

AP-485

APPLICATION
NOTE

Intel Processor Identification
With the CPUID Instruction

October 1994

Order Number: 241618-003

AP-485

ii

Additional copies of this document or other Intel literature may be obtained from:

Intel Corporation
Literature Sales
P.O. Box 7641
Mt. Prospect, IL 60056-7641
or call 1-800-879-4683

Information in this document is provided solely to enable use of Intel products. Intel assumes no liability whatsoever,
including infringement of any patent or copyright, for sale and use of Intel products except as provided in Intel's Terms and
Conditions of Sale for such products.

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may
appear in this document nor does it make a commitment to update the information contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.

Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your product order.

MDS is an ordering code only and is not used as a product name or trademark of Intel Corporation.

Intel Corporation and Intel's FASTPATH are not affil iated with Kinetics, a division of Excelan, Inc. or its FASTPATH trade-
mark or products.

*Other brands and names are the property of their respective owners.

Copyright © 1993, 1994, Intel Corporation CG/042193

Revision Revision History Date

-001 Original Issue. 05/93

-002 Modified Table 2. Intel486 and Pentium Processor Signatures 10/93

-003 Updated to accomodate new processor versions. Program
examples modified for ease of use, section added discussing BIOS
recognition for OverDrive processors, and feature flag information
updated.

09/94

AP-485

0

1.0 INTRODUCTION ..1

1.1 Update Support1

2.0 DETECTING THE CPUID INSTRUCTION1

3.0 OUTPUTS OF THE CPUID INSTRUCTION...1

3.1 Vendor-ID String2
3.2 Processor Signature3
3.3 Feature Flags ...5

4.0 USAGE GUIDELINES6

5.0 BIOS RECOGNITION FOR INTEL
OVERDRIVE PROCESSORS.....................7

Example 1 ..7
Example 2 ..8

6.0 PROPER IDENTIFICATION SEQUENCE8

7.0 USAGE PROGRAM EXAMPLE10

Examples

Example 1. Processor Identification Extraction
Procedure11

Example 2. Processor Identification Procedure
in Assembly Language17

Example 3. Processor Identification Procedure
in the C Language25

Figures

Figure 1. CPUID Instruction Outputs2

Figure 2. Processor Signature Format on
Intel386 Processors4

Figure 3. Flow of Processor get_cpu_type
Procedure ...9

Figure 4. Flow of Processor Identification Extrac-
tion Procedures10

Tables

Table 1. Effects of EAX Contents on CPUID
Instruction Output3

Table 2. Processor Type3

Table 3. Intel486 and Pentium Processor
Signatures ..4

Table 4. Intel386 Processor Signatures5

Table 5. Feature Flag Values6

CONTENTS

PAGE PAGE

iii

AP-485

1

1.0 INTRODUCTION

As the In tel Archi tecture evolves, with the
addition of new generations and models of pro-
cessors (8086, 8088, Intel 286, In tel386,
Intel486, and Pentium processors), it is
essential that Intel provides an increasingly
sophisticated means with which software can
identify the features available on each proces-
sor. This identification mechanism has evolved
in conjunction with the Intel Architecture as
follows:

• Originally, Intel published code sequences
that could detect minor implementation dif-
ferences to identify processor generations.

• Later, with the advent of the Intel386 pro-
cessor, Intel implemented processor signa-
ture identif ication, which prov ided the
processor family, model, and stepping num-
bers to software at reset.

• As the Intel Archi tecture evolved, Intel
extended the processor signature identifica-
t ion in to the CPUID inst ruct ion. The
CPUID instruction not only provides the
processor signature, but also prov ides
information about the features supported by
and implemented on the Intel processor.

The evolution of processor identification was
necessary because, as the Intel Architecture
proliferates, the computing market must be able
to tune processor functionality across processor
generations and models that have differing sets
of features. Anticipating that this trend will
continue with future processor generations, the
Inte l Arch i tecture implementat ion of the
CPUID instruction is extensible.

This Application Note explains how to use the
CPUID instruction in software applications,
BIOS implementations, and tools. By taking
advantage of the CPUID instruction, software
developers can create software applications and
tools that can execute compatibly across the
widest range of Intel processor generations and
models, past, present, and future.

1.1 Update Support

New Intel processor signature and feature bits
information can be obtained from the user ’s
manual, programmer ’s reference manual or
appropriate documentation for a processor. In
addition,Intel can provide you with updated
vers ions o f the prog rammin g exa mples
included in this application note; contact your
Intel representative for more information.

2.0 DETECTING THE CPUID
INSTRUCTION

Intel has provided a straightforward method for
detecting whether the CPUID instruction is
available. This method uses the ID flag in bit
21 of the EFLAGS register. If sof tware can
change the va lue of this f lag, the CPUID
instruction is available. The program examples
at the end of this Application Note show how to
use the PUSHFD instruction to read and the
POPFD instruction to change the value of the
ID flag.

3.0 OUTPUTS OF THE CPUID
INSTRUCTION

Figure 1 summarizes the outputs of the CPUID
instruction.

The CPUID instruction can be executed multi-
ple times, each time with a different parameter
value in the EAX register. The output depends
on the value in the EAX register, as specified in
Table 1. To determine the highest acceptable
value in the EAX register, the program should
set the EAX register parameter value to 0. In
this case, the CPUID instruction returns the
highest va lue that can be recognized in the
EAX register. CPUID instruction execution
should always use a parameter value that is less
than or equal to this highest returned value.
Currently, the highest value recognized by the

AP-485

2

CPUID inst ruction is 1. Future processors
might recognize higher values.

The processor type, specified in bits 12 and 13,
indicate whether the processor is an original
OEM processor, an OverDrive processor, or is
a dual processor (capable of being used in a
dual processor system). Table 2 shows the pro-
cessor type values that can be returned in bits
12 and 13 of the EAX register.

RESET

FAMILY

MODEL

STEPPING

PROCESSOR

VENDOR ID

FEATURE FLAGS

EDX
EAX

G (47)n (6E)u (75)

i (69)n (6E)e (65)I (49)

n (6E)t (74)e (65)l (6C)

e (65)EBX

EDX

ECX

EDX*

0

0

31

31

23 15 7

BIT ARRAY (Refer to T able 5)

OUTPUT IF EAX = 1

OUTPUT IF EAX = 0

HIGH VALUE EAX

031

 ASCII STRING (WITH HEXADECIMAL ENCODING)

INTEGER

031 11 7 3

INTEL RESERVED (DO NOT USE)

Figure 1. CPUID Instruction Outputs

SIGNATURE

13

*EBX and ECX are Intel reserved. Do not use.

PROCESSOR TYPE

3.1 Vendor-ID String

If the EAX register contains a value of 0, the
vendor identification string is returned in the
EBX, EDX, and ECX registers. These registers
contain the ASCII string GenuineIntel .

While any imitator of the Intel Architecture can
provide the CPUID instruction, no imitator can
legitimately claim that its part is a genuine Intel
part . Therefore, the presence of the Genu-
ineInte l st ring is an assurance that the
CPUID instruction and the processor signature
are implemented as described in this document.

AP-485

3

1. Not applicable to Intel386 and Intel486 processors

Table 1. Effects of EAX Contents on CPUID Instruction Output

Parameter Outputs of CPUID

EAX = 0 EAX ← Highest value recognized

EBX:EDX:ECX ← Vendor identification string

EAX = 1 EAX ← Processor signature

EDX ← Feature flags

EBX:ECX ← Intel reserved (Do not use.)

1 < EAX ≤ highest value Currently undefined

EAX > highest value EAX:EBX:ECX:EDX ← Undefined (Do not use.)

Table 2. Processor Type

Bit Position Value Descr iption

13,12 00 Original OEM processor

01 OverDrive Processor

10 Dual processor1

11 Intel reserved. (Do not use.)

3.2 Processor Signature

Beginning with the Intel386 processor family,
the processor signature has been available at
reset . Wi th processors that implement the
CPUID instruction, the processor signature is
available both upon reset and upon execution of
the CPUID instruction. Figure 1 shows the for-
mat of the signature for the Intel486 and Pen-
tium processor families. Table 3 shows the
val ues tha t a re c urr ent l y d ef i ned. (The
high-order 18 bits are undefined and reserved.)

Older versions of Intel486 SX, Intel486 DX
and IntelDX2 processors do not support the
CPUID instruction. Therefore, the processor
signature is only available upon reset for these
processors. Refer to the programming examples
at the end of this Application Note to determine
which processors support the CPUID instruc-
tion.

On Intel386 processors, the format of the pro-
cessor signature is somewhat different, as Fig-
ure 2 shows. Table 4 gives the current values.

AP-485

4

1. Intel releases information about stepping numbers as needed.
2. This processor does not implement the CPUID instruction.

Table 3. Intel486  and Pentium  Processor Signatures

Family Model Stepping 1 Description

0100 0000 and 0001 xxxx Intel486 DX Processors

0100 0010 xxxx Intel486 SX Processors

0100 0011 xxxx Intel487 Processors2

0100 0011 xxxx IntelDX2 and IntelDX2 OverDrive Processors

0100 0100 xxxx Intel486 SL Processor2

0100 0101 xxxx IntelSX2 Processors

0100 0111 xxxx Write-Back Enhanced IntelDX2 Processors

0100 1000 xxxx IntelDX4 and IntelDX4 OverDrive Processors

0101 0001 xxxx Pentium Processors (510\60, 567\66)

0101 0010 xxxx Pentium Processors (735\90, 815\100)

0101 0011 xxxx Pentium OverDrive Processors

0101 0101 xxxx Reserved for Pentium OverDrive Processor for
IntelDX4 Processor

0101 0010 xxxx Reserved for Pentium OverDrive Processor for
Pentium Processor (510/60, 567/66)

0101 0100 xxxx Reserved for Pentium OverDrive Processor for
Pentium Processor (735\90, 815\100)

RESET EDX

15

FAMILY

MODEL

MAJOR STEPPING

031 11 7 3

RESERVED AND UNDEFINED

MINOR STEPPING

Figure 2. Processor Signature Format on Intel386  Processors

AP-485

5

1. Intel releases information about minor stepping numbers as needed.

Table 4. Intel386  Processor Signatures

Model Family
Major
Stepping

Minor
Stepping 1 Description

0000 0011 0000 xxxx Intel386 DX Processor

0010 0011 0000 xxxx Intel386 SX Processor

0010 0011 0000 xxxx Intel386 CX Processor

0010 0011 0000 xxxx Intel386 EX Processor

0100 0011 0000 and 0001 xxxx Intel386 SL Processor

0000 0011 0100 xxxx RAPIDCAD Processor

3.3 Feature Flags

When a value of 1 is placed in the EAX regis-
ter, the CPUID instruction loads the EDX regis-
ter with the feature flags. The feature flags
indicate which features the processor supports.
A value of 1 in a feature flag can indicate that a
feature is either supported or not supported,
depending on the implementation of the CPUID
instruction for a specific processor. Table 5 lists
the currently defined feature flag values. For
future processors, refer to the programmer ’s

reference manual, user’s manual, or the appro-
priate documentation for the latest feature flag
values.

Developers should use the feature flags in
applications to determine which processor fea-
tures are supported. By using the CPUID fea-
ture flags to predetermine processor features,
software can detect and avoid incompatibilities
that could result if the features are not present.

AP-485

6

1. Some non-essential information regarding Intel486 and Pentium processors is considered Intel confidential and
proprietary and is not documented in this publication. This information is provided in the Supplement to the
Pentium Processor User’s Manual and is available with the appropriate non-disclosure agreements in place.
Contact Intel Corporation for details.

Table 5. Feature Flag Values

Bit Name Description When Flag = 1 Comments

0 FPU Floating-point unit on-chip The processor contains an FPU that supports the Intel
387 floating-point instruction set.

1 VME Virtual Mode Extension The processor supports extensions to virtual-8086
mode.

21 (see note)

3 PSE Page Size Extension The processor supports 4-Mbyte pages.

4–61 (see note)

7 MCE Machine Check Exception 18 is defined for Pentum processor style
machine checks, including CR4.MCE for controlling
the feature. This feature does not define the
model-specific implementation of the machine -check
error logging reporting and processor shutdowns.
Machine-check exception handlers may have to
depend on processor version to do model-specific
processing of the exception or test for the presence of
the standard machine-check feature.

8 CX8 CMPXCHG8B The 8-byte (64-bit) compare and exchange
instructions is supported (implicitly locked and atomic).

9 APIC On-chip APIC Indicates that an integrated APIC is present and
hardware enabled. (Software disabling does not affect
this bit.)

10–311 (see note)

4.0 USAGE GUIDELINES

This document presents Intel-recommended
feature-detection methods. Software should not
try to identify features by exploiting program-
ming tricks, undocumented features, or other-
wise deviating from the guidelines presented in
this Application Note. The following is a list of
guidelines that can help programmers maintain
the widest range of compatibility for their soft-
ware.

• Do not depend on the absence of an invalid
opcode trap on the CPUID opcode to detect
CPUID. Do not depend on the absence of an
invalid opcode trap on the PUSHFD opcode

to detect a 32-bit processor. Test the ID flag,
as described in Section 2.0 and shown in
Section 6.0 .

• Do not assume that a given family or model
has any specific feature. For example, do not
assume that, because the family value is 5
(Pentium processor), there must be a
floating-point unit on-chip. Use the feature
flags for this determination.

• Do not assume that the features in the
OverDrive processors are the same as those in
the OEM version of the processor. Internal
caches and instruction execution might vary.

AP-485

7

• Do not use undocumented features of a
processor to identify steppings or features.
For example, the Intel386 processor A-step
had bit instructions that were withdrawn with
B-step. Some software attempted to execute
these instructions and depended on the
invalid-opcode exception as a signal that it
was not running on the A-step part. This
software failed to work correctly when the
Intel486 processor used the same opcodes for
different instructions. That software should
have used the stepping information in the
processor signature.

• Do not assume that a value of 1 in a feature
flag indicates that a given feature is present,
even though that is the case in the first models
of the Pentium processor in which the CPUID
instruction is implemented. For some feature
flags that might be defined in the future, a
value of 1 can indicate that the corresponding
feature is not present.

• Programmers should test feature flags
individually and not make assumptions about
undefined bits. It would be a mistake, for
example, to test the FPU bit by comparing the
feature register to a binary 1 with a compare
instruction.

• Do not assume that the clock of a given
family or model runs at a specific frequency
and do not write clock-dependent code, such
as timing loops. For instance, an OverDrive
Processor could operate at a higher internal
frequency and still report the same family
and/or model. Instead, use the system’s timers
to measure elapsed time.

• Processor model-specific registers may differ
among processors, including in various
models of the Pentium processor. Do not use
these registers unless identified for the
installed processor.

5.0 BIOS RECOGNITION FOR
INTEL OVERDRIVE
PROCESSORS

A system’s BIOS will typically identify the
processor in the system and initialize the hard-
ware accordingly. In many cases, the BIOS
identifies the processor by reading the proces-
sor signature, comparing it to known signa-
tures, and, upon finding a match, executing the
corresponding hardware initialization code.

The Pentium OverDrive processor is designed
to be an upgrade to any Intel486 family proces-
sor. Because there are significant operational
differences between these two processor fami-
lies, processor misidentification can cause sys-
tem failures or diminished performance. Major
differences between the Intel486 processor and
the Pentium OverDrive processor include the
type of on-chip cache supported (write-back or
write-through), cache organization and cache
size. The OverDrive processor also has an
enhanced floating point unit and System Man-
agement Mode (SMM) that may not exist in the
OEM processor. Inability to recognize these
features causes problems like those described
below.

In many BIOS implementations, the BIOS
reads the processor signature at reset and com-
pares it to known values. If the OverDrive pro-
cessor ’s signature is not among the known
values, a match will not occur and the Over-
Drive processor will not be identified. Often
the BIOS will drop out of the search and initial-
ize the hardware based on a default case such
as intializing the chipset for an Intel486 SX
processor. Below are two common examples of
system failures and how to avoid them.

Example 1

If (for the Pentium OverDrive processor) the
system’s hardware is configured to enable the
write-back cache but the BIOS fails to detect
the Pentium OverDrive processor signature, the
BIOS may incorrectly cause the chipset to sup-

AP-485

8

por t a write-through processor cache. This
results in a data incoherency problem with the
bus masters. When a bus master accesses a
memory location (which was also in the proces-
sor’s cache in a modified state), the processor
will alert the chipset to allow it to update this
data in memory. But the chipset is not pro-
grammed for such an event and the bus master
instead receives stale data. This usually results
in a system failure.

Example 2

If the BIOS does not recognize the OverDrive
processor’s signature and defaults to a Intel486
SX processor, the BIOS can incorrectly pro-
gram the chipset to ignore, or improperly route,
the assertion of the floating point error signaled
by the processor. The result is that floating
point errors will be improperly handled by the
Pentium OverDrive processor. The BIOS may
also completely disable math exception han-
dling in the OverDrive processor. This can
cause installation errors in applications that
requi re hardware support for floating point
instructions.

Hence, when programming or modifying a
BIOS, be aware of the impact of future Over-
Drive processors. Intel recommends that you
include processor signatures for the OverDrive
processors in BIOS identification routines to
eliminate diminished performance or system

failures. The recommendations in this applica-
tion note can help a BIOS maintain compatibil-
i t y a c ro s s a w id e r a ng e o f p r oc es s or
generations and models.

6.0 PROPER IDENTIFICATION
SEQUENCE

The cpuid3a.asm program example demon-
strates the correct use of the CPUID instruc-
tion. (See Example 1.) It also shows how to
identify earlier processor generations that do
not implement the processor signature or
CPUID instruction. This program example con-
tains the following two procedures:

• get_cpu_type identifies the processor
type. Figure 3 illustrates the flow of this
procedure.

• get_fpu_type determines the type of
floating-point unit (FPU) or math coprocessor
(MCP).

This procedure has been tested wi th 8086,
80286, In te l386, In te l486 , and Pent ium
processors. This program example is written in
assembly language and is suitable for inclusion
in a run-time library, or as system calls in oper-
ating systems.

AP-485

9

cpu_type=0

Is the
CPUID

instruction
supported

Does the
vendor ID =

“GenuineIntel”
?

?

Is it
an 8086

processor?

Is it
an 80286

processor?

Is it
an 80386

processor?

No

No

No

Yes

cpu_type=2

cpu_type=3

cpu_type>=4

Yes

Yes

Yes

No

cpuid_flag = 1; indicates
CPUID instruction present.

Execute CPUID w ith input of 0
to get vendor ID string and

input values for EAX.

If highest input value is at least 1,
execute CPUID with input of 1 in
EAX to obtain model, stepping,

family, and features.
Save in cpu_type, stepping,

model, and feat ure_flags.

Yes

No

end_get_cpu_type

Figure 3. Flow of Processor get_cpu_type Procedure

AP-485

10

7.0 USAGE PROGRAM EXAMPLE

The cpuid3b.asm and cpuid3b.c program
examples demonstrate applications that call
get_cpu_type and get_fpu_type proce-
dures and interpret the returned information.
The results, which are displayed on the moni-
tor, identify the installed processor and fea-
tures. The cpuid3b.asm example is written in

AAAAAAAAAAAAAAAAAAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAAAAAAAAAAAAAAAAAAAA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

Main

Figure 4. Flow of Processor Identification Extraction Procedures

get_cpu_type*

get_fpu_type

Print

End

Part of
cpuid3a.asm

Part of
cpuid3b.c andcpu
cpuid3b.asm

*See Figure 3.

assembly language and demonstrates an appli-
cation that displays the returned information in
the DOS environment. The cpuid3b.c exam-
ple is written in the C language. (See Examples
2 and 3.)

Figure 4 presents an overview of the relation-
ship between the three program examples.

AP-485

11

Example 1. Processor Identification Extraction Procedure

; Filename: cpuid3a.asm
; Copyright 1993, 1994 by Intel Corp.
;
; This program has been developed by Intel Corporation. You
; have Intel's permission to incorporate this source code into
; your product, royalty free. Intel has intellectual property
; rights which it may assert if another manufacturer's processor
; mis-identifies itself as being "GenuineIntel" when the CPUID
; instruction is executed.
;
; Intel specifically disclaims all warranties, express or
; implied, and all liability, including consequential and other
; indirect damages, for the use of this code, including
; liability for infringement of any proprietary rights, and
; including the warranties of merchantability and fitness for a
; particular purpose. Intel does not assume any responsibility
; for any errors which may appear in this code nor any
; responsibility to update it.
;
; This code contains two procedures:
; _get_cpu_type: Identifies processor type in _cpu_type:
; 0=8086/8088 processor
; 2=Intel 286 processor
; 3=Intel386(TM) family processor
; 4=Intel486(TM) family processor
; 5=Pentium(TM) family processor
;
; _get_fpu_type: Identifies FPU type in _fpu_type:
; 0=FPU not present
; 1=FPU present
; 2=287 present (only if _cpu_type=3)
; 3=387 present (only if _cpu_type=3)
;
; This program has been tested with the MASM assembler.
; This code correctly detects the current Intel 8086/8088,
; 80286, 80386, 80486, and Pentium(tm) processors in the
; real-address mode.
;
; To assemble this code with TASM, add the JUMPS directive.
; jumps ; Uncomment this line for TASM

 TITLE cpuid3a
 DOSSEG
 .model small

CPU_ID MACRO

AP-485

12

 db 0fh ; Hardcoded CPUID instruction
 db 0a2h
ENDM

 .data
 public _cpu_type
 public _fpu_type
 public _cpuid_flag
 public _intel_CPU
 public _vendor_id
 public _cpu_signature
 public _features_ecx
 public _features_edx
 public _features_ebx
_cpu_type db 0
_fpu_type db 0
_cpuid_flag db 0
_intel_CPU db 0
_vendor_id db "------------"
intel_id db "GenuineIntel"
_cpu_signature dd 0
_features_ecx dd 0
_features_edx dd 0
_features_ebx dd 0
fp_status dw 0

 .code
 .8086

;***

 public _get_cpu_type
_get_cpu_type proc

; This procedure determines the type of processor in a system
; and sets the _cpu_type variable with the appropriate
; value. If the CPUID instruction is available, it is used
; to determine more specific details about the processor.
; All registers are used by this procedure, none are preserved.
; To avoid AC faults, the AM bit in CR0 must not be set.

; Intel 8086 processor check
; Bits 12-15 of the FLAGS register are always set on the
; 8086 processor.

check_8086:
 pushf ; push original FLAGS
 pop ax ; get original FLAGS
 mov cx, ax ; save original FLAGS
 and ax, 0fffh ; clear bits 12-15 in FLAGS

AP-485

13

 push ax ; save new FLAGS value on stack
 popf ; replace current FLAGS value
 pushf ; get new FLAGS
 pop ax ; store new FLAGS in AX
 and ax, 0f000h ; if bits 12-15 are set, then
 cmp ax, 0f000h ; processor is an 8086/8088
 mov _cpu_type, 0 ; turn on 8086/8088 flag
 je end_cpu_type ; jump if processor is 8086/8088

; Intel 286 processor check
; Bits 12-15 of the FLAGS register are always clear on the
; Intel 286 processor in real-address mode.

 .286
check_80286:
 or cx, 0f000h ; try to set bits 12-15
 push cx ; save new FLAGS value on stack
 popf ; replace current FLAGS value
 pushf ; get new FLAGS
 pop ax ; store new FLAGS in AX
 and ax, 0f000h ; if bits 12-15 are clear
 mov _cpu_type, 2 ; processor=80286, turn on 80286 flag
 jz end_cpu_type ; if no bits set, processor is 80286

; Intel386 processor check
; The AC bit, bit #18, is a new bit introduced in the EFLAGS
; register on the Intel486 processor to generate alignment
; faults.
; This bit cannot be set on the Intel386 processor.

 .386 ; it is safe to use 386 instructions
check_80386:
 pushfd ; push original EFLAGS
 pop eax ; get original EFLAGS
 mov ecx, eax ; save original EFLAGS
 xor eax, 40000h ; flip AC bit in EFLAGS
 push eax ; save new EFLAGS value on stack
 popfd ; replace current EFLAGS value
 pushfd ; get new EFLAGS
 pop eax ; store new EFLAGS in EAX
 xor eax, ecx ; can't toggle AC bit, processor=80386
 mov _cpu_type, 3 ; turn on 80386 processor flag
 jz end_cpu_type ; jump if 80386 processor

 push ecx
 popfd ; restore AC bit in EFLAGS first

; Intel486 processor check
; Checking for ability to set/clear ID flag (Bit 21) in EFLAGS
; which indicates the presence of a processor with the CPUID

AP-485

14

; instruction.

 .486
check_80486:
 mov _cpu_type, 4 ; turn on 80486 processor flag
 mov eax, ecx ; get original EFLAGS
 xor eax, 200000h ; flip ID bit in EFLAGS
 push eax ; save new EFLAGS value on stack
 popfd ; replace current EFLAGS value
 pushfd ; get new EFLAGS
 pop eax ; store new EFLAGS in EAX
 xor eax, ecx ; can't toggle ID bit,
 je end_cpu_type ; processor=80486

; Execute CPUID instruction to determine vendor, family,
; model, stepping and features. For the purpose of this
; code, only the initial set of CPUID information is saved.

 mov _cpuid_flag, 1 ; flag indicating use of CPUID inst.
 push ebx ; save registers
 push esi
 push edi
 mov eax, 0 ; set up for CPUID instruction
 CPU_ID ; get and save vendor ID

 mov dword ptr _vendor_id, ebx
 mov dword ptr _vendor_id[+4], edx
 mov dword ptr _vendor_id[+8], ecx

 mov si, ds
 mov es, si

 mov si, offset _vendor_id
 mov di, offset intel_id
 mov cx, 12 ; should be length intel_id
 cld ; set direction flag
 repe cmpsb ; compare vendor ID to "GenuineIntel"
 jne end_cpuid_type ; if not equal, not an Intel processor

 mov _intel_CPU, 1 ; indicate an Intel processor
 cmp eax, 1 ; make sure 1 is valid input for CPUID
 jl end_cpuid_type ; if not, jump to end
 mov eax, 1
 CPU_ID ; get family/model/stepping/features
 mov _cpu_signature, eax
 mov _features_ebx, ebx
 mov _features_edx, edx
 mov _features_ecx, ecx

 shr eax, 8 ; isolate family

AP-485

15

 and eax, 0fh
 mov _cpu_type, al ; set _cpu_type with family

end_cpuid_type:
 pop edi ; restore registers
 pop esi
 pop ebx

 .8086
end_cpu_type:
 ret
_get_cpu_type endp

;***

 public _get_fpu_type
_get_fpu_type proc

; This procedure determines the type of FPU in a system
; and sets the _fpu_type variable with the appropriate value.
; All registers are used by this procedure, none are preserved.

; Coprocessor check
; The algorithm is to determine whether the floating-point
; status and control words are present. If not, no
; coprocessor exists. If the status and control words can
; be saved, the correct coprocessor is then determined
; depending on the processor type. The Intel386 processor can
; work with either an Intel287 NDP or an Intel387 NDP.
; The infinity of the coprocessor must be checked to determine
; the correct coprocessor type.

 fninit ; reset FP status word
 mov fp_status, 5a5ah; initialize temp word to non-zero
 fnstsw fp_status ; save FP status word
 mov ax, fp_status ; check FP status word
 cmp al, 0 ; was correct status written
 mov _fpu_type, 0 ; no FPU present
 jne end_fpu_type

check_control_word:
 fnstcw fp_status ; save FP control word
 mov ax, fp_status ; check FP control word
 and ax, 103fh ; selected parts to examine
 cmp ax, 3fh ; was control word correct
 mov _fpu_type, 0
 jne end_fpu_type ; incorrect control word, no FPU
 mov _fpu_type, 1

; 80287/80387 check for the Intel386 processor

AP-485

16

check_infinity:
 cmp _cpu_type, 3
 jne end_fpu_type
 fld1 ; must use default control from FNINIT
 fldz ; form infinity
 fdiv ; 8087/Intel287 NDP say +inf = -inf
 fld st ; form negative infinity
 fchs ; Intel387 NDP says +inf <> -inf
 fcompp ; see if they are the same
 fstsw fp_status ; look at status from FCOMPP
 mov ax, fp_status
 mov _fpu_type, 2 ; store Intel287 NDP for FPU type
 sahf ; see if infinities matched
 jz end_fpu_type ; jump if 8087 or Intel287 is present
 mov _fpu_type, 3 ; store Intel387 NDP for FPU type
end_fpu_type:
 ret
_get_fpu_type endp

 end

AP-485

17

Example 2. Processor Identification Procedure in Assembly Language

; Filename: cpuid3b.asm
; Copyright 1993, 1994 by Intel Corp.
;
; This program has been developed by Intel Corporation. You
; have Intel's permission to incorporate this source code into
; your product, royalty free. Intel has intellectual property
; rights which it may assert if another manufacturer's processor
; mis-identifies itself as being "GenuineIntel" when the CPUID
; instruction is executed.
;
; Intel specifically disclaims all warranties, express or
; implied, and all liability, including consequential and other
; indirect damages, for the use of this code, including
; liability for infringement of any proprietary rights, and
; including the warranties of merchantability and fitness for a
; particular purpose. Intel does not assume any responsibility
; for any errors which may appear in this code nor any
; responsibility to update it.
;
; This program contains three parts:
; Part 1: Identifies processor type in the variable _cpu_type:
;
; Part 2: Identifies FPU type in the variable _fpu_type:
;
; Part 3: Prints out the appropriate message. This part is
; specific to the DOS environment and uses the DOS
; system calls to print out the messages.
;
; This program has been tested with the MASM assembler.
; If this code is assembled with no options specified and linked
; with the cpuid3a module, it correctly identifies the
; current Intel 8086/8088, 80286, 80386, 80486, and Pentium(tm)
; processors in the real-address mode.
;
; To assemble this code with TASM, add the JUMPS directive.
; jumps ; Uncomment this line for TASM

 TITLE cpuid3b
 DOSSEG
 .model small
 .stack 100h

 .data
 extrn _cpu_type: byte
 extrn _fpu_type: byte
 extrn _cpuid_flag: byte

AP-485

18

 extrn _intel_CPU: byte
 extrn _vendor_id: byte
 extrn _cpu_signature: dword
 extrn _features_ecx: dword
 extrn _features_edx: dword
 extrn _features_ebx: dword

; The purpose of this code is to identify the processor and
; coprocessor that is currently in the system. The program
; first determines the processor type. Then it determines
; whether a coprocessor exists in the system. If a
; coprocessor or integrated coprocessor exists, the program
; identifies the coprocessor type. The program then prints
; the processor and floating point processors present and type.

 .code
 .8086
start: mov ax, @data
 mov ds, ax ; set segment register
 mov es, ax ; set segment register
 and sp, not 3 ; align stack to avoid AC fault
 call _get_cpu_type ; determine processor type
 call _get_fpu_type
 call print
 mov ax, 4c00h ; terminate program
 int 21h

;***

 extrn _get_cpu_type: proc

;***

 extrn _get_fpu_type: proc

;***

FPU_FLAG equ 0001h
VME_FLAG equ 0002h
PSE_FLAG equ 0008h
MCE_FLAG equ 0080h
CMPXCHG8B_FLAG equ 0100h
APIC_FLAG equ 0200h

 .data
id_msg db "This system has a$"
cp_error db "n unknown processor$"
cp_8086 db "n 8086/8088 processor$"
cp_286 db "n 80286 processor$"

AP-485

19

cp_386 db "n 80386 processor$"

cp_486 db "n 80486DX, 80486DX2 processor or"
 db " 80487SX math coprocessor$"
cp_486sx db "n 80486SX processor$"

fp_8087 db " and an 8087 math coprocessor$"
fp_287 db " and an 80287 math coprocessor$"
fp_387 db " and an 80387 math coprocessor$"

intel486_msg db " Genuine Intel486(TM) processor$"
intel486dx_msg db " Genuine Intel486(TM) DX processor$"
intel486sx_msg db " Genuine Intel486(TM) SX processor$"
inteldx2_msg db " Genuine IntelDX2(TM) processor$"
intelsx2_msg db " Genuine IntelSX2(TM) processor$"
inteldx4_msg db " Genuine IntelDX4(TM) processor$"
inteldx2wb_msg db " Genuine Write-Back Enhanced"
 db " IntelDX2(TM) processor$"
pentium_msg db " Genuine Intel Pentium(TM) processor$"
unknown_msg db "n unknown Genuine Intel processor$"

; The following 16 entries must stay intact as an array
intel_486_0 dw offset intel486dx_msg
intel_486_1 dw offset intel486dx_msg
intel_486_2 dw offset intel486sx_msg
intel_486_3 dw offset inteldx2_msg
intel_486_4 dw offset intel486_msg
intel_486_5 dw offset intelsx2_msg
intel_486_6 dw offset intel486_msg
intel_486_7 dw offset inteldx2wb_msg
intel_486_8 dw offset inteldx4_msg
intel_486_9 dw offset intel486_msg
intel_486_a dw offset intel486_msg
intel_486_b dw offset intel486_msg
intel_486_c dw offset intel486_msg
intel_486_d dw offset intel486_msg
intel_486_e dw offset intel486_msg
intel_486_f dw offset intel486_msg
; end of array

family_msg db 13,10,"Processor Family: $"
model_msg db 13,10,"Model: $"
stepping_msg db 13,10,"Stepping: "
cr_lf db 13,10,"$"

turbo_msg db 13,10,"The processor is an OverDrive(TM)"
 db " processor$"
dp_msg db 13,10,"The processor is the upgrade processor"
 db " in a dual processor system$"
fpu_msg db 13,10,"The processor contains an on-chip FPU$"

AP-485

20

mce_msg db 13,10,"The processor supports Machine Check"
 db " Exceptions$"
cmp_msg db 13,10,"The processor supports the CMPXCHG8B"
 db " instruction$"
vme_msg db 13,10,"The processor supports Virtual Mode"
 db " Extensions$"
pse_msg db 13,10,"The processor supports Page Size"
 db " Extensions$"
apic_msg db 13,10,"The processor contains an on-chip"
 db " APIC$"

not_intel db "t least an 80486 processor."
 db 13,10,"It does not contain a Genuine Intel"
 db " part and as a result, the",13,10,"CPUID"
 db " detection information cannot be determined"
 db " at this time.$"

ASC_MSG MACRO msg
 LOCAL ascii_done ; local label
 add al, 30h
 cmp al, 39h ; is it 0-9?
 jle ascii_done
 add al, 07h
ascii_done:
 mov byte ptr msg[20], al
 mov dx, offset msg
 mov ah, 9h
 int 21h
ENDM

 .code
 .8086
print proc

; This procedure prints the appropriate cpuid string and
; numeric processor presence status. If the CPUID instruction
; was used, this procedure prints out the CPUID info.
; All registers are used by this procedure, none are preserved.

 mov dx, offset id_msg ; print initial message
 mov ah, 9h
 int 21h

 cmp _cpuid_flag, 1 ; if set to 1, processor
 ; supports CPUID instruction
 je print_cpuid_data ; print detailed CPUID info

print_86:
 cmp _cpu_type, 0
 jne print_286

AP-485

21

 mov dx, offset cp_8086
 mov ah, 9h
 int 21h
 cmp _fpu_type, 0
 je end_print
 mov dx, offset fp_8087
 mov ah, 9h
 int 21h
 jmp end_print

print_286:
 cmp _cpu_type, 2
 jne print_386
 mov dx, offset cp_286
 mov ah, 9h
 int 21h
 cmp _fpu_type, 0
 je end_print
print_287:
 mov dx, offset fp_287
 mov ah, 9h
 int 21h
 jmp end_print

print_386:
 cmp _cpu_type, 3
 jne print_486
 mov dx, offset cp_386
 mov ah, 9h
 int 21h
 cmp _fpu_type, 0
 je end_print
 cmp _fpu_type, 2
 je print_287
 mov dx, offset fp_387
 mov ah, 9h
 int 21h
 jmp end_print

print_486:
 cmp _cpu_type, 4
 jne print_unknown ; Intel processors will have
 mov dx, offset cp_486sx ; CPUID instruction
 cmp _fpu_type, 0
 je print_486sx
 mov dx, offset cp_486
print_486sx:
 mov ah, 9h
 int 21h
 jmp end_print

AP-485

22

print_unknown:
 mov dx, offset cp_error
 jmp print_486sx

print_cpuid_data:
 .486
 cmp _intel_CPU, 1 ; check for genuine Intel
 jne not_GenuineIntel ; processor
print_486_type:
 cmp _cpu_type, 4 ; if 4, print 80486 processor
 jne print_pentium_type
 mov ax, word ptr _cpu_signature
 shr ax, 4
 and eax, 0fh ; isolate model
 mov dx, intel_486_0[eax*2]
 jmp print_common
print_pentium_type:
 cmp _cpu_type, 5 ; if 5, print Pentium processor
 jne print_unknown_type
 mov dx, offset pentium_msg
 jmp print_common
print_unknown_type:
 mov dx, offset unknown_msg ; if neither, print unknown

print_common:
 mov ah, 9h
 int 21h

; print family, model, and stepping

print_family:
 mov al, _cpu_type
 ASC_MSG family_msg ; print family msg

print_model:
 mov ax, word ptr _cpu_signature
 shr ax, 4
 and al, 0fh
 ASC_MSG model_msg ; print model msg

print_stepping:
 mov ax, word ptr _cpu_signature
 and al, 0fh
 ASC_MSG stepping_msg ; print stepping msg

print_upgrade:
 mov ax, word ptr _cpu_signature
 test ax, 1000h ; check for turbo upgrade
 jz check_dp

AP-485

23

 mov dx, offset turbo_msg
 mov ah, 9h
 int 21h
 jmp print_features

check_dp:
 test ax, 2000h ; check for dual processor
 jz print_features
 mov dx, offset dp_msg
 mov ah, 9h
 int 21h

print_features:
 mov ax, word ptr _features_edx
 and ax, FPU_FLAG ; check for FPU
 jz check_MCE
 mov dx, offset fpu_msg
 mov ah, 9h
 int 21h

check_MCE:
 mov ax, word ptr _features_edx
 and ax, MCE_FLAG ; check for MCE
 jz check_CMPXCHG8B
 mov dx, offset mce_msg
 mov ah, 9h
 int 21h

check_CMPXCHG8B:
 mov ax, word ptr _features_edx
 and ax, CMPXCHG8B_FLAG ; check for CMPXCHG8B
 jz check_VME
 mov dx, offset cmp_msg
 mov ah, 9h
 int 21h

check_VME:
 mov ax, word ptr _features_edx
 and ax, VME_FLAG ; check for VME
 jz check_PSE
 mov dx, offset vme_msg
 mov ah, 9h
 int 21h

check_PSE:
 mov ax, word ptr _features_edx
 and ax, PSE_FLAG ; check for PSE
 jz check_APIC
 mov dx, offset pse_msg
 mov ah, 9h

AP-485

24

 int 21h

check_APIC:
 mov ax, word ptr _features_edx
 and ax, APIC_FLAG ; check for APIC
 jz end_print
 mov dx, offset apic_msg
 mov ah, 9h
 int 21h

 jmp end_print

not_GenuineIntel:
 mov dx, offset not_intel
 mov ah, 9h
 int 21h

end_print:
 mov dx, offset cr_lf
 mov ah, 9h
 int 21h
 ret
print endp

 end start

AP-485

25

Example 3. Processor Identification Procedure in the C Language

/* Filename: cpuid3b.c */
/* Copyright 1994 by Intel Corp. */
/* */
/* This program has been developed by Intel Corporation. You */
/* have Intel's permission to incorporate this source code into */
/* your product, royalty free. Intel has intellectual property */
/* rights which it may assert if another manufacturer's processor*/
/* mis-identifies itself as being "GenuineIntel" when the CPUID */
/* instruction is executed. */
/* */
/* Intel specifically disclaims all warranties, express or */
/* implied, and all liability, including consequential and other */
/* indirect damages, for the use of this code, including */
/* liability for infringement of any proprietary rights, and */
/* including the warranties of merchantability and fitness for a */
/* particular purpose. Intel does not assume any responsibility */
/* for any errors which may appear in this code nor any */
/* responsibility to update it. */
/* */
/* This program contains three parts: */
/* Part 1: Identifies CPU type in the variable _cpu_type: */
/* */
/* Part 2: Identifies FPU type in the variable _fpu_type: */
/* */
/* Part 3: Prints out the appropriate message. */
/* */
/* This program has been tested with the Microsoft C compiler. */
/* If this code is compiled with no options specified and linked */
/* with the cpuid3a module, it correctly identifies the */
/* current Intel 8086/8088, 80286, 80386, 80486, and */
/* Pentium(tm) processors in the real-address mode. */

#define FPU_FLAG 0x0001
#define VME_FLAG 0x0002
#define PSE_FLAG 0x0008
#define MCE_FLAG 0x0080
#define CMPXCHG8B_FLAG 0x0100
#define APIC_FLAG 0x0200

extern char cpu_type;
extern char fpu_type;
extern char cpuid_flag;
extern char intel_CPU;
extern char vendor_id[12];
extern long cpu_signature;
extern long features_ecx;
extern long features_edx;

AP-485

26

extern long features_ebx;
main() {
 get_cpu_type();
 get_fpu_type();
 print();
}
print() {
 printf("This system has a");
 if (cpuid_flag == 0) {
 switch (cpu_type) {
 case 0:
 printf("n 8086/8088 processor");
 if (fpu_type) printf(" and an 8087 math coprocessor");
 break;
 case 2:
 printf("n 80286 processor");
 if (fpu_type) printf(" and an 80287 math coprocessor");
 break;
 case 3:
 printf("n 80386 processor");
 if (fpu_type == 2)
 printf(" and an 80287 math coprocessor");
 else if (fpu_type)
 printf(" and an 80387 math coprocessor");
 break;
 case 4:
 if (fpu_type) printf("n 80486DX, 80486DX2 processor or \
80487SX math coprocessor");
 else printf("n 80486SX processor");
 break;
 default:
 printf("n unknown processor");
 }
 } else {
 /* using cpuid instruction */
 if (intel_CPU) {
 if (cpu_type == 4) {
 switch ((cpu_signature>>4)&0xf) {
 case 0:
 case 1:
 printf(" Genuine Intel486(TM) DX processor");
 break;
 case 2:
 printf(" Genuine Intel486(TM) SX processor");
 break;
 case 3:
 printf(" Genuine IntelDX2(TM) processor");
 break;
 case 4:
 printf(" Genuine Intel486(TM) processor");

AP-485

27

 break;
 case 5:
 printf(" Genuine IntelSX2(TM) processor");
 break;
 case 7:
 printf(" Genuine Write-Back Enhanced \
IntelDX2(TM) processor");
 break;
 case 8:
 printf(" Genuine IntelDX4(TM) processor");
 break;
 default:
 printf(" Genuine Intel486(TM) processor");
 }
 } else if (cpu_type == 5)
 printf(" Genuine Intel Pentium(TM) processor");
 else
 printf("n unknown Genuine Intel processor");
 printf("\nProcessor Family: %X", cpu_type);
 printf("\nModel: %X", (cpu_signature>>4)&0xf);
 printf("\nStepping: %X\n", cpu_signature&0xf);
 if (cpu_signature & 0x1000)
 printf("\nThe processor is an OverDrive(TM) upgrade

\processor");
 else if (cpu_signature & 0x2000)
 printf("\nThe processor is the upgrade processor \
in a dual processor system");
 if (features_edx & FPU_FLAG)
 printf("\nThe processor contains an on-chip FPU");
 if (features_edx & MCE_FLAG)
 printf("\nThe processor supports Machine Check \
Exceptions");
 if (features_edx & CMPXCHG8B_FLAG)
 printf("\nThe processor supports the CMPXCHG8B \
instruction");
 if (features_edx & VME_FLAG)
 printf("\nThe processor supports Virtual Mode \
Extensions");
 if (features_edx & PSE_FLAG)
 printf("\nThe processor supports Page Size \
Extensions");
 if (features_edx & APIC_FLAG)
 printf("\nThe processor contains an on-chip APIC");
 } else {
 printf("t least an 80486 processor.\nIt does not \
contain a Genuine Intel part and as a result, the\nCPUID detection \
information cannot be determined at this time.");
 }
 }
 printf("\n");
}

	Title Page
	1.0 INTRODUCTION
	1.1 Update Support

	2.0 DETECTING THE CPUID INSTRUCTION
	3.0 OUTPUTS OF THE CPUID INSTRUCTION
	3.1 Vendor-ID String
	3.2 Processor Signature
	3.3 Feature Flags

	4.0 USAGE GUIDELINES
	5.0 BIOS RECOGNITION FOR INTEL OVERDRIVE ä
	6.0 PROPER IDENTIFICATION SEQUENCE
	7.0 USAGE PROGRAM EXAMPLE
	Example 1. Processor Identification Extraction Procedure
	Example 2. Processor Identification Procedure in Assembly Language
	Example 3. Processor Identification Procedure in the C Language

