intgl. AP-485

APPLICATION
NOTE

|ntal Processor
| dentification and the
CPUID Instruction

March 1997

I Order Number: 241618-006

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or
otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of
Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to
sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or
infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life
saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved" or "undefined." Intel
reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from
future changes to them.

Intel’'s Intel Architecture processors (e.g., Pentium® processor, Pentium processor with MMX™ technology, and Pentium Pro
processor) may contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Such errata are not covered by Intel's warranty. Current characterized errata are available on request.Contact
your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be
obtained from:

Intel Corporation
P.O. Box 7641
Mt. Prospect IL 60056-7641

or call 1-800-879-4683
or visit Intel’'s website at http:\\www.intel.com

Copyright © Intel Corporation 1997.
* Third-party brands and names are the property of their respective owners.

n
intel.

CONTENTS
PAGE
1.0. INTRODUGCTION ..ttt ettt ettt ettt e a sttt e st ookt e e bttt e e bttt e e b bt e e e nbn e e e enb e e e st e e annnes 5
O oo = (SIS U o] o Lo £ S TP PP P PP PU P PPPPPPPRRN 5
2.0. DETECTING THE CPUID INSTRUCTIONoiiiiiiiiiiiite ittt e e 5
3.0. OUTPUT OF THE CPUID INSTRUCTIONotiiiiiiiiiiiiie ittt ettt e 6
0 R V=Y o T | o PSRN 7
3.2, PrOCESSOT SIGNATUIEuviiiiiieieiiiiiiie e e e sttt e e e e e st e e e e e ssstaaeeeeaeesasssaaeeaeeaasnsasaeeeeesasnstnseaeeeessnsnneeeenans 7
R R =T L1 [= Vo [P OPSER 9
3.4. Cache Size and Format INfOrMALIONoouiiiiiiiii et 9
3.5. SYSENTER/SYSEXIT — SEP FEAUIES Bitccocueiiiiiiiiiiiieiiiie et 11
3.6. Pentium® Pro Processor OULPUL EXAMPIE ..o 11
3.7. Pentium® Il Processor OULPUL EXAMPIE ..ot 12
4.0. USAGE GUIDELINES ...ttt etttk e et a et e st e e e e st eennees 12
5.0. PROPER IDENTIFICATION SEQUENCEccoiiiiiiiiitiie ittt ettt 13
6.0. USAGE PROGRAM EXAMPLESooiitiiiitiie ittt et e e 15

AP-485

REVISION HISTORY

Revision Revision History Date
-001 Original Issue. 05/93
-002 Modified Table 2, Intel486™ and Pentium ® Processor Signatures. 10/93
003 Updated to accommodate new processor versions. Program examples 09/94

modified for ease of use, section added discussing BIOS recognition for
OverDrive® processors, and feature flag information updated.
-004 Updated with Pentium Pro and OverDrive processors information. Modified 12/95
Tables1, 3 and 5. Inserted Tables 6, 7 and 8. Inserted Sections 3.4. and
3.5.
-005 Added Figures 1 and 3. Added Footnotes 1 and 2. Modified Figure 2. Added 11/96
Assembly code example in Section 4. Modified Tables 3, 5 and 7. Added
two bullets in Section 5.0. Modified cpuid3b.ASM and cpuid3b.C programs
to determine if processor features MMX™ technology. Modified Figure 6.0.
-006 Modified Table 3. Added reserved for future member of P6 family of 3/97

processors entry. Modified table header to reflect Pentium Il processor
family. Modified Table 5. Added SEP bit definition. Added Section 3.5.
Added Section 3.7 and Table 9. Corrected references of P6 family to reflect
correct usage.

Modified cpuid3a.asm, cpuid3b.asm and cpuid3.c example code sections to
check for SEP feature bit and to check for, and identify, the Pentium |l
processor. Added additional disclaimer related to designers and errata.

intal.
1.0. INTRODUCTION

As the Intel Architecture evolves with the addition of
new generations and models of processors (8086, 8088,
Intel286, Intel386™, Intel486™, Pentium® processors,
Pentium OverDrive® processors, Pentium processors
with MMX™ technology, Pentium OverDrive
processors with MMX technology, Pentium Pro
processors and Pentium |1 processors), it is essentia that
Intel provide an increasingly sophisticated means with
which software can identify the features available on
each processor. This identification mechanism has
evolved in conjunction with the Intel Architecture as
follows:

1. Originaly, Intel published code sequences that
could detect minor implementation or architectural
differencesto identify processor generations.

2. Later, with the advent of the Intel386 processor,
Intel implemented processor signature
identification which provided the processor family,
model, and stepping numbers to software, but only
upon reset.

3. As the Intel Architecture evolved, Intel extended
the processor signature identification into the
CPUID instruction. The CPUID instruction not
only provides the processor signature, but also
provides information about the features supported
by and implemented on the Intel processor.

The evolution of processor identification was necessary
because, as the Intel Architecture proliferates, the
computing market must be able to tune processor
functionality across processor generations and models
that have differing sets of features. Anticipating that this
trend will continue with future processor generations,
the Intel Architecture implementation of the CPUID
instruction is extensible.

This application note explains how to use the CPUID
instruction in software applications, BIOS
implementations, and various processor tools. By taking
advantage of the CPUID instruction, software
developers can create software applications and tools
that can execute compatibly across the widest range of
Intel processor generations and models, past, present,
and future.

1.1. Update Support

Y ou can obtain new Intel processor signature and feature
bits information from the developer's manual,
programmer's reference manual or appropriate
documentation for a processor. In addition, you can

AP-485

receive updated versions of the programming examples
included in this application note; contact your Intel
representative for more information.

2.0. DETECTING THE CPUID
INSTRUCTION

Starting with the Intel486 family and subsequent Intel
processors, Intel provides a straightforward method for
determining whether the processor's internal architecture
is able to execute the CPUID instruction. This method
uses the ID flag in bit 21 of the EFLAGS register. If
software can change the value of this flag, the CPUID
instruction is executable. ~ See Figure 1.

8086 Flags Register

286 Flags Register

Intel386™ Processor Eflags Register

Intel486™ Processor Eflags Register

ID

Pentium® and Pentium Pro Processors Eflags Register

000902

Figure 1. Flag Register Evolution

Footnotes

1 Only in some Intel486™ and succeeding processors.
Bit 21 in the Intel386™ processor’s Eflag register can-
not be changed by software, and the Intel386 processor
cannot execute the CPUID instruction. Execution of
CPUID on a processor that does not support this
instruction will result in an invalid opcode exception.

5

AP-485

The POPF, POPFD, PUSHF, and PUSHFD instructions
are used to access the Flags, Eflags register. The
program examples at the end of this application note
show how you use the PUSHFD instruction to read and
the POPFD instruction to change the value of the ID
flag.

3.0. OUTPUT OF THE CPUID
INSTRUCTION

Figure2 summarizes the outputs of the CPUID
instruction. The function of the CPUID instruction is

intal.

fully dependent upon the contents of the EAX register.
This means, by placing different values in the EAX
register and then executing CPUID, the CPUID
instruction will perform a specific function dependent
upon whatever value is resident in the EAX register (see
Table 1). In order to determine the highest acceptable
value for the EAX register input and CPUID operation,
the program should set the EAX register parameter value
to "0" and then execute the CPUID instruction as
follows

MOV EAX, OOH
CPUI D

Output of CPUID if EAX =0
31

Highest Value EAX

Highest Integer Value

31 23 15 7 0
ECX 1 (6C) e (65) t(74) n (6E)
Vendor ID EDX 1 (49) e (65) n (6E) i (69)
EBX u (75) n (6E) e (65) G (47)
ASCII String (with Hexadecimal)
Output of CPUID if EAX = 1
31 13 11 3
Processor .
Signature EAX Intel Reserved. Do not define.
~——
T A
Processor Type
Family
Model
Stepping
31
¥ Feature Flags EDX* Bit Array (Refer to Table 5)
Output of CPUID if EAX = 2
31 23 15
EAX | |
Configuration EBX
Parargleters — Configuration Parameters (Refer to Section 3.4)
EDX
ECX | |

Figure 2. CPUID Instruction Outputs

intal.

Table 1. Effects of EAX Contents on
CPUID Instruction Output

Parameter Outputs of CPUID

EAX =0 EAX - Highest value recognized
by CPUID instruction
EBX:EDX:ECX - Vendor
identification string

EAX=1 EAX - Processor signature
EDX - Feature flags
EBX:ECX - Intel reserved
(Do not use.)

EAX =2 EAX:EBX:ECX:EDX - Processor
configuration parameters

3£EAX E Intel reserved

highest value

EAX > EAX:EBX:ECX:EDX - Undefined

highest value | (Do not use.)

After the execution of the CPUID instruction, a return
value will be present in the EAX register. Always use an
EAX parameter value that is equal to or greater than
zero and less than or equal to this highest EAX
"returned" value. The values returned by the processor
in response to a CPUID instruction with EAX set to a
value higher than appropriate for that processor are
model specific and should not be relied upon.

3.1. Vendor ID String

In addition to returning the highest value in the EAX
register, the Intd Vendor-ID string can be
simultaneously verified as well. If the EAX register
contains an input value of 0, the CPUID instruction aso
returns the vendor identification string in the EBX,
EDX, and ECX registers (see Figure 2). These registers
contain the ASCII string:

Genui nel nt el

While any imitator of the Intel Architecture can provide
the CPUID instruction, no imitator can legitimately
claim that its part is a genuine Intel part. So the presence
of the Genui nel nt el string is an assurance that the
CPUID instruction and the processor signature are
implemented as described in this document. If the

AP-485

"Genuinelntel" string is not returned after execution of
the CPUID instruction, do not rely upon the information
described in this document to interpret the information
returned by the CPUID instruction.

3.2. Processor Signature
Beginning with the Intel486 processor family, the

processor will return a processor identification signature
value after reset in the EDX register (see Figure 3).

EDX |[Reserved | Type | Family | Model | Stepping

000963

Figure 3. EDX Register Value after RESET

Processors that implement the CPUID instruction also
return the processor identification signature after reset;
however, the CPUID instruction gives you the flexibility
of checking the processor signature at any time. Figure 3
shows the format of the signature for the Intel486,
Pentium, Pentium Pro and Pentium Il processors. Note
that the EDX processor signature value after reset is
equivalent to the processor signature output value in the
EAX register in Figure2. Table2 shows the values
returned in the EAX register currently defined for these
processors. (The high-order 18 bits are undefined and
reserved.)

The processor type, specified in bit positions 12 and 13
of Table 3, indicates whether the processor is an original
OEM processor, an OverDrive processor, or a dual
processor (capable of being used in a dual processor
system). Table3 shows the processor type values
returned in bits 12 and 13 of the EAX register.

The family values, specified in bit positions 8 through
11, indicates whether the processor belongs to the
Intel 386, Intel486, Pentium or P6 family of processors.

The model number, specified in bits 4 though 7,
indicates the processor's family model number, while the
stepping nhumber in bits 0 through 3 indicates the
revision number of that model.

n
intgl.

Table 2. Intel486™ , Pentium® Processor Family, OverDrive? , Pentium Pro Processor and
Pentium Il Processor Signatures

Type [Family Model Stepping Description
00 0100 | 0000 and 0001 [xxxx (1) [Intel486™ DX processors
00 0100 0010 xxxx (1) [Intel486 SX processors
00 0100 0011 xxxx (1) | Intel487™ processors
00 0100 0011 xxxx (1) [IntelDX2™ processors
00 0100 0011 xxxx (1) | IntelDX2 OverDrive ® processors
00 0100 0100 xXxxx 3) [Intel486 SL processor
00 0100 0101 xxxx (1) | IntelSX2™ processors
00 0100 0111 xxxx) [Write-Back Enhanced InteIDX2 processors
00 0100 1000 xxxx () | IntelDX4™ processors
00, 01 0100 1000 xxxx 3) [IntelDX4 OverDrive processors
00 0101 0001 xxxx (@) | Pentium® processors (60, 66)
00 0101 0010 XXXX (2) Egg)tium processors (75, 90, 100, 120, 133, 150, 166,
00 0101 0001 xxxx (@ [Pentium OverDrive processor for Pentium processor
(60, 66)
014 0101 0010 xxxx (@) [Pentium OverDrive processor for Pentium processor
(75, 90, 100, 120, 133)
01 0101 0011 xxxx (@) [Pentium OverDrive processors for Intel486 processor-
based systems
00 0101 0100 xxxx (@) | Pentium processor with MMX™ technology (166, 200)
01 0101 0100 xxxx (2) | Reserved for a future OverDrive processor for Pentium
processor (75, 90, 100, 120, 133)
00 0110 0001 xxxx (2) | Pentium Pro processor
00 0110 0011 XXXx (2) | Pentium Il processor
00 0110 0101 xxxx (2) | Reserved for future member of P6 family of processors
01 0110 0011 xxxx (@) [Reserved for a future OverDrive processor for Pentium
Pro processor

NOTES:

1. This processor does not implement the CPUID instruction.

2. Refer to the Intel486™ documentation, the Pentium? Processor Specification Update (Order Number 242480), the
Pentium? Pro Processor Specification Update (Order Number 242689), or the Pentium? Il Processor Specification Update
(Order Number 243337) for the latest list of stepping numbers.

3. Stepping 3 implements the CPUID instruction.

4. The definition of the type field for the OverDrive® processor is 01h. An errata on the Pentium OverDrive processor will
always return 00h as the type.

intal.

Table 3. Processor Type
(Bit Positions 13 and 12)

Value Description
00 Original OEM processor
01 OverDrive® processor
10 Dual processor
11 Intel reserved (Do not use.)

Older versions of Intel486 SX, Intel486 DX and
IntelDX2 Erocessors do not support the CPUID
instruction,~ so they can only return the processor
signature at reset. Refer to Table 2 to determine which
processors support the CPUID instruction.

Figure 4 shows the format of the processor signature for
Intel386 processors, which are different from other
processors. Table 4 shows the values currently defined
for these Intel 386 processors.

3.3. Feature Flags

When the EAX register contains a value of 1, the
CPUID instruction (in addition to loading the processor

Footnotes

2 All Intel486 SK-enhanced and Write-Back enhanced
processors are capable of executing the CPUID
instruction. See Table 2.

AP-485

signature in the EAX register) loads the EDX register
with the feature flags. The current feature flags (when
Flag = 1) indicate what features the processor supports.
However, in future feature flags, a value of one may
indicate a feature has been removed. Table5 lists the
currently defined feature flag values.

For future processors, refer to the programmer's
reference manual, user's manual, or the appropriate
documentation for the latest feature flag values.

Use the feature flags in your applications to determine
which processor features are supported. By using the
CPUID fesature flags to predetermine processor features,
your software can detect and avoid incompatibilities.

3.4. Cache Size and Format
Information

When the EAX register contains a value of 2, the
CPUID instruction loads the EAX, EBX, ECX and EDX
registers with descriptors that indicate the processor's
cache characteristics. The lower 8 bits of the EAX
register (AL) contain a value that identifies the number
of times the CPUID has to be executed to obtain a
complete image of the processor's caching systems. For
example, the Pentium Pro processor returns a value of 1
in the lower 8 bits of the EAX register to indicate that
the CPUID instruction need only be executed once (with
EAX = 2) to obtain a complete image of the processor
configuration.

31 15 11 7 3 0
RESET ® EDX
T A A A
Model
Family
Major Stepping

Minor Stepping

D Intel Reserved. Do not define.

000813

Figure 4. Processor Signature Format on Intel386™ Processors

intal.

AP-485
Table 4. Intel386™ Processor Signatures

Type Family Major Stepping Minor Stepping Description

0000 0011 0000 XXXX Intel386™ DX processor

0010 0011 0000 XXXX Intel386 SX processor

0010 0011 0000 XXXX Intel386 CX processor

0010 0011 0000 XXXX Intel386 EX processor

0100 0011 0000 and 0001 XXXX Intel386 SL processor

0000 0011 0100 XXXX RapidCAD® coprocessor

Table 5. Feature Flag Values
Description when
Bit Name Flag =1 Comments

0 FPU Floating-point unit on- The processor contains an FPU that supports the Intel387

chip floating-point instruction set.
1 VME Virtual Mode Extension The processor supports extensions to virtual-8086 mode.
2 DE Debugging Extension The processor supports 1/0 breakpoints, including the
CRA4.DE bit for enabling debug extensions and optional
trapping of access to the DR4 and DR5 registers.
3 PSE Page Size Extension The processor supports 4-Mbyte pages.
4 TSC Time Stamp Counter The RDTSC instruction is supported including the CR4.TSD
bit for access/privilege control.
5 MSR Model Specific Registers | Model Specific Registers are implemented with the RDMSR,
WRMSR instructions
6 PAE Physical Address Physical addresses greater than 32 bits are supported.
Extension

7 MCE Machine Check Machine Check Exception, Exception 18, and the CR4.MCE
Exception enable bit are supported

8 CX8 CMPXCHGS Instruction | The compare and exchange 8 bytes instruction is supported.
Supported

9 APIC On-chip APIC Hardware | The processor contains a local APIC.
Supported (1)

10 MTRR Reserved Do not count on their value.

11 SEP Fast System Call Indicates whether the processor supports the Fast System
Call instructions, SYSENTER and SYSEXIT. NOTE: Refer to
Section 3.5. for further information regarding SYSENTER/
SYSEXIT feature and SEP feature bit.

12 MTRR Memory Type Range The Processor supports the Memory Type Range Registers

Registers specifically the MTRR_CAP register.

13 PGE Page Global Enable The global bit in the PDEs and PTEs and the CR4.PGE
enable bit are supported.

14 MCA Machine Check The Machine Check Architecture is supported, specifically

Architecture the MCG_CAP register.
15 CMOV Conditional Move The processor supports CMOVcc, and if the FPU feature flag
Instruction Supported (bit 0) is also set, supports the FCMOVCC and FCOMI
instructions.
16-22 | — Reserved Do not count on their value.
23 MMX™ Intel Architecture MMX The processor supports the MMX technology instruction set
Technology | technology supported extensions to Intel Architecture.
24-31 Reserved Do not count on their value.
NOTE:

1. The processor contains a software-accessible Local APIC.

10

intal.

The remainder of the EAX register, and the EBX, ECX,
and EDX registers, contain valid 8 bit descriptors.
Table6 shows that a most significant bit of zero
indicates a valid 8-bit descriptor. To decode descriptors,
move sequentially from the most significant byte of the
register down through the least significant byte of the
register. Table 7 lists the current descriptor values and
their respective cache characteristics. This list will be
extended in the future as necessary.

Table 6. Descriptor Formats

Register | Descriptor
MSB Type Description
1 Reserved Reserved for future use.
0 8 bit Descriptors point to a
descriptors | parameter table to

identify cache
characteristics. The
descriptor is null if it has
a 0 value.

Table 7. Descriptor Decode Values

Descriptor
Value Cache Description
00h Null
01h Instruction TLB, 4K pages, 4-way

set associative, 32 entries

02h Instruction TLB, 4M pages, 4-way
set associative, 4 entries

03h Data TLB, 4K pages, 4-way set
associative, 64 entries

04h Data TLB, 4M pages, 4-way set
associative, 8 entries

06h Instruction cache, 8K, 4-way set
associative, 32 byte line size

08h 16KB instruction cache, 4-way set
associative, 32 byte line size

OAh Data cache, 8K, 2-way set
associative, 32 byte line size

0Ch 16KB data cache, 2-way set
associative, 32 byte line size

40h No L2 cache

41h Unified cache, 32 byte cache
line,4-way set associative, 128K

42h Unified cache, 32 byte cache line,
4-way set associative, 256K

43h Unified cache, 32 byte cache line,
4-way set associative, 512K

AP-485

3.5. SYSENTER/SYSEXIT —SEP
Features Bit

The presence of this facility is indicated by the
SYSENTER Present (SEP) bit 11 of CPUID. An
operating system that detects the presence of the SEP bit
must also qualify the processor family and model to
ensure that the SYSENTER/SY SEXIT instructions are
actually present:

If (CPUD SEP bit is set) {
If (Fanily == 6) AND (Mbdel < 3) AND
(Stepping < 3) {
THEN

Fast System Call is NOT supported

}
ELSE Fast System Call is
support ed

The Pentium Pro processor (Model = 1) returns a set
SEP CPUID feature bit, but should not be used by
software.

3.6. Pentium? Pro Processor
Output Example

The Pentium Pro processor returns the vaues shown in
Table 8. As the value of AL = 1, it is valid to interpret
the remainder of the registers according to Table7.
Table 8 also shows that the MSB of the EAX register is
0. This indicates that the upper 8 bits constitute an 8 bit
descriptor. The remaining register values in Table 8
show that the Pentium Pro processor has the following
cache characteristics:

A data TLB that maps 4K pages, is 4 way set
associative, and has 64 entries.

An instruction TLB that maps 4M pages, is 4 way
Set associative, and has 4 entries.

An instruction TLB that maps 4K pages, is 4 way
set associative, and has 32 entries.

An instruction cache that is 8K, is 4 way set
associative, and has a 32 byte line size.

A data TLB that maps 4M pages, is 4 way set
associative, and has 8 entries.

A data cache that is 8K, is 2 way set associative,
and hasa 32 byteline size.

A unified cache that is 256K, is 4 way set
associative, and hasa 32 byteline size.

11

AP-485

intal.

Table 8. Pentium? Pro Processor,with 256K L2 Cache, CPUID (EAX=2) Example Return Values

31 23 15 7 0
EAX 03h 02h 01h 0lh
EBX 0 0 0 0
ECX 0 0 0 0
EDX 06h 04h 0Ah 42h

3.7. Pentium? Il Processor Output
Example

The Pentium Il processor returns the values shown in
Table 9. If the value of AL=1, it is valid to interpret the
remainder of the registers according to Table 7. Table 9
aso shows the MSB of EAX register is 0. As with the
Pentium Pro processor this indicates the upper 8 hits
constitute an 8 bit descriptor. The remaining register
valuesin Table 9 shows the Pentium Il processor has the
following cache characteristics:

A data TLB that maps 4K pages, is 4 way set
associative, and has 64 entries.

An instruction TLB that maps 4M pages, is 4 way
set asociative, and has 4 entries.

An instruction TLB that maps 4K pages, is 4 way
set associative, and has 32 entries.

A data cache that is 16K, is 4 way set associative,
and hasa 32 bytelinesize.

A data TLB that maps 4M pages, is 4 way set
associative, and has 8 entries.

An instruction cache that is 16K, is 4 way set
associative, and hasa 32 byteline size.

A unified cache that is 512K, is 4 way set
associative, and hasa 32 byteline size.

4.0. USAGE GUIDELINES

This document presents Intel-recommended feature-
detection methods. Software should not try to identify
features by exploiting programming tricks,
undocumented features, or otherwise deviating from the
guidelines presented in this application note.

The following guidelines are intended to help

programmers maintain the widest range of compatibility

for their software.
Do not depend on the absence of an invalid opcode
trap on the CPUID opcode to detect the CPUID
instruction. Do not depend on the absence of an
invalid opcode trap on the PUSHFD opcode to
detect a 32-bit processor. Test the ID flag, as
described in Section 2.0. and shown in Section 5.0.

Do not assume that a given family or model has
any specific feature. For example, do not assume
the family value 5 (Pentium processor) means there
is a floating-point unit on-chip. Use the feature
flags for this determination.

Do not assume processors with higher family or
model numbers have all the features of a processor
with a lower family or model number. For
example, a processor with a family value of 6
(Pentium Pro processor) may not necessarily have
al the features of a processor with a family value
of 5.

Table 9. Pentium? Processor with 512K L2 Cache, CPUID (EAX=2) Example Return Values

31 23 15 7 0
EAX 03h 02h 01h 0lh
EBX 0 0 0 0
ECX 0 0 0 0
EDX 0Ch 04h 08h 43h

12

intal.

Do not assume that the features in the OverDrive
processors are the same as those in the OEM
version of the processor. Internal caches and
instruction execution might vary.

Do not use undocumented features of a processor
to identify steppings or features. For example, the
Intel386 processor A-step had bit instructions that
were withdrawn with B-step. Some software
attempted to execute these instructions and
depended on the invalid-opcode exception as a
signal that it was not running on the A-step part.
The software failed to work correctly when the
Intel486 processor used the same opcodes for
different instructions. The software should have
used the stepping information in the processor
signature.

Do not assume a value of 1 in a feature flag
indicates that a given feature is present. For future
feature flags, a value of 1 may indicate that the
specific featureis not present.

Test feature flags individually and do not make
assumptions about undefined bits. For example, it
would be a mistake to test the FPU bhit by
comparing the feature register to a binary 1 with a
compare instruction.

Do not assume the clock of a given family or
model runs at a specific frequency, and do not
write clock-dependent code, such as timing loops.
For instance, an OverDrive Processor could
operate at a higher internal frequency and still
report the same family and/or model. Instead, use
the system'’s timers to measure elapsed time. For
processors that support the TSC (Time Stamp
Counter) functionality, system timers can more
directly calibrate the processor core block.

AP-485

Processor model-specific registers may differ
among processors, including in various models of
the Pentium processor. Do not use these registers
unless identified for the installed processor. Thisis
particularly important for systems upgradeable
with an OverDrive processor. Only use Model
Specific registers that are defined in the BIOS
writers guide for that processor.

Do rely on the result of CPUID agorithm when
executed in virtual 8086 mode.

Do not assume any ordering of stepping numbers.
They are assigned arbitrarily.

5.0. PROPER IDENTIFICATION
SEQUENCE

The cpuid3a.asm program example demonstrates the
correct use of the CPUID instruction. (See Example 1.)
It aso shows how to identify earlier processor
generations that do not implement the processor
signature or CPUID instruction. (See Figure5.) This
program example contains the following two
procedures:

get _cpu_type identifies the processor type.
Figure 5 illustrates the flow of this procedure.

get _f pu_t ype determines the type of floating-
point unit (FPU) or math coprocessor (MCP).

This procedure has been tested with 8086, 80286,
Intel386, Intel486, Pentium processor, Pentium
processor with MMX ' technology, OverDrive processor
with MMX technology, Pentium Pro processors and
Pentium Il processors with MMX technology. This
program example is written in assembly language and is
suitable for inclusion in a run-time library, or as system
calsin operating systems.

13

AP-485 I n ®

Is it Yes

an 8086 cpu_type=0 -
processor?

cpu_type=2 >

cpu_type=3 >

cpu_type>=4

Is the
~ CPUID

instruction
suppoorted

No

Does the

vendor ID =

\Genuinelntel”
?

»{end_get_cpu_type

000806

Figure 5. Flow of Processor get _cpu_t ype Procedure

14

intal.
6.0. USAGE PROGRAM EXAMPLES

The cpuid3b.asm or cpuid3.c program examples
demonstrate applications that call get _cpu_t ype and
get _f pu_t ype procedures and interpret the returned
information. This code is shown in Example2 and
Example 3. The results, which are displayed on the
monitor, identify the installed processor and features.

AP-485

The cpuid3b.asm example is written in assembly
language and demonstrates an application that displays
the returned information in the DOS environment. The
cpuid3.c example is written in the C language (see
Example2 and Example3). Figure6 presents an
overview of the relationship between the three program
examples.

cpuid3b.ASM or cpuid3.C

Main

Call cpu_type
Call fpu_type

Processor features check

cpuid3a.ASM
—————————— -
: |
<4—+P{get_cpu_type* :
! |
|
|
! |
! |
< : P| get_fpu_type |
| |
| —————————— -

Print

End

000964

Figure 6. Flow of Processor Identification Extraction Procedure

15

n
intgl.

16

Example 1. Processor Identification Extraction Procedure

Fi | enane: cpui d3a. asm
Copyright 1993, 1994, 1995, 1996, 1997 by Intel Corp.

This program has been devel oped by Intel Corporation. Inte
has various intellectual property rights which it may assert
under certain circunstances, such as if another

manuf acturer’s processor mis-identifies itself as being
“Genui nelntel” when the CPU D instruction is executed

Intel specifically disclaims all warranties, express or
implied, and all liability, including consequential and other

i ndirect danmges, for the use of this program including
liability for infringement of any proprietary rights

and including the warranties of nerchantability and fitness
for a particular purpose. |Intel does not assume any
responsibility for any errors which nay appear in this program
nor any responsibility to update it.

Thi s code contains two procedures
_get _cpu_type: ldentifies processor type in _cpu_type
0=8086/ 8088 processor
2=Intel 286 processor
3=Intel 386(TM fanily processor
4=Intel 486(TM fam |y processor
5=Pentium R) famly processor
6=P6 fam |y of processors

_get_fpu_type: ldentifies FPU type in _fpu_type

0=FPU not present

1=FPU present

2=287 present (only if _cpu_type=3)

3=387 present (only if _cpu_type=3)
This program has been tested with the Mcrosoft Devel oper Studio
This code correctly detects the current Intel 8086/ 8088
80286, 80386, 80486, Pentium R), PentiumR) Pro, and PentiumR) Il
processors in the real-address mode only.

To assenble this code with TASM add the JUWS directive

j unps ; Uncomment this line for TASM
TI TLE cpui d3a

comment this line for 32-bit segnents

DOSSEG

uncomment the following 2 lines for 32-bit segnents

. 386
. nodel flat

comment this line for 32-bit segnents

intal.

. nodel smal |

CPU_I D MACRO
db of h ; Hardcoded CPUI D instruction
db 0a2h

ENDM
.data
public _cpu_type
public _fpu_type
public ~v86_flag
public _cpuid_flag
public _intel _CPU
public _vendor _id
public _cpu_signature
public _features_ecx
public _features_edx
public _features_ebx
public _sep_flag
_cpu_type db 0
_fpu_type db 0
_v86_flag db 0
_cpuid_flag db 0
_intel _CPU db 0
_sep_flag db 0
_vendor _id db B "
intel _id db "CGenui nel ntel"
_cpu_signature dd 0
_features_ecx dd 0
_features_edx dd 0
_features_ebx dd 0
fp_status dw 0
. code

coment this line for 32-bit segnents
. 8086
uncomment this line for 32-bit segnents

: . 386

EEEEEEEEEEEEEEE SRR EEE S EEEEEEEEEEEEEEEEEEEEEEEEEEEEEREREREREREEEEEEEE]
1

public _get _cpu_type
_get_cpu_type proc

This procedure determi nes the type of processor in a system

; and sets the _cpu_type variable with the appropriate
; value. |If the CPUD instruction is available, it is used
; to determ ne nore specific details about the processor.

Al registers are used by this procedure, none are preserved.

To avoid AC faults, the AMbit in CRO nust not be set.

AP-485

17

AP-485

Inte

8086 processor check

intal.

; Bits 12-15 of the FLAGS register are always set on the
; 8086 processor

; For 32-bit segnents comment the follow ng |ines down to the next

coment |ine that says “STOP”
check_8086:

pushf

pop ax

nov cx, ax

and ax, Offfh

push ax

popf

pushf

pop ax

and ax, 0f000h

cnmp ax, 0f000h

nmov _cpu_type, O

j ne check_80286

push sp

pop dx

cnmp dx, sp

j ne end_cpu_type

nov _cpu_type, 10h

jmp end_cpu_type

Intel 286 processor check

push origi nal FLAGS

get original FLAGS

save origi nal FLAGS

clear bits 12-15 in FLAGS

save new FLAGS val ue on stack

repl ace current FLAGS val ue

get new FLAGS

store new FLAGS in AX

if bits 12-15 are set, then
processor is an 8086/ 8088

turn on 8086/8088 flag

go check for 80286

doubl e check with push sp

i f value pushed was different
nmeans it’'s really not an 8086

jump if processor is 8086/ 8088

i ndi cat e unknown processor

; Bits 12-15 of the FLAGS register are always clear on the

Inte

. 286
check_80286:
SNBW
and
nov

or
push
popf
pushf
pop
and
nov
jz

; I ntel 386 processor check
; is a new bit

286 processor

ax
ax, 1

_v86_flag, a
cx, 0f000h
cX

ax

ax, 0f000h
cpu_type, 2

end_cpu_type

The AC bit, bit #18
; register on the Intel 486 processor to generate alignnment
; faults.
; This bit cannot be set on the Intel 386 processor

. 386
; “« STOP"

18

in real -address node

save machi ne status word
isolate PE bit of MSW
save PE bit to indicate V86

try to set bits 12-15

save new FLAGS val ue on stack

repl ace current FLAGS val ue

get new FLAGS

store new FLAGS in AX

if bits 12-15 are clear

processor =80286, turn on 80286 flag
junp if processor is 80286

introduced in the EFLAGS

intal.

check_80386:

AP-485

it is safe to use 386 instructions

pushfd ; push original EFLAGS

pop eax ; get original EFLAGS

nmv ecx, eax ; save original EFLAGS

xor eax, 40000h ; flip AC bit in EFLAGS

push eax ; save new EFLAGS val ue on stack

popfd ; replace current EFLAGS val ue

pushfd ; get new EFLAGS

pop eax ; store new EFLAGS in EAX

xor eax, ecx ; can’t toggle AC bit, processor=80386
nov cpu_type, 3 ; turn on 80386 processor flag

jz End_cpu_type jump if 80386 processor
push ecx
popfd ; restore AC bit in EFLAGS first

I ntel 486 processor check

Checking for ability to set/clear IDflag (Bit 21) in EFLAGS
whi ch indicates the presence of a processor with the CPU D
instruction.

. 486

check_80486:

mv _cpu_type, 4 turn on 80486 processor flag

nmov eax, ecx ; get original EFLAGS

xor eax, 200000h ; flip IDbit in EFLAGS

push eax ; save new EFLAGS val ue on stack
popfd ; replace current EFLAGS val ue
pushfd ; get new EFLAGS

pop eax ; store new EFLAGS in EAX

xor eax, ecx ; can't toggle ID bit,

je end_cpu_type processor =80486
Execute CPUI D instruction to not determi ne vendor, fanily,
nodel , stepping and features. For the purpose of this
code, only the initial set of CPUD information is saved.

mov _cpuid_flag, 1 flag indicating use of CPUD inst.
push ebx ; save registers

push esi

push edi

nmv eax, 0 set up for CPUI D instruction
CPU_I D ; get and save vendor |D

nmov dword ptr _vendor_id, ebx
nmv dword ptr _vendor _id[+4], edx
nmov dword ptr _vendor_id[+8], ecx

cnp dword ptr intel_id, ebx

j ne end_cpui d_type

cnp dword ptr intel _id[+4], edx
j ne end_cpui d_type

cnp dword ptr intel _id[+8], ecx
j ne end_cpui d_type if not equal, not an Intel processor

mov _intel _CPU, 1 indicate an Intel processor

19

intal.

AP-485
cnmp eax, 1 ; make sure 1 is valid input for CPU D
jl end_cpui d_type ; if not, junp to end
nmov eax, 1
CPU_I D ; get fam |y/ nodel/stepping/features
nov _cpu_signature, eax
nmov _features_ebx, ebx
mov _features_edx, edx
nmov _features_ecx, ecx
shr eax, 8 ; isolate famly

and eax, Ofh

nov _cpu_type, al ; set _cpu_type with famly

end_cpui d_t ype:

pop edi ; restore registers
pop esi
pop ebx

comment this line for 32-bit segnents

. 8086
end_cpu_type:
ret
_get _cpu_type endp

E RS SRR S SRS S S S S EEEEEE R R R EEEEEEEREEEEEEEREEREEREREERE R EEE SRS EEEEEEEEEEES
’

public _get _fpu_type

_get _fpu_type proc

This procedure determines the type of FPU in a system
and sets the _fpu_type variable with the appropriate val ue.
Al registers are used by this procedure, none are preserved.

Copr ocessor check

The algorithmis to determ ne whether the floating-point
status and control words are present. If not, no
coprocessor exists. |f the status and control words can

be saved, the correct coprocessor is then determ ned

dependi ng on the processor type. The Intel 386 processor can
work with either an Intel 287 NDP or an Intel 387 NDP.

The infinity of the coprocessor nust be checked to deternine
the correct coprocessor type.

fninit ; reset FP status word

nov fp_status, 5ab5ah ; initialize tenp word to non-zero
f nst sw fp_status ; save FP status word

nov ax, fp_status ; check FP status word

cnmp al, 0 ; was correct status witten

nov fpu_type, O ; no FPU present

j ne End_f pu_type

check_control _word:

20

fnstcw fp_status ; save FP control word

nmv ax, fp_status ; check FP control word
and ax, 103fh ; selected parts to exam ne
cnmp ax, 3fh ; was control word correct

n
intel.

mv _fpu_type, O
jne end_f pu_type ; incorrect control word, no FPU
mv _fpu_type, 1

80287/ 80387 check for the Intel 386 processor
check_infinity:

cnp _cpu_type, 3
j ne end_f pu_type

fldl ; nust use default control fromFNINIT
fldz ; forminfinity
fdiv ; 8087/ 1ntel 287 NDP say +inf = -inf
fld st ; formnegative infinity
fchs ; Intel 387 NDP says +inf <> -inf
f conpp ; see if they are the sane
fstsw fp_status ; look at status from FCOWP
nmv ax, fp_status
nmov _fpu_type, 2 ; store Intel 287 NDP for FPU type
sahf ; see if infinities natched
jz end_f pu_type ; junp if 8087 or Intel 287 is present
mov _fpu_type, 3 ; store Intel 387 NDP for FPU type
end_f pu_type:
ret
_get _fpu_type endp
end

Example 2. Processor Identification Procedure in Assembly Language

; Fi | enane: cpui d3b. asm
; Copyright 1993, 1994, 1995, 1996, 1997 by Intel Corp.

; This program has been devel oped by Intel Corporation. Intel
; has various intellectual property rights which it nmay assert
; under certain circunstances, such as if another

; manuf acturer’s processor nmis-identifies itself as being

; “Genuinelntel” when the CPU D instruction is executed.

; Intel specifically disclainms all warranties, express or

; implied, and all liability, including consequential and

; ot her indirect danages, for the use of this program

; including liability for infringenent of any proprietary

; rights, and including the warranties of nerchantability and
; fitness for a particular purpose. |Intel does not assume any
; responsi bility for any errors which nay appear in this

; program nor any responsibility to update it.

Thi s program contains three parts:

; Part 1: Identifies processor type in the variable

; _cpu_type:

; Part 2: Identifies FPU type in the variable _fpu_type:

; Part 3: Prints out the appropriate nessage. This part is

; specific to the DOS environnent and uses the DOS
systemcalls to print out the nessages.

21

n
intgl.

; This program has been tested with the Mcrosoft Devel oper Studio. I|f
; this code is assenbled with no options specified and |inked

; with the cpuid3a nmodule, it correctly identifies the current

; Intel 8086/8088, 80286, 80386, 80486, Pentiunm(R), Pentiun(R) Pro,

; and Pentiunm(R) Il processors in the real -address node.

To assenble this code with TASM add the JUWPS directive.
; j unps ; Uncomment this line for TASM

TI TLE cpui d3b
coment this line for 32-bite segnents
DOSSEG
uncomment the following 2 lines for 32-bit segnents

: . 386
; . model flat

comment the following line for 32-bit segnents

. nodel smal |

.stack 100h

.data

extrn _cpu_type: byte
extrn _fpu_type: byt e
extrn _cpuid_flag: byt e
extrn _intel _CPU: byt e
extrn _vendor _i d: byt e
extrn _sep_flag: byt e
extrn _cpu_signature: dword
extrn _features_ecx: dword
extrn _features_edx: dword
extrn _features_ebx: dword

; The purpose of this code is to identify the processor and

; coprocessor that is currently in the system The program

; first determ nes the processor type. Then it determnes

; whet her a coprocessor exists in the system |If a

; coprocessor or integrated coprocessor exists, the program

; identifies the coprocessor type. The programthen prints

; the processor and floating point processors present and type.

. code
coment this line for 32-bit segnents
. 8086
start:
; coment the next three lines for 32-bit segnents
nmov ax, @lata

nmov ds, ax ; set segnment register

nov es, ax ; set segnment register

and sp, not 3 ; align stack to avoid AC faul t
call _get_cpu_type ; determ ne processor type

call _get_fpu_type

call print

22

n
intel.

nmv ax, 4c00h ; terminate program
int 21h

EEEEEEEEEEE SRS RS SRS RS EEEEEEEEEEEEEEEEEEEEREREREREREREEEEEE]
1

extrn _get_cpu_type: proc

EEEEEEEEEEE SRS RS SRS RS EEEEEEEEEEEEEEEEEEEEEEREREREREREEEEEEEE]
1

extrn _get_fpu_type: proc

EEEEEEEEEEE SRS RS E SRS RS EEEEEEEEEEEEEEEEEEEEREREREREREEEEEEEE]
1

FPU_FLAG equ 0001h
VME_FLAG equ 0002h
DE_FLAG equ 0004h
PSE_FLAG equ 0008h
TSC_FLAG equ 0010h
MSR_FLAG equ 0020h
PAE_FLAG equ 0040h
MCE_FLAG equ 0080h
CX8_FLAG equ 0100h
APl C_FLAG equ 0200h
SEP_FLAG equ 0800h
MIRR_FLAG equ 1000h
PCGE_FLAG equ 2000h
MCA_FLAG equ 4000h
CMOV_FLAG equ 8000h
MVX_FLAG equ 800000h
.data
id nsg db “This system has a$”
cp_error db “n unknown processor$”
cp_8086 db “n 8086/8088 processor$”
cp_286 db “n 80286 processor$”
cp_386 db “n 80386 processor$”
cp_486 db “n 80486DX, 80486DX2 processor or”
db “ 80487SX mat h coprocessor$”
cp_486sx db “n 80486SX processor$”
fp_8087 db “ and an 8087 math coprocessor$”
fp_287 db “ and an 80287 math coprocessor$”
fp_387 db “ and an 80387 math coprocessor$”
intel 486_nsg db “ Genuine Intel 486(TM processor$”
i nt el 486dx_nsg db “ Genuine Intel 486(TM DX processor$”
i ntel 486sx_nsg db “ Genuine Intel 486(TM SX processor$”
i ntel dx2_msg db “ Genuine Intel DX2(TM processor$”
intel sx2_mnsg db “ Genuine Intel SX2(TM processor$”
i ntel dx4_mnsg db “ Genuine Intel DX4(TM processor$”
i nt el dx2wb_nsg db “ Genui ne Wite-Back Enhanced”
db “ Intel DX2(TM processor$”
penti um nsg db “ Genuine Intel Pentiun(R) processor$”
penti unpro_nsg db “ Genuine Intel PentiunR) Pro processor$”
pentiumi_nsg db “ Genuine Intel PentiunmR) || processor$”
unknown_nsg db “n unknown Genuine Intel processor$”

23

AP-485

ntel _486_0
ntel 486 _1
ntel _486_2
ntel 486 _3
ntel _486_4
ntel 486 5
ntel _486_6
ntel 486 7
ntel _486_8
ntel 486 _9
ntel _486_a
ntel 486 _b
ntel _486_c
ntel 486 _d
ntel _486_e
ntel 486 f

dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw

of f set
of f set
of f set
of f set
of f set
of f set
of f set
of f set
of f set
of f set
of f set
of f set
of f set
of f set
of f set
of f set

The following 16 entries nust stay intact as an array
nt el 486dx_nsg
nt el 486dx_nsg
nt el 486sx_nsg

nt el dx2_nsg
nt el 486_nsg
nt el sx2_nsg
nt el 486_nsg

nt el dx2wb_nsg

nt el dx4_msg
ntel 486_nsg
nt el 486_nsg
ntel 486_nsg
nt el 486_nsg
ntel 486_nsg
nt el 486_nsg
ntel 486_nsg

; comment the above entries for the array & uncomment the entries below for

ntel _486_0
ntel 486 _1
ntel _486_2
ntel 486_3
ntel _486_4
ntel 486 5
ntel _486_6
ntel 486 _7
ntel _486_8
ntel 486 _9
ntel _486_a
ntel _486_b
ntel _486_c
ntel 486 _d
ntel _486_e
ntel 486 f

; end of array

fam ly_nsg
nmodel _nsg

st eppi ng_nsg
cr_If
turbo_nsg
dp_nsg

f pu_nsg
VIe_nsg
de_nsg
pse_nsg

24

for 32-bit segnents

dd of fset intel 486dx_nsg
dd of fset intel 486dx_nsg
dd of fset intel 486sx_nsg
dd of fset intel dx2_nsg
dd of fset intel 486_nsg
dd of fset intel sx2_nsg
dd of fset intel 486_nsg
dd of fset intel dx2wb_nsg
dd of fset intel dx4_nsg
dd of fset intel 486_nsg
dd of fset intel 486_nsg
dd of fset intel 486_nsg
dd of fset intel 486_nsg
dd of fset intel 486_nsg
dd of fset intel 486_nsg
dd of fset intel 486_nsg
13,10, "Processor Fam |y

13, 10, " Mbde

13, 10, " St eppi ng

13,10, %"

13, 10, " The processor is an OverDrive(R)”

upgr ade processor$”

13, 10, " The processor is the upgrade”

processor

FPUS"

13, 10, " The processor

in a dua
13, 10, " The processor

Mbde Ext ensi ons$”

13, 10, " The processor
Ext ensi ons$”

13, 10, " The processor
Ext ensi ons$”

processor systens”
contains an on-chip”

supports Virtual”
supports Debuggi ng”

supports Page Size”

u
intal.
tsc_nsg
nsr_nsg
pae_nsg
nte_nsg
cx8_nsg
api c_nsg
sep_nsg

no_sep_nsg

ntrr_nsg
pge_nsg
ncta_nsg
cnov_nsg
nmx_nsg
not _inte
ASC_MSG
LOCAL
add
cnp
jle
add
asci i _done
nov
nov
nov
int
ENDM
. code

13, 10, " The processor
“ Counter$”
13, 10, " The processor

supports

supports

“ Specific Registers$”

13, 10, " The processor

supports

“ Address Extensions$”

13, 10, " The processor
“ Check Exceptions$”
13, 10, " The processor
“ CMPXCHGBB i nstruct
13, 10, " The processor
“ APl C3$”

13, 10, " The processor
“ Call$”

13, 10, " The processor
“ System Cal | $”

13, 10, " The processor
“ Range Regi sters$”
13, 10, " The processor
“ Enabl e$”

13, 10, " The processor

supports
supports
on$”

cont ai ns
supports
does not
supports

supports

supports

“ Check Architecture$”

13, 10, " The processor
“ Move Instruction$”
13, 10, " The processor

supports

supports

“ MWK(TM Technol ogy$”

“t |least an 80486 processor.”
13,10,”"1t does not contain a Genuine”

“Intel part and as a
“the”, 13, 10, " CPU D’

“

result,”

“determined at this tine. $

MACRO nsg
ascii _done
al, 30h
al, 39h
asci i _done
al, 07h

byte ptr nsg[20], a
dx, offset nsg

ah, 9h

21h

| ocal

isit 0-9?

; coment the following line for 32-bit segnents

. 8086

Ti me Stanp”
Model ”

Physi cal ”
Machi ne”
the”

an on-chip”
Fast Systent
support Fast”
Menory Type”
Page d obal”
Machi ne”

Condi tional”

Intel Architecture”

detection information cannot be”

| abel

; uncomment the following line for 32-bit segnents

: . 386

AP-485

25

n
intgl.

print proc

This procedure prints the appropriate cpuid string and
nuneric processor presence status. |If the CPUI D instruction
was used, this procedure prints out the CPU D info

Al registers are used by this procedure, none are
preserved.

In the bal ance of the assenbly code there are lines that are required for
tools that support 32-bit segments only. |f problens occur during the
build process, try uncomrenting the lines that are near duplicates of the
lines following them These will be the necessary changes to get code for
32-bit segnents

nmv edx, offset id_msg

nmov dx, offset id_nsg ; print initial nessage
nmv ah, 9h
int 21h
cnmp _cpuid_flag, 1 ; if set to 1, processor
; supports CPU D instruction
je print_cpuid_data ; print detailed CPUD info
print_86

cnp _cpu_type, O

j ne print_286

nmv dx, offset cp_8086
nmov ah, 9h

int 21h
cnmp _fpu_type, O
je end_print

nov edx, offset fp_8087
nmv dx, offset fp_8087
nmov ah, 9h

int 21h

jnmp end_print

print_286:

print_287:

cnp _cpu_type, 2

j ne print_386

nmv edx, offset cp_286
nov dx, offset cp_286
nov ah, 9h

int 21h
cmp _fpu_type, O
je end_print

mov edx, offset fp_287
nov dx, offset fp_287
nov ah, 9h

int 21h

jmp end_print

print_386:

26

cnp _cpu_type, 3
j ne print_486

nov
nov
nov
int
cnp
je
cnp
je
nov
nov
nov
int
jnp
print_486
cnp
j ne
; nov
nov
cnp
je
; nov
nov

print_486sx
nov
int
jm

print_unknown:

nov
nov

jmp

edx, offset cp_386
dx, offset cp_386
ah, 9h

21h

_fpu_type, O
end_print
_fpu_type, 2
print_287

edx, offset fp_387
dx, offset fp_387
ah, 9h

21h

end_print

_cpu_type, 4

print _unknown

edx, offset cp_486sx
dx, offset cp_486sx
_fpu_type, O
print_486sx

edx, offset cp_486
dx, offset cp_486

ah, 9h
21h
end_print

edx, offset cp_error
dx, offset cp_error
print_486sx

print_cpuid_data

. 486
cnp
jne

_intel _CPU, 1
not _Genui nel nt el ;

print_486_type

cnp
jne
nov
nmov
shr
and
nov
nmov

jmp

_cpu_type, 4
print_pentiumtype

eax, dword ptr _cpu_signature
ax, word ptr _cpu_signature
ax, 4
eax, Ofh ;
edx, intel _486_0[eax*2]

dx, intel_486_0[eax*2]
print_conmmon

print_pentiumtype

cnp
j ne
; nov
nov
jm

_cpu_type, 5 ;
print_pentiunpro_type

edx, offset pentiumnsg

dx, offset pentiumnsg
print_common

Intel processors will have

CPU D instruction

check for genuine Inte
processor

if 4, print 80486 processor

i sol ate node

if 5 print Pentium processor

AP-485

27

AP-485

print_pentiunpro_type

cnp _cpu_type, 6
j ne print_unknown_type
nmv eax, dword ptr _cpu_signature
nov ax, word ptr _cpu_signature
shr ax, 4
and eax, Ofh
cnp eax, 3
jge print_pentiumi_type
cnp eax, 1
j ne print_unknown_type
mv _sep_flag, 0
nmv edx, offset pentiunpro_nsg
nov dx, offset pentiunpro_nsg
jmp print _conmmon
print_pentiumi_type
cnp eax, 3
j ne print_unknown_type
nmv eax, dword ptr _cpu_signature
nmov ax, word ptr _cpu_signature
and al, Ofh
cmp al, 3
jl no_sep
nov _sep_flag, 1
nmv edx, offset pentiunmii_nsg
nmov dx, offset pentiumi_nsg
jmp print _conmmon
no_sep:
nov _sep_flag, O
; nmov edx, offset pentiumi_nsg
nmv dx, offset pentiunii_mnsg
jnmp print_conmon

print_unknown_t ype
; nmv edx, offset unknown_nsg
nmov dx, offset unknown_nsg

print_common:

nmv ah, 9h
int 21h
; print famly, nodel, and stepping
print_famly:
nmv al, _cpu_type
ASC_MSG famly_nsg
print_nodel :
; nmv eax, dword ptr _cpu_signature
nmov ax, word ptr _cpu_signature
shr ax, 4

28

does not support

intal.

; if 6 & nodel print Pentium

Pro processor

1,

; isolate node

; incorrect nodel nunber = 2
Fast System
; Cal

& node
rocessor

if 6 3, print Pentium
I p

i sol ate stepping

; Sstepping does not support
; Fast System Cal

; if neither, print unknown

; print famly nsg

intal.

and

al, Ofh

ASC_MsG nodel _nsg ; print nodel nsg

print_stepping:

nmv eax, dword ptr _cpu_signature

nmov ax, word ptr _cpu_signature

and al, Ofh

ASC_MsG st eppi ng_nsg ; print stepping nsg

print_upgrade:

nov
nov
t est
jz

nov
nov
nov
int
jmp

check_dp
test
jz

; nov
nov
nov
int

eax, dword ptr _cpu_signature

ax, word ptr _cpu_signature

ax, 1000h ; check for turbo upgrade
check_dp

edx, offset turbo_mnsg

dx, offset turbo_nsg

ah, 9h

21h

print_features

ax, 2000h ; check for dual processor
print_features

edx, offset dp_nsg

dx, offset dp_nsg

ah, 9h

21h

print_features:

; nmov
nov
and
jz

; nmov
nov
nmov
int

check_VME

; nov
nov
and
jz

; nov
nov
nov
int

check_DE

and

int

eax, dword ptr _features_edx

ax, word ptr _features_edx

ax, FPU_FLAG ; check for FPU
check_VME

edx, offset fpu_nsg

dx, offset fpu_nsg

ah, 9h

21h

eax, dword ptr _features_edx

ax, word ptr _features_edx

ax, VME_FLAG ; check for VME
check_DE

eax, offset vne_nsg

dx, offset vme_nsg

ah, 9h

21h

eax, dword ptr _features_edx

ax, word ptr _features_edx

ax, DE _FLAG ; check for DE
check_PSE

edx, offset de_nsg

dx, offset de_nsg

ah, 9h

21h

AP-485

29

AP-485

check_PSE:

check_TSC:

check_MSR:

check_PAE:

check_MCE:

check_CXxa:

30

nov
nmov
and
jz

nov
nmov
nov
int

nov
nmov
and
jz

nov
nmov
nov
int

nov
nmov
and
jz

nov
nmov
nov
int

nov
nmov
and
jz

nov
nmov
nov
int

nov
nmov
and
jz

nov
nmov
nov
int

nov
nmov
and
jz

nov

eax, dword ptr _features_edx

ax, word ptr _features_edx

ax, PSE_FLAG ; check for PSE
check_TSC

edx, offset pse_nsg

dx, offset pse_nsg

ah, 9h

21h

eax, dword ptr _features_edx

ax, word ptr _features_edx

ax, TSC _FLAG ; check for TSC
check_MSR

edx, offset tsc_nsg

dx, offset tsc_nsg

ah, 9h

21h

eax, dword ptr _features_edx

ax, word ptr _features_edx

ax, MSR_FLAG ; check for MSR
check_PAE

edx, offset msr_nsg

dx, offset nsr_nsg

ah, 9h

21h

eax, dword ptr _features_edx

ax, word ptr _features_edx

ax, PAE_FLAG ; check for PAE
check_MCE

edx, offset pae_nsg

dx, offset pae_nsg

ah, 9h

21h

eax, dword ptr _features_edx

ax, word ptr _features_edx

ax, MCE_FLAG ; check for MCE
check_CX8

edx, offset nte_nsg

dx, offset nte_nsg

ah, 9h

21h

eax, dword ptr _features_edx

ax, word ptr _features_edx

ax, CX8_FLAG ; check for CMPXCHGEB
check_API C

edx, offset cx8_nsg

n
intel.

nmv dx, offset cx8_nsg
nmov ah, 9h
int 21h

check_API C
; nmov eax, dword ptr _features_edx
nmv ax, word ptr _features_edx
and ax, API C_FLAG ; check for APIC
jz check_SEP
; nmov edx, offset apic_nsg
nmv dx, offset apic_nsg
nmov ah, 9h
int 21h

check SEP
cnp _sep_flag, 1
j ne print_no_sep

; nmov edx, offset sep_nsg
nmv dx, offset sep_nsg
nov ah, 9h
int 21h
jnp check_MIRR

print_no_sep

; nmv edx, offset _no_sep_nsg
nmov dx, offset no_sep_nsg
nmv ah, 9h
int 21h

check_MIRR:
; nmv eax, dword ptr _features_edx
nmov ax, word ptr _features_edx
and ax, MIRR_FLAG ; check for MIRR
jz check_PCE
nmv edx, offset ntrr_nsg
nmov dx, offset ntrr_nsg
nmv ah, 9h
int 21h

check_PCGE
; nmv eax, dword ptr _features_edx

nmov ax, word ptr _features_edx

and ax, PGE_FLAG ; check for PGE

jz check_MCA

nmv edx, offset pge_nsg

nmov dx, offset pge_nsg

nmv ah, 9h

int 21h

check_MCA:
; nmv eax, dword ptr _features_edx

nmov ax, word ptr _features_edx

and ax, MCA FLAG ; check for MCA

jz check_CMOv

nmv edx, offset nta_nsg

nmov dx, offset nta_nsg

nmv ah, 9h

31

AP-485

int 21h

check_CMOV:
; nmov eax, dword ptr _features_edx
nmv ax, word ptr _features_edx
and ax, CMOV_FLAG ; check for CMOV
jz check_nmx
; nmov edx, offset cnov_nsg
nmov dx, offset cnov_nsg
nmov ah, 9h
int 21h

Check_MwX:
; nmov eax, dword ptr _features_edx
nmv eax, word ptr _features_edx
and eax, MWX_FLAG ; check for MW technol ogy
jz endpri nt
; nmov edx, offset mmx_nsg
nmv dx, offset mmx_nsg
nov ah, 9h
int 21h

jmp end_print

not _Genui nel ntel :

; nmov edx, offset not_intel
nmv dx, offset not_intel
nmov ah, 9h
int 21h

end_print:
; nmov edx, offset cr_|
nmv dx, offset cr_If
nmov ah, 9h
int 21h
ret
print endp

f

end start

32

/* Fil enane: cpuid3.c

/* Copyright 1994, 1995, 1996, 1997 by Intel Corp.

*

)

/* This program has been devel oped by Intel Corporation. |Intel has
/* various intellectual property rights which it nay assert under
/* certain circunmstances, such as if another manufacturer’s

/* processor nmis-identifies itself as being “Genuinelntel” when

/* the CPU D instruction is executed.

/*

/* Intel specifically disclaims all warranties, express or inplied,
/* and all liability, including consequential and other indirect

/* danmages, for the use of this program including liability for

/* infringement of any proprietary rights, and including the

/* warranties of merchantability and fitness for a particular

/* purpose. Intel does not assume any responsibility for any

/* errors which may appear in this programnor any responsibility
/* to update it.

/*

/*

/* This programcontains three parts:

/* Part 1: ldentifies CPU type in the variable _cpu_type:

/*

/* Part 2: ldentifies FPU type in the variable _fpu_type:

/*

/* Part 3: Prints out the appropriate nmessage.

/*

/* This program has been tested with the Mcrosoft Devel oper Studio.
/* If this code is conpiled with no options specified and |inked
/* with the cpuid3a nodule, it correctly identifies the current

/* Intel 8086/8088, 80286, 80386, 80486, PentiumR), PentiumR) Pro
/* processors and PentiumR) Il processors in the real -address node.
#def i ne FPU_FLAG 0x0001

#def i ne VME_FLAG 0x0002

#defi ne DE_FLAG 0x0004

#def i ne PSE_FLAG 0x0008

#defi ne TSC_FLAG 0x0010

#defi ne MSR_FLAG 0x0020

#def i ne PAE_FLAG 0x0040

#def i ne MCE_FLAG 0x0080

#def i ne CX8_FLAG 0x0100

#defi ne APl C_FLAG 0x0200

#def i ne SEP_FLAG 0x0800

#defi ne MTRR_FLAG 0x1000

#def i ne PGE_FLAG 0x2000

#def i ne MCA_FLAG 0x4000

#defi ne CMOV_FLAG 0x8000

#def i ne MUX_FLAG 0x800000

intal.

Example 3. Processor Identification Procedure in the C Language

extern char cpu_type;
extern char fpu_type;
extern char cpuid_flag;
extern char intel _CPU;
extern char vendor_id[12];

AP-485

33

AP-485

extern |l ong cpu_signature,;
extern long features_ecx;
extern |l ong features_edx;
extern |l ong features_ebx;

mai n() {
get _cpu_type();
get _fpu_type();
print();

print() {
printf(“This systemhas a”");
if (cpuid_flag == 0) {

switch (cpu_type) {

case O:
printf(“n 8086/8088 processor”);
if (fpu_type) printf(“ and an 8087 nath coprocessor”);
br eak;

case 2:
printf(“n 80286 processor”);
if (fpu_type) printf(“ and an 80287 nath coprocessor”);
br eak;

case 3:
printf(“n 80386 processor”);
if (fpu_type == 2)

printf(“ and an 80287 math coprocessor”);
else if (fpu_type)
printf(“ and an 80387 math coprocessor”);

br eak;

case 4:
if (fpu_type) printf(“n 80486DX, 80486DX2 processor or \

80487SX mat h coprocessor”);

el se printf(“n 80486SX processor”);
br eak;

defaul t:
printf(“n unknown processor”);

} else {
/* using cpuid instruction */
if (intel _CPU {
if (cpu_type == 4) {
switch ((cpu_signature>>4)&0xf) {
case O:
case 1:
printf(“ Genuine Intel 486(TM DX processor”);
br eak;
case 2:
printf(“ Genuine Intel 486(TM SX processor”);
br eak;
case 3:
printf(“ Genuine Intel DX2(TM processor”);
br eak;
case 4:
printf(“ Genuine Intel 486(TM processor”);
br eak;
case 5:

34

n
intel.

printf(* Genuine Intel SX2(TM processor”);
br eak;
case 7:
printf(“ Genuine Wite-Back Enhanced \
Intel DX2(TM processor”);
br eak;
case 8:
printf(“ Genuine Intel DX4(TM processor”);
br eak;
defaul t:
printf(* Genuine Intel 486(TM processor”);

}
} else if (cpu_type == 5)
printf(“ Genuine Intel Pentiun(R) processor”);
else if ((cpu_type == 6) & & (((cpu_signature >> 4) & Oxf) == 1))
printf(“ Genuine Intel Pentiun(R) Pro processor”);
else if ((cpu_type == 6) & & (((cpu_signature >> 4) & Oxf) == 3))
printf(“ Genuine Intel Pentiun(R) Il processor”);
el se
printf(“n unknown Genuine Intel processor”);
printf(“\nProcessor Family: %", cpu_type);
printf(“\nModel: 9", (cpu_signature>>4)&0xf);
printf(“\nStepping: %X\ n”, cpu_signature&Oxf);
if (cpu_signature & 0x1000)
printf(“\'nThe processor is an OverDrive(R) upgrade \
processor”);
else if (cpu_signature & 0x2000)
printf(“\nThe processor is the upgrade processor \
in a dual processor systeni);
if (features_edx & FPU FLAG
printf(“\'nThe processor contains an on-chip FPU);
if (features_edx & VME_FLAG
printf(“\'nThe processor supports Virtual Mde \
Ext ensi ons”) ;
if (features_edx & DE_FLAG
printf(“\nThe processor supports the Debuggi ng\
Ext ensi ons”) ;
if (features_edx & PSE _FLAG
printf(“\'nThe processor supports Page Size \
Ext ensi ons”) ;
if (features_edx & TSC FLAG
printf(“\nThe processor supports Tine Stanp \

Counter”);
if (features_edx & MBR_FLAG
printf(“\'nThe processor supports Mdel Specific \
Regi sters”);
if (features_edx & PAE _FLAG
printf(“\nThe processor supports Physical Address \
Ext ension”);
if (features_edx & MCE_FLAG
printf(“\'nThe processor supports Machi ne Check \
Exceptions”);
if (features_edx & CX8_FLAG
printf(“\nThe processor supports the CVPXCHE3B \
instruction”);
if (features_edx & API C_FLAG
printf(“\'nThe processor contains an on-chip APIC);

35

n
intgl.

if (features_edx & SEP_FLAG {
if ((cpu_type == 6) && (((cpu_signature >> 4) &0xf) < 3)
&& ((cpu_signature & Oxf) < 3))
printf(“\nThe processor does not support the Fast \
System Cal | ") ;
el se
printf(“\'nThe processor supports the Fast System)\
Call”);

}
if (features_edx & MIRR_FLAG
printf(“\'nThe processor supports the Menory Type \
Range Registers”);
if (features_edx & PGE_FLAG
printf(“\nThe processor supports Page d obal Enable”);
if (features_edx & MCA FLAG
printf(“\nThe processor supports the Machi ne Check \
Architecture”);
if (features_edx & CMOV_FLAG
printf(“\'nThe processor supports the Conditional \
Move Instruction”);
if (features_edx & MW _FLAG
printf(“\nThe processor supports Intel Architecture \
MUX t echnol ogy”) ;
} else {
printf(“t least an 80486 processor.\nlt does not \
contain a Genuine Intel part and as a result, the\nCPU D detection \
informati on cannot be deternmined at this tinme.”);

}
}
printf(“\n”);

36

	1.0. INTRODUCTION
	1.1. Update Support

	2.0. DETECTING THE CPUID INSTRUCTION
	3.0. OUTPUT OF THE CPUID INSTRUCTION
	3.1. Vendor ID String
	3.2. Processor Signature
	3.3. Feature Flags
	3.4. Cache Size and Format Information
	3.5. SYSENTER/SYSEXIT – SEP Features Bit
	3.6. Pentium ® Pro Processor Output Example
	3.7. Pentium ® II Processor Output Example

	4.0. USAGE GUIDELINES
	5.0. PROPER IDENTIFICATION SEQUENCE
	6.0. USAGE PROGRAM EXAMPLES

