q r m Arm® Architecture Reference

Manual Supplement, The
Scalable Vector Extension

Document number DDI 0584
Document quality EAC

Document version B.a

Document confidentiality Non-confidential

Document build information Printed on: May 24, 2021.

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.

Release information

DDI 0584
B.a

Date Version Changes
2021/May/24 Non-Confidential * SVE as EAC
EAC B.a * SVE2 as EAC
2021/Jan/22 Non-Confidential * EAC maintenance release including FEAT_AFP
EAC A.i
2020/Jul/17 Non-Confidential * EAC maintenance release including BFloat and Matrix Multiplication
EAC Ah instructions
2020/Feb/21 Non-Confidential « Updated EAC release incorporating BFloat and Matrix Multiplication
EACA.g instructions
2019/Jul/05 Non-Confidential * EAC Maintenance release
EAC Af
2018/Oct/31 Non-Confidential « EAC Maintenance release
EAC Ae
2017/Dec/21 Non-Confidential * EAC Maintenance release
EAC A.d
2017/Dec/15 Non-Confidential * EAC Maintenance release
EAC Ac
2017/Aug/21 Non-Confidential * EAC release
EACAb
2017/Mar/31 Non-Confidential * Beta
Beta A.a

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.

Non-confidential

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained
in this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE
WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure
of this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof
is not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s customers
is not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document
at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there is any conflict between the
English version of this document and any translation, the terms of the English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its affiliates)
in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of
their respective owners. Please follow Arm’s trademark usage guidelines at http://www.arm.com/company/policies/trademarks

Copyright © 2017-2021 Arm Limited (or its affiliates). All rights reserved.
Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20349 version 21.0

Product Status

This manual covers multiple versions of the architecture. The content relating to both SVE and SVE2 is at EAC quality.
EAC quality means that:

 All features of the specification are described in the manual.
* Information can be used for software and hardware development.

DDI 0584 Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved. iii
B.a Non-confidential

http://www.arm.com/company/policies/trademarks

Contents

Arm® Architecture Reference Manual Supplement, The Scalable
Vector Extension

Release information ii
Non-Confidential Proprietary Notice iii
Product Status iii
Preface
Aboutthis supplement viii
Conventions e ix
Typographical conventions iX
Numbers ix
Pseudocode descriptions ix
Asterisks in instruction mnemonics ix
Assembler syntax descriptions X
Rules-basedwriting L Xi
Additionalreading e Xii
Arm publications L Xii
Feedback Xiii
Feedbackonthisbook xiii
Progressive Terminology Commitment xiii
Chapter 1 Introduction
1.1 About the Scalable Vector Extension, .. 14
1.1.1 Featuresthataffect SVE 14
1.1.2 Featureswithin SVE 15
1.2 Register disambiguation L o 16
Chapter 2 SVE Application level programmers’ model
2.1 SVE-specificregisters 17
2141 SVE Vectorregisters 17
21.2 SVE predicateregisters 18
2.1.3 First Fault Register, FFR 19
21.4 SVE writes to scalarregisters 20
2.2 SVE floating-point support 21
2.2.1 Half-precision floating-point support 21
222 Single-precision floating-pointsupport 21
223 Double-precision floating-point support 21
224 BFloat16 floating-point support oL 21
2.3 Predication 22
2.4 Process state, PSTATE N, Z, C and V Conditionflags 23
25 Data independent timing of SVE and SVE2 data-processing instructions . . . 25
Chapter 3 SVE System level programmers’ model
3.1 Exceptionmodel 26
3.1.1 Synchronous memory faults L 27
3.1.2 Asynchronous exceptions o L 30
3.2 Configurable vectorlength oL 31
Chapter 4 SVE Memory Model
41 SVEmemorymodel 33
DDI 0584 Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved. iv

B.a Non-confidential

Contents

Chapter 5

Chapter 6

Chapter 7

DDI 0584
B.a

4.2 Atomicity e 34
4.3 Alignmentsupport 35
4.4 Dataendianness 36
4.5 Memoryordering e 37
4.6 Device memory 38
4.7 CONSTRAINED UNPREDICTABLE memory accesses 39
SVE instruction set
5.1 SVE assemblerlanguage 40
52 SVE ISAfunctionalgroups 42
5.2.1 Load, store, and prefetch instructions 42
5.2.2 Vectormove operations 47
5.2.3 Integeroperations 47
524 Bitwise operations 52
525 Floating-point operations 53
5.2.6 Predicate operations 60
5.2.7 Move operations 66
5.2.8 Reductionoperations 70
5.3 SVE2 ISA functional groups 72
5.3.1 Down-countingLoops 72
5.3.2 Constructive multiply 72
5.3.3 Uniform DSP operations 72
5.3.4 Widening DSP operations 73
5.35 Narrowing DSP operations 74
5.3.6 Unary narrowing operations, 75
5.3.7 Non-widening pairwise arithmetic 75
5.3.8 Widening pairwise arithmetic L. 76
5.3.9 Bitwise ternary logical instructions 76
5.3.10 Largeintegerarithmetic. 77
5.3.11 Multiplication by indexed elements 77
5.3.12 Complex integer arithmetic 78
5.3.13 Floating-point extra conversions 80
5.3.14 Floating-point widening multiply-accumulate 80
5.3.15 Floating-point integer binary logarithm 81
5.3.16 Cross-lane matchdetect 81
5.3.17 Bitpermutation 82
5.3.18 Polynomial arithmetic L. 82
5.3.19 Vectorconcatenation o oo 83
5.3.20 Extended table lookup/permute oL, 83
5.3.21 Non-temporal gather/scatter 83
5.3.22 Cryptography support 84
SVE Debug
6.1 Self-hosteddebug 86
6.1.1 SVE Watchpoint exceptions 86
6.1.2 MOVPRFX instruction behavior in self-hosteddebug 87
6.2 Externaldebug 88
6.2.1 InstructionsinDebugstate, 88
SVE Performance Monitor Usage
7.1 Interesting combinations of SVEevents 90
711 Scalar-equivalentoperations 90
712 Bytesloadedandstored, 90
71.3 Overall vector utilization 90
71.4 Vector loop efficiency 91
Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved. v

Non-confidential

Contents

Contents
Chapter 8 SVE instruction categories
8.1 Data movement instructions oo 93
8.1.1 Data movement (scalar), 93
8.1.2 Data movement (Advanced SIMD) 93
8.1.3 Datamovement (SVE) 93
8.2 Integer instructions 95
8.2.1 Integer (scalar) 95
8.2.2 Integer (Advanced SIMD) 96
8.2.3 Integer (SVE) 100
8.3 Floating-pointinstructions L 103
8.3.1 Floating-point (scalar) 103
8.3.2 Floating-point (Advanced SIMD) 103
8.3.3 Floating-point (SVE) 105
8.4 Floating-point conversions 107
8.4.1 Float<+Float convert(scalar) 107
8.4.2 Float«<»Float convert (Advanced SIMD) 107
8.4.3 Float«»Floatconvert (SVE) 107
8.4.4 Float«+Intconvert (scalar) 107
8.4.5 Float«+Int convert (Advanced SIMD) 107
8.4.6 Float<»Intconvert (SVE) 108
8.5 Floating-point or integer instructions, 109
8.5.1 Floating-point or integer arithmetic (scalar) 109
8.5.2 Floating-point or integer arithmetic (Advanced SIMD) 109
8.5.3 Floating-point or integer arithmetic (SVE) 109
8.6 Non-SIMD SVE instructions 110
8.6.1 Element count and increment scalar (SVE) 110
8.6.2 Compare and terminate (SVE) 110
8.7 Predicate instructions 111
8.7.1 Predicate move (SVE) 111
8.7.2 Predicate counted loop (SVE) 111
8.7.3 Predicate bitwise logical operations (SVE) 111
8.7.4 Predicate scan (SVE) 111
8.75 Predicate count and increment scalar (SVE) 112
8.7.6 Predicate count and increment vector (SVE) 112
8.8 Cryptographic instructions 113
8.8.1 Cryptographic (Advanced SIMD) 113
8.9 Load/store/prefetch instructions 114
8.9.1 Load/store (Advanced SIMD and floating-point scalar) 114
8.9.2 Load/store/prefetch (SVE) 115
Chapter 9 Glossary
DDI 0584 Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved. Vi

B.a Non-confidential

Preface

vii

About this supplement

This supplement is the Arm® Architecture Reference Manual Supplement, The Scalable Vector Extension.
This supplement describes the changes and additions introduced by SVE to the Armv8-A architecture.

This supplement also describes the changes and additions introduced by SVE2 to the Armv9-A architecture.
For SVE, this supplement is to be read in conjunction with all of the following documents:

* Arm® Architecture Reference Manual, Armv8-A, for Armv8-A architecture profile.
» System Register XML for ArmvS8.
e A64 ISA XML for Armv8.

Together, these documents provide a full description of the Armv8-A Scalable Vector Extension.
For SVE2, this supplement is to be read in conjunction with all of the following documents:

* Arm® Architecture Reference Manual, Armv8-A, for Armv8-A architecture profile.

* Arm® Architecture Reference Manual Supplement Armv9, for Armv9-A architecture profile.
* System Register XML for Armv9.

* A64 ISA XML for Armv9.

Together, these documents provide a full description of the Armv9-A Scalable Vector Extension version 2.

This supplement does not contain any detailed instruction descriptions, pseudocode, XML, or System register
descriptions. This information is provided in a separate format. Links to this information are included throughout
the supplement.

This supplement is organized into parts:
* SVE Application level programmers’ model
Describes how the PE at an application level is altered by the implementation of SVE.
¢ SVE System level programmer’s model
Describes how the PE at a system level is altered by the implementation of SVE.
* SVE Memory Model
Describes the extensions made for SVE to the Arm memory model.
* SVE instruction set
Describes the extensions made for SVE to the Arm instruction set.
* SVE Debug
Describes how the Arm v8Debug exception model has been extended for SVE.
* SVE Performance Monitor Usage
Lists interesting combinations of SVE events
* SVE instruction categories
Lists SVE instructions grouped by the type of instruction.
* Glossary

Defines terms used in this document that have a specialized meaning.

viii

Conventions

Typographical conventions

The typographical conventions are:
italic
Introduces special terminology, and denotes citations.
bold
Denotes signal names, and is used for terms in descriptive lists, where appropriate.
monospace
Used for assembler syntax descriptions, pseudocode, and source code examples.

Also used in the main text for instruction mnemonics and for references to other items appearing in
assembler syntax descriptions, pseudocode, and source code examples.

SMALL CAPITALS

Used for some common terms such as IMPLEMENTATION DEFINED.

Used for a few terms that have specific technical meanings, and are included in the Glossary.
Red text

Indicates an open issue.
Blue text

Indicates a link. This can be

¢ A cross-reference to another location within the document
* A URL, for example http://developer.arm.com

Numbers
Numbers are normally written in decimal. Binary numbers are preceded by ob, and hexadecimal numbers by ox.
In both cases, the prefix and the associated value are written in a monospace font, for example oxrrrroooo. To

improve readability, long numbers can be written with an underscore separator between every four characters, for
example oxrrrr_0000_0000_0000. Ignore any underscores when interpreting the value of a number.

Pseudocode descriptions

This book uses a form of pseudocode to provide precise descriptions of the specified functionality. This pseudocode
is written in a monospace font. The pseudocode language is described in the Arm Architecture Reference Manual.

Asterisks in instruction mnemonics

Some behavior descriptions in this manual apply to a group of similar instructions that start with the same
characters. In these situations, an * might be inserted at the end of a series of characters as a wildcard. For example,
a reference to LDNF1* means that the behavior applies to all of the following instructions:

ix

http://developer.arm.com

Preface
Conventions

LDNF1B
LDNF1D
LDNF1H
LDNF1SB
LDNF1SH
LDNF1SW
LDNF1W

The * is inclusive, so ADR* includes both the ADR instruction and the ADRP instruction.

In order to make sure it is convenient to find instructions grouped in this way, this manual uses the * at the end of
the instruction name only and never at the start or in the middle of an instruction name.

Assembler syntax descriptions

This book contains numerous syntax descriptions for assembler instructions and for components of assembler
instructions. These are shown in a monospace font.

DDI 0584 Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved. X
B.a Non-confidential

Rules-based writing

w
|

Iyepp

Rules-based writing differs significantly from the traditional style used in Arm technical documents. Rules-based
writing has short statements with unique identifiers.

Requirements are referred to as rules and other information is referred to as information statements. Rules-based
architectural documents describe requirements of the architecture and information statements provide additional
information. Structured rules also follow a specific structure and specify some keyword terms. The following is an
example of a rule, followed by an information statement.

If a document has structured rules, by default all rules statements have a specific structure.
For architectural specifications the writing style for outcomes is deliberately different from the usual Arm style.

All rules and information statements have unique IDs. IDs start with a designator, followed by a unique string of
4 or 5 SMALL CAPITAL consonants. If the designator is an ‘R’ it is a rule. If the designator is an ‘I, it is an
information statement.

All rules have a specific structure. Information statements may take any structure.

Rules generally start with any conditions that make the rule applicable. These conditions have a limited set of
introductory phrases:

* Conditions that begin with if are used to make rules conditional on a state and tend to last for a while.
 Conditions that begin with when are used to make rules conditional on an event happening.
* Conditions that begin with for are used to make a rule apply to a part of the system.

There are three forms of the if-statements:

* If indicates the condition is sufficient to cause the action but might not be necessary. “If X then Y’ means the
same as “If X then Y happens, but if not X then Y might still happen”.

* Only if indicates the condition is necessary but might not be sufficient. “Only if X then Y means the same
as “If X then Y might happen, if not X then Y cannot happen”.

* If and only if indicates the condition is both necessary and sufficient. “If and only if X then Y” means the
same as “If X then Y happens, if not X then Y cannot happen”.

There are also three forms of the when-statements:

* When indicates the condition is sufficient to cause the action but might not be necessary.
* Only when indicates the condition is necessary but might not be sufficient.
* When and only when indicates the condition is both necessary and sufficient.

There may be many preconditions in a rule.

The next part of a rule is either an actor or a subject. When a specific action by a specific entity is defined, the
rule will be written in active voice and will have an actor. If the action is performed by an IMPLEMENTATION
DEFINED entity, then the rule will be written in passive voice and the rule will have a subject, which is something
that is acted on by the action in the rule statement. The action to be carried out follows the actor or subject and is
required. The object(s) of the action, followed by the outcome of the rule, are both optional and may be present
after the action.

X1

Additional reading

This section lists publications by Arm and by third parties.

See Arm Developer (http://developer.arm.com) for access to Arm documentation.

Arm publications

o Arm® Architecture Reference Manual, Armv8-A, for Armv8-A architecture profile (ARM DDI 0487).

o Arm® Architecture Reference Manual Supplement Armv9, for Armv9-A architecture profile (ARM DDI 0608).
o System Register XML for Armv8.

* A64 ISA XML for Army8.

» System Register XML for Armv9.

A64 ISA XML for Armv9.

Xii

Feedback

Arm welcomes feedback on its documentation.

Feedback on this book

If you have comments on the content of this book, send an e-mail to errata@arm.com. Give:

* The title (Arm® Architecture Reference Manual Supplement, The Scalable Vector Extension).
¢ The number (DDI 0584 B.a).

* The page numbers to which your comments apply.

* The rule identifiers to which your comments apply, if applicable.

* A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

Note

Arm tests PDFs only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the appearance or behavior
of any document when viewed with any other PDF reader.

Progressive Terminology Commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used terms that can be offensive.
Arm strives to lead the industry and create change.

We believe that this document contains no offensive terms. If you find offensive terms in this document, please
contact terms @arm.com

xiii

Chapter 1
Introduction

1.1 About the Scalable Vector Extension

T rxpFM The Scalable Vector Extension (SVE) includes the following functionality:

 Configurable vector length, from 128 bits up to 2048 bits.

* Predication and the required predicate registers.

* Instructions that operate on variable size vectors and predicates.

* Gather-load and scatter-store.

* Support for software-managed speculative vectorization.

» System registers and fields to configure the SVE vector length and traps.
* Minor additions to the configuration and identification registers.

TyrNEx SVE complements the AArch64 Advanced SIMD and floating-point functionality. SVE does not replace the
AArch64 Advanced SIMD and floating-point functionality.

T1gupz Scalable Vector Extension version two (SVE2) is a superset of SVE that incorporates functionality similar to
Advanced SIMD, as well as other enhancements. In this document, unless stated otherwise, when SVE is used, the
behavior also applies to SVE2.

Ryrcexx SVE is supported in AArch64 state only.
T rvcun The Scalable Vector Extension (SVE) is identified as FEAT_SVE.
TIcysye The Scalable Vector Extension version 2 (SVE2) is identified as FEAT_SVE2.

1.1.1 Features that affect SVE

DDI 0584 Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved. 14
B.a Non-confidential

Chapter 1. Introduction
1.1. About the Scalable Vector Extension

Ryzene If SVE is implemented, all of the following features are also implemented:
e FEAT_FCMA.
* FEAT_FP16.
Rykcsw The following list summarizes whether generic architectural features that affect SVE are OPTIONAL or mandatory:

* FEAT_BF16 BFloat16 instructions are OPTIONAL in Armv8.2 implementations and mandatory in Armv8.6
implementations.

¢ FEAT_I8MM matrix multiplication instructions are OPTIONAL in Armv8.2 implementations and mandatory
in Armv8.6 implementations.

1.1.2 Features within SVE

T uxyLc ¢ FEAT_F32MM matrix multiplication instructions are OPTIONAL for SVE in Armv8.2.
e FEAT_F64MM matrix multiplication instructions are OPTIONAL for SVE in Armv8.2.

InzavT The following list summarizes the OPTIONAL SVE? features:

* FEAT SVE_AES Scalable Vector AES instructions.

e FEAT SVE_BitPerm Scalable Vector Bit Permute instructions.

e FEAT_SVE_PMULL128 Scalable Vector PMULL (128-bit result) instructions.
e FEAT_SVE_SHA3 Scalable Vector RAX1 instruction.

e FEAT_SVE_SM4 Scalable Vector SM4 instructions.

DDI 0584 Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved. 15
B.a Non-confidential

Chapter 1. Introduction
1.2. Register disambiguation

1.2 Register disambiguation

I 1osKwW In some sections of this manual, registers are referred to by a generic name because the description applies
to multiple Exception levels, and therefore at a particular Exception level the register names need to take the
appropriate Exception level suffix, _ELO, _EL1, _EL2, or _EL3. The following table disambiguates the generic
names of some System registers by Exception level:

Generic form EL1 EL2 EL3
ELR_ELx ELR_ELI1 ELR_EL2 ELR_EL3
ESR_ELx ESR_ELI1 ESR_EL2 ESR_EL3
FAR_ELx FAR_EL1 FAR_EL2 FAR_EL3
SCTLR_ELx SCTLR_EL1 SCTLR_EL2 SCTLR_EL3
ZCR_ELx ZCR_EL1 ZCR_EL2 ZCR_EL3
DDI 0584 Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved. 16

B.a Non-confidential

../SVE_SysReg/xhtml/AArch64-ELR_EL1.html
../SVE_SysReg/xhtml/AArch64-ELR_EL2.html
../SVE_SysReg/xhtml/AArch64-ELR_EL3.html
../SVE_SysReg/xhtml/AArch64-ESR_EL1.html
../SVE_SysReg/xhtml/AArch64-ESR_EL2.html
../SVE_SysReg/xhtml/AArch64-ESR_EL3.html
../SVE_SysReg/xhtml/AArch64-FAR_EL1.html
../SVE_SysReg/xhtml/AArch64-FAR_EL2.html
../SVE_SysReg/xhtml/AArch64-FAR_EL3.html
../SVE_SysReg/xhtml/AArch64-SCTLR_EL1.html
../SVE_SysReg/xhtml/AArch64-SCTLR_EL2.html
../SVE_SysReg/xhtml/AArch64-SCTLR_EL3.html
../SVE_SysReg/xhtml/AArch64-ZCR_EL1.html
../SVE_SysReg/xhtml/AArch64-ZCR_EL2.html
../SVE_SysReg/xhtml/AArch64-ZCR_EL3.html

Chapter 2
SVE Application level programmers’ model

2.1 SVE-specific registers

2.1.1 SVE Vector registers

Rrgrgs. SVE has 32 scalable vector registers named Z0-Z31.

Ryanyp All SVE scalable vector registers are the same size.

Rkcios The size of an SVE scalable vector register is an IMPLEMENTATION DEFINED multiple of 128 bits.

RxJsp0 The maximum size of an SVE scalable vector register is 2048 bits.

Rrxphx The minimum size of an SVE scalable vector register is 128 bits.

T akuy. Unless stated otherwise in an instruction description, SVE instructions treat an SVE scalable vector register as

containing one or more vector elements that are equal in size.

T cpkao Unless stated otherwise in an instruction description, vector elements can be processed in parallel by SVE
instructions.
RyupeN When an SVE scalable vector register is divided into vector elements by an instruction, the size of the vector

elements is encoded in the opcode of the instruction. The size of the vector elements is 8, 16, 32, 64, or 128 bits.

Regzin When the order of operations performed by an SVE instruction on vector or predicate elements has observable
significance, elements are processed in increasing element number order.

DDI 0584 Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved. 17
B.a Non-confidential

Chapter 2. SVE Application level programmers’ model
2.1. SVE-specific registers

I pp2RX The layouts of an SVE 256-bit vector register and a SIMD&FP vector in AArch64 state are:
255 192191 128127 64 63 0
Zn
256-bit vector of 128-bit elements Q .Q
(1] 0]
256-bit vector of 64-bit elements .D D .D .D
[3] [2] (1] [0]
256-bit vector of 32-bit elements .S S S S S .S S S
(7] [6] (5] (4] (3] (2] (1] [0]
256-bit vector of 16-bitelements [H(H| H| H|H|H|H|[H|[H|H|H|[H|[H|H]H|H
[15] [14] [13] [12] [11] [10] [9] (8] [7] [6] [5] [4] [3] [2] [1] [O]
256-bit vector of 8-bit elements |8|.8|.8|.8|.8|.8|.8|.8|.B|.B|B|.B|.B|.B|B|.B|.B|.B|.B|.B|.B|.B|B|.B|.B|.B|.B|.B|.B|.B| .B|.B

[31].. -2 111

127 96 95 64 63 32 31 0
Vn

128-bit vector of 64-bit elements .D .D

128-bit vector of 32-bit elements .S .S .S .S

128-bit vector of 16-bit elements H|H|[H|[H]H|[H]|]H|.H

128-bit vector of 8-bit elements B|B|B|B|B|B|B|B|B|B|B|B|B|B|B|B

18] L2110
Rypxcp Bits[127:0] of each of the SVE scalable vector registers, Z0-Z31, hold the correspondingly numbered AArch64
SIMD&FP register, VO-V31.
RukyLe When the accessible SVE vector length at the current Exception level is greater than 128 bits, any AArch64

instruction that writes to VO-V31 sets all the accessible bits above bit [127] of the corresponding SVE scalable
vector register to zero.

See also:

» 2.1.2 SVE predicate registers.
* 3.2 Configurable vector length.
* 4.2 Atomicity.

2.1.2 SVE predicate registers

Rocwrs SVE has 16 scalable predicate registers named PO-P15.

DDI 0584 Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved. 18
B.a Non-confidential

Chapter 2. SVE Application level programmers’ model
2.1. SVE-specific registers

Rurezs
Rukra

Rurpxc
Resrxx

RyvRkx

Rpwwrs
Ruremp

R BMLS

Each SVE predicate register holds one bit for each byte of a vector register.

The size of an SVE predicate register is an IMPLEMENTATION DEFINED multiple of 16 bits.
The maximum size of an SVE predicate register is 256 bits.

The minimum size of an SVE predicate register is 16 bits.

Unless stated otherwise in the instruction description, SVE instructions treat an SVE predicate register as containing
one or more predicate elements of equal size.

Each predicate register can be subdivided into a number of 1, 2, 4, or 8-bit elements.
Each predicate element in a predicate register corresponds to a vector element.

When a predicate register is divided into predicate elements by an instruction, the size of the predicate elements is
encoded in the opcode of the instruction.

If the lowest-numbered bit of a predicate element is 1, the value of the predicate element is TRUE.
If the lowest-numbered bit of a predicate element is 0, the value of the predicate element is FALSE.

For all SVE instructions, if all of the following are true, all bits except the lowest-numbered bit of each predicate
element are ignored on reads:

* The instructions are not used to move and permute predicate elements.
* The instructions are not predicate logical operations.

For all SVE instructions, if all of the following are true, all bits except the lowest-numbered bit of each predicate
element are set to zero on writes:

* The instructions are not used to move and permute predicate elements.
* The instructions are not predicate logical operations.

See also:
e 2.3 Predication.

e 5.2.6.3 Predicate logical operations This section contains a list of instructions used to perform bitwise
logical operations on predicate registers that operate on all bits of the register.

e 5.2.7.3 Predicate permute This section contains a list of instructions used to used to move and permute
predicate elements.

2.1.3 First Fault Register, FFR

Rrrown
I XPLQW
Repoon

Tf‘E:".'Ff"LI

DDI 0584
B.a

SVE has a dedicated First Fault Register named FFR.

The FFR captures the cumulative fault status of a sequence of SVE First-fault and Non-fault vector load instructions.
The FFR and the predicate registers have the same size and format.

The FFR is a Special-purpose register.

All accessible bits in the FFR are initialized to 1 by using the SETFFR instruction.

Bits in the FFR are indirectly set to O as a result of a suppressed access or fault generated in response to an Active
element of an SVE First-fault or Non-fault vector load.

Bits in the FFR are never set to 1 as a result of a vector load instruction.

After a sequence of one or more SVE First-fault or Non-fault loads that follow a SETFFR instruction, the FFR
contains a sequence of zero or more TRUE elements, followed by zero or more FALSE elements.

The TRUE elements in the FFR indicate the shortest sequence of consecutive elements that could contain valid
data loaded from memory.

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved. 19
Non-confidential

../SVE_xml/xhtml/setffr_f.html
../SVE_xml/xhtml/setffr_f.html.html

Chapter 2. SVE Application level programmers’ model
2.1. SVE-specific registers

Reurro The only instructions that directly read the FFR are:

* RDFFR.
* RDFFRS.

RyuBRN The only instructions that directly write the FFR are:

* WRFFR.
* SETFFR.

Ryxmvp All direct and indirect reads and writes to the FFR occur in program order relative to other instructions, without
explicit synchronization.

See also:

e 2.1.2 SVE predicate registers.
e 3.1.1 Synchronous memory faults.

2.1.4 SVE writes to scalar registers

Izpn.eD Certain SVE instructions generate a scalar result that is written to an AArch64 general-purpose register or to
element[0] of a vector register.

RunvTm When an SVE instruction generates a scalar result of width N bits, the instruction places the result in bits [N-1:0]
of the destination register.

Rocrs When an instruction generates a scalar result of width N bits, and N is less than the maximum accessible destination
register width RW, the instruction sets to zero bits [RW-1:N] of the destination register.
See also:

o Registers in AArch64 Execution state in the ARM® Architecture Reference Manual, ARMvS-A, for ARMvS-A
architecture profile

DDI 0584 Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved. 20
B.a Non-confidential

../SVE_xml/xhtml/rdffr_p_f.html.html
../SVE_xml/xhtml/rdffr_p_p_f.html.html
../SVE_xml/xhtml/wrffr_f_p.html.html
../SVE_xml/xhtml/setffr_f.html.html

Chapter 2. SVE Application level programmers’ model
2.2. SVE floating-point support

2.2 SVE floating-point support

TxkseC Unless otherwise specified, SVE floating-point instructions follow the normal Armv8 floating-point behaviors in
the Advanced SIMD and floating-point support section of the Arm® Architecture Reference Manual Armv8, for
Armv8-A architecture profile.

2.2.1 Half-precision floating-point support

TcoveD Except as specified in this section, SVE half-precision floating-point instructions honor the descriptions in the
Half-precision floating-point format section of the Arm® Architecture Reference Manual ArmvS8, for Armv8-A
architecture profile.

Rruvce SVE half-precision floating-point instructions ignore the value of the FPCR.AHP bit and behave as if the bit has an

Effective value of 0.

Ipuwto The SVE half-precision floating-point instructions support only the IEEE 754-2008 half-precision format.

2.2.2 Single-precision floating-point support

TvryH For more information on single-precision floating-point support, see the Single-precision floating-point format
section in the Arm® Architecture Reference Manual Armv8, for Armv8-A architecture profile.

2.2.3 Double-precision floating-point support

Toorzo For more information on double-precision floating-point support, see the Double-precision floating-point format
section in the Arm® Architecture Reference Manual Armv8, for Armv8-A architecture profile.

2.2.4 BFloat16 floating-point support

Roprke The BFloat16 instructions are only supported if ID_AA64ZFR0O_EL1.BF16 is not 0.

I cpmzw For more information on BFloat16 support, see the BFloat16 floating-point format section in the Arm® Architecture
Reference Manual ArmvS, for Armv8-A architecture profile.

DDI 0584 Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved. 21
B.a Non-confidential

../SVE_SysReg/xhtml/AArch64-FPCR.html
../SVE_SysReg/xhtml/AArch64-ID_AA64ZFR0_EL1.html

Chapter 2. SVE Application level programmers’ model
2.3. Predication

2.3 Predication

I VKHDR

Trnrry

Iv\ YRE

DDI 0584
B.a

If an instruction supports predication, it is known as a predicated instruction.

The predicate operand that is used to determine the Active elements of a predicated instruction is known as the
Governing predicate.

An instruction that does not have a Governing predicate operand and implicitly treats all other vector and predicate
elements as Active is known as an unpredicated instruction.

Many predicated instructions can only use PO-P7 as the Governing predicate.

When a Governing predicate element is TRUE, the corresponding element in other vector or predicate operands is
an Active element.

When a Governing predicate element is FALSE, the corresponding element in other vector or predicate operands
is an Inactive element.

Predicated instructions process Active elements.
Predicated instructions do not process Inactive elements.
Unpredicated instructions process all elements in their vector or predicate operands.

When a predicated instruction writes to a vector destination register or a predicate destination register, one of the
following happens:

* The Inactive elements in the destination register are set to zero.
* The Inactive elements in the destination register retain their previous value.

Zeroing predication is performed when the Inactive elements in the destination register are set to zero.

Merging predication is performed when Inactive elements in the destination register retain their previous value.

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved. 22
Non-confidential

Chapter 2. SVE Application level programmers’ model
2.4. Process state, PSTATE N, Z, C and V Condition flags

2.4 Process state, PSTATE N, Z, C and V Condition flags

Tyyxws Process state, or PSTATE, is an abstraction of process state information. This section describes the SVE-specific
use of PSTATE.
Tyzyveo PSTATE N, Z, C and V Condition flags can be updated by any of the following:

* An SVE instruction that generates a predicate result and updates the PSTATE N, Z, C and V Condition flags
based on the value of the result.

* An SVE instruction that updates the PSTATE N, Z, C and V Condition flags based on the value in its predicate
source register or FFR:

- PTEST
— RDFFRS (predicated)

* An SVE instruction that updates the PSTATE N, Z, C and V Condition flags based on the values in its
general-purpose source registers:

- CTERMEQ
- CTERMNE

Rrpxre When setting the PSTATE N, Z, C and V Condition flags for SVE predicated flag-setting instructions, the
instruction’s Governing predicate determines which predicate elements are considered Active.

RoJBRW When setting the PSTATE N, Z, C and V Condition flags for SVE unpredicated flag-setting instructions, all
predicate elements are considered Active.

Rzmrxc Unless otherwise specified in an instruction description, the SVE flag-setting instructions update the PSTATE N, Z,
C and V Condition flags as follows:

Flag SVE Name SVE interpretation
N First Set to 1 if the First active element was TRUE, otherwise cleared to 0.
Z None Cleared to O if any Active element was TRUE, otherwise set to 1.
C Not last Cleared to O if the Last active element was TRUE, otherwise set to 1.
A% - Cleared to 0.
Txsxvr For convenience, the SVE assembler syntax defines an alternative set of SVE condition code aliases for use with

AArch64 conditional instructions, as follows:

Condition test AArch64 name SVE alias SVE interpretation

Z==1 EQ NONE All Active elements were FALSE or there were no Active
elements

Z== NE ANY An Active element was TRUE.

C== HS/CS NLAST The Last active element was FALSE or there were no
Active elements.

C== LoO/CC LAST The Last active element was TRUE.

N==1 MI FIRST The First active element was TRUE.

N== PL NFRST The First active element was FALSE or there were no

Active elements.

DDI 0584 Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved. 23
B.a Non-confidential

../SVE_xml/xhtml/PTEST.html
../SVE_xml/xhtml/rdffr_p_p_f.html
../SVE_xml/xhtml/CTERMEQ.html
../SVE_xml/xhtml/CTERMNE.html

Chapter 2. SVE Application level programmers’ model
2.4. Process state, PSTATE N, Z, C and V Condition flags

Condition test AArch64 name SVE alias SVE interpretation

C=1&&7Z=0 HI PMORE An Active element was TRUE, but the Last active element
was FALSE.

C=0IZ== LS PLAST The Last active element was TRUE, or all Active elements
were FALSE, or there were no Active elements.

V== VS - CTERM comparison failed, but end of partition reached.

V=0 vC - CTERM comparison succeeded, or end of partition not
reached.

N=V GE TCONT CTERM termination condition not detected.

N!=V LT TSTOP CTERM termination condition detected.

See also:

e 2.3 Predication

DDI 0584 Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved. 24
B.a Non-confidential

Chapter 2. SVE Application level programmers’ model
2.5. Data independent timing of SVE and SVEZ2 data-processing instructions

2.5 Data independent timing of SVE and SVE2 data-processing instructions

I FDNVB
Rypst,
Txxcse
Rro
DDI 0584

B.a

If SVE2 is not implemented, the data independent timing control introduced by FEAT_DIT does not affect the
timing properties of SVE instructions. However, if SVE2 is implemented, the addition of cryptographic instructions
in SVE?2 requires that when PSTATE.DIT is 1, the timing properties of certain SVE and SVE2 instructions are
affected.

If SVE2 is implemented and PSTATE.DIT is 1, the data independent timing of the following subset of SVE and
SVE?2 instructions is affected in all of the following ways:

* For unpredicated SVE and SVE?2 instructions, the instruction timing is independent of all of the following:
— The data values supplied in any of its operand registers.
— The values of the NZCV flags.
* For predicated SVE and SVE2 instructions, the instruction timing is independent of all of the following:
— The data values supplied in any of its operand registers when its Governing predicate register contains
the same value for each execution.
— The values of the NZCV flags.
* For predicated SVE and SVE2 instructions, the architecture does not mandate that the instruction timing is
independent of the value of the Governing predicate.
* For the SVE sev instruction, the instruction timing is independent of all of the following:
— The data values supplied in any of its operand registers.
— The values of the NZCV flags

When using the predicated instructions, it is the programmer’s responsibility to use a Governing predicate that
does not reflect the values of the data being operated on.

The Operational information section of an SVE instruction description indicates whether or not that instruction
honors the PSTATE.DIT control. If the Operational information section of an SVE instruction description does not
mention PSTATE.DIT or if the section does not exist, then the instruction timing is not affected by PSTATE.DIT.

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved. 25
Non-confidential

Chapter 3
SVE System level programmers’ model

3.1 Exception model

I FYMMP

DDI 0584
B.a

SVE adds hierarchical trap and enable controls at EL3, EL2, and EL1:

* CPTR_EL3.EZ.

* CPTR_EL2.TZ, when HCR_EL2.E2H == 0.

e CPTR_EL2.ZEN, when HCR_EL2.E2H == 1.
* CPACR_ELI1.ZEN.

SVE defines the ono11001 exception class value in ESR_ELx.EC. The ono11001 exception class value is for exceptions
that are due to attempted execution of SVE instructions and MRS/MSR accesses to the ZCR_ELXx registers that are
trapped by CPACR_EL1, CPTR_EL2 or CPTR_EL3.

Predicated SVE floating-point instructions only generate floating-point exceptions in response to floating-point
operations performed on Active elements.

When a MOVPRFX instruction pairs legally with another instruction and the execution of the pair generates a
synchronous exception, the return address that is stored in ELR_ELX is one of the following:

¢ When the MOVPRFX instruction did not cause a change to the architectural state, the address of the
MOVPRFX instruction is stored.

* When the MOVPRFX instruction caused a change to the architectural state, the address of the prefixed
instruction is stored.

When a MOVPREX instruction pairs legally with another instruction and the execution of the pair causes entry to
Debug state, the return address that is stored in DLR_ELO is one of the following:

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved. 26
Non-confidential

../SVE_SysReg/xhtml/AArch64-CPTR_EL3.html
../SVE_SysReg/xhtml/AArch64-CPTR_EL2.html
../SVE_SysReg/xhtml/AArch64-HCR_EL2.html
../SVE_SysReg/xhtml/AArch64-CPTR_EL2.html
../SVE_SysReg/xhtml/AArch64-HCR_EL2.html
../SVE_SysReg/xhtml/AArch64-CPACR_EL1.html
../SVE_SysReg/xhtml/AArch64-CPACR_EL1.html
../SVE_SysReg/xhtml/AArch64-CPTR_EL2.html
../SVE_SysReg/xhtml/AArch64-CPTR_EL3.html
../SVE_SysReg/xhtml/AArch64-DLR_EL0.html

Chapter 3. SVE System level programmers’ model
3.1. Exception model

R TPRKM

Rq YDX

e When the MOVPRFX instruction did not cause a change to the architectural state, the address of the
MOVPRFX instruction is stored.

¢ When the MOVPRFX instruction caused a change to the architectural state, the address of the prefixed
instruction is stored.

When a MOVPRFX instruction pairs illegally with another instruction and execution of the pair generates a
synchronous exception, the return address recorded in ELR_ELX is a CONSTRAINED UNPREDICTABLE choice one
of the following:

¢ The address of the MOVPRFX instruction.
* The address of the prefixed instruction.

When a MOVPRFX instruction pairs illegally with another instruction and execution of the pair causes entry to
Debug state, the return address recorded in DLR_ELOQ is a CONSTRAINED UNPREDICTABLE choice one of the
following:

* The address of the MOVPRFX instruction.
* The address of the prefixed instruction.

When a prefixed instruction generates an Instruction Abort due to an MMU fault or synchronous External abort
and the MOVPRFX does not generate an Instruction Abort, then the address of the prefixed instruction is recorded
in the appropriate FAR_ELx or HPFAR_EL2 register and the address of the MOVPRFX instruction is recorded in
the appropriate ELR_ELx register.

When a prefixed instruction generates an Instruction Abort due to an MMU fault or synchronous External abort
and the MOVPRFX also generates an Instruction Abort, then the address of the MOVPRFX instruction is recorded
in the appropriate FAR_ELx or HPFAR_EL2 register and the appropriate ELR_ELX register.

See also:

« ESR_ELI1

« ESR_EL2

« ESR_EL3

« ELR_ELI

e ELR_EL2

¢« ELR_EL3

« FAR_ELI1

 FAR_EL2

e« FAR_EL3

* MOVPRFX (predicated)
* MOVPRFX (unpredicated)
« ZCR_ELI1

e ZCR_EL2

e ZCR_EL3

5.2.7.5 Move prefix

3.1.1 Synchronous memory faults

Tyicrs
R SKNTR
DDI 0584

B.a

In this section, the term Memory fault refers to the detection of an erroneous condition or debug event as a result of
performing a data memory access for an SVE load or store instruction.

When an SVE load or store instruction results in a data memory access, the detection of any of the following
conditions is considered to be a Memory fault:

* MMU fault.

¢ Alignment fault, excluding the SP alignment fault.

* Synchronous External abort, including synchronous parity error or ECC error.
* Watchpoint debug event.

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved. 27
Non-confidential

../SVE_SysReg/xhtml/AArch64-DLR_EL0.html
../SVE_SysReg/xhtml/AArch64-HPFAR_EL2.html
../SVE_SysReg/xhtml/AArch64-HPFAR_EL2.html
../SVE_SysReg/xhtml/AArch64-ESR_EL1.html
../SVE_SysReg/xhtml/AArch64-ESR_EL2.html
../SVE_SysReg/xhtml/AArch64-ESR_EL3.html
../SVE_SysReg/xhtml/AArch64-ELR_EL1.html
../SVE_SysReg/xhtml/AArch64-ELR_EL2.html
../SVE_SysReg/xhtml/AArch64-ELR_EL3.html
../SVE_SysReg/xhtml/AArch64-FAR_EL1.html
../SVE_SysReg/xhtml/AArch64-FAR_EL2.html
../SVE_SysReg/xhtml/AArch64-FAR_EL3.html
../SVE_xml/xhtml/movprfx_z_p_z.html
../SVE_xml/xhtml/movprfx_z_z.html
../SVE_SysReg/xhtml/AArch64-ZCR_EL1.html
../SVE_SysReg/xhtml/AArch64-ZCR_EL2.html
../SVE_SysReg/xhtml/AArch64-ZCR_EL3.html

Chapter 3. SVE System level programmers’ model
3.1. Exception model

I\,f’? SNC

I JZBGW

I\ XBNG

DDI 0584
B.a

For more details see VMSAv8-64 memory aborts in the Arm® Architecture Reference Manual, Armv8-A, for
Armv8-A architecture profile.

The detection or generation of a Memory fault by an SVE load or store instruction may or may not cause a
synchronous Data Abort or Watchpoint exception to be taken.

Unless otherwise specified in this section, SVE vector load and store instructions that detect a Memory fault cause
a Data Abort or Watchpoint exception to be taken, as described in 3.1.1.1 Data Abort and Watchpoint exceptions.

A Memory fault detected for a memory location that can only be accessed by an Inactive element of a predicated
SVE vector load or store instruction is ignored and does not cause a Data Abort or Watchpoint exception to be
taken by that instruction.

3.1.1.1 Data Abort and Watchpoint exceptions

Unless otherwise specified in this section, a Data Abort and Watchpoint exception caused by an SVE load or store
instruction follows the behaviors described in sections Effect of Data Aborts and Watchpoints, Exception entry,
and Synchronous exception types, routing and priorities in the Arm® Architecture Reference Manual, Armv8-A, for
Armv8-A architecture profile.

SVE load and store instructions can generate a sequence of single-copy atomic memory accesses that might not be
completed due to a Memory fault causing a Data Abort or Watchpoint exception to be taken during the memory
access sequence.

When the execution of an SVE load or store instruction detects multiple Memory faults caused by different
single-copy atomic memory accesses, the Memory faults are not prioritized by the architecture.

When an SVE load or store instruction that has not been architecturally executed is restarted after an exception
return, any memory locations that it accessed before taking the exception might be accessed again. Therefore, SVE
load or store instructions might perform multiple accesses to memory locations that do not cause a Memory fault
but which are sensitive to the number of accesses, or have been modified between the accesses.

When execution of an SVE load instruction causes a Data Abort or Watchpoint exception to be taken and the
destination is not a vector register that is also used as a base or index register by the instruction, then all elements
of the destination register become UNKNOWN.

When execution of an SVE load instruction causes a Data Abort or Watchpoint exception to be taken and the
destination is a vector register that is also used as a base or index register by the instruction, then all elements of
the destination vector register are restored to their original value prior to execution of the load instruction.

When execution of an SVE predicated vector store instruction causes a Data Abort or Watchpoint exception to be
taken, one or more of the following occurs:

* Memory locations that are associated with Active elements and which do not generate a Memory fault become
UNKNOWN.

* Memory locations that are associated with Active elements and which generate a Memory fault are unchanged.

* Memory locations that are only associated with Inactive elements are unchanged.

3.1.1.2 First-fault and Non-fault loads

When a memory access performed for the First active element of an SVE First-fault vector load instruction detects a
Memory fault, this causes a synchronous exception to be taken as described in 3.1.1.1 Data Abort and Watchpoint
exceptions.

When a memory access performed for the First active element of an SVE First-fault vector load instruction does
not detect a Memory fault, the other elements are handled in the same way as the elements of an SVE Non-fault
vector load instruction.

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved. 28
Non-confidential

Chapter 3. SVE System level programmers’ model
3.1. Exception model

R JKGYJ

R“y’]"T:fJ

A Data Abort or Watchpoint exception is not generated when a Memory fault is detected by a memory access
performed for any of the following elements:

* Any Active element of an SVE Non-fault vector load.
* Any Active element of an SVE First-fault vector load except for the First active element.

The PE can choose to suppress a memory access performed for any of the following elements:

* Any Active element of an SVE Non-fault vector load.
* Any Active element of an SVE First-fault vector load except for the First active element.

When a memory access performed for any of the following elements detects a Memory fault or is suppressed
for any other reason, the FFR predicate elements starting from that element number, up to and including the
highest-numbered element, are set to FALSE:

¢ Any Active element of an SVE Non-fault vector load.
* Any Active element of an SVE First-fault vector load except for the First active element.

An FFR predicate element is never set to TRUE by an SVE vector load, therefore the fault indications are
cumulative.

After an SVE Non-fault vector load or First-fault vector load is executed, each destination vector element contains
one of the values listed in the following table:

Corresponding FFR

element

Vector element status Content of destination vector element

FALSE

FALSE

TRUE
TRUE

Active Each byte of the element contains an independently CONSTRAINED
UNPREDICTABLE choice of one of the following:
* 0.
* The previous value of that byte in the destination vector register.
* If and only if all of the following apply, the value read from memory:
— The memory access for that byte was not an access to any type
of Device memory.
— The memory access for that byte does not return information
that cannot be accessed at the current or a lower level of
privilege.

Inactive A CONSTRAINED UNPREDICTABLE choice of:
* 0.
» The previous value of that vector element.

Active The value read from memory.

Inactive 0.

DDI 0584
B.a

In the previous table, watchpoints are not a mechanism for preventing access to memory.
See also:

o VMSAvS8-64 memory aborts in the Arm® Architecture Reference Manual, ArmvS8-A, for Armv8-A architecture
profile.

* Effect of Data Aborts and Watchpoints in the Arm® Architecture Reference Manual, ArmvS-A, for ArmvS-A
architecture profile

* Exception entry in the Arm® Architecture Reference Manual, Armv8-A, for ArmvS-A architecture profile.

e Synchronous exception types, routing and priorities in the Arm® Architecture Reference Manual, Armv8-A,
for Armv8-A architecture profile.

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved. 29
Non-confidential

Chapter 3. SVE System level programmers’ model
3.1. Exception model

3.1.2 Asynchronous exceptions

Rrrrrx Permitting SVE instructions to be interrupted by asynchronous exceptions is IMPLEMENTATION DEFINED.

Rurmzx When returning from an asynchronous exception, an interrupted SVE instruction is restarted and cannot resume at
the point the instruction was interrupted.

T orogp For Data Aborts taken asynchronously, refer to Effect of Data Aborts and Watchpoints in the Arm® Architecture
Reference Manual, Armv8-A, for Armv8-A architecture profile.

DDI 0584 Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved. 30
B.a Non-confidential

Chapter 3. SVE System level programmers’ model
3.2. Configurable vector length

3.2 Configurable vector length

Tnwyep Privileged Exception levels can use the ZCR_ELx.LEN System register fields to constrain the vector length at that
Exception level and at less privileged Exception levels.
Rp An implementation allows the vector length to be constrained to any power of two that is less than the maximum
implemented vector length.
Rry An implementation is permitted to allow the vector length to be constrained to multiples of 128 that are not a
power of two. It is IMPLEMENTATION DEFINED which of the permitted multiples of 128 are supported.
Ic The following table shows the SVE configurable vector lengths:
Maximum Required Permitted
128 128 -
256 128, 256 -
384 128, 256 -
512 128, 256 384
640 128, 256, 512 384
768 128, 256, 512 384, 640
896 128, 256, 512 384, 640, 768
1024 128, 256, 512 384, 640, 768, 896
1152 128, 256, 512, 1024 384, 640, 768, 896
1280 128, 256, 512, 1024 384, 640, 768, 896, 1152
1408 128, 256, 512, 1024 384, 640, 768, 896, 1152, 1280
1536 128, 256, 512, 1024 384, 640, 768, 896, 1152, 1280, 1408
1664 128, 256, 512, 1024 384, 640, 768, 896, 1152, 1280, 1408, 1536
1792 128, 256, 512, 1024 384, 640, 768, 896, 1152, 1280, 1408, 1536, 1664
1920 128,256, 512, 1024 384, 640, 768, 896, 1152, 1280, 1408, 1536, 1664, 1792
2048 128, 256, 512, 1024 384, 640, 768, 896, 1152, 1280, 1408, 1536, 1664, 1792, 1920
Ry When the values in ZCR_ELx.LEN configure an unsupported vector length, the implementation is required to
select the largest supported vector length that is less than the configured vector length. This does not alter the
values in ZCR_ELx.LEN.
RpxzTu If executing at an Exception level that is constrained to use a vector length that is less than the maximum
implemented vector length, the bits beyond the constrained length of the vector registers, predicate registers, or
FFR are inaccessible.
Ry1ypr When taking an exception from an Exception level that is more constrained to a target Exception level that is less
constrained, the previously inaccessible bits that become accessible have one of the following:
* A value of zero.
* The value that they had before executing at the more constrained vector length.
The choice between these options is IMPLEMENTATION DEFINED and can vary dynamically.
DDI 0584 Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved. 31
B.a Non-confidential

Chapter 3. SVE System level programmers’ model
3.2. Configurable vector length

Rl GX

RK}QY,FK

DDI 0584
B.a

When the size of the maximum vector length is increased by writing a larger value to ZCR_ELx.LEN, the
previously inaccessible bits that become accessible have one of the following:

* A value of zero.
* The value that they had before executing at the more constrained vector size.

The choice between these options is IMPLEMENTATION DEFINED and can vary dynamically.

If both floating-point and SVE instructions are disabled, trapped, or not available at all Exception levels below the
target Exception level, for the current Security state, the accessible SVE register state at the target Exception level
is preserved.

If SVE instructions are disabled or trapped at ELx, or not available because that Exception level is in AArch32
state, then for all purposes other than a direct read, the ZCR_ELx.LEN field has an Effective value of 0, which
implies an SVE vector length of 128 bits.

See also:

» ZCR_EL1
 ZCR_EL2
« ZCR_EL3

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved. 32
Non-confidential

../SVE_SysReg/xhtml/AArch64-zcr_el1.html
../SVE_SysReg/xhtml/AArch64-zcr_el2.html
../SVE_SysReg/xhtml/AArch64-zcr_el3.html

Chapter 4
SVE Memory Model

4.1 SVE memory model

Tcezrsy SVE predicated memory operations have a vector element size and a memory element access size. The vector
element size specifies the data that is read from and written to the vector. The memory element access size specifies
the amount of data that is read from and written to the memory.

I rg04 The vector element size and the memory element access size do not need to have the same value.
T16cam For each memory element, there is an associated element address.
DDI 0584 Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved. 33

B.a Non-confidential

Chapter 4. SVE Memory Model

4.2. Atomicity

4.2 Atomicity

DDI 0584
B.a

Atomicity rules for SIMD load and store instructions apply to SVE load and store instructions.
Additional rules apply to the atomicity of memory accesses performed by SVE load and store instructions.
SVE predicated load and store instructions are performed as a sequence of memory element accesses.

When an SVE predicated load or store instruction uses an element address that is aligned to the specified memory
element access size, the related element memory access is performed as a single-copy atomic access.

SVE unpredicated load and store instructions are performed as a sequence of byte accesses.

SVE unpredicated load and store instructions do not guarantee that any access larger than a byte will be performed
as a single-copy atomic access.

See also:

* Atomicity in the Arm® Architecture Reference Manual, Armv8-A, for Armv8-A architecture profile

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved. 34
Non-confidential

Chapter 4. SVE Memory Model
4.3. Alignment support

4.3 Alignment support

DDI 0584
B.a

Alignment rules for SIMD load and store instructions apply to SVE load and store instructions.
Additional rules apply to the alignment of memory accesses performed by SVE load and store instructions.

For predicated SVE vector element and structure load or store instructions, alignment checks are based on the
memory element access size, not on the vector element size.

For predicated SVE vector element and structure load or store instructions, Inactive elements cannot cause an
Alignment fault.

For unpredicated SVE vector register load or store instructions, the base address is checked for 16-byte alignment.
For unpredicated SVE predicate register load or store instructions, the base address is checked for 2-byte alignment.

If SP alignment checking is enabled in SCTLR_ELXx at the current Exception level and an SVE predicated load or
store instruction with any Active elements uses the current SP as the base address, then the SP register is checked
for 16-byte alignment.

If SP alignment checking is enabled in SCTLR_ELx at the current Exception level and an SVE predicated load
or store instruction with no Active elements uses the current SP as the base address, then it is CONSTRAINED
UNPREDICTABLE whether the SP register is checked for 16-byte alignment.

See also:
* Alignment support in the ARM® Architecture Reference Manual, ARMvS-A, for ARMvS-A architecture profile

o Memory types and attributes in the ARM® Architecture Reference Manual, ARMvS-A, for ARMvS-A architec-
ture profile

SCTLR_ELI

SCTLR_EL2
 SCTLR_ELS3

* SP alignment checking in the ARM® Architecture Reference Manual, ARMv8-A, for ARMvS-A architecture
profile

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved. 35
Non-confidential

../SVE_SysReg/xhtml/AArch64-SCTLR_EL1.html
../SVE_SysReg/xhtml/AArch64-SCTLR_EL2.html
../SVE_SysReg/xhtml/AArch64-SCTLR_EL3.html

Chapter 4. SVE Memory Model
4.4. Data endianness

4.4 Data endianness

DDI 0584
B.a

Rules on byte and element order of SIMD load and store instructions apply to SVE load and store instructions.
Additional rules apply to the data endianness of memory accesses performed by SVE load and store instructions.

For predicated SVE vector element and structure load and store instructions, an endianness conversion is performed
using the memory element access size. The size of the vector element is not used in endianness conversion.

For unpredicated SVE vector register load and store instructions, the vector byte elements are transferred in
increasing element number order without any endianness conversion.

For unpredicated SVE predicate register load and store instructions, each 8 bits from the predicate are transferred
as a byte in increasing element number order without any endianness conversion.

When an SVE load instruction is executed, endianness conversion occurs before any sign-extension or
zero-extension into a vector element.

When an SVE store instruction is executed, endianness conversion occurs after any truncation from the vector
element to the memory element access size.

See also:

* Data endianness in the ARM® Architecture Reference Manual, ARMvS-A, for ARMvS-A architecture profile

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved. 36
Non-confidential

Chapter 4. SVE Memory Model
4.5. Memory ordering

4.5 Memory ordering

DDI 0584
B.a

The Armv8 memory model is relaxed for reads and writes generated by SVE load and store instructions.

When two reads generated by SVE vector load instructions have an address dependency, the dependency does not
contribute to the dependency-ordered-before relation.

When a pair of reads access the same location, and at least one of the reads is generated by an SVE load instruction,
for a given observer, the pair of reads is not required to satisfy the internal visibility requirement.

When a single SVE vector store instruction generates multiple writes to the same location, the instruction ensures
that these writes appear in the coherence order for that location, in order of increasing vector element number. No
other ordering restrictions apply to memory effects generated by the same SVE store instruction.

If a single SVE load instruction generates multiple reads, the order in which the reads for different elements and
registers appear is not architecturally defined.

If an address dependency exists between two memory reads and an SVE non-temporal vector load instruction
generated the second read, then in the absence of any other barrier mechanism to achieve order, the memory
accesses can be observed in any order by the other observers within the shareability domain of the memory
addresses being accessed.

For any SVE load or store instruction that generates multiple single-copy atomic accesses to Normal or Device
memory, there is no requirement for the memory system beyond the PE to be able to identify the single-copy
atomic memory element access sizes.

See also:

* Definition of the Armv8 memory model, Arm® Architecture Reference Manual
e Memory types and attributes, Arm® Architecture Reference Manual

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved. 37
Non-confidential

Chapter 4. SVE Memory Model
4.6. Device memory

4.6 Device memory

IVH‘.'E,

RI NYMWH

R;H"'T"

DDI 0584
B.a

All rules applying to Device memory accesses by Advanced SIMD and floating-point load and store instructions
apply to Device memory access by SVE load and store instructions.

Additional rules apply to Device memory access by SVE load and store instructions.

When an SVE vector prefetch instruction is executed, any resulting memory read is guaranteed not to access Device
memory.

When an SVE Non-fault vector load is executed or for any element from a First-fault load except the First active
element, the resulting memory reads will not access Device memory.

When an SVE Non-fault vector load instruction is executed, an attempt by any Active element to access Device
memory is suppressed and reported in the FFR.

When an SVE First-fault vector load instruction is executed, any memory read performed for the First active
element can access Device memory.

When an SVE First-fault vector load instruction is executed, an attempt by any Active element other than the First
active element to access Device memory is suppressed and is reported in the FFR.

Hardware speculation of data accesses performed to a Device memory location is not permitted unless stated
otherwise.

For reads, including hardware speculation, that are performed by an SVE unpredicated load instruction, all of the
following are true:

* For any 64-byte window aligned to 64 bytes containing at least 1 byte that is explicitly accessed by the
instruction, any byte in the window can be accessed by the instruction.

* All bytes accessed by the instruction will be in a 64-byte window aligned to 64 bytes containing at least 1
byte that is explicitly accessed by the instruction.

For reads, including hardware speculation, that are performed by an SVE predicated load instruction that is not a
non-temporal load, all of the following are true:

 For any 64-byte window aligned to 64 bytes containing at least 1 byte that is explicitly accessed by an Active
element of the instruction, any byte in the window can be accessed by the instruction.

» All bytes accessed by the instruction will be in a 64-byte window aligned to 64 bytes that contains at least 1
byte that is explicitly accessed by an Active element of the instruction.

For reads, including hardware speculation, that are performed by an SVE predicated non-temporal load instruction
from memory locations with the Gathering attributes, all of the following are true:

* For any 128-byte window aligned to 128 bytes containing at least 1 byte that is explicitly accessed by an
Active element of the instruction, any byte in the window can be accessed by the instruction.

* All bytes accessed by the instruction are in a 128-byte window aligned to 128 bytes that contains at least 1
byte that is explicitly accessed by an Active element of the instruction.

Any access to Device memory performed by an SVE load or store instruction is relaxed such that it might behave
as if:

* The Gathering attribute is set, regardless of the configured value of the nG attribute.
* The Reordering attribute is set, regardless of the configured value of the nR attribute.
* The Early Acknowledgement attribute is set, regardless of the configured value of the nE attribute.

Whether or not attributes are classified as mismatched is determined strictly by the memory attributes derived from
the page-table entry.

See also:

e 2.1.3 First Fault Register, FFR
* 3.1.1 Synchronous memory faults

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved. 38
Non-confidential

Chapter 4. SVE Memory Model
4.7. CONSTRAINED UNPREDICTABLE memory accesses

4.7 CONSTRAINED UNPREDICTABLE memory accesses

RT“TI‘ BDN

Rrez

DDI 0584
B.a

CONSTRAINED UNPREDICTABLE behaviors that are associated with memory accesses due to loads and stores also
apply to SVE vector load and store instructions.

The CONSTRAINED UNPREDICTABLE behaviors referred to in this section are defined in the Crossing a page
boundary with different memory types or Shareability attributes and Crossing a peripheral boundary with a Device
access sections of the the Arm® Architecture Reference Manual, Armv8-A. architecture profile.

When an SVE unpredicated contiguous load or store instructions accesses an address range that crosses a boundary
between memory types, Shareability attributes, or peripherals, the instruction has CONSTRAINED UNPREDICTABLE
behaviors associated with the cross boundary memory access.

When an SVE predicated contiguous load or store instruction performs memory accesses that are associated with
Active elements on both sides of a boundary between different memory types, Shareability attributes, or peripherals,
the instruction has CONSTRAINED UNPREDICTABLE behaviors associated with the cross boundary memory access.

When an SVE predicated non-contiguous load or store instruction performs a memory access that is associated
with an Active element that crosses a boundary between memory types, Shareability attributes, or peripherals, the
instruction has CONSTRAINED UNPREDICTABLE behaviors associated with the cross boundary memory access.

Memory addresses that are associated with Inactive elements cannot trigger CONSTRAINED UNPREDICTABLE
behaviors.

If SVE vector loads and stores trigger a CONSTRAINED UNPREDICTABLE behavior that then generates an alignment
fault, the fault is handled the same as any other synchronous memory fault caused by an SVE load or store
instruction.

See also:

* Crossing a page boundary with different memory types, Arm® Architecture Reference Manual, Armv8-A
* Crossing a peripheral boundary with a Device access, Arm® Architecture Reference Manual, ArmvS-A
* 3.1.1 Synchronous memory faults

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved. 39
Non-confidential

Chapter 5

SVE instruction set

5.1 SVE assembler language

The SVE assembler language extends the A64 assembler language.

Trruve The additions are:

DDI 0584
B.a

SVE adds vector register names zo-z31 and predicate register names po-p15s.

The number of elements in a vector or predicate register is not specified as part of a vector register shape
qualifier. For example, z1.s is used rather than vi.168.

An element size qualifier is not required for the Governing predicate (rg) except where the element size
cannot be inferred from the source and destination element sizes. However, when a predicate element size
qualifier is provided it is accepted by an assembler and checked for consistency with the other operands.

When appropriate, predicated instructions indicate whether the inactive destination vector elements are to
undergo zeroing predication or merging predication. The type of predication is indicated by use of a qualifier
suffix to the Governing predicate:

— pg/z - zeroing predication.
— pg/M - merging predication.

Some instructions identify Active elements and Inactive elements, but do not write to a destination vector
register. For these instructions, the Governing predicate operand is used with no zeroing or merging qualifier.

Many SVE instructions have destructive instruction encodings. To avoid ambiguity, a constructive notation is
used by the assembler language for these instructions. The destination register is repeated in the appropriate
source operand position.

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved. 40
Non-confidential

Chapter 5. SVE instruction set
5.1. SVE assembler language
» SVE load/store addresses have a syntax that allows vector register operands within the address specified.
» A set of SVE aliases is defined for the AArch64 condition codes.
See also:

s Structure of the A64 assembler language in the ARM® Architecture Reference Manual, ARMvS-A, for
ARMVS-A architecture profile

e 2.4 Process state, PSTATE N, Z, C and V Condition flags.

DDI 0584 Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved. 41
B.a Non-confidential

Chapter 5. SVE instruction set
5.2. SVE ISA functional groups

5.2 SVE ISA functional groups

IH:;‘L,I};

This section describes the functional groups for SVE instructions.

This section does not include SVE2 functional groups. For information on SVE2 functional groups, see 5.3 SVE2
ISA functional groups.

SVE adds a set of instructions to the existing ARMv8-A A64 instruction set. The SVE instructions break down into
the following functional groups:

* Load, store, and prefetch instructions.
* Integer operations.

* Vector address calculation.

* Bitwise operations.

¢ Floating-point operations.

* Predicate operations.

* Move operations.

* Reduction operations.

See also:

o The A64 instruction set in the ARM® Architecture Reference Manual, ARMVS-A, for ARMvS-A architecture
profile

5.2.1 Load, store, and prefetch instructions

Toz SVE vector load and store instructions transfer data in memory to or from elements of one or more vector or
predicate transfer registers. SVE also includes vector prefetch instructions that provide read and write hints to the
memory system. For SVE predicated load, store, and prefetch instructions, the memory element access size and
type that is associated with each vector element is specified by a suffix to the instruction mnemonic, independently
of the element size of the transfer registers. For example, LD1SH. The following table shows the supported
instruction suffixes for SVE load, store, and prefetch instructions:

Instruction suffix Memory element access size and type
B Unsigned byte
H Unsigned halfword or half-precision floating-point
\% Unsigned word or single-precision floating-point
D Unsigned doubleword or double-precision floating-point
SB Signed byte
SH Signed halfword
SW Signed word
The element size of the transfer registers is always greater than or equal to the memory element access size. When
the element size of the transfer registers is strictly greater than the memory element access size, then these are
referred to as unpacked data accesses. In the case of unpacked data accesses:
* For load instructions, each element access is sign-extended or zero-extended to fill the vector element,
according to its memory element access size and type.
* For store instructions, each vector element is truncated to the memory element access size.
Where the vector element size and the memory element access size are the same, then these are referred to as
DDI 0584 Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved. 42
B.a Non-confidential

Chapter 5. SVE instruction set
5.2. SVE ISA functional groups

I SKTWK

DDI 0584
B.a

packed data accesses. Signed access types are not supported for packed data accesses. Packed and unpacked access
sizes and types relate to the vector element size of the transfer registers, as defined in the following table:

Vector element Packed access suffix Unpacked access suffixes
B B -

H H B, SB

S W H, SH, B, SB

D D W, SW, H, SH, B, SB

For gather-load and scatter-store instructions, the vector element size can only be .S or .D. This means that any
non-contiguous memory element access of less than a word is unpacked. Non-contiguous memory element
accesses of a word can be either packed or unpacked, depending on the vector element size.

Load, store, and prefetch instructions consist of the following:

e 5.2.1.1 Predicated single vector contiguous element accesses

e 5.2.1.4 Predicated replicating element loads

* 5.2.1.2 Predicated multiple vector contiguous structure load/store
* 5.2.1.3 Predicated non-contiguous element accesses

* 5.2.1.4 Predicated replicating element loads

e 5.2.1.5 Unpredicated vector register load/store

e 5.2.1.6 Unpredicated predicate register load/store

All predicated load instructions zero the Inactive elements of the destination vector, except for Non-fault loads and
First-fault loads when the corresponding FFR element is FALSE.

Prefetch instructions provide hints to hardware and do not change architectural state. Therefore, a Governing
predicate for a prefetch instruction provides an additional hint which indicates the memory locations to be
prefetched. Prefetch instructions require a prefetch operation specifier. SVE prefetch instructions support all of the
prefetch operations except for the PLI prefetch operand types.

Load, store, and prefetch instructions that multiply a scalar index register or an index vector element by the memory
element access size specify a shift type, followed by a shift amount in bits. The shift type can be one of LSL,
SXTW, or UXTW. The shift amount is always Log2 of the memory element access size, in bytes. The shift amount
defaults to zero when the memory element access size is a byte, and the shift size can be omitted. The shift type of
LSL must be omitted if the shift amount is omitted.

When included as part of the assembler syntax for an instruction, MUL VL indicates that the specified immediate
index value is multiplied by the size of the addressed vector or predicate in memory, measured in bytes, irrespective
of predication. For a detailed description of the meaning of this assembler syntax for each instruction, see the
appropriate subsection below. When used in pseudocode, the symbol VL represents the vector length, measured in
bits.

SVE load, store, and prefetch instructions do not support pre-indexed or post-indexed addressing.
5.2.1.1 Predicated single vector contiguous element accesses
Predicated contiguous load and store instructions access memory locations starting from an address that is defined

by a scalar base register plus either:

¢ A scalar index register.
* An immediate index value that is in the range -8 to 7, inclusive. This defaults to zero if omitted.

Predicated contiguous prefetch instructions address memory locations in a similar manner, with the index being
either:

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved. 43
Non-confidential

Chapter 5. SVE instruction set
5.2. SVE ISA functional groups

A scalar index register.
An immediate index value that is in the range of -32 to 31, inclusive. This defaults to zero if omitted.

For this group of SVE instructions:

The immediate index value is a vector index, not an element index. The immediate index value is multiplied
by the number of vector elements, irrespective of predication, and then multiplied by the memory element
access size in bytes. The resulting offset is incremented following each element access by the memory
element access size.

The scalar index register value is multiplied by the memory element access size in bytes. The index value is
incremented by one after each element access, but the scalar index register is not updated by the instruction.
LD1* and ST1* instructions support both packed and unpacked data accesses, with a scalar index register or
an immediate index value.

First-fault load instructions that have the LDFF1* mnemonic prefix support both packed and unpacked data
accesses, with a scalar index register that defaults to XZR if omitted.

Non-fault load instructions that have the LDNF1* mnemonic prefix support both packed and unpacked data
accesses, with an immediate index value.

Non-temporal load instructions that have the LDNT1* mnemonic prefix and store instructions that have the
STNT1* mnemonic prefix support only packed data accesses, with a scalar index register or an immediate
index value.

Prefetch instructions that have the PRF* mnemonic prefix support only packed data accesses, with a scalar
index register or an immediate index value.

When alignment checking is enabled for loads and stores, the value of the base address register must be
aligned to the memory element access size.

Supported addressing modes Assembler syntax
Scalar base + scalar index [<XnISP>, <Xm>{, LSL #<sh>}]
Scalar base + immediate index [<XnISP>{, #<simm>, MUL VL}]

5.2.1.2 Predicated multiple vector contiguous structure load/store

TIynseew Structure load instructions that have the LD2*, LD3*, or LD4* mnemonic prefix read N consecutive memory
locations to the same-numbered element in each of the N vector transfer registers, where N = 2, 3, or 4, respectively.
Structure store instructions that have the ST2*, ST3*, or ST4* mnemonic prefix write from the same-numbered
element in each of the N consecutive vector transfer registers to N consecutive memory locations. The starting
address is defined by a scalar base register plus either:

A scalar index register.
An immediate index that is a multiple of N, in the range -8xN to 7xN, inclusive. This defaults to zero if
omitted.

For this group of SVE instructions:

DDI 0584
B.a

The immediate index value is a vector index, not an element index. The immediate index value is multiplied
by the number of vector elements, irrespective of predication, and then multiplied by the memory element
access size in bytes. The resulting offset is incremented following each element access by the memory
element access size.

The scalar index register value is multiplied by the memory element access size in bytes. Following each
element access, the index value is incremented by one but the instruction does not update the scalar index
register.

Each predicate element applies to a single structure in memory, or equivalently to the same element number
within each of the two, three, or four transferred vector registers.

These instructions support packed data accesses only.

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved. 44
Non-confidential

Chapter 5. SVE instruction set
5.2. SVE ISA functional groups

* When alignment checking is enabled for loads and stores, the base address must be aligned to the element
access size.

Supported addressing modes Assembler syntax
Scalar base + scalar index [<XnISP>, <Xm>{, LSL #<sh>}]
Scalar base + immediate index [<XnISP>{, #<simm>, MUL VL}]

5.2.1.3 Predicated non-contiguous element accesses

IRuT. Predicated non-contiguous element accesses address non-contiguous memory locations that are specified by either:

* A scalar base register plus a vector of indices or offsets.

* A vector of base addresses plus an immediate byte offset. The immediate byte offset is a multiple of the
memory element access size, in the range 0 to 31 times the memory element access size, inclusive, and
defaults to zero if omitted.

For this group of SVE instructions:

* Vector registers used as part of the address must specify a vector element size of 32 bits or 64 bits, .S or .D.
For load and store instructions, the transfer register must specify the same vector element size.

» If the index vector register contains 32-bit index values then the lowest 32 bits of each index vector element
can either be zero-extended or sign-extended to 64 bits.

* For load and store instructions, the index vector elements are then optionally multiplied by the memory
element access size, in bytes, if a shift amount is specified. For prefetch instructions the index vector elements
are always multiplied by the memory element access size, in bytes.

* Non-contiguous LD1* instructions, ST1* instructions, and First-fault LDFF1* instructions support packed
and unpacked data accesses. PRF* instructions only specify the memory element access size.

* When alignment checking is enabled for loads and stores, the computed virtual address of each element must
be aligned to the memory element access size.

Supported addressing modes Assembler syntax, 64-bit elements Assembler syntax, 32-bit elements

Scalar base + 64-bit vector [<XnISP>, <Zm>.D{, LSL #<sh>}] -

index

Scalar base + 32-bit vector [<XnISP>, <Zm>.D, (SIU)XTW{ #<sh>}] [<XnlISP>, <Zm>.S, (SIU)XTW/{ #<sh>}]
index

Vector base + immediate offset [<Zn>.D{, #<uimm>}] [<Zn>.S{, #<uimm>}]

5.2.1.4 Predicated replicating element loads
I10roB The load and replicate instructions read one or more contiguous memory locations starting from an address that is
defined by a scalar base register plus either:

¢ A scalar index register.
* An immediate byte offset.

This defaults to zero if omitted.
For this group of SVE instructions:
* The single element load and replicate instructions, LDIRB, LD1RD, LD1RH, LD1RSB, LD1RSH, LD1RSW,

and LD1RW, load a single element value and replicate it into all Active elements of the destination vector.

DDI 0584 Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved. 45
B.a Non-confidential

Chapter 5. SVE instruction set
5.2. SVE ISA functional groups

These instructions support packed and unpacked data accesses. These instructions use an immediate byte
offset that is a multiple of the memory element access size, in the range 0 to 63 times the memory element
access size, inclusive.

* The 128-bit quadword load and replicate instructions, LD1IRQB, LDIRQD, LDIRQH, and LDIRQW, load
a predicated 128-bit quadword vector segment from contiguous element values and replicate that segment
into all segments of the destination vector. These instructions support only packed data accesses. These
instructions can use a scalar index register that is multiplied by the memory element access size, or an
immediate byte offset that is a multiple of 16, in the range of -128 to 112, inclusive.

* When alignment checking is enabled, the base address must be aligned to the memory element access size.

Supported addressing modes Assembler syntax
Scalar base + scalar index [<XnISP>, <Xm>{, LSL #<sh>}]
Scalar base + immediate offset [<XnISP>{, #<imm>}]

5.2.1.5 Unpredicated vector register load/store

Tyzyng The unpredicated vector register load, LDR, and store, STR, instructions transfer a single vector register from or to
memory locations that are specified by a scalar base register plus an immediate index value that is in the range
-256 to 255, inclusive. The immediate index value defaults to zero if omitted. For this group of SVE instructions:

¢ The immediate index value is a vector index, not an element index. The immediate index value is multiplied
by the current vector register length in bytes.

» The data transfer is performed as a contiguous stream of byte accesses in ascending element order, without
endianness conversion.

* When alignment checking is enabled for loads and stores, the base address must be 16-byte aligned.

Supported addressing modes Assembler syntax

Scalar base + immediate index [<XnISP>{, #<simm>, MUL VL}]

5.2.1.6 Unpredicated predicate register load/store

Toxnze The unpredicated predicate register load, LDR, and store, STR, instructions transfer a single predicate register
from or to memory locations that are specified by a scalar base register plus an immediate index value that is in
the range -256 to 255, inclusive. The immediate index value defaults to zero if omitted. For this group of SVE
instructions:

* The immediate index value is a predicate index, not an element index. The immediate index value is
multiplied by the current predicate register length, in bytes.

* The data transfer is performed as a contiguous stream of byte accesses, each byte containing 8 consecutive
predicate bits, in ascending bit and element order, without endian conversion.

* When alignment checking is enabled for loads and stores, the base address must be 2-byte aligned.

Supported addressing modes Assembler syntax
Scalar base + immediate index [<XnISP>{, #<simm>, MUL VL}]
DDI 0584 Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved. 46

B.a Non-confidential

Chapter 5. SVE instruction set
5.2. SVE ISA functional groups

5.2.2 Vector move operations

5.2.2.1 Element move and broadcast

T 5s8C These instructions copy data from scalar registers, immediate values, and other vectors to selected vector elements.
The copied data might be in an integer or floating-point format.
Mnemonic Instruction See
CPY Copy signed integer immediate to vector elements CPY (immediate)
Copy general-purpose register to vector elements CPY (scalar)
Copy SIMD&FP scalar register to vector elements CPY (SIMD&FP scalar)
DUP Broadcast signed immediate to vector elements DUP (immediate)
Broadcast general-purpose register to vector elements DUP (scalar)
FCPY Copy 8-bit floating-point immediate to vector elements FCPY
FDUP Broadcast 8-bit floating-point immediate to vector elements FDUP
FMOV Move floating-point +0.0 to vector elements (unpredicated) FMOV (zero, unpredicated)
Move floating-point +0.0 to vector elements (predicated) FMOV (zero, predicated)
Move 8-bit floating-point immediate to vector elements (unpredicated) FMOV (immediate, unpredicated)
Move 8-bit floating-point immediate to vector element (predicated) FMOV (immediate, predicated)
MOV Move signed integer immediate to vector elements (unpredicated) MOV (immediate, unpredicated)
Move signed integer immediate to vector elements (predicated) MOV (immediate, predicated)
Move general-purpose register to vector elements (unpredicated) MOV (scalar, unpredicated)
Move general-purpose register to vector elements (predicated) MOV (scalar, predicated)
Move SIMD&FP scalar register to vector elements (unpredicated) MOV (SIMD&FP scalar, unpredicated)
Move SIMD&FP scalar register to vector elements (predicated) MOV (SIMD&FP scalar, predicated)
Move vector register (unpredicated) MOV (scalar, unpredicated)
Move vector register (predicated) MOV (vector, predicated)
SEL Select vector elements from two vectors SEL (vectors)
5.2.3 Integer operations
T yzurg The following instructions operate on signed or unsigned integer data within a vector.
5.2.3.1 Integer arithmetic
Trosun For binary operations, these instructions perform arithmetic operations on a source vector containing integer
element values, and a second source vector of either integer element values or an immediate value. For ternary
operations, these instructions perform arithmetic operations on a source vector containing integer element values, a
second source vector of either integer element values or an immediate value, and a third source vector containing
integer element values.
DDI 0584 Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved. 47
B.a Non-confidential

../SVE_xml/xhtml/cpy_z_p_i.html
../SVE_xml/xhtml/cpy_z_p_r.html
../SVE_xml/xhtml/cpy_z_p_v.html
../SVE_xml/xhtml/dup_z_i.html
../SVE_xml/xhtml/dup_z_r.html
../SVE_xml/xhtml/fcpy_z_p_i.html
../SVE_xml/xhtml/fdup_z_i.html
../SVE_xml/xhtml/fmov_dup_z_i.html
../SVE_xml/xhtml/fmov_cpy_z_p_i.html
../SVE_xml/xhtml/fmov_fdup_z_i.html
../SVE_xml/xhtml/fmov_fcpy_z_p_i.html
../SVE_xml/xhtml/mov_dup_z_i.html
../SVE_xml/xhtml/mov_cpy_z_p_i.html
../SVE_xml/xhtml/mov_dup_z_r.html
../SVE_xml/xhtml/mov_cpy_z_p_r.html
../SVE_xml/xhtml/mov_dup_z_zi.html
../SVE_xml/xhtml/mov_cpy_z_p_v.html
../SVE_xml/xhtml/mov_dup_z_r.html
../SVE_xml/xhtml/mov_sel_z_p_zz.html
../SVE_xml/xhtml/sel_z_p_zz.html

Chapter 5. SVE instruction set
5.2. SVE ISA functional groups

Mnemonic Instruction See
ABS Absolute value ABS
ADD Add vectors (predicated) ADD (vectors, predicated)
Add vectors (unpredicated) ADD (vectors, unpredicated)
Add immediate ADD (immediate)
CNOT Logically invert Boolean condition CNOT
MAD Multiply-add, writing to the multiplicand register MAD
MLA Multiply-add, writing to the addend register MLA (vectors)
MLS Multiply-subtract, writing to the addend register MLS (vectors)
MSB Multiply-subtract, writing to the multiplicand register MSB
MUL Multiply by immediate MUL (immediate)
Multiply vectors MUL (vectors, predicated)
NEG Negate NEG
SABD Signed absolute difference SABD
SDIV Signed divide SDIV
SDIVR Signed reversed divide SDIVR
SMAX Signed maximum with immediate SMAX (immediate)
Signed maximum vectors SMAX (vectors)
SMIN Signed minimum with immediate SMIN (immediate)
Signed minimum vectors SMIN (vectors)
SMULH Signed multiply returning high half SMULH (predicated)
SQADD Signed saturating add immediate SQADD (immediate)
Signed saturating add vectors SQADD (vectors, unpredicated)
SQSUB Signed saturating subtract immediate SQSUB (immediate)
Signed saturating subtract vectors SQSUB (vectors, unpredicated)
SUB Subtract immediate SUB (immediate)
Subtract vectors (predicated) SUB (vectors, predicated)
Subtract vectors (unpredicated) SUB (vectors, unpredicated)
SUBR Reversed subtract from immediate SUBR (immediate)
Reversed subtract vectors SUBR (vectors)
SXTB Signed byte extend SXTB, SXTH, SXTW
SXTH Signed halfword extend SXTB, SXTH, SXTW
SXTW Signed word extend SXTB, SXTH, SXTW
UABD Unsigned absolute difference UABD
UDIV Unsigned divide UDIV
UDIVR Unsigned reversed divide UDIVR

DDI 0584
B.a

Non-confidential

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.

48

../SVE_xml/xhtml/abs_z_p_z.html
../SVE_xml/xhtml/add_z_p_zz.html
../SVE_xml/xhtml/add_z_zz.html
../SVE_xml/xhtml/add_z_zi.html
../SVE_xml/xhtml/cnot_z_p_z.html
../SVE_xml/xhtml/mad_z_p_zzz.html
../SVE_xml/xhtml/mla_z_p_zzz.html
../SVE_xml/xhtml/mls_z_p_zzz.html
../SVE_xml/xhtml/msb_z_p_zzz.html
../SVE_xml/xhtml/mul_z_zi.html
../SVE_xml/xhtml/mul_z_p_zz.html
../SVE_xml/xhtml/neg_z_p_z.html
../SVE_xml/xhtml/sabd_z_p_zz.html
../SVE_xml/xhtml/sdiv_z_p_zz.html
../SVE_xml/xhtml/sdivr_z_p_zz.html
../SVE_xml/xhtml/smax_z_zi.html
../SVE_xml/xhtml/smax_z_p_zz.html
../SVE_xml/xhtml/smin_z_zi.html
../SVE_xml/xhtml/smin_z_p_zz.html
../SVE_xml/xhtml/smulh_z_p_zz.html
../SVE_xml/xhtml/sqadd_z_zi.html
../SVE_xml/xhtml/sqadd_z_zz.html
../SVE_xml/xhtml/sqsub_z_zi.html
../SVE_xml/xhtml/sqsub_z_zz.html
../SVE_xml/xhtml/sub_z_zi.html
../SVE_xml/xhtml/sub_z_p_zz.html
../SVE_xml/xhtml/sub_z_zz.html
../SVE_xml/xhtml/subr_z_zi.html
../SVE_xml/xhtml/subr_z_p_zz.html
../SVE_xml/xhtml/sxtb_z_p_z.html
../SVE_xml/xhtml/sxtb_z_p_z.html
../SVE_xml/xhtml/sxtb_z_p_z.html
../SVE_xml/xhtml/uabd_z_p_zz.html
../SVE_xml/xhtml/udiv_z_p_zz.html
../SVE_xml/xhtml/udivr_z_p_zz.html

Chapter 5. SVE instruction set
5.2. SVE ISA functional groups

Mnemonic Instruction See
UMAX Unsigned maximum with immediate UMAX (immediate)
Unsigned maximum vectors UMAX (vectors)
UMIN Unsigned minimum with immediate UMIN (immediate)
Unsigned minimum vectors UMIN (vectors)
UMULH Unsigned multiply returning high half UMULH (predicated)
UQADD Unsigned saturating add immediate UQADD (immediate)
Unsigned saturating add vectors UQADD (vectors, unpredicated)
UQSUB Unsigned saturating subtract immediate UQSUB (immediate)
Unsigned saturating subtract vectors UQSUB (vectors, unpredicated)
UXTB Unsigned byte extend UXTB, UXTH, UXTW
UXTH Unsigned halfword extend UXTB, UXTH, UXTW
UXTW Unsigned word extend UXTB, UXTH, UXTW

5.2.3.2 Integer dot product

TyRLOK The integer partial dot product instructions delimit the source vectors into groups of four 8-bit or 16-bit integer
elements. Within each group of four elements, the elements in the first source vector are multiplied by the
corresponding elements in the second source vector. The resulting widened products are summed and added to the
32-bit or 64-bit element of the accumulator and destination vector that aligns with the group of four elements in

the first source vector.

The indexed forms of these instructions specify a single, numbered, group of four elements within each 128-bit
segment of the second source vector as the multiplier for all the groups of four elements within the corresponding
128-bit segment of the first source vector.

The SUDOT and USDOT instructions are only supported ID_AA64ZFRO_EL1.I8MM is 1. The SUDOT and
USDOT instructions only support groups of 8-bit elements.

Mnemonic Instruction See

SDOT Signed dot product by vector SDOT (vectors)
Signed dot product by indexed elements SDOT (indexed)

SUDOT Signed by unsigned integer dot product by in dexed elements SUDOT

UDOT Unsigned dot product by vector UDOT (vectors)
Unsigned dot product by indexed elements UDOT (indexed)

USDOT Unsigned by signed integer dot product USDOT (vectors)
Unsigned by signed integer dot product by in dexed elements USDOT (indexed)

5.2.3.3 Integer matrix multiply operations
DDI 0584 Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved. 49

B.a

Non-confidential

../SVE_xml/xhtml/umax_z_zi.html
../SVE_xml/xhtml/umax_z_p_zz.html
../SVE_xml/xhtml/umin_z_zi.html
../SVE_xml/xhtml/umin_z_p_zz.html
../SVE_xml/xhtml/umulh_z_p_zz.html
../SVE_xml/xhtml/uqadd_z_zi.html
../SVE_xml/xhtml/uqadd_z_zz.html
../SVE_xml/xhtml/uqsub_z_zi.html
../SVE_xml/xhtml/uqsub_z_zz.html
../SVE_xml/xhtml/uxtb_z_p_z.html
../SVE_xml/xhtml/uxtb_z_p_z.html
../SVE_xml/xhtml/uxtb_z_p_z.html
../SVE_SysReg/xhtml/AArch64-ID_AA64ZFR0_EL1.html
../SVE_xml/xhtml/sdot_z_zzz.html
../SVE_xml/xhtml/sdot_z_zzzi.html
../SVE_xml/xhtml/sudot_z_zzzi.html
../SVE_xml/xhtml/udot_z_zzz.html
../SVE_xml/xhtml/udot_z_zzzi.html
../SVE_xml/xhtml/usdot_z_zzz.html
../SVE_xml/xhtml/usdot_z_zzzi.html

Chapter 5. SVE instruction set
5.2. SVE ISA functional groups

These instructions facilitate matrix multiplication and include integer matrix multiply-accumulate instructions.

The matrix multiplication instructions that are supported depend on the value of ID_AA64ZFRO_EL1.IS8MM. The
following table displays the supported instructions if ID_AA64ZFRO_EL1.ISMM is 1.

The matrix multiply-accumulate instructions delimit source and destination vectors into segments. Within each
segment:

* The first source vector 2x8 8-bit matrix is organized in row-by-row order.
* The second source vector 8x2 8-bit matrix is organized in a column-by-column order.
* The destination vector 2x2 32-bit matrix is organized in row-by-row order.

One matrix multiplication is performed per vector segment of 128 bits and accumulated into the destination vector
segment.

Mnemonic Instruction See

SMMLA Widening signed 8-bit integer matrix multiply-accumulate into 2x2 matrix SMMLA

UMMLA Widening unsigned 8-bit integer matrix multiply-accumulate into 2x2 matrix UMMLA

USMMLA Widening mixed sign 8-bit integer matrix multiply-accumulate into 2x2 USMMLA

matrix

5.2.3.4 Integer comparisons

These instructions compare Active elements in the first source vector with the corresponding elements in a second
vector or with an immediate value. The Boolean result of each comparison is placed in the corresponding element
of the destination predicate. Inactive elements in the destination predicate register are set to FALSE. All integer
comparisons set the N, Z, and C condition flags based on the predicate result, and set the V flag to zero.

The wide element variants of the compare instructions allow a packed vector of narrower elements to be compared
with wider 64-bit elements. These instructions treat the second source vector as having a fixed 64-bit doubleword
element size and compare each narrow element of the first source vector with the corresponding vertically-aligned
wide element of the second source vector. For example, if the first source vector contained 8-bit byte elements,
then 8-bit element[0] to element[7] of the first source vector are compared with 64-bit element[0] of the second
source vector, 8-bit element[8] to element[15] with 64-bit element[1], and so on. All 64 bits of the wide elements
are significant for the comparison, with the narrow elements being sign-extended or zero-extended to 64 bits as
appropriate for the type of comparison.

Mnemonic Instruction See

CMPEQ

CMPGE

CMPGT

DDI 0584
B.a

Compare signed equal to immediate CMP-<cc> (immediate)
Compare signed equal to wide elements CMP-<cc> (wide elements)
Compare signed equal to vector CMP-<cc> (vectors)
Compare signed greater than or equal to immediate CMP-<cc> (immediate)
Compare signed greater than or equal to wide elements CMP<cc> (wide elements)
Compare signed greater than or equal to vector CMP-<cc> (vectors)
Compare signed greater than immediate CMP-<cc> (immediate)
Compare signed greater than wide elements CMP-<cc> (wide elements)

Compare signed greater than vector CMP-<cc> (vectors)

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved. 50
Non-confidential

../SVE_SysReg/xhtml/AArch64-ID_AA64ZFR0_EL1.html
../SVE_SysReg/xhtml/AArch64-ID_AA64ZFR0_EL1.html
../SVE_xml/xhtml/smmla_z_zzz.html
../SVE_xml/xhtml/ummla_z_zzz.html
../SVE_xml/xhtml/usmmla_z_zzz.html
../SVE_xml/xhtml/cmpeq_p_p_zi.html
../SVE_xml/xhtml/cmpeq_p_p_zw.html
../SVE_xml/xhtml/cmpeq_p_p_zz.html
../SVE_xml/xhtml/cmpeq_p_p_zi.html
../SVE_xml/xhtml/cmpeq_p_p_zw.html
../SVE_xml/xhtml/cmpeq_p_p_zz.html
../SVE_xml/xhtml/cmpeq_p_p_zi.html
../SVE_xml/xhtml/cmpeq_p_p_zw.html
../SVE_xml/xhtml/cmpeq_p_p_zz.html

Chapter 5. SVE instruction set
5.2. SVE ISA functional groups

Mnemonic

Instruction

See

CMPHI

CMPHS

CMPLE

CMPLO

CMPLS

CMPLT

CMPNE

Compare unsigned higher than immediate
Compare unsigned higher than wide elements

Compare unsigned higher than vector

Compare unsigned higher than or same as immediate

Compare unsigned higher than or same as wide
elements

Compare unsigned higher than or same as vector
Compare signed less than or equal to immediate
Compare signed less than or equal to wide elements
Compare signed less than or equal to vector
Compare unsigned lower than immediate

Compare unsigned lower than 64-bit wide elements
Compare unsigned lower than vector

Compare unsigned lower or same as immediate
Compare unsigned lower or same as wide elements
Compare unsigned lower or same as vector
Compare signed less than immediate

Compare signed less than wide elements

Compare signed less than vector

Compare not equal to immediate

Compare not equal to wide elements

Compare not equal to vector

CMP<cc> (immediate)
CMP<cc> (wide elements)
CMP-<cc> (vectors)
CMP<cc> (immediate)

CMP<cc> (wide elements)

CMP-<cc> (vectors)
CMP<cc> (immediate)
CMP<cc> (wide elements)
CMP-<cc> (vectors)
CMP<cc> (immediate)
CMP-<cc> (wide elements)
CMP-<cc> (vectors)
CMP<cc> (immediate)
CMP<cc> (wide elements)
CMP<cc> (vectors)
CMP<cc> (immediate)
CMP<cc> (wide elements)
CMP-<cc> (vectors)
CMP<cc> (immediate)
CMP<cc> (wide elements)

CMP-<cc> (vectors)

5.2.3.5 Vector address calculation

>oWB

DDI 0584

B.a

These instructions compute vectors of addresses and addresses of vectors. This includes instructions to add a
multiple of the current vector length or predicate register length, in bytes, to a general-purpose register.

The ADR instruction is an integer arithmetic operation that is used to calculate a vector of 64-bit or 32-bit addresses.

The ADR destination vector elements are computed by the addition of the corresponding elements in the source
vectors, with an optional sign or zero extension and optional bitwise left shift of 1-3 bits applied to the final
operands. This can be considered as the addition of a vector base and a scaled vector index.

The ADR instruction computes a vector of 32-bit addresses by the addition of a 32-bit base and a scaled 32-bit
unsigned index.

The ADR instruction computes a vector of 64-bit addresses by one of:

* Addition of a 64-bit base and a scaled 64-bit unsigned index.
* Addition of a 64-bit base and a scaled, zero-extended 32-bit index.
* Addition of a 64-bit base and a scaled, sign-extended 32-bit index.

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved. 51
Non-confidential

../SVE_xml/xhtml/cmpeq_p_p_zi.html
../SVE_xml/xhtml/cmpeq_p_p_zw.html
../SVE_xml/xhtml/cmpeq_p_p_zz.html
../SVE_xml/xhtml/cmpeq_p_p_zi.html
../SVE_xml/xhtml/cmpeq_p_p_zw.html
../SVE_xml/xhtml/cmpeq_p_p_zz.html
../SVE_xml/xhtml/cmpeq_p_p_zi.html
../SVE_xml/xhtml/cmpeq_p_p_zw.html
../SVE_xml/xhtml/cmpeq_p_p_zz.html
../SVE_xml/xhtml/cmpeq_p_p_zi.html
../SVE_xml/xhtml/cmpeq_p_p_zw.html
../SVE_xml/xhtml/cmpeq_p_p_zz.html
../SVE_xml/xhtml/cmpeq_p_p_zi.html
../SVE_xml/xhtml/cmpeq_p_p_zw.html
../SVE_xml/xhtml/cmpeq_p_p_zz.html
../SVE_xml/xhtml/cmpeq_p_p_zi.html
../SVE_xml/xhtml/cmpeq_p_p_zw.html
../SVE_xml/xhtml/cmpeq_p_p_zz.html
../SVE_xml/xhtml/cmpeq_p_p_zi.html
../SVE_xml/xhtml/cmpeq_p_p_zw.html
../SVE_xml/xhtml/cmpeq_p_p_zz.html

Chapter 5. SVE instruction set
5.2. SVE ISA functional groups

Mnemonic Instruction See
ADDVL Add multiple of vector length, in bytes, to scalar register ADDVL
ADDPL Add multiple of predicate register length, in bytes, to scalar register ADDPL
ADR Compute vector of addresses ADR
RDVL Read multiple of vector register length, in bytes, to scalar register RDVL
5.2.4 Bitwise operations
5.2.4.1 Bitwise logical operations
TsrpLy These instructions perform bitwise logical operations on vectors. Where operations are unpredicated, the operations

are independent of the element size.

Mnemonic Instruction See

AND Bitwise AND vectors (predicated) AND (vectors, predicated)
Bitwise AND vectors (unpredicated) AND (vectors, unpredicated)
Bitwise AND with immediate AND (immediate)

BIC Bitwise clear with vector (predicated) BIC (vectors, predicated)
Bitwise clear with vector (unpredicated) BIC (vectors, unpredicated)
Bitwise clear using immediate BIC (immediate)

DUPM Broadcast bitmask immediate to vector (unpredicated) DUPM

EON Bitwise exclusive OR with inverted immediate EON

EOR Bitwise exclusive OR vectors (predicated) EOR (vectors, predicated)
Bitwise exclusive OR vectors (unpredicated) EOR (vectors, unpredicated)
Bitwise exclusive OR with immediate EOR (immediate)

MOV Move bitmask immediate to vector MOV (bitmask immediate)
Move vector register MOV (vector, unpredicated)

NOT Bitwise invert vector NOT (vector)

ORN Bitwise OR with inverted immediate ORN (immediate)

ORR Bitwise OR vectors (predicated) ORR (vectors, predicated)

Bitwise OR vectors (unpredicated)

Bitwise OR with immediate

ORR (vectors, unpredicated)
ORR (immediate)

5.2.4.2 Bitwise shift, reverse, and count

DDI 0584
B.a

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.

Non-confidential

52

../SVE_xml/xhtml/addvl_r_ri.html
../SVE_xml/xhtml/addpl_r_ri.html
../SVE_xml/xhtml/adr_z_az.html
../SVE_xml/xhtml/rdvl_r_i.html
../SVE_xml/xhtml/and_z_p_zz.html
../SVE_xml/xhtml/and_z_zz.html
../SVE_xml/xhtml/and_z_zi.html
../SVE_xml/xhtml/bic_z_p_zz.html
../SVE_xml/xhtml/bic_z_zz.html
../SVE_xml/xhtml/bic_and_z_zi.html
../SVE_xml/xhtml/dupm_z_i.html
../SVE_xml/xhtml/eon_eor_z_zi.html
../SVE_xml/xhtml/eor_z_p_zz.html
../SVE_xml/xhtml/eor_z_zz.html
../SVE_xml/xhtml/eor_z_zi.html
../SVE_xml/xhtml/mov_dupm_z_i.html
../SVE_xml/xhtml/mov_orr_z_zz.html
../SVE_xml/xhtml/not_z_p_z.html
../SVE_xml/xhtml/orn_orr_z_zi.html
../SVE_xml/xhtml/orr_z_p_zz.html
../SVE_xml/xhtml/orr_z_zz.html
../SVE_xml/xhtml/orr_z_zi.html

Chapter 5. SVE instruction set
5.2. SVE ISA functional groups

MLEJ Bitwise shifts, reversals, and counts within vector elements.
Shift counts saturate at the number of bits per element, rather than being used modulo the element size. If modulo
behavior is required, then the modulus must be computed separately.
The wide element variants of the bitwise shift instructions allow a packed vector of narrower elements to be shifted
by wider 64-bit shift amounts. These instructions treat the second source vector as having a fixed 64-bit doubleword
element size and shift each narrow element of the first source vector by the corresponding vertically-aligned wide
element of the second source vector. For example, if the first source vector contained 8-bit byte elements, then
8-bit element[0] to element[7] of the first vector are shifted by 64-bit element[0] of the second source vector, 8-bit
element [8] to element[15] by 64-bit element[1], and so on. All 64 bits of the wide shift amount are significant.
Mnemonic Instruction See
ASR Arithmetic shift right by immediate (predicated) ASR (immediate, predicated)
Arithmetic shift right by immediate (unpredicated) ASR (immediate, unpredicated)
Arithmetic shift right by wide elements (predicated) =~ ASR (wide elements, predicated)
Arithmetic shift right by wide elements (unpredicated) ASR (wide elements, unpredicated)
Arithmetic shift right by vector ASR (immediate, predicated)
ASRD Arithmetic shift right for divide by immediate ASRD
ASRR Reversed arithmetic shift right by vector ASRR
CLS Count leading sign bits CLS
CLZ Count leading zero bits CLZ
CNT Count nonzero bits CNT
LSL Logical shift left by immediate (predicated) LSL (immediate, predicated)
Logical shift left by immediate (unpredicated) LSL (immediate, unpredicated)
Logical shift left by wide elements (predicated) LSL (wide elements, predicated)
Logical shift left by wide elements (unpredicated) LSL (wide elements, unpredicated)
Logical shift left by vector LSL (vectors)
LSLR Reversed logical shift left by vector LSLR
LSR Logical shift right by immediate (predicated) LSR
Logical shift right by immediate (unpredicated) LSR (immediate, unpredicated)
Logical shift right by wide elements (predicated) LSR (wide elements, predicated)
Logical shift right by wide elements (unpredicated) LSR (wide elements, unpredicated)
Logical shift right by vector LSR (vectors)
LSRR Reversed logical shift right by vector LSRR
RBIT Reverse bits RBIT

5.2.5 Floating-point operations

I J?

X JHX

floating-point support.

DDI 0584

B.a

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.

Non-confidential

The following instructions operate on floating-point data within a vector. For more information, see 2.2 SVE

53

../SVE_xml/xhtml/asr_z_p_zi.html
../SVE_xml/xhtml/asr_z_zi.html
../SVE_xml/xhtml/asr_z_p_zw.html
../SVE_xml/xhtml/asr_z_zw.html
../SVE_xml/xhtml/asr_z_p_zz.html
../SVE_xml/xhtml/asrd_z_p_zi.html
../SVE_xml/xhtml/asrr_z_p_zz.html
../SVE_xml/xhtml/cls_z_p_z.html
../SVE_xml/xhtml/clz_z_p_z.html
../SVE_xml/xhtml/cnt_z_p_z.html
../SVE_xml/xhtml/lsl_z_p_zi.html
../SVE_xml/xhtml/lsl_z_zi.html
../SVE_xml/xhtml/lsl_z_p_zw.html
../SVE_xml/xhtml/lsl_z_zw.html
../SVE_xml/xhtml/lsl_z_p_zz.html
../SVE_xml/xhtml/lslr_z_p_zz.html
../SVE_xml/xhtml/lsr_z_p_zi.html
../SVE_xml/xhtml/lsr_z_zi.html
../SVE_xml/xhtml/lsr_z_p_zw.html
../SVE_xml/xhtml/lsr_z_zw.html
../SVE_xml/xhtml/lsr_z_p_zz.html
../SVE_xml/xhtml/lsrr_z_p_zz.html
../SVE_xml/xhtml/rbit_z_p_z.html

Chapter 5. SVE instruction set
5.2. SVE ISA functional groups

5.2.5.1 Floating-point arithmetic

IsvwLr These instructions perform arithmetic operations on vectors containing floating-point element values.

Mnemonic Instruction See

FABD Floating-point absolute difference FABD

FABS Floating-point absolute value FABS

FADD Floating-point add immediate FADD (immediate)
Floating-point add (predicated) FADD (vectors, predicated)
Floating-point add (unpredicated) FADD (vectors, unpredicated)

FDIV Floating-point divide FDIV

FDIVR Floating-point reversed divide FDIVR

FMAX Floating-point maximum with immediate FMAX (immediate)
Floating-point maximum vectors FMAX (vectors)

FMAXNM Floating-point maximum number with immediate FMAXNM (immediate)
Floating-point maximum number vectors FMAXNM (vectors)

FMIN Floating-point minimum with immediate FMIN (immediate)
Floating-point minimum vectors FMIN(vectors)

FMINNM Floating-point minimum number with immediate FMINNM (immediate)
Floating-point minimum number vectors FMINNM (vectors)

FMUL Floating-point multiply by immediate FMUL (immediate)
Floating-point multiply vectors (predicated) FMUL (vectors, predicated)
Floating-point multiply vectors (unpredicated) FMUL (vectors, unpredicated)

FMULX Floating-point multiply-extended FMULX

FNEG Floating-point negate FNEG

FRECPE Floating-point reciprocal estimate FRECPE

FRECPS Floating-point reciprocal step FRECPS

FRECPX Floating-point reciprocal exponent FRECPX

FRSQRTE Floating-point reciprocal square root estimate FRSQRTE

FRSQRTS Floating-point reciprocal square root step FRSQRTS

FSCALE Floating-point adjust exponent by vector FSCALE

FSQRT Floating-point square root FSQRT

FSUB Floating-point subtract immediate FSUB (immediate)
Floating-point subtract vectors (predicated) FSUB (vectors, predicated)
Floating-point subtract vectors (unpredicated) FSUB (vectors, unpredicated)

FSUBR Floating-point reversed subtract from immediate FSUBR (immediate)
Floating-point reversed subtract vectors FSUBR (vectors)

DDI 0584 Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved. 54

B.a

Non-confidential

../SVE_xml/xhtml/fabd_z_p_zz.html
../SVE_xml/xhtml/fabs_z_p_z.html
../SVE_xml/xhtml/fadd_z_p_zs.html
../SVE_xml/xhtml/fadd_z_p_zz.html
../SVE_xml/xhtml/fadd_z_zz.html
../SVE_xml/xhtml/fdiv_z_p_zz.html
../SVE_xml/xhtml/fdivr_z_p_zz.html
../SVE_xml/xhtml/fmax_z_p_zs.html
../SVE_xml/xhtml/fmax_z_p_zz.html
../SVE_xml/xhtml/fmaxnm_z_p_zs.html
../SVE_xml/xhtml/fmaxnm_z_p_zz.html
../SVE_xml/xhtml/fmin_z_p_zs.html
../SVE_xml/xhtml/fmin_z_p_zz.html
../SVE_xml/xhtml/fminnm_z_p_zs.html
../SVE_xml/xhtml/fminnm_z_p_zz.html
../SVE_xml/xhtml/fmul_z_p_zs.html
../SVE_xml/xhtml/fmul_z_p_zz.html
../SVE_xml/xhtml/fmul_z_zz.html
../SVE_xml/xhtml/fmulx_z_p_zz.html
../SVE_xml/xhtml/fneg_z_p_z.html
../SVE_xml/xhtml/frecpe_z_z.html
../SVE_xml/xhtml/frecps_z_zz.html
../SVE_xml/xhtml/frecpx_z_p_z.html
../SVE_xml/xhtml/frsqrte_z_z.html
../SVE_xml/xhtml/frsqrts_z_zz.html
../SVE_xml/xhtml/fscale_z_p_zz.html
../SVE_xml/xhtml/fsqrt_z_p_z.html
../SVE_xml/xhtml/fsub_z_p_zs.html
../SVE_xml/xhtml/fsub_z_p_zz.html
../SVE_xml/xhtml/fsub_z_zz.html
../SVE_xml/xhtml/fsubr_z_p_zs.html
../SVE_xml/xhtml/fsubr_z_p_zz.html

Chapter 5. SVE instruction set
5.2. SVE ISA functional groups

l\ WMYJ

5.2.5.2 Floating-point multiply accumulate

These instructions perform floating-point fused multiply-add or multiply-subtract operations and their negated
forms. There are two groups of these instructions, as follows:

* Instructions where the result of the operation is written to the addend register.
— Supported instructions are: FMLA, FMLS, FNMLA, FNMLS.

* Instructions where the result of the operation is written to the multiplicand register.
— Supported instructions are: FMAD, FMSB, FNMAD, FNMSB.

Mnemonic Instruction See

FMLA
FMLS
FNMLA
FNMLS

FMAD
FMSB

Floating-point fused multiply-add vectors, writing to the addend FMLA (vectors)
Floating-point fused multiply-subtract vectors, writing to the addend FMLS (vectors)
Floating-point negated fused multiply-add vectors, writing to the addlend FNMLA

Floating-point negated fused multiply-subtract vectors, writing to the FNMLS
addend

Floating-point fused multiply-add vectors, writing to the multiplicand FMAD

Floating-point fused multiply-subtract vectors, writing to the multiplicand FMSB

FNMAD Floating-point negated fused multiply-add vectors, writing to the FNMAD

FNMSB

multiplicand

Floating-point negated fused multiply-subtract vectors, writing to the FNMSB
multiplicand

DDI 0584

B.a

5.2.5.3 Floating-point complex arithmetic

These instructions perform arithmetic on vectors containing floating-point complex numbers as interleaved pairs of
elements, where the even-numbered elements contain the real components and the odd-numbered elements contain
the imaginary components.

The FCADD instructions rotate the complex numbers in the second source vector by 90 degrees or 270 degrees in
the direction from the positive real axis towards the positive imaginary axis, when considered in polar representation,
before adding active pairs of elements to the corresponding elements of the first source vector in a destructive
manner.

The FCMLA instructions perform a transformation of the operands to allow the creation of multiply-add or
multiply-subtract operations on complex numbers by combining two of the instructions. The transformations
performed are as follows:

* The complex numbers in the second source vector, considered in polar form, are rotated by 0 degrees or 180
degrees before multiplying by the duplicated real components of the first source vector.

* The complex numbers in the second source vector, considered in polar form, are rotated by 90 degrees or 270
degrees before multiplying by the duplicated imaginary components of the first source vector.

The resulting products are then added to the corresponding components of the destination and addend vector,
without intermediate rounding. Two FCMLA instructions can be used as follows:

FCMLA Zda.S, Pg/M, Zn.S, Zm.S, #A ... FCMLA Zda.S, Pg/M, Zn.S, Zm.S, #B
For example, some meaningful combinations of A and B are:

* A=0, B=90. In this case, the two vectors of complex numbers in Zn and Zm are multiplied and the products
are added to the complex numbers in Zda.

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved. 55
Non-confidential

../SVE_xml/xhtml/fmla_z_p_zzz.html
../SVE_xml/xhtml/fmls_z_p_zzz.html
../SVE_xml/xhtml/fnmla_z_p_zzz.html
../SVE_xml/xhtml/fnmls_z_p_zzz.html
../SVE_xml/xhtml/fmad_z_p_zzz.html
../SVE_xml/xhtml/fmsb_z_p_zzz.html
../SVE_xml/xhtml/fnmad_z_p_zzz.html
../SVE_xml/xhtml/fnmsb_z_p_zzz.html

Chapter 5. SVE instruction set
5.2. SVE ISA functional groups

e A=0, B=270. In this case, the conjugates of the complex numbers in Zn are multiplied by the complex
numbers in Zm and the products are added to the complex numbers in Zda.
¢ A=180, B=270. In this case, the two vectors of complex numbers in Zn and Zm are multiplied and the

products are subtracted from the complex numbers in Zda.

* A=180, B=90. In this case, the conjugates of the complex numbers in Zn are multiplied by the complex
numbers in Zm and the products are subtracted from the complex numbers in Zda.

The lack of intermediate rounding can give unexpected results in certain cases relative to a traditional sequence of
independent multiply, add, and subtract instructions.

In addition, when using these instructions, the behavior of calculations such as (co+00) multiplied by (0+i) is
(NaN+NaNi), rather than the result expected by ISO C, which is complex co. The expectation is that these
instructions are only used in situations where the effect of differences in the rounding and handling of infinities are
not material to the calculation.

Mnemonic Instruction See
FCADD Floating-point complex add with rotate FCADD
FCMLA Floating-point complex multiply-add with rotate FCMLA (vectors)

5.2.5.4 Floating-point rounding and conversion

Iy These instructions change floating-point size and precision, round floating-point to integral floating-point with
explicit rounding mode, and convert floating-point to or from integer format.
Mnemonic Instruction See
BFCVT Floating-point down convert to BFloat16 format BFCVT
BFCVTNT Floating-point down convert and narrow to BFloat16 format (top, BFCVTNT
predicated)
FCVT Floating-point convert precision FCVT
FCVTZS Floating-point convert to signed integer, rounding toward zero FCVTZS
FCVTZU Floating-point convert to unsigned integer, rounding toward zero FCVTZU
FRINTA Floating-point round to integral value, to nearest with ties away from zero FRINT<r>
FRINTI Floating-point round to integral value, using the current rounding mode ~ FRINT<r>
FRINTM Floating-point round to integral value, toward minus infinity FRINT<r>
FRINTN Floating-point round to integral value, to nearest with ties to even FRINT<r>
FRINTP Floating-point round to integral value, toward plus infinity FRINT<r>
FRINTX Floating-point round to integral value exact, using the current rounding ~ FRINT<r>
mode
FRINTZ Floating-point round to integral value, toward zero FRINT<r>
SCVTF Signed integer convert to floating-point SCVTF
UCVTF Unsigned integer convert to floating-point UCVTF
DDI 0584 Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved. 56

B.a

Non-confidential

../SVE_xml/xhtml/fcadd_z_p_zz.html
../SVE_xml/xhtml/fcmla_z_p_zzz.html
../SVE_xml/xhtml/bfcvt_z_p_z.html
../SVE_xml/xhtml/bfcvtnt_z_p_z.html
../SVE_xml/xhtml/fcvt_z_p_z.html
../SVE_xml/xhtml/fcvtzs_z_p_z.html
../SVE_xml/xhtml/fcvtzu_z_p_z.html
../SVE_xml/xhtml/frinta_z_p_z.html
../SVE_xml/xhtml/frinta_z_p_z.html
../SVE_xml/xhtml/frinta_z_p_z.html
../SVE_xml/xhtml/frinta_z_p_z.html
../SVE_xml/xhtml/frinta_z_p_z.html
../SVE_xml/xhtml/frinta_z_p_z.html
../SVE_xml/xhtml/frinta_z_p_z.html
../SVE_xml/xhtml/scvtf_z_p_z.html
../SVE_xml/xhtml/ucvtf_z_p_z.html

Chapter 5. SVE instruction set
5.2. SVE ISA functional groups

5.2.5.5 Floating-point comparisons

TxByDX These instructions compare active floating-point element values in the first source vector with corresponding
elements in the second vector or with the immediate value +0.0. The Boolean result of each comparison is placed
in the corresponding element of the destination predicate. Inactive elements in the destination predicate register
are set to FALSE. Floating-point vector comparisons do not set the condition flags.

Mnemonic Instruction See

FACGE Floating-point absolute compare greater than or equal FAC<cc>

FACGT Floating-point absolute compare greater than FAC<cc>

FACLE Floating-point absolute compare less than or equal FACLE

FACLT Floating-point absolute compare less than FACLT

FCMEQ Floating-point compare equal to zero FCM-<cc> (zero)
Floating-point compare equal to vector FCM-<cc»> (vectors)

FCMGE Floating-point compare greater than or equal to zero FCM-<cc> (zero)
Floating-point compare greater than or equal to vector FCMc<cc> (vectors)

FCMGT Floating-point compare greater than zero FCM-<cc> (zero)
Floating-point compare greater than vector FCM-<cc> (vectors)

FCMLE Floating-point compare less than or equal to zero FCM-<cc> (zero)
Floating-point compare less than or equal to vector FCMc<cc> (vectors)

FCMLT Floating-point compare less than zero FCM-<cc> (zero)
Floating-point compare less than vector FCM-<cc> (vectors)

FCMNE Floating-point compare not equal to zero FCM-<cc> (zero)
Floating-point compare not equal to vector FCM-<cc> (vectors)

FCMUO Floating-point unordered vectors FCM-<cc> (vectors)

5.2.5.6 Floating-point transcendental acceleration

I:r The floating-point transcendental instructions accelerate calculations of sine, cosine, and exponential functions for
vectors containing floating-point element values.

The trigonometric instructions accelerate the calculation of a polynomial series approximation for the sine and
cosine functions. The exponential instruction accelerates the polynomial series calculation of the exponential

function.
Mnemonic Instruction See
FTMAD Floating-point trigonometric multiply-add coefficient FTMAD
FTSMUL Floating-point trigonometric starting value FTSMUL
FTSSEL Floating-point trigonometric select coefficient FTSSEL
FEXPA Floating-point exponential accelerator FEXPA
DDI 0584 Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved. 57

B.a

Non-confidential

../SVE_xml/xhtml/facge_p_p_zz.html
../SVE_xml/xhtml/facge_p_p_zz.html
../SVE_xml/xhtml/facle_facge_p_p_zz.html
../SVE_xml/xhtml/faclt_facge_p_p_zz.html
../SVE_xml/xhtml/fcmeq_p_p_z0.html
../SVE_xml/xhtml/fcmeq_p_p_zz.html
../SVE_xml/xhtml/fcmeq_p_p_z0.html
../SVE_xml/xhtml/fcmeq_p_p_zz.html
../SVE_xml/xhtml/fcmeq_p_p_z0.html
../SVE_xml/xhtml/fcmeq_p_p_zz.html
../SVE_xml/xhtml/fcmeq_p_p_z0.html
../SVE_xml/xhtml/fcmeq_p_p_zz.html
../SVE_xml/xhtml/fcmeq_p_p_z0.html
../SVE_xml/xhtml/fcmeq_p_p_zz.html
../SVE_xml/xhtml/fcmeq_p_p_z0.html
../SVE_xml/xhtml/fcmeq_p_p_zz.html
../SVE_xml/xhtml/fcmeq_p_p_zz.html
../SVE_xml/xhtml/ftmad_z_zzi.html
../SVE_xml/xhtml/ftsmul_z_zz.html
../SVE_xml/xhtml/ftssel_z_zz.html
../SVE_xml/xhtml/fexpa_z_z.html

Chapter 5. SVE instruction set
5.2. SVE ISA functional groups

5.2.5.7 Floating-point indexed multiplies

Iy These instructions multiply all floating-point elements within each 128-bit segment of the first source vector by the
single numbered element within the corresponding segment of the second source vector. For the FMLA and FMLS
instructions, the products are destructively added or subtracted from the corresponding elements of the addend and
destination vector, without intermediate rounding.

Mnemonic Instruction See

FMLA Floating-point fused multiply-add by indexed elements FMLA (indexed)

FMLS Floating-point fused multiply-subtract by indexed elements FMLS (indexed)

FMUL Floating-point multiply by indexed elements FMUL (indexed)
5.2.5.8 Floating-point matrix multiply operations

Tosor These instructions facilitate matrix multiplication and include floating-point matrix multiply-accumulate
instructions, and companion instructions that support data rearrangements in vector registers as required by
the double-precision matrix multiply-accumulate instructions.

The matrix multiply-accumulate instructions delimit source and destination vectors into segments. Within each
segment:

 The first source vector 2x2 matrix is organized in row-by-row order.

* The second source vector 2x2 matrix is organized in a column-by-column order.

* The destination vector 2x2 matrix is organized in row-by-row order.
One matrix multiplication is performed per vector segment and accumulated into the destination vector segment.
For the double-precision matrix multiply-accumulate instructions, the vector segment length and minimum vector
length is 256 bits. Double-precision matrix multiply-accumulate instructions are not supported when the vector
length is 128 bits. For the single-precision matrix multiply-accumulate instruction, the vector segment length is
128 bits.
The floating-point matrix multiply-accumulate instructions strictly define the order of accumulations, and the
multiplications and additions are not fused, so intermediate rounding is performed after every multiplication and
every addition.

Troxey The following table shows the floating-point matrix multiplication instructions and companion instructions that are
supported if ID_AA64ZFRO_EL1.F64MM is 1:

Mnemonic Instruction See

FMMLA Floating-point matrix multiply-accumulate into 2x2 matrix FMMLA
(double-precision)

LDIROB Contiguous load and replicate thirty-two bytes, scalar plus LDI1ROB (scalar plus scalar)
scalar
Contiguous load and replicate thirty-two bytes, scalar plus LDIROB (scalar plus immediate)
immediate

LDIROD Contiguous load and replicate four doublewords, scalar plus ~ LD1ROD (scalar plus scalar)
scalar
Contiguous load and replicate four doublewords, scalar plus ~ LD1ROD (scalar plus immediate)
immediate

DDI 0584 Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved. 58

B.a

Non-confidential

../SVE_xml/xhtml/fmla_z_zzzi.html
../SVE_xml/xhtml/fmls_z_zzzi.html
../SVE_xml/xhtml/fmul_z_zzi.html
../SVE_SysReg/xhtml/AArch64-ID_AA64ZFR0_EL1.html
../SVE_xml/xhtml/fmmla_z_zzz.html
../SVE_xml/xhtml/ld1rob_z_p_br.html
../SVE_xml/xhtml/ld1rob_z_p_bi.html
../SVE_xml/xhtml/ld1rod_z_p_br.html
../SVE_xml/xhtml/ld1rod_z_p_bi.html

Chapter 5. SVE instruction set
5.2. SVE ISA functional groups

Mnemonic Instruction See

LDIROH Contiguous load and replicate sixteen halfwords, scalar plus LD1ROH (scalar plus scalar)

scalar

Contiguous load and replicate sixteen halfwords, scalar plus ~ LD1ROH (scalar plus immediate)
immediate

LDIROW Contiguous load and replicate eight words, scalar plus scalar LD1ROW (scalar plus scalar)

TRNI,
TRN2

UZP1,
uzp2

ZIP1,
ZIP2

Contiguous load and replicate eight words, scalar plus LDIROW (scalar plus immediate)
immediate
Interleave even or odd 128-bit elements from two vectors TRN1, TRN2 (vectors)

Concatenate even or odd 128-bit elements from two vectors ~ UZP1, UZP2 (vectors)

Interleave 128-bit elements from two half vectors ZIP1, ZIP2 (vectors)

The following table shows the floating-point matrix multiplication instructions and companion instructions that are
supported if ID_AA64ZFRO_EL1.F32MM is 1:

Mnemonic Instruction See

FMMLA Floating-point matrix multiply-accumulate into 2x2 matrix FMMLA

(single-precision)

5.2.5.9 BFloat16 floating-point multiply instructions

All of these instructions perform an implicit conversion of vectors of BF16 input values to IEEE 754 single-precision
floating-point format. In addition, the BFDOT and BFMMLA instructions perform an N-way dot-product
calculation that accumulates the products into a vector of single-precision accumulators.

All of these instructions perform arithmetic with fixed numeric behaviors. For more information, see the section
titled BFloat16 floating-point format in the Arm® Architecture Reference Manual, Armv8-A, for Armv8-A
architecture profile.

The BFloat16 matrix multiply-accumulate instructions delimit source and destination vectors into segments. Within
each segment:

* The first source vector 2x4 BF16 matrix is organized in row-by-row order.
* The second source vector 4x2 BF16 matrix is organized in a column-by-column order.
* The destination vector 2x2 single-precision matrix is organized in row-by-row order.

One matrix multiplication is performed per vector segment of 128 bits and accumulated into the destination vector.

The BFloat16 instructions are only supported if ID_AA64ZFRO_EL1.BF16is 1.

Mnemonic Instruction See

BFDOT

BFloat16 floating-point dot product by vector BFDOT (vectors)
BFloat16 floating-point dot product by indexed elements BFDOT (indexed)

BFMMLA BFloatl6 floating-point matrix multiply-accumulate into 2x2 matrix ~BFMMLA

DDI 0584
B.a

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved. 59
Non-confidential

../SVE_xml/xhtml/ld1roh_z_p_br.html
../SVE_xml/xhtml/ld1roh_z_p_bi.html
../SVE_xml/xhtml/ld1row_z_p_br.html
../SVE_xml/xhtml/ld1row_z_p_bi.html
../SVE_xml/xhtml/trn1_z_zz.html
../SVE_xml/xhtml/uzp1_z_zz.html
../SVE_xml/xhtml/zip1_z_zz.html
../SVE_SysReg/xhtml/AArch64-ID_AA64ZFR0_EL1.html
../SVE_xml/xhtml/fmmla_z_zzz.html
../SVE_SysReg/xhtml/AArch64-ID_AA64ZFR0_EL1.html
../SVE_xml/xhtml/bfdot_z_zzz.html
../SVE_xml/xhtml/bfdot_z_zzzi.html
../SVE_xml/xhtml/bfmmla_z_zzz.html

Chapter 5. SVE instruction set
5.2. SVE ISA functional groups

Mnemonic Instruction See

BFMLALB BFloatl6 floating-point widening multiply accumulate long bottom BFMLALB (vectors)

by vector

BFloat16 floating-point widening multiply accumulate long bottom BFMLALB (indexed)
by indexed elements

BFMLALT BFloatl6 floating-point widening multiply accumulate long top by BFMLALT (vectors)

vector

BFloat16 floating-point widening multiply accumulate long bottom BFMLALT (vectors)
by indexed elements

5.2.6 Predicate operations

Tip These instructions perform operations that manipulate the predicate registers.
Some of these instructions are insensitive to the predicate element size and specify an explicit byte element size
qualifier, .B, but an assembler must accept any qualifier, or none.
5.2.6.1 Predicate initialization
T rnwTM™ These instructions initialize predicate elements.
Predicate elements can be initialized to be FALSE, or to be TRUE when their element number is less than:
* A fixed number of elements from the following range: VL1-VL8, VL16, VL32, VL64, VL.128 or VL256.
* The largest power of two elements, POW2.
* The largest multiple of three or four elements, MUL3 or MULA4.
* The number of accessible elements, ALL, which is implicitly a multiple of two.
Unspecified or out of range constraint encodings generate a predicate with values that are all FALSE and do not
cause an Undefined Instruction exception.
Mnemonic Instruction See
PFALSE Set all predicate elements to FALSE PFALSE
PTRUE Initialize predicate elements from named constraint PTRUE, PTRUES
PTRUES Initialize predicate elements from named constraint, setting the condition = PTRUE, PTRUES
flags
5.2.6.2 Predicate move operations
Torexk These instructions operate on all bits of the predicate registers, implying a fixed, 1-bit predicate element size. The
flag-setting variants set the N, Z, and C condition flags based on the predicate result, and set the V flag to zero.
Because these instructions operate with a fixed, 1-bit element size, the Governing predicate for the flag-setting
variants should be in the canonical form for a predicate element size in order to generate a meaningful set of
condition flags for that element size.
Mnemonic Instruction See
SEL Select predicate elements from two predicates SEL (predicates)
DDI 0584 Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved. 60

B.a

Non-confidential

../SVE_xml/xhtml/bfmlalb_z_zzz.html
../SVE_xml/xhtml/bfmlalb_z_zzzi.html
../SVE_xml/xhtml/bfmlalt_z_zzz.html
../SVE_xml/xhtml/bfmlalt_z_zzzi.html
../SVE_xml/xhtml/pfalse_p.html
../SVE_xml/xhtml/ptrue_p_s.html
../SVE_xml/xhtml/ptrue_p_s.html
../SVE_xml/xhtml/sel_p_p_pp.html

Chapter 5. SVE instruction set
5.2. SVE ISA functional groups

Mnemonic Instruction

See

MOV Move predicate elements (predicated, merging) MOV (predicate, predicated, merging)
Move predicate elements (predicated, zeroing) MOV (predicate, predicated, zeroing)
Move predicate elements (unpredicated) MOV (predicate, unpredicated)
MOVS Move predicate elements, setting the condition flags MOVS (predicated)
(predicated)
Move predicate elements, setting the condition flags MOVS (unpredicated)
(unpredicated)
5.2.6.3 Predicate logical operations
T seumu These instructions perform bitwise logical operations on predicate registers that operate on all bits of the register,
implying a fixed, 1-bit predicate element size. The flag-setting variants set the N, Z, and C condition flags based
on the predicate result, and set the V flag to zero. Inactive elements in the destination Predicate register are set to
zero, except for PTEST which does not specify a destination register. Because these instructions operate with a
fixed, 1-bit element size, the Governing predicate for the flag-setting variants should be in the canonical form for a
predicate element size in order to generate a meaningful set of condition flags for that element size.
Mnemonic Instruction See
AND Bitwise AND predicates AND
ANDS Bitwise AND predicates, setting the condition flags ANDS
BIC Bitwise clear predicates BIC
BICS Bitwise clear predicates, setting the condition flags BICS
EOR Bitwise exclusive OR predicates EOR
EORS Bitwise exclusive OR predicates, setting the condition flags EORS
NAND Bitwise NAND predicates NAND
NANDS Bitwise NAND predicates, setting the condition flags NANDS
NOR Bitwise NOR predicates NOR
NORS Bitwise NOR predicates, setting the condition flags NORS
NOT Bitwise invert predicate NOT
NOTS Bitwise invert predicate, setting the condition flags NOTS
ORN Bitwise OR inverted predicate ORN
ORNS Bitwise OR inverted predicate, setting the condition flags ~ ORNS
ORR Bitwise OR predicates ORR
ORRS Bitwise OR predicates, setting the condition flags ORRS
PTEST Test predicate value, setting the condition flags PTEST
5.2.6.4 FFR predicate handling
DDI 0584 Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved. 61

B.a Non-confidential

../SVE_xml/xhtml/mov_sel_p_p_pp.html
../SVE_xml/xhtml/mov_and_p_p_pp.html
../SVE_xml/xhtml/mov_orr_p_p_pp.html
../SVE_xml/xhtml/movs_and_p_p_pp.html
../SVE_xml/xhtml/movs_orr_p_p_pp.html
../SVE_xml/xhtml/and_p_p_pp.html
../SVE_xml/xhtml/and_p_p_pp.html
../SVE_xml/xhtml/bic_p_p_pp.html
../SVE_xml/xhtml/bic_p_p_pp.html
../SVE_xml/xhtml/eor_p_p_pp.html
../SVE_xml/xhtml/eor_p_p_pp.html
../SVE_xml/xhtml/nand_p_p_pp.html
../SVE_xml/xhtml/nand_p_p_pp.html
../SVE_xml/xhtml/nor_p_p_pp.html
../SVE_xml/xhtml/nor_p_p_pp.html
../SVE_xml/xhtml/not_eor_p_p_pp.html
../SVE_xml/xhtml/nots_eor_p_p_pp.html
../SVE_xml/xhtml/orn_p_p_pp.html
../SVE_xml/xhtml/orn_p_p_pp.html
../SVE_xml/xhtml/orr_p_p_pp.html
../SVE_xml/xhtml/orr_p_p_pp.html
../SVE_xml/xhtml/ptest_p_p.html

Chapter 5. SVE instruction set
5.2. SVE ISA functional groups

Trryus These instructions work with SVE First-fault and Non-fault loads using the FFR to determine which elements have
been successfully loaded and which remain to be loaded on a subsequent iteration. The RDFFRS instruction sets
the N, Z, and C condition flags based on the predicate result, and sets the V flag to zero. Because these instructions
operate with a fixed, 1-bit element size, the Governing predicate for the RDFFRS instruction should be in the
canonical form for a predicate element size in order to generate a meaningful set of condition flags for that element
size.

Mnemonic Instruction See
RDFFR Return predicate of successfully loaded elements (unpredicated) RDFFR
Return predicate of successfully loaded elements (predicated) RDFFR
RDFFRS Return predicate of successfully loaded elements, setting the RDFFRS
condition flags (predicated)
SETFFR Initialize the First-fault register to all TRUE SETFFR
WRFFR Write a predicate register to the First-fault register WRFFR
5.2.6.5 Predicate counts
T oMNRB These instructions count either the number of Active predicate elements that are set to TRUE, or the number of

elements implied by a named predicate constraint. The count can be placed in a general-purpose register, or used
to increment or decrement a vector or general-purpose register.

Signed or unsigned saturating variants handle cases where, for example, an increment might cause a vectorized
scalar loop index to overflow and therefore never satisfy a loop termination condition that compares it with a limit
that is close to the maximum integer value.

The named predicate constraint limits the number of elements to:

* A fixed number of elements from the following range: VL1-VL8, VL16, VL32, VL64, VL128 or VL256.
* The largest power of two elements, POW2.

* The largest multiple of three or four elements, MUL3 or MUL4.

¢ The number of accessible elements, ALL, implicitly a multiple of two.

Unspecified or out of range predicate constraint encodings generate a zero element count and do not cause an
Undefined Instruction exception.

Mnemonic Instruction See

CNTB Set scalar to multiple of 8-bit predicate constraint element count CNTB

CNTH Set scalar to multiple of 16-bit predicate constraint element count CNTH

CNTW Set scalar to multiple of 32-bit predicate constraint element count CNTW

CNTD Set scalar to multiple of 64-bit predicate constraint element count CNTD

CNTP Set scalar to the number of Active predicate elements that are TRUE CNTP

DECB Decrement scalar by multiple of 8-bit predicate constraint element count DECB

DECH Decrement scalar by multiple of 16-bit predicate constraint element count ~ DECH (scalar)

DECW

DDI 0584

B.a

Decrement vector by multiple of 16-bit predicate constraint element count ~DECH (vector)
Decrement scalar by multiple of 32-bit predicate constraint element count ~ DECW (scalar)
Decrement vector by multiple of 32-bit predicate constraint element count DECW (vector)

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved. 62
Non-confidential

../SVE_xml/xhtml/rdffr_p_f.html
../SVE_xml/xhtml/rdffr_p_p_f.html
../SVE_xml/xhtml/rdffr_p_p_f.html
../SVE_xml/xhtml/setffr_f.html
../SVE_xml/xhtml/wrffr_f_p.html
../SVE_xml/xhtml/cntb_r_s.html
../SVE_xml/xhtml/cntb_r_s.html
../SVE_xml/xhtml/cntb_r_s.html
../SVE_xml/xhtml/cntb_r_s.html
../SVE_xml/xhtml/cntp_r_p_p.html
../SVE_xml/xhtml/decb_r_rs.html
../SVE_xml/xhtml/decb_r_rs.html
../SVE_xml/xhtml/decd_z_zs.html
../SVE_xml/xhtml/decb_r_rs.html
../SVE_xml/xhtml/decd_z_zs.html

Chapter 5. SVE instruction set
5.2. SVE ISA functional groups

Mnemonic Instruction See

DECD Decrement scalar by multiple of 64-bit predicate constraint element count ~ DECD (scalar)
Decrement vector by multiple of 64-bit predicate constraint element count DECD (vector)

DECP Decrement scalar by the number of predicate elements that are TRUE DECP (scalar)
Decrement vector by the number of Active predicate elements that are DECP (vector)
TRUE

INCB Increment scalar by multiple of 8-bit predicate constraint element count INCB (scalar)

INCH Increment scalar by multiple of 16-bit predicate constraint element count INCH (scalar)
Increment vector by multiple of 16-bit predicate constraint element count ~ INCH (vector)

INCW Increment scalar by multiple of 32-bit predicate constraint element count INCW (scalar)
Increment vector by multiple of 32-bit predicate constraint element count ~ INCW (vector)

INCD Increment scalar by multiple of 64-bit predicate constraint element count INCD (scalar)
Increment vector by multiple of 64-bit predicate constraint element count INCD (vector)

INCP Increment scalar by the number of predicate elements that are TRUE INCP (scalar)
Increment vector by the number of predicate elements that are TRUE INCP (vector)

SQDECB Signed saturating decrement scalar by multiple of 8-bit predicate constraint SQDECB
element count

SQDECH Signed saturating decrement scalar by multiple of 16-bit predicate SQDECH (scalar)
constraint element count
Signed saturating decrement vector by multiple of 16-bit predicate SQDECH (vector)
constraint element count

SQDECW Signed saturating decrement scalar by multiple of 32-bit predicate SQDECW (scalar)
constraint element count
Signed saturating decrement vector by multiple of 32-bit predicate SQDECW (vector)
constraint element count

SQDECD Signed saturating decrement scalar by multiple of 64-bit predicate SQDECD (scalar)
constraint element count
Signed saturating decrement vector by multiple of 64-bit predicate SQDECD (vector)
constraint element count

SQDECP Signed saturating decrement scalar the number of predicate elements that SQDECP (scalar)
are TRUE
Signed saturating decrement vector by the number of predicate elements SQDECP (vector)
that are TRUE

SQINCB Signed saturating increment scalar by multiple of 8-bit predicate constraint SQINCB (scalar)
element count

SQINCH Signed saturating increment scalar by multiple of 16-bit predicate constraint SQINCH (scalar)
element count
Signed saturating increment vector by multiple of 16-bit predicate SQINCH (vector)
constraint element count

SQINCW Signed saturating increment scalar by multiple of 32-bit predicate constraint SQINCW (scalar)
element count

DDI 0584 Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.

B.a

Non-confidential

../SVE_xml/xhtml/decb_r_rs.html
../SVE_xml/xhtml/decd_z_zs.html
../SVE_xml/xhtml/decp_r_p_r.html
../SVE_xml/xhtml/decp_z_p_z.html
../SVE_xml/xhtml/incb_r_rs.html
../SVE_xml/xhtml/incb_r_rs.html
../SVE_xml/xhtml/incd_z_zs.html
../SVE_xml/xhtml/incb_r_rs.html
../SVE_xml/xhtml/incd_z_zs.html
../SVE_xml/xhtml/incb_r_rs.html
../SVE_xml/xhtml/incd_z_zs.html
../SVE_xml/xhtml/incp_r_p_r.html
../SVE_xml/xhtml/incp_z_p_z.html
../SVE_xml/xhtml/sqdecb_r_rs.html
../SVE_xml/xhtml/sqdech_r_rs.html
../SVE_xml/xhtml/sqdech_z_zs.html
../SVE_xml/xhtml/sqdecw_r_rs.html
../SVE_xml/xhtml/sqdecw_z_zs.html
../SVE_xml/xhtml/sqdecd_r_rs.html
../SVE_xml/xhtml/sqdecd_z_zs.html
../SVE_xml/xhtml/sqdecp_r_p_r.html
../SVE_xml/xhtml/sqdecp_z_p_z.html
../SVE_xml/xhtml/sqincb_r_rs.html
../SVE_xml/xhtml/sqinch_r_rs.html
../SVE_xml/xhtml/sqinch_z_zs.html
../SVE_xml/xhtml/sqincw_r_rs.html

Chapter 5. SVE instruction set
5.2. SVE ISA functional groups

Mnemonic Instruction See
Signed saturating increment vector by multiple of 32-bit predicate SQINCW (vector)
constraint element count

SQINCD Signed saturating increment scalar by multiple of 64-bit predicate constraint SQINCD (scalar)

SQINCP

UQDECB

UQDECH

UQDECW

UQDECD

UQDECP

UQINCB

UQINCH

UQINCW

UQINCD

UQINCP

DDI 0584
B.a

element count

Signed saturating increment vector by multiple of 64-bit predicate
constraint element count

Signed saturating increment scalar by the number of predicate elements that

are TRUE

Signed saturating increment vector by the number of predicate elements that

are TRUE

Unsigned saturating decrement scalar by multiple of 8-bit predicate
constraint element count

Unsigned saturating decrement scalar by multiple of 16-bit predicate
constraint element count

Unsigned saturating decrement vector by multiple of 16-bit predicate
constraint element count

Unsigned saturating decrement scalar by multiple of 32-bit predicate
constraint element count

Unsigned saturating decrement vector by multiple of 32-bit predicate
constraint element count

Unsigned saturating decrement scalar by multiple of 64-bit predicate
constraint element count

Unsigned saturating decrement vector by multiple of 64-bit predicate
constraint element count

Unsigned saturating decrement scalar by the number of predicate elements

that are TRUE

Unsigned saturating decrement vector by the number of predicate elements

that are TRUE

Unsigned saturating increment scalar by multiple of 8-bit predicate
constraint element count

Unsigned saturating increment scalar by multiple of 16-bit predicate
constraint element count

Unsigned saturating increment vector by multiple of 16-bit predicate
constraint element count

Unsigned saturating increment scalar by multiple of 32-bit predicate
constraint element count

Unsigned saturating increment vector by multiple of 32-bit predicate
constraint element count

Unsigned saturating increment scalar by multiple of 64-bit predicate
constraint element count

Unsigned saturating increment vector by multiple of 64-bit predicate
constraint element count

Unsigned saturating increment scalar by the number of predicate elements

that are TRUE

SQINCD (vector)

SQINCEP (scalar)

SQINCEP (vector)

UQDECB

UQDECH (scalar)

UQDECH (vector)

UQDECW (scalar)

UQDECW (vector)

UQDECD (scalar)

UQDECD (vector)

UQDECEP (scalar)

UQDECEP (vector)

UQINCB

UQINCH (scalar)

UQINCH (vector)

UQINCW (scalar)

UQINCW (vector)

UQINCD (scalar)

UQINCD (vector)

UQINCEP (scalar)

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.

Non-confidential

../SVE_xml/xhtml/sqincw_z_zs.html
../SVE_xml/xhtml/sqincd_r_rs.html
../SVE_xml/xhtml/sqincd_z_zs.html
../SVE_xml/xhtml/sqincp_r_p_r.html
../SVE_xml/xhtml/sqincp_z_p_z.html
../SVE_xml/xhtml/uqdecb_r_rs.html
../SVE_xml/xhtml/uqdech_r_rs.html
../SVE_xml/xhtml/uqdech_z_zs.html
../SVE_xml/xhtml/uqdecw_r_rs.html
../SVE_xml/xhtml/uqdecw_z_zs.html
../SVE_xml/xhtml/incp_r_p_r.html
../SVE_xml/xhtml/uqdecd_r_rs.html
../SVE_xml/xhtml/uqdecp_r_p_r.html
../SVE_xml/xhtml/uqdecp_z_p_z.html
../SVE_xml/xhtml/uqincb_r_rs.html
../SVE_xml/xhtml/uqinch_r_rs.html
../SVE_xml/xhtml/uqincw_z_zs.html
../SVE_xml/xhtml/uqincw_r_rs.html
../SVE_xml/xhtml/uqincw_z_zs.html
../SVE_xml/xhtml/uqincd_r_rs.html
../SVE_xml/xhtml/uqincd_z_zs.html
../SVE_xml/xhtml/uqincp_r_p_r.html

Chapter 5. SVE instruction set
5.2. SVE ISA functional groups

Mnemonic Instruction See

Unsigned saturating increment vector by the number of predicate elements UQINCP (vector)
that are TRUE

5.2.6.6 Loop control

These instructions control counted vector loops and vector loops with data-dependent termination conditions.

These instructions create a loop partition predicate with Active elements set to TRUE up to the point where the loop
should terminate, and FALSE thereafter. Two loop concepts are supported, simple loops and data-dependent loops.

5.2.6.6.1 Simple loops

An up-counting WHILE instruction that increments the value of the first scalar operand and compares the value
with a second, fixed scalar operand. The instruction generates a destination predicate with all of the following
characteristics:

* The predicate elements starting from the lowest numbered element are true while the comparison is true.
* The predicate elements thereafter, up to the highest numbered element, are false when the comparison
becomes false.

All 32 bits or 64 bits of the scalar operands are significant for the purposes of comparison. The full 32-bit or 64-bit
value of the first operand is incremented by 1 for each destination predicate element, irrespective of the element
size. The first general-purpose register operand is not updated.

If all of the following occur, a comparison can never fail, resulting in an all-true predicate:

* The comparison includes an equality test.
* The second scalar operand is equal to the maximum integer value of the selected size and type of comparison.

The N, Z, C, and V condition flags are unconditionally set to control a subsequent conditional branch.

Mnemonic Instruction See

WHILELE While incrementing signed scalar less than or equal to scalar WHILELE

WHILELO While incrementing unsigned scalar lower than scalar WHILELO

WHILELS While incrementing unsigned scalar lower than or the same as scalar ~ WHILELS

WHILELT While incrementing signed scalar less than scalar WHILELT

DDI 0584
B.a

5.2.6.6.2 Data-dependent loops

For data-dependent termination conditions, it is necessary to convert the result of a vector comparison into a loop
partition predicate. The new partition truncates the current vector partition immediately before or after the first
active TRUE comparison. The N, Z, C, and V condition flags are optionally set to control a subsequent conditional
branch.

The BRKA instructions set active destination predicate elements to TRUE up to and including the first active
TRUE element in their source predicate register, setting subsequent elements to FALSE.

The BRKB instructions set active destination predicate elements to TRUE up to but excluding the first active
TRUE element in their source predicate register, setting subsequent elements to FALSE.

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved. 65
Non-confidential

../SVE_xml/xhtml/uqincp_z_p_z.html
../SVE_xml/xhtml/whilele_p_p_rr.html
../SVE_xml/xhtml/whilelo_p_p_rr.html
../SVE_xml/xhtml/whilels_p_p_rr.html
../SVE_xml/xhtml/whilelt_p_p_rr.html

Chapter 5. SVE instruction set
5.2. SVE ISA functional groups

The BRKPA and BRKPB instructions propagate the result of a previous BRKB or BRKPB instruction, by setting
their destination predicate register to all FALSE if the Last active element of their first source predicate register is
not TRUE, but otherwise generate the destination predicate from their second source predicate as described for the

BRKA and BRKB instructions.

The BRKN instructions propagate the result of a previous BRKB or BRKPB instruction by setting the destination
predicate register to all FALSE if the Last active element of their first source predicate register is not TRUE, but
otherwise leave the destination predicate unchanged. The destination and second source predicate must have been

created by another instruction, such as RDFFR or WHILE.

Mnemonic Instruction See

BRKA Break after the first true condition BRKA, BRKAS

BRKAS Break after the first true condition, setting the condition flags BRKA, BRKAS

BRKB Break before the first true condition BRKB, BRKBS

BRKBS Break before the first true condition, setting the condition flags BRKB, BRKBS

BRKN Propagate break to next partition BRKN, BRKNS

BRKNS Propagate break to next partition, setting the condition flags BRKN, BRKNS

BRKPA Break after the first true condition, propagating from previous partition =~ BRKPA, BRKPAS

BRKPAS Break after the first true condition, propagating from previous partition, =~ BRKPA, BRKPAS
setting the condition flags

BRKPB Break before the first true condition, propagating from the previous BRKPB, BRKPBS
partition

BRKPBS Break before the first true condition, propagating from the previous BRKPB, BRKPBS

partition, setting the condition flags

5.2.6.7 Serialized operations

These instructions permit Active elements within a vector to be processed sequentially without unpacking the

vector. The condition flags are unconditionally set to control a subsequent conditional branch.

Mnemonic Instruction See

PFIRST Set the First active element to TRUE PFIRST

PNEXT Find next Active element PNEXT

CTERMEQ Compare and terminate loop when equal CTERMEQ, CTERMNE
CTERMNE Compare and terminate loop when not equal CTERMEQ, CTERMNE

5.2.7 Move operations

Tonk

5.2.7.1 Element permute and shuffle

These instructions perform the following operations:

DDI 0584

B.a

These instructions move data between different vector elements, or between vector elements and scalar registers.

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.

Non-confidential

../SVE_xml/xhtml/brka_p_p_p.html
../SVE_xml/xhtml/brka_p_p_p.html
../SVE_xml/xhtml/brkb_p_p_p.html
../SVE_xml/xhtml/brkb_p_p_p.html
../SVE_xml/xhtml/brkn_p_p_pp.html
../SVE_xml/xhtml/brkn_p_p_pp.html
../SVE_xml/xhtml/brkpa_p_p_pp.html
../SVE_xml/xhtml/brkpa_p_p_pp.html
../SVE_xml/xhtml/brkpb_p_p_pp.html
../SVE_xml/xhtml/brkpb_p_p_pp.html
../SVE_xml/xhtml/pfirst_p_p_p.html
../SVE_xml/xhtml/pnext_p_p_p.html
../SVE_xml/xhtml/ctermeq_rr.html
../SVE_xml/xhtml/ctermeq_rr.html

Chapter 5. SVE instruction set
5.2. SVE ISA functional groups

 Conditionally extract the Last active element of a vector or the following element.
— The supported instructions are: CLASTA, CLASTB.
* Unconditionally extract the Last active element of a vector or the following element.
— The supported instructions are: LASTA, LASTB.
 Variable permute instructions where the permutation is determined by the values in a predicate register or a
table of element index values.
— The supported instructions are: COMPACT, SPLICE, TBL.
* Fixed permute instructions where the form of the permutation is encoded in the instruction.
— The supported instructions are: DUP, EXT, INSR, REV, REVB, REVH, REVW, SUNPKHI, SUNPKLO,
TRN1, TRN2, UUNPKHI, UUNPKLO, UZP1, UZP2, ZIP1, ZIP2.

Mnemonic Instruction See

CLASTA Conditionally extract element after the Last active = CLASTA (scalar)
element to general-purpose register

Conditionally extract element after the Last active =~ CLASTA (SIMD&FP scalar)
element to SIMD&FP scalar

Conditionally extract element after the Last active ~ CLASTA (vectors)
element to vector

CLASTB Conditionally extract Last active element to CLASTB (scalar)
general-purpose register
Conditionally extract Last active element to CLASTB (SIMD&FP scalar)
SIMD&FP scalar

Conditionally extract Last active element to vector CLASTB (vectors)
LASTA Extract element after the Last active element to LASTA (scalar)
general-purpose register

Extract element after the Last active element to LASTA (SIMD&FP scalar)
SIMD&FP scalar

LASTB Extract Last active element to general-purpose LASTB (scalar)
register

Extract Last active element to SIMD&FP scalar LASTB (SIMD&FP scalar)

COMPACT Shuffle Active elements of vector to the right and ~COMPACT
fill with zeros

SPLICE Splice two vectors under predicate control SPLICE
TBL Programmable table lookup using vector of TBL
element indexes
DUP Broadcast indexed vector element DUP
EXT Extract vector from pair of vectors EXT
INSR Insert general-purpose register into shifted vector INSR (scalar)

Insert SIMD&FP scalar register into shifted vector INSR (SIMD&FP scalar)
MOV Move indexed element or SIMD&FP scalar to MOV (SIMD&FP scalar, unpredicated)
vector (unpredicated)

Move SIMD&FP scalar register to vector MOV (SIMD&FP scalar, predicated)
elements (predicated)

REV Reverse all elements in vector REV (vector)
REVB Reverse 8-bit bytes in elements REVB, REVH, REVW
DDI 0584 Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved. 67

B.a Non-confidential

../SVE_xml/xhtml/clasta_r_p_z.html
../SVE_xml/xhtml/clasta_v_p_z.html
../SVE_xml/xhtml/clasta_z_p_zz.html
../SVE_xml/xhtml/clastb_r_p_z.html
../SVE_xml/xhtml/clastb_v_p_z.html
../SVE_xml/xhtml/clastb_z_p_zz.html
../SVE_xml/xhtml/lasta_r_p_z.html
../SVE_xml/xhtml/lasta_v_p_z.html
../SVE_xml/xhtml/lastb_r_p_z.html
../SVE_xml/xhtml/lastb_v_p_z.html
../SVE_xml/xhtml/compact_z_p_z.html
../SVE_xml/xhtml/splice_z_p_zz.html
../SVE_xml/xhtml/tbl_z_zz.html
../SVE_xml/xhtml/dup_z_zi.html
../SVE_xml/xhtml/ext_z_zi.html
../SVE_xml/xhtml/insr_z_r.html
../SVE_xml/xhtml/insr_z_v.html
../SVE_xml/xhtml/mov_dup_z_zi.html
../SVE_xml/xhtml/mov_cpy_z_p_v.html
../SVE_xml/xhtml/rev_z_z.html
../SVE_xml/xhtml/revb_z_z.html

Chapter 5. SVE instruction set
5.2. SVE ISA functional groups

Mnemonic Instruction See

REVH Reverse 16-bit halfwords in elements REVB, REVH, REVW

REVW Reverse 32-bit words in elements REVB, REVH, REVW

TRN1 Interleave even elements from two vectors TRN1, TRN2 (vectors)

TRN2 Interleave odd elements from two vectors TRNI1, TRN2 (vectors)

UZP1 Concatenate even elements from two vectors UZP1, UZP2 (vectors)

UzZP2 Concatenate odd elements from two vectors UZP1, UZP2 (vectors)

ZIP1 Interleave elements from low halves of two ZIP1, ZIP2 (vectors)
vectors

Z1P2 Interleave elements from high halves of two ZIP1, ZIP2 (vectors)
vectors

5.2.7.2 Unpacking instructions

T exTHW These instructions unpack half of the elements from the source vector register or predicate register, widen the
unpacked elements to twice the width, and place the result in the destination register.

Mnemonic Instruction See

SUNPKHI Unpack and sign-extend elements from high half of vector SUNPKHI, SUNPKLO
SUNPKLO Unpack and sign-extend elements from low half of vector SUNPKHI, SUNPKLO
UUNPKHI Unpack and zero-extend elements from high half of vector UUNPKHI, UUNPKLO
UUNPKLO Unpack and zero-extend elements from low half of vector UUNPKHI, UUNPKLO
PUNPKHI Unpack and widen elements from high half of predicate PUNPKHI, PUNPKLO
PUNPKLO Unpack and widen elements from low half of predicate PUNPKHI, PUNPKLO

5.2.7.3 Predicate permute

Towroc These instructions are used to move and permute predicate elements. These instructions generally mirror the fixed
vector permutes to allow predicates to follow their data. The permutes move all of the bits in a predicate element,
not just the canonical bits.

Mnemonic Instruction See
REV Reverse all elements in predicate REV
TRN1 Interleave even elements from two predicates TRN1, TRN2 (predicates)
TRN2 Interleave odd elements from two predicates TRNI1, TRN2 (predicates)
UZP1 Select even elements from two predicates UZP1, UZP2 (predicates)
uzZp2 Select odd elements from two predicates UZP1, UZP2 (predicates)
ZIP1 Interleave elements from low halves of two predicates ZIP1, ZIP2 (predicates)
DDI 0584 Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved. 68

B.a Non-confidential

../SVE_xml/xhtml/revb_z_z.html
../SVE_xml/xhtml/revb_z_z.html
../SVE_xml/xhtml/trn1_z_zz.html
../SVE_xml/xhtml/trn1_z_zz.html
../SVE_xml/xhtml/uzp1_z_zz.html
../SVE_xml/xhtml/uzp1_z_zz.html
../SVE_xml/xhtml/zip1_z_zz.html
../SVE_xml/xhtml/zip1_z_zz.html
../SVE_xml/xhtml/sunpkhi_z_z.html
../SVE_xml/xhtml/sunpkhi_z_z.html
../SVE_xml/xhtml/uunpkhi_z_z.html
../SVE_xml/xhtml/uunpkhi_z_z.html
../SVE_xml/xhtml/punpkhi_p_p.html
../SVE_xml/xhtml/punpkhi_p_p.html
../SVE_xml/xhtml/rev_p_p.html
../SVE_xml/xhtml/trn1_p_pp.html
../SVE_xml/xhtml/trn1_p_pp.html
../SVE_xml/xhtml/uzp1_p_pp.html
../SVE_xml/xhtml/uzp1_p_pp.html
../SVE_xml/xhtml/zip1_p_pp.html

Chapter 5. SVE instruction set
5.2. SVE ISA functional groups

Mnemonic Instruction See

ZIP2

Interleave elements from high halves of two predicates ZIP1, ZIP2 (predicates)

5.2.7.4 Index vector generation

The INDEX instruction initializes a vector horizontally by setting its first element to an integer value, and then
repeatedly incrementing it by a second integer value to generate the subsequent elements. Each integer value can
be specified as a signed immediate or a general-purpose register.

Mnemonic Instruction See

INDEX

Create index vector starting from and incremented by immediates INDEX (immediates)

Create index vector starting from immediate and incremented by INDEX (immediate, scalar)
general-purpose register

Create index vector starting from general-purpose register and INDEX (scalar, immediate)
incremented by immediate

Create index vector starting from and incremented by general-purpose INDEX (scalars)
registers

l‘H“} M

DDI 0584
B.a

5.2.7.5 Move prefix

The MOVPRFX (predicated) instruction is a predicated vector move that can be combined with a predicated
destructive instruction that immediately follows it, in program order, to create a single constructive operation, or to
convert an instruction with merging predication to use zeroing predication.

The MOVPRFX (unpredicated) instruction is an unpredicated vector move that can be combined with a predicated
or unpredicated destructive instruction that immediately follows it, in program order, to create a single constructive
operation.

The Operational information section of an SVE instruction description indicates whether or not an instruction
can be predictably prefixed by a MOVPRFX instruction. If the Operational information of an SVE instruction
description does not mention MOVPRFX or if the section does not exist, then the instruction cannot be predictably
prefixed by a MOVPRFX instruction.

The prefixed instruction that immediately follows a MOVPRFX instruction in program order must be an SVE
instruction that can be predictably prefixed by a MOVPRFX instruction, or an A64 HLT instruction, or an A64
BRK instruction. For an SVE instruction that can be predictably prefixed by a MOVPRFX instruction, all of the
following apply:

* The destination register field implicitly specifies one of the source operands, which means that it is a
destructive binary or ternary vector operation or unary operation with merging predication, excluding
MOVPRFX.

* The destination register is the same as the MOVPRFX destination register.

* The prefixed instruction does not use the MOVPRFX destination register in any of its other source register
fields, even if it has a different name but refers to the same architectural register state. For example, Z1, V1,
and D1 all refer to the same architectural register.

* If the MOVPREFX instruction is predicated, then the prefixed instruction is predicated using the same
Governing predicate register, and the maximum encoded element size is the same as the MOVPRFX element
size, excluding the fixed-size 64-bit elements of the wide elements form of bitwise shift and integer compare
operations.

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved. 69
Non-confidential

../SVE_xml/xhtml/zip1_p_pp.html
../SVE_xml/xhtml/index_z_ii.html
../SVE_xml/xhtml/index_z_ir.html
../SVE_xml/xhtml/index_z_ri.html
../SVE_xml/xhtml/index_z_rr.html

Chapter 5. SVE instruction set
5.2. SVE ISA functional groups

* If the MOVPRFX instruction is unpredicated, then the prefixed instruction can use any Governing predicate
register and element size, or it can be unpredicated. A predicated MOVPRFX cannot be used with an
unpredicated instruction.

If the instruction that follows a MOVPRFX instruction is not an SVE instruction that can be predictably prefixed
by a MOVPRFX instruction, the two instructions behave in one of the following CONSTRAINED UNPREDICTABLE
ways:

« Either or both instructions can execute with their individually described effects.

* Either instruction can generate an Undefined Instruction exception.

» Either or both instructions can execute as a NOP.

* The second instruction can execute with an UNKNOWN value for any of its source registers.
* Any register that is written by either or both instructions can be set to an UNKNOWN value.
* A control flow instruction that writes the PC can set the PC to an UNKNOWN value.

Mnemonic Instruction See
MOVPRFX Move prefix (predicated) MOVPRFX
Move prefix (unpredicated) MOVPRFX

Unless the combination of a constructive operation with merging predication is specifically required, it is strongly
recommended that, for performance reasons, software should prefer to use the zeroing form of predicated
MOVPRFX or the unpredicated MOVPRFX instruction.

When a MOVPRFX instruction is executed, except for PMU events SVE_MOVPRFX_SPEC,
SVE_MOVPRFX_Z_SPEC, SVE_MOVPRFX_M_SPEC, and SVE_MOVPRFX_U_SPEC, 0x807c-0x807F, it is
IMPLEMENTATION DEFINED for each execution of the instruction whether or not any Performance Monitor counts
the instruction. This can vary dynamically for each execution of the same instruction.

When a microarchitectural operation is executed because of a MOVPRFX instruction, except
for PMU events SVE_MOVPRFX_SPEC, SVE_MOVPRFX_Z SPEC, SVE_MOVPRFX M_SPEC, and
SVE_MOVPRFX_U_SPEC, oxgo7c-0x807r, it is IMPLEMENTATION DEFINED for each execution of the operation
whether or not the Performance Monitor counts the operation. This can vary dynamically for each execution of the
same instruction.

5.2.8 Reduction operations

5.2.8.1 Horizontal reductions

These instructions perform arithmetic horizontally across Active elements of a single source vector and deliver a
scalar result.

The floating-point horizontal accumulating sum instruction, FADDA, operates strictly in order of increasing
element number across a vector, using the scalar destination register as a source for the initial value of the
accumulator. This preserves the original program evaluation order where non-associativity is required.

The other floating-point reductions calculate their result using a recursive pair-wise algorithm that does not
preserve the original program order, but permits increased parallelism for code that does not require strict order of
evaluation.

Integer reductions are fully associative, and the order of evaluation is not specified by the architecture.

Mnemonic Instruction See

ANDV

DDI 0584
B.a

Bitwise AND reduction, treating Inactive elements as all ones ANDV

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved. 70
Non-confidential

../SVE_xml/xhtml/movprfx_z_p_z.html
../SVE_xml/xhtml/movprfx_z_z.html
../SVE_xml/xhtml/andv_r_p_z.html

Chapter 5. SVE instruction set
5.2. SVE ISA functional groups

Mnemonic Instruction See

EORV Bitwise XOR reduction, treating Inactive elements as zero EORV

FADDA Floating-point add strictly-ordered reduction, accumulating in scalar, FADDA
ignoring Inactive elements

FADDV Floating-point add recursive reduction, treating Inactive elements as FADDV
+0.0

FMAXNMYV Floating-point maximum number recursive reduction, treating FMAXNMV
Inactive elements as the default NaN

FMAXV Floating-point maximum recursive reduction, treating Inactive FMAXV
elements as negative infinity

FMINNMYV Floating-point minimum number recursive reduction, treating FMINNMV
Inactive elements as the default NaN

FMINV Floating-point minimum recursive reduction, treating Inactive FMINV
elements as positive infinity

ORV Bitwise OR reduction, treating Inactive elements as zero ORV

SADDV Signed add reduction, treating Inactive elements as zero SADDV

SMAXV Signed maximum reduction, treating Inactive elements as the SMAXV
minimum signed integer

SMINV Signed minimum reduction, treating Inactive elements the maximum SMINV
signed integer

UADDV Unsigned add reduction, treating Inactive elements as zero UADDV

UMAXV Unsigned maximum reduction, treating Inactive elements as zero UMAXV

UMINV Unsigned minimum reduction, treating Inactive elements as the UMINV
maximum unsigned integer

DDI 0584 Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved. 71

B.a

Non-confidential

../SVE_xml/xhtml/eorv_r_p_z.html
../SVE_xml/xhtml/fadda_v_p_z.html
../SVE_xml/xhtml/faddv_v_p_z.html
../SVE_xml/xhtml/fmaxnmv_v_p_z.html
../SVE_xml/xhtml/fmaxv_v_p_z.html
../SVE_xml/xhtml/fminnmv_v_p_z.html
../SVE_xml/xhtml/fminv_v_p_z.html
../SVE_xml/xhtml/orv_r_p_z.html
../SVE_xml/xhtml/saddv_r_p_z.html
../SVE_xml/xhtml/smaxv_r_p_z.html
../SVE_xml/xhtml/sminv_r_p_z.html
../SVE_xml/xhtml/uaddv_r_p_z.html
../SVE_xml/xhtml/umaxv_r_p_z.html
../SVE_xml/xhtml/uminv_r_p_z.html

Chapter 5. SVE instruction set
5.3. SVE2 ISA functional groups

5.3 SVE2 ISA functional groups

5.3.1

5.3.2

5.3.3

DDI 0584
B.a

Down-counting Loops

A down-counting WHILE instruction decrements the value of the first scalar operand and compares the value
with a second, fixed scalar operand. The instruction generates a destination predicate with all of the following
characteristics:

* The predicate elements starting from the highest-numbered element are true while the comparison remains
true.

* The predicate elements thereafter, down to the lowest-numbered element, are false when the comparison
becomes false.

All 32 bits or 64 bits of the scalar operands are significant for the purposes of comparison. The full 32-bit or 64-bit
value of the first operand is decremented by 1 for each destination predicate element, irrespective of the element
size. The first general-purpose register operand is not updated.

If all of the following occur, a comparison can never fail, resulting in an all-true predicate:

* The comparison includes an equality test.
* The second scalar operand is equal to the minimum integer value of the selected size and type of comparison.

The following are the SVE2 down-counting WHILE instructions:

* WHILEGE. While decrementing signed 32-bit or 64-bit scalar greater than or equal to scalar.
* WHILEGT. While decrementing signed 32-bit or 64-bit scalar greater than scalar.

* WHILEHI. While decrementing unsigned 32-bit or 64-bit scalar higher than scalar.

* WHILEHS. While decrementing unsigned 32-bit or 64-bit scalar higher or same as scalar.

Constructive multiply

SVE?2 includes the following constructive, three-operand versions of the integer multiply instructions:

* MUL (vectors, unpredicated). Multiply vectors (unpredicated).
* SMULH (unpredicated). Signed multiply returning high half (unpredicated).
e UMULH (unpredicated). Unsigned multiply returning high half (unpredicated).

Uniform DSP operations

The uniform DSP instructions are based on AArch64 Advanced SIMD instructions with the same mnemonic. The
instructions operate on fixed-point operands and produce results with a uniform element size. The operation of an
instruction might include one or more of rounding, halving, saturation, and accumulation.

The following are the SVE2 uniform DSP instructions:

* SABA. Signed absolute difference and accumulate.

e SHADD. Signed halving addition.

* SHSUB. Signed halving subtract.

* SHSUBR. Signed halving subtract reversed vectors.

e SLI. Shift left and insert (immediate).

* SQABS. Signed saturating absolute value.

* SQADD (vectors, predicated). Signed saturating addition (predicated).

* SQDMULH (vectors). Signed saturating doubling multiply high (unpredicated).

* SQNEG. Signed saturating negate.

* SQRDCMLAH (vectors). Signed saturating rounding doubling multiply-add high to accumulator
(unpredicated).

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved. 72
Non-confidential

../SVE_xml/xhtml/whilege_p_p_rr.html
../SVE_xml/xhtml/whilegt_p_p_rr.html
../SVE_xml/xhtml/whilehi_p_p_rr.html
../SVE_xml/xhtml/whilehs_p_p_rr.html
../SVE_xml/xhtml/mul_z_zz.html
../SVE_xml/xhtml/smulh_z_zz.html
../SVE_xml/xhtml/umulh_z_zz.html
../SVE_xml/xhtml/saba_z_zzz.html
../SVE_xml/xhtml/shadd_z_p_zz.html
../SVE_xml/xhtml/shsub_z_p_zz.html
../SVE_xml/xhtml/shsubr_z_p_zz.html
../SVE_xml/xhtml/sli_z_zzi.html
../SVE_xml/xhtml/sqabs_z_p_z.html
../SVE_xml/xhtml/sqadd_z_p_zz.html
../SVE_xml/xhtml/sqdmulh_z_zz.html
../SVE_xml/xhtml/sqneg_z_p_z.html
../SVE_xml/xhtml/sqrdcmlah_z_zzz.html

Chapter 5. SVE instruction set
5.3. SVE2 ISA functional groups

SQRDMLSH (vectors). Signed saturating rounding doubling multiply-subtract high from accumulator
(unpredicated).

SQRDMULH (vectors). Signed saturating rounding doubling multiply high (unpredicated).
SQRSHL. Signed saturating rounding shift left by vector (predicated).
SQRSHLR. Signed saturating rounding shift left reversed vectors (predicated).
SQSHL (immediate). Signed saturating shift left by immediate.

SQSHL (vectors). Signed saturating shift left by vector (predicated).
SQSHLR. Signed saturating shift left reversed vectors (predicated).

SQSHLU. Signed saturating shift left unsigned by immediate.

SQSUB (vectors, predicated). Signed saturating subtraction (predicated).
SQSUBR. Signed saturating subtraction reversed vectors (predicated).
SRHADD. Signed rounding halving addition.

SRI. Shift right and insert (immediate).

SRSHL. Signed rounding shift left by vector (predicated).

SRSHLR. Signed rounding shift left reversed vectors (predicated).

SRSHR. Signed rounding shift right by immediate.

SRSRA. Signed rounding shift right and accumulate (immediate).

SSRA. Signed shift right and accumulate (immediate).

SUQADD. Signed saturating addition of unsigned value.

UABA. Unsigned absolute difference and accumulate.

UHADD. Unsigned halving addition.

UHSUB. Unsigned halving subtract.

UHSUBR. Unsigned halving subtract reversed vectors.

UQADD (vectors, predicated). Unsigned saturating addition (predicated).
UQRSHL. Unsigned saturating rounding shift left by vector (predicated).
UQRSHLR. Unsigned saturating rounding shift left reversed vectors (predicated).
UQSHL (immediate). Unsigned saturating shift left by immediate.

UQSHL (vectors). Unsigned saturating shift left by vector (predicated).
UQSHLR. Unsigned saturating shift left reversed vectors (predicated).
UQSUB (vectors, predicated). Unsigned saturating subtraction (predicated).
UQSUBR. Unsigned saturating subtraction reversed vectors (predicated).
URECPE. Unsigned reciprocal estimate (predicated).

URHADD. Unsigned rounding halving addition.

URSHL. Unsigned rounding shift left by vector (predicated).

URSHLR. Unsigned rounding shift left reversed vectors (predicated).
URSHR. Unsigned rounding shift right by immediate.

URSQRTE. Unsigned reciprocal square root estimate (predicated).

URSRA. Unsigned rounding shift right and accumulate (immediate).
USQADD. Unsigned saturating addition of signed value.

USRA. Unsigned shift right and accumulate (immediate).

5.3.4 Widening DSP operations

DDI 0584
B.a

The widening DSP instructions are based on AArch64 Advanced SIMD instructions with similar mnemonics. The
instructions operate on fixed-point values and produce results that are twice the width of some or all of the inputs.
The instructions read the narrow inputs from either the even-numbered (bottom) or odd-numbered (top) source
elements and place each result in the double-width destination elements that overlap the narrow source elements.
The widening DSP operations are unpredicated and constructive.

The following are the SVE2 widening DSP instructions:

SABALB. Signed absolute difference and accumulate long (bottom).
SABALT. Signed absolute difference and accumulate long (top).
SABDLB. Signed absolute difference long (bottom).

SABDLT. Signed absolute difference long (top).

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved. 73
Non-confidential

../SVE_xml/xhtml/sqrdmlsh_z_zzz.html
../SVE_xml/xhtml/sqrdmulh_z_zz.html
../SVE_xml/xhtml/sqrshl_z_p_zz.html
../SVE_xml/xhtml/sqrshlr_z_p_zz.html
../SVE_xml/xhtml/sqshl_z_p_zi.html
../SVE_xml/xhtml/sqshl_z_p_zz.html
../SVE_xml/xhtml/sqshlr_z_p_zz.html
../SVE_xml/xhtml/sqshlu_z_p_zi.html
../SVE_xml/xhtml/sqsub_z_p_zz.html
../SVE_xml/xhtml/sqsubr_z_p_zz.html
../SVE_xml/xhtml/srhadd_z_p_zz.html
../SVE_xml/xhtml/sri_z_zzi.html
../SVE_xml/xhtml/srshl_z_p_zz.html
../SVE_xml/xhtml/srshlr_z_p_zz.html
../SVE_xml/xhtml/srshr_z_p_zi.html
../SVE_xml/xhtml/srsra_z_zi.html
../SVE_xml/xhtml/ssra_z_zi.html
../SVE_xml/xhtml/suqadd_z_p_zz.html
../SVE_xml/xhtml/uaba_z_zzz.html
../SVE_xml/xhtml/uhadd_z_p_zz.html
../SVE_xml/xhtml/uhsub_z_p_zz.html
../SVE_xml/xhtml/uhsubr_z_p_zz.html
../SVE_xml/xhtml/uqadd_z_p_zz.html
../SVE_xml/xhtml/uqrshl_z_p_zz.html
../SVE_xml/xhtml/uqrshlr_z_p_zz.html
../SVE_xml/xhtml/uqshl_z_p_zi.html
../SVE_xml/xhtml/uqshl_z_p_zz.html
../SVE_xml/xhtml/uqshlr_z_p_zz.html
../SVE_xml/xhtml/uqsub_z_p_zz.html
../SVE_xml/xhtml/uqsubr_z_p_zz.html
../SVE_xml/xhtml/urecpe_z_p_z.html
../SVE_xml/xhtml/urhadd_z_p_zz.html
../SVE_xml/xhtml/urshl_z_p_zz.html
../SVE_xml/xhtml/urshlr_z_p_zz.html
../SVE_xml/xhtml/urshr_z_p_zi.html
../SVE_xml/xhtml/ursqrte_z_p_z.html
../SVE_xml/xhtml/ursra_z_zi.html
../SVE_xml/xhtml/usqadd_z_p_zz.html
../SVE_xml/xhtml/usra_z_zi.html
../SVE_xml/xhtml/sabalb_z_zzz.html
../SVE_xml/xhtml/sabalt_z_zzz.html
../SVE_xml/xhtml/sabdlb_z_zz.html
../SVE_xml/xhtml/sabdlt_z_zz.html

Chapter 5. SVE instruction set
5.3. SVE2 ISA functional groups

SADDLB. Signed add long (bottom).

SADDLT. Signed add long (top).

SADDWRB. Signed add wide (bottom).

SADDWT. Signed add wide (top).

SMLALB (vectors). Signed multiply-add long to accumulator (bottom).
SMLALT (vectors). Signed multiply-add long to accumulator (top).

SMLSLB (vectors). Signed multiply-subtract long from accumulator (bottom).
SMLSLT (vectors). Signed multiply-subtract long from accumulator (top).
SMULLB (vectors). Signed multiply long (bottom).

SMULLT (vectors). Signed multiply long (top).

SQDMLALB (vectors). Signed saturating doubling multiply-add long to accumulator (bottom).
SQDMLALT (vectors). Signed saturating doubling multiply-add long to accumulator (top).
SQDMLSLB (vectors). Signed saturating doubling multiply-subtract long from accumulator (bottom).
SQDMLSLT (vectors). Signed saturating doubling multiply-subtract long from accumulator (top).
SQDMULLB (vectors). Signed saturating doubling multiply long (bottom).
SQDMULLT (vectors). Signed saturating doubling multiply long (top).

SSHLLB. Signed shift left long by immediate (bottom).

SSHLLT. Signed shift left long by immediate (top).

SSUBLB. Signed subtract long (bottom).

SSUBLT. Signed subtract long (top).

SSUBWRB. Signed subtract wide (bottom).

SSUBWT. Signed subtract wide (top).

UABALB. Unsigned absolute difference and accumulate long (bottom).
UABALT. Unsigned absolute difference and accumulate long (top).

UABDLB. Unsigned absolute difference long (bottom).

UABDLT. Unsigned absolute difference long (top).

UADDLB. Unsigned add long (bottom).

UADDLT. Unsigned add long (top).

UADDWRB. Unsigned add wide (bottom).

UADDWT. Unsigned add wide (top).

UMLALB (vectors). Unsigned multiply-add long to accumulator (bottom).
UMLALT (vectors). Unsigned multiply-add long to accumulator (top).

UMLSLB (vectors). Unsigned multiply-subtract long from accumulator (bottom).
UMLSLT (vectors). Unsigned multiply-subtract long from accumulator (top).
UMULLB (vectors). Unsigned multiply long (bottom).

UMULLT (vectors). Unsigned multiply long (top).

USHLLB. Unsigned shift left long by immediate (bottom).

USHLLT. Unsigned shift left long by immediate (top).

USUBLB. Unsigned subtract long (bottom).

USUBLT. Unsigned subtract long (top).

USUBWRB. Unsigned subtract wide (bottom).

USUBWT. Unsigned subtract wide (top).

5.3.5 Narrowing DSP operations

Irrozr

DDI 0584
B.a

The narrowing DSP instructions are based on AArch64 Advanced SIMD instructions with similar mnemonics. The
instructions operate on fixed-point values and produce results that are half the width of the inputs. The instructions
read wide source elements and place each result in one of the following:

* The overlapped even-numbered (bottom) half-width destination elements. The odd-numbered destination

elements are set to zero.

* The overlapped odd-numbered (top) half-width destination elements. The even-numbered destination

elements are unchanged, which means that the instructions are implicitly merging operations.

The narrowing DSP operations are unpredicated and constructive.

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

../SVE_xml/xhtml/saddlb_z_zz.html
../SVE_xml/xhtml/saddlt_z_zz.html
../SVE_xml/xhtml/saddwb_z_zz.html
../SVE_xml/xhtml/saddwt_z_zz.html
../SVE_xml/xhtml/smlalb_z_zzz.html
../SVE_xml/xhtml/smlalt_z_zzz.html
../SVE_xml/xhtml/smlslb_z_zzz.html
../SVE_xml/xhtml/smlslt_z_zzz.html
../SVE_xml/xhtml/smullb_z_zz.html
../SVE_xml/xhtml/smullt_z_zz.html
../SVE_xml/xhtml/sqdmlalb_z_zzz.html
../SVE_xml/xhtml/sqdmlalt_z_zzz.html
../SVE_xml/xhtml/sqdmlslb_z_zzz.html
../SVE_xml/xhtml/sqdmlslt_z_zzz.html
../SVE_xml/xhtml/sqdmullb_z_zz.html
../SVE_xml/xhtml/sqdmullt_z_zz.html
../SVE_xml/xhtml/sshllb_z_zi.html
../SVE_xml/xhtml/sshllt_z_zi.html
../SVE_xml/xhtml/ssublb_z_zz.html
../SVE_xml/xhtml/ssublt_z_zz.html
../SVE_xml/xhtml/ssubwb_z_zz.html
../SVE_xml/xhtml/ssubwt_z_zz.html
../SVE_xml/xhtml/uabalb_z_zzz.html
../SVE_xml/xhtml/uabalt_z_zzz.html
../SVE_xml/xhtml/uabdlb_z_zz.html
../SVE_xml/xhtml/uabdlt_z_zz.html
../SVE_xml/xhtml/uaddlb_z_zz.html
../SVE_xml/xhtml/uaddlt_z_zz.html
../SVE_xml/xhtml/uaddwb_z_zz.html
../SVE_xml/xhtml/uaddwt_z_zz.html
../SVE_xml/xhtml/umlalb_z_zzz.html
../SVE_xml/xhtml/umlalt_z_zzz.html
../SVE_xml/xhtml/umlslb_z_zzz.html
../SVE_xml/xhtml/umlslt_z_zzz.html
../SVE_xml/xhtml/umullb_z_zz.html
../SVE_xml/xhtml/umullt_z_zz.html
../SVE_xml/xhtml/ushllb_z_zi.html
../SVE_xml/xhtml/ushllt_z_zi.html
../SVE_xml/xhtml/usublb_z_zz.html
../SVE_xml/xhtml/usublt_z_zz.html
../SVE_xml/xhtml/usubwb_z_zz.html
../SVE_xml/xhtml/usubwt_z_zz.html

Chapter 5. SVE instruction set
5.3. SVE2 ISA functional groups

The following are the SVE2 narrowing DSP instructions:

* ADDHNB. Add narrow high part (bottom).

¢ ADDHNT. Add narrow high part (top).

 RADDHNB. Rounding add narrow high part (bottom).

* RADDHNT. Rounding add narrow high part (top).

* RSHRNB. Rounding shift right narrow by immediate (bottom).

¢ RSHRNT. Rounding shift right narrow by immediate (top).

* RSUBHNB. Rounding subtract narrow high part (bottom).

* RSUBHNT. Rounding subtract narrow high part (top).

» SHRNB. Shift right narrow by immediate (bottom).

e SHRNT. Shift right narrow by immediate (top).

* SQRSHRNB. Signed saturating rounding shift right narrow by immediate (bottom).

* SQRSHRNT. Signed saturating rounding shift right narrow by immediate (top).

* SQRSHRUNB. Signed saturating rounding shift right unsigned narrow by immediate (bottom).
* SQRSHRUNT. Signed saturating rounding shift right unsigned narrow by immediate (top).
* SQSHRNB. Signed saturating shift right narrow by immediate (bottom).

* SQSHRNT. Signed saturating shift right narrow by immediate (top).

* SQSHRUNB. Signed saturating shift right unsigned narrow by immediate (bottom).

* SQSHRUNT. Signed saturating shift right unsigned narrow by immediate (top).

* SUBHNB. Subtract narrow high part (bottom).

» SUBHNT. Subtract narrow high part (top).

* UQRSHRNB. Unsigned saturating rounding shift right narrow by immediate (bottom).
* UQRSHRNT. Unsigned saturating rounding shift right narrow by immediate (top).

* UQSHRNB. Unsigned saturating shift right narrow by immediate (bottom).

e UQSHRNT. Unsigned saturating shift right narrow by immediate (top).

5.3.6 Unary narrowing operations

The unary narrowing instructions are unpredicated and do not write to the source register. The instructions read
elements from the source vector and saturate each value to the half-width destination element size. The instructions
place the narrow results in one of the following:

* The overlapped even-numbered (bottom) half-width elements. The odd-numbered elements are set to zero.
* The overlapped odd-numbered (top) half-width elements. The even-numbered elements are unchanged.

Non-saturating (truncating) conversions can be performed using existing SVE instructions such as shifts, masks,
and permutes.

The following are the SVE2 unary narrowing instructions:

* SQXTNB. Signed saturating extract narrow (bottom).

¢ SQXTNT. Signed saturating extract narrow (top).

* SQXTUNB. Signed saturating unsigned extract narrow (bottom).
* SQXTUNT. Signed saturating unsigned extract narrow (top).

e UQXTNB. Unsigned saturating extract narrow (bottom).

e UQXTNT. Unsigned saturating extract narrow (top).

5.3.7 Non-widening pairwise arithmetic

DDI 0584
B.a

The non-widening pairwise arithmetic instructions operate on pairs of adjacent elements in each source vector
and produce a result element that is the same size as a single input element. The results from the first and second
source vectors are interleaved, so that the source and result elements overlap. The result is destructively placed in
the first source vector. The AArch64 Advanced SIMD instructions do not interleave the results from the first and
second source vectors.

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved. 75
Non-confidential

../SVE_xml/xhtml/addhnb_z_zz.html
../SVE_xml/xhtml/addhnt_z_zz.html
../SVE_xml/xhtml/raddhnb_z_zz.html
../SVE_xml/xhtml/raddhnt_z_zz.html
../SVE_xml/xhtml/rshrnb_z_zi.html
../SVE_xml/xhtml/rshrnt_z_zi.html
../SVE_xml/xhtml/rsubhnb_z_zz.html
../SVE_xml/xhtml/rsubhnt_z_zz.html
../SVE_xml/xhtml/shrnb_z_zi.html
../SVE_xml/xhtml/shrnt_z_zi.html
../SVE_xml/xhtml/sqrshrnb_z_zi.html
../SVE_xml/xhtml/sqrshrnt_z_zi.html
../SVE_xml/xhtml/sqrshrunb_z_zi.html
../SVE_xml/xhtml/sqrshrunt_z_zi.html
../SVE_xml/xhtml/sqshrnb_z_zi.html
../SVE_xml/xhtml/sqshrnt_z_zi.html
../SVE_xml/xhtml/sqshrunb_z_zi.html
../SVE_xml/xhtml/sqshrunt_z_zi.html
../SVE_xml/xhtml/subhnb_z_zz.html
../SVE_xml/xhtml/subhnt_z_zz.html
../SVE_xml/xhtml/uqrshrnb_z_zi.html
../SVE_xml/xhtml/uqrshrnt_z_zi.html
../SVE_xml/xhtml/uqshrnb_z_zi.html
../SVE_xml/xhtml/uqshrnt_z_zi.html
../SVE_xml/xhtml/sqxtnb_z_zz.html
../SVE_xml/xhtml/sqxtnt_z_zz.html
../SVE_xml/xhtml/sqxtunb_z_zz.html
../SVE_xml/xhtml/sqxtunt_z_zz.html
../SVE_xml/xhtml/uqxtnb_z_zz.html
../SVE_xml/xhtml/uqxtnt_z_zz.html

Chapter 5. SVE instruction set
5.3. SVE2 ISA functional groups

Predication applies to the destination vector. The even-numbered predicate elements enable an operation on a
pair of elements in the first source vector. The odd-numbered predicate elements enable an operation on a pair of
elements in the second source vector.

Inactive elements in the destination vector register are not modified.
The following are the SVE2 non-widening pairwise arithmetic instructions:

* ADDP. Add pairwise.

* FADDP. Floating-point add pairwise.

* FMAXNMP. Floating-point maximum number pairwise.
* FMAXP. Floating-point maximum pairwise.

¢ FMINNMP. Floating-point minimum number pairwise.
* FMINP. Floating-point minimum pairwise.

* SMAXP. Signed maximum pairwise.

e SMINP. Signed minimum pairwise.

* UMAXP. Unsigned maximum pairwise.

e UMINP. Unsigned minimum pairwise.

5.3.8 Widening pairwise arithmetic

I MHJIXQ

The widening pairwise arithmetic instructions operate on pairs of adjacent elements in a single source vector and
produce a double-width result element that is accumulated into the destination vector.

Inactive elements in the destination vector register are not modified.
The following are the SVE2 widening pairwise arithmetic instructions:

* SADALP. Signed add and accumulate long pairwise.
* UADALP. Unsigned add and accumulate long pairwise.

5.3.9 Bitwise ternary logical instructions

Tnwrviw

DDI 0584

B.a

The bitwise ternary logical instructions enable complex bit processing codes to be accelerated using multiple
bitwise logical operations in a shorter instruction sequence. All of the following operations are supported by the
bitwise ternary logical instructions:

* The BCAX instruction combines a ternary bitwise clear with an exclusive OR.

* The EOR3 instruction provides a ternary exclusive OR.

* The XAR instruction combines an exclusive OR with rotation by a constant amount.

* The bitwise select instructions (BSL, BSL1N, BSL2N, and NBSL) can be used with other bitwise logical
instructions to generate all 256 possible bitwise combinations of three input bits using at most three
instructions.

The bitwise ternary logical instructions are unpredicated.
The following are the SVE2 bitwise ternary logical instructions:

¢« BCAX. Bitwise clear and exclusive OR.

¢ BSL. Bitwise select.

BSLIN. Bitwise select with first input inverted.

* BSL2N. Bitwise select with second input inverted.

EOR3. Bitwise exclusive OR of three vectors.

NBSL. Bitwise inverted select.

XAR. Bitwise exclusive OR and rotate right by immediate.

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved. 76
Non-confidential

../SVE_xml/xhtml/addp_z_p_zz.html
../SVE_xml/xhtml/faddp_z_p_zz.html
../SVE_xml/xhtml/fmaxnmp_z_p_zz.html
../SVE_xml/xhtml/fmaxp_z_p_zz.html
../SVE_xml/xhtml/fminnmp_z_p_zz.html
../SVE_xml/xhtml/fminp_z_p_zz.html
../SVE_xml/xhtml/smaxp_z_p_zz.html
../SVE_xml/xhtml/sminp_z_p_zz.html
../SVE_xml/xhtml/umaxp_z_p_zz.html
../SVE_xml/xhtml/uminp_z_p_zz.html
../SVE_xml/xhtml/sadalp_z_p_z.html
../SVE_xml/xhtml/uadalp_z_p_z.html
../SVE_xml/xhtml/bcax_z_zzz.html
../SVE_xml/xhtml/eor3_z_zzz.html
../SVE_xml/xhtml/xar_z_zzi.html
../SVE_xml/xhtml/bsl_z_zzz.html
../SVE_xml/xhtml/bsl1n_z_zzz.html
../SVE_xml/xhtml/bsl2n_z_zzz.html
../SVE_xml/xhtml/nbsl_z_zzz.html
../SVE_xml/xhtml/bcax_z_zzz.html
../SVE_xml/xhtml/bsl_z_zzz.html
../SVE_xml/xhtml/bsl1n_z_zzz.html
../SVE_xml/xhtml/bsl2n_z_zzz.html
../SVE_xml/xhtml/eor3_z_zzz.html
../SVE_xml/xhtml/nbsl_z_zzz.html
../SVE_xml/xhtml/xar_z_zzi.html

Chapter 5. SVE instruction set
5.3. SVE2 ISA functional groups

5.3.10 Large integer arithmetic

Tyxwxm

The large integer arithmetic instructions aid the processing of large integers in vector registers by maintaining
multiple carry chains that are interleaved in accumulator vectors.

A large integer arithmetic instruction takes as input all of the following:

* Either the even-numbered (bottom) or odd-numbered (top) elements of the first source vector.
* A 1-bit carry input from the least-significant bit of the odd-numbered elements of the second source vector.

The inputs to the instruction are added to or subtracted from the even-numbered elements of the destination and
accumulator vector. The 1-bit carry output is placed in the corresponding odd-numbered element of the destination
vector.

The following are the SVE2 large integer arithmetic instructions:

* ADCLB. Add with carry long (bottom).

e ADCLT. Add with carry long (top).

* SBCLB. Subtract with carry long (bottom).
e SBCLT. Subtract with carry long (top).

5.3.11 Multiplication by indexed elements

DDI 0584
B.a

The multiplication by indexed elements instructions take all integer elements in each 128-bit vector segment of the
first source vector and multiplies them by the indexed element in the corresponding segment of the second source
vector.

The products might be destructively added to or subtracted from the corresponding elements of an addend vector.

The second source vector elements are specified using an immediate index that selects the same element position
in each 128-bit vector segment. The index range is 0 to one less than the number of elements per 128-bit segment,
encoded in 1 to 3 bits depending on the element size.

The following are the SVE2 multiplication by indexed elements instructions:

e MLA (indexed). Multiply-add to accumulator (indexed).

e MLS (indexed). Multiply-subtract from accumulator (indexed).

e MUL (indexed). Multiply (indexed).

* SMLALB (indexed). Signed multiply-add long to accumulator (bottom, indexed).

* SMLALT (indexed). Signed multiply-add long to accumulator (top, indexed).

e SMLSLB (indexed). Signed multiply-subtract long from accumulator (bottom, indexed).

e SMLSLT (indexed). Signed multiply-subtract long from accumulator (top, indexed).

* SMULLB (indexed). Signed multiply long (bottom, indexed).

e SMULLT (indexed). Signed multiply long (top, indexed).

* SQDMLALB (indexed). Signed saturating doubling multiply-add long to accumulator (bottom, indexed).

* SQDMLALT (indexed). Signed saturating doubling multiply-add long to accumulator (top, indexed).

e SQDMLSLB (indexed). Signed saturating doubling multiply-subtract long from accumulator (bottom,
indexed).

¢ SQDMLSLT (indexed). Signed saturating doubling multiply-subtract long from accumulator (top, indexed).

* SQDMULH (indexed). Signed saturating doubling multiply high (indexed).

* SQDMULLB (indexed). Signed saturating doubling multiply long (bottom, indexed).

¢ SQDMULLT (indexed). Signed saturating doubling multiply long (top, indexed).

* SQRDMLAH (indexed). Signed saturating rounding doubling multiply-add high to accumulator (indexed).

* SQRDMLSH (indexed). Signed saturating rounding doubling multiply-subtract high from accumulator
(indexed).

* SQRDMULH (indexed). Signed saturating rounding doubling multiply high (indexed).

 UMLALB (indexed). Unsigned multiply-add long to accumulator (bottom, indexed).

e UMLALT (indexed). Unsigned multiply-add long to accumulator (top, indexed).

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved. 77
Non-confidential

../SVE_xml/xhtml/adclb_z_zzz.html
../SVE_xml/xhtml/adclt_z_zzz.html
../SVE_xml/xhtml/sbclb_z_zzz.html
../SVE_xml/xhtml/sbclt_z_zzz.html
../SVE_xml/xhtml/mla_z_zzzi.html
../SVE_xml/xhtml/mls_z_zzzi.html
../SVE_xml/xhtml/mul_z_zzi.html
../SVE_xml/xhtml/smlalb_z_zzzi.html
../SVE_xml/xhtml/smlalt_z_zzzi.html
../SVE_xml/xhtml/smlslb_z_zzzi.html
../SVE_xml/xhtml/smlslt_z_zzzi.html
../SVE_xml/xhtml/smullb_z_zzi.html
../SVE_xml/xhtml/smullt_z_zzi.html
../SVE_xml/xhtml/sqdmlalb_z_zzzi.html
../SVE_xml/xhtml/sqdmlalt_z_zzzi.html
../SVE_xml/xhtml/sqdmlslb_z_zzzi.html
../SVE_xml/xhtml/sqdmlslt_z_zzzi.html
../SVE_xml/xhtml/sqdmulh_z_zzi.html
../SVE_xml/xhtml/sqdmullb_z_zzi.html
../SVE_xml/xhtml/sqdmullt_z_zzi.html
../SVE_xml/xhtml/sqrdmlah_z_zzzi.html
../SVE_xml/xhtml/sqrdmlsh_z_zzzi.html
../SVE_xml/xhtml/sqrdmulh_z_zzi.html
../SVE_xml/xhtml/umlalb_z_zzzi.html
../SVE_xml/xhtml/umlalt_z_zzzi.html

Chapter 5. SVE instruction set
5.3. SVE2 ISA functional groups

e UMLSLB (indexed). Unsigned multiply-subtract long from accumulator (bottom, indexed).
e UMLSLT (indexed). Unsigned multiply-subtract long from accumulator (top, indexed).

¢« UMULLB (indexed). Unsigned multiply long (bottom, indexed).

e UMULLT (indexed). Unsigned multiply long (top, indexed).

5.3.12 Complex integer arithmetic

1—7\,‘:}\“\

DDI 0584
B.a

Complex integer arithmetic instructions operate on signed integer complex numbers in vectors containing the
following interleaved element pairs:

* The even-numbered elements contain the real parts of the complex numbers.
* The odd-numbered elements contain the imaginary parts of the complex numbers.

5.3.12.1 Uniform complex integer arithmetic

The uniform complex integer arithmetic instructions operate on vectors containing integral complex numbers. The
instructions operate on complex numbers that are in polar form.

The CADD instructions rotate the complex numbers in the second source vector before adding element pairs to the
corresponding elements of the first source vector, in a destructive manner. The rotation direction is 90 degrees or
270 degrees from the positive real axis towards the positive imaginary axis.

The CMLA instructions transform the operands to enable multiply-add or multiply-subtract operations on complex
numbers by combining two of the instructions. The following transformations are done:

e The complex numbers in the second source vector are rotated by 0 degrees or 180 degrees before multiplying
by the duplicated real components of the first source vector.

* The complex numbers in the second source vector are rotated by 90 degrees or 270 degrees before multiplying
by the duplicated imaginary components of the first source vector.

The resulting products are added to the corresponding components of the destination and addend vector.
Two CMLA instructions can be used as follows:

CMLA Zda.S, Zn.S, Zm.S, #A CMLA Zzda.S, 2Zn.S, Zm.S, #B

Some meaningful combinations of A and B are:

¢ A=0, B=90. The complex number vectors, Zn and Zm, are multiplied and the products are added to the
complex numbers in Zda.

* A=0, B=270. The complex number conjugates in Zn are multiplied by the complex numbers in Zm and the
products are added to the complex numbers in Zda.

* A=180, B=270. The two complex number vectors, Zn and Zm, are multiplied and the products are subtracted
from the complex numbers in Zda.

* A=180, B=90. The complex number conjugates in Zn are multiplied by the complex numbers in Zm and the
products are subtracted from the complex numbers in Zda.

The CMLA (indexed) indexed form uses a single complex number in each 128-bit segment of the second source
vector as the multiplier for all complex numbers in the corresponding first source vector segment. The complex
numbers in the second source vector are specified using an immediate index that selects the same complex number
position in each 128-bit vector segment. The index range is 0 to one less than the number of complex numbers per
128-bit segment, encoded in 1 to 2 bits depending on the complex number size.

The following are the SVE2 uniform complex integer arithmetic instructions:

e CADD. Complex integer add with rotate.

* CMLA (vectors). Complex integer multiply-add with rotate.

* CMLA (indexed). Complex integer multiply-add with rotate (indexed).

¢ SQCADD. Saturating complex integer add with rotate.

* SQRDCMLAH (vectors). Saturating rounding doubling complex integer multiply-add high with rotate.

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved. 78
Non-confidential

../SVE_xml/xhtml/umlslb_z_zzzi.html
../SVE_xml/xhtml/umlslt_z_zzzi.html
../SVE_xml/xhtml/umullb_z_zzi.html
../SVE_xml/xhtml/umullt_z_zzi.html
../SVE_xml/xhtml/cadd_z_zz.html
../SVE_xml/xhtml/cmla_z_zzzi.html
../SVE_xml/xhtml/cadd_z_zz.html
../SVE_xml/xhtml/cmla_z_zzz.html
../SVE_xml/xhtml/cmla_z_zzzi.html
../SVE_xml/xhtml/sqcadd_z_zz.html
../SVE_xml/xhtml/sqrdcmlah_z_zzz.html

Chapter 5. SVE instruction set
5.3. SVE2 ISA functional groups

DDI 0584

B.a

* SQRDCMLAH (indexed). Saturating rounding doubling complex integer multiply-add high with rotate
(indexed).

5.3.12.2 Widening complex integer arithmetic

The widening complex integer instructions deinterleave the real and imaginary components of integral complex
numbers, and generate complex result components that have a higher numeric precision than the input values. The
instructions differ from other complex instructions that process the real and imaginary components of complex
numbers and write the complex result components to the destination.

The following instructions are useful when generating the widened components of the result of a complex
multiply-add:

* SQDMLALBT: the imaginary results.

¢ SQDMLSLT: the real results.

* SQODMLALB: the conjugate real results.

* SQDMLSLBT: the conjugate imaginary results.

The following instructions are useful when generating the widened components of the result of a complex addition
(X +jY)or (X-jY), given complex numbers X and Y.

* SADDLBT: the imaginary results when computing (X + jY) or real values when computing (X - jY).
e SSUBLBT: the real results when computing (X + jY) or imaginary values when computing (X -jY).

The following are the SVE2 widening complex integer instructions:

e SADDLBT. Signed add long (bottom + top).

* SQDMLALBT. Signed saturating doubling multiply-add long to accumulator (bottom X top).

* SQDMLSLBT. Signed saturating doubling multiply-subtract long from accumulator (bottom X top).
* SSUBLBT. Signed subtract long (bottom - top).

* SSUBLTB. Signed subtract long (top - bottom).

5.3.12.3 Complex integer dot product

The complex integer dot product instructions delimit the source vectors into pairs of 8-bit or 16-bit signed integer
complex numbers. The complex numbers in the first source vector are multiplied by the corresponding complex
numbers in the second source vector. The wide real or wide imaginary part of the product is accumulated into
a 32-bit or 64-bit destination vector element that overlaps all four of the elements that form a pair of complex
number values in the first source vector.

Each instruction implicitly deinterleaves the real and imaginary components of their complex number inputs, so
that the destination vector accumulates four wide real sums or four wide imaginary sums.

The complex numbers in the second source vector are rotated by 0, 90, 180, or 270 degrees in the direction from
the positive real axis towards the positive imaginary axis, considered in polar form, by applying the following
transformations before the dot product operations:

« If the rotation is #0, the imaginary parts of the complex numbers in the second source vector are negated.
The destination vector accumulates the real parts of a complex dot product.

* If the rotation is #90, the real and imaginary parts of the complex numbers the second source vector are
swapped. The destination vector accumulates the imaginary parts of a complex dot product.

« If the rotation is #180, there is no transformation. The destination vector accumulates the real parts of a
complex conjugate dot product.

« If the rotation is #270, the real parts of the complex numbers in the second source vector are negated and
then swapped with the imaginary parts. The destination vector accumulates the imaginary parts of a complex
conjugate dot product.

The indexed form of the instruction selects a single complex number pair within each 128-bit segment of the
second source vector to multiply with all complex number pairs within the corresponding 128-bit segment of the

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved. 79
Non-confidential

../SVE_xml/xhtml/sqrdcmlah_z_zzzi.html
../SVE_xml/xhtml/sqdmlalbt_z_zzz.html
../SVE_xml/xhtml/sqdmlslbt_z_zzz.html
../SVE_xml/xhtml/saddlbt_z_zz.html
../SVE_xml/xhtml/ssublbt_z_zz.html
../SVE_xml/xhtml/saddlbt_z_zz.html
../SVE_xml/xhtml/sqdmlalbt_z_zzz.html
../SVE_xml/xhtml/sqdmlslbt_z_zzz.html
../SVE_xml/xhtml/ssublbt_z_zz.html
../SVE_xml/xhtml/ssubltb_z_zz.html

Chapter 5. SVE instruction set
5.3. SVE2 ISA functional groups

first source vector. The complex number pairs within the second source vector are specified using an immediate
index which selects the same complex number pair position within each 128-bit vector segment. The index range is
from O to one less than the number of complex number pairs per 128-bit segment, encoded in 1 or 2 bits depending
on the size of the complex number pair.

Each complex number is represented in a vector register as an even and odd pair of elements. The real part is the
even-numbered element and the imaginary part is the odd-numbered element.

The following are the SVE2 complex integer dot product instructions:

e CDOT (vectors). Complex integer dot product.
* CDOT (indexed). Complex integer dot product (indexed).

5.3.13 Floating-point extra conversions

Iprpos

The floating-point extra conversion instructions convert to and from fully packed vectors of narrower floating-point
elements.

The FCVTLT instruction converts the top or odd-numbered narrow floating-point vector elements to wider elements
of the next higher precision. The conversion is similar to what is done by the widening integer instructions.

The FCVTNT and FCVXNT instructions convert wider floating-point vector elements to the top or odd-numbered
narrower elements of the next lower precision. The conversion is similar to what is done by the narrowing integer
instructions.

The FCVTXNT and FCVTX instructions convert from double-precision to fully packed half-precision in two
narrowing steps, double-precision to single-precision and then single-precision to half-precision. The two-step
conversion is done without an intermediate rounding error by using von Neumann rounding, which rounds an
inexact mantissa to an odd value.

The existing SVE FCVT instructions implement the corresponding widening and narrowing conversions on the
bottom or even-numbered half-width elements.

The following are the SVE2 floating-point extra conversion instructions:

» FCVTLT. Floating-point up convert long (top, predicated).

e FCVTNT. Floating-point down convert narrow (top, predicated).

* FCVTX. Floating-point down convert, rounding to odd (predicated).

e FCVTXNT. Floating-point down convert, rounding to odd (top, predicated).

5.3.14 Floating-point widening multiply-accumulate

DDI 0584
B.a

The floating-point widening multiply-accumulate instructions multiply the even-numbered or odd-numbered
half-precision elements of the two source vectors and then destructively add or subtract the single-precision
intermediate products. Intermediate rounding is not done. The result is placed into the overlapping single-precision
elements of the addend vector.

The instructions implicitly convert the half-precision inputs to single-precision and can be used to mitigate the
impact of round-off errors when accumulating half-precision floating-point values over many iterations.

The instructions are unpredicated and preserve the multiplier and multiplicand source vectors.
The following are the SVE2 floating-point widening multiply-accumulate instructions:

* FMLALB (vectors). Floating-point fused multiply-add long to accumulator (bottom).

* FMLALB (indexed). Floating-point fused multiply-add long to accumulator (bottom, indexed).
e FMLALT (vectors). Floating-point fused multiply-add long to accumulator (top).

* FMLALT (indexed). Floating-point fused multiply-add long to accumulator (top, indexed).

* FMLSLB (vectors). Floating-point fused multiply-subtract long from accumulator (bottom).

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved. 80
Non-confidential

../SVE_xml/xhtml/cdot_z_zzz.html
../SVE_xml/xhtml/cdot_z_zzzi.html
../SVE_xml/xhtml/fcvtlt_z_p_z.html
../SVE_xml/xhtml/fcvtnt_z_p_z.html
../SVE_xml/xhtml/fcvtxnt_z_p_z.html
../SVE_xml/xhtml/fcvtx_z_p_z.html
../SVE_xml/xhtml/fcvtlt_z_p_z.html
../SVE_xml/xhtml/fcvtnt_z_p_z.html
../SVE_xml/xhtml/fcvtx_z_p_z.html
../SVE_xml/xhtml/fcvtxnt_z_p_z.html
../SVE_xml/xhtml/fmlalb_z_zzz.html
../SVE_xml/xhtml/fmlalb_z_zzzi.html
../SVE_xml/xhtml/fmlalt_z_zzz.html
../SVE_xml/xhtml/fmlalt_z_zzzi.html
../SVE_xml/xhtml/fmlslb_z_zzz.html

Chapter 5. SVE instruction set
5.3. SVE2 ISA functional groups

e FMLSLB (indexed). Floating-point fused multiply-subtract long from accumulator (bottom, indexed).
e FMLSLT (vectors). Floating-point fused multiply-subtract long from accumulator (top).
e FMLSLT (indexed). Floating-point fused multiply-subtract long from accumulator (top, indexed).

5.3.15 Floating-point integer binary logarithm

The floating-point integer binary logarithm instruction returns the signed integer base 2 logarithm of each
floating-point input element Ix| after normalization.

The instruction produces the unbiased exponent of x used in the representation of the floating-point value. For
positive x, x = significand x 2°Porent,

The integer results are placed in elements of the destination vector, which have the same width as the floating-point
input elements:

 If x is normal, the result is the base 2 logarithm of x.

* If x is subnormal, the result corresponds to the normalized representation.
e If x is infinite, the result is 2size-D_1

o TIf x is £0.0 or NaN, the result is -2(€size-D)

Inactive elements in the destination vector register are not modified.
The following is the SVE2 floating-point integer binary logarithm instruction:

* FLOGB. Floating-point base 2 logarithm as integer.

5.3.16 Cross-lane match detect

I KRLFR

DDI 0584
B.a

This section includes instructions that detect or count matching elements within another vector, or within a 128-bit
vector segment.

5.3.16.1 Vector Histogram Count

The vector histogram count instructions create vector histograms.

* HISTSEG compares each 8-bit byte element in the first source vector with all of the elements in the
corresponding 128-bit segment of the second source vector. The instruction counts the matching elements
and places the result in the corresponding destination vector element. The instruction is unpredicated.

* HISTCNT compares each active 32-bit or 64-bit element in the first source vector with all elements in the
second source vector that have an element number less than or equal to the Active element in the first source
vector. The number of matching elements is counted and the result is placed in the corresponding destination
vector element. Inactive elements in the destination vector are set to zero. Inactive elements in the second
source vector do not cause a match.

The following are the SVE2 vector histogram count instructions:

* HISTCNT. Count matching elements in vector.
* HISTSEG. Count matching elements in vector segments.

5.3.16.2 Character match

The character match instructions can be used to scan each 128-bit segment of the second source vector for an 8-bit
or 16-bit character string from the first source vector.

The MATCH and NMATCH instructions compare each active 8-bit or 16-bit character in the first source vector
with all of the characters in the corresponding 128-bit segment of the second source vector. When the first source
character matches any (vatcu) or does not match any (xmatce) character in the second segment, a true value is
placed in the corresponding destination predicate element, otherwise a false value is placed in the destination

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved. 81
Non-confidential

../SVE_xml/xhtml/fmlslb_z_zzzi.html
../SVE_xml/xhtml/fmlslt_z_zzz.html
../SVE_xml/xhtml/fmlslt_z_zzzi.html
../SVE_xml/xhtml/flogb_z_p_z.html
../SVE_xml/xhtml/histseg_z_zz.html
../SVE_xml/xhtml/histcnt_z_p_zz.html
../SVE_xml/xhtml/histcnt_z_p_zz.html
../SVE_xml/xhtml/histseg_z_zz.html
../SVE_xml/xhtml/match_p_p_zz.html
../SVE_xml/xhtml/nmatch_p_p_zz.html

Chapter 5. SVE instruction set
5.3. SVE2 ISA functional groups

predicate element. Inactive elements in the destination predicate register are set to zero. The instruction sets the
First (N), None (Z), !Last (C) condition flags based on the predicate result, and sets the V flag to zero.

The following are the SVE2 character match instructions:

* MATCH. Detect any matching elements, setting the condition flags.
* NMATCH. Detect no matching elements, setting the condition flags.

5.3.16.3 Contiguous conflict detection

The contiguous conflict detection instructions check two addresses for a conflict or overlap between address ranges
that could result in a loop-carried dependency through memory. The address range has the form [addr,addr+VL+8],
where VL is the accessible vector length in bits. A conflict can occur when contiguous load and store instructions
use these addresses within the same loop iteration.

The instructions generate a predicate with elements that are true when the addresses cannot conflict within the
same iteration, and false thereafter. The instructions set the First (N), None (Z), !Last (C) condition flags based on
the predicate result, and the V flag is set to zero.

The following are the SVE2 contiguous conflict detection instructions:

e WHILERW. While free of read-after-write conflicts.
e WHILEWR. While free of write-after-read/write conflicts.

5.3.17 Bit permutation

I"T"Uf"

The bit permutation instructions are optional. The bit permutation instructions are configured by the
ID_AA64ZFRO_EL1.BitPerm bit. The instructions can be used to scatter, gather, or separate a set of bits
within each first source vector element under the control of a bit mask or sieve in the corresponding second source
vector elements. The instructions are unpredicated.

The BDEP instruction scatters the lowest-numbered contiguous bits within each first source vector element to the
bit positions that are indicated by non-zero bits in the corresponding mask element of the second source vector.
The order of the bits is preserved. The bits corresponding to a zero mask bit are set to zero.

The BEXT instruction gathers bits in each first source vector element from the bit positions that are indicated
by non-zero bits in the corresponding mask element of the second source vector. The bits are gathered to the
lowest-numbered contiguous bits of the corresponding destination element, preserving their order. The remaining
higher-numbered bits are set to zero.

The BGRP instruction selects bits from each first source vector element and groups them into the corresponding
destination element, using a corresponding mask element in the second source vector, as follows:

¢ The non-zero bits in the mask element select the bit positions from the corresponding first source vector
element. The selected bits are gathered into the lowest-numbered contiguous bits of the destination element.

* The zero bits in the mask element select the bit positions from the corresponding first source vector element.
The selected bits are gathered into the highest-numbered contiguous bits of the destination element.

The bit order within each group is preserved.
The following are the optional SVE2 bit permutation instructions:

* BDEP. Scatter lower bits into positions selected by bitmask.
e BEXT. Gather lower bits from positions selected by bitmask.
* BGRP. Group bits to right or left as selected by bitmask.

5.3.18 Polynomial arithmetic

DDI 0584

B.a

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved. 82
Non-confidential

../SVE_xml/xhtml/match_p_p_zz.html
../SVE_xml/xhtml/nmatch_p_p_zz.html
../SVE_xml/xhtml/whilerw_p_rr.html
../SVE_xml/xhtml/whilewr_p_rr.html
../SVE_xml/xhtml/bdep_z_zz.html
../SVE_xml/xhtml/bext_z_zz.html
../SVE_xml/xhtml/bgrp_z_zz.html
../SVE_xml/xhtml/bdep_z_zz.html
../SVE_xml/xhtml/bext_z_zz.html
../SVE_xml/xhtml/bgrp_z_zz.html

Chapter 5. SVE instruction set
5.3. SVE2 ISA functional groups

TuynTw

The polynomial arithmetic instructions support polynomial arithmetic over [0, 1], where exclusive-OR takes the
place of addition. The instructions can be used in applications such as CRC calculations, AES-GCM, elliptic curve
cryptography, Diffie-Hellman key exchange, and others.

The PMUL and widening PMULL instructions perform a polynomial multiplication over [0, 1]. The PMULL
instructions read the source operands from either the even-numbered (bottom) or odd-numbered (top) narrow
elements. Each double-width result is placed in the destination elements that overlap the narrow source elements.

The interleaving bitwise exclusive-OR instructions operate on the even-numbered (bottom) elements of the first
source vector register and the odd-numbered (top) elements of the second source vector register. The result is either
placed in the even-numbered elements of the destination vector, leaving the odd-numbered elements unchanged, or
placed in the odd-numbered elements of the destination vector, leaving the even-numbered elements unchanged.

These instructions are unpredicated.
The following are the SVE2 polynomial arithmetic instructions:

* EORBT. Interleaving exclusive-OR (bottom, top).

* EORTB. Interleaving exclusive-OR (top, bottom).

e PMUL. Polynomial multiply vectors (unpredicated).
* PMULLB. Polynomial multiply long (bottom).

* PMULLT. Polynomial multiply long (top).

5.3.19 Vector concatenation

The vector concatenation instructions have new constructive versions that are introduced in SVE2 that preserve
both of the source operands. In the constructive versions of the instruction, only the first source vector register
number is encoded, which requires the source vectors to be in consecutively numbered registers (modulo 32).

The following are the SVE2 vector concatenation instructions:

» EXT. Extract vector from pair of vectors.
» SPLICE. Splice two vectors under predicate control.

5.3.20 Extended table lookup/permute

The SVE2 extended table lookup instructions, TBL and TBX enable the construction of table lookups or
programmable vector permutes where the table consists of two or more vector registers.

Because the index values can select any element in a vector, the instructions are not naturally vector length agnostic.
The following are the SVE2 extended table lookup instructions:

* TBL. Programmable table lookup in two vector table (zeroing).
* TBX. Programmable table lookup in single vector table (merging).

5.3.21 Non-temporal gather/scatter

DDI 0584
B.a

The non-temporal gather load and scatter store instructions provide a hint to the memory system that the data
structure being accessed has a low reuse frequency. The memory system can use the hint to avoid retaining the
data or evicting more frequently-used data from the caches.

These instructions support a single addressing mode consisting of 64-bit or 32-bit vector base addresses plus an
unscaled 64-bit scalar offset that defaults to the zero register (XZR). Other addressing modes can be constructed
using extra instructions.

The following are the SVE2 non-temporal gather load and scatter store instructions:
* LDNTIB (vector plus scalar). Gather load non-temporal unsigned bytes.

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved. 83
Non-confidential

../SVE_xml/xhtml/pmul_z_zz.html
../SVE_xml/xhtml/eorbt_z_zz.html
../SVE_xml/xhtml/eortb_z_zz.html
../SVE_xml/xhtml/pmul_z_zz.html
../SVE_xml/xhtml/pmullb_z_zz.html
../SVE_xml/xhtml/pmullt_z_zz.html
../SVE_xml/xhtml/ext_z_zi.html
../SVE_xml/xhtml/splice_z_p_zz.html
../SVE_xml/xhtml/tbl_z_zz.html
../SVE_xml/xhtml/tbx_z_zz.html
../SVE_xml/xhtml/tbl_z_zz.html
../SVE_xml/xhtml/tbx_z_zz.html
../SVE_xml/xhtml/ldnt1b_z_p_ar.html

Chapter 5. SVE instruction set
5.3. SVE2 ISA functional groups

LDNTI1D (vector plus scalar). Gather load non-temporal unsigned doublewords.
LDNTI1H (vector plus scalar). Gather load non-temporal unsigned halfwords.
LDNTI1SB. Gather load non-temporal signed bytes.

LDNTI1SH. Gather load non-temporal signed halfwords.

LDNTI1SW. Gather load non-temporal signed words.

LDNTIW (vector plus scalar). Gather load non-temporal unsigned words.
STNTI1B (vector plus scalar). Scatter store non-temporal bytes.

STNTI1D (vector plus scalar). Scatter store non-temporal doublewords.
STNTIH (vector plus scalar). Scatter store non-temporal halfwords.

STNTIW (vector plus scalar). Scatter store non-temporal words.

5.3.22 Cryptography support

Tyrxuy Implementation of cryptography acceleration instructions is optional and controlled by the
ID_AA64ZFRO_EL1.{SM4, SHA3, AES} bit fields. Implementation of the instructions requires consistency is
maintained with the existing Armv8 cryptographic functionality support, as follows:

If none of the SVE2 cryptographic instructions are implemented, then the Armv8 zes, sua1, and sua2s6
instructions and the Armv8.4 suasi2, suas, su3, and sm4 instructions can be implemented.
If the SVE?2 sua3 instructions are implemented, then implementation of the Armv8.4 sua3 instructions is
required.
If the SVE2 su4 instructions are implemented, then implementation of the Armv8.4 su4 instructions is required,
but implementing any of the following instructions is optional:

— The Armv8 aes, sua1, and suaz2se instructions.

— The Armv8.4 suas12 and sua3 instructions.
If the SVE2 a&s instructions are implemented, then implementation of the Armv8 ars instructions is required,
but implementing any of the Armv8 stza2s56, suas12, suas, su3, and sm4 instructions is optional.
If all of the SVE2 cryptographic instructions are implemented, then implementation of the equivalent Armv§8
and Armv8.4 instructions is required.

5.3.22.1 AES-128 instructions

Trysxp AES-128 is a 128-bit block cipher that is computed using a combination of linear XOR operations, the use of
rotations by fixed values, and a set of 8-bit non-linear substitutions.

The following instructions accelerate a single encryption round:

The AESE instruction reads a 16-byte state array from each 128-bit segment of the first source vector and
a round key from the corresponding 128-bit segment of the second source vector. A single round of the
AddRoundKey(), SubBytes(), and ShiftRows() transformations, in accordance with the AES standard, is
applied to each state array.

The AESMC instruction reads a 16-byte state array from each 128-bit segment of the source register and
performs a single round of the MixColumns() transformation on each state array in accordance with the AES
standard.

The following instructions accelerate a single decryption round:

The AESD instruction reads a 16-byte state array from each 128-bit segment of the first source vector and
a round key from the corresponding 128-bit segment of the second source vector. A single round of the
AddRoundKey(), InvSubBytes(), and InvShiftRows() transformations in accordance with the AES standard, is
applied to each state array.

The AESIMC instruction reads a 16-byte state array from each 128-bit segment of the source register and
performs a single round of the InvMixColumns() transformation on each state array in accordance with the
AES standard.

Each updated state array is destructively placed in the corresponding segment of the first source vector. The AES
instructions are unpredicated.

DDI 0584
B.a

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved. 84
Non-confidential

../SVE_xml/xhtml/ldnt1d_z_p_ar.html
../SVE_xml/xhtml/ldnt1h_z_p_ar.html
../SVE_xml/xhtml/ldnt1sb_z_p_ar.html
../SVE_xml/xhtml/ldnt1sh_z_p_ar.html
../SVE_xml/xhtml/ldnt1sw_z_p_ar.html
../SVE_xml/xhtml/ldnt1w_z_p_ar.html
../SVE_xml/xhtml/stnt1b_z_p_ar.html
../SVE_xml/xhtml/stnt1d_z_p_ar.html
../SVE_xml/xhtml/stnt1h_z_p_ar.html
../SVE_xml/xhtml/stnt1w_z_p_ar.html
../SVE_xml/xhtml/aese_z_zz.html
../SVE_xml/xhtml/aesmc_z_z.html
../SVE_xml/xhtml/aesd_z_zz.html
../SVE_xml/xhtml/aesimc_z_z.html

Chapter 5. SVE instruction set
5.3. SVE2 ISA functional groups

ITF}If'>

IMroTx

DDI 0584
B.a

The following are the SVE2 AES-128 instructions:

* AESD. AES single round decryption.
* AESE. AES single round encryption.
* AESIMC. AES inverse mix columns.
e AESMC. AES mix columns.

5.3.22.2 SHA-3 instructions

The SHA-3 instructions accelerate the SHA-3 hash algorithm.

The SHA-3 hash is based on a running digest of 1600 bits, arranged as a five by five array of 64-bit values. The
instructions map the 25 64-bit values into 25 vector registers, with each 64-bit value occupying the same 64-bit
element in each vector. A series of transformations is done on these registers during a round of the SHA-3 hash
calculation.

Two or more parallel SHA-3 hash calculations are combined as a SIMD operation, where one calculation operates
on the Oth 64-bit element of each vector, and the other calculation operates on the first 64-bit element of each
vector. The SIMD operation is useful for the fast parallel hash algorithm recently introduced into the SHA-3
standard that allows a single input stream to be computed using multiple SHA-3 hashes in parallel.

The SHA3 instructions are unpredicated.
The only specialized SVE2 SHA-3 instruction is RAX1.
See also:

* 5.3.9 Bitwise ternary logical instructions
5.3.22.3 SM4 instructions

SM4 is the standard Chinese symmetric encryption algorithm which can be accelerated using a similar approach to
that used for AES.

SM4 is a 128-bit wide block cipher that is computed using a combination of linear XOR operations, the use of
fixed-value rotations, and a set of 8-bit non-linear substitutions.

e The SM4E instruction reads 16 bytes of input data from each 128-bit segment of the first source vector, and
four iterations of 32-bit round keys from the corresponding 128-bit segments of the second source vector.
Each input data block is encrypted by four rounds in accordance with the SM4 standard, and destructively
placed in the corresponding segments of the first source vector.

* The SM4EKEY instruction reads four rounds of 32-bit input key values from each 128-bit segment of the
first source vector, and four rounds of 32-bit constants from the corresponding 128-bit segment of the second
source vector. The four rounds of output key values are derived in accordance with the SM4 standard, and
placed in the corresponding segments of the destination vector.

The SM4 instructions are unpredicated.
The following are the SVE2 SM4 instructions:

* SMA4E. SM4 encryption and decryption.
* SMAEKEY. SM4 key updates.

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved. 85
Non-confidential

../SVE_xml/xhtml/aesd_z_zz.html
../SVE_xml/xhtml/aese_z_zz.html
../SVE_xml/xhtml/aesimc_z_z.html
../SVE_xml/xhtml/aesmc_z_z.html
../SVE_xml/xhtml/rax1_z_zz.html
../SVE_xml/xhtml/sm4e_z_zz.html
../SVE_xml/xhtml/sm4ekey_z_zz.html
../SVE_xml/xhtml/sm4e_z_zz.html
../SVE_xml/xhtml/sm4ekey_z_zz.html

Chapter 6
SVE Debug

6.1 Self-hosted debug

SVE extends the AArch64 self-hosted debug exception model.

6.1.1 SVE Watchpoint exceptions

Ryrurs

Rpyeus

Rekzep

DDI 0584
B.a

For SVE predicated vector load or store instructions which are not First-fault vector loads or Non-fault vector loads,
when the instruction performs a non-speculative single-copy atomic access matching a configured watchpoint due
to an Active element, a Watchpoint debug event is generated.

For SVE predicated vector load or store instructions, if the instruction performs an access due to an Inactive
element, a Watchpoint debug event is not generated.

For SVE Non-fault vector load instructions, when the instruction performs an access, a Watchpoint debug event is
not generated.

For SVE Non-fault vector load instructions, when the instruction performs a non-speculative single-copy atomic
access matching a configured watchpoint due to an Active element, the access is reported in the FFR.

For SVE First-fault vector load instructions, when the instruction performs a non-speculative single-copy atomic
access matching a configured watchpoint due to the First active element, a Watchpoint event is generated.

For SVE First-fault vector load instructions, when the instruction performs a non-speculative single-copy atomic
access matching a configured watchpoint due to an Active element that is not the First active element, a Watchpoint
debug event is not generated and the access is reported in the FFR.

Watchpoints are not a mechanism for preventing access to memory.

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved. 86
Non-confidential

Chapter 6. SVE Debug
6.1. Self-hosted debug

Tzuxac For SVE Non-fault and First-fault vector load instructions that do not generate a Watchpoint debug event, an access
that matches a configured watchpoint can return the data and set the appropriate FFR elements to FALSE.

See also:

* 3.1.1 Synchronous memory faults

6.1.2 MOVPRFX instruction behavior in self-hosted debug

IszvzR A MOVPREFX instruction can legally prefix a BRK or HLT instruction.

Reppay If a hardware breakpoint is programmed with the address of a legal MOVPRFX instruction, when any of the
following events occur, the hardware breakpoint generates a Breakpoint exception:

¢ The MOVPRFX instruction is committed for execution.
¢ The combined MOVPRFX and Prefixed instruction is committed for execution.

RuryTs If a hardware breakpoint is programmed with the address of an illegal MOVPRFX instruction or a Prefixed
instruction, when any of the MOVPRFX instruction and Prefixed instruction are committed for execution, it is
CONSTRAINED UNPREDICTABLE whether or not the hardware breakpoint generates a Breakpoint exception.

Reumyn If a single-step is performed for a MOVPRFX instruction, it is CONSTRAINED UNPREDICTABLE whether the PE
steps over the pair of instructions or steps over only the MOVPRFX instruction.

See also:

e 3.1 Exception model
e 5.2.7.5 Move prefix

DDI 0584 Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved. 87
B.a Non-confidential

../SVE_xml/xhtml/brk.html
../SVE_xml/xhtml/hlt.html

Chapter 6. SVE Debug
6.2. External debug

6.2 External debug

Ryraro If the PE is in Debug state, the SVE architectural state can be accessed.
See also:

* External Debug in the ARM® Architecture Reference Manual, ARMvS-A, for ARMVS-A architecture profile

6.2.1 Instructions in Debug state

Rrgsus If the PE is in Debug state, all of the following apply:
* The following SVE instructions have the same behavior as in Non-debug state:

- RDVL.

— CPY (immediate, zeroing) with byte element size and a shift amount of 0.
— PTRUE with ALL constraint and byte element size.

— RDFFR (unpredicated).

— WRFFR.

- EXT.

— INSR (scalar).

— DUP (scalar).

 CMPNE (immediate) with byte element size has the same behavior as in Non-debug state, but also sets
DLR_ELO and DSPSR_ELO to UNKNOWN values.

¢ For SVE instructions not listed in the first two bullets, their behavior is CONSTRAINED UNPREDICTABLE.
The behaviors which can occur are:

The instruction generates an Undefined Instruction exception.

The instruction executes as a NOP.

If the instruction modifies PSTATE, it sets DLR_ELO and DSPSR_ELO to UNKNOWN values.

If the instruction reads PSTATE condition flags, it uses an UNKNOWN value for the condition flag.
The instruction has the same behavior as in Non-debug state.

DDI 0584 Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved. 88
B.a Non-confidential

../SVE_xml/xhtml/rdvl_r_i.html
../SVE_xml/xhtml/cpy_z_o_i.html
../SVE_xml/xhtml/ptrue_p_s.html
../SVE_xml/xhtml/rdffr_p_f.html
../SVE_xml/xhtml/wrffr_f_p.html
../SVE_xml/xhtml/ext_z_zi.html
../SVE_xml/xhtml/insr_z_r.html
../SVE_xml/xhtml/dup_z_r.html
../SVE_xml/xhtml/cmpeq_p_p_zi.html
../SVE_SysReg/xhtml/AArch64-DLR_EL0.html
../SVE_SysReg/xhtml/AArch64-DSPSR_EL0.html
../SVE_SysReg/xhtml/AArch64-DLR_EL0.html
../SVE_SysReg/xhtml/AArch64-DSPSR_EL0.html

Chapter 7
SVE Performance Monitor Usage

Tro0s The section titled PMU events and event numbers in the Arm® Architecture Reference Manual, Armv8-A, for
Armv8-A architecture profile describes the recommended architectural and microarchitectural PMU events for SVE
implementations.

DDI 0584 Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved. 89

B.a Non-confidential

Chapter 7. SVE Performance Monitor Usage
7.1. Interesting combinations of SVE events

7.1 Interesting combinations of SVE events

7.1.1 Scalar-equivalent operations

Irpues The number of speculatively executed operations performed on individual scalar values, assuming that all SVE
vector elements are active, can be determined from a pair of event counters. For example, the total number of
individual floating-point operations performed can be computed as follows:

FP_SCALE_OPS_SPEC x VL + 128 + FP_FIXED_OPS_SPEC

A summary of these event pairs is given below. Combined multiply-add and multiply-subtract instructions are

counted as two operations per element.
Operation type Scalable operations Fixed width operations
Floating-point operations (any precision) FP_SCALE_OPS_SPEC FP_FIXED_OPS_SPEC
Half-precision floating-point operations FP_HP_SCALE_OPS_SPEC FP_HP_FIXED_OPS_SPEC
Single-precision floating-point operations FP_SP_SCALE_OPS_SPEC FP_SP_FIXED_OPS_SPEC
Double-precision floating-point operation FP_DP_SCALE_OPS_SPEC FP_DP_FIXED_OPS_SPEC
Integer operations (any size) INT_SCALE_OPS_SPEC INT_FIXED_OPS_SPEC
Load/store accesses (any size) LDST_SCALE_OPS_SPEC LDST_FIXED_OPS_SPEC
Load accesses (any size) LD_SCALE_OPS_SPEC LD_FIXED_OPS_SPEC
Store accesses (any size) ST _SCALE_OPS_SPEC ST _FIXED_OPS_SPEC

7.1.2 Bytes loaded and stored

Invorn The number of bytes speculatively loaded from memory or stored to memory, assuming that all SVE vector
elements are active, can be determined from a pair of event counters. For example, the total number of bytes
loaded from memory can be computed as follows:

LD_SCALE_BYTES_SPEC x VL + 128 + LD_FIXED_BYTES_SPEC

A summary of the total byte count pairs is as follows:
Operation type Scalable operations Fixed width operations
Load/store byte count LDST_SCALE_BYTES_SPEC LDST_FIXED_BYTES_SPEC
Load byte count LD_SCALE_BYTES_SPEC LD_FIXED_BYTES_SPEC
Store byte count ST_SCALE_BYTES_SPEC ST_FIXED_BYTES_SPEC

7.1.3 Overall vector utilization

T[l, TZM

DDI 0584

B.a

Vector utilization rates for SVE events which ignore the number of Active elements can be estimated by adjusting
them using the following ratios:

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved. 90
Non-confidential

Chapter 7. SVE Performance Monitor Usage

7.1.

Interesting combinations of SVE events

Utilization rate

Ratio

All predicates active
Partial predicates active

No predicates active

SVE_PRED_FULL_SPEC + SVE_PRED_SPEC
SVE_PRED_PARTIAL_SPEC =+ SVE_PRED_SPEC
SVE_PRED_EMPTY_SPEC + SVE_PRED_SPEC

7.1.4 Vector loop efficiency

Tuxyos The effectiveness with which sequential or scalar source loops are vectorized can be estimated using ratios of the
SVE_PLOOP_*_SPEC predicated loop events, as shown in the following table:
Vector loop metric Ratio
Source level iterations per loop SVE_PLOOP_ELTS_SPEC + SVE_PLOOP_TERM_SPEC
Vectorized iterations per loop SVE_PLOOP_TEST_SPEC + SVE_PLOOP_TERM_SPEC
Parallelism per vector loop SVE_PLOOP_ELTS_SPEC + SVE_PLOOP_TEST_SPEC
DDI 0584 Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved. 91

B.a

Non-confidential

Chapter 8
SVE instruction categories

Tupry The lists in this chapter include only SVE instructions, they do not include SVE?2 instructions.

DDI 0584 Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
B.a Non-confidential

92

Chapter 8. SVE instruction categories
8.1. Data movement instructions

8.1 Data movement instructions

8.1.1 Data movement (scalar)

Tcoern All of the following are data movement (scalar) instructions:

¢ FCSEL.

FMOV (scalar, immediate).
FMOV (general).

* FMOV (register).

8.1.2 Data movement (Advanced SIMD)

Tamx All of the following are data movement (Advanced SIMD) instructions:

e DUP (element).
* DUP (general).
* EXT.

¢ FMOV (vector, immediate).
¢ INS (element).
* INS (general).
« SMOV.

« TBL.

 TBX.

e TRNI.

e TRN2.

« UMOV.

e UZPI.

o UZP2.

¢ XTN, XTN2.

e 7ZIP1.

e ZIP2.

8.1.3 Data movement (SVE)

Topuzs All of the following are data movement (SVE) instructions:

e CLASTA (scalar).

¢ CLASTA (SIMD&FP scalar).
* CLASTA (vectors).

¢ CLASTB (scalar).

¢ CLASTB (SIMD&FP scalar).
e CLASTB (vectors).

« COMPACT.

¢ CPY (scalar).

¢ CPY (immediate).

e DUP (scalar).

¢ DUP (immediate).

* EXT.

¢ FCPY.

 FDUP.

¢ INDEX (immediate, scalar).
¢ INDEX (immediates).

DDI 0584 Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
B.a Non-confidential

93

../SVE_xml/xhtml/fcsel_float.html
../SVE_xml/xhtml/fmov_float_imm.html
../SVE_xml/xhtml/fmov_float_gen.html
../SVE_xml/xhtml/fmov_float.html
../SVE_xml/xhtml/dup_advsimd_elt.html
../SVE_xml/xhtml/dup_advsimd_gen.html
../SVE_xml/xhtml/ext_advsimd.html
../SVE_xml/xhtml/fmov_advsimd.html
../SVE_xml/xhtml/ins_advsimd_elt.html
../SVE_xml/xhtml/ins_advsimd_gen.html
../SVE_xml/xhtml/smov_advsimd.html
../SVE_xml/xhtml/tbl_advsimd.html
../SVE_xml/xhtml/tbx_advsimd.html
../SVE_xml/xhtml/trn1_advsimd.html
../SVE_xml/xhtml/trn2_advsimd.html
../SVE_xml/xhtml/umov_advsimd.html
../SVE_xml/xhtml/uzp1_advsimd.html
../SVE_xml/xhtml/uzp2_advsimd.html
../SVE_xml/xhtml/xtn_advsimd.html
../SVE_xml/xhtml/zip1_advsimd.html
../SVE_xml/xhtml/zip1_advsimd.html
../SVE_xml/xhtml/clasta_r_p_z.html
../SVE_xml/xhtml/clasta_v_p_z.html
../SVE_xml/xhtml/clasta_z_p_zz.html
../SVE_xml/xhtml/clastb_r_p_z.html
../SVE_xml/xhtml/clastb_v_p_z.html
../SVE_xml/xhtml/clastb_z_p_zz.html
../SVE_xml/xhtml/compact_z_p_z.html
../SVE_xml/xhtml/cpy_z_p_r.html
../SVE_xml/xhtml/cpy_z_p_i.html
../SVE_xml/xhtml/dup_z_r.html
../SVE_xml/xhtml/dup_z_i.html
../SVE_xml/xhtml/ext_z_zi.html
../SVE_xml/xhtml/fcpy_z_p_i.html
../SVE_xml/xhtml/fdup_z_i.html
../SVE_xml/xhtml/index_z_ir.html
../SVE_xml/xhtml/index_z_ii.html

Chapter 8. SVE instruction categories
8.1. Data movement instructions

DDI 0584
B.a

INDEX (scalar, immediate).

INDEX (scalars).

INSR (scalar).

INSR (SIMD&FP scalar).
LASTA (scalar).

LASTA (SIMD&FP scalar).

LASTB (scalar).

LASTB (SIMD&FP scalar).

MOVPRFX (predicated).

MOVPRFX (unpredicated).

REV (vector).

SEL (vectors).

SPLICE.

SUNPKHI, SUNPKLO.
TBL.

TRN1, TRN2 (vectors)
UUNPKHI, UUNPKLO.
UZP1, UZP2 (vectors).
ZIP1, ZIP2 (vectors).

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.

Non-confidential

94

../SVE_xml/xhtml/index_z_ri.html
../SVE_xml/xhtml/index_z_rr.html
../SVE_xml/xhtml/insr_z_r.html
../SVE_xml/xhtml/insr_z_v.html
../SVE_xml/xhtml/lasta_r_p_z.html
../SVE_xml/xhtml/lasta_v_p_z.html
../SVE_xml/xhtml/lastb_r_p_z.html
../SVE_xml/xhtml/lastb_v_p_z.html
../SVE_xml/xhtml/movprfx_z_p_z.html
../SVE_xml/xhtml/movprfx_z_z.html
../SVE_xml/xhtml/rev_z_z.html
../SVE_xml/xhtml/sel_z_p_zz.html
../SVE_xml/xhtml/splice_z_p_zz.html
../SVE_xml/xhtml/sunpkhi_z_z.html
../SVE_xml/xhtml/tbl_z_zz.html
../SVE_xml/xhtml/trn1_z_zz.html
../SVE_xml/xhtml/uunpkhi_z_z.html
../SVE_xml/xhtml/uzp1_z_zz.html
../SVE_xml/xhtml/zip1_z_zz.html

Chapter 8. SVE instruction categories
8.2. Integer instructions

8.2 Integer instructions

8.2.1

DDI 0584
B.a

Integer (scalar)

8.2.1.1 Integer uniform arithmetic (scalar)

All of the following are integer uniform arithmetic (scalar) instructions:

ADC.

ADCS.

ADD (extended register).
ADD (immediate).
ADD (shifted register).
ADDS (extended register).
ADDS (immediate).
ADDS (shifted register).
CCMN (immediate).
CCMN (register).
CCMP (immediate).
CCMP (register).
CSINC.

CSINV.

CSNEG.

MADD.

MSUB.

SBC.

SBCS.

SDIV.

UDIV.

SMULH.

UMULH.

SUB (extended register).
SUB (immediate).

SUB (shifted register).
SUBS (extended register).
SUBS (immediate).
SUBS (shifted register).
ADR.

ADRP.

8.2.1.2 Integer widening arithmetic

All of the following are integer widening arithmetic instructions:

SMADDL.
SMSUBL.

UMADDL.
UMSUBL.

8.2.1.3 Integer bitwise operations (scalar)

All of the following are integer bitwise operations (scalar) instructions:

AND (immediate)

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.

Non-confidential

95

../SVE_xml/xhtml/adc.html
../SVE_xml/xhtml/adcs.html
../SVE_xml/xhtml/add_addsub_ext.html
../SVE_xml/xhtml/add_addsub_imm.html
../SVE_xml/xhtml/add_addsub_shift.html
../SVE_xml/xhtml/adds_addsub_ext.html
../SVE_xml/xhtml/adds_addsub_imm.html
../SVE_xml/xhtml/adds_addsub_shift.html
../SVE_xml/xhtml/ccmn_imm.html
../SVE_xml/xhtml/ccmn_reg.html
../SVE_xml/xhtml/ccmp_imm.html
../SVE_xml/xhtml/ccmp_reg.html
../SVE_xml/xhtml/csinc.html
../SVE_xml/xhtml/csinv.html
../SVE_xml/xhtml/csneg.html
../SVE_xml/xhtml/madd.html
../SVE_xml/xhtml/msub.html
../SVE_xml/xhtml/sbc.html
../SVE_xml/xhtml/sbcs.html
../SVE_xml/xhtml/sdiv.html
../SVE_xml/xhtml/udiv.html
../SVE_xml/xhtml/smulh.html
../SVE_xml/xhtml/umulh.html
../SVE_xml/xhtml/sub_addsub_ext.html
../SVE_xml/xhtml/sub_addsub_imm.html
../SVE_xml/xhtml/sub_addsub_shift.html
../SVE_xml/xhtml/subs_addsub_ext.html
../SVE_xml/xhtml/subs_addsub_imm.html
../SVE_xml/xhtml/subs_addsub_shift.html
../SVE_xml/xhtml/adr.html
../SVE_xml/xhtml/adrp.html
../SVE_xml/xhtml/smaddl.html
../SVE_xml/xhtml/smsubl.html
../SVE_xml/xhtml/umaddl.html
../SVE_xml/xhtml/umsubl.html
../SVE_xml/xhtml/and_log_imm.html

Chapter 8. SVE instruction categories
8.2. Integer instructions

8.2.2

ToBHGF

DDI 0584
B.a

e AND (shifted register)
¢ ANDS (immediate)

¢ ANDS (shifted register)
* BIC (shifted register).
* BICS (shifted register).
¢ EOR (immediate).

* EOR (shifted register).
* EON (shifted register).
¢ ORR (immediate).

* ORR (shifted register).
* ORN (shifted register).
¢ ASRV.

e LSLV.

¢ LSRV.

* RORV.

« BFM.

* SBFM.

« UBFM.

« CLS.

* CLZ.

¢ EXTR.

¢ RBIT.

* REV.

*« REVI16.

« REV32.

Integer (Advanced SIMD)

8.2.2.1 Integer uniform arithmetic (Advanced SIMD)

All of the following are integer uniform arithmetic (Advanced SIMD) instructions:

* ABS.

¢ NEG (vector).

¢ ADD (vector).

e SUB (vector).

* MLA (by element).
* MLA (vector).

e MLS (by element).
e MLS (vector).

* MUL (by element).
* MUL (vector).

« PMUL.

* SABA.

« UABA.

e SABD.

« UABD.

e SDOT (by element).
e SDOT (vector).

e UDQT (by element).
e UDOT (vector).

¢« SHADD.

« SHSUB.

« SRHADD.

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved. 96
Non-confidential

../SVE_xml/xhtml/and_log_shift.html
../SVE_xml/xhtml/ands_log_imm.html
../SVE_xml/xhtml/ands_log_shift.html
../SVE_xml/xhtml/bic_log_shift.html
../SVE_xml/xhtml/bics.html
../SVE_xml/xhtml/eor_log_imm.html
../SVE_xml/xhtml/eor_log_shift.html
../SVE_xml/xhtml/eon.html
../SVE_xml/xhtml/orr_log_imm.html
../SVE_xml/xhtml/orr_log_shift.html
../SVE_xml/xhtml/orn_log_shift.html
../SVE_xml/xhtml/asrv.html
../SVE_xml/xhtml/lslv.html
../SVE_xml/xhtml/lsrv.html
../SVE_xml/xhtml/rorv.html
../SVE_xml/xhtml/bfm.html
../SVE_xml/xhtml/sbfm.html
../SVE_xml/xhtml/ubfm.html
../SVE_xml/xhtml/cls_int.html
../SVE_xml/xhtml/clz_int.html
../SVE_xml/xhtml/extr.html
../SVE_xml/xhtml/rbit_int.html
../SVE_xml/xhtml/rev.html
../SVE_xml/xhtml/rev16_int.html
../SVE_xml/xhtml/rev32_int.html
../SVE_xml/xhtml/abs_advsimd.html
../SVE_xml/xhtml/neg_advsimd.html
../SVE_xml/xhtml/add_advsimd.html
../SVE_xml/xhtml/sub_advsimd.html
../SVE_xml/xhtml/mla_advsimd_elt.html
../SVE_xml/xhtml/mla_advsimd_vec.html
../SVE_xml/xhtml/mls_advsimd_elt.html
../SVE_xml/xhtml/mls_advsimd_vec.html
../SVE_xml/xhtml/mul_advsimd_elt.html
../SVE_xml/xhtml/mul_advsimd_vec.html
../SVE_xml/xhtml/pmul_advsimd.html
../SVE_xml/xhtml/saba_advsimd.html
../SVE_xml/xhtml/uaba_advsimd.html
../SVE_xml/xhtml/sabd_advsimd.html
../SVE_xml/xhtml/uabd_advsimd.html
../SVE_xml/xhtml/sdot_advsimd_elt.html
../SVE_xml/xhtml/sdot_advsimd_vec.html
../SVE_xml/xhtml/udot_advsimd_elt.html
../SVE_xml/xhtml/udot_advsimd_vec.html
../SVE_xml/xhtml/shadd_advsimd.html
../SVE_xml/xhtml/shsub_advsimd.html
../SVE_xml/xhtml/srhadd_advsimd.html

Chapter 8. SVE instruction categories
8.2. Integer instructions

DDI 0584
B.a

UHADD.

UHSUB.

URHADD.

SMAX.

SMIN.

UMAX.

UMIN.

SQABS.

SQNEG.

SQADD.

SQSUB.

SUQADD.

UQADD.

USQADD.

UQSUB.

SQDMULH (by element).
SQDMULH (vector).
SQRDMULH (by element).
SQRDMULH (vector).
SQRDMLAH (by element).
SQRDMLAH (vector).
SQRDMLSH (by element).
SQRDMLSH (vector).
URECPE.

URSQRTE.

USRA.

8.2.2.2 Integer widening arithmetic (Advanced SIMD)

All of the following are integer widening arithmetic (Advanced SIMD) instructions:

SABAL, SABAL2.

UABAL, UABAL2.

SABDL, SABDL2.

UABDL, UABDL2.

SADDL, SADDL2.

UADDL, UADDL2.

SADDW, SADDW2.

UADDW, UADDW2.

SMLAL, SMLAL?2 (by element).
SMLAL, SMLAL?2 (vector).
UMLAL, UMLALZ2 (by element).
UMLAL, UMLAL2 (vector).
SMLSL, SMLSL2 (by element).
SMLSL, SMLSL2 (vector).
UMLSL, UMLSL2 (by element).
UMLSL, UMLSL2 (vector).
SMULL, SMULLZ2 (by element).
SMULL, SMULL2 (vector).
UMULL, UMULLZ2 (by element).
UMULL, UMULL2 (vector).
PMULL, PMULL2.

SQDMULL, SQDMULL2 (by element).
SQDMULL, SQDMULL2 (vector).
SQDMLAL, SQDMLAL2 (by element).

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

97

../SVE_xml/xhtml/uhadd_advsimd.html
../SVE_xml/xhtml/uhsub_advsimd.html
../SVE_xml/xhtml/urhadd_advsimd.html
../SVE_xml/xhtml/smax_advsimd.html
../SVE_xml/xhtml/smin_advsimd.html
../SVE_xml/xhtml/umax_advsimd.html
../SVE_xml/xhtml/umin_advsimd.html
../SVE_xml/xhtml/sqabs_advsimd.html
../SVE_xml/xhtml/sqneg_advsimd.html
../SVE_xml/xhtml/sqadd_advsimd.html
../SVE_xml/xhtml/sqsub_advsimd.html
../SVE_xml/xhtml/suqadd_advsimd.html
../SVE_xml/xhtml/uqadd_advsimd.html
../SVE_xml/xhtml/usqadd_advsimd.html
../SVE_xml/xhtml/uqsub_advsimd.html
../SVE_xml/xhtml/sqdmulh_advsimd_elt.html
../SVE_xml/xhtml/sqdmulh_advsimd_vec.html
../SVE_xml/xhtml/sqrdmulh_advsimd_elt.html
../SVE_xml/xhtml/sqrdmulh_advsimd_vec.html
../SVE_xml/xhtml/sqrdmlah_advsimd_elt.html
../SVE_xml/xhtml/sqrdmlah_advsimd_vec.html
../SVE_xml/xhtml/sqrdmlsh_advsimd_elt.html
../SVE_xml/xhtml/sqrdmlsh_advsimd_vec.html
../SVE_xml/xhtml/urecpe_advsimd.html
../SVE_xml/xhtml/ursqrte_advsimd.html
../SVE_xml/xhtml/usra_advsimd.html
../SVE_xml/xhtml/sabal_advsimd.html
../SVE_xml/xhtml/uabal_advsimd.html
../SVE_xml/xhtml/sabdl_advsimd.html
../SVE_xml/xhtml/uabdl_advsimd.html
../SVE_xml/xhtml/saddl_advsimd.html
../SVE_xml/xhtml/uaddl_advsimd.html
../SVE_xml/xhtml/saddw_advsimd.html
../SVE_xml/xhtml/uaddw_advsimd.html
../SVE_xml/xhtml/smlal_advsimd_elt.html
../SVE_xml/xhtml/smlal_advsimd_vec.html
../SVE_xml/xhtml/umlal_advsimd_elt.html
../SVE_xml/xhtml/umlal_advsimd_vec.html
../SVE_xml/xhtml/smlsl_advsimd_elt.html
../SVE_xml/xhtml/smlsl_advsimd_vec.html
../SVE_xml/xhtml/umlsl_advsimd_elt.html
../SVE_xml/xhtml/umlsl_advsimd_vec.html
../SVE_xml/xhtml/smull_advsimd_elt.html
../SVE_xml/xhtml/smull_advsimd_vec.html
../SVE_xml/xhtml/umull_advsimd_elt.html
../SVE_xml/xhtml/umull_advsimd_vec.html
../SVE_xml/xhtml/pmull_advsimd.html
../SVE_xml/xhtml/sqdmull_advsimd_elt.html
../SVE_xml/xhtml/sqdmull_advsimd_vec.html
../SVE_xml/xhtml/sqdmlal_advsimd_elt.html

Chapter 8. SVE instruction categories
8.2. Integer instructions

I YEFSMM

I\ CGLC

DDI 0584
B.a

SQDMLAL, SQDMLALZ2 (vector).
SQDMLSL, SQDMLSL2 (by element).
SQDMLSL, SQDMLSL2 (vector).
SHLL, SHLL2.

SSHLL, SSHLL2.

USHLL, USHLL2.

SSUBL, SSUBL2.

USUBL, USUBL2.

SSUBW, SSUBW?2.

USUBW, USUBW?2.

UXTL, UXTL2.

8.2.2.3 Integer narrowing arithmetic (Advanced SIMD)

All of the following are integer narrowing arithmetic (Advanced SIMD) instructions:

ADDHN, ADDHN?.
RADDHN, RADDHN2.
SUBHN, SUBHN2.
RSUBHN, RSUBHN2.
SHRN, SHRN2.

RSHRN, RSHRN2.
SQSHRN, SQSHRN2.
SQSHRUN, SQSHRUN2.
UQRSHRN, UQRSHRN?.
UQSHRN, UQSHRN2.
SQXTN, SQXTN?2.
SQXTUN, SQXTUN2.
UQXTN, UQXTN2.

8.2.2.4 Integer bitwise operations (Advanced SIMD)

All of the following are integer bitwise operations (Advanced SIMD) instructions:

AND (vector).

BIC (vector, immediate).
BIC (vector, register).
EOR (vector).

ORN (vector).

ORR (vector, immediate).
ORR (vector, register).
BIF.

BIT.

BSL.

CLS (vector).

CLZ (vector).

CNT.

MOVL

MVNI.

NOT.

RBIT (vector).
REV16 (vector).
REV32 (vector).
REV64.

SHL.

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

98

../SVE_xml/xhtml/sqdmlal_advsimd_vec.html
../SVE_xml/xhtml/sqdmlsl_advsimd_elt.html
../SVE_xml/xhtml/sqdmlsl_advsimd_vec.html
../SVE_xml/xhtml/shll_advsimd.html
../SVE_xml/xhtml/sshll_advsimd.html
../SVE_xml/xhtml/ushll_advsimd.html
../SVE_xml/xhtml/ssubl_advsimd.html
../SVE_xml/xhtml/usubl_advsimd.html
../SVE_xml/xhtml/ssubw_advsimd.html
../SVE_xml/xhtml/usubw_advsimd.html
../SVE_xml/xhtml/uxtl_ushll_advsimd.html
../SVE_xml/xhtml/addhn_advsimd.html
../SVE_xml/xhtml/raddhn_advsimd.html
../SVE_xml/xhtml/subhn_advsimd.html
../SVE_xml/xhtml/rsubhn_advsimd.html
../SVE_xml/xhtml/shrn_advsimd.html
../SVE_xml/xhtml/rshrn_advsimd.html
../SVE_xml/xhtml/sqshrn_advsimd.html
../SVE_xml/xhtml/sqshrun_advsimd.html
../SVE_xml/xhtml/uqrshrn_advsimd.html
../SVE_xml/xhtml/uqshrn_advsimd.html
../SVE_xml/xhtml/sqxtn_advsimd.html
../SVE_xml/xhtml/sqxtun_advsimd.html
../SVE_xml/xhtml/uqxtn_advsimd.html
../SVE_xml/xhtml/and_advsimd.html
../SVE_xml/xhtml/bic_advsimd_imm.html
../SVE_xml/xhtml/bic_advsimd_reg.html
../SVE_xml/xhtml/eor_advsimd.html
../SVE_xml/xhtml/orn_advsimd.html
../SVE_xml/xhtml/orr_advsimd_imm.html
../SVE_xml/xhtml/orr_advsimd_reg.html
../SVE_xml/xhtml/bif_advsimd.html
../SVE_xml/xhtml/bit_advsimd.html
../SVE_xml/xhtml/bsl_advsimd.html
../SVE_xml/xhtml/cls_advsimd.html
../SVE_xml/xhtml/clz_advsimd.html
../SVE_xml/xhtml/cnt_advsimd.html
../SVE_xml/xhtml/movi_advsimd.html
../SVE_xml/xhtml/mvni_advsimd.html
../SVE_xml/xhtml/not_advsimd.html
../SVE_xml/xhtml/rbit_advsimd.html
../SVE_xml/xhtml/rev16_advsimd.html
../SVE_xml/xhtml/rev32_advsimd.html
../SVE_xml/xhtml/rev64_advsimd.html
../SVE_xml/xhtml/shl_advsimd.html

Chapter 8. SVE instruction categories
8.2. Integer instructions

I‘\‘ YLX

Isn QKR

DDI 0584
B.a

« SRSHL.
« URSHL.
« SRSHR.
« URSHR.
* SRSRA.
* SSRA.

« URSRA.
« SLIL

« SRL

« SQRSHL.
« SQSHL (r
« SQSHLU.

egister).

e« UQRSHL.
¢ UQSHL (immediate).
* UQSHL (register).

» SSHL.
« USHL.
e SSHR.
* USHR.

8.2.2.5 Integer comparisons (Advanced SIMD)

All of the following are integer comparisons (Advanced SIMD) instructions:

* CMEQ (register).
* CMEQ (zero).
* CMGE (register).
* CMGE (zero).
* CMQT (register).
¢ CMGT (zero).
e CMHI (register).
e CMHS (register).
* CMLE (zero).

« CMLT (ze
« CMTST.

10).

8.2.2.6 Integer reductions (Advanced SIMD)

All of the following are integer reductions (Advanced SIMD) instructions:

e ADDRP (sc

alar).

e ADDP (vector).
* ADDV (vector).

* SADALP.
* UADALP.
* SADDLP.
* SADDLV.

 UADDLP.
« UADDLV.

* SMAXP.
* SMAXV.
» UMAXP.
« UMAXV.
e SMINP.
* SMINV.

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

99

../SVE_xml/xhtml/srshl_advsimd.html
../SVE_xml/xhtml/urshl_advsimd.html
../SVE_xml/xhtml/srshr_advsimd.html
../SVE_xml/xhtml/urshr_advsimd.html
../SVE_xml/xhtml/srsra_advsimd.html
../SVE_xml/xhtml/ssra_advsimd.html
../SVE_xml/xhtml/ursra_advsimd.html
../SVE_xml/xhtml/sli_advsimd.html
../SVE_xml/xhtml/sri_advsimd.html
../SVE_xml/xhtml/sqrshl_advsimd.html
../SVE_xml/xhtml/sqshl_advsimd_reg.html
../SVE_xml/xhtml/sqshlu_advsimd.html
../SVE_xml/xhtml/uqrshl_advsimd.html
../SVE_xml/xhtml/uqshl_advsimd_imm.html
../SVE_xml/xhtml/uqshl_advsimd_reg.html
../SVE_xml/xhtml/sshl_advsimd.html
../SVE_xml/xhtml/ushl_advsimd.html
../SVE_xml/xhtml/sshr_advsimd.html
../SVE_xml/xhtml/ushr_advsimd.html
../SVE_xml/xhtml/cmeq_advsimd_reg.html
../SVE_xml/xhtml/cmeq_advsimd_zero.html
../SVE_xml/xhtml/cmge_advsimd_reg.html
../SVE_xml/xhtml/cmge_advsimd_zero.html
../SVE_xml/xhtml/cmgt_advsimd_reg.html
../SVE_xml/xhtml/cmgt_advsimd_zero.html
../SVE_xml/xhtml/cmhi_advsimd.html
../SVE_xml/xhtml/cmhs_advsimd.html
../SVE_xml/xhtml/cmle_advsimd.html
../SVE_xml/xhtml/cmlt_advsimd.html
../SVE_xml/xhtml/cmtst_advsimd.html
../SVE_xml/xhtml/addp_advsimd_pair.html
../SVE_xml/xhtml/addp_advsimd_vec.html
../SVE_xml/xhtml/addv_advsimd.html
../SVE_xml/xhtml/sadalp_advsimd.html
../SVE_xml/xhtml/uadalp_advsimd.html
../SVE_xml/xhtml/saddlp_advsimd.html
../SVE_xml/xhtml/saddlv_advsimd.html
../SVE_xml/xhtml/uaddlp_advsimd.html
../SVE_xml/xhtml/uaddlv_advsimd.html
../SVE_xml/xhtml/smaxp_advsimd.html
../SVE_xml/xhtml/smaxv_advsimd.html
../SVE_xml/xhtml/umaxp_advsimd.html
../SVE_xml/xhtml/umaxv_advsimd.html
../SVE_xml/xhtml/sminp_advsimd.html
../SVE_xml/xhtml/sminv_advsimd.html

Chapter 8. SVE instruction categories
8.2. Integer instructions

* UMINP.
« UMINV.

8.2.3 Integer (SVE)
8.2.3.1 Integer uniform arithmetic (SVE)

T cuviig All of the following are integer uniform arithmetic (SVE) instructions:

« ABS.

* NEG.

¢ ADD (immediate).

e ADD (vectors, predicated).
* ADD (vectors, unpredicated).
* SUB (immediate).

* SUB (vectors, predicated).
* SUB (vectors, unpredicated).
¢ SUBR (immediate).

e SUBR (vectors).

e ADR.

¢ CNOT.

« MAD.

« MSB.

¢ MLA (indexed).

* MLA (vectors).

e MLS (indexed).

e MLS (vectors).

e MUL (immediate).

e MUL (indexed).

e MUL (vectors, predicated).
* MUL (vectors, unpredicated).
* SABD.

« UABD.

e SDIV.

e SDIVR.

e UDIV.

¢ UDIVR.

¢ SDOT (indexed).

¢ SDOT (vectors).

e UDOT (indexed).

e UDOT (vectors).

* SMAX (immediate).

* SMAX (vectors).

¢ SMIN (immediate).

e SMIN (vectors).

¢ UMAX (immediate).

* UMAX (vectors).

e UMIN (immediate).

e UMIN (vectors).

* SMULH (predicated).

e SMULH (unpredicated).

* UMULH (predicated).

* UMULH (unpredicated).

¢ SQADD (immediate).

DDI 0584 Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved. 100
B.a Non-confidential

../SVE_xml/xhtml/uminp_advsimd.html
../SVE_xml/xhtml/uminv_advsimd.html
../SVE_xml/xhtml/abs_z_p_z.html
../SVE_xml/xhtml/neg_z_p_z.html
../SVE_xml/xhtml/add_z_zi.html
../SVE_xml/xhtml/add_z_p_zz.html
../SVE_xml/xhtml/add_z_zz.html
../SVE_xml/xhtml/sub_z_zi.html
../SVE_xml/xhtml/sub_z_p_zz.html
../SVE_xml/xhtml/sub_z_zz.html
../SVE_xml/xhtml/subr_z_zi.html
../SVE_xml/xhtml/subr_z_p_zz.html
../SVE_xml/xhtml/adr_z_az.html
../SVE_xml/xhtml/cnot_z_p_z.html
../SVE_xml/xhtml/mad_z_p_zzz.html
../SVE_xml/xhtml/msb_z_p_zzz.html
../SVE_xml/xhtml/mla_z_zzzi.html
../SVE_xml/xhtml/mla_z_p_zzz.html
../SVE_xml/xhtml/mls_z_zzzi.html
../SVE_xml/xhtml/mls_z_p_zzz.html
../SVE_xml/xhtml/mul_z_zi.html
../SVE_xml/xhtml/mul_z_zzi.html
../SVE_xml/xhtml/mul_z_p_zz.html
../SVE_xml/xhtml/mul_z_zz.html
../SVE_xml/xhtml/sabd_z_p_zz.html
../SVE_xml/xhtml/uabd_z_p_zz.html
../SVE_xml/xhtml/sdiv_z_p_zz.html
../SVE_xml/xhtml/sdivr_z_p_zz.html
../SVE_xml/xhtml/udiv_z_p_zz.html
../SVE_xml/xhtml/udivr_z_p_zz.html
../SVE_xml/xhtml/sdot_z_zzzi.html
../SVE_xml/xhtml/sdot_z_zzz.html
../SVE_xml/xhtml/udot_z_zzzi.html
../SVE_xml/xhtml/udot_z_zzz.html
../SVE_xml/xhtml/smax_z_zi.html
../SVE_xml/xhtml/smax_z_p_zz.html
../SVE_xml/xhtml/smin_z_zi.html
../SVE_xml/xhtml/smin_z_p_zz.html
../SVE_xml/xhtml/umax_z_zi.html
../SVE_xml/xhtml/umax_z_p_zz.html
../SVE_xml/xhtml/umin_z_zi.html
../SVE_xml/xhtml/umin_z_p_zz.html
../SVE_xml/xhtml/smulh_z_p_zz.html
../SVE_xml/xhtml/smulh_z_zz.html
../SVE_xml/xhtml/umulh_z_p_zz.html
../SVE_xml/xhtml/umulh_z_zz.html
../SVE_xml/xhtml/sqadd_z_zi.html

Chapter 8. SVE instruction categories
8.2. Integer instructions

* SQADD (vectors, predicated).

* SQADD (vectors, unpredicated).
¢ SQSUB (immediate).

* SQSUB (vectors, predicated).

* SQSUB (vectors, unpredicated).
* UQADD (immediate).

* UQADD (vectors, predicated).

* UQADD (vectors, unpredicated).
¢ UQSUB (immediate).

* UQSUB (vectors, predicated).

* UQSUB (vectors, unpredicated).
¢ SXTB, SXTH, SXTW.
 UXTB, UXTH, UXTW.

8.2.3.2 Integer bitwise operations (SVE)

Tonies All of the following are integer bitwise operations (SVE) instructions:

¢ AND (vectors, predicated).

e AND (vectors, unpredicated).

* BIC (vectors, predicated).

* BIC (vectors, unpredicated).

* EON.

* EOR (vectors, predicated).

* EOR (vectors, unpredicated).

¢ ORN.

* ORR (vectors, predicated).

* ORR (vectors, unpredicated).

* ASR (immediate, predicated).

¢ ASR (immediate, unpredicated).
¢ ASR (vectors).

* ASR (wide elements, predicated).
* ASR (wide elements, unpredicated).
¢ ASRR.

e ASRD.

e CLS.

e CLZ.

¢ CNT.

« DUPM.

e LSL (immediate, predicated).

e LSL (immediate, unpredicated).

e LSL (vectors).

e LSL (wide elements, predicated).
* LSL (wide elements, unpredicated).
e LSLR.

¢ LSR (immediate, predicated).

* LSR (immediate, unpredicated).

* LSR (vectors).

e LSR (wide elements, predicated).
e LSR (wide elements, unpredicated).
¢ LSRR.

e NOT (vector).

« RBIT.

¢ REVB, REVH, REVW.

DDI 0584 Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.

B.a Non-confidential

101

../SVE_xml/xhtml/sqadd_z_p_zz.html
../SVE_xml/xhtml/sqadd_z_zz.html
../SVE_xml/xhtml/sqsub_z_zi.html
../SVE_xml/xhtml/sqsub_z_p_zz.html
../SVE_xml/xhtml/sqsub_z_zz.html
../SVE_xml/xhtml/uqadd_z_zi.html
../SVE_xml/xhtml/uqadd_z_p_zz.html
../SVE_xml/xhtml/uqadd_z_zz.html
../SVE_xml/xhtml/uqsub_z_zi.html
../SVE_xml/xhtml/uqsub_z_p_zz.html
../SVE_xml/xhtml/uqsub_z_zz.html
../SVE_xml/xhtml/sxtb_z_p_z.html
../SVE_xml/xhtml/uxtb_z_p_z.html
../SVE_xml/xhtml/and_z_p_zz.html
../SVE_xml/xhtml/and_z_zz.html
../SVE_xml/xhtml/bic_z_p_zz.html
../SVE_xml/xhtml/bic_z_zz.html
../SVE_xml/xhtml/eon_eor_z_zi.html
../SVE_xml/xhtml/eor_z_p_zz.html
../SVE_xml/xhtml/eor_z_zz.html
../SVE_xml/xhtml/orn_orr_z_zi.html
../SVE_xml/xhtml/orr_z_p_zz.html
../SVE_xml/xhtml/orr_z_zz.html
../SVE_xml/xhtml/asr_z_p_zi.html
../SVE_xml/xhtml/asr_z_zi.html
../SVE_xml/xhtml/asr_z_p_zz.html
../SVE_xml/xhtml/asr_z_p_zw.html
../SVE_xml/xhtml/asr_z_zw.html
../SVE_xml/xhtml/asrr_z_p_zz.html
../SVE_xml/xhtml/asrd_z_p_zi.html
../SVE_xml/xhtml/cls_z_p_z.html
../SVE_xml/xhtml/clz_z_p_z.html
../SVE_xml/xhtml/cnt_z_p_z.html
../SVE_xml/xhtml/dupm_z_i.html
../SVE_xml/xhtml/lsl_z_p_zi.html
../SVE_xml/xhtml/lsl_z_zi.html
../SVE_xml/xhtml/lsl_z_p_zz.html
../SVE_xml/xhtml/lsl_z_p_zw.html
../SVE_xml/xhtml/lsl_z_zw.html
../SVE_xml/xhtml/lslr_z_p_zz.html
../SVE_xml/xhtml/lsr_z_p_zi.html
../SVE_xml/xhtml/lsr_z_zi.html
../SVE_xml/xhtml/lsr_z_p_zz.html
../SVE_xml/xhtml/lsr_z_p_zw.html
../SVE_xml/xhtml/lsr_z_zw.html
../SVE_xml/xhtml/lsrr_z_p_zz.html
../SVE_xml/xhtml/not_z_p_z.html
../SVE_xml/xhtml/rbit_z_p_z.html
../SVE_xml/xhtml/revb_z_z.html

Chapter 8. SVE instruction categories
8.2. Integer instructions

8.2.3.3 Integer comparisons (SVE)

Tyvsce All of the following are integer comparisons (SVE) instructions:

¢ CMP<cc> (immediate).
¢ CMP-<cc> (vectors).
e CMP<cc> (wide elements).

8.2.3.4 Integer reductions (SVE)

Iturer All of the following are integer reductions (SVE) instructions:

« ANDV.

* EORV.

* ORV.

* SADDV.
 UADDV.
* SMAXV.
« UMAXV.
* SMINV.
« UMINV.

8.2.3.5 Element count and increment vector (SVE)

Tvewza All of the following are element count and increment vector (SVE) instructions:

* DECD, DECH, DECW (vector).
¢ INCD, INCH, INCW (vector).
¢ SQDECH (vector).

¢ SQDECW (vector).

¢ SQDECD (vector).

e SQINCH (vector).

e SQINCW (vector).

* SQINCD (vector).

¢ UQDECH (vector).

* UQDECW (vector).

* UQDECD (vector).

* UQINCH (vector).

* UQINCW (vector).

¢ UQINCD (vector).

DDI 0584 Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved. 102
B.a Non-confidential

../SVE_xml/xhtml/cmpeq_p_p_zi.html
../SVE_xml/xhtml/cmpeq_p_p_zz.html
../SVE_xml/xhtml/cmpeq_p_p_zw.html
../SVE_xml/xhtml/andv_r_p_z.html
../SVE_xml/xhtml/eorv_r_p_z.html
../SVE_xml/xhtml/orv_r_p_z.html
../SVE_xml/xhtml/saddv_r_p_z.html
../SVE_xml/xhtml/uaddv_r_p_z.html
../SVE_xml/xhtml/smaxv_r_p_z.html
../SVE_xml/xhtml/umaxv_r_p_z.html
../SVE_xml/xhtml/sminv_r_p_z.html
../SVE_xml/xhtml/uminv_r_p_z.html
../SVE_xml/xhtml/decd_z_zs.html
../SVE_xml/xhtml/incd_z_zs.html
../SVE_xml/xhtml/sqdech_z_zs.html
../SVE_xml/xhtml/sqdecw_z_zs.html
../SVE_xml/xhtml/sqdecd_z_zs.html
../SVE_xml/xhtml/sqinch_z_zs.html
../SVE_xml/xhtml/sqincw_z_zs.html
../SVE_xml/xhtml/sqincd_z_zs.html
../SVE_xml/xhtml/uqdech_z_zs.html
../SVE_xml/xhtml/uqdecw_z_zs.html
../SVE_xml/xhtml/uqdecd_z_zs.html
../SVE_xml/xhtml/uqinch_z_zs.html
../SVE_xml/xhtml/uqincw_z_zs.html
../SVE_xml/xhtml/uqincd_z_zs.html

Chapter 8. SVE instruction categories
8.3. Floating-point instructions

8.3 Floating-point instructions

8.3.1 Floating-point (scalar)

Taran

TpmzTo

8.3.1.1 Floating-point arithmetic (scalar)

All of the following are floating-point arithmetic (scalar) instructions:

FADD (scalar).
FSUB (scalar).
FDIV (scalar).
FMADD.
FMSUB.
FNMADD.
FNMSUB.
FMUL (scalar).
FNMUL (scalar).
FSQRT (scalar).

8.3.1.2 Floating-point miscellaneous (scalar)

All of the following are floating-point miscellaneous (scalar) instructions:

FMAX (scalar).
FMAXNM (scalar).
FMIN (scalar).
FMINNM (scalar).
FRINTA (scalar).
FRINTI (scalar).
FRINTM (scalar).
FRINTN (scalar).
FRINTP (scalar).
FRINTX (scalar).
FRINTZ (scalar).

8.3.1.3 Floating-point comparisons (scalar)

All of the following are floating-point comparisons (scalar) instructions:

FCMP.
FCMPE.

8.3.2 Floating-point (Advanced SIMD)

DDI 0584
B.a

8.3.2.1 Floating-point arithmetic (Advanced SIMD)

All of the following are floating-point arithmetic (Advanced SIMD) instructions:

FABD.

FADD (vector).
FSUB (vector).
FCADD.

FCMLA.

FCMLA (by element).

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

103

../SVE_xml/xhtml/fadd_float.html
../SVE_xml/xhtml/fsub_float.html
../SVE_xml/xhtml/fdiv_float.html
../SVE_xml/xhtml/fmadd_float.html
../SVE_xml/xhtml/fmsub_float.html
../SVE_xml/xhtml/fnmadd_float.html
../SVE_xml/xhtml/fnmsub_float.html
../SVE_xml/xhtml/fmul_float.html
../SVE_xml/xhtml/fnmul_float.html
../SVE_xml/xhtml/fsqrt_float.html
../SVE_xml/xhtml/fmax_float.html
../SVE_xml/xhtml/fmaxnm_float.html
../SVE_xml/xhtml/fmin_float.html
../SVE_xml/xhtml/fminnm_float.html
../SVE_xml/xhtml/frinta_float.html
../SVE_xml/xhtml/frinti_float.html
../SVE_xml/xhtml/frintm_float.html
../SVE_xml/xhtml/frintn_float.html
../SVE_xml/xhtml/frintp_float.html
../SVE_xml/xhtml/frintx_float.html
../SVE_xml/xhtml/frintz_float.html
../SVE_xml/xhtml/fcmp_float.html
../SVE_xml/xhtml/fcmpe_float.html
../SVE_xml/xhtml/fabd_advsimd.html
../SVE_xml/xhtml/fadd_advsimd.html
../SVE_xml/xhtml/fsub_advsimd.html
../SVE_xml/xhtml/fcadd_advsimd_vec.html
../SVE_xml/xhtml/fcmla_advsimd_vec.html
../SVE_xml/xhtml/fcmla_advsimd_elt.html

Chapter 8. SVE instruction categories
8.3. Floating-point instructions

DDI 0584
B.a

e FDIV (vector).

* FMLA (by element).
e FMLA (vector).

* FMLS (by element).
e FMLS (vector).
 FMUL (by element).
* FMUL (vector).

« FMULX.

* FMULX (by element).
¢ FRECPS.

¢ FRSQRTS.

e FSQRT (vector).

8.3.2.2 Floating-point miscellaneous (Advanced SIMD)

All of the following are floating-point miscellaneous (Advanced SIMD) instructions:

* FMAX (vector).

* FMAXNM (vector).
e FMIN (vector).

e FMINNM (vector).
* FRECPX.

e FRINTA (vector).
e FRINTI (vector).

* FRINTM (vector).
¢ FRINTN (vector).
¢ FRINTP (vector).
e FRINTX (vector).
e FRINTZ (vector).

8.3.2.3 Floating-point comparisons (Advanced SIMD)

All of the following are floating-point comparisons (Advanced SIMD) instructions:

¢ FACGE.

¢ FACGT.

* FCMEQ (register).
* FCMEQ (zero).

* FCMGE (register).
* FCMGE (zero).

* FCMGT (register).
¢ FCMGT (zero).

¢ FCMLE (zero).

¢ FCMLT (zero).

8.3.2.4 Floating-point reductions (Advanced SIMD)

All of the following are floating-point reductions (Advanced SIMD) instructions:

¢ FADDP (scalar).

e FADDP (vector).

e FMAXNMP (scalar).
* FMAXNMP (vector).
¢ FMAXP (scalar).

« FMAXP (vector).

« FMAXNMYV.

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.

Non-confidential

104

../SVE_xml/xhtml/fdiv_advsimd.html
../SVE_xml/xhtml/fmla_advsimd_elt.html
../SVE_xml/xhtml/fmla_advsimd_vec.html
../SVE_xml/xhtml/fmls_advsimd_elt.html
../SVE_xml/xhtml/fmls_advsimd_vec.html
../SVE_xml/xhtml/fmul_advsimd_elt.html
../SVE_xml/xhtml/fmul_advsimd_vec.html
../SVE_xml/xhtml/fmulx_advsimd_vec.html
../SVE_xml/xhtml/fmulx_advsimd_elt.html
../SVE_xml/xhtml/frecps_advsimd.html
../SVE_xml/xhtml/frsqrts_advsimd.html
../SVE_xml/xhtml/fsqrt_advsimd.html
../SVE_xml/xhtml/fmax_advsimd.html
../SVE_xml/xhtml/fmaxnm_advsimd.html
../SVE_xml/xhtml/fmin_advsimd.html
../SVE_xml/xhtml/fminnm_advsimd.html
../SVE_xml/xhtml/frecpx_advsimd.html
../SVE_xml/xhtml/frinta_advsimd.html
../SVE_xml/xhtml/frinti_advsimd.html
../SVE_xml/xhtml/frintm_advsimd.html
../SVE_xml/xhtml/frintn_advsimd.html
../SVE_xml/xhtml/frintp_advsimd.html
../SVE_xml/xhtml/frintx_advsimd.html
../SVE_xml/xhtml/frintz_advsimd.html
../SVE_xml/xhtml/facge_advsimd.html
../SVE_xml/xhtml/facgt_advsimd.html
../SVE_xml/xhtml/fcmeq_advsimd_reg.html
../SVE_xml/xhtml/fcmeq_advsimd_zero.html
../SVE_xml/xhtml/fcmge_advsimd_reg.html
../SVE_xml/xhtml/fcmge_advsimd_zero.html
../SVE_xml/xhtml/fcmgt_advsimd_reg.html
../SVE_xml/xhtml/fcmgt_advsimd_zero.html
../SVE_xml/xhtml/fcmle_advsimd.html
../SVE_xml/xhtml/fcmlt_advsimd.html
../SVE_xml/xhtml/faddp_advsimd_pair.html
../SVE_xml/xhtml/faddp_advsimd_vec.html
../SVE_xml/xhtml/fmaxnmp_advsimd_pair.html
../SVE_xml/xhtml/fmaxnmp_advsimd_vec.html
../SVE_xml/xhtml/fmaxp_advsimd_pair.html
../SVE_xml/xhtml/fmaxp_advsimd_vec.html
../SVE_xml/xhtml/fmaxnmv_advsimd.html

Chapter 8. SVE instruction categories
8.3. Floating-point instructions

« FMAXV.

¢ FMINNMP (scalar).
* FMINNMP (vector).
¢ FMINP (scalar).

e FMINP (vector).

« FMINNMV.

« FMINV.

8.3.3 Floating-point (SVE)

Tpcesk
Tonxwo
DDI 0584

B.a

* FABD.
¢ FADD (immediate).
* FADD (vectors, predicated).

* FADD (vectors, unpredicated).

¢ FSUB (immediate).

* FSUB (vectors, predicated).
» FSUB (vectors, unpredicated).
¢ FSUBR (immediate).

¢ FSUBR (vectors).

« FCADD.

e FCMLA (indexed).

e FCMLA (vectors).

e FDIV.

e FDIVR.

« FMAD.

¢ FNMAD.

« FNMSB.

« FMSB.

¢« FMLA (indexed).

e FMLA (vectors).

¢ FMLS (indexed).

e FMLS (vectors).

« FNMLA.

 FNMLS.

¢ FMUL (immediate).

¢ FMUL (indexed).

* FMUL (vectors, predicated).

e FMUL (vectors, unpredicated).

« FMULX.
« FRECPS.
« FRSQRTS.
« FSCALE.
« FSQRT.

« FTMAD.
« FTSMUL.

¢ FMAX (immediate).

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.

8.3.3.1 Floating-point arithmetic (SVE)

All of the following are floating-point arithmetic (SVE) instructions:

8.3.3.2 Floating-point miscellaneous (SVE)

All of the following are floating-point miscellaneous (SVE) instructions:

Non-confidential

105

../SVE_xml/xhtml/fmaxv_advsimd.html
../SVE_xml/xhtml/fminnmp_advsimd_pair.html
../SVE_xml/xhtml/fminnmp_advsimd_vec.html
../SVE_xml/xhtml/fminp_advsimd_pair.html
../SVE_xml/xhtml/fminp_advsimd_vec.html
../SVE_xml/xhtml/fminnmv_advsimd.html
../SVE_xml/xhtml/fminv_advsimd.html
../SVE_xml/xhtml/fabd_z_p_zz.html
../SVE_xml/xhtml/fadd_z_p_zs.html
../SVE_xml/xhtml/fadd_z_p_zz.html
../SVE_xml/xhtml/fadd_z_zz.html
../SVE_xml/xhtml/fsub_z_p_zs.html
../SVE_xml/xhtml/fsub_z_p_zz.html
../SVE_xml/xhtml/fsub_z_zz.html
../SVE_xml/xhtml/fsubr_z_p_zs.html
../SVE_xml/xhtml/fsubr_z_p_zz.html
../SVE_xml/xhtml/fcadd_z_p_zz.html
../SVE_xml/xhtml/fcmla_z_zzzi.html
../SVE_xml/xhtml/fcmla_z_p_zzz.html
../SVE_xml/xhtml/fdiv_z_p_zz.html
../SVE_xml/xhtml/fdivr_z_p_zz.html
../SVE_xml/xhtml/fmad_z_p_zzz.html
../SVE_xml/xhtml/fnmad_z_p_zzz.html
../SVE_xml/xhtml/fnmsb_z_p_zzz.html
../SVE_xml/xhtml/fmsb_z_p_zzz.html
../SVE_xml/xhtml/fmla_z_zzzi.html
../SVE_xml/xhtml/fmla_z_p_zzz.html
../SVE_xml/xhtml/fmls_z_zzzi.html
../SVE_xml/xhtml/fmls_z_p_zzz.html
../SVE_xml/xhtml/fnmla_z_p_zzz.html
../SVE_xml/xhtml/fnmls_z_p_zzz.html
../SVE_xml/xhtml/fmul_z_p_zs.html
../SVE_xml/xhtml/fmul_z_zzi.html
../SVE_xml/xhtml/fmul_z_p_zz.html
../SVE_xml/xhtml/fmul_z_zz.html
../SVE_xml/xhtml/fmulx_z_p_zz.html
../SVE_xml/xhtml/frecps_z_zz.html
../SVE_xml/xhtml/frsqrts_z_zz.html
../SVE_xml/xhtml/fscale_z_p_zz.html
../SVE_xml/xhtml/fsqrt_z_p_z.html
../SVE_xml/xhtml/ftmad_z_zzi.html
../SVE_xml/xhtml/ftsmul_z_zz.html
../SVE_xml/xhtml/fmax_z_p_zs.html

Chapter 8. SVE instruction categories
8.3. Floating-point instructions

I RBLOR

DDI 0584
B.a

8.3.3.3 Floating-point comparisons (SVE)

All of the following are floating-point comparisons (SVE) instructions:

FMAX (vectors).

FMAXNM (immediate).

FMAXNM (vectors).
FMIN (immediate).
FMIN (vectors).
FMINNM (immediate).
FMINNM (vectors).
FRECPX.

FRINTA.

FRINTIL.

FRINTM.

FRINTN.

FRINTP.

FRINTX.

FRINTZ.

FACGE.

FACGT.

FACLE.

FACLT.

FCMEQ (vectors).
FCMEQ (zero).
FCMGE (vectors).
FCMGE (zero).
FCMGT (vectors).
FCMGT (zero).
FCMLE (vectors).
FCMLE (zero).
FCMGT (vectors).
FCMGT (zero).
FCMLT (vectors).
FCMLT (zero).
FCMNE (vectors).
FCMNE (zero).
FCMUO (vectors).

8.3.3.4 Floating-point reductions (SVE)

All of the following are floating-point reductions (SVE) instructions:

FADDA.
FADDV.
FMAXNMV.
FMAXV.
FMINNMV.
FMINV.

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.

Non-confidential

106

../SVE_xml/xhtml/fmax_z_p_zz.html
../SVE_xml/xhtml/fmaxnm_z_p_zs.html
../SVE_xml/xhtml/fmaxnm_z_p_zz.html
../SVE_xml/xhtml/fmin_z_p_zs.html
../SVE_xml/xhtml/fmin_z_p_zz.html
../SVE_xml/xhtml/fminnm_z_p_zs.html
../SVE_xml/xhtml/fminnm_z_p_zz.html
../SVE_xml/xhtml/frecpx_z_p_z.html
../SVE_xml/xhtml/frinta_z_p_z.html
../SVE_xml/xhtml/frinti_z_p_z_.html
../SVE_xml/xhtml/frintm_z_p_z.html
../SVE_xml/xhtml/frintn_z_p_z.html
../SVE_xml/xhtml/frintp_z_p_z.html
../SVE_xml/xhtml/frintx_z_p_z.html
../SVE_xml/xhtml/frintz_z_p_z.html
../SVE_xml/xhtml/facge_p_p_zz.html
../SVE_xml/xhtml/facgt_p_p_zz.html
../SVE_xml/xhtml/facle_facge_p_p_zz.html
../SVE_xml/xhtml/faclt_facge_p_p_zz.html
../SVE_xml/xhtml/fcmeq_p_p_zz.html
../SVE_xml/xhtml/fcmeq_p_p_z0.html
../SVE_xml/xhtml/fcmge_p_p_zz.html
../SVE_xml/xhtml/fcmge_p_p_z0.html
../SVE_xml/xhtml/fcmgt_p_p_zz.html
../SVE_xml/xhtml/fcmgt_p_p_z0.html
../SVE_xml/xhtml/fcmle_fcmeq_p_p_zz.html
../SVE_xml/xhtml/fcmle_p_p_z0.html
../SVE_xml/xhtml/fcmgt_p_p_zz.html
../SVE_xml/xhtml/fcmgt_p_p_z0.html
../SVE_xml/xhtml/fcmlt_fcmeq_p_p_zz.html
../SVE_xml/xhtml/fcmlt_p_p_z0.html
../SVE_xml/xhtml/fcmne_p_p_zz.html
../SVE_xml/xhtml/fcmne_p_p_z0.html
../SVE_xml/xhtml/fcmuo_p_p_zz.html
../SVE_xml/xhtml/fadda_v_p_z.html
../SVE_xml/xhtml/faddv_v_p_z.html
../SVE_xml/xhtml/fmaxnmv_v_p_z.html
../SVE_xml/xhtml/fmaxv_v_p_z.html
../SVE_xml/xhtml/fminnmv_v_p_z.html
../SVE_xml/xhtml/fminv_v_p_z.html

Chapter 8. SVE instruction categories
8.4. Floating-point conversions

8.4 Floating-point conversions

8.4.1 Float<Float convert (scalar)

Tyvrrc The following is a Floating-point convert (scalar) instruction:

* FCVT.

8.4.2 Float« Float convert (Advanced SIMD)

IMEPKE All of the following are Floating-point convert (Advanced SIMD) instructions:

 FCVTL, FCVTL2.
* FCVTN, FCVTN2.
* FCVTXN, FCVTXN2.

8.4.3 Float« Float convert (SVE)

Tyickro The following is a Floating-point convert (SVE) instruction:

* FCVT.

8.4.4 Float«Int convert (scalar)

Ipcy All of the following are Floating-point integer convert (scalar) instructions:

¢ FCVTAS (scalar).

e FCVTMS (scalar).

e FCVTNS (scalar).

¢ FCVTPS (scalar).

e FCVTZS (scalar, fixed-point).
e FCVTZS (scalar, integer).

e FCVTAU (scalar).

e FCVTMU (scalar).

¢ FCVTNU (scalar).

e FCVTPU (scalar).

e FCVTZU (scalar, fixed-point).
* FCVTZU (scalar, integer).

¢ FICVTZS.

e SCVTF (scalar, fixed-point).
¢ SCVTF (scalar, integer).

e UCVTF (scalar, fixed-point).
* UCVTF (scalar, integer).

8.4.5 Float«Int convert (Advanced SIMD)

Tscar All of the following are Floating-point integer convert (Advanced SIMD) instructions:

e FCVTAS (vector).
e FCVTMS (vector).
e FCVTNS (vector).
e FCVTPS (vector).

DDI 0584 Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.

B.a Non-confidential

107

../SVE_xml/xhtml/fcvt_float.html
../SVE_xml/xhtml/fcvtl_advsimd.html
../SVE_xml/xhtml/fcvtn_advsimd.html
../SVE_xml/xhtml/fcvtxn_advsimd.html
../SVE_xml/xhtml/fcvt_z_p_z.html
../SVE_xml/xhtml/fcvtas_float.html
../SVE_xml/xhtml/fcvtms_float.html
../SVE_xml/xhtml/fcvtns_float.html
../SVE_xml/xhtml/fcvtps_float.html
../SVE_xml/xhtml/fcvtzs_float.html
../SVE_xml/xhtml/fcvtzs_float_int.html
../SVE_xml/xhtml/fcvtau_float.html
../SVE_xml/xhtml/fcvtmu_float.html
../SVE_xml/xhtml/fcvtnu_float.html
../SVE_xml/xhtml/fcvtpu_float.html
../SVE_xml/xhtml/fcvtzu_float_fix.html
../SVE_xml/xhtml/fcvtzu_float_int.html
../SVE_xml/xhtml/fjcvtzs.html
../SVE_xml/xhtml/scvtf_float_fix.html
../SVE_xml/xhtml/scvtf_float_int.html
../SVE_xml/xhtml/ucvtf_float_fix.html
../SVE_xml/xhtml/ucvtf_float_int.html
../SVE_xml/xhtml/fcvtas_advsimd.html
../SVE_xml/xhtml/fcvtms_advsimd.html
../SVE_xml/xhtml/fcvtns_advsimd.html
../SVE_xml/xhtml/fcvtps_advsimd.html

Chapter 8. SVE instruction categories

8.4. Floating-point conversions

e FCVTZS (vector, fixed-point).
* FCVTZS (vector, integer).

e FCVTZS (vector, integer).

e FCVTAU (vector).

e FCVTMU (vector).

« FCVTINU

(vector).

* FCVTPU (vector).

* FCVTZU (vector, fixed-point).
e FCVTZU (vector, integer).

* SCVTF (vector, fixed-point).

* SCVTF (vector, integer).

* UCVTF (vector, fixed-point).
* UCVTF (vector, integer)

8.4.6 Float«>Int convert (SVE)

Txonep All of the following are Floating-point integer convert (SVE) instructions:
 FCVTZS.
 FCVTZU.
e SCVTF.
 UCVTF.
DDI 0584 Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.

B.a

Non-confidential

108

../SVE_xml/xhtml/fcvtzs_advsimd_fix.html
../SVE_xml/xhtml/fcvtzs_advsimd_int.html
../SVE_xml/xhtml/fcvtzs_advsimd_int.html
../SVE_xml/xhtml/fcvtau_advsimd.html
../SVE_xml/xhtml/fcvtmu_advsimd.html
../SVE_xml/xhtml/fcvtnu_advsimd.html
../SVE_xml/xhtml/fcvtpu_advsimd.html
../SVE_xml/xhtml/fcvtzu_advsimd_fix.html
../SVE_xml/xhtml/fcvtzu_advsimd_int.html
../SVE_xml/xhtml/scvtf_advsimd_fix.html
../SVE_xml/xhtml/scvtf_advsimd_int.html
../SVE_xml/xhtml/ucvtf_advsimd_fix.html
../SVE_xml/xhtml/ucvtf_advsimd_int.html
../SVE_xml/xhtml/fcvtzs_z_p_z.html
../SVE_xml/xhtml/fcvtzu_z_p_z.html
../SVE_xml/xhtml/scvtf_z_p_z.html
../SVE_xml/xhtml/ucvtf_z_p_z.html

Chapter 8. SVE instruction categories
8.5. Floating-point or integer instructions

8.5 Floating-point or integer instructions

8.5.1 Floating-point or integer arithmetic (scalar)

Tyrasy All of the following are Floating-point or integer arithmetic (scalar) instructions:

¢ FABS (scalar).
¢ FNEG (scalar).

8.5.2 Floating-point or integer arithmetic (Advanced SIMD)

I 525v All of the following are Floating-point or integer arithmetic (Advanced SIMD) instructions:

e FABS (vector).
¢ ENEG (vector).
* FRECPE.

¢ FRSQRTE.

8.5.3 Floating-point or integer arithmetic (SVE)

TxFWRK All of the following are Floating-point or integer arithmetic (SVE) instructions:

« FABS.
« FNEG.
FRECPE.
« FRSQRTE.
« FEXPA.

« FTSSEL.

DDI 0584 Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
B.a Non-confidential

109

../SVE_xml/xhtml/fabs_float.html
../SVE_xml/xhtml/fneg_float.html
../SVE_xml/xhtml/fabs_advsimd.html
../SVE_xml/xhtml/fneg_advsimd.html
../SVE_xml/xhtml/frecpe_advsimd.html
../SVE_xml/xhtml/frsqrte_advsimd.html
../SVE_xml/xhtml/fabs_z_p_z.html
../SVE_xml/xhtml/fneg_z_p_z.html
../SVE_xml/xhtml/frecpe_z_z.html
../SVE_xml/xhtml/frsqrte_z_z.html
../SVE_xml/xhtml/fexpa_z_z.html
../SVE_xml/xhtml/ftssel_z_zz.html

Chapter 8. SVE instruction categories
8.6. Non-SIMD SVE instructions

8.6 Non-SIMD SVE instructions

8.6.1 Element count and increment scalar (SVE)

IgveeT All of the following are element count and increment scalar (SVE) instructions:

« ADDPL.

 ADDPL.

« RDVL.

¢« CNTB, CNTD, CNTH, CNTW.
« DECB, DECD, DECH, DECW (scalar).
¢ INCB, INCD, INCH, INCW (scalar).
* SQDECB.

¢ SQDECH (scalar).

* SQDECW (scalar).

* SQDECD (scalar).

¢ SQINCB.

¢ SQINCH (scalar).

¢ SQINCW (scalar).

¢ SQINCD (scalar).

« UQDECB.

* UQDECH (scalar).

* UQDECW (scalar).

¢ UQDECD (scalar).

* UQINCB.

¢ UQINCH (scalar).

e UQINCW (scalar).

e UQINCD (scalar).

8.6.2 Compare and terminate (SVE)

T kuuTx The following is a compare and terminate (SVE) instruction:

* CTERMEQ, CTERMNE.

DDI 0584 Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
B.a Non-confidential

110

../SVE_xml/xhtml/addpl_r_ri.html
../SVE_xml/xhtml/addpl_r_ri.html
../SVE_xml/xhtml/rdvl_r_i.html
../SVE_xml/xhtml/cntb_r_s.html
../SVE_xml/xhtml/decb_r_rs.html
../SVE_xml/xhtml/incb_r_rs.html
../SVE_xml/xhtml/sqdecb_r_rs.html
../SVE_xml/xhtml/sqdech_r_rs.html
../SVE_xml/xhtml/sqdecw_r_rs.html
../SVE_xml/xhtml/sqdecd_r_rs.html
../SVE_xml/xhtml/sqincb_r_rs.html
../SVE_xml/xhtml/sqinch_r_rs.html
../SVE_xml/xhtml/sqincw_r_rs.html
../SVE_xml/xhtml/sqincd_r_rs.html
../SVE_xml/xhtml/uqdecb_r_rs.html
../SVE_xml/xhtml/uqdech_r_rs.html
../SVE_xml/xhtml/uqdecw_r_rs.html
../SVE_xml/xhtml/uqdecd_r_rs.html
../SVE_xml/xhtml/uqincb_r_rs.html
../SVE_xml/xhtml/uqinch_r_rs.html
../SVE_xml/xhtml/uqincw_r_rs.html
../SVE_xml/xhtml/uqincd_r_rs.html
../SVE_xml/xhtml/ctermeq_rr.html

Chapter 8. SVE instruction categories
8.7. Predicate instructions

8.7 Predicate instructions

8.7.1 Predicate move (SVE)

I HENED

All of the following are predicate move (SVE) instructions:

PFALSE.

PTRUE, PTRUES.
PUNPKHI, PUNPKLO.
RDFFR, RDFFRS (predicated).
RDFFR (unpredicated).
SETFFR.

WRFFR.

REV (predicate).

SEL (predicates).

TRN1, TRN2 (predicates).
UZP1, UZP2 (predicates).
ZIP1, ZIP2 (predicates).

8.7.2 Predicate counted loop (SVE)

TIL‘L;’I‘

All of the following are predicate counted loop (SVE) instructions:

WHILELE.
WHILELO.
WHILELS.
WHILELT.

8.7.3 Predicate bitwise logical operations (SVE)

T cpuc

All of the following are predicate bitwise logical operations (SVE) instructions:

AND, ANDS (predicates).
BIC, BICS (predicates).
EOR, EORS (predicates).
NAND, NANDS.

NOR, NORS.

NOT (predicate).

NOTS.

ORN, ORNS (predicates).
ORR, ORRS (predicates).
PTEST.

8.7.4 Predicate scan (SVE)

Tykewp

DDI 0584
B.a

All of the following are predicate scan (SVE) instructions:

BRKA, BRKAS.
BRKB, BRKBS.
BRKN, BRKNS.
BRKPA, BRKPAS.
BRKPB, BRKPBS.
PFIRST.

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

111

../SVE_xml/xhtml/pfalse_p.html
../SVE_xml/xhtml/ptrue_p_s.html
../SVE_xml/xhtml/punpkhi_p_p.html
../SVE_xml/xhtml/rdffr_p_p_f.html
../SVE_xml/xhtml/rdffr_p_f.html
../SVE_xml/xhtml/setffr_f.html
../SVE_xml/xhtml/wrffr_f_p.html
../SVE_xml/xhtml/rev_p_p.html
../SVE_xml/xhtml/sel_p_p_pp.html
../SVE_xml/xhtml/trn1_p_pp.html
../SVE_xml/xhtml/uzp1_p_pp.html
../SVE_xml/xhtml/zip1_p_pp.html
../SVE_xml/xhtml/whilele_p_p_rr.html
../SVE_xml/xhtml/whilelo_p_p_rr.html
../SVE_xml/xhtml/whilels_p_p_rr.html
../SVE_xml/xhtml/whilelt_p_p_rr.html
../SVE_xml/xhtml/and_p_p_pp.html
../SVE_xml/xhtml/bic_p_p_pp.html
../SVE_xml/xhtml/eor_p_p_pp.html
../SVE_xml/xhtml/nand_p_p_pp.html
../SVE_xml/xhtml/nor_p_p_pp.html
../SVE_xml/xhtml/not_eor_p_p_pp.html
../SVE_xml/xhtml/nots_eor_p_p_pp.html
../SVE_xml/xhtml/orn_p_p_pp.html
../SVE_xml/xhtml/orr_p_p_pp.html
../SVE_xml/xhtml/ptest_p_p.html
../SVE_xml/xhtml/brka_p_p_p.html
../SVE_xml/xhtml/brkb_p_p_p.html
../SVE_xml/xhtml/brkn_p_p_pp.html
../SVE_xml/xhtml/brkpa_p_p_pp.html
../SVE_xml/xhtml/brkpb_p_p_pp.html
../SVE_xml/xhtml/pfirst_p_p_p.html

Chapter 8. SVE instruction categories
8.7. Predicate instructions

8.7.5 Predicate count and increment scalar (SVE)

T JRGRK All of the following are predicate count and increment scalar (SVE) instructions:

¢ CNTP.

* DECP (scalar).

¢ INCP (scalar).

¢ SQDECEP (scalar).
¢ SQINCP (scalar).

e UQDECEP (scalar).
e UQINCP (scalar).

8.7.6 Predicate count and increment vector (SVE)

ThozkL All of the following are predicate count and increment vector (SVE) instructions:

* DECP (vector).
INCP (vector).
¢ SQDECEP (vector).
¢ SQINCP (vector).
e UQDECEP (vector).
e UQINCP (vector).

DDI 0584 Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
B.a Non-confidential

112

../SVE_xml/xhtml/cntp_r_p_p.html
../SVE_xml/xhtml/decp_r_p_r.html
../SVE_xml/xhtml/incp_r_p_r.html
../SVE_xml/xhtml/sqdecp_r_p_r.html
../SVE_xml/xhtml/sqincp_r_p_r.html
../SVE_xml/xhtml/uqdecp_r_p_r.html
../SVE_xml/xhtml/uqincp_r_p_r.html
../SVE_xml/xhtml/decp_z_p_z.html
../SVE_xml/xhtml/incp_z_p_z.html
../SVE_xml/xhtml/sqdecp_z_p_z.html
../SVE_xml/xhtml/sqincp_z_p_z.html
../SVE_xml/xhtml/uqdecp_z_p_z.html
../SVE_xml/xhtml/uqincp_z_p_z.html

Chapter 8. SVE instruction categories

8.8. Cryptographic instructions

8.8 Cryptographic instructions

8.8.1 Cryptographic (Advanced SIMD)

Terynr

DDI 0584
B.a

AESD.
AESE.
AESIMC.
AESMC.
SHAI1C.
SHA1H.
SHAIM.
SHAT1P.
SHA1SUO.
SHA1SUL.
SHA256H.
SHA256H2.

SHA256SU0.
SHA256SU1.

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.

All of the following are Cryptographic (Advanced SIMD) instructions:

Non-confidential

113

../SVE_xml/xhtml/aesd_advsimd.html
../SVE_xml/xhtml/aese_advsimd.html
../SVE_xml/xhtml/aesimc_advsimd.html
../SVE_xml/xhtml/aesmc_advsimd.html
../SVE_xml/xhtml/sha1c_advsimd.html
../SVE_xml/xhtml/sha1h_advsimd.html
../SVE_xml/xhtml/sha1m_advsimd.html
../SVE_xml/xhtml/sha1p_advsimd.html
../SVE_xml/xhtml/sha1su0_advsimd.html
../SVE_xml/xhtml/sha1su1_advsimd.html
../SVE_xml/xhtml/sha256h_advsimd.html
../SVE_xml/xhtml/sha256h2_advsimd.html
../SVE_xml/xhtml/sha256su0_advsimd.html
../SVE_xml/xhtml/sha256su1_advsimd.html

Chapter 8. SVE instruction categories
8.9. Load/store/prefetch instructions

8.9 Load/store/prefetch instructions

8.9.1 Load/store (Advanced SIMD and floating-point scalar)

8.9.1.1 Contiguous elements load/store (Advanced SIMD)

TvRXTK All of the following are contiguous elements load/store (Advanced SIMD) instructions:

e LDI (multiple structures).
e ST1 (multiple structures).

8.9.1.2 Contiguous structures load/store (Advanced SIMD)

T1zr0C All of the following are contiguous structures load/store (Advanced SIMD) instructions:

e LD2 (multiple structures).
¢ LD3 (multiple structures).
e LD4 (multiple structures).
e ST2 (multiple structures).
e ST3 (multiple structures).
e ST4 (multiple structures).

8.9.1.3 Single element/structure load/store (Advanced SIMD)

T KLWGR All of the following are single element/structure load/store (Advanced SIMD) instructions:

¢ LDI (single structure).
* LD2 (single structure).
* LD3 (single structure).
* LD4 (single structure).
e STI (single structure).
» ST2 (single structure).
* ST3 (single structure).
» ST4 (single structure).

8.9.1.4 Single element/structure replicating load (Advanced SIMD)

Txocy All of the following are single element/structure replicating load (Advanced SIMD) instructions:

* LDIR.
e LD2R.
* LD3R.
e LD4R.

8.9.1.5 Register load/store (Advanced SIMD and floating-point scalar)

T1soxe All of the following are register load/store (Advanced SIMD &F P scalar) instructions:

¢ LDNP (SIMD&FP).

¢ LDP (SIMD&FP).

¢ LDR (immediate, SIMD&FP).
¢ LDR (literal, SIMD&FP).

* LDR (register, SIMD&FP).

e LDUR (SIMD&FP).

STNP (SIMD&FP).

DDI 0584 Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved. 114
B.a Non-confidential

../SVE_xml/xhtml/ld1_advsimd_mult.html
../SVE_xml/xhtml/st1_advsimd_mult.html
../SVE_xml/xhtml/ld2_advsimd_mult.html
../SVE_xml/xhtml/ld3_advsimd_mult.html
../SVE_xml/xhtml/ld4_advsimd_mult.html
../SVE_xml/xhtml/st2_advsimd_mult.html
../SVE_xml/xhtml/st3_advsimd_mult.html
../SVE_xml/xhtml/st4_advsimd_mult.html
../SVE_xml/xhtml/ld1_advsimd_sngl.html
../SVE_xml/xhtml/ld2_advsimd_sngl.html
../SVE_xml/xhtml/ld3_advsimd_sngl.html
../SVE_xml/xhtml/ld4_advsimd_sngl.html
../SVE_xml/xhtml/st1_advsimd_sngl.html
../SVE_xml/xhtml/st2_advsimd_sngl.html
../SVE_xml/xhtml/st3_advsimd_sngl.html
../SVE_xml/xhtml/st4_advsimd_sngl.html
../SVE_xml/xhtml/ld1r_advsimd.html
../SVE_xml/xhtml/ld2r_advsimd.html
../SVE_xml/xhtml/ld3r_advsimd.html
../SVE_xml/xhtml/ld4r_advsimd.html
../SVE_xml/xhtml/ldnp_fpsimd.html
../SVE_xml/xhtml/ldp_fpsimd.html
../SVE_xml/xhtml/ldr_imm_fpsimd.html
../SVE_xml/xhtml/ldr_lit_fpsimd.html
../SVE_xml/xhtml/ldr_reg_fpsimd.html
../SVE_xml/xhtml/ldur_fpsimd.html
../SVE_xml/xhtml/stnp_fpsimd.html

Chapter 8. SVE instruction categories
8.9. Load/store/prefetch instructions

¢ STP (SIMD&FP).

¢ STR (immediate, SIMD&FP).
e STR (register, SIMD&FP).

¢ STUR (SIMD&FP).

8.9.2 Load/store/prefetch (SVE)

8.9.2.1 Contiguous elements load/store/prefetch (SVE)

T nnzkE All of the following are contiguous elements load/store/prefetch (SVE) instructions:

* LDIB (scalar plus immediate).

* LD1H (scalar plus immediate).

* LDI1W (scalar plus immediate).

e LDID (scalar plus immediate).

e LDI1SB (scalar plus immediate).
e LDI1SH (scalar plus immediate).
¢ LDISW (scalar plus immediate).
e LDIB (scalar plus scalar).

* LDIH (scalar plus scalar).

e LDIW (scalar plus scalar).

e LDID (scalar plus scalar).

* LDI1SB (scalar plus scalar).

e LDISH (scalar plus scalar).

* LDISW (scalar plus scalar).

* LDFFI1B (scalar plus scalar).

e LDFF1H (scalar plus scalar).

* LDFFIW (scalar plus scalar).

¢ LDFFI1D (scalar plus scalar).

* LDFF1SB (scalar plus scalar).

* LDFF1SH (scalar plus scalar).

e LDFF1SW (scalar plus scalar).
 LDNFIB.

e LDNFI1H.

¢« LDNF1W.

¢ LDNFID.

* LDNF1SB.

 LDNF1SH.

e LDNTIB (scalar plus immediate).
e LDNTIH (scalar plus immediate).
e LDNTIW (scalar plus immediate).
e LDNTID (scalar plus immediate).
e LDNTIB (scalar plus scalar).

e LDNTIH (scalar plus scalar).

e LDNTIW (scalar plus scalar).

e LDNTID (scalar plus scalar).

* PRFB (scalar plus immediate).

e PRFH (scalar plus immediate).

* PRFW (scalar plus immediate).

* PRFH (scalar plus immediate).

* PRFB (scalar plus scalar).

* PRFH (scalar plus scalar).

* PRFW (scalar plus scalar).

* PRFD (scalar plus scalar).

DDI 0584 Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.

B.a Non-confidential

115

../SVE_xml/xhtml/stp_fpsimd.html
../SVE_xml/xhtml/str_imm_fpsimd.html
../SVE_xml/xhtml/str_reg_fpsimd.html
../SVE_xml/xhtml/stur_fpsimd.html
../SVE_xml/xhtml/ld1b_z_p_bi.html
../SVE_xml/xhtml/ld1h_z_p_bi.html
../SVE_xml/xhtml/ld1w_z_p_bi.html
../SVE_xml/xhtml/ld1d_z_p_bi.html
../SVE_xml/xhtml/ld1sb_z_p_bi.html
../SVE_xml/xhtml/ld1sh_z_p_bi.html
../SVE_xml/xhtml/ld1sw_z_p_bi.html
../SVE_xml/xhtml/ld1b_z_p_br.html
../SVE_xml/xhtml/ld1h_z_p_br.html
../SVE_xml/xhtml/ld1w_z_p_br.html
../SVE_xml/xhtml/ld1d_z_p_br.html
../SVE_xml/xhtml/ld1sb_z_p_br.html
../SVE_xml/xhtml/ld1sh_z_p_br.html
../SVE_xml/xhtml/ld1sw_z_p_br.html
../SVE_xml/xhtml/ldff1b_z_p_br.html
../SVE_xml/xhtml/ldff1h_z_p_br.html
../SVE_xml/xhtml/ldff1w_z_p_br.html
../SVE_xml/xhtml/ldff1d_z_p_br.html
../SVE_xml/xhtml/ldff1sb_z_p_br.html
../SVE_xml/xhtml/ldff1sh_z_p_br.html
../SVE_xml/xhtml/ldff1sw_z_p_br.html
../SVE_xml/xhtml/ldnf1b_z_p_bi.html
../SVE_xml/xhtml/ldnf1h_z_p_bi.html
../SVE_xml/xhtml/ldnf1w_z_p_bi.html
../SVE_xml/xhtml/ldnf1d_z_p_bi.html
../SVE_xml/xhtml/ldnf1sb_z_p_bi.html
../SVE_xml/xhtml/ldnf1sh_z_p_bi.html
../SVE_xml/xhtml/ldnt1b_z_p_bi.html
../SVE_xml/xhtml/ldnt1h_z_p_bi.html
../SVE_xml/xhtml/ldnt1w_z_p_bi.html
../SVE_xml/xhtml/ldnt1d_z_p_bi.html
../SVE_xml/xhtml/ldnt1b_z_p_br.html
../SVE_xml/xhtml/ldnt1h_z_p_br.html
../SVE_xml/xhtml/ldnt1w_z_p_br.html
../SVE_xml/xhtml/ldnt1d_z_p_br.html
../SVE_xml/xhtml/prfb_i_p_bi.html
../SVE_xml/xhtml/prfh_i_p_bi.html
../SVE_xml/xhtml/prfw_i_p_bi.html
../SVE_xml/xhtml/prfh_i_p_bi.html
../SVE_xml/xhtml/prfb_i_p_br.html
../SVE_xml/xhtml/prfh_i_p_br.html
../SVE_xml/xhtml/prfw_i_p_br.html
../SVE_xml/xhtml/prfd_i_p_br.html

Chapter 8. SVE instruction categories
8.9. Load/store/prefetch instructions

I;}PZ\]E‘T

DDI 0584
B.a

ST1B (scalar plus immediate).
ST1H (scalar plus immediate).
STIW (scalar plus immediate).
ST1D (scalar plus immediate).
STIB (scalar plus scalar).
STIH (scalar plus scalar).
STIW (scalar plus scalar).
ST1D (scalar plus scalar).

STNTIB (scalar plus immediate).
STNTIH (scalar plus immediate).
STNTI1W (scalar plus immediate).
STNTID (scalar plus immediate).

STNTI1B (scalar plus scalar).
STNTI1H (scalar plus scalar).
STNTIW (scalar plus scalar).
STNTI1D (scalar plus scalar).

LD2B (scalar plus immediate).
LD2H (scalar plus immediate).

LD2W (scalar plus immediate).

LD2D (scalar plus immediate).
LD2B (scalar plus scalar).
LD2H (scalar plus scalar).
LD2W (scalar plus scalar).
LD2D (scalar plus scalar).
LD3B (scalar plus immediate).
LD3H (scalar plus immediate).

LD3W (scalar plus immediate).

LD3D (scalar plus immediate).
LD3B (scalar plus scalar).
LD3H (scalar plus scalar).
LD3W (scalar plus scalar).
LD3D (scalar plus scalar).
LD4B (scalar plus immediate).
LD4H (scalar plus immediate).

LD4W (scalar plus immediate).

LD4D (scalar plus immediate).
LD4B (scalar plus scalar).
LD4H (scalar plus scalar).
LD4W (scalar plus scalar).
LDA4D (scalar plus scalar).
ST2B (scalar plus immediate).
ST2H (scalar plus immediate).
ST2W (scalar plus immediate).
ST2D (scalar plus immediate).
ST2B (scalar plus scalar).
ST2H (scalar plus scalar).
ST2W (scalar plus scalar).
ST2D (scalar plus scalar).
ST3B (scalar plus immediate).
ST3H (scalar plus immediate).

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.

8.9.2.2 Contiguous structures load/store (SVE)

All of the following are contiguous structures load/store (SVE) instructions:

Non-confidential

116

../SVE_xml/xhtml/st1b_z_p_bi.html
../SVE_xml/xhtml/st1h_z_p_bi.html
../SVE_xml/xhtml/st1w_z_p_bi.html
../SVE_xml/xhtml/st1d_z_p_bi.html
../SVE_xml/xhtml/st1b_z_p_br.html
../SVE_xml/xhtml/st1h_z_p_br.html
../SVE_xml/xhtml/st1w_z_p_br.html
../SVE_xml/xhtml/st1d_z_p_br.html
../SVE_xml/xhtml/stnt1b_z_p_bi.html
../SVE_xml/xhtml/stnt1h_z_p_bi.html
../SVE_xml/xhtml/stnt1w_z_p_bi.html
../SVE_xml/xhtml/stnt1d_z_p_bi.html
../SVE_xml/xhtml/stnt1b_z_p_br.html
../SVE_xml/xhtml/stnt1h_z_p_br.html
../SVE_xml/xhtml/stnt1w_z_p_br.html
../SVE_xml/xhtml/stnt1d_z_p_br.html
../SVE_xml/xhtml/ld2b_z_p_bi.html
../SVE_xml/xhtml/ld2h_z_p_bi.html
../SVE_xml/xhtml/ld2w_z_p_bi.html
../SVE_xml/xhtml/ld2d_z_p_bi.html
../SVE_xml/xhtml/ld2b_z_p_br.html
../SVE_xml/xhtml/ld2h_z_p_br.html
../SVE_xml/xhtml/ld2w_z_p_br.html
../SVE_xml/xhtml/ld2d_z_p_br.html
../SVE_xml/xhtml/ld3b_z_p_bi.html
../SVE_xml/xhtml/ld3h_z_p_bi.html
../SVE_xml/xhtml/ld3w_z_p_bi.html
../SVE_xml/xhtml/ld3d_z_p_bi.html
../SVE_xml/xhtml/ld3b_z_p_br.html
../SVE_xml/xhtml/ld3h_z_p_br.html
../SVE_xml/xhtml/ld3w_z_p_br.html
../SVE_xml/xhtml/ld3d_z_p_br.html
../SVE_xml/xhtml/ld4b_z_p_bi.html
../SVE_xml/xhtml/ld4h_z_p_bi.html
../SVE_xml/xhtml/ld4w_z_p_bi.html
../SVE_xml/xhtml/ld4d_z_p_bi.html
../SVE_xml/xhtml/ld4b_z_p_br.html
../SVE_xml/xhtml/ld4h_z_p_br.html
../SVE_xml/xhtml/ld4w_z_p_br.html
../SVE_xml/xhtml/ld4d_z_p_br.html
../SVE_xml/xhtml/st2b_z_p_bi.html
../SVE_xml/xhtml/st2h_z_p_bi.html
../SVE_xml/xhtml/st2w_z_p_bi.html
../SVE_xml/xhtml/st2d_z_p_bi.html
../SVE_xml/xhtml/st2b_z_p_br.html
../SVE_xml/xhtml/st2h_z_p_br.html
../SVE_xml/xhtml/st2w_z_p_br.html
../SVE_xml/xhtml/st2d_z_p_br.html
../SVE_xml/xhtml/st3b_z_p_bi.html
../SVE_xml/xhtml/st3h_z_p_bi.html

Chapter 8. SVE instruction categories
8.9. Load/store/prefetch instructions

e ST3W (scalar plus immediate).
* ST3D (scalar plus immediate).
e ST3B (scalar plus scalar).
e ST3H (scalar plus scalar).
* ST3W (scalar plus scalar).
* ST3D (scalar plus scalar).
* ST4B (scalar plus immediate).
* ST4H (scalar plus immediate).
e ST4W (scalar plus immediate).
* ST4D (scalar plus immediate).
* ST4B (scalar plus scalar).
e ST4H (scalar plus scalar).
* ST4W (scalar plus scalar).
e ST4D (scalar plus scalar).

8.9.2.3 Gather/scatter load/store/prefetch (SVE)

T corew All of the following are gather/scatter load/store/prefetch (SVE) instructions:

e LDIB (vector plus immediate).

e LDIH (vector plus immediate).

e LDIW (vector plus immediate).

e LDID (vector plus immediate).

¢ LDISB (vector plus immediate).

e LDISH (vector plus immediate).

* LDISW (vector plus immediate).
e LDIB (scalar plus vector).

e LDI1H (scalar plus vector).

e LDIW (scalar plus vector).

e LDID (scalar plus vector).

* LDISB (scalar plus vector).

e LDISH (scalar plus vector).

e LDISW (scalar plus vector).

* LDFF1B (vector plus immediate).
¢ LDFF1H (vector plus immediate).
e LDFF1W (vector plus immediate).
e LDFF1D (vector plus immediate).
e LDFF1SB (vector plus immediate).
* LDFFI1SH (vector plus immediate).
¢ LDFF1SW (vector plus immediate).
e LDFF1B (scalar plus vector).

* LDFF1H (scalar plus vector).

* LDFF1W (scalar plus vector).

e LDFFI1D (scalar plus vector).

* LDFF1SB (scalar plus vector).

e LDFF1SH (scalar plus vector).

e LDFF1SW (scalar plus vector).

* PRFB (vector plus immediate).

* PRFH (vector plus immediate).

* PRFW (vector plus immediate).

¢ PRFD (vector plus immediate).

* PRFB (scalar plus vector).

* PRFH (scalar plus vector).

* PRFW (scalar plus vector).

* PRFD (scalar plus vector).

DDI 0584 Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.

B.a Non-confidential

117

../SVE_xml/xhtml/st3w_z_p_bi.html
../SVE_xml/xhtml/st3d_z_p_bi.html
../SVE_xml/xhtml/st3b_z_p_br.html
../SVE_xml/xhtml/st3h_z_p_br.html
../SVE_xml/xhtml/st3w_z_p_br.html
../SVE_xml/xhtml/st3d_z_p_br.html
../SVE_xml/xhtml/st4b_z_p_bi.html
../SVE_xml/xhtml/st4h_z_p_bi.html
../SVE_xml/xhtml/st4w_z_p_bi.html
../SVE_xml/xhtml/st4d_z_p_bi.html
../SVE_xml/xhtml/st4b_z_p_br.html
../SVE_xml/xhtml/st4h_z_p_br.html
../SVE_xml/xhtml/st4w_z_p_br.html
../SVE_xml/xhtml/st4d_z_p_br.html
../SVE_xml/xhtml/ld1b_z_p_ai.html
../SVE_xml/xhtml/ld1h_z_p_ai.html
../SVE_xml/xhtml/ld1w_z_p_ai.html
../SVE_xml/xhtml/ld1d_z_p_ai.html
../SVE_xml/xhtml/ld1sb_z_p_ai.html
../SVE_xml/xhtml/ld1sh_z_p_ai.html
../SVE_xml/xhtml/ld1sw_z_p_ai.html
../SVE_xml/xhtml/ld1b_z_p_bz.html
../SVE_xml/xhtml/ld1h_z_p_bz.html
../SVE_xml/xhtml/ld1w_z_p_bz.html
../SVE_xml/xhtml/ld1d_z_p_bz.html
../SVE_xml/xhtml/ld1sb_z_p_bz.html
../SVE_xml/xhtml/ld1sh_z_p_bz.html
../SVE_xml/xhtml/ld1sw_z_p_bz.html
../SVE_xml/xhtml/ldff1b_z_p_ai.html
../SVE_xml/xhtml/ldff1h_z_p_ai.html
../SVE_xml/xhtml/ldff1w_z_p_ai.html
../SVE_xml/xhtml/ldff1d_z_p_ai.html
../SVE_xml/xhtml/ldff1sb_z_p_ai.html
../SVE_xml/xhtml/ldff1sh_z_p_ai.html
../SVE_xml/xhtml/ldff1sw_z_p_ai.html
../SVE_xml/xhtml/ldff1b_z_p_bz.html
../SVE_xml/xhtml/ldff1h_z_p_bz.html
../SVE_xml/xhtml/ldff1w_z_p_bz.html
../SVE_xml/xhtml/ldff1d_z_p_bz.html
../SVE_xml/xhtml/ldff1sb_z_p_bz.html
../SVE_xml/xhtml/ldff1sh_z_p_bz.html
../SVE_xml/xhtml/ldff1sw_z_p_bz.html
../SVE_xml/xhtml/prfb_i_p_ai.html
../SVE_xml/xhtml/prfh_i_p_ai.html
../SVE_xml/xhtml/prfw_i_p_ai.html
../SVE_xml/xhtml/prfd_i_p_ai.html
../SVE_xml/xhtml/prfb_i_p_bz.html
../SVE_xml/xhtml/prfh_i_p_bz.html
../SVE_xml/xhtml/prfw_i_p_bz.html
../SVE_xml/xhtml/prfd_i_p_bz.html

Chapter 8. SVE instruction categories
8.9. Load/store/prefetch instructions

I SRIJYM

Lcnzis

DDI 0584
B.a

» STI1B (vector plus immediate).
e ST1H (vector plus immediate).
e STIW (vector plus immediate).
* STI1D (vector plus immediate).
* ST1B (scalar plus vector).
e ST1H (scalar plus vector).
e ST1W (scalar plus vector).
* STI1D (scalar plus vector).

8.9.2.4 Single element load and replicate (SVE)

All of the following are single element load and replicate (SVE) instructions:

* LDIRB.
* LDIRH.
* LDIRW.
* LDIRD.
* LDIRSB.
* LDIRSH.
* LDIRSW.

8.9.2.5 Single quadword load and replicate (SVE)

All of the following are single quadword load and replicate (SVE) instructions:

* LDIRQB (scalar plus immediate).
e LDIRQH (scalar plus immediate).
* LDIRQW (scalar plus immediate).
¢ LDIRQD (scalar plus immediate).
e LDI1RQB (scalar plus scalar).
* LDIRQH (scalar plus scalar).
e LDIRQW (scalar plus scalar).
e LDIRQD (scalar plus scalar).

8.9.2.6 Register load/store (SVE)

All of the following are register load/store (SVE) instructions:

* LDR (predicate).
¢ LDR (vector).
* STR (predicate).

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.

Non-confidential

118

../SVE_xml/xhtml/st1b_z_p_ai.html
../SVE_xml/xhtml/st1h_z_p_ai.html
../SVE_xml/xhtml/st1w_z_p_ai.html
../SVE_xml/xhtml/st1d_z_p_ai.html
../SVE_xml/xhtml/st1b_z_p_bz.html
../SVE_xml/xhtml/st1h_z_p_bz.html
../SVE_xml/xhtml/st1w_z_p_bz.html
../SVE_xml/xhtml/st1d_z_p_bz.html
../SVE_xml/xhtml/ld1rb_z_p_bi.html
../SVE_xml/xhtml/ld1rh_z_p_bi.html
../SVE_xml/xhtml/ld1rw_z_p_bi.html
../SVE_xml/xhtml/ld1rd_z_p_bi.html
../SVE_xml/xhtml/ld1rsb_z_p_bi.html
../SVE_xml/xhtml/ld1rsh_z_p_bi.html
../SVE_xml/xhtml/ld1rsw_z_p_bi.html
../SVE_xml/xhtml/ld1rqb_z_p_bi.html
../SVE_xml/xhtml/ld1rqh_z_p_bi.html
../SVE_xml/xhtml/ld1rqw_z_p_bi.html
../SVE_xml/xhtml/ld1rqd_z_p_bi.html
../SVE_xml/xhtml/ld1rqb_z_p_br.html
../SVE_xml/xhtml/ld1rqh_z_p_br.html
../SVE_xml/xhtml/ld1rqw_z_p_br.html
../SVE_xml/xhtml/ld1rqd_z_p_br.html
../SVE_xml/xhtml/ldr_p_bi.html
../SVE_xml/xhtml/ldr_z_bi.html
../SVE_xml/xhtml/str_p_bi.html

Chapter 9
Glossary

DDI 0584 Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved. 119
B.a Non-confidential

Chapter 9. Glossary

Active element

An Active element is a vector element or predicate element that is a source register element or destination register
element used by an instruction. When the corresponding element in the instruction’s Governing predicate is
TRUE, the element is Active. If an instruction is unpredicated, all of the vector elements or predicate elements are
implicitly Active.

Constructive instruction encoding

A constructive instruction encoding is an instruction encoding where the destination register is encoded
independently of the source registers.

Destructive instruction encoding

A destructive instruction encoding is an instruction encoding where one of the source registers is also used as the
destination register.

Element number

For a given element size of N bits, elements within a vector or predicate register are numbered with element[0]
always representing bits[(N-1):0], element[1] always representing bits[(2N-1):N], and so on. For more information,
see the layout diagram in 2.1.1 SVE Vector registers.

First active element
The First active element of a vector or predicate register is the lowest numbered element that is an Active element.
First-fault load

SVE provides a First-fault option for some SVE vector load instructions. This option causes memory access faults
to be suppressed if they do not occur as a result of the First active element of the vector. Instead, the FFR is
updated to indicate which of the active vector elements were not successfully loaded. For more information, see
2.1.3 First Fault Register, FFR.

Gather-load

Gather-load is a mechanism that allows the elements of a vector to be read from non-contiguous memory locations
using a vector of addresses, where the addresses are constructed according to the addressing mode.

Governing predicate

The predicate register that is used to determine the Active elements of a predicated instruction is known as the
Governing predicate for that instruction.

Inactive element

An Inactive element is a vector element or predicate element that is an unused source register element or destination
register element for the associated instruction. When the corresponding element of an instruction’s Governing
predicate is FALSE, the element is inactive.

Last active element
The Last active element of a vector or predicate register is the highest numbered element that is an Active element.
Memory element

An item of data in memory that is transferred to or from a vector or predicate element by an SVE load or store
instruction. Each memory element has an access size and a type. The memory element access size is specified by
each load and store instruction independently of the vector element size.

Merging predication

When a predicated instruction specifies merging predication, the Inactive elements of the destination register
remain unchanged.

Non-fault load

DDI 0584 Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved. 120
B.a Non-confidential

Chapter 9. Glossary

SVE provides a Non-fault option for some SVE vector load instructions. This option causes all memory access
faults to be suppressed. Instead, the FFR is updated to indicate which of the active vector elements were not
successfully loaded. For more information, see 2.1.3 First Fault Register, FFR.

Packed access

A memory access that is performed as a result of a load or store instruction for which the vector element size and
the memory element size are the same.

Predicate
A one-dimensional array of predicate elements of the same size.
Predicate element

Individual subdivisions of a predicate register that can be 1, 2, 4, or 8 bits in size. The predicate element size is
specified independently by each instruction and is always one-eighth the size of the corresponding vector element.
The lowest-numbered bit of each predicate element holds the Boolean value of that element, where 1 represents
TRUE and 0 represents FALSE.

Predicate register
An SVE predicate register, PO-P15, having a length that is a multiple of 16 bits, in the range 16 to 256, inclusive.
Predicated instruction

An SVE instruction that has a Governing predicate operand, which determines the Active and Inactive elements for
that instruction.

Prefixed instruction

The instruction that immediately follows a MOVPREX instruction in program order.
Scalar base register

A scalar base register refers to an AArch64 general-purpose register, X0-X31, or the current stack pointer, SP.
Scalar index register

A scalar index register refers to an AArch64 general-purpose register, X0-X31, or for certain instructions, XZR.
Scatter-store

Scatter-store is a mechanism that allows the elements of a vector to be written to non-contiguous memory locations
using a vector of addresses, where the addresses are constructed according to the addressing mode.

SIMD

Single Instruction, Multiple Data. A SIMD instruction performs the same operation on multiple vector elements or
predicate elements in parallel.

Unpacked access

A memory access that is performed as a result of a load or store instruction for which the vector element size is
larger than the memory element size.

Unpredicated instruction

An SVE instruction that does not have a Governing predicate operand and implicitly treats all other vector and
predicate elements as Active.

Vector
A one-dimensional array of vector elements of the same size and data type.
Vector element

Individual subdivisions of a vector register that can be 8, 16, 32, 64 or 128 bits in size. The vector element size and
data type is specified independently by each instruction.

DDI 0584 Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved. 121
B.a Non-confidential

Chapter 9. Glossary

Vector length

The accessible width of the SVE vector registers at the current Exception level, as constrained by the ZCR_ELI,
ZCR_EL2, and ZCR_ELS3 System registers. All vector registers at the same Exception level have the same vector
length. The accessible width of the SVE predicate registers and FFR is one-eighth of the vector length.

Vector register

An SVE vector register, Z0-Z31, having a length that is a multiple of 128 bits, in the range 128 bits to 2048 bits,
inclusive.

Zeroing predication

When a predicated instruction specifies zeroing predication, the Inactive elements of the destination register are set
to zero.

DDI 0584 Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved. 122
B.a Non-confidential

../SVE_SysReg/xhtml/AArch64-zcr_el1.html
../SVE_SysReg/xhtml/AArch64-zcr_el2.html
../SVE_SysReg/xhtml/AArch64-zcr_el3.html

	Release information
	Non-Confidential Proprietary Notice
	Product Status
	Contents
	Preface
	About this supplement
	Conventions
	Typographical conventions
	Numbers
	Pseudocode descriptions
	Asterisks in instruction mnemonics
	Assembler syntax descriptions

	Rules-based writing
	Additional reading
	Arm publications

	Feedback
	Feedback on this book
	Progressive Terminology Commitment

	1 Introduction
	1.1 About the Scalable Vector Extension
	1.1.1 Features that affect SVE
	1.1.2 Features within SVE

	1.2 Register disambiguation

	2 SVE Application level programmers' model
	2.1 SVE-specific registers
	2.1.1 SVE Vector registers
	2.1.2 SVE predicate registers
	2.1.3 First Fault Register, FFR
	2.1.4 SVE writes to scalar registers

	2.2 SVE floating-point support
	2.2.1 Half-precision floating-point support
	2.2.2 Single-precision floating-point support
	2.2.3 Double-precision floating-point support
	2.2.4 BFloat16 floating-point support

	2.3 Predication
	2.4 Process state, PSTATE N, Z, C and V Condition flags
	2.5 Data independent timing of SVE and SVE2 data-processing instructions

	3 SVE System level programmers' model
	3.1 Exception model
	3.1.1 Synchronous memory faults
	3.1.1.1 Data Abort and Watchpoint exceptions
	3.1.1.2 First-fault and Non-fault loads

	3.1.2 Asynchronous exceptions

	3.2 Configurable vector length

	4 SVE Memory Model
	4.1 SVE memory model
	4.2 Atomicity
	4.3 Alignment support
	4.4 Data endianness
	4.5 Memory ordering
	4.6 Device memory
	4.7 CONSTRAINED UNPREDICTABLE memory accesses

	5 SVE instruction set
	5.1 SVE assembler language
	5.2 SVE ISA functional groups
	5.2.1 Load, store, and prefetch instructions
	5.2.1.1 Predicated single vector contiguous element accesses
	5.2.1.2 Predicated multiple vector contiguous structure load/store
	5.2.1.3 Predicated non-contiguous element accesses
	5.2.1.4 Predicated replicating element loads
	5.2.1.5 Unpredicated vector register load/store
	5.2.1.6 Unpredicated predicate register load/store

	5.2.2 Vector move operations
	5.2.2.1 Element move and broadcast

	5.2.3 Integer operations
	5.2.3.1 Integer arithmetic
	5.2.3.2 Integer dot product
	5.2.3.3 Integer matrix multiply operations
	5.2.3.4 Integer comparisons
	5.2.3.5 Vector address calculation

	5.2.4 Bitwise operations
	5.2.4.1 Bitwise logical operations
	5.2.4.2 Bitwise shift, reverse, and count

	5.2.5 Floating-point operations
	5.2.5.1 Floating-point arithmetic
	5.2.5.2 Floating-point multiply accumulate
	5.2.5.3 Floating-point complex arithmetic
	5.2.5.4 Floating-point rounding and conversion
	5.2.5.5 Floating-point comparisons
	5.2.5.6 Floating-point transcendental acceleration
	5.2.5.7 Floating-point indexed multiplies
	5.2.5.8 Floating-point matrix multiply operations
	5.2.5.9 BFloat16 floating-point multiply instructions

	5.2.6 Predicate operations
	5.2.6.1 Predicate initialization
	5.2.6.2 Predicate move operations
	5.2.6.3 Predicate logical operations
	5.2.6.4 FFR predicate handling
	5.2.6.5 Predicate counts
	5.2.6.6 Loop control
	5.2.6.6.1 Simple loops
	5.2.6.6.2 Data-dependent loops

	5.2.6.7 Serialized operations

	5.2.7 Move operations
	5.2.7.1 Element permute and shuffle
	5.2.7.2 Unpacking instructions
	5.2.7.3 Predicate permute
	5.2.7.4 Index vector generation
	5.2.7.5 Move prefix

	5.2.8 Reduction operations
	5.2.8.1 Horizontal reductions

	5.3 SVE2 ISA functional groups
	5.3.1 Down-counting Loops
	5.3.2 Constructive multiply
	5.3.3 Uniform DSP operations
	5.3.4 Widening DSP operations
	5.3.5 Narrowing DSP operations
	5.3.6 Unary narrowing operations
	5.3.7 Non-widening pairwise arithmetic
	5.3.8 Widening pairwise arithmetic
	5.3.9 Bitwise ternary logical instructions
	5.3.10 Large integer arithmetic
	5.3.11 Multiplication by indexed elements
	5.3.12 Complex integer arithmetic
	5.3.12.1 Uniform complex integer arithmetic
	5.3.12.2 Widening complex integer arithmetic
	5.3.12.3 Complex integer dot product

	5.3.13 Floating-point extra conversions
	5.3.14 Floating-point widening multiply-accumulate
	5.3.15 Floating-point integer binary logarithm
	5.3.16 Cross-lane match detect
	5.3.16.1 Vector Histogram Count
	5.3.16.2 Character match
	5.3.16.3 Contiguous conflict detection

	5.3.17 Bit permutation
	5.3.18 Polynomial arithmetic
	5.3.19 Vector concatenation
	5.3.20 Extended table lookup/permute
	5.3.21 Non-temporal gather/scatter
	5.3.22 Cryptography support
	5.3.22.1 AES-128 instructions
	5.3.22.2 SHA-3 instructions
	5.3.22.3 SM4 instructions

	6 SVE Debug
	6.1 Self-hosted debug
	6.1.1 SVE Watchpoint exceptions
	6.1.2 MOVPRFX instruction behavior in self-hosted debug

	6.2 External debug
	6.2.1 Instructions in Debug state

	7 SVE Performance Monitor Usage
	7.1 Interesting combinations of SVE events
	7.1.1 Scalar-equivalent operations
	7.1.2 Bytes loaded and stored
	7.1.3 Overall vector utilization
	7.1.4 Vector loop efficiency

	8 SVE instruction categories
	8.1 Data movement instructions
	8.1.1 Data movement (scalar)
	8.1.2 Data movement (Advanced SIMD)
	8.1.3 Data movement (SVE)

	8.2 Integer instructions
	8.2.1 Integer (scalar)
	8.2.1.1 Integer uniform arithmetic (scalar)
	8.2.1.2 Integer widening arithmetic
	8.2.1.3 Integer bitwise operations (scalar)

	8.2.2 Integer (Advanced SIMD)
	8.2.2.1 Integer uniform arithmetic (Advanced SIMD)
	8.2.2.2 Integer widening arithmetic (Advanced SIMD)
	8.2.2.3 Integer narrowing arithmetic (Advanced SIMD)
	8.2.2.4 Integer bitwise operations (Advanced SIMD)
	8.2.2.5 Integer comparisons (Advanced SIMD)
	8.2.2.6 Integer reductions (Advanced SIMD)

	8.2.3 Integer (SVE)
	8.2.3.1 Integer uniform arithmetic (SVE)
	8.2.3.2 Integer bitwise operations (SVE)
	8.2.3.3 Integer comparisons (SVE)
	8.2.3.4 Integer reductions (SVE)
	8.2.3.5 Element count and increment vector (SVE)

	8.3 Floating-point instructions
	8.3.1 Floating-point (scalar)
	8.3.1.1 Floating-point arithmetic (scalar)
	8.3.1.2 Floating-point miscellaneous (scalar)
	8.3.1.3 Floating-point comparisons (scalar)

	8.3.2 Floating-point (Advanced SIMD)
	8.3.2.1 Floating-point arithmetic (Advanced SIMD)
	8.3.2.2 Floating-point miscellaneous (Advanced SIMD)
	8.3.2.3 Floating-point comparisons (Advanced SIMD)
	8.3.2.4 Floating-point reductions (Advanced SIMD)

	8.3.3 Floating-point (SVE)
	8.3.3.1 Floating-point arithmetic (SVE)
	8.3.3.2 Floating-point miscellaneous (SVE)
	8.3.3.3 Floating-point comparisons (SVE)
	8.3.3.4 Floating-point reductions (SVE)

	8.4 Floating-point conversions
	8.4.1 Float\leftrightarrowFloat convert (scalar)
	8.4.2 Float\leftrightarrowFloat convert (Advanced SIMD)
	8.4.3 Float\leftrightarrowFloat convert (SVE)
	8.4.4 Float\leftrightarrowInt convert (scalar)
	8.4.5 Float\leftrightarrowInt convert (Advanced SIMD)
	8.4.6 Float\leftrightarrowInt convert (SVE)

	8.5 Floating-point or integer instructions
	8.5.1 Floating-point or integer arithmetic (scalar)
	8.5.2 Floating-point or integer arithmetic (Advanced SIMD)
	8.5.3 Floating-point or integer arithmetic (SVE)

	8.6 Non-SIMD SVE instructions
	8.6.1 Element count and increment scalar (SVE)
	8.6.2 Compare and terminate (SVE)

	8.7 Predicate instructions
	8.7.1 Predicate move (SVE)
	8.7.2 Predicate counted loop (SVE)
	8.7.3 Predicate bitwise logical operations (SVE)
	8.7.4 Predicate scan (SVE)
	8.7.5 Predicate count and increment scalar (SVE)
	8.7.6 Predicate count and increment vector (SVE)

	8.8 Cryptographic instructions
	8.8.1 Cryptographic (Advanced SIMD)

	8.9 Load/store/prefetch instructions
	8.9.1 Load/store (Advanced SIMD and floating-point scalar)
	8.9.1.1 Contiguous elements load/store (Advanced SIMD)
	8.9.1.2 Contiguous structures load/store (Advanced SIMD)
	8.9.1.3 Single element/structure load/store (Advanced SIMD)
	8.9.1.4 Single element/structure replicating load (Advanced SIMD)
	8.9.1.5 Register load/store (Advanced SIMD and floating-point scalar)

	8.9.2 Load/store/prefetch (SVE)
	8.9.2.1 Contiguous elements load/store/prefetch (SVE)
	8.9.2.2 Contiguous structures load/store (SVE)
	8.9.2.3 Gather/scatter load/store/prefetch (SVE)
	8.9.2.4 Single element load and replicate (SVE)
	8.9.2.5 Single quadword load and replicate (SVE)
	8.9.2.6 Register load/store (SVE)

	9 Glossary

