
 Document Number: 356112-001US

Intel® Advanced Performance
Extensions (Intel® APX)
Software Enabling
Introduction
July 2023

Revision 1.0

ii Document Number: 356112-001US. Revision 1.0

Notices & Disclaimers
This document contains information on products in the design phase of development. The information here is
subject to change without notice. Do not finalize a design with this information.
Intel technologies may require enabled hardware, software or service activation.
No product or component can be absolutely secure.
Your costs and results may vary.
You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning
Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter
drafted which includes subject matter disclosed herein.
All product plans and roadmaps are subject to change without notice.
The products described may contain design defects or errors known as errata which may cause the product to deviate from
published specifications. Current characterized errata are available on request.
Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability,
fitness for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of
dealing, or usage in trade.
Code names are used by Intel to identify products, technologies, or services that are in development and not publicly
available. These are not “commercial” names and not intended to function as trademarks.
No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document, with
the sole exception that a) you may publish an unmodified copy and b) code included in this document is licensed subject to
the Zero-Clause BSD open source license (0BSD), https://opensource.org/licenses/0BSD. You may create software
implementations based on this document and in compliance with the foregoing that are intended to execute on the Intel
product(s) referenced in this document. No rights are granted to create modifications or derivatives of this document.
© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other
names and brands may be claimed as the property of others.

https://opensource.org/licenses/0BSD
https://opensource.org/licenses/0BSD
https://opensource.org/licenses/0BSD

iii Document Number: 356112-001US. Revision 1.0

Revision History

Revision Description Date

1.0
• Initial draft
 July 2023

 INTEL® APX SW ENABLING INTRODUCTION

4 Document Number: 356112-001US. Revision 1.0

REVISION HISTORY

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION TO INTEL® ADVANCED PERFORMANCE EXTENSIONS ... 5
1.1 ABOUT THIS DOCUMENT ... 5
1.2 INTRODUCTION .. 5
CHAPTER 2: SOFTWARE VIEW OF INTEL® ADVANCED PERFORMANCE EXTENSIONS ... 6
2.1 SOFTWARE STACK .. 6
2.2 COMPILERS AND APPLICATION BINARY INTERFACE (ABI) .. 6

2.2.1 LEGACY-COMPLIANT APPLICATION BINARY INTERFACE (ABI) .. 7

2.2.2 EXAMPLE: SETJMP AND LONGJMP .. 7

2.3 OPERATING SYSTEM INTERFACE .. 8
2.3.1 INTEL® APX CPUID ENUMERATION AND XSAVE DEFINITION .. 9

2.4 HYPERVISOR INTERFACE .. 10
2.4.1 VM EXIT QUALIFICATION FIELD DEFINITION FOR MOV DR ... 11

2.4.2 VM EXIT QUALIFICATION FIELD DEFINITION FOR MOV CR, LMSW, CLTS ... 12

2.4.3 VMCS VM-EXIT EXTENDED INSTRUCTION INFO FIELD (EII) ... 13

. 1-51

TABLE OF TABLES

Table 2: Intel® APX-Extended Architectural register ID Encodings for VMCS ... 11
Table 3: Legacy VM Exit Qualification Field Definition for MOV DR .. 11
Table 4: Intel® APX-Extended VM Exit Qualification Field Definition for MOV DR ... 11
Table 5: Legacy VM Exit Qualification Field Definition for MOV CR, LMSW, CLTS .. 12
Table 6: Intel® APX-Enabled VM Exit Qualification Field Definition for MOV CR, LMSW, CLTS 12
Table 7: VMCS VM-Exit Extended Instruction Info Field (EII) .. 13

INTEL® APX SW ENABLING INTRODUCTION

5 Document Number: 356112-001US. Revision 1.0

CHAPTER 1: INTRODUCTION TO INTEL® ADVANCED PERFORMANCE
EXTENSIONS

1.1 ABOUT THIS DOCUMENT
This document introduces the Intel ® Advanced Performance Extensions (Intel® APX) and the accompanying
software changes that are potentially required to enable and use it, including facets that cover operating system
enabling, hypervisor enabling, and application-facing conventions, such as Application Binary Interface (ABI).

1.2 INTRODUCTION

Intel® Advanced Performance Extensions (Intel® APX) expands the Intel® 64 instruction set architecture with
access to more registers and adds various new features that improve general-purpose performance. The
extensions are designed to provide efficient performance gains across a variety of workloads without significantly
increasing silicon area or power consumption of the core.

The main features of Intel® APX include:

• 16 additional general-purpose registers (GPRs) R16–R31, also referred to as Extended GPRs (EGPRs) in
this document;

• Three-operand instruction formats with a new data destination (NDD) register for many integer
instructions;

• Conditional ISA improvements: New conditional load, store and compare instructions, combined with an
option for the compiler to suppress the status flags writes of common instructions;

• Optimized register state save/restore operations;
• A new 64-bit absolute direct jump instruction.

This guide will focus on introductory software enabling aspects of the Intel® APX feature, itself, across the typical
software stack of both client and server computing platforms.

 INTEL® APX SW ENABLING INTRODUCTION

6 Document Number: 356112-001US. Revision 1.0

CHAPTER 2: SOFTWARE VIEW OF INTEL® ADVANCED PERFORMANCE
EXTENSIONS

2.1 SOFTWARE STACK
Intel ® Advanced Performance Extensions (Intel® APX) is an XSAVE-enabled feature that must be enabled through
a combination of software support spanning the Operating System (OS), Hypervisor (Virtual Machine Monitor, or
VMM), and code-generators (compilers, JITs) and any supporting run-time environments, and their adherence to
application binary interfaces (ABIs). These components, which make up the base of many software stacks,
require adjustments and enabling to account for the EGPR state introduced by Intel® APX.

2.2 COMPILERS AND APPLICATION BINARY INTERFACE (ABI)
The Application Binary Interface (ABI) defines the conventions that allow software components, down to the
function level, to interact with one another in a functional, predictable, and composable way. ABIs define register
usage conventions that both describe:

1) The general usage of specific sets of CPU state, including general purpose registers and how datatypes
map to underlying architectural storage elements

2) The usage of specific sets of CPU state to provide function linkage, including calling conventions that
describe:

a. How parameters are passed into functions.
b. How return values are passed back to callers of functions.

The rules and behavior of an ABI are defined by a function of hardware/software components, and may be
platform- and/or vendor-specific:

• Hardware architecture and ISA
• Operating system type and version
• Compiler/language type and version

As CPUs evolve, so do their corresponding ABI definitions. Stateful extensions, which augment the x86 CPU
architecture with new states, must define the usage model of the new states to provide a common usage model
across software components. New CPU extensions, and their resulting ABI changes, can be viewed through a lens
as being either legacy ABI compatible or incompatible:

• Compatible ABI changes, or ABI extensions, provide backward compatibility; making sure that software
components that were compiled to, or abide by, the former ABI definition can transparently interact with
newer software components without breakage.

• Incompatible ABI changes may introduce concepts and rules that are not backwards compatible with
older software components.

From an x86 perspective, which has a long history of instruction-set evolutions, backward compatibility is seen as
an important asset that allows new programs, which may make use of new states/instructions, to function in a

INTEL® APX SW ENABLING INTRODUCTION

7 Document Number: 356112-001US. Revision 1.0

world that is full of legacy binaries (applications, libraries, other software components, etc.) that may have been
created before such extensions were released and known. As such, Intel® APX is another evolutionary change
within the x86 ecosystem, and any programs that are to make use of Intel® APX features, should be able to
transparently interact with programs that might not make use of Intel® APX features, and pre-date Intel® APX-
featured platforms.

2.2.1 LEGACY-COMPLIANT APPLICATION BINARY INTERFACE (ABI)
An Intel® APX-enabled legacy compatible ABI introduces new architectural state in such a way that allows
transparent interactions and co-existence with software that pre-dates the ABI change.

From a register usage perspective, registers are often categorized in one of approximately three usage categories:

1) Callee-Saved Register (Non-Volatile)
2) Caller-Saved Register (Volatile)
3) Scratch Register (Volatile)

In addition, ABIs define “calling conventions” that precisely describe which architectural registers are used for
parameter passing between functions (function inputs and outputs), and the rules of usage with regards to
register usage and memory (stack) usage.

When introducing new architectural state, a high-confidence strategy for building a legacy-compatible ABI
definition that ensures backward compatibility involves defining new architectural state with the following gules:

1) Keeping the ABI’s parameter passing definition constant.
2) Defining all new state (Intel® APX’s EGPRs) as volatile (caller-saved or scratch).
3) Defining the OS/VMM as providing full context switch support for the new states.

From a typical application-perspective, this type of definition does not put any burden on EGPR state preservation
onto older/legacy x86 code, nor does it introduce any incompatibility in function linkage. Additionally, this
definition does not put an undue burden on Intel® APX code, as it only requires Intel® APX code to preserve the
EGPRs that it uses within a given function context.

The cost of a legacy ABI may preclude certain performance optimizations (i.e., enhanced parameter passing of
arguments within registers), but the benefit (i.e., backwards compatibility) allows for APX programs and libraries
to co-exist with legacy binaries in a transparent manner.

As such, at Intel® APX launch time, software platforms (Operating System + toolchain varieties) are expected to
prefer ABIs where all EGPRs are considered caller-saved (volatile).

In addition to the ABI’s register definition extensions, the x86-64 psABI will be extended with new relocation
types used by the linker. The new relocation types account for the new types of instructions, namely Intel® APX-
prefixed instructions. Intel® APX-enabled compilers and assemblers will generate these new relocation types,
primarily when instructions are using EGPRs, and an updated Intel® APX-enabled linker will be able to process
these relocations.

2.2.2 EXAMPLE: SETJMP AND LONGJMP
The POSIX C standard has a concept of setjmp/longjmp, which are APIs used to perform non-local goto
operations, which can be used for context switching and other forms of “complex”, non-local control flow.

 INTEL® APX SW ENABLING INTRODUCTION

8 Document Number: 356112-001US. Revision 1.0

Today’s implementations of setjmp/longjmp are ABI-optimized in that these functions do not save the complete
architectural state of the machine within their state save container (also known as jmp_buf). Instead, they
perform partial state save and state restore by focusing only on the architectural machine state that is required to
“maintain the current environment”. For x86-64, this means only saving the smaller subset of registers that are
not already preserved naturally via the x86-64 ABI that is in use on the platform – which is defined by callee-saved
registers and registers/state that are preserved across function calls.

According to the System V ABI for x86-64 this includes:

• Required:
o RBX
o RSP
o R12
o R13
o R14
o R15
o RIP

• Optional (system dependent):
o RFLAGS
o MXCSR
o X87 FP CW

The remaining architectural state, while important, is not actively managed by setjmp/longjmp, as caller-saved
state is automatically preserved by the caller of setjmp itself.

Concretely:

• Any usages of EGPRs in a call stack are guaranteed to be preserved on the stack when a function call is
made, thus pre-preserving them, before a call to setjmp is made.

• Post longjmp, the state held within the jmpbuf is restored. This is a partial state restoration, when it
comes to caller-saved registers, which will be iteratively restored at later points in time as the call stack is
unwound through the natural flow of function returns

By defining all new EGPR state as caller-saved, Intel® APX-containing binaries can work transparently with
standard x86-64 libraries, system infrastructure, and have no adverse impacts to the layout and size of the jmpbuf
structure.

2.3 OPERATING SYSTEM INTERFACE
Operating systems provide abstractions and services to applications and drivers, some of which are related to
encapsulating and virtualizing the architectural state of the CPU.

In the face of stateful CPU extensions, operating systems often augment their context switching routines for
saving/restoring CPU state, which is a critical interface that it used for switching between applications, processes,
and threads.

INTEL® APX SW ENABLING INTRODUCTION

9 Document Number: 356112-001US. Revision 1.0

The operating system is responsible for both enumerating and enabling such features, and for managing the CPU
context in ways that enable usages of the feature (usages may include one or more of the following: in-kernel
usage, driver usage, and application-level usage).

Intel® APX’s new state, EGPRs, are encapsulated as XSAVE-enabled state that can be saved/restored through
XSAVE*/XRSTOR* interfaces. This design choice was purposefully made to allow operating systems to enable
Intel® APX ISA usage at the application-level (and guest-level) without having to use new/extended Intel® APX
instructions to do so.

This is important as it is quite common for lower levels of the software stack (namely operating systems and
hypervisors) to be compiled using restricted ABIs and instruction/state footprints to save overhead and to
maximize compatibility amongst hardware platforms (i.e. compiling to a common subset of ISA).

2.3.1 INTEL® APX CPUID ENUMERATION AND XSAVE DEFINITION
Intel® APX, like all XSAVE-enabled features, is enumerated via CPUID as part of the Processor Extended State
Enumeration Main Leaf and Sub-leaves and is controlled/enabled via XCR0.

Intel® APX defines a single set of state that can be managed via XSAVE*/XRSTOR* instructions:

• Intel® APX EGPR state (r16-r31) is save/restore controlled via XCR0[APX_F=19].

Intel® APX’s XSAVE footprint, which re-uses (via re-definition) the 128B area of the now-deprecated Intel ®
Memory Protection Extensions (Intel® MPX). Since Intel® MPX had been previously deprecated, no processor will
enumerate support for both Intel® MPX and Intel® APX. The architecture does not re-use any XCR0 control bits
and instead only re-purposes the 128-byte XSAVE area that had been previously allocated by Intel® MPX (state
component indices 3 and 4, making up a 128-byte area located at an offset of 960 bytes into an un-compacted
XSAVE buffer). Intel® APX re-architects the two previous 64-byte state components and uses them as a single
state component housing 128-bytes of storage for EGPRs (8-bytes * 16 registers).

Intel® APX uses XCR0 index 19, and as such, the monotonic relationship between XCR0 index and XSAVE buffer
offset is altered. The logical ordering of the first 8 entries in the un-compacted XSAVE buffer with regards to XCR0
indices changes in the following manner:

• Before Intel® APX has been introduced:
o 0, 1, 2, 3, 4, 5, 6, 7, …

• After Intel® APX has been introduced:
o 0, 1, 2, 19, 5, 6, 7, 9, …

Conversely, in a compacted XSAVE buffer (via XSAVEC), which saves state components in a dynamic, XCR0 index-
relative order, Intel® APX state would be placed later with respect to all state components with lesser XCR0
indices. Therefore, the logical order of Intel® APX state differs between un-compacted and compacted forms.

Re-purposing the deprecated state area of Intel® MPX allows for Intel® APX to avoid potential interactions with
being placed after large state components, such as Intel® AMX.

 INTEL® APX SW ENABLING INTRODUCTION

10 Document Number: 356112-001US. Revision 1.0

2.4 HYPERVISOR INTERFACE
Hypervisors, commonly referred to as Virtual Machine Monitors (VMMs), are like operating systems in that they
support the management and virtualization of hardware, but different in that they are designed to host entire
sets of virtualized OS and application stack instances, as opposed to just applications. As such, a VMM is
responsible for many of the same duties as an operating system, but it may use a richer set of underlying
architectural features that are meant to support these increased virtualization duties. These features may include
management and configuration and use of both VMX mode and Virtual Machine Control Structures (VMCS’s) that
are part of the Intel ® Virtual Machine Extensions (VMX) feature-set.

Intel® APX extends the VMCS definition to include backwards-compatible enhancements to certain VMCS fields
used for capturing decoded register identifier information for VM-Exiting instructions. VMCS has two such fields
for this today:

• VM Exit Qualification Field
• VM Exit Instruction Info Field

Both fields have register identifier sub-fields that are 4-bits in size, thus requiring extensions to support a change
from 16 integer GPRs to the new total of 32 integer GPRs introduced by Intel® APX.

The VM Exit Qualification Field is a 64-bit VMCS field and was architected in such a way as to allow in-place
extension to 5-bit register identifiers without re-architecting the field definition itself, where the most significant
reserved bit is re-defined to be the 5th register ID bit.

The VM Exit Instruction Info Field is a 32-bit VMCS field, so the virtualization architecture requires slight
modification to allow for both legacy VMMs and Intel® APX-enabled VMMs to operate efficiently and correctly.
Intel® APX accomplishes this by adding a new VMCS field, entitled VM-Exit Extended Instruction Information Field
(EII).

The behavior of instructions which populate VM Exit Instruction Info Field are as follows:

• Any instruction which has a defined VM-Exit Instruction Info field will populate both the VM-Exit
Instruction Info field and VM-Exit Extended Instruction Info field. The information in the VM-Exit
Instruction Info field is incomplete for use by a VMM that enables Intel® APX for guest usage, since all
register ID fields will contain legacy, truncated 4-bit register IDs, instead of full 5-bit register IDs. As such,
an Intel® APX-enabled VMM should only use and rely on VM-Exit Extended Instruction Info. A VMM that
does not enable Intel® APX for guest usage is free to use the legacy VM-Exit Instruction Info, since it is
informationally complete if Intel® APX is not enabled.

• Any instruction which has a defined VM Exit Qualification field which contains register ID info will
continue to populate this info in a legacy-compatible way, although the defined format of this field adds
an additional register ID bit that had been previously un-defined/reserved. As such, an Intel® APX-enabled
VMM should use this field according to the new format, so that it considers a potential 5-bit register ID. A
non-Intel® APX enabled VMM is free to continue using the legacy definition of the field, since lack of
Intel® APX enabling will guarantee that register IDs are only 4-bits, maximum.

The VMCS is extended with a new 64-bit field (encoding 0x2406/0x2407) called the VM-Exit Extended Instruction-
Information (EII) field. The field will have space for a total of 4 register IDs (reg1, reg2, base, index) to match the
current capabilities of all the existing register fields in the VM-Exit Instruction-Information field.

INTEL® APX SW ENABLING INTRODUCTION

11 Document Number: 356112-001US. Revision 1.0

Any Intel® APX-aware VMM should only use this new EII field to find the full 5-bit register IDs that correspond to
decoded reg operands of existing instructions. A non-Intel® APX-enabled VMM (which is not responsible for
managing EGPRs) can continue to use the legacy VM Exit Instruction Info field, as it always has.

The purpose of dual-fields is to keep from perturbing legacy VMMs in any way, while allowing newer, Intel® APX-
enabled VMMs to have all functional information to support 32 general purpose registers.

In all VMCS fields, the 5-bit register ID encodings of each reg-field are represented as follows:

Table 1: Intel® APX-Extended Architectural register ID Encodings for VMCS

0. RAX

1. RCX

2. RDX

3. RBX

4. RSP

5. RBP

6. RSI

7. RDI

8. R8

9. R9

10. R10

11. R11

12. R12

13. R13

14. R14

15. R15

16. R16

17. R17

18. R18

19. R19

20. R20

21. R21

22. R22

23. R23

24. R24

25. R25

26. R26

27. R27

28. R28

29. R29

30. R30

31. R31

2.4.1 VM EXIT QUALIFICATION FIELD DEFINITION FOR MOV DR

Table 2: Legacy VM Exit Qualification Field Definition for MOV DR

Bits Name Meaning
2:0 DR Number Debug Register Number
3 RESERVED Not currently defined
4 Direction Direction of access:

• 0 = MOV to DR
• 1 = MOV from DR

7:5 RESERVED Not currently defined
11:8 GPR GPR used with MOV DR

• 4-bit register ID
63:12 RESERVED Reserved/un-defined (0’s)

Table 3: Intel® APX-Extended VM Exit Qualification Field Definition for MOV DR

Bits Name Meaning
2:0 DR Number Debug Register Number
3 RESERVED Not currently defined

 INTEL® APX SW ENABLING INTRODUCTION

12 Document Number: 356112-001US. Revision 1.0

4 Direction Direction of access:
• 0 = MOV to DR
• 1 = MOV from DR

7:5 RESERVED Not currently defined
12:8 GPR GPR used with MOV DR

• 5-bit register ID
63:13 RESERVED Reserved/un-defined (0’s)

2.4.2 VM EXIT QUALIFICATION FIELD DEFINITION FOR MOV CR, LMSW, CLTS

Table 4: Legacy VM Exit Qualification Field Definition for MOV CR, LMSW, CLTS

Bits Name Meaning
3:0 CR Number Control Register Number
5:4 Access Type Access type:

• 0 = MOV to CR
• 1 = MOV from CR
• 2 = CLTS
• 3 = LMSW

6 LMSW Operand Type Mem/Reg Indicator:
• 0 = Register
• 1 = Memory

For CLTS and MOV CR, always 0

7 RESERVED Not currently defined
11:8 GPR GPR used with MOV DR

• 4-bit register ID

For CLTS/LMSW, cleared to 0

15:12 RESERVED Reserved/un-defined (0’s)
31:16 Source Data Source Data:

• LMSW: The LMSW source
data

• CLTS: Cleared to 0
• MOV CR: Cleared to 0

63:32 RESERVED Reserved/un-defined (0’s)

Table 5: Intel® APX-Enabled VM Exit Qualification Field Definition for MOV CR, LMSW, CLTS

Bits Name Meaning
3:0 CR Number Control Register Number
5:4 Access Type Access type:

• 0 = MOV to CR
• 1 = MOV from CR
• 2 = CLTS

INTEL® APX SW ENABLING INTRODUCTION

13 Document Number: 356112-001US. Revision 1.0

• 3 = LMSW
6 LMSW Operand Type Mem/Reg Indicator:

• 0 = Register
• 1 = Memory

For CLTS and MOV CR, always 0

7 RESERVED Not currently defined
12:8 GPR GPR used with MOV DR

• 5-bit register ID

For CLTS/LMSW, cleared to 0

15:13 RESERVED Reserved/un-defined (0’s)
31:16 Source Data Source Data:

• LMSW: The LMSW source
data

• CLTS: Cleared to 0
• MOV CR: Cleared to 0

63:32 RESERVED Reserved/un-defined (0’s)

2.4.3 VMCS VM-EXIT EXTENDED INSTRUCTION INFO FIELD (EII)

Table 6: VMCS VM-Exit Extended Instruction Info Field (EII)

Bits Name Meaning
1:0 Scale Scale:

• 0: No scaling
• 1: Scale by 2
• 2: Scale by 4
• 3: Scale by 8 (64-bit CPUs

only)

Undefined for instructions with no
index register.

3:2 ASIZE Address size (ASIZE):
• 0: 16-bit
• 1: 32-bit
• 2: 64-bit (64-bit CPUs only)

Others values not used/defined.

4 Mem/Reg Mem/Reg Indicator:
• 0 = Memory
• 1 = Register

6:5 OSIZE Operand size (OSIZE):
• 0: 16-bit

 INTEL® APX SW ENABLING INTRODUCTION

14 Document Number: 356112-001US. Revision 1.0

• 1: 32-bit
• 2: 64-bit (64-bit CPUs only)

Others values not used/defined.

9:7 Segment Segment register:
• 0: ES
• 1: CS
• 2: SS
• 3: DS
• 4: FS
• 5: GS

Other values not used/defined.

10 IndexInvalid Index reg invalid indicator:
• 0: valid
• 1: invalid

11 BaseInvalid Base reg invalid indicator:
• 0: valid
• 1: invalid

15:12 RESERVED Reserved/un-defined (0’s)
20:16 Reg1 5-bit register ID for Reg1, if

applicable
23:21 RESERVED Reserved/un-defined (0’s)
28:24 Index 5-bit register ID for Index, if

applicable
31:29 RESERVED Reserved/un-defined (0’s)
36:32 Base 5-bit register ID for Base, if

applicable
39:37 RESERVED Reserved/un-defined (0’s)
44:40 Reg2 5-bit register ID for Reg2, if

applicable
47:45 RESERVED Reserved/un-defined (0’s)
63:48 RESERVED Reserved/un-defined (0’s)

	CHAPTER 1: INTRODUCTION TO INTEL® ADVANCED PERFORMANCE EXTENSIONS
	1.1 ABOUT THIS DOCUMENT
	1.2 INTRODUCTION

	CHAPTER 2: SOFTWARE VIEW OF INTEL® ADVANCED PERFORMANCE EXTENSIONS
	2.1 SOFTWARE STACK
	2.2 COMPILERS AND APPLICATION BINARY INTERFACE (ABI)
	2.2.1 LEGACY-COMPLIANT APPLICATION BINARY INTERFACE (ABI)
	2.2.2 EXAMPLE: SETJMP AND LONGJMP

	2.3 OPERATING SYSTEM INTERFACE
	2.3.1 INTEL® APX CPUID ENUMERATION AND XSAVE DEFINITION

	2.4 HYPERVISOR INTERFACE
	2.4.1 VM EXIT QUALIFICATION FIELD DEFINITION FOR MOV DR
	2.4.2 VM EXIT QUALIFICATION FIELD DEFINITION FOR MOV CR, LMSW, CLTS
	2.4.3 VMCS VM-EXIT EXTENDED INSTRUCTION INFO FIELD (EII)

