2/mem,
negate the multiplication result and subtract
xmm1. Put the result in xmm0.

VEX.DDS.128.66.
0F38.W0 AF /r

VFNMSUB213SS xmm0,
xmm1, xmm2/m32

Multiply scalar single-precision floating-
point value in xmm1 and xmm0, negate the
multiplication result and subtract
xmm2/mem. Put the result in xmm0.

VEX.DDS.128.66.
0F38.W0 BF /r

VFNMSUB231SS xmm0,
xmm1, xmm2/m32

Multiply scalar single-precision floating-
point value in xmm1 and xmm2/mem,
negate the multiplication result and subtract
xmm0. Put the result in xmm0.

VEX.NDS.256.66.
0F3A 18 /r ib

VINSERTF128 ymm1, ymm2,
xmm3/m128, imm8

Insert 128-bits of packed floating-point val-
ues from xmm3/mem and the remaining val-
ues from ymm2 into ymm1

VEX.NDS.128.66.
0F38 2C /r

VMASKMOVPS xmm1,
xmm2, m128

Load packed single-precision values from
mem using mask in xmm2 and store in
xmm1

VEX.NDS.256.66.
0F38 2C /r

VMASKMOVPS ymm1,
ymm2, m256

Load packed single-precision values from
mem using mask in ymm2 and store in
ymm1

VEX.NDS.128.66.
0F38 2D/r

VMASKMOVPD xmm1,
xmm2, m128

Load packed double-precision values from
mem using mask in xmm2 and store in
xmm1

VEX.NDS.256.66.
0F38 2D /r

VMASKMOVPD ymm1,
ymm2, m256

Load packed double-precision values from
mem using mask in ymm2 and store in
ymm1

VEX.NDS.128.66.
0F38 2E /r

VMASKMOVPS m128,
xmm1, xmm2

Store packed single-precision values from
xmm2 using mask in xmm1

Opcode Instruction Description
Ref. # 319433-004 19

INSTRUCTION SUMMARY
VEX.NDS.256.66.
0F38 2E /r

VMASKMOVPS m256,
ymm1, ymm2

Store packed single-precision values from
ymm2 mask in ymm1

VEX.NDS.128.66.
0F38 2F /r

VMASKMOVPD m128,
xmm1, xmm2

Store packed double-precision values from
xmm2 using mask in xmm1

VEX.NDS.256.66.
0F38 2F /r

VMASKMOVPD m256,
ymm1, ymm2

Store packed double-precision values from
ymm2 using mask in ymm1

VEX.NDS.128.66.
0F38 0D /r

VPERMILPD xmm1, xmm2,
XMM3/m128

Permute Double-Precision Floating-Point
values in xmm2 using controls from
xmm3/mem and store result in xmm1

VEX.128.66.0F3A
05 /r ib

VPERMILPD xmm1,
xmm2/m128, imm8

Permute Double-Precision Floating-Point
values in xmm2/mem using controls from
imm8 and store result in xmm1

VEX.NDS.256.66.
0F38 0D /r

VPERMILPD ymm1, ymm2,
ymm3/m256

Permute Double-Precision Floating-Point
values in ymm2 using controls from
xmm3/mem and store result in ymm1

VEX.256.66.0F3A
05 /r ib

VPERMILPD ymm1,
ymm2/m256 imm8

Permute Double-Precision Floating-Point
values in ymm2/mem using controls from
imm8 and store result in ymm1

VEX.NDS.128.66.
0F38 0C /r

VPERMILPS xmm1, xmm2,
xmm3/m128

Permute Single-Precision Floating-Point
values in xmm2 using controls from
xmm3/mem and store result in xmm1

VEX.128.66.0F3A
04 /r ib

VPERMILPS xmm1,
xmm2/m128, imm8

Permute Single-Precision Floating-Point
values in xmm2/mem using controls from
imm8 and store result in xmm1

VEX.NDS.256.66.
0F38 0C /r

VPERMILPS ymm1, ymm2,
YMM/m256

Permute Single-Precision Floating-Point
values in ymm2 using controls from
ymm3/mem and store result in ymm1

VEX.256.66.0F3A
04 /r ib

VPERMILPS ymm1,
ymm2/m256, imm8

Permute Single-Precision Floating-Point
values in ymm2/mem using controls from
imm8 and store result in ymm1

VEX.NDS.256.66.
0F3A 06 /r ib

VPERM2F128 ymm1, ymm2,
ymm3/m256, imm8

Permute 128-bit floating-point fields in
ymm2 and ymm3/mem using controls from
imm8 and store result in ymm1

66 0F 3A 44 /r ib PCLMULQDQ xmm1,
xmm2/m128, imm8

Carry-less multiplication of a pair of quad-
word selected by an immediate byte from
xmm2/m128 and xmm1, stores the 128-bit
result in xmm1.

VEX.256.66.0F38
0E /r

VTESTPS ymm1,
ymm2/m256

Set ZF if ymm2/mem AND ymm1 result is
all 0s in packed single-precision sign bits.
Set CF if ymm2/mem AND NOT ymm1
result is all 0s in packed single-precision
sign bits.

Opcode Instruction Description
20 Ref. # 319433-004

INSTRUCTION SUMMARY
VEX.256.66.0F38
0F /r

VTESTPD ymm1,
ymm2/m256

Set ZF if ymm2/mem AND ymm1 result is
all 0s in packed double-precision sign bits.
Set CF if ymm2/mem AND NOT ymm1
result is all 0s in packed double-precision
sign bits.

VEX.128.66.0F38
0E /r

VTESTPS xmm1,
xmm2/m128

Set ZF if xmm2/mem AND xmm1 result is
all 0s in packed single-precision sign bits.
Set CF if xmm2/mem AND NOT xmm1
result is all 0s in packed single-precision
sign bits.

VEX.128.66.0F38
0F /r

VTESTPD xmm1,
xmm2/m128

Set ZF if xmm2/mem AND xmm1 result is
all 0s in packed single precision sign bits.
Set CF if xmm2/mem AND NOT xmm1
result is all 0s in packed double-precision
sign bits.

VEX.256.0F 77 VZEROALL Zero all YMM registers
VEX.128.0F 77 VZEROUPPER Zero upper 128 bits of all YMM registers

Opcode Instruction Description
Ref. # 319433-004 21

INSTRUCTION SUMMARY
22 Ref. # 319433-004

INSTRUCTION OPCODE MAP
APPENDIX B
INSTRUCTION OPCODE MAP

GREEN cells are existing instructions promoted to VEX.128

BLUE cells are existing instructions promoted to VEX.256 and VEX.128

RED cells are AVX and FMA new instructions

YELLOW cells are Non-VEX encoded new instructions

0F

66 0F

0F 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 grp6 grp7 lar Ev, Ew lsl Ev, Ew syscall clts sysret invd wbinvd ud2 NOP Ev

1
movups
Vps, Wps

movups
Wps, Vps

movlps Vq,
Mq;
movhlps
Vq, Uq

movlps Mq,
Vq

unpcklps
Vps, Wq

unpckhps
Vps, Wq

movhps Vq,
Mq;
movlhps
Vq, Uq

Movhps
Mq, Vq prefetch Nop Ev

2 mov Rd, Cd mov Rd, Dd mov Cd, Rd mov Dd, Rd
movaps
Vps, Wps

movaps
Wps, Vps

cvtpi2ps
Vps, Qq

movntps
Mps, Vps

cvttps2pi
Qq, Wps

cvtps2pi
Qq, Wps

ucomiss
Vss, Wss

comiss
Vps, Wps

3 wrmsr rdtsc rdmsr rdpmc sysenter sysexit
3 byte
escape

3 byte
escape

4
cmovo Gv,
Ev

cmovno
Gv, Ev

cmovb/c/na
e Gv, Ev

cmovae/nc/
nb Gv, Ev

cmove/z
Gv, Ev

cmovne/nz
Gv, Ev

cmovbe/na
Gv, Ev

cmova/nbe
Gv, Ev

cmovs Gv,
Ev

cmovns Gv,
Ev

cmovp/pe
Gv, Ev

cmovnp/po
Gv, Ev

cmovl/nge
Gv, Ev

cmovnl/ge
Gv, Ev

cmovle/ng
Gv, Ev

cmovnle/g
Gv, Ev

5
movmskps
Gd, Ups

sqrtps Vps,
Wps

rsqrtps
Vps, Wps

rcpps Vps,
Wps

andps Vps,
Wps

andnps
Vps, Wps

orps Vps,
Wps

xorps Vps,
Wps

addps Vps,
Wps

mulps Vps,
Wps

cvtps2pd
Vps, Wps

cvtdq2ps
Vps, Wps

subps Vps,
Wps

minps Vps,
Wps

divps Vps,
Wps

maxps Vps,
Wps

6
punpcklbw
Pq,Qd

punpcklwd
Pq,Qd

punpckldq
Pq,Qd

packsswb
Pq, Qq

pcmpgtb
Pq, Qq

pcmpgtw
Pq, Qq

pcmpgtd
Pq, Qq

packuswb
Pq, Qq

punpckhbw
Pq, Qd

punpckhwd
Pq, Qd

punpckhdq
Pq, Qd

packssdw
Pq, Qd

movd/q
Pd, Ed/q

movq Pq,
Qq

7
pshufw Pq,
Qq, ib grp12 grp13 grp14

pcmpeqb
Pq, Qq

pcmpeqw
Pq, Qq

pcmpeqd
Pq, Qq

emms/Vzer
ouper/Vzer
oall

vmread
Ed/q, Gd/q

vmwrite
Gd/q, Ed/q

movd/q
Ed/q, Pd

movq Qq,
Pq

8 jcc (long) jcc (long) jcc (long) jcc (long) jcc (long) jcc (long) jcc (long) jcc (long) jcc (long) jcc (long) jcc (long) jcc (long) jcc (long) jcc (long) jcc (long) jcc (long)

9 setcc setcc setcc setcc setcc setcc setcc setcc setcc setcc setcc setcc setcc setcc setcc setcc

A push FS pop FS cpuid bt Ev, Gv
shld Ev,
Gv, Ib

shld Ev,
Gv, CL push GS pop GS rsm bts Ev, Gv

shrd Ev,
Gv, Ib

shrd Ev,
Gv, CL Grp15 imul Gv, Ev

B
cmpxchg
Eb, Gb

cmpxchg
Ev, Gv lss Gv, Mp btr Ev, Gv lfs Gv, Mp lgs Gv, Mp

movzx Gv,
Eb

movzx Gv,
Ew jmpe grp10 grp8 btc Ev, Gv bsf Ev, Gv bsr Ev, Gv

movsx Gv,
Eb

movsx Gv,
Ew

C
xadd Eb,
Gb

xadd Ev,
Gv

cmpps Vps,
Wps, Ib

movnti
Md/q, Gd/q

pinsrw Pq,
Ew, Ib

pextrw Gd,
Nq, Ib

shufps Vps,
Wps, Ib grp9 bswap bswap bswap bswap bswap bswap bswap bswap

D
psrlw Pq,
Qq

psrld Pq,
Qq

psrlq Pq,
Qq

paddq Pq,
Qq

pmullw Pq,
Qq

pmovmskb
Gd, Nq

psubusb
Pq, Qq

psubusw
Pq, Qq

pminub Pq,
Qq

pand Pq,
Qq

paddusb
Pq, Qq

paddusw
Pq, Qq

pmaxub
Pq, Qq

pandn Pq,
Qq

E
pavgb Pq,
Qq

psraw Pq,
Qq

psrad Pq,
Qq

pavgw Pq,
Qq

pmulhuw
Pq, Qq

pmulhw Pq,
Qq

movntq Mq,
Pq

psubsb Pq,
Qq

psubsw Pq,
Qq

pminsw Pq,
Qq por Pq, Qq

paddsb Pq,
Qq

paddsw Pq,
Qq

pmaxsw
Pq, Qq

pxor Pq,
Qq

F
psllw Pq,
Qq

pslld Pq,
Qq

psllq Pq,
Qq

pmuludq
Pq, Qq

pmaddwd
Pq, Qq

psadbw
Pq, Qq

maskmovq
Pq, Nq

psubb Pq,
Qq

psubw Pq,
Qq

psubd Pq,
Qq

psubq Pq,
Qq

paddb Pq,
Qq

paddw Pq,
Qq

paddd Pq,
Qq
Ref. # 319433-004 1

INSTRUCTION OPCODE MAP
F2 0F

F3 0F

66 0F 0 1 2 3 4 5 6 7 8 9A B C D E F

0

1
movupd
Vpd, Wpd

movupd
Wpd, Vpd

movlpd Vq,
Mq

movlpd Mq,
Vq

unpacklpd
Vpd, Wq

unpackhpd
Vpd, Wq

movhpd
Vq, Mq

movhpd
Mq, Vq

2
movapd
Vpd, Wpd

movapd
Wpd, Vpd

cvtpi2pd
Vpd, Qq

movntpd
Mpd, Vpd

cvttpd2pi
Qdq, Wpd

cvtpd2pi
Qdq, Wpd

ucomisd
Vsd, Wsd

comisd
Vsd, Wsd

3
3 byte
escape

3 byte
escape

4

5
movmskpd
Gd, Upd

sqrtpd Vpd,
Wpd

andpd Vpd,
Wpd

andnpd
Vpd, Wpd

orpd Vpd,
Wpd

xorpd Vpd,
Wpd

addpd Vpd,
Wpd

mulpd Vpd,
Wpd

cvtpd2ps
Vps, Wp

cvtps2dq
Vdq, Wps

subpd Vpd,
Wpd

minpd Vpd,
Wpd

divpd Vpd,
Wpd

maxpd
Vpd, Wpd

6
punpcklbw
Vdq, Wdq

punpcklwd
Vdq, Wdq

punpckldq
Vdq, Wdq

packsswb
Vdq, Wdq

pcmpgtb
Vdq, Wdq

pcmpgtw
Vdq, Wdq

pcmpgtd
Vdq, Wdq

packuswb
Vdq, Wdq

punpckhbw
Pdq, Qdq

punpckhwd
Pdq, Qdq

punpckhdq
Pdq, Qdq

packssdw
Pdq, Qdq

punpcklqdq
Vdq, Wdq

punpckhqd
q Vdq, Wdq

movd/q
Vdq, Ed/q

movdqa
Vdq, Wdq

7
pshufd
Vdq,Wdq,Ibgrp12 grp13 grp14

pcmpeqb
Vdq, Wdq

pcmpeqw
Vdq, Wdq

pcmpeqd
Vdq, Wdq

haddpd
Vpd, Wpd

hsubpd
Vpd, Wpd

movd/q
Ed/q, Vdq

movdqa
Ed/q, Vdq

8

9

A

B

C

cmppd
Vpd, Wpd,
Ib

pinsrw Vdq,
Ew, Ib

pextrw Gd,
Udq, Ib

shufpd
Vpd, Wpd,
Ib

D
addsubpd
Vpd, Wpd

psrlw Vdq,
Wdq

psrld Vdq,
Wdq

psrlq Vdq,
Wdq

paddq Vdq,
Wdq

pmullw
Vdq, Wdq

movq Wq,
Vq

pmovmskb
Gd, Udq

psubusb
Vdq, Wdq

psubusw
Vdq, Wdq

pminub
Vdq, Wdq

pand Vdq,
Wdq

paddusb
Vdq, Wdq

paddusw
Vdq, Wdq

pmaxub
Vdq, Wdq

pandn Vdq,
Wdq

E
pavgb Vdq,
Wdq

psraw Vdq,
Wdq

psrad Vdq,
Wdq

pavgw Vdq,
Wdq

pmulhuw
Vdq, Wdq

pmulhw
Vdq, Wdq

cvttpd2dq
Vdq, Wpd

movntdq
Mdq, Vdq

psubsb
Vdq, Wdq

psubsw
Vdq, Wdq

pminsw
Vdq, Wdq

por Vdq,
Wdq

paddsb
Vdq, Wdq

paddsw
Vdq, Wdq

pmaxsw
Vdq, Wdq

pxor Vdq,
Wdq

F
psllw Vdq,
Wdq

pslld Vdq,
Wdq

psllq Vdq,
Wdq

pmuludq
Vdq, Wdq

pmaddwd
Vdq, Wdq

psadbw
Vdq, Wdq

maskmovd
qu Vdq,
Udq

psubb Vdq,
Wdq

psubw Vdq,
Wdq

psubd Vdq,
Wdq

psubq Vdq,
Wdq

paddb Vdq,
Wdq

paddw Vdq,
Wdq

paddd Vdq,
Wdq

F2 0F 0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1
movsd Vsd,
Wsd

movsd Vsd,
Wsd

movddup
Vq, Wq

2
cvtsi2sd
Vsd, Ed/q

cvttsd2si
Gd, Wsd

cvtsd2si
Gd/q, Wsd

3
3 byte
escape

3 byte
escape

4

5
sqrtsd Vsd,
Wsd

addsd Vsd,
Wsd

mulsd Vsd,
Wsd

cvtsd2ss
Vsd, Wsd

subsd Vsd,
Wsd

minsd Vsd,
Wsd

divsd Vsd,
Wsd

maxsd Vsd,
Wsd

6

7
pshuflw
Vdq Wdq,Ib

haddps
Vps, Wps

hsubps
Vps, Wps x

8

9

A

B

C
cmpsd Vsd,
Wsd, Ib

D
addsubps
Vps, Wps

movdq2q
Pq, Uq

E
cvtpd2dq
Vdq, Wpd

F
lddqu Vdq,
Mdq
2 Ref. # 319433-004

INSTRUCTION OPCODE MAP
66 0F 38

F3 0F 0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1
movss Vss,
Wss

movss
Wss, Vss

movsldup
Vq, Wq

movshdup
Vq, Wq

2
cvtsi2ss
Vss, Ed/q

cvttss2si
Gd, Wss

cvtss2si
Gd/q, Wss

3

4

5
sqrtss Vss,
Wss

rsqrtss Vss,
Wss

rcpss Vss,
Wss

addss Vss,
Wss

mulss Vss,
Wss

cvtss2sd
Vss, Wss

cvttps2dq
Vdq, Wps

subss Vss,
Wss

minss Vss,
Wss

divss Vss,
Wss

maxss Vss,
Wss

6
movdqu
Vdq, Wdq

7
pshufhw
Vdq,Wdq,Ib

movq Vq,
Wq

movdqu
Wdq, Vdq

8

9

A

B POPCNT

C
cmpss Vss,
Wss, Ib

D
movq2dq
Vdq, Nq

E
cvtdq2pd
Vpd, Wdq

F

66 0F
38 0 1 2 3 4 5 6 7 8 9 A B C D E F

0
pshufb Vdq,
Wdq

phaddw
Vdq, Wdq

phaddd
Vdq, Wdq

phaddsw
Vdq, Wdq

pmaddubsw
Vdq, Wdq

phsubw
Vdq, Wdq

phsubd
Vdq, Wdq

phsubsw
Vdq, Wdq

psignb Vdq,
Wdq

psignw
Vdq, Wdq

psignd Vdq,
Wdq

pmulhrsw
Vdq, Wdq Vpermilps Vpermilpd vtestps vtestpd

1 pblendvb blendvps blendvpd ptest
vbroadcasts
s

vbroadcasts
d

vbroadcastf
128

pabsb Vdq,
Wdq

pabsw Vdq,
Wdq

pabsd Vdq,
Wdq

2 pmovsxbw pmovsxbd pmovsxbq pmovsxwd pmovsxwq pmovsxdq pmuldq pcmpeqq movntdqa packusdw
vmaskmovp
s (ld)

vmaskmovp
d (ld)

vmaskmovp
s (st)

vmaskmovp
d (st)

3 pmovzxbw pmovzxbd pmovzxbq pmovzxwd pmovzxwq pmovzxdq
pcmpgtq
Vdq, Wdq pminsb pminsd pminuw pminud pmaxsb pmaxsd pmaxuw pmaxud

4 pmulld
phminposu
w

5

6

7

8

9
vfmaddsub
132pd/ps

vfmsubadd
132pd/ps

vfmadd132
pd/ps

vfmadd132
sd/ss

vfmsub132
pd/ps

vfmsub132s
d/ss

vfnmadd13
2pd/ps

vfnmadd13
2sd/ss

vfnmsub13
2pd/ps

vfnmsub13
2sd/ss

A
vfmaddsub
213pd/ps

vfmsubadd
213pd/ps

vfmadd213
pd/ps

vfmadd213
sd/ss

vfmsub213
pd/ps

vfmsub213s
d/ss

vfnmadd21
3pd/ps

vfnmadd21
3sd/ss

vfnmsub21
3pd/ps

vfnmsub21
3sd/ss

B
vfmaddsub
231pd/ps

vfmsubadd
231pd/ps

vfmadd231
pd/ps

vfmadd231
sd/ss

vfmsub231
pd/ps

vfmsub231s
d/ss

vfnmadd23
1pd/ps

vfnmadd23
1sd/ss

vfnmsub23
1pd/ps

vfnmsub23
1sd/ss

C

D aesimc aesenc aesenclast aesdec aesdeclast

E

F

Ref. # 319433-004 3

INSTRUCTION OPCODE MAP
0F 38

F2 0F 38

66 0F 3A

0F 38 0 1 2 3 4 5 6 7 8 9A B C D E F

0
pshufb Pq,
Qq

phaddw Pq,
Qq

phaddd Pq,
Qq

phaddsw
Pq, Qq

pmaddubs
w Pq, Qq

phsubw Pq,
Qq

phsubd Pq,
Qq

phsubsw
Pq, Qq

psignb Pq,
Qq

psignw Pq,
Qq

psignd Pq,
Qq

pmulhrsw
Pq, Qq

1
pabsb Pq,
Qq

pabsw Pq,
Qq

pabsd Pq,
Qq

2

3

4

5

6

7

8

9

A

B

C

D

E

F

F2 0F
38 0 1 2 3 4 5 6 7 8 9A B C D E F

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F
crc32 Gv,
Eb

crc32 Gv,
Ev
4 Ref. # 319433-004

INSTRUCTION OPCODE MAP
0F 3A

66 0F
3A 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 Vpermilps Vpermilpd vperm2f128 roundps roundpd roundss roundsd blendps blendpd pblendw
palignr Vdq,
Wdq, Ib

1 pextrb pextrw pextrd/q extractps vinsertf128
vextractf12
8

2 pinsrb insertps pinsrd/q

3

4 dpps dppd mpsadbw pclmulq vblendps vblendvpd vpblendvb

5

6

pcmpestrm
Vdq, Wdq,
Ib pcmpestri pcmpistrm pcmpistri

7

8

9

A

B

C

D
aeskeygena
ssist

E

F

0F 3A 0 1 2 3 4 5 6 7 8 9A B C D E F

0
palignr Pq,
Qq, Ib

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

Ref. # 319433-004 5

INSTRUCTION OPCODE MAP
This p
age was

intentionally left

blank.
6 Ref. # 319433-004

INDEX

A
ADDPD - Add Packed Double Precision Floating-Point Values .5-14
ADDPS- Add Packed Single Precision Floating-Point Values .5-16
ADDSD- Add Scalar Double Precision Floating-Point Values .5-18
ADDSS- Add Scalar Single Precision Floating-Point Values .5-20
ADDSUBPD- Packed Double FP Add/Subtract .5-22
ADDSUBPS- Packed Single FP Add/Subtract .5-24
AESDEC/AESDECLAST- Perform One Round of an AES Decryption Flow 5-29
AESENC/AESENCLAST- Perform One Round of an AES Encryption Flow 5-26
AESIMC- Perform the AES InvMixColumn Transformation .5-32
AESKEYGENASSIST - AES Round Key Generation Assist .5-34
ANDNPD- Bitwise Logical AND NOT of Packed Double Precision Floating-Point Values5-40
ANDNPS- Bitwise Logical AND NOT of Packed Single Precision Floating-Point Values5-42
ANDPD- Bitwise Logical AND of Packed Double Precision Floating-Point Values5-36
ANDPS- Bitwise Logical AND of Packed Single Precision Floating-Point Values.5-38

B
BLENDPD- Blend Packed Double Precision Floating-Point Values .5-44
BLENDPS- Blend Packed Single Precision Floating-Point Values .5-46
BLENDVPD- Blend Packed Double Precision Floating-Point Values. .5-49
BLENDVPS- Blend Packed Single Precision Floating-Point Values .5-52
Brand information .2-53

processor brand index .2-56
processor brand string .2-53

C
Cache and TLB information .2-48
Cache Inclusiveness .2-32
CLFLUSH instruction

CPUID flag .2-47
CMOVcc flag .2-47
CMOVcc instructions

CPUID flag .2-47
CMPPD- Compare Packed Double-Precision Floating-Point Values .5-59
CMPPS- Compare Packed Single-Precision Floating-Point Values .5-67
CMPSD- Compare Scalar Double-Precision Floating-Point Values .5-74
CMPSS- Compare Scalar Single-Precision Floating-Point Values .5-79
CMPXCHG16B instruction

CPUID bit .2-43
CMPXCHG8B instruction

CPUID flag .2-46
COMISD- Compare Scalar Ordered Double-Precision Floating-Point Values and Set EFLAGS .5-

84
COMISS- Compare Scalar Ordered Single-Precision Floating-Point Values and Set EFLAGS5-86
CPUID instruction . 2-29, 2-47

36-bit page size extension. .2-47
APIC on-chip .2-46
basic CPUID information .2-30
cache and TLB characteristics . 2-30, 2-48
CLFLUSH flag .2-47
CLFLUSH instruction cache line size .2-41
CMPXCHG16B flag .2-43
CMPXCHG8B flag .2-46
CPL qualified debug store .2-43
debug extensions, CR4.DE .2-46
debug store supported .2-47
deterministic cache parameters leaf . 2-31, 2-34, 2-35, 2-36
Ref. # 319433-004 1

extended function information . 2-36
feature information. 2-45
FPU on-chip . 2-46
FSAVE flag . 2-47
FXRSTOR flag. 2-47
HT technology flag . 2-48
IA-32e mode available . 2-37
input limits for EAX . 2-38
L1 Context ID. 2-43
local APIC physical ID . 2-41
machine check architecture . 2-47
machine check exception . 2-46
memory type range registers . 2-46
MONITOR feature information . 2-52
MONITOR/MWAIT flag . 2-43
MONITOR/MWAIT leaf . 2-32, 2-33, 2-34
MWAIT feature information. 2-52
page attribute table . 2-47
page size extension . 2-46
performance monitoring features . 2-52
physical address bits . 2-38
physical address extension . 2-46
power management . 2-52, 2-53
processor brand index . 2-41, 2-53
processor brand string . 2-37, 2-53
processor serial number . 2-30, 2-47
processor type field . 2-40
PTE global bit . 2-47
RDMSR flag. 2-46
returned in EBX . 2-41
returned in ECX & EDX . 2-41
self snoop . 2-48
SpeedStep technology . 2-43
SS2 extensions flag . 2-48
SSE extensions flag . 2-48
SSE3 extensions flag . 2-42
SSSE3 extensions flag . 2-43
SYSENTER flag. 2-46
SYSEXIT flag . 2-46
thermal management. 2-52, 2-53
thermal monitor . 2-43, 2-47, 2-48
time stamp counter . 2-46
using CPUID . 2-29
vendor ID string . 2-38
version information. 2-30, 2-52
virtual 8086 Mode flag . 2-46
virtual address bits . 2-38
WRMSR flag . 2-46

CVTDQ2PD- Convert Packed Doubleword Integers to Packed Double-Precision Floating-Point
Values . 5-88

CVTDQ2PS- Convert Packed Doubleword Integers to Packed Single-Precision Floating-Point
Values . 5-90

CVTPD2DQ- Convert Packed Double-Precision Floating-point values to Packed Doubleword
Integers . 5-92

CVTPD2PS- Convert Packed Double-Precision Floating-point values to Packed Single-Precision
Floating-Point Values . 5-95

CVTPS2DQ- Convert Packed Single Precision Floating-Point Values to Packed Singed
Doubleword Integer Values . 5-98
2 Ref. # 319433-004

CVTPS2PD- Convert Packed Single Precision Floating-point values to Packed Double Precision
Floating-Point Values .5-100

CVTSD2SI- Convert Scalar Double-Precision Floating-Point Value to Doubleword Intege .5-103
CVTSD2SS- Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision

Floating-Point Value .5-105
CVTSI2SD- Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value 5-107
CVTSI2SS- Convert Doubleword Integer to Scalar Single-Precision Floating-Point Value .5-109
CVTSS2SD- Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision

Floating-Point Value .5-111
CVTSS2SI- Convert Scalar Single-Precision Floating-Point Value to Doubleword Integer .5-113
CVTTPD2DQ- Convert with Truncation Packed Double-Precision Floating-point values to Packed

Doubleword Integers .5-115
CVTTPS2DQ- Convert with Truncation Packed Single Precision Floating-Point Values to Packed

Singed Doubleword Integer Values. .5-118
CVTTSD2SI- Convert with Truncation Scalar Double-Precision Floating-Point Value to Signed

Doubleword Integer .5-120
CVTTSS2SI- Convert with Truncation Scalar Single-Precision Floating-Point Value to

Doubleword Integer .5-122

D
DIVPD- Divide Packed Double-Precision Floating-Point Values .5-124
DIVPS- Divide Packed Single-Precision Floating-Point Values .5-126
DIVSD- Divide Scalar Double-Precision Floating-Point Values .5-128
DIVSS- Divide Scalar Single-Precision Floating-Point Values .5-130
DPPD- Dot Product of Packed Double-Precision Floating-Point Values 5-132
DPPS- Dot Product of Packed Single-Precision Floating-Point Values 5-134

E
EXTRACTPS- Extract packed floating-point values .5-139

F
Feature information, processor .2-29
FMA operation . 2-5, 2-6
FXRSTOR instruction

CPUID flag .2-47
FXSAVE instruction

CPUID flag .2-47

H
HADDPD- Add Horizontal Double Precision Floating-Point Values .5-141
HADDPS- Add Horizontal Single Precision Floating-Point Values .5-143
HSUBPD- Subtract Horizontal Double Precision Floating-Point Values 5-146
HSUBPS- Subtract Horizontal Single Precision Floating-Point Values 5-148
Hyper-Threading Technology

CPUID flag .2-48

I
IA-32e mode

CPUID flag .2-37
INSERTPS- Insert Scalar Single Precision Floating-Point Value .5-152

L
L1 Context ID. .2-43
LDDQU- Move Unaligned Integer. .5-156
LDMXCSR instruction .5-158
Ref. # 319433-004 3

M
Machine check architecture

CPUID flag . 2-47
description . 2-47

MASKMOVDQU- Store Selected Bytes of Double Quadword with NT Hint 5-159
MAXPD- Maximum of Packed Double Precision Floating-Point Values 5-165
MAXPS- Minimum of Packed Single Precision Floating-Point Values . 5-167
MAXSD- Return Maximum Scalar Double-Precision Floating-Point Value. 5-170
MAXSS- Return Maximum Scalar Single-Precision Floating-Point Value 5-172
MINPD- Minimum of Packed Double Precision Floating-Point Values 5-174
MINPS- Minimum of Packed Single Precision Floating-Point Values . 5-176
MINSD- Return Minimum Scalar Double-Precision Floating-Point Value 5-179
MINSS- Return Minimum Scalar Single-Precision Floating-Point Value 5-181
MMX instructions

CPUID flag for technology . 2-47
Model & family information . 2-52
MONITOR instruction

CPUID flag . 2-43
feature data . 2-52

MOVAPD- Move Aligned Packed Double-Precision Floating-Point Values 5-183
MOVAPS- Move Aligned Packed Single-Precision Floating-Point Values 5-186
MOVDDUP- Replicate Double FP Values. 5-194
MOVDQA- Move Aligned Packed Integer Values . 5-196
MOVDQU- Move Unaligned Packed Integer Values . 5-198
MOVD/MOVQ- Move Doubleword and Quadword . 5-189
MOVHLPS - Move Packed Single-Precision Floating-Point Values High to Low 5-200
MOVHPD- Move High Packed Double-Precision Floating-Point Values 5-202
MOVHPS- Move High Packed Single-Precision Floating-Point Values 5-204
MOVLHPS - Move Packed Single-Precision Floating-Point Values Low to High 5-200
MOVLPD- Move Low Packed Double-Precision Floating-Point Values 5-208
MOVLPS- Move Low Packed Single-Precision Floating-Point Values . 5-210
MOVMSKPD- Extract Double-Precision Floating-Point Sign mask . 5-212
MOVMSKPS- Extract Single-Precision Floating-Point Sign mask . 5-214
MOVNTDQ- Store Packed Integers Using Non-Temporal Hint . 5-216
MOVNTDQA- Load Double Quadword Non-Temporal Aligned Hint. 5-218
MOVNTPD- Store Packed Double-Precision Floating-Point Values Using Non-Temporal Hint . 5-

220
MOVNTPS- Store Packed Single-Precision Floating-Point Values Using Non-Temporal Hint5-222
MOVQ- Move Quadword . 5-192
MOVSD- Move or Merge Scalar Double-Precision Floating-Point Value 5-224
MOVSHDUP- Replicate Single FP Values . 5-227
MOVSLDUP- Replicate Single FP Values . 5-230
MOVSS- Move or Merge Scalar Single-Precision Floating-Point Value 5-233
MOVUPD- Move Unaligned Packed Double-Precision Floating-Point Values. 5-236
MOVUPS- Move Unaligned Packed Single-Precision Floating-Point Values. 5-239
MPSADBW - Multiple Sum of Absolute Differences . 5-242
MULPD- Multiply Packed Double Precision Floating-Point Values . 5-247
MULPS- Multiply Packed Single Precision Floating-Point Values . 5-249
MULSD- Multiply Scalar Double-Precision Floating-Point Values . 5-251
MULSS- Multiply Scalar Single-Precision Floating-Point Values . 5-253
MWAIT instruction

CPUID flag . 2-43
feature data . 2-52

O
ORPD- Bitwise Logical OR of Packed Double Precision Floating-Point Values 5-255
ORPS- Bitwise Logical OR of Packed Single Precision Floating-Point Values 5-257

P
PABSB/PABSW/PABSD - Packed Absolute Value . 5-259
PACKSSWB/PACKSSDW- Pack with Signed Saturation . 5-262
4 Ref. # 319433-004

PACKUSWB/PACKUSDW- Pack with Unsigned Saturation .5-266
PADDB/PADDW/PADDD/PADDQ- Add Packed Integers .5-269
PADDSB/PADDSW- Add Packed Signed Integers with Signed Saturation 5-273
PADDUSB/PADDUSW- Add Packed Unsigned Integers with Unsigned Saturation 5-275
PALIGNR - Byte Align .5-277
PAND- Logical AND .5-279
PANDN- Logical AND NOT .5-281
PAVGB/PAVGW - Average Packed Integers .5-283
PBLENDVB - Variable Blend Packed Bytes .5-285
PBLENDW - Blend Packed Words .5-288
PCLMULQDQ - Carry-Less Multiplication Quadword. .5-290
PCMPEQB/PCMPEQW/PCMPEQD/PCMPEQQ- Compare Packed Integers for Equality5-301
PCMPESTRI - Packed Compare Explicit Length Strings, Return Index 5-293
PCMPESTRM - Packed Compare Explicit Length Strings, Return Mask 5-295
PCMPGTB/PCMPGTW/PCMPGTD/PCMPGTQ- Compare Packed Integers for Greater Than. .5-305
PCMPISTRI - Packed Compare Implicit Length Strings, Return Index.5-297
PCMPISTRM - Packed Compare Implicit Length Strings, Return Mask 5-299
Pending break enable. .2-48
Performance-monitoring counters

CPUID inquiry for .2-52
PEXTRB/PEXTRW/PEXTRD/PEXTRQ- Extract Integer. .5-319
PHADDSW - Packed Horizontal Add with Saturation .5-325
PHADDW/PHADDD - Packed Horizontal Add .5-323
PHMINPOSUW - Horizontal Minimum and Position .5-327
PHSUBSW - Packed Horizontal Subtract with Saturation .5-331
PHSUBW/PHSUBD - Packed Horizontal Subtract .5-329
PINSRB/PINSRW/PINSRD/PINSRQ- Insert Integer .5-333
PMADDUBSW- Multiply and Add Packed Integers .5-339
PMADDWD- Multiply and Add Packed Integers. .5-337
PMAXSB/PMAXSW/PMAXSD- Maximum of Packed Signed Integers. .5-341
PMAXUB/PMAXUW/PMAXUD- Maximum of Packed Unsigned Integers 5-345
PMINSB/PMINSW/PMINSD- Minimum of Packed Signed Integers .5-349
PMINUB/PMINUW/PMINUD- Minimum of Packed Unsigned Integers .5-353
PMOVMSKB- Move Byte Mask. .5-357
PMOVSX - Packed Move with Sign Extend .5-328
PMOVZX - Packed Move with Zero Extend. .5-364
PMULDQ - Multiply Packed Doubleword Integers .5-380
PMULHRSW - Multiply Packed Unsigned Integers with Round and Shift5-371
PMULHUW - Multiply Packed Unsigned Integers and Store High Result5-369
PMULHW - Multiply Packed Integers and Store High Result .5-373
PMULLW/PMULLD - Multiply Packed Integers and Store Low Result .5-375
PMULUDQ - Multiply Packed Unsigned Doubleword Integers .5-378
POR - Bitwise Logical Or .5-382
PSADBW - Compute Sum of Absolute Differences .5-384
PSHUFB - Packed Shuffle Bytes .5-386
PSHUFD - Shuffle Packed Doublewords .5-388
PSHUFHW - Shuffle Packed High Words. .5-390
PSHUFLW - Shuffle Packed Low Words .5-392
PSIGNB/PSIGNW/PSIGND - Packed SIGN .5-394
PSLLDQ - Byte Shift Left .5-398
PSLLW/PSLLD/PSLLQ - Bit Shift Left. .5-402
PSRAW/PSRAD - Bit Shift Arithmetic Right .5-407
PSRLDQ - Byte Shift Right .5-400
PSRLW/PSRLD/PSRLQ - Shift Packed Data Right Logical .5-411
PSUBB/PSUBW/PSUBD/PSUBQ -Packed Integer Subtract .5-420
PSUBSB/PSUBSW -Subtract Packed Signed Integers with Signed Saturation5-424
PSUBUSB/PSUBUSW -Subtract Packed Unsigned Integers with Unsigned Saturation5-426
PTEST- Packed Bit Test .5-416
PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ - Unpack High Data 5-428
PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ - Unpack Low Data 5-432
PXOR - Exclusive Or .5-436
Ref. # 319433-004 5

R
RCPPS- Compute Approximate Reciprocals of Packed Single-Precision Floating-Point Values 5-

438
RCPSS - Compute Reciprocal of Scalar Single-Precision Floating-Point Value 5-441
RDMSR instruction

CPUID flag . 2-46
ROUNDPD- Round Packed Double-Precision Floating-Point Values . 5-448
ROUNDPS- Round Packed Single-Precision Floating-Point Values . 5-452
ROUNDSD - Round Scalar Double-Precision Value . 5-455
ROUNDSS - Round Scalar Single-Precision Value . 5-457
RSQRTPS - Compute Approximate Reciprocals of Square Roots of Packed Single-Precision

Floating-point Values. 5-443
RSQRTSS - Compute Reciprocal of Square Root of Scalar Single-Precision Floating-Point Value

5-446

S
Self Snoop . 2-48
SHUFPD - Shuffle Packed Double Precision Floating-Point Values . 5-459
SHUFPS - Shuffle Packed Single Precision Floating-Point Values. 5-462
SIMD floating-point exceptions, unmasking, effects of . 5-158
SpeedStep technology. 2-43
SQRTPD- Square Root of Double-Precision Floating-Point Values . 5-465
SQRTPS- Square Root of Single-Precision Floating-Point Values . 5-467
SQRTSD - Compute Square Root of Scalar Double-Precision Floating-Point Value 5-469
SQRTSS - Compute Square Root of Scalar Single-Precision Floating-Point Value 5-471
SSE extensions

CPUID flag . 2-48
SSE2 extensions

CPUID flag . 2-48
SSE3

CPUID flag . 2-42
SSE3 extensions

CPUID flag . 2-42
SSSE3 extensions

CPUID flag . 2-43
Stepping information . 2-52
STMXCSR instruction . 5-473
STMXCSR—Store MXCSR Register State . 5-465
SUBPD- Subtract Packed Double Precision Floating-Point Values . 5-473
SUBPS- Subtract Packed Single Precision Floating-Point Values . 5-476
SUBSD- Subtract Scalar Double Precision Floating-Point Values . 5-478
SUBSS- Subtract Scalar Single Precision Floating-Point Values . 5-480
SYSENTER instruction

CPUID flag . 2-46
SYSEXIT instruction

CPUID flag . 2-46

T
Thermal Monitor

CPUID flag . 2-48
Thermal Monitor 2 . 2-43

CPUID flag . 2-43
Time Stamp Counter . 2-46

U
UCOMISD - Unordered Compare Scalar Double-Precision Floating-Point Values and Set EFLAGS

5-482
UCOMISS - Unordered Compare Scalar Single-Precision Floating-Point Values and Set EFLAGS

5-484
UNPCKHPD- Unpack and Interleave High Packed Double-Precision Floating-Point Values. 5-486
6 Ref. # 319433-004

UNPCKHPS- Unpack and Interleave High Packed Single-Precision Floating-Point Values . .5-488
UNPCKLPD- Unpack and Interleave Low Packed Double-Precision Floating-Point Values . .5-491
UNPCKLPS- Unpack and Interleave Low Packed Single-Precision Floating-Point Values . . .5-493

V
VBROADCAST- Load with Broadcast .5-55
Version information, processor .2-29
VEX. .5-2
VEXTRACTF128- Extract packed floating-point values .5-137
VEX.B .5-2
VEX.L .5-3
VEX.mmmmm .5-2
VEX.pp. .5-3
VEX.R. .5-4
VEX.vvvv. .5-2
VEX.W .5-2
VEX.X .5-2
VFMADDPD - Fused Multiply-Add of Packed Double-Precision Floating-Point Values6-2
VFMADDSD - Fused Multiply-Add of Scalar Double-Precision Floating-Point Values 6-10
VFMADDSS - Fused Multiply-Add of Scalar Single-Precision Floating-Point Values 6-12
VFMADDSUBPD - Fused Multiply-Alternating Add/Subtract of Packed Double-Precision Floating-

Point Values .6-15
VFMADDSUBPS - Fused Multiply-Alternating Add/Subtract of Packed Single-Precision Floating-

Point Values .6-19
VFMSUBADDPD - Fused Multiply-Alternating Subtract/Add of Packed Double-Precision Floating-

Point Values .6-23
VFMSUBPD - Fused Multiply-Subtract of Packed Double-Precision Floating-Point Values6-31, 6-

35, 6-39, 6-42
VFMSUBPS - Fused Multiply-Subtract of Packed Single-Precision Floating-Point Values. . . .6-35
VFMSUBSS - Fused Multiply-Add of Scalar Single-Precision Floating-Point Values 6-42
VFNMADDPD - Fused Negative Multiply-Add of Packed Double-Precision Floating-Point Values

6-45
VFNMADDPS - Fused Negative Multiply-Add of Packed Single-Precision Floating-Point Values6-

49
VFNMADDSD - Fused Negative Multiply-Add of Scalar Double-Precision Floating-Point Values

6-53
VFNMSUBPD - Fused Negative Multiply-Subtract of Packed Double-Precision Floating-Point

Values .6-57
VFNMSUBSD - Fused Negative Multiply-Subtract of Scalar Double-Precision Floating-Point

Values .6-65
VINSERTF128- Insert packed floating-point values. .5-151
VMASKMOV- Conditional SIMD Packed Loads and Stores .5-161
VPERM2F128- Permute Floating-Point Values. .5-317
VPERMILPD- Permute Double-Precision Floating-Point Values .5-309
VPERMILPS- Permute Single-Precision Floating-Point Values .5-313
VZEROALL- Zero All YMM registers .5-500
VZEROUPPER- Zero Upper bits of YMM registers .5-502

W
WBINVD/INVD bit .2-32
WRMSR instruction

CPUID flag .2-46

X
XFEATURE_ENALBED_MASK .2-2
XORPD- Bitwise Logical XOR of Packed Double Precision Floating-Point Values5-496
XORPS- Bitwise Logical XOR of Packed Single Precision Floating-Point Values5-498
XRSTOR . 1-2, 2-2, 2-53, 3-1, 5-12
XSAVE . 1-2, 2-2, 2-3, 2-4, 2-10, 2-44, 2-53, 3-1, 5-12
Ref. # 319433-004 7

	Chapter 1 Intel® Advanced Vector Extensions
	1.1 About This Document
	1.2 Overview
	1.3 Intel® Advanced Vector Extensions Architecture Overview
	1.3.1 256-Bit Wide SIMD Register Support
	1.3.2 Instruction Syntax Enhancements
	1.3.3 VEX Prefix Instruction Encoding Support
	1.4 Functional Overview
	1.4.1 256-bit Floating-Point Arithmetic Processing Enhancements
	1.4.2 256-bit Non-Arithmetic Instruction Enhancements
	1.4.3 Arithmetic Primitives for 128-bit Vector and Scalar processing
	1.4.4 Non-Arithmetic Primitives for 128-bit Vector and Scalar Processing
	1.5 General Encryption and Cryptographic Processing
	Chapter 2 Application Programming Model
	2.1 DetectiON of PCLMULQDQ and AES Instructions
	2.2 Detection of AVX and FMA Instructions
	2.2.1 Detection of FMA
	2.2.2 Detection of VEX-Encoded AES
	2.3 Fused-Multiply-ADD (FMA) Numeric Behavior
	2.3.1 FMA Instruction Operand Order and Arithmetic Behavior
	2.4 Accessing YMM Registers
	2.5 Memory alignment
	2.6 SIMD floating-point ExCeptions
	2.7 Instruction Exception Specification
	2.7.1 Exceptions Type 1 (Aligned memory reference)
	2.7.2 Exceptions Type 2 (>=16 Byte Memory Reference, Unaligned)
	2.7.3 Exceptions Type 3 (<16 Byte memory argument)
	2.7.4 Exceptions Type 4 (>=16 Byte mem arg no alignment, no floating-point exceptions)
	2.7.5 Exceptions Type 5 (<16 Byte mem arg and no FP exceptions)
	2.7.6 Exceptions Type 6 (VEX-Encoded Instructions Without Legacy SSE Analogues)
	2.7.7 Exceptions Type 7 (No FP exceptions, no memory arg)
	2.7.8 Exceptions Type 8 (AVX and no memory argument)
	2.7.9 Exception Type 9 (AVX)
	2.8 Programming Considerations with 128-bit SIMD Instructions
	2.8.1 Clearing Upper YMM State Between AVX and Legacy SSE Instructions
	2.8.2 Using AVX 128-bit Instructions Instead of Legacy SSE instructions
	2.8.3 Unaligned Memory Access and Buffer Size Management
	2.9 CPUID Instruction
	CPUID-CPU Identification
	Chapter 3 System Programming Model
	3.1 YMM State, VEX Prefix and Supported Operating Modes
	3.2 YMM State Management
	3.2.1 Detection of YMM State Support
	3.2.2 Enabling of YMM State
	3.2.3 Enabling of SIMD Floating-Exception Support
	3.2.4 The Layout of XSAVE Area
	3.2.5 XSAVE/XRSTOR Interaction with YMM State and MXCSR
	3.3 Reset Behavior
	3.4 Emulation
	3.5 Writing AVX floating-point exception handlers
	Chapter 4 Instruction Format
	4.1 Instruction Formats
	4.1.1 VEX and the LOCK prefix
	4.1.2 VEX and the 66H, F2H, and F3H prefixes
	4.1.3 VEX and the REX prefix
	4.1.4 The VEX Prefix
	4.1.4.1 VEX Byte 0, bits[7:0]
	4.1.4.2 VEX Byte 1, bit [7] - ‘R’
	4.1.4.3 3-byte VEX byte 1, bit[6] - ‘X’
	4.1.4.4 3-byte VEX byte 1, bit[5] - ‘B’
	4.1.4.5 3-byte VEX byte 2, bit[7] - ‘W’
	4.1.4.6 2-byte VEX Byte 1, bits[6:3] and 3-byte VEX Byte 2, bits [6:3]- ‘vvvv’ the Source or dest Register Specifier
	4.1.5 Instruction Operand Encoding and VEX.vvvv, ModR/M
	4.1.5.1 3-byte VEX byte 1, bits[4:0] - “m-mmmm”
	4.1.5.2 2-byte VEX byte 1, bit[2], and 3-byte VEX byte 2, bit [2]- “L”
	4.1.5.3 2-byte VEX byte 1, bits[1:0], and 3-byte VEX byte 2, bits [1:0]- “pp”
	4.1.6 The Opcode Byte
	4.1.7 The MODRM, SIB, and Displacement Bytes
	4.1.8 The Third Source Operand (Immediate Byte)
	4.1.9 AVX Instructions and the Upper 128-bits of YMM registers
	4.1.10 AVX Instruction Length
	Chapter 5 Instruction Set Reference
	5.1 Interpreting InstructIon Reference Pages
	5.1.1 Instruction Format
	VBROADCASTF128- Broadcast 128 Bits of Floating-Point Values (THIS IS AN EXAMPLE)
	5.1.2 Opcode Column in the Instruction Summary Table
	5.1.3 Instruction Column in the Instruction Summary Table
	5.1.4 64/32 bit Mode Support column in the Instruction Summary Table
	5.1.5 CPUID Support column in the Instruction Summary Table
	5.2 AES Transformations and Data Structure
	5.2.1 Little-Endian Architecture and Big-Endian Specification (FIPS 197)
	5.2.1.1 AES Data Structure in Intel 64 Architecture
	5.2.2 AES Transformations and Functions
	5.3 Summary of Terms
	5.4 Instruction SET Reference
	ADDPD - Add Packed Double Precision Floating-Point Values
	ADDPS- Add Packed Single Precision Floating-Point Values
	ADDSD- Add Scalar Double Precision Floating-Point Values
	ADDSS- Add Scalar Single Precision Floating-Point Values
	ADDSUBPD- Packed Double FP Add/Subtract
	ADDSUBPS- Packed Single FP Add/Subtract
	AESENC/AESENCLAST- Perform One Round of an AES Encryption Flow
	AESDEC/AESDECLAST- Perform One Round of an AES Decryption Flow
	AESIMC- Perform the AES InvMixColumn Transformation
	AESKEYGENASSIST - AES Round Key Generation Assist
	ANDPD- Bitwise Logical AND of Packed Double Precision Floating-Point Values
	ANDPS- Bitwise Logical AND of Packed Single Precision Floating-Point Values
	ANDNPD- Bitwise Logical AND NOT of Packed Double Precision Floating- Point Values
	ANDNPS- Bitwise Logical AND NOT of Packed Single Precision Floating- Point Values
	BLENDPD- Blend Packed Double Precision Floating-Point Values
	BLENDPS- Blend Packed Single Precision Floating-Point Values
	BLENDVPD- Blend Packed Double Precision Floating-Point Values
	BLENDVPS- Blend Packed Single Precision Floating-Point Values
	VBROADCAST- Load with Broadcast
	CMPPD- Compare Packed Double-Precision Floating-Point Values
	CMPPS- Compare Packed Single-Precision Floating-Point Values
	CMPSD- Compare Scalar Double-Precision Floating-Point Values
	CMPSS- Compare Scalar Single-Precision Floating-Point Values
	COMISD- Compare Scalar Ordered Double-Precision Floating-Point Values and Set EFLAGS
	COMISS- Compare Scalar Ordered Single-Precision Floating-Point Values and Set EFLAGS
	CVTDQ2PD- Convert Packed Doubleword Integers to Packed Double- Precision Floating-Point Values
	CVTDQ2PS- Convert Packed Doubleword Integers to Packed Single- Precision Floating-Point Values
	CVTPD2DQ- Convert Packed Double-Precision Floating-point values to Packed Doubleword Integers
	CVTPD2PS- Convert Packed Double-Precision Floating-point values to Packed Single-Precision Floating-Point Values
	CVTPS2DQ- Convert Packed Single Precision Floating-Point Values to Packed Singed Doubleword Integer Values
	CVTPS2PD- Convert Packed Single Precision Floating-point values to Packed Double Precision Floating-Point Values
	CVTSD2SI- Convert Scalar Double-Precision Floating-Point Value to Doubleword Integer
	CVTSD2SS- Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value
	CVTSI2SD- Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value
	CVTSI2SS- Convert Doubleword Integer to Scalar Single-Precision Floating- Point Value
	CVTSS2SD- Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value
	CVTSS2SI- Convert Scalar Single-Precision Floating-Point Value to Doubleword Integer
	CVTTPD2DQ- Convert with Truncation Packed Double-Precision Floating- point values to Packed Doubleword Integers
	CVTTPS2DQ- Convert with Truncation Packed Single Precision Floating- Point Values to Packed Singed Doubleword Integer Values
	CVTTSD2SI- Convert with Truncation Scalar Double-Precision Floating- Point Value to Signed Doubleword Integer
	CVTTSS2SI- Convert with Truncation Scalar Single-Precision Floating-Point Value to Doubleword Integer
	DIVPD- Divide Packed Double-Precision Floating-Point Values
	DIVPS- Divide Packed Single-Precision Floating-Point Values
	DIVSD- Divide Scalar Double-Precision Floating-Point Values
	DIVSS- Divide Scalar Single-Precision Floating-Point Values
	DPPD- Dot Product of Packed Double-Precision Floating-Point Values
	DPPS- Dot Product of Packed Single-Precision Floating-Point Values
	VEXTRACTF128- Extract packed floating-point values
	EXTRACTPS- Extract packed floating-point values
	HADDPD- Add Horizontal Double Precision Floating-Point Values
	HADDPS- Add Horizontal Single Precision Floating-Point Values
	HSUBPD- Subtract Horizontal Double Precision Floating-Point Values
	HSUBPS- Subtract Horizontal Single Precision Floating-Point Values
	VINSERTF128- Insert packed floating-point values
	INSERTPS- Insert Scalar Single Precision Floating-Point Value
	LDDQU- Move Unaligned Integer
	VLDMXCSR-Load MXCSR Register
	MASKMOVDQU- Store Selected Bytes of Double Quadword with NT Hint
	VMASKMOV- Conditional SIMD Packed Loads and Stores
	MAXPD- Maximum of Packed Double Precision Floating-Point Values
	MAXPS- Minimum of Packed Single Precision Floating-Point Values
	MAXSD- Return Maximum Scalar Double-Precision Floating-Point Value
	MAXSS- Return Maximum Scalar Single-Precision Floating-Point Value
	MINPD- Minimum of Packed Double Precision Floating-Point Values
	MINPS- Minimum of Packed Single Precision Floating-Point Values
	MINSD- Return Minimum Scalar Double-Precision Floating-Point Value
	MINSS- Return Minimum Scalar Single-Precision Floating-Point Value
	MOVAPD- Move Aligned Packed Double-Precision Floating-Point Values
	MOVAPS- Move Aligned Packed Single-Precision Floating-Point Values
	MOVD/MOVQ- Move Doubleword and Quadword
	MOVQ- Move Quadword
	MOVDDUP- Replicate Double FP Values
	MOVDQA- Move Aligned Packed Integer Values
	MOVDQU- Move Unaligned Packed Integer Values
	MOVHLPS - Move Packed Single-Precision Floating-Point Values High to Low
	MOVHPD- Move High Packed Double-Precision Floating-Point Values
	MOVHPS- Move High Packed Single-Precision Floating-Point Values
	MOVLHPS - Move Packed Single-Precision Floating-Point Values Low to High
	MOVLPD- Move Low Packed Double-Precision Floating-Point Values
	MOVLPS- Move Low Packed Single-Precision Floating-Point Values
	MOVMSKPD- Extract Double-Precision Floating-Point Sign mask
	MOVMSKPS- Extract Single-Precision Floating-Point Sign mask
	MOVNTDQ- Store Packed Integers Using Non-Temporal Hint
	MOVNTDQA- Load Double Quadword Non-Temporal Aligned Hint
	MOVNTPD- Store Packed Double-Precision Floating-Point Values Using Non- Temporal Hint
	MOVNTPS- Store Packed Single-Precision Floating-Point Values Using Non- Temporal Hint
	MOVSD- Move or Merge Scalar Double-Precision Floating-Point Value
	MOVSHDUP- Replicate Single FP Values
	MOVSLDUP- Replicate Single FP Values
	MOVSS- Move or Merge Scalar Single-Precision Floating-Point Value
	MOVUPD- Move Unaligned Packed Double-Precision Floating-Point Values
	MOVUPS- Move Unaligned Packed Single-Precision Floating-Point Values
	MPSADBW - Multiple Sum of Absolute Differences
	MULPD- Multiply Packed Double Precision Floating-Point Values
	MULPS- Multiply Packed Single Precision Floating-Point Values
	MULSD- Multiply Scalar Double-Precision Floating-Point Values
	MULSS- Multiply Scalar Single-Precision Floating-Point Values
	ORPD- Bitwise Logical OR of Packed Double Precision Floating-Point Values
	ORPS- Bitwise Logical OR of Packed Single Precision Floating-Point Values
	PABSB/PABSW/PABSD - Packed Absolute Value
	PACKSSWB/PACKSSDW- Pack with Signed Saturation
	PACKUSWB/PACKUSDW- Pack with Unsigned Saturation
	PADDB/PADDW/PADDD/PADDQ- Add Packed Integers
	PADDSB/PADDSW- Add Packed Signed Integers with Signed Saturation
	PADDUSB/PADDUSW- Add Packed Unsigned Integers with Unsigned Saturation
	PALIGNR - Byte Align
	PAND- Logical AND
	PANDN- Logical AND NOT
	PAVGB/PAVGW - Average Packed Integers
	PBLENDVB - Variable Blend Packed Bytes
	PBLENDW - Blend Packed Words
	PCLMULQDQ - Carry-Less Multiplication Quadword
	PCMPESTRI - Packed Compare Explicit Length Strings, Return Index
	PCMPESTRM - Packed Compare Explicit Length Strings, Return Mask
	PCMPISTRI - Packed Compare Implicit Length Strings, Return Index
	PCMPISTRM - Packed Compare Implicit Length Strings, Return Mask
	PCMPEQB/PCMPEQW/PCMPEQD/PCMPEQQ- Compare Packed Integers for Equality
	PCMPGTB/PCMPGTW/PCMPGTD/PCMPGTQ- Compare Packed Integers for Greater Than
	VPERMILPD- Permute Double-Precision Floating-Point Values
	VPERMILPS- Permute Single-Precision Floating-Point Values
	VPERM2F128- Permute Floating-Point Values
	PEXTRB/PEXTRW/PEXTRD/PEXTRQ- Extract Integer
	PHADDW/PHADDD - Packed Horizontal Add
	PHADDSW - Packed Horizontal Add with Saturation
	PHMINPOSUW - Horizontal Minimum and Position
	PHSUBW/PHSUBD - Packed Horizontal Subtract
	PHSUBSW - Packed Horizontal Subtract with Saturation
	PINSRB/PINSRW/PINSRD/PINSRQ- Insert Integer
	PMADDWD- Multiply and Add Packed Integers
	PMADDUBSW- Multiply and Add Packed Integers
	PMAXSB/PMAXSW/PMAXSD- Maximum of Packed Signed Integers
	PMAXUB/PMAXUW/PMAXUD- Maximum of Packed Unsigned Integers
	PMINSB/PMINSW/PMINSD- Minimum of Packed Signed Integers
	PMINUB/PMINUW/PMINUD- Minimum of Packed Unsigned Integers
	PMOVMSKB- Move Byte Mask
	PMOVSX - Packed Move with Sign Extend
	PMOVZX - Packed Move with Zero Extend
	PMULHUW - Multiply Packed Unsigned Integers and Store High Result
	PMULHRSW - Multiply Packed Unsigned Integers with Round and Shift
	PMULHW - Multiply Packed Integers and Store High Result
	PMULLW/PMULLD - Multiply Packed Integers and Store Low Result
	PMULUDQ - Multiply Packed Unsigned Doubleword Integers
	PMULDQ - Multiply Packed Doubleword Integers
	POR - Bitwise Logical Or
	PSADBW - Compute Sum of Absolute Differences
	PSHUFB - Packed Shuffle Bytes
	PSHUFD - Shuffle Packed Doublewords
	PSHUFHW - Shuffle Packed High Words
	PSHUFLW - Shuffle Packed Low Words
	PSIGNB/PSIGNW/PSIGND - Packed SIGN
	PSLLDQ - Byte Shift Left
	PSRLDQ - Byte Shift Right
	PSLLW/PSLLD/PSLLQ - Bit Shift Left
	PSRAW/PSRAD - Bit Shift Arithmetic Right
	PSRLW/PSRLD/PSRLQ - Shift Packed Data Right Logical
	PTEST- Packed Bit Test
	PSUBB/PSUBW/PSUBD/PSUBQ -Packed Integer Subtract
	PSUBSB/PSUBSW -Subtract Packed Signed Integers with Signed Saturation
	PSUBUSB/PSUBUSW -Subtract Packed Unsigned Integers with Unsigned Saturation
	PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ - Unpack High Data
	PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ - Unpack Low Data
	PXOR - Exclusive Or
	RCPPS- Compute Approximate Reciprocals of Packed Single-Precision Floating-Point Values
	RCPSS - Compute Reciprocal of Scalar Single-Precision Floating-Point Value
	RSQRTPS - Compute Approximate Reciprocals of Square Roots of Packed Single-Precision Floating-point Values
	RSQRTSS - Compute Reciprocal of Square Root of Scalar Single-Precision Floating-Point Value
	ROUNDPD- Round Packed Double-Precision Floating-Point Values
	ROUNDPS- Round Packed Single-Precision Floating-Point Values
	ROUNDSD - Round Scalar Double-Precision Value
	ROUNDSS - Round Scalar Single-Precision Value
	SHUFPD - Shuffle Packed Double Precision Floating-Point Values
	SHUFPS - Shuffle Packed Single Precision Floating-Point Values
	SQRTPD- Square Root of Double-Precision Floating-Point Values
	SQRTPS- Square Root of Single-Precision Floating-Point Values
	SQRTSD - Compute Square Root of Scalar Double-Precision Floating-Point Value
	SQRTSS - Compute Square Root of Scalar Single-Precision Value
	VSTMXCSR-Store MXCSR Register State
	SUBPD- Subtract Packed Double Precision Floating-Point Values
	SUBPS- Subtract Packed Single Precision Floating-Point Values
	SUBSD- Subtract Scalar Double Precision Floating-Point Values
	SUBSS- Subtract Scalar Single Precision Floating-Point Values
	UCOMISD - Unordered Compare Scalar Double-Precision Floating-Point Values and Set EFLAGS
	UCOMISS - Unordered Compare Scalar Single-Precision Floating-Point Values and Set EFLAGS
	UNPCKHPD- Unpack and Interleave High Packed Double-Precision Floating- Point Values
	UNPCKHPS- Unpack and Interleave High Packed Single-Precision Floating- Point Values
	UNPCKLPD- Unpack and Interleave Low Packed Double-Precision Floating- Point Values
	UNPCKLPS- Unpack and Interleave Low Packed Single-Precision Floating- Point Values
	XORPD- Bitwise Logical XOR of Packed Double Precision Floating-Point Values
	XORPS- Bitwise Logical XOR of Packed Single Precision Floating-Point Values
	VZEROALL- Zero All YMM registers
	VZEROUPPER- Zero Upper bits of YMM registers
	Chapter 6 Instruction Set Reference - FMA
	6.1 FMA InstructIon SET Reference
	VFMADD132PD/VFMADD213PD/VFMADD231PD - Fused Multiply-Add of Packed Double-Precision Floating-Point Values
	VFMADD132PS/VFMADD213PS/VFMADD231PS - Fused Multiply-Add of Packed Single-Precision Floating-Point Values
	VFMADD132SD/VFMADD213SD/VFMADD231SD - Fused Multiply-Add of Scalar Double-Precision Floating-Point Values
	VFMADD132SS/VFMADD213SS/VFMADD231SS - Fused Multiply-Add of Scalar Single-Precision Floating-Point Values
	VFMADDSUB132PD/VFMADDSUB213PD/VFMADDSUB231PD - Fused Multiply-Alternating Add/Subtract of Packed Double-Precision Floating- Point Values
	VFMADDSUB132PS/VFMADDSUB213PS/VFMADDSUB231PS - Fused Multiply-Alternating Add/Subtract of Packed Single-Precision Floating-Point Values
	VFMSUBADD132PD/VFMSUBADD213PD/VFMSUBADD231PD - Fused Multiply-Alternating Subtract/Add of Packed Double-Precision Floating- Point Values
	VFMSUBADD132PS/VFMSUBADD213PS/VFMSUBADD231PS - Fused Multiply-Alternating Subtract/Add of Packed Single-Precision Floating-Point Values
	VFMSUB132PD/VFMSUB213PD/VFMSUB231PD - Fused Multiply-Subtract of Packed Double-Precision Floating-Point Values
	VFMSUB132PS/VFMSUB213PS/VFMSUB231PS - Fused Multiply-Subtract of Packed Single-Precision Floating-Point Values
	VFMSUB132SD/VFMSUB213SD/VFMSUB231SD - Fused Multiply-Subtract of Scalar Double-Precision Floating-Point Values
	VFMSUB132SS/VFMSUB213SS/VFMSUB231SS - Fused Multiply-Subtract of Scalar Single-Precision Floating-Point Values
	VFNMADD132PD/VFNMADD213PD/VFNMADD231PD - Fused Negative Multiply-Add of Packed Double-Precision Floating-Point Values
	VFNMADD132PS/VFNMADD213PS/VFNMADD231PS - Fused Negative Multiply-Add of Packed Single-Precision Floating-Point Values
	VFNMADD132SD/VFNMADD213SD/VFNMADD231SD - Fused Negative Multiply-Add of Scalar Double-Precision Floating-Point Values
	VFNMADD132SS/VFNMADD213SS/VFNMADD231SS - Fused Negative Multiply-Add of Scalar Single-Precision Floating-Point Values
	VFNMSUB132PD/VFNMSUB213PD/VFNMSUB231PD - Fused Negative Multiply-Subtract of Packed Double-Precision Floating-Point Values
	VFNMSUB132PS/VFNMSUB213PS/VFNMSUB231PS - Fused Negative Multiply-Subtract of Packed Single-Precision Floating-Point Values
	VFNMSUB132SD/VFNMSUB213SD/VFNMSUB231SD - Fused Negative Multiply-Subtract of Scalar Double-Precision Floating-Point Values
	VFNMSUB132SS/VFNMSUB213SS/VFNMSUB231SS - Fused Negative Multiply-Subtract of Scalar Single-Precision Floating-Point Values

