ARMvV8-M Architecture
Reference Manual

ARM

Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved.
ARM DDI 0553A.f (ID092917)

ARMv8-M Architecture Reference Manual

Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved.
Release Information

The following releases of this document have been made.

Change History

Date Issue Confidentiality Change

29 March 2016 Aa Confidential - Beta Beta release, limited circulation
28 July 2016 Ab Non-confidential - Beta Beta release

30 September 2016 Ac Non-confidential - EAC EAC release

30 November 2016 Ad Non-confidential - EAC Second EAC release

02 June 2017 Ae Non-confidential - EAC Third EAC release

29 September 2017 Af Non-confidential - EAC Fourth EAC release

The copyright statement reflects the fact that some draft issues of this document have been released, to a limited circulation.
Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained
in this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR
PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to,
and has undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or
other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure
of this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof
is not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s customers
is not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document
at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or signed written
agreement covering this document with Arm, then the click through or signed written agreement prevails over and supersedes the
conflicting provisions of these terms. This document may be translated into other languages for convenience, and you agree that
if there is any conflict between the English version of this document and any translation, the terms of the English version of the
Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the
trademarks of their respective owners. Please follow Arm’s trademark usage guidelines at
http://www.arm.com/company/policies/trademarks.

Copyright © 2015-2017 Arm Limited (or its affiliates). All rights reserved.

Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.f
Non-Confidential ID092917

Arm Limited. Company 02557590 registered in England.
110 Fulbourn Road, Cambridge, England CB1 9NJ.
LES-PRE-20349

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this document to.

Product Status
The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com

ARM DDI 0553A.f
ID092917

Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved.
Non-Confidential

Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved.
Non-Confidential

ARM DDI 0553A.f
ID092917

Contents

ARMv8-M Architecture Reference Manual

Preface
ADOUL ThiS DOOKeeeiieee et e e e e e e e e e eeaaes Xii
{0 153 o IR 1= oo o PR Xiii
CONVENLIONS ...ttt e e e ettt reeeeeeeeaeaeeeeeeeaesssansssssrsresnnnenes XV
AdditioNal TEAAINGveeiiie e XVii
LY=o | o= Lo SRR Xviii

Part A ARMv8-M Architecture Introduction and Overview
Chapter A1 Introduction
A1.A1 Document layout and terminologyccccuieieiiiiiiiiee e A1-22
A1.2 About the ARMv8 architecture, and architecture profilesccccccoviiiiiiiiinies A1-24
A1.3 The ARMV8-M architecture profile ... A1-25
Al4 ARMVB-M Variantsoooiiiiiiieei ettt A1-27
Part B ARMv8-M Architecture Rules
Chapter B1 Resets
B1.1 Resets, Cold reset, and Warm reSeteeeiiiiiiiiiiiieiceee e B1-32
Chapter B2 Power Management
B2.1 POWEr MaNagEemMENToiiiiiiiiiie s B2-34
Chapter B3 Programmers’ Model
B3.1 PE modes, Thread mode and Handler modeccooovvvvivvuieeeeiieeeeeeeeeinn, B3-39
B3.2 Privileged and unprivileged executioncccoceiiiiiiiiiiii e B3-40
ARM DDI 0553A.f Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. v

ID092917

Non-Confidential

Contents

B3.3

B3.4

B3.5

B3.6

B3.7

B3.8

B3.9

B3.10
B3.11
B3.12
B3.13
B3.14
B3.15
B3.16
B3.17
B3.18
B3.19
B3.20
B3.21
B3.22
B3.23
B3.24
B3.25
B3.26
B3.27
B3.28
B3.29
B3.30

B3.31
B3.32
B3.33

REGISTEIS ...t B3-41
Special-purpose CONTROL registerc.ccueiiiiiiiiiieeeee e B3-44
XPSR, APSR, IPSR, and EPSRccciiiiiiiiieieeee e B3-45
Security states, Secure state, and Non-secure stateccocccveiciieiieeicneeee. B3-49
Security states, register banking between themcccoooiiiiiii B3-50
SEACK POINTET .ot B3-51
Exception numbers and exception priority nUmbersccccccviiiiiiiiiiiecne, B3-53
Exception enable, pending, and active bitscccoceiiiiini B3-56
Security states, exception banKingccceiiiiieiiie i B3-58
FAUIS .ot e e e e e e e B3-61
L0417 1 4 To To = PRSPPI B3-64
Secure address ProteClioNcceoiiiiiiiiiiie e B3-68
Security state tranSitioNScooiiiiiiiii B3-69
Function calls from Secure state to Non-secure statecccccoiiiiiiis B3-71
Function returns from Non-secure stateccccceeviieniiiienc e B3-72
Exception handlingoooiiiiieei e B3-74
Exception entry, context stacking ... B3-76
Exception entry, register clearing after context stackingccccccvviiiinininnn. B3-81
Stack limit ChECKS ... B3-82
EXCEPLION FEIUMN ..o B3-85
Integrity SIGNAtUre B3-88
Exceptions during exception entry ... B3-89
Exceptions during exception returncccceveveieiee e B3-90
Tail-ChaiNINGeeeeii e e B3-91
Exceptions, instruction resume, or instruction restartcccccceiiiiiiiis B3-93
V= Tex (o] = o) [PR B3-96
Hardware-controlled priority escalation to HardFaultccoocciiis B3-98
Special-purpose mask registers, PRIMASK, BASEPRI, FAULTMASK, for configurable
[T o] 14V oo ToE-] 11 T RSP B3-99
LOCKUD ettt B3-101
Context Synchronization EVENt ..o B3-108
COPrOCESSON SUPPOMT ...eiiitiieiiiiestee et ee e sttt ee e e st s e e st e e sine e seneeeennee e B3-109

Chapter B4 Floating-point Support
B4.1 The optional Floating-point Extension, FPV5 ..., B4-112
B4.2 About the Floating-point Status and Control Registerscccccviiviiiinnnnee. B4-114
B4.3 Registers for floating-point data processing, S0-S31, or D0O-D15 B4-115
B4.4 Floating-point standards and terminologycccccevieeiiiieee e B4-116
B4.5 Floating-point data representable ... B4-117
B4.6 Floating-point encoding formats, half-precision, single-precision, and double-precision
B4-118
B4.7 The IEEE 754 floating-point eXCeptionsccccoiiiiiiiiieiiee e B4-121
B4.8 The FIush-t0-Zero Modecoooiiiiiiiii e B4-122
B4.9 The Default NaN mode, and NaN handlingccccoooiieeiiiiiiie e B4-124
B4.10 The Default NaN ... e B4-125
B4.11 Combinations of floating-point exceptionsccccvviiiiiiiiiiii i B4-126
B4.12 Priority of floating-point exceptions relative to other floating-point exceptions .. B4-127
Chapter B5 Memory Model

B5.1 MEMOIY GCCESSESeeiiiiiieitii ettt ettt e e B5-131
B5.2 AAArESS SPACE ...eeiiiiiiieiiii ettt B5-132
B5.3 ENI@NNESS ... e B5-133
B5.4 AlIGNMENE DENAVIOT ... e e B5-135
B5.5 F N (o)1 1 o7) Y PURUSPPPPRRIN B5-136
B5.6 Concurrent modification and execution of instructionsc.ccoccciiiiiniienns B5-138
B5.7 ACCESS FIGNES . B5-140
B5.8 Observability of Memory aCCeSSESoccoiiiiiiiiiiiei e B5-142
B5.9 Completion Of MEMOIY ACCESSES ...c.ciuviiiriiiieiieeiiieeeree e seee et e e e e aeeeene B5-144
B5.10 Ordering requirements for MEmMOry aCCESSEScccuvireeeiiiuiieiieiiiiereeeeeieeeeenn B5-145

Vi Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.f

Non-Confidential 1D092917

Contents

B5.11 Ordering of impliCit MEMOry aCCESSESoiiviiiiiiiiiiiiiie e B5-146
B5.12 Ordering of expliCit MemMOry aCCeSSESccovvueiiiiiiiiiriiciee e B5-147
B5.13 MemOry DArTIiErs ..o e B5-148
B5.14 NOIMAl MEMOIY ... e s e e e e snneeeeeean B5-152
B5.15 Cacheability attributesccooouiiiiiii e B5-154
B5.16 DEVICE MEMOIY ..ottt ettt ettt et e et sne e e s nnee s B5-155
B5.17 Device memory attributesocooiiiiiiiiii e B5-157
B5.18 Shareability dOMaINSccoiiiiiiiiie e B5-161
B5.19 Shareability attributescoooiiiiiiie e B5-163
B5.20 Memory access restriCtionsooii i B5-164
B5.21 Mismatched memory attributescccccoiiiiiieiicie e B5-165
B5.22 Load-Exclusive and Store-Exclusive accesses to Normal memory B5-167
B5.23 Load-Acquire and Store-Release accesses to memorycccccevvvveerieeeininennn B5-168
B5.24 CACNES ..ottt et B5-170
B5.25 Cache identificationccoiiiiiiiii e B5-172
B5.26 Cache VISIDIlItYcooiiiiiiiiiiii e B5-173
B5.27 CaChe CONEIENCYooiiiiiiiiiiec et e et e e e s araee e B5-174
B5.28 Cache enabling and disSablingccccuiiiiiiiiiiii e B5-175
B5.29 Cache behavior at reset ..o B5-176
B5.30 Behavior of Preload Data (PLD) and Preload Instruction (PLI) instructions with caches
B5-177
B5.31 Branch prediClors ...t e e e B5-178
B5.32 Cache maintenance Operationsccccccciiiieiieiiiiie e B5-179
B5.33 Ordering of cache maintenance operationsccoccciiiieiiniiiiic e B5-182
B5.34 Branch predictor maintenance operationscccceiiiiiiii i B5-183
Chapter B6 The System Address Map
B6.1 SyStem addreSS MAPooiiiiiiiiii e B6-186
B6.2 The System region of the system address mapcccccoeeiiiiiiiiiiiie e, B6-188
B6.3 The System Control SPace (SCS) ...ooeiciiiiieeiee e B6-190
Chapter B7 Synchronization and Semaphores
B7.1 Exclusive access inStruCtioNScovoviiiiiiiii e B7-192
B7.2 The [0Cal MONITOIScccviiiieie e B7-194
B7.3 The global MONITOr ... e e B7-196
B7.4 Exclusive access instructions and the monitorsc.cccceviiiieeeiecee B7-200
B7.5 Load-Exclusive and Store-Exclusive instruction constraintsccccceceeenee. B7-201
Chapter B8 The ARMv8-M Protected Memory System Architecture
B8.1 Memory Protection Unitoouiiiiiiii e B8-204
B8.2 Security attribution ... B8-206
B8.3 Security attribution unit (SAU)ooiiiiie e B8-209
B8.4 IMPLEMENTATION DEFINED Attribution Unit (IDAU)cocvoieeiiiiiiceee B8-211
Chapter B9 The System Timer, SysTick
B9.1 The system timer, SYSTICK ...oooiviiiie e B9-214
Chapter B10 Nested Vectored Interrupt Controller
B10.1 NVIC defiNition ...ccceiiiiiiiiiiesieeie et B10-218
B10.2 NVIC OPErationooiiiiiiiiiiie ettt e e et e et e e e ee e e e snraeeas B10-219
Chapter B11 Debug
B11.1 ADOUE EDUQG .ooiiiiiiiie e e B11-222
B11.2 Accessing debug featurescceoiiiiciiiiii i B11-227
B11.3 Debug authentication interfacecccviiiiiiii e B11-231
B11.4 Debug event DENAVIOrcoiiiiiiiiiii e B11-239
B11.5 Debug Statecociiiiiiiiii s B11-252
B11.6 Exiting Debug Statec.uoiiiiii e B11-254
ARM DDI 0553A.f Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. vii

1D092917

Non-Confidential

Contents

B11.7 MUltiproCESSOr SUPPOITeiiiiiiiiiiie ittt ettt B11-255
Chapter B12 Debug and Trace Components
B12.1 Instrumentation Trace MacroCellcccooriiiiiiiiiiiii e B12-258
B12.2 Data Watchpoint and Trace unitc.cooooiiiiiiiii e B12-268
B12.3 Embedded Trace MacroCelloooeuiiiiiiiiiiiiiiieee e B12-289
B12.4 Trace Port Interface Uitcccooiiiiiiioiie e B12-291
B12.5 Flash Patch and Breakpoint unitccccccooiiiiiiiiiiie e B12-293
Part C ARMv8-M Instruction Set
Chapter C1 Instruction Set Overview
C1.1 1] (W o1 o) =Y S C1-300
Cc1.2 Format of instruction descriptionsccoceiiiiiiiie e C1-301
C1.3 Pseudocode for instruction descriptionscccceeiiiiiiee i C1-304
c14 Unified Assembler Languagecceeoiiiiiiiiiniieeieee e C1-306
C1.5 Standard assembler syntax fieldsccccooiriiiiiiiiiin e C1-308
C1.6 Conditional @XECULIONoiiiiiiie e C1-309
C1.7 Instruction set encoding informationcccoooeiii i C1-313
C1.8 Modified immediate CONStaNtScccoeiiiiiiiiiiee e C1-316
C1.9 NOP-compatible hint iNStruCtioNSccciuiiiiiiiie e C1-317
C1.10 Instruction set, interworking SUPPOItcooiiiiiiiiiii e C1-318
C1.11 Instruction set, interstating SUPPOItcoooiiiiiiiiiii e C1-319
C1.12 SBZ or SBO fields in inStruCtionScceeiiiiiiie e C1-320
Chapter C2 Instruction Specification
C2.1 Top level T32 instruction set encodingcoccveiiiieiiiiieiece e C2-322
C2.2 16-bit T32 instruction enNcodingcccevuieiiiii i C2-323
C2.3 32-bit T32 instruction €NCOdiNgc.cceoiiiriiieieie e C2-334
C2.4 Alphabetical list Of INStrUCIONSccooiiiiiiiieiiee e C2-372
Part D ARMv8-M Registers
Chapter D1 Register Specification
D1.1 ReGISTEr INAEXo D1-856
D1.2 Alphabetical list Of regiSterscccooiiiiiiiiiee e D1-872
Part E ARMv8-M Pseudocode
Chapter E1 ARM Pseudocode Definition
E1.1 About the ARM pSeUdOCOAEcoooiuiiiiiieiiiie et e e E1-1184
E1.2 Data tYPES .. E1-1185
E1.3 (0] 01=Tx= 1 (o] £ RO PPPP E1-1190
E1.4 Statements and control StrUCtUrESccuoiiiiiiiiii e E1-1196
E1.5 BUIlt-in TUNCHIONS ..o e E1-1202
E1.6 ARM pseudocode definition iNdeXccccveiiiiiiieiiniiiiicceee e E1-1205
E1.7 Additional fuNCHONSo E1-1208
Chapter E2 Pseudocode Specification
E2.1 Alphabetical Pseudocode List ... E2-1210
viii Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.f
Non-Confidential ID092917

Part F

Chapter F1

Debug Packet Protocols

ITM and DWT Packet Protocol Specification
F1.1 About the ITM and DWT packetsccccuveiiiieiieeieeic e
F1.2 Alphabetical list of DWT and ITM packetscccccoeviieeieiiiiieecccceee e

Glossary

Contents

ARM DDI 0553A.f
1D092917

Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved.
Non-Confidential

Contents

X Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.f
Non-Confidential ID092917

Preface

This preface introduces the ARMvS-M Architecture Reference Manual. Tt contains the following sections:

About this book on page Xii.
Using this book on page xiii.
Conventions on page Xv.
Additional reading on page xvii.
Feedback on page xviii.

ARM DDI 0553A.f
ID092917

Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved.
Non-Confidential

Xi

Preface
About this book

About this book

This manual documents the microcontroller profile of version 8 of the ARM® Architecture, the ARMv8-M
architecture profile. For short definitions of all the ARMv8 profiles, see About the ARMvS architecture, and
architecture profiles on page Al1-24.

This manual has the following parts:

Part A

Part B

Part C

PartD

Part E

Part F

Provides an introduction to the ARMv8-M architecture.
Describes the architectural rules.

Describes the T32 instruction set.

Describes the registers.

Describes the ARMv8-M pseudocode.

Describes the packet protocols.

Xii

Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved.
Non-Confidential

ARM DDI 0553A.f
ID092917

Preface
Using this book

Using this book

The information in this manual is organized into parts, as described in this section.

Part A, ARMv8-M Architecture Introduction and Overview

Part A gives an overview of the ARMvS-M architecture profile, including its relationship to the other ARM PE
architectures. It introduces the terminology that describes the architecture, and gives an overview of the optional
architectural extensions. It contains the following chapter:

Chapter Al Introduction
Read this for an introduction to the ARMv8-M architecture.

Part B, ARMv8-M Architecture Rules

Part B describes the architecture rules. It contains the following chapters:

Chapter B1 Resets

Read this for a description of the reset rules.
Chapter B2 Power Management

Read this for a description of the power management rules.
Chapter B3 Programmers’ Model

Read this for a description of the programmers model rules.

Chapter B4 Floating-point Support
Read this for a description of the floating-point support rules.

Chapter BS Memory Model

Read this for a description of the memory model rules.
Chapter B6 The System Address Map

Read this for a description of the system address map rules.
Chapter B7 Synchronization and Semaphores

Read this for a description of the rules on non-blocking synchronization of shared memory.
Chapter B8 The ARMv8-M Protected Memory System Architecture

Read this for a description of the protected memory system architecture rules.

Chapter B9 The System Timer, SysTick

Read this for a description of the system timer rules.

Chapter B10 Nested Vectored Interrupt Controller
Read this for a description of the Nested Vectored Interrupt Controller (NVIC) rules.
Chapter B11 Debug

Read this for a description of the debug rules.

Chapter B12 Debug and Trace Components

Read this for a description of the debug and trace component rules.

ARM DDI 0553A.f Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. Xiii
1D092917 Non-Confidential

Preface
Using this book

Part C, ARMv8-M Instructions
Part C describes the instructions. It contains the following chapters:

Chapter C1 Instruction Set Overview

Read this for an overview of the instruction set and the instruction set encoding.

Chapter C2 Instruction Specification

Read this for a description of each instruction, arranged by instruction mnemonic.

Part D, ARMv8-M Registers
Part D describes the registers. It contains the following chapter:

Chapter D1 Register Specification

Read this for a description of the registers.

Part E, ARMv8-M Pseudocode

Part E describes the pseudocode. It contains the following chapters:

Chapter E1 ARM Pseudocode Definition

Read this for a definition of the pseudocode that ARM documentation uses.

Chapter E2 Pseudocode Specification

Read this for a description of the pseudocode.

Part F, Packet Protocols
Part F describes the packet protocols. It contains the following chapter:

Chapter F1 ITM and DWT Packet Protocol Specification

Read this for a description of the protocol for packets that are used to send the data generated by the

ITM and DWT to an external debugger.

Xiv Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved.
Non-Confidential

ARM DDI 0553A.f
ID092917

Conventions

Preface
Conventions

The following sections describe conventions that this book can use:

. Typographic conventions.

. Signals.

. Numbers.

. Pseudocode descriptions on page xvi.

. Assembler syntax descriptions on page Xvi.

Typographic conventions

Signals

Numbers

The typographical conventions are:

italic Introduces special terminology, and denotes citations.
bold Denotes signal names, and is used for terms in descriptive lists, where appropriate.
monospace Used for assembler syntax descriptions, pseudocode, and source code examples.

Also used in the main text for instruction mnemonics and for references to other items appearing in
assembler syntax descriptions, pseudocode, and source code examples.
SMALL CAPITALS

Used for a few terms that have specific technical meanings, and that are included in the Glossary.

Colored text Indicates a link. This can be:
. A URL, for example http://infocenter.arm.com.

. A cross-reference, that includes the page number of the referenced information if it is not on
the current page, for example, Standard assembler syntax fields on page C1-308.

. A link, to a chapter or appendix, or to a glossary entry, or to the section of the document that
defines the colored term, for example ADC (immediate).

In general this specification does not define processor signals, but it does include some signal examples and
recommendations.

The signal conventions are:

Signal level The level of an asserted signal depends on whether the signal is active-HIGH or
active-LOW. Asserted means:

. HIGH for active-HIGH signals.
. LOW for active-LOW signals.

Lowercase n At the start or end of a signal name denotes an active-LOW signal.

Numbers are normally written in decimal. Binary numbers are preceded by @b, and hexadecimal numbers by 0x. In
both cases, the prefix and the associated value are written in a monospace font, for example 0xFFFF0000.

For both binary and hexadecimal numbers, where a bit is represented by the letter x, the value is irrelevant. For
example a value expressed as @blx can be either 0b11 or 0b10.

To improve readability, long numbers can be written with an underscore separator between every four characters,
for example 0xFFFF_0000_0000_0000. Ignore any underscores when interpreting the value of a number.

ARM DDI 0553A.f
1D092917

Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. XV
Non-Confidential

Preface
Conventions

Pseudocode descriptions
This book uses a form of pseudocode to provide precise descriptions of the specified functionality. This pseudocode
is written in a monospace font, and is described in Part E ARMvS-M Pseudocode.

Assembler syntax descriptions

This book contains numerous syntax descriptions for assembler instructions and for components of assembler
instructions. These are shown in a monospace font, and use the conventions described in 4 list of the assembler

symbols for the instruction on page C1-302.

ARM DDI 0553A.f

Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved.
ID092917

XVvi
Non-Confidential

Preface
Additional reading

Additional reading

This section lists relevant publications from ARM and third parties.

See the Infocenter http://infocenter.arm.com, for access to ARM documentation.

ARM publications

Other publications

ARM" Debug Interface v5 Architecture Specification (ARM IHI 0031).

ARM® CoreSight™ Architecture Specification (ARM IHI 0029).

ARM* Embedded Trace Macrocell Architecture Specification ETMv4.0 to ETMv4.3 (ARM IHI 0064).
Embedded Trace Macrocell® ETMv1.0 to ETMv3.5 Architecture Specification (ARM IHI 0014).
ARM™v6-M Architecture Reference Manual (ARM DDI 0419).

ARM™v7-M Architecture Reference Manual (ARM DDI 0403).

ARM* Architecture Reference Manual, ARMVS, for ARMvS-A architecture profile (ARM DDI 0487).

The following publications are referred to in this manual, or provide more information:

ANSI/IEEE Std 754-1985 and ANSI/IEEE Std 754-2008, IEEE Standard for Binary Floating-Point
Arithmetic. Unless otherwise indicated, references to IEEE 754 refer to either issue of the standard.

Note
This document does not adopt the terminology defined in the 2008 issue of the standard.

JEP106, Standard Manufacturers Identification Code, JEDEC Solid State Technology Association.

ARM DDI 0553A.f
1D092917

Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. Xvii
Non-Confidential

Preface
Feedback

Feedback

ARM welcomes feedback on its documentation.

Feedback on this book

If you have comments on the content of this book, send an e-mail to errata@arm.com. Give:

. The title.

. The number, ARM DDI 0553A.f.

. The page numbers to which your comments apply.

. The rule identifiers to which your comments apply, if applicable.
. A concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.

Note

ARM tests PDFs only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the appearance or behavior of
any document when viewed with any other PDF reader.

Xviii Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.f
Non-Confidential ID092917

Part A

ARMv8-M Architecture Introduction and Overview

Chapter A1
Introduction

This chapter introduces the ARMv8 architecture, the architecture profiles it defines, and the ARMv8-M architecture
profile defined by this manual. It contains the following sections:

. Document layout and terminology on page A1-22.

. About the ARMvS architecture, and architecture profiles on page Al1-24.
. The ARMvS-M architecture profile on page A1-25.

. ARMVS-M variants on page A1-27.

ARM DDI 0553A.f Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. A1-21
1D092917 Non-Confidential

A1 Introduction

A1.1 Document layout and terminology

A11 Document layout and terminology
This section describes the structure and scope of, and the terminology that is used in, this manual. It does not
constitute part of the manual, and must not be interpreted as implementation guidance.
A1.1.1 Structure of the document
This architecture manual describes the behavior of the processing element as a set of individual rules.
Each rule is clearly identified by the letter R, followed by a random group of subscript letters that do not reflect any
intended order or priority, for example Rpsyy. In the following example, Rgsyj is simply a random rule identifier
that has no significance apart from uniquely identifying a rule in this manual.
Identifier Rule
Ryt The following data accesses are single-copy atomic:
e All byte accesses.
e All halfword accesses to halfword-aligned locations.
e All word accesses to word-aligned locations.
Rules must not be read in isolation, and where more than one rule relating to a particular feature exists, individual
rules are grouped into sections and subsections to provide the proper context. Where appropriate, these sections
contain a short introduction to aid the reader.
An implementation that conforms to all the rules described in this specification constitutes an ARMv8-M compliant
implementation. An implementation whose behavior deviates from these rules is not compliant with the ARMv8-M
architecture.
Some sections contain additional information and guidance that do not constitute rules. This information and
guidance is provided purely as an aid to understanding the architecture. Information statements are clearly identified
by the letter I, followed by a random group of subscript letters, for example IprTp.
Note
ARM strongly recommends that implementers read all chapters and sections of this document to ensure that an
implementation is compliant.
An implementation that conforms to all the rules described in this specification but chooses to ignore any additional
information and guidance is compliant with the ARMv8-M architecture.
In the following parts of this manual, architectural rules are not identified by a specific prefix and a random group
of subscript letters:
. Part C ARMvS-M Instruction Set.
. Part D ARMvS8-M Registers.
. Part E ARMv8-M Pseudocode.
. Part F Debug Packet Protocols.
A1.1.2 Scope of the document
This manual contains only rules and information that relate specifically to the ARMvS-M architecture. It does not
include any information about other ARM architectures, nor does it describe similarities between ARMv8-M and
other architectures.
A1-22 Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.f

Non-Confidential 1D092917

A1 Introduction
A1.1 Document layout and terminology

Readers must not assume that the rules provided in this specification are applicable to an ARMv7-M or ARMv6-M
implementation, nor must they assume that the rules that are applicable to an ARMv7-M or ARMv6-M
implementation are equally applicable to an ARMv8-M implementation.

A113 Intended audience

This manual is written for users who want to design, implement, or program an ARMv8-M PE in a range of
ARM-compliant implementations from simple uniprocessor implementations to complex multiprocessor systems.
It does not assume familiarity with previous versions of the M-profile architecture.

The manual provides a precise, accurate, and correct set of rules that must be followed in order for an ARMv8-M
implementation to be architecturally compliant. It is an explicit reference manual, and not a general introduction to,
or user guide for, the ARMv8-M architecture.

A1.1.4 Terminology, phrases

This subsection identifies some standard words and phrases that are used in the ARM architecture documentation.
These words and phrases have an ARM-specific definition, which is described in this section.

Architecturally visible
Something that is visible to the controlling agent. The controlling agent might be software.

ARM recommends
A particular usage that ensures consistency and usability. Following all the rules listed in this
manual leads to a predictable outcome that is compliant with the architecture, but might produce an
unexpected output. Adhering to a recommendation ensures that the output is as expected.

ARM strongly recommends
Something that is essentially mandatory, but that it is outside the scope of the architecture described
in this manual. Failing to adhere to a strong recommendation can break the system, although the PE
itself remains compliant with the architecture that is described in this manual.

Finite time
An action will occur at some point in the future. Finite time does not make any statement about the
time involved. However, delaying an action longer than is absolutely necessary might have an
adverse impact on performance.

Permitted

Allowed behavior.
Required

Mandatory behavior.
Support

The implementation has implemented a particular feature.

A1.1.5 Terminology, ARMv8-M specific terms

For definitions of ARMv8-M specific terms, see the Glossary.

ARM DDI 0553A.f Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. A1-23
1D092917 Non-Confidential

A1 Introduction

A1.2 About the ARMv8 architecture, and architecture profiles

A1.2 About the ARMv8 architecture, and architecture profiles
ARMVS-M is documented as one of a set of architecture profiles.
ARM defines three architecture profiles:
A Application profile:

. Supports a Virtual Memory System Architecture (VMSA) based on a Memory Management
Unit (MMU).

. Supports the A64, A32, and T32 instruction sets.

R Real-time profile:

. Supports a Protected Memory System Architecture (PMSA) based on a Memory Protection
Unit (MPU).

. Supports the A32 and T32 instruction sets.

M Microcontroller profile, described in this manual:

. Implements a programmers' model designed for low-latency interrupt processing, with
hardware stacking of registers and support for writing interrupt handlers in high-level
languages.

. Optionally implements a variant of the R-profile PMSA.

. Supports a variant of the T32 instruction set.

This Architecture Reference Manual describes only the ARMvS-M profile.
A1-24 Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.f

Non-Confidential 1D092917

A1 Introduction
A1.3 The ARMv8-M architecture profile

A13 The ARMv8-M architecture profile

The M-profile architecture includes:

. The opportunity to include simple pipeline designs offering leading edge system performance levels in a
broad range of markets and applications.

. Highly deterministic operation:
— Single or low cycle count execution.
— Minimal interrupt latency, with short pipelines.
— Capable of cacheless operation.

. Excellent targeting of C/C++ code. This aligns with the ARM programming standards in this area:
— Exception handlers are standard C/C++ functions, entered using standard calling conventions.

. Design support for deeply embedded systems:

— Low pincount devices.
. Support for debug and software profiling for event-driven systems.

The simplest ARMv8.0-M implementation, without any of the optional extensions, is a Baseline implementation,
see ARMvS-M variants on page A1-27. The ARMvS.0-M Baseline offers improvements over previous M-profile
architectures in the following areas:

. The optional Security Extension.
. An improved, optional, Memory Protection Unit (MPU) model.
. Alignment with ARMv8-A and ARMv8-R memory types.

. Stack pointer limit checking.
. Improved support for multi-processing.
. Better alignment with C11 and C11++ standards.

. Enhanced debug capabilities.

A1.3.1 Security Extension

The ARMvVS-M architecture introduces a number of new instructions to the M-profile architecture to support asset
protection. These instructions are only available to implementations that support the Security Extension, see
ARMvS-M variants on page A1-27.

Al1.3.2 MPU model

The ARMVS-M architecture provides a default memory map and permits implementations to include an optional
MPU. The optional MPU uses the Protected Memory System Architecture (PMSAvS8) and contains improved
flexibility in the MPU region definition, see Chapter B8 The ARMvS-M Protected Memory System Architecture.

A1.3.3 Nested Vector Interrupt Controller

The Nested Vector Interrupt Controller (NVIC) is used for integrated interrupt and exception handling and
prioritization. ARMv8-M increases the number of interrupts that can potentially be supported by the NVIC to 480
for external sources, and includes automatic vectoring and priority management, and automatic state preservation.
see Chapter B10 Nested Vectored Interrupt Controller.

A1.3.4 Stack pointers

The ARMVS-M architecture introduces stack limit registers that trigger an exception on a stack overflow. The
number of stack limit registers available to an implementation is determined by the ARMv8-M variant that is
implemented, see Stack pointer on page B3-51.

ARM DDI 0553A.f
1D092917

Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. A1-25
Non-Confidential

A1 Introduction
A1.3 The ARMv8-M architecture profile

A1.3.5 The ARMv8-M instruction set

ARMV8-M only supports execution of T32 instructions. The ARMv8-M architecture adds instructions to support:

. Improved facilitation of execute-only code generation.

. Improved code optimization.

. Exclusive memory access instructions to enhance support for multiprocessor systems.
. Semaphores and atomics (Load-Acquire/Store-Release instructions).

The optional Floating-point (FP) Extension adds floating-point instructions to the T32 instruction set, see
Chapter B4 Floating-point Support.

For more information about the instructions, see Chapter C1 Instruction Set Overview and Chapter C2 Instruction
Specification.

A1.3.6 Debug

The ARMv8-M architecture introduces:

. Enhanced breakpoint and watchpoint functionality.
. Improvements to the Instrumentation Trace Macrocell (ITM).
. Comprehensive trace and self-hosted debug extensions to make embedded software easier to debug and trace.

For more information about debug, see Chapter B11 Debug and Chapter B12 Debug and Trace Components.

A1-26 Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.f
Non-Confidential ID092917

A1 Introduction
A1.4 ARMv8-M variants

Al1.4 ARMv8-M variants

The ARMvVS-M architecture has the following optional extensions, which are abbreviated as follows:

DB

DSP

FP

MPU

ST

The Debug Extension
Note

For details about the individual features that constitute the Debug Extension, see Debug feature
overview on page B11-222.

The Digital Signal Processing Extension.

A PE that implements the DSP Extension must implement the Main Extension.

The Floating-point Extension

A PE that implements the Floating-point Extension must implement the Main Extension.

The FP Extension supports either single-precision floating-point instructions or both
single-precision and double-precision floating-point instructions.

The Main Extension.

Note
. A PE with the Main Extension is also referred to as a Mainline implementation.
. A PE without the Main Extension is also referred to as a Baseline implementation. A Baseline
implementation has a subset of the instructions, registers, and features, of a Mainline
implementation.

. ARMYv7-M compatibility requires the Main Extension.
. ARMv6-M compatibility is provided by all ARMv8-M implementations.

The Memory Protection Unit Extension

The Security Extension

Note

The ARMv8-M Security Extension can also be referred to as ARM® TrustZone® for ARMvS-M.

The System Timer Extension

A table at the end of each section or subsection lists the extensions that an implementation must include in order for
a particular rule to apply. Some extensions depend on the implementation of other extensions, for example FP.

ARM DDI 0553A.f
1D092917

Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. A1-27

Non-Confidential

A1 Introduction
A1.4 ARMv8-M variants

A1-28 Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.f
Non-Confidential ID092917

Part B

ARMv8-M Architecture Rules

Chapter B1

This chapter specifies the ARMvS-M reset rules. It contains the following section:
. Resets, Cold reset, and Warm reset on page B1-32.
ARM DDI 0553A.f Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. B1-31

1D092917 Non-Confidential

B1 Resets
B1.1 Resets, Cold reset, and Warm reset

B1.1 Resets, Cold reset, and Warm reset
RgppL There are two resets:
. Cold reset.
. ‘Warm reset.
Retpe It is not possible to have a Cold reset without also having a Warm reset.
Rennx On a Cold reset, registers that have a defined reset value contain that value.
RoTxw On a Warm reset, some debug register control fields that have a defined reset value remain unchanged, but otherwise

all registers that have a defined reset value contain that value.

RyMHN On a Warm reset, the PE performs the actions that are described by the TakeReset() pseudocode.

Rwszn AIRCR.SYSRESETREQ is required to cause a Warm reset.

Ryrrs For AIRCR.SYSRESETREQ), the architecture does not guarantee that the reset takes place immediately.
See also:

. Chapter B11 Debug.

The following table lists the individual rules in this section and the extensions that must be implemented in order

for the rule to apply.
Rule Arch_itecture Required extensions Notes
version
BDPL From 8.0 None -
CTPC From 8.0 None -
FNNX From 8.0 None -
GTXW From 8.0 None -
YMHN From 8.0 None -
WSZN From 8.0 None -
HFRS From 8.0 None -
B1-32 Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.f

Non-Confidential 1D092917

Chapter B2
Power Management

This chapter specifies the ARMv8-M power management rules. It contains the following section:

. Power management on page B2-34.

ARM DDI 0553A.f Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. B2-33
1D092917 Non-Confidential

B2 Power Management
B2.1 Power management

B2.1 Power management

Ineyr The following instructions and pseudocode functions hint to the PE hardware that it can suspend execution and enter
a low-power state:

. Wait for Event (WFE).
. Wait For Interrupt (WFI).
. Sleep on exit (STeepOnExit).

B2.1.1 The Wait for Event (WFE) instruction

Rpcmu When a WFE instruction is executed, then if the state of the Event register is clear, the PE can suspend execution and
enter a low-power state.

Rupxv When a WFE instruction is executed, then if the state of the Event register is set, the instruction clears the register and
completes immediately.

Rkpnp If the PE enters a low-power state on a WFE instruction, it remains in that low-power state until it receives a WFE
wakeup event. When the PE recognizes a WFE wakeup event, the WFE instruction completes. The following are WFE
wakeup events:

. The execution of a SEV instruction by any PE.

. When SCR.SEVONPEND is 1, any exception entering the pending state.

. Any exception at a priority that would preempt the current execution priority, taking into account any active
exceptions and including the effects of any software-controlled priority booting by AIRCR.PRIS ==1 and
PRIMASK, FAULTMASK, or BASEPRI.

. If debug is enabled, a debug event.

. Any IMPLEMENTATION DEFINED event.

Ryrpc The ARMVS-M architecture does not define the exact nature of the low-power state that is entered on a WFE
instruction, except that it does not cause a loss of memory coherency.

Itzi2 ARM recommends that software always uses the WFE instruction in a loop.

See also:

. Priority model on page B3-64.

. WaitForEvent on page E2-1348.

. SendEvent on page E2-1326.

The following table lists the individual rules in this section and the extensions that must be implemented in order

for the rule to apply.
Rule Arch.ltecture Required extensions Notes
version
DCMH From 8.0 None -
HDXV From 8.0 None -
KDND From 8.0 None -
YRDC From 8.0 None -

B2.1.2 The Event register

IrRpzM The Event register is a single-bit register for each PE in the system.

B2-34 Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.f

Non-Confidential 1D092917

RppBr

Immvzw

Rexwr

[LNFV

B2.1.3

Rurwmy

IcoaL

B2 Power Management
B2.1 Power management

The Event register for a PE is set by any of the following:
. Any WFE wakeup event.

. Exception entry.

. Exception return.

When the Event register is set, it is an indication that an event has occurred since the register was last cleared, and
that the event might require some action by the PE.

A reset clears the Event register.

Software cannot read, and cannot write to, the Event register directly.

See also:

. SetEventRegister on page E2-1327.

. ClearEventRegister on page E2-1219.
. EventRegistered on page E2-1238.

The following table lists the individual rules in this section and the extensions that must be implemented in order
for the rule to apply.

Architecture

Rule . Required extensions Notes
version

BPBR From 8.0 None -

CXMT From 8.0 None -

The Wait for Interrupt (WFI) instruction

When a WFI instruction is executed, the PE can suspend execution and enter a low-power state. If it does, it remains
in that state until it receives a WFI wakeup event. When the PE recognizes a WFI wakeup event, the WFI instruction
completes. The following are WFI wakeup events:

. A reset.

. Any asynchronous exception at a priority that, ignoring the effect of PRIMASK (so that behavior is as if
PRIMASK is 0), would preempt any currently active exceptions.

. An IMPLEMENTATION DEFINED WFI wakeup event.

. If debug is enabled, a debug event.

ARM recommends that software always uses the WFI instruction in a loop.

See also:
. Priority model on page B3-64.
. WaitForInterrupt on page E2-1348.

ARM DDI 0553A.f
1D092917

Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. B2-35
Non-Confidential

B2 Power Management
B2.1 Power management

The following table lists the individual rules in this section and the extensions that must be implemented in order
for the rule to apply.

Rule Arch_ltecture Required extensions Notes
version

HRMIJ From 8.0 None -

B2.1.4 Sleep on exit
RyxGgw It is IMPLEMENTATION DEFINED whether the STeepOnExit() function causes the PE to enter a low-power state during
the return from the only active exception and the PE returns to thread mode.
Remvag The PE enters a low-power state on return from an exception when all the following are true:
. EXC _RETURN.Mode == 1.
. SCR.SLEEPONEXIT == 1.
Rwwpw If the sleep-on-exit function is enabled, it is IMPLEMENTATION DEFINED at which point in the exception return
process the PE enters a low-power state.
Riror The wakeup events for the sleep-on-exit function are identical to the WFI instruction wakeup events.
See also:
. Priority model on page B3-64.
. SleepOnExit on page E2-1331.
. Exception return on page B3-85.
The following table lists the individual rules in this section and the extensions that must be implemented in order
for the rule to apply.
Archi r . .
Rule ¢ _|tectu e Required extensions Notes
version
IXGW From 8.0 None -
CMVG From 8.0 None -
WWDW From 8.0 None -
LLQF From 8.0 None -
B2-36 Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.f

Non-Confidential 1D092917

Chapter B3

Programmers’ Model

This chapter specifies the ARMv8-M programmers’ model architecture rules. It contains the following sections:

PE modes, Thread mode and Handler mode on page B3-39.
Privileged and unprivileged execution on page B3-40.

Registers on page B3-41.

Special-purpose CONTROL register on page B3-44.

XPSR, APSR, IPSR, and EPSR on page B3-45.

Security states, Secure state, and Non-secure state on page B3-49.
Security states, register banking between them on page B3-50.
Stack pointer on page B3-51.

Exception numbers and exception priority numbers on page B3-53.
Exception enable, pending, and active bits on page B3-56.
Security states, exception banking on page B3-58.

Faults on page B3-61.

Priority model on page B3-64.

Secure address protection on page B3-68.

Security state transitions on page B3-69.

Function calls from Secure state to Non-secure state on page B3-71.
Function returns from Non-secure state on page B3-72.

Exception handling on page B3-74.

Exception entry, context stacking on page B3-76.

Exception entry, register clearing after context stacking on page B3-81.
Stack limit checks on page B3-82.

Exception return on page B3-85.

Integrity signature on page B3-88.

Exceptions during exception entry on page B3-89.

ARM DDI 0553A.f
ID092917

Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved.

Non-Confidential

B3-37

B3 Programmers’ Model

. Exceptions during exception return on page B3-90.
. Tail-chaining on page B3-91.

. Exceptions, instruction resume, or instruction restart on page B3-93.

. Vector tables on page B3-96.

. Hardware-controlled priority escalation to HardFault on page B3-98.

. Special-purpose mask registers, PRIMASK, BASEPRI, FAULTMASK, for configurable priority boosting on
page B3-99.

. Lockup on page B3-101.
. Context Synchronization Event on page B3-108.
. Coprocessor support on page B3-109.

B3-38 Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.f
Non-Confidential ID092917

B3 Programmers’ Model

B3.1 PE modes, Thread mode and Handler mode

B3.1 PE modes, Thread mode and Handler mode

Renms

IrpvT

Rrpkp

Remop

There are two PE modes:
. Thread mode.
. Handler mode.

A common usage model for the PE modes is:
Thread mode

Applications.
Handler mode

OS kernel and associated functions, that manage system resources.

The PE handles all exceptions in Handler mode.

Thread mode is selected on reset.

See also:
. Privileged and unprivileged execution on page B3-40.
. Interrupt Program Status Register (IPSR) on page B3-46.

. Security states, Secure state, and Non-secure state on page B3-49.

The following table lists the individual rules in this section and the extensions that must be implemented in order

for the rule to apply.

Architecture

Rule version Required extensions Notes
CNMS From 8.0 None -
RPKP From 8.0 None -
CMQP From 8.0 None -

ARM DDI 0553A.f
1D092917

Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved.

Non-Confidential

B3-39

B3 Programmers’ Model
B3.2 Privileged and unprivileged execution

B3.2 Privileged and unprivileged execution

Rwvrk Thread mode
Execution can be privileged or unprivileged.
Handler mode
Execution is always privileged.

IwcFH CONTROL.nPRIV determines whether execution in Thread mode is unprivileged.
RspoF In a PE without the Main Extension, it is IMPLEMENTATION DEFINED whether CONTROL.nPRIV can be set to 1.
Rjssw Execution privilege can determine whether a resource is accessible.
Ignsc Privileged execution typically has access to more resources than unprivileged execution.
See also:

. PE modes, Thread mode and Handler mode on page B3-39.

The following table lists the individual rules in this section and the extensions that must be implemented in order

for the rule to apply.
Rule Arch.ltecture Required extensions Notes
version
WVRK From 8.0 None -
SBQF From 8.0 M -
JSSW From 8.0 None -
B3-40 Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.f

Non-Confidential 1D092917

B3 Programmers’ Model
B3.3 Registers

B3.3 Registers

Rkast There are the following types of registers:
General-purpose registers, all 32-bit:
. RO-R12 (Rn).
. R13. This is the stack pointer (SP).
. R14. This is the Link Register (LR).
Program Counter, 32-bit:
. R15 is the Program Counter (PC).
Special-purpose registers
. Mask Registers:
— 1-bit exception mask register, PRIMASK.
— 8-bit base priority mask register, BASEPRI.
— 1-bit fault mask register, FAULTMASK.
. A 2-bit, 3-bit, or 4-bit CONTROL register.
. Two 32-bit stack pointer limit registers, MSPLIM and PSPLIM, if the Main Extension is not
implemented the Non-secure versions of these registers are RAZ/WI.
. A combined 32-bit Program Status Register (XPSR), comprising:
— Application Program Status Register (APSR).
— Interrupt Program Status Register (IPSR).
— Execution Program Status Register (EPSR).
Memory-mapped registers
All other registers.
Ioywy A 32-bit combined exception return program status register, RETPSR, contains a payload of the saved state derived
from the XPSR.
IpavL Extensions might add more registers to the base register set.
IgLxF SP refers to the active stack pointer, the Main stack pointer or the Process stack pointer.
RpprT If the Main Extension is implemented, the LR is set to @xFFFFFFFF on Warm reset.
Roumu If the Main Extension is not implemented, the LR becomes UNKNOWN on a Warm reset.
Rpins The PC is loaded with the reset handler start address on Cold reset and Warm reset.
RipcB The PC contains the instruction address of the instruction currently being executed. If an instruction reads the value
of the PC, the value returned will be increased by 4.
RxuHC Except for writes to the CONTROL register, any change to a special-purpose register by a CPS or MSR instruction is
guaranteed:
. Not to affect that CPS or MSR instruction, or any instruction preceding it in program order.
. To be visible to all instructions that appear in program order after the CPS or MSR.
Rwmvi All use of the PC as a named register specifier for a source register that is described as CONSTRAINED
UNPREDICTABLE in the pseudocode or in other places in this reference manual does one of the following:
. Cause the instruction to be treated as UNDEFINED.
. Cause the instruction to be executed as a NOP.
. Read or return an UNKNOWN value for the source register that is specified as the PC.
RBGIiG All use of the PC as a named register specifier for a destination register that is described as CONSTRAINED
UNPREDICTABLE in the pseudocode or in other places in this reference manual does one of the following:
. Cause the instruction to be treated as UNDEFINED.
. Cause the instruction to be executed as a NOP.
ARM DDI 0553A.f Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. B3-41

1D092917

Non-Confidential

B3 Programmers’ Model

B3.3 Registers
. Ignore the write.

. Branch to an UNKNOWN location.

IovwL The choice between the behavior of the PC as a source or destination register might in some implementations vary
from instruction to instruction, or between different instances of the same instruction.

R xpr For instructions that specify two destination registers and if Rt, Rt2, RdLo, or RdHi is specified as the PC, then the
other destination register of the pair is UNKNOWN. The CONSTRAINED UNPREDICTABLE behavior for the write to the
PC is either to ignore the write or to branch to an UNKNOWN location.

RpRrss An instruction that specifies the PC as a base register and specifies a base register writeback is CONSTRAINED
UNPREDICTABLE and behaves as if the PC is both the source and destination register.

Rxrvx For instructions that affect any or all of APSR.{N, Z, C, V} or APSR.GE when the register specifier is not the PC,
any flags that are affected by an instruction that is CONSTRAINED UNPREDICTABLE become UNKNOWN.

RyrgT For MRC instructions that use the PC as the destination register descriptor (and therefore target APSR.{N, Z, C, V})
and where these instructions are described as being CONSTRAINED UNPREDICTABLE the status of the flags becomes
UNKNOWN.

RxpBT Multi-access instructions that load the PC from Device memory are CONSTRAINED UNPREDICTABLE and one of the
following behaviors occurs:

. The instruction loads the PC from the memory location as if the memory location had the Normal
Non-cacheable attribute.
. The instruction generates a MemManage fault.

Rxprq All unallocated or reserved values of fields with allocated values within the memory-mapped registers that are
described in this reference manual behave, unless otherwise stated in the register description, in one of the following
ways:

. The encoding maps onto any of the allocated values, but otherwise does not cause CONSTRAINED
UNPREDICTABLE behavior.
. The encoding causes effects that could be achieved by a combination of more than one of the allocated
encodings.
. The encoding causes the field to have no functional effect.
Rppjc Reads of registers described as write-only (WO) behave as RESO.
See also:
. Chapter B6 The System Address Map.
. Special-purpose mask registers, PRIMASK, BASEPRI, FAULTMASK, for configurable priority boosting on
page B3-99.
. Special-purpose CONTROL register on page B3-44.
. Stack limit checks on page B3-82.
. XPSR, APSR, IPSR, and EPSR on page B3-45.
. Resets, Cold reset, and Warm reset on page B1-32.
. Chapter D1 Register Specification.
B3-42 Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.f

Non-Confidential 1D092917

B3 Programmers’ Model
B3.3 Registers

The following table lists the individual rules in this section and the extensions that must be implemented in order

for the rule to apply.
Rule Arch_itecture Required extensions Notes
version
KGST From 8.0 None -
PLRT From 8.0 M -
QHMH From 8.0 M -
PLNS From 8.0 None -
JPCB From 8.0 None -
XHHC From 8.0 None -
WMV]J From 8.0 None -
BGIG From 8.0 None -
LXPR From 8.0 None -
DRSS From 8.0 None -
XLVX From 8.0 None -
JFGT From 8.0 None -
XPBT From 8.0 None -
XPTQ From 8.0 None -
PDIC From 8.0 None -
ARM DDI 0553A.f Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. B3-43

1D092917 Non-Confidential

B3 Programmers’ Model
B3.4 Special-purpose CONTROL register

B3.4 Special-purpose CONTROL register
Rcspp MRS and MSR instructions can be used to access the CONTROL register.
Rckvo Privileged execution can write to the CONTROL register. The PE ignores unprivileged writes to the CONTROL
register. All reads of the CONTROL register, regardless of privilege, are allowed.
IrjmP The architecture requires a Context synchronization event to guarantee visibility of a change to the CONTROL
register.
RuvGs The PE automatically updates CONTROL.SPSEL on exception entry and exception return.
INMBL CONTROL.SPSEL selects the stack pointer when the PE is in Thread mode.
See also:
. Context Synchronization Event on page B3-108.
. CONTROL, Control Register on page D1-894.
The following table lists the individual rules in this section and the extensions that must be implemented in order
for the rule to apply.
Rule Arch.ltecture Required extensions Notes
version
CSPP From 8.0 None -
GKVQ From 8.0 None -
HVGB From 8.0 None -
B3-44 Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.f

Non-Confidential 1D092917

B3 Programmers’ Model
B3.5 XPSR, APSR, IPSR, and EPSR

B3.5 XPSR, APSR, IPSR, and EPSR

RvwrTF The APSR, IPSR, and EPSR combine to form one register, the XPSR.
3130 29 28 27 26 25 24 23 20 19 16 15 109 8 0
APSR|N|z[c|V|aQ GE[3:0]"
IPSR 0 or Exception Number
EPSR ICUIT|T ICINT
TReserved if the DSP Extension Reserved (see text)—'

is not implemented

All unused bits in any of the APSR, IPSR, or EPSR, or any unused bits in the combined XPSR, are reserved.

Rxgtp The MRS and MSR instructions recognize the following mnemonics for accessing the APSR, IPSR, or EPSR, or a
combination of them:

Mnemonic Registers accessed

APSR APSR

IPSR IPSR

EPSR EPSR

IAPSR IPSR and APSR
EAPSR EPSR and APSR
IEPSR IPSR and EPSR

XPSR APSR, IPSR, and EPSR

See also:

. Registers on page B3-41.

. APSR, Application Program Status Register on page D1-878.
. Interrupt Program Status Register (IPSR) on page B3-46.

. Execution Program Status Register (EPSR) on page B3-46.

The following table lists the individual rules in this section and the extensions that must be implemented in order

for the rule to apply.
Rule Arch_ltecture Required extensions Notes
version
VWTF From 8.0 None -
XGTP From 8.0 None -
ARM DDI 0553A.f Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. B3-45

1D092917 Non-Confidential

B3 Programmers’ Model
B3.5 XPSR, APSR, IPSR, and EPSR

B3.5.1 Interrupt Program Status Register (IPSR)

Rpras

Rxrcc

Repri

B3.5.2

Rgscu
Igpin

RsqLx

Ixpwx

RiBIQ

When the PE is in Thread mode, the IPSR value is zero.

When the PE is in Handler mode:
. In the case of a taken exception, the IPSR holds the exception number of the exception being handled.

. When there has been a function call from Secure state to Non-secure state, the IPSR has the value of 1.

The PE updates the IPSR on exception entry and return.
The PE ignores writes to the IPSR by MSR instructions.

When a CONSTRAINED UNPREDICTABLE instruction is treated as UNDEFINED, an exception is taken. The exception
number that is written to the IPSR is UNKNOWN.

See also:

. XPSR, APSR, IPSR, and EPSR on page B3-45.

. Function calls from Secure state to Non-secure state on page B3-71.
. IPSR, Interrupt Program Status Register on page D1-1052.

. BLX, BLXNS on page C2-411.

The following table lists the individual rules in this section and the extensions that must be implemented in order
for the rule to apply.

Rule Arch_ltecture Required extensions Notes
version

DTBJ From 8.0 None Secure state requires S

XTCC From 8.0 None -

CDPK From 8.0 None -

Execution Program Status Register (EPSR)

A reset sets EPSR.T to the value of bit[0] of the reset vector.
Bit[0] of the reset vector is 1 if the PE is to execute the code indicated by the reset vector.

When EPSR.T is:
0 Any attempt to execute any instruction generates:
. An INVSTATE UsageFault, in a PE with the Main Extension.
. A HardFault, in a PE without the Main Extension.
1 The Instruction set state is T32 state and all instructions are decoded as T32 instructions.

The intent is that the Instruction set state is always T32 state.

All EPSR fields read as zero using an MRS instruction. The PE ignores writes to the EPSR by an MSR instruction.

B3-46

Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.f
Non-Confidential ID092917

Rwwvx

Reppe

Ruvns

Rrrpk

Inokr

Rpwmn

IxuBL

B3 Programmers’ Model
B3.5 XPSR, APSR, IPSR, and EPSR

The following table lists the individual rules in this section and the extensions that must be implemented in order
for the rule to apply.

Architecture

Rule version Required extensions Notes

KSCH From 8.0 None -

SQLX From 8.0 None A UsageFault requires M
LBIQ From 8.0 None -

CONSTRAINED UNPREDICTABLE behavior and IT blocks

Branching into an IT block, other than by way of exception return or exit from Debug state, leads to CONSTRAINED
UNPREDICTABLE behavior. Execution starts from the address that is determined by the branch, but each instruction
in the IT block is:

. Executed as if the instruction is not in an IT block, meaning that the instruction is executed unconditionally.
. Executed as if the instruction had passed its Condition code check within an IT block.
. Executed as a NOP. That is, the instruction behaves as if it had failed the Condition code check.

For exception returns or Debug state exits that cause EPSR.IT to be set to a reserved value with a nonzero value in
EPSR.IT, the EPSR.IT bits are forced to 0b00000000.

Exception returns or Debug state exits that set EPSR.IT to a non-reserved value can occur when the flow of

execution returns to a point:

. Outside an IT block, but with the EPSR.IT bits set to a value other than 0b00000000.

. Inside an IT block, but with a different value of the EPSR.IT bits than if the IT block had been executed
without an exception return or Debug state exit.

In this case the instructions at the target of the exception return or Debug state exit does one of the following:

. Execute as if they passed the Condition code check for the remaining iterations of the EPSR.IT state machine.

. Execute as NOPs. That is, they behave as if they failed the Condition code check for the remaining iterations
of the EPSR.IT state machine.

A number of instructions in the architecture are described as being CONSTRAINED UNPREDICTABLE either:
. Anywhere within an IT block.
. As an instruction within an IT block, other than the last instruction within an IT block.

Unless otherwise stated in this reference manual, when these instructions are committed for execution, one of the
following occurs:

. An UNDEFINED exception is taken.
. The instructions are executed as if they had passed the Condition code check.
. The instructions execute as NOPs, as if they had failed the Condition code check.

The behavior might in some implementations vary from instruction to instruction, or between different instances of
the same instruction.

Many instructions that are CONSTRAINED UNPREDICTABLE in an IT block are branch instructions or other

non-sequential instructions that change the PC. Where these instructions are not treated as UNDEFINED within an IT

block, the remaining iterations of the EPSR.IT state machine is treated in one of the following ways:

. EPSR.IT is cleared to 0.

. EPSR.IT advances for either a sequential or a nonsequential change of the PC in the same way as it does for
instructions that are not CONSTRAINED UNPREDICTABLE that cause a sequential change of the PC.

This behavior does not apply to an instruction that is the last instruction in an IT block.

ARM DDI 0553A.f
1D092917

Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. B3-47
Non-Confidential

B3 Programmers’ Model
B3.5 XPSR, APSR, IPSR, and EPSR

RrmwN The instructions that are addressed by the updated PC does one of the following:
. Execute as if they had passed the Condition code check for the remaining iterations of the EPSR.IT state
machine.
. Execute as NOPs. That is, they behave as if they had failed the Condition code check for the remaining
iterations of the EPSR.IT state machine.
RkvxD The remaining iterations of the EPSR.IT state machine behave in one of the following ways:
. The EPSR.IT state machine advances as if it were in an IT block.
. The EPSR.IT bits are ignored.
. The EPSR.IT bits are forced to 0b00000000.
See also:
. XPSR, APSR, IPSR, and EPSR on page B3-45.
. EPSR, Execution Program Status Register on page D1-986.
The following table lists the individual rules in this section and the extensions that must be implemented in order
for the rule to apply.
Rule Arch_ltecture Required extensions Notes
version
WWVX From 8.0 None Debug state requires Halting debug
CPDC From 8.0 None Debug state requires Halting debug
HVNS From 8.0 None Debug state requires Halting debug
LLDK From 8.0 None -
BWMN From 8.0 None -
TMWN From 8.0 None -
KVXD From 8.0 None -
B3-48 Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.f

Non-Confidential 1D092917

B3 Programmers’ Model
B3.6 Security states, Secure state, and Non-secure state

B3.6 Security states, Secure state, and Non-secure state

RukkL A PE with the Security Extension has two Security states:

Secure state.

— Secure Thread mode.

— Secure Handler mode.
Non-secure state.

— Non-secure Thread mode.
— Non-secure Handler mode.

Non-secure state Secure state
Thread mode Thread mode
Handler mode Handler mode
Rppgr If the Security Extension is implemented, memory areas and other critical resources that are marked as secure can
only be accessed when the PE is executing in Secure state.
Rywrv A PE with the Security Extension resets into Secure state on both of the ARMv8-M resets, Cold reset and Warm
reset.
RpLGH A PE without the Security Extension behaves as though reset into Non-secure state.
See also:

PE modes, Thread mode and Handler mode on page B3-39.
Privileged and unprivileged execution on page B3-40.
Security states, register banking between them on page B3-50.
Security states, exception banking on page B3-58.

Security state transitions on page B3-69.

Resets, Cold reset, and Warm reset on page B1-32.

The following table lists the individual rules in this section and the extensions that must be implemented in order
for the rule to apply.

Architecture

Rule version Required extensions Notes
HKKL From 8.0 S -
PBGT From 8.0 S -
HWFV From 8.0 S -
PLGH From 8.0 IS -
ARM DDI 0553A.f Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. B3-49

1D092917

Non-Confidential

B3 Programmers’ Model

B3.7 Security states, register banking between them

B3.7 Security states, register banking between them
IMGRQ In a PE with the Security Extension, some registers are banked between the Security states. When a register is
banked in this way, there is a distinct instance of the register in Secure state and another distinct instance of the
register in Non-secure state.
RBHDK In a PE with the Security Extension:
. The general-purpose registers that are banked are:
— RI13. This is the stack pointer (SP).
. The special-purpose registers that are banked are:
— The Mask registers, PRIMASK, BASEPRI, and FAULTMASK.
— The CONTROL register.
— The Main and Process stack pointer Limit registers, MSPLIM and PSPLIM.
. The System Control Space (SCS) is banked.
IgBwWT For MRS and MSR instructions, SYSm[7] in the instruction encoding specifies whether the Secure or the Non-secure
instance of a banked register is accessed:
SYSm[7]
Accesses from
0 1
Secure state Secure instance Non-secure instance
Non-secure state ~ Non-secure instance ~ RAZ/WI
IMKKR This specification uses the following naming convention to identify banked registers:
<register name>_S
The Secure instance of the register.
<register name>_NS
The Non-secure instance of the register.
<register name>
The instance that is associated with the current Security state.
See also:
. Registers on page B3-41.
. Security states, Secure state, and Non-secure state on page B3-49.
. Stack pointer on page B3-51.
. The System Control Space (SCS) on page B6-190.
The following table lists the individual rules in this section and the extensions that must be implemented in order
for the rule to apply.
Rule Arch_ltecture Required extensions Notes
version
BHDK From 8.0 S -
B3-50 Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.f

Non-Confidential 1D092917

B3.8

RRrpLR

Rrgav

Rrxrw
IpmLs

RpTvD
Rmpxk

Rxpwm

Rmovy

Ryxim

IpwrQ

B3 Programmers’ Model
B3.8 Stack pointer

Stack pointer

In a PE with the Security Extension, four stacks and four stack pointer registers are implemented:

Stack Stack pointer register

Secure Main MSP_S

Process PSP_S

Non-secure ~ Main MSP_NS

Process PSP_NS

In a PE without the Security Extension, two stacks and two stack pointer registers are implemented:

Stack | Stack pointer register

Main MSP

Process | PSP

In Handler mode, the PE uses the main stack.

In Thread mode, CONTROL.SPSEL determines whether the PE uses the main or process stack.

In a PE without the Security Extension, MSP is selected and initialized on reset.

In a PE with the Security Extension, the Secure main stack, MSP_S, is selected and initialized on reset.

Bits [1:0] of the MSP or PSP, in either Security state, are always treated as RESO, so that all stack pointers are always
guaranteed to be word-aligned.

Where an instruction states that the SP is UNPREDICTABLE and SP is used:

. The value that is read or written from or to the SP is UNKNOWN.
. The instruction is permitted to be treated as UNDEFINED.
. If the SP is being written, it is UNKNOWN whether a stack-limit check is applied.

After the successful completion of an exception entry stacking operation, the stack pointer of the stack pushed
because of the exception entry is doubleword-aligned.

ARM recommends that the Secure stacks be located in Secure memory.

See also:

. Security states, Secure state, and Non-secure state on page B3-49.
. PE modes, Thread mode and Handler mode on page B3-39.

. Exception entry, context stacking on page B3-76.

. Vector tables on page B3-96.
. Registers on page B3-41.
. Stack limit checks on page B3-82.

ARM DDI 0553A.f
1D092917

Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. B3-51
Non-Confidential

B3 Programmers’ Model

B3.8 Stack pointer
The following table lists the individual rules in this section and the extensions that must be implemented in order
for the rule to apply.
Rule Arch_itecture Required extensions Notes
version
RDLR From 8.0 S -
TGHV From 8.0 None -
TXRW From 8.0 None -
BTVD From 8.0 IS -
MDXK From 8.0 S -
XPWM From 8.0 None -
MQVJ From 8.0 None -
JIXIM From 8.0 None -
B3-52 Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.f

Non-Confidential 1D092917

B3 Programmers’ Model
B3.9 Exception numbers and exception priority numbers

B3.9 Exception numbers and exception priority numbers
Incs Each exception has an associated exception number and an associated priority number.
Remre In a PE with the Main Extension, the exceptions, their associated numbers, and their associated priority numbers

are as follows:

Exception Exception number Priority number
Reset 1 _4a

Secure HardFault when AIRCR. BFHFNMINS is 1> 3 -3

NMI 2 -2

Secure HardFault when AIRCR.BFHFNMINS is0 3 -1
Non-secure HardFault 3 -1
MemManage fault 4 Configurable
BusFault 5 Configurable
UsageFault 6 Configurable
SecureFault 7¢ Configurable
Reserved 8-10 -

SVCall 11 Configurable
DebugMonitor 12 Configurable
Reserved 13 -

PendSV 14 Configurable
SysTick 15 Configurable
External interrupt 0 16 Configurable
External interrupt N 16+N Configurable

a. Highest priority.

b. When AIRCR.BFHFNMINS is 1, faults that target Secure state that are escalated to HardFault are still
Secure HardFaults. That is, the value of AIRCR.BFHFNMINS does not affect faults that target Secure
state that are escalated to HardFaults. This table row applies to such faults.

c. Ina PE without the Security Extension, exception number 7 is reserved.

ARM DDI 0553A.f Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. B3-53
1D092917 Non-Confidential

B3 Programmers’ Model
B3.9 Exception numbers and exception priority numbers

RyvGNy In a PE without the Main Extension, the exceptions, their associated numbers, and their associated priority numbers
are as follows:

Exception Exception number Priority number
Reset 1 _4a

Secure HardFault when AIRCR. BFHFNMINS is 1> 3 -3

NMI 2 -2

Secure HardFault when AIRCR.BFHFNMINS is 0 3 -1
Non-secure HardFault 3 -1

Reserved 4-10 -

SVCall 11 Configurable
Reserved 12-13 -

PendSV 14 Configurable
SysTick 15 Configurable
External interrupt 0 16 Configurable
External interrupt N 16+N Configurable

a. Highest priority.

b. When AIRCR.BFHFNMINS is 1, faults that target Secure state that are escalated to HardFault are still
Secure HardFaults. That is, the value of AIRCR.BFHFNMINS does not affect faults that target Secure
state that are escalated to HardFaults. This table row applies to such faults.

IrpiD The maximum supported number of external interrupts is 496, regardless of whether the Main Extension is
implemented.
Roorr The architecture permits an implementation to omit external configurable interrupts where no external device is

connected to the corresponding interrupt pin. Where an implementation omits such an interrupt, the corresponding
pending, active, enable, and priority registers are RESO.

Iowt™m For exceptions with configurable priority numbers, the priority numbers can be configured by using registers
SHPR1 - SHPR3 in the System Control Block (SCB).

RnFsMm Configurable priority numbers start at 0, the highest configurable exception priority number.

B3-54 Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.f
Non-Confidential ID092917

B3 Programmers’ Model
B3.9 Exception numbers and exception priority numbers

RGgep In a PE with the Main Extension, the number of configurable priority numbers is an IMPLEMENTATION DEFINED
power of two in the range 8-256:

Number of priority . Minimum priority Maximum priority
bits of SHPRn.PRI_n Ntfm!)er of configurable number number

. - priority numbers . .. L.
implemented? (highest priority) (lowest priority)

3 8 0 0b11100000 = 224
4 16 0 0b11110000 = 240
5 32 0 0b11111000 = 248
6 64 0 0b11111100 = 252
7 128 0 0b11111110 = 254
8 256 0 0b11111111 =255

a. All low-order bits of these fields that are not implemented as priority bits are RESO0, as shown in the maximum
priority number column.

RemGH In a PE without the Main Extension, the number of configurable priority numbers is 4:
Minimum
Number of priority bits of i priority Maximum
SHPRn.PRI_n Ntfml_aer of configurable number priority number
. = priority numbers) L.
implementeda (highest (lowest priority)
priority)
2 4 0 0b11000000 = 192

a. SHPRn.PRI_n[5:0] are RESO, as shown in the maximum priority number column.

See also:

. Security states, exception banking on page B3-58.
. Faults on page B3-61.

. Priority model on page B3-64.

The following table lists the individual rules in this section and the extensions that must be implemented in order
for the rule to apply.

Architecture

Rule . Required extensions Notes
version
CMTC From 8.0 M . A Secure HardFault and a SecureFault
require S
MGNV From 8.0 M . A Secure HardFault requires S

. A SysTick exception requires ST

QQTT From 8.0 None -
NFSM From 8.0 None -
GGCP From 8.0 M -
CMGH From 8.0 M -
ARM DDI 0553A.f Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. B3-55

1D092917 Non-Confidential

B3 Programmers’ Model
B3.10 Exception enable, pending, and active bits

B3.10 Exception enable, pending, and active bits
Ioopa The SHCSR, ICSR, DEMCR, NVIC TABRn, NVIC ISPRn, NVIC ISERn, and STIR contain exception enable,
pending, and active fields.
IguGw The following exceptions are always enabled and therefore do not have an exception enable bit:
. HardFault.
. NMIL.
. SVCall.
. PendSV.
I Hsx In a PE without the Security Extension:
. Privileged execution can pend interrupts by writing to the NVIC ISPRn.
. When CCR.USERSETMPEND is 1, unprivileged execution can pend interrupts by writing to the STIR.
Iopkx In a PE with the Security Extension:
. The STIR can pend any Secure or Non-secure interrupt, as follows:
Secure state Non-secure state
Privileged Can use STIR to pend any Secure or Can use STIR to pend a Non-secure
execution Non-secure interrupt. interrupt.
Unprivileged ~ When CCR.USERSETMPEND Sis1,can = When CCR.USERSETMPEND NSis I,
execution use STIR to pend any Secure or Non-secure canuse STIR to pend a Non-secure interrupt,
interrupt, otherwise a BusFault is generated. ~ otherwise a BusFault is generated.
. The STIR_NS can pend a Non-secure interrupt, as follows:
Secure state Non-secure
state
Privileged Can use STIR_NS to pend a Non-secure interrupt. RESO
execution
Unprivileged When CCR.USERSETMPEND_ NS is 1, can use STIR_NS to pend a BusFault.
execution Non-secure interrupt, otherwise a BusFault is generated.
. The NVIC_ISPRn can pend any Secure or Non-secure interrupt, as follows:
Secure state Non-secure state
Privileged Can use NVIC_ISPRn to pend any Secure or ~ Can use NVIC_ISPRn to pend a Non-secure
execution Non-secure interrupt. interrupt.
Unprivileged Fault Fault
execution
. The NVIC _ISPRn_NS can pend a Non-secure interrupt, as follows:
Secure state Non-secure state
Privileged execution Can use NVIC_ISPRN_NS to pend a Non-secure interrupt. ~ RESO
Unprivileged execution Fault Fault
B3-56 Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.f

Non-Confidential 1D092917

B3 Programmers’ Model
B3.10 Exception enable, pending, and active bits

ARM DDI 0553A.f Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. B3-57
1D092917 Non-Confidential

B3 Programmers’ Model
B3.11 Security states, exception banking

B3.11 Security states, exception banking

Rpyjpv Some exceptions are banked. A banked exception has all the following:

. Banked enabled, pending, and active bits.

. A banked SHPRn.PRI field.

. A banked exception vector.

. A state relevant handler.
Exception Banked
Reset No
HardFault Yes

(conditionally)?

NMI No

MemManage fault® Yes

BusFaultb No
UsageFaultb Yes
SecureFaultb No
SVCall Yes
DebugMonitorb No
PendSV Yes
SysTicke Yes

External interrupt 0 No

External interrupt N~ No

a. HardFault only behaves as a banked
exception if AIRCR.BFHFNMINS
is 1, otherwise it behaves as an
unbanked exception targeting
Secure state.

b. Exception type is present only if the
Main Extension is implemented.

c. This exception is banked if the Main
Extension is implemented. If the
Main Extension is not implemented
it is IMPLEMENTATION DEFINED if
the exception is banked or if there is
a single instance that has a
configurable target Security state.

Rinwy A banked synchronous exception targets the Security state that it is taken from, except for the following cases:

. When accessing a coprocessor that is disabled only by the NSACR, any NOCP UsageFault that is generated
as a result of that access will target Secure state, even though the PE was executing in Non-secure state.

B3-58 Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.f
Non-Confidential ID092917

RwLrgH

RnBMy
Ippkc
InGFM
Rmown

IwssL

IpoLx

RppxL

ILFHQ

B3 Programmers’ Model
B3.11 Security states, exception banking

When accessing a coprocessor that is disabled by the CPPWR, any NOCP UsageFault that is generated as a
result of that access will target the Secure state if the corresponding CPPWR.SUSm bit is set to 1, otherwise
the NOCP UsageFault will target the current Security state.

If an instruction triggers lazy floating-point state preservation, then the banked exception will be raised as if
the current Security state was the same as that of the floating-point state, as indicated by FPCCR.S.

Banked faults and exceptions which arise from instruction fetch will target the Security state associated with
the instruction address instead of the current Security state.

Where Non-secure HardFault is enabled, when AIRCR.BFHFNMINS is set to 1, the following applies:

— HardFault exceptions generated through escalation will target the Security state of the original
exception before its escalation to HardFault.

— A HardFault generated as a result of a failed vector fetch will target the Security state of the original
exception that caused the vector fetch and not the current Security state.

Faults triggered by the stacking of callee registers always target the Secure state.

Where an implementation has two SysTick timers, one in each Security state, each timer targets its owning Security
state and not the current Execution state of the PE.

Reset always targets Secure state.

NMI can be configured to target either Security state, by using AIRCR.BFHFNMINS.

BusFault can be configured to target either Security state, by using AIRCR.BFHFNMINS.

SecureFault always targets Secure state.

The DebugMonitor exception targets Secure state if the status bit DEMCR.SDME is 1. Otherwise, it targets
Non-secure state.

Each external interrupt, 0-N, targets the Security state that its NVIC_ITNSn.<bit number> dictates.

When <exception> targets Secure state, the Non-secure view of its SHPRn.PRI field, and enabled, pending, and
active bits, are RAZ/WI.

<exception> is one of:

NML.

BusFault.
DebugMonitor.
External interrupt N.

Secure software must ensure that when changing the target Security state of an exception, the exception is not
pending or active.

See also:

Exception numbers and exception priority numbers on page B3-53.
Vector tables on page B3-96.
SHCSR, System Handler Control and State Register on page D1-1127.

ARM DDI 0553A.f
1D092917

Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. B3-59
Non-Confidential

B3 Programmers’ Model
B3.11 Security states, exception banking

The following table lists the individual rules in this section and the extensions that must be implemented in order
for the rule to apply.

Architecture

Rule . Required extensions Notes
version
PJHV From 8.0 None . A MemManage fault, BusFault, and a
UsageFault exception require M
. A SecureFault requires S
. A Debug Monitor exception requires

DebugMonitor exception
. A SysTick exception requires ST

LNWV From 8.0 S . A UsageFault requires M
. Floating-point state requires FP
WLGH From 8.0 S && ST -
NBMV From 8.0 S -
MQWN From 8.0 S -
PBXL From 8.0 S . A BusFault exception requires M
. A DebugMonitor exception requires

DebugMonitor exception

B3-60 Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.f
Non-Confidential ID092917

B3 Programmers’ Model
B3.12 Faults

B3.12 Faults

INHTB

RxMRH
Rppyy

Iscmw

RfLDT

Rtsca

Rqpis

RGBiIF

There are the following Fault Status Registers:

. HardFault Status Register (HFSR). Present only if the Main Extension is implemented.

. MemManage Fault Status Register (MMFSR). Present only if the Main Extension is implemented.
. BusFault Status Register (BFSR). Present only if the Main Extension is implemented.

. UsageFault Status Register (UFSR). Present only if the Main Extension is implemented.
. SecureFault Status Register (SFSR). Present only if the Main Extension and Security Extension are
implemented.

. Debug Fault Status Register (DFSR). Present only if Halting debug or the Main Extension is implemented.
. Auxiliary Fault Status Register (AFSR). The contents of this register are IMPLEMENTATION DEFINED.

In a PE with the Main Extension, the MMFSR, BFSR, and UFSR combine to form one register, called the
Configurable Fault Status Register (CFSR).

There are the following Fault Address Registers:

. MemManage Fault Address Register (MMFAR). Present only if the Main Extension is implemented.
. BusFault Address Register (BFAR). Present only if the Main Extension is implemented.

. SecureFault Address Register (SFAR). Present only if the Main Extension is implemented.

MMFAR is updated only for a MemManage fault on a direct data access.
BFAR is updated only for a BusFault on a data access, a precise fault.

ARM strongly recommends that the BFAR is cleared, or shared fault address register is cleared, when changing
AIRCR.BFHFNMINS so as not to expose the last accessed address to the other Security state.

Each fault address register has an associated valid bit. When the PE updates the fault address register, the PE sets
the valid bit to 1.

Fault address register Valid bit

MMFAR MMFSR.MMARVALID
BFAR BFSR.BFARVALID
SFAR SFSR.SFARVALID

If the Security Extension is not implemented, it is IMPLEMENTATION DEFINED whether separate BFAR and MMFAR
are implemented. If one shared fault address register is implemented, then on a fault that would otherwise update
the shared fault address register, if one of the other valid bits is set to 1, it is IMPLEMENTATION DEFINED whether:

. The shared fault address register is updated, the valid bit for the fault is set, and the other valid bit is cleared.
. The shared fault address register is not updated, and the valid bits are not changed.
If the Security Extension is implemented, it is IMPLEMENTATION DEFINED whether separate BFAR and MMFAR_NS

are implemented. If one shared fault address register is implemented, then on a fault that would otherwise update
the shared fault address register, if one of the other valid bits is set to one, it is IMPLEMENTATION DEFINED whether:

. The shared fault address register is updated, the valid bit for the fault is set, and the other valid bit is cleared.
. The shared fault address register is not updated, and the valid bits are not changed.

It is IMPLEMENTATION DEFINED whether a separate SFAR and MMFAR S are implemented. If one secure shared
fault address register is implemented, then on a fault that would otherwise update the secure shared fault address

register, if the other valid bit for the secure shared fault address register is set to 1, it is IMPLEMENTATION DEFINED
whether:

. The shared secure fault address register is updated, the valid bit for the fault is set, and the other valid bit for
the secure shared fault address register is cleared.

. The secure shared fault address register is not updated, and the valid bits for the secure shared fault address
register is not changed.

ARM DDI 0553A.f
1D092917

Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. B3-61
Non-Confidential

B3 Programmers’ Model

B3.12 Faults

Riipm In a PE with the Main Extension, the faults are:
E::(:;::?n Exception Fault Fault status bit
3 HardFault HardFault on a vector table entry read error HFSR.VECTTBL
HardFault on fault escalation HFSR.FORCED
HardFault on BKPT escalation HFSR.DEBUGEVT
4 MemManage fault MemManage fault on an instruction fetch MMFSR.IACCVIOL
MemManage fault on a direct data access MMFSR.DACCVIOL
MemManage fault on context unstacking by hardware, because =~ MMFSR.MUNSTKERR
of an MPU access violation
MemManage fault on context stacking by hardware, because of MMFSR.MSTKERR
an MPU access violation
When lazy FP context preservation is active, a MemManage MMFSR.MLSPERR
fault on saving FP context to the stack
5 BusFault BusFault on an instruction fetch, precise BFSR.IBUSERR
BusFault on a data access, precise BFSR.PRECISERR
BusFault on a data access, imprecise BFSR.IMPRECISERR
BusFault on context unstacking by hardware BFSR.UNSTKERR
BusFault on context stacking by hardware BFSR.STKERR
When lazy FP context preservation is active, a BusFault on SFSR.LSPERR
saving FP context to the stack
6 UsageFault UsageFault, undefined instruction UFSR.UNDEFINSTR
UsageFault, invalid Instruction set state because EPSR.T is 0 UFSR.INVSTATE
UsageFault, failed integrity check on exception return UFSR.INVPC
UsageFault, no coprocessor UFSR.NOCP
UsageFault, stack overflow UFSR.STKOF
UsageFault, unaligned access when CCR.UNALIGN TRPis1 UFSR.UNALIGNED
UsageFault, divide by zero when CCR.DIV_0 TRP is 1 UFSR.DIVBYZERO
7 SecureFault SecureFault, invalid Secure state entry point SFSR.INVEP
SecureFault, invalid integrity signature when unstacking SFSR.INVIS
SecureFault, invalid exception return SFSR.INVER
SecureFault, attribution unit violation SFSR.AUVIOL
SecureFault, invalid transition from Secure state SFSR.INVTRAN
SecureFault, lazy FP context preservation error SFSR.LSPERR
SecureFault, lazy FP context error SFSR.LSERR
IxvaN Exception vector reads use the default address map.
B3-62 Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.f

Non-Confidential

ID092917

INKHG

Rwusk

Reqv

Icexa

B3 Programmers’ Model
B3.12 Faults

In a PE without the Main Extension, the enable, pending, and active bits in SHCSR are RESO for those faults that
are only included in a PE with the Main Extension.

In a PE without the Main Extension, the faults are:

Exception number Exception

3 HardFault

Fault conditions that would generate a SecureFault in a PE with the Main Extension instead generate a Secure
HardFault in a PE without the Main Extension.

For the exact circumstances under which each of the ARM v8-M faults is generated, see the appropriate Fault Status
Register description.

See also:
. Exception numbers and exception priority numbers on page B3-53.
. Hardware-controlled priority escalation to HardFault on page B3-98.

. Chapter B11 Debug.
. Chapter D1 Register Specification.

The following table lists the individual rules in this section and the extensions that must be implemented in order
for the rule to apply.

Architecture

Rule version Required extensions Notes
XMRH From 8.0 M -
DDIJJ From 8.0 M -
FLDT From 8.0 M -
TSCG From 8.0 M && IS -
QPJS From 8.0 M && S -
GBJF From 8.0 M && S -
KJPM From 8.0 M A SecureFault requires S
WHBK From 8.0 M
FQIV From 8.0 S -
ARM DDI 0553A.f Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. B3-63

1D092917

Non-Confidential

B3 Programmers’ Model

B3.13 Priority model

B3.13 Priority model

IcTEy An exception, other than reset, has the following possible states:
Active
An exception that either:
. Is being handled.
. Was being handled. The handler was preempted by a handler for a higher priority exception.
Pending
An exception that has been generated, but that is not active.
Inactive
The exception has not been generated.
Active and pending
One instance of the exception is active, and a second instance of the exception is pending.
Only asynchronous exceptions can be active and pending. Synchronous exceptions are either inactive,
pending, or active.
Reipm Lower priority numbers take precedence.
Rvmky The current execution priority is:
1. If any exceptions are active, the current execution priority is the priority number of the active exception with
the lowest SHPRn.PRI group priority field value.
2. The current execution priority then includes any effects of any priority boosting by AIRCR.PRIS == 1 and
PRIMASK, FAULTMASK, and BASEPRI.
When no exception is active and no priority boosting is active, the instruction stream that is executing has a priority
number of (maximum supported priority number+1).
Rrxcq Execution at a particular priority can only be preempted by an exception with a lower group priority field value.
Ippsp In a PE with the Main Extension, BASEPRI and each SHPRn.PRI n and NVICn.PRI_Nn are 8-bit fields that
AIRCR.PRIGROUP splits into two fields, a group priority field and a subpriority field:
BASEPRI, SHPRn.PRI_n [7:0], and NVICn.PRI_Nn[7:0]2
AIRCR.PRIGROUP value Group priority field Subbpriority field
0 [7:1] [0]
1 [7:2] [1:0]
2 [7:3] [2:0]
3 [7:4] [3:0]
4 [7:5] [4:0]
5 [7:6] [5:0]
6 [7] [6:0]
7 - [7:0]
a. All low-order bits of these fields that are not implemented as priority bits are RESO.
B3-64 Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.f

Non-Confidential 1D092917

Rcorv

Incps

Rwowk

B3 Programmers’ Model
B3.13 Priority model

In a PE without the Main Extension, AIRCR.PRIGROUP is RESO, therefore each SHPRn.PRI n and
NVICn.PRI_Nn is split into two as follows:

SHPRn.PRI_n [7:0] and NVICn.PRI_Nn[7:0]2

AIRCR.PRIGROUP value Group priority field Subpriority field

RESO [7:1] [0]

a. SHPRn.PRI n[5:0] are RESO.

If there are multiple pending exceptions, the pending exception with the lowest group priority field value takes
precedence.

If multiple pending exceptions have the same group priority field value, the pending exception with the lowest
subpriority field value takes precedence.

If multiple pending exceptions have the same group priority field value and the same subpriority field value, the
pending exception with the lowest exception number takes precedence.

If a pending Secure exception and a pending Non-secure exception both have the same group priority field value,
the same subpriority field value, and the same exception number, the Secure exception takes precedence.

The following is an example of exceptions with different priorities:

Example B3-1
This example considers the following exceptions, that all have configurable priority numbers:
. A has the highest priority.
. B has medium priority.
. C has lowest priority.
Example sequence of events:
1. No exception is active and no priority boosting is active.
2. B is generated. The PE takes exception B and starts executing the handler for it. Exception B is now active

and the current execution priority is that of B.

3. A is generated. A is higher priority, therefore A preempts B, and the PE starts executing the handler for A.
Exception A is now active and the current execution priority is that of A. Exception B remains active.

4. C is generated. C has the lowest priority, therefore it is pending.

The PE reduces the priority of A to a priority that is lower than C. B is now the highest priority active
exception, therefore the execution priority moves to that of B. The PE continues executing the handler for A
at the priority of B. After completing A, the PE restarts the handler for B. After completing B, the PE takes
exception C and starts executing the handler for it. C is now active and the current execution priority is that
of C.

When AIRCR.PRIS is 1, each Non-secure SHPRn_NS.PRI n priority field value [7:0] has the following sequence
applied to it:

It:

1. Is divided by two.

2. The constant 0x80 is then added to it.

This maps the Non-secure SHPRn_NS.PRI_n group priority field values to the bottom half of the priority range.

When this sequence is applied, any effects of AIRCR.PRIGROUP have already been taken into account, so the
subpriority field is dropped and the sequence is only applied to the group priority field.

ARM DDI 0553A.f
1D092917

Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. B3-65
Non-Confidential

B3 Programmers’ Model
B3.13 Priority model

IxFvi The following diagram shows an example. In this example, all 8 bits of SHPRn_NS.PRI n are implemented as
priority bits and AIRCR.PRIGROUP_NS is set to 0.

Non-secure group Group priority

priority field range
values 9
0x00 0x00
A
Increasing Ox7E
priority 0x80
OxFE R OxFE

In this example, the mapping is:

Non-secure group priority field value Mapped to

0x00 0x80
0x02 0x81
0x04 0x82
0x06 0x83
OxFE OxFE

In this example, Secure exceptions in the range 0x00 - 0x7E have priority over all Non-secure exceptions.

Iwpcp In a PE without the Main Extension but with the Security Extension, when AIRCR.PRIS is set to 1 the Non-secure
exception is mapped to the lower half of the priority range, as shown in the table:
Non-secure group priority field value Mapped to
0x00 0x80
0x40 0xAQ
0x80 0xCo
0xCo 0xEQ
See also:
. Exception numbers and exception priority numbers on page B3-53.
B3-66 Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.f

Non-Confidential 1D092917

B3 Programmers’ Model
B3.13 Priority model

. Special-purpose mask registers, PRIMASK, BASEPRI, FAULTMASK, for configurable priority boosting on
page B3-99.
. Hardware-controlled priority escalation to HardFault on page B3-98.

The following table lists the individual rules in this section and the extensions that must be implemented in order

for the rule to apply.
Rule Arch_ltecture Required extensions Notes
version

CIDM From 8.0 None -

VMKV From 8.0 None -

RKCQ From 8.0 None -

CQRV From 8.0 None A Secure exception requires S
WQWK From 8.0 S -

ARM DDI 0553A.f Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. B3-67

1D092917 Non-Confidential

B3 Programmers’ Model
B3.14 Secure address protection

B3.14

Rcuyx
Rmsng
RvHRL

Rxspq

RpNR

INnGxH

Secure address protection

NS-Req defines the Security state that the PE or DAP requests that a memory access is performed in.
NS-Attr marks a memory access as Secure or Non-secure.
For PE data accesses, NS-Req is equal to the current Security state.

For data accesses, NS-Attr is determined as follows:

NS-Req Security attribute of the location being accessed NS-Attr

Non-secure X Non-secure

Secure Non-secure Non-secure

Secure Secure

For instruction fetches, NS-Req and NS-Attr are equal to the Security attribute of the location being accessed.
NS-Attr also determines the Security state of the PE.

It is not possible to execute Secure code in Non-secure state, or Non-secure code in Secure state.

See also:
. Security state transitions on page B3-69.
. DAP access permissions on page B11-235

The following table lists the individual rules in this section and the extensions that must be implemented in order
for the rule to apply.

Rule Arch_ntecture Required extensions Notes
version

CHIX From 8.0 S -

MSNJ From 8.0 S -

VHRL From 8.0 S -

XSPQ From 8.0 S -

TDNR From 8.0 S -

B3-68

Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.f
Non-Confidential ID092917

B3 Programmers’ Model
B3.15 Security state transitions

B3.15 Security state transitions

RpouT For a transition to an address in the other Security state, the following table shows when the PE changes Security
state:
Current Security attribute of the branch

Security state

target address Conditions for a change in Security state

Secure Non-secure Change to Non-secure state if the branch was an interstating branch
instruction, BXNS or BLXNS, with the least significant bit of its target address
set to 0.
Non-secure Secure and Non-secure callable Change to Secure state if both:
. The branch target address contains an SG instruction which is
fetched and executed.
. The whole of the instruction at the branch target address is flagged
as Secure and Non-secure callable.
Ixwwmp SG instructions in Secure memory are valid entry points to Secure code. They prevent Non-secure code from being
able to jump to arbitrary addresses in Secure code.
IwirL When an interstating branch is executed in Secure state, the least significant bit of the target address indicates the
target Security state:
1 The target Security state is Secure.
0 The target Security state is Non-secure.
Interstating branches are UNDEFINED in Non-secure state.
Rwkxr On transition from Secure to Non-secure state, if the least significant bit of an interstating branch is set to one, the
execution of the next instruction will generate either an INVTRAN Secure fault or Secure HardFault
Rixip On transition from Non-secure to Secure state, if there is no SG instruction or the whole instruction at the branch
target address is not flagged as Secure and Non-secure callable the execution of the next instruction will generate
either an INVTRAN Secure fault or Secure HardFault
Rxnvw If sequential instruction execution crosses from Non-secure memory to Secure memory, then if the Secure memory
entry point contains an SG instruction and the whole of the instruction at the Secure memory entry point is flagged
as Secure and Non-secure callable, it is CONSTRAINED UNPREDICTABLE whether:
. The PE changes to Secure state.
. Either an INVTRAN Secure fault or Secure HardFault is generated:
Rpwxn When an exception is taken to the other Security state, the PE automatically transitions to that other Security state.

See also:

. Instruction set, interstating support on page C1-319.

ARM DDI 0553A.f
1D092917

Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. B3-69
Non-Confidential

B3 Programmers’ Model
B3.15 Security state transitions

The following table lists the individual rules in this section and the extensions that must be implemented in order
for the rule to apply.

Architecture

Rule version Required extensions Notes
PQHT From 8.0 S -
WKXR From 8.0 S An INVTRAN SecureFault requires M
JKID From 8.0 S An INVTRAN SecureFault requires M
XNVW From 8.0 S An INVTRAN SecureFault requires M
DWXH From 8.0 S -
B3-70 Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.f

Non-Confidential 1D092917

B3 Programmers’ Model
B3.16 Function calls from Secure state to Non-secure state

B3.16 Function calls from Secure state to Non-secure state

RGves If'a BLXNS interstating branch generates a change from Secure state to Non-secure state, then before the Security state
change:

. The return address, which is the address of the instruction after the instruction that caused the function call,
the IPSR value and CONTROL.SFPA are stored onto the current stack, as shown in the following figure.
ReturnAddress[0] is set to 1 to indicate a return to the T32 instruction set state. The IPSR is stacked in the
partial RETPSR, and CONTROL.SFPA is stacked in bit [20] of the partial RETPSR.

SP
offset
0x08 <« Original SP?
0x04 Partial RETPSR
0x00 ReturnAddress | «— New SP

. If the PE is in Handler mode, IPSR has the value of 1.
. The FNC_RETURN value is saved in the LR.

RoviT Behavior is UNPREDICTABLE when a function call stack frame is not doubleword-aligned.

IxwzD ARM recommends that when Secure code calls a Non-secure function, any registers not passing function arguments
are set to 0.
See also:
. Instruction set, interstating support on page C1-319.

The following table lists the individual rules in this section and the extensions that must be implemented in order

for the rule to apply.
Rule Arch.ltecture Required extensions Notes
version
GVBB From 8.0 S -
QVIT From 8.0 S -
ARM DDI 0553A.f Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. B3-71

1D092917 Non-Confidential

B3 Programmers’ Model
B3.17 Function returns from Non-secure state

B3.17 Function returns from Non-secure state
RuprrG An interstating function return begins when one of the following instructions loads a FNC RETURN value into the
PC:
. A POP (multiple registers) or LDM that includes loading the PC.
. An LDR with the PC as a destination.
. A BX with any register.
. A BXNS with any register.
On detecting a FNC_RETURN value in the PC:
. The FNC_RETURN stack frame is unstacked.
. EPSR.IT is set to 0b00.
. The following integrity checks on function return are performed:
A check that IPSR is zero or 1 before the value of it is restored.
— A check that if the stacked IPSR value is zero the return is to Thread mode.
— A check that if the stacked IPSR value is nonzero the return is to Handler mode.
Rrrck If the stack pointer is not 8 byte aligned the behavior is UNPREDICTABLE.
RD\\'TF The FNC_RETURN value is:
31302928 27 26 2524 23222120191817161514131211109 8 7 6 5 4 3 2 1 0
1111111011111 111111111111111111S8
Bits[31:1] This is what identifies the value as a FNC_RETURN value.
Bit[0], S The function return was from:
0 Secure state.
1 Non-secure state.
Rouit Any failed integrity check on function return generates a Secure INVPC UsageFault that is synchronous to the
instruction that loaded the FNC_RETURN value into the PC.
RnTnw Any failed integrity check on function return generates a Secure HardFault that is synchronous to the instruction
that loaded the FNC RETURN value into the PC.
RrgNB If FNC_RETURN does not fail the integrity checks then the PE behaves as follows:
. ReturnAddress bits [31:1] is written to the PC.
. ReturnAddress bit [0] is written to EPSR.T.
. The partial RETPSR is written to IPSR.Exception.
RiNFB If the IPSR contains a value that is not supported by the PE the value is UNKNOWN and a INVPC UsageFault is
generated.
RxMFG If the IPSR contains a value that is not supported by the PE the value is UNKNOWN and HardFault is generated.
IkBXxQ Any Secure INVPC UsageFault, Secure HardFault, or INVSTATE UsageFault generated on FNC_RETURN are
subject to the rules in respect of escalation of faults and potentially lockup.
See also:
. Hardware-controlled priority escalation to HardFault on page B3-98.
. Lockup on page B3-101.
B3-72 Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.f

Non-Confidential 1D092917

B3 Programmers’ Model
B3.17 Function returns from Non-secure state

The following table lists the individual rules in this section and the extensions that must be implemented in order
for the rule to apply.

Architecture

Rule version Required extensions Notes
HPFG From 8.0 S -
TFCK From 8.0 S -
DWTF From 8.0 S -
QLIJT From 8.0 M && S -
NTNW From 8.0 M && S -
FGNB From 8.0 S -
LNFB From 8.0 M && S -
XMFG From 8.0 M && S -
ARM DDI 0553A.f Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. B3-73

1D092917 Non-Confidential

B3 Programmers’ Model
B3.18 Exception handling

B3.18 Exception handling
RyFHR An exception that does not cause /ockup sets both:

. The pending bit of its handler, or the pending bit of the HardFault handler, to 1.

. The associated fault status information.

RyLpB When a pending exception has a lower group priority field value than current execution, including accounting for
any priority adjustment by AIRCR.PRIS, the pending exception preempts current execution.
RwsND Preemption of current execution causes the following basic sequence:

1. RO-R3, R12, LR, RETPSR, and CONTROL.SFPA are stacked.

2. The return address is determined and stacked.

3. Optional stacking of FP context, which might be any one of the following:

. No stacking or preservation of the FP context.
. Stacking the basic FP context.
. Stacking the basic FP context and the additional FP context.
. Lazy FP state preservation.
4. LR is set to EXC_RETURN.
Optional clearing of registers, depending on the Security state transition.
6. The following flags are also cleared:
. IT State is cleared, if the Main Extension is implemented.
. CONTROL.FPCA is cleared, if the Floating point Extension is implemented.
. CONTROL.SFPA is cleared, if the Floating point Extension and the Security Extension are
implemented.

7. A transition to the Security state of the exception being activated.

The exception to be taken is chosen, and IPSR.Exception is set accordingly. The setting of IPSR.Exception
to a nonzero value causes the PE to change to Handler mode.

9. CONTROL.SPSEL is set to 0, to indicate the selection of the main stack, dependent on the Security state
being targeted.

10. The pending bit of the exception to be taken is set to 0. The active bit of the exception to be taken is set to 1.

11. The Security state is changed to the Security state of the exception that is being activated.

12. The registers are cleared, depending on the transition of the Security state. The registers are divided between
the caller and callee registers. If the Security state transition is from Secure to Non-secure state, all the
registers are cleared to 0. In all other cases, the caller registers are set to an UNKNOWN value and the callee
registers remain unchanged and are not stacked.

13. EPSR.T is set to bit[0] of the exception vector for the exception to be taken.

14. The PC is set to the exception vector for the exception to be taken.

IpsGo The HandleException(), ExceptionEntry(), PushStack(), ExceptionTaken(), and ActivateException() pseudocode
describes the full exception handling sequence.
Rnyvr During exception entry, if it is found that the exception and the exception vector are associated with different

Security states, an INVEP or INVTRAN SecureFault is generated, unless the exception is associated with

Non-secure state and is targeting an SG instruction that is located in memory that is Secure and Non-secure callable.

RoLus The return address is one of the following:

. On return from a synchronous exception, other than an SVCall exception, the address of the instruction that
caused the exception.

. On return from an asynchronous exception, the address of the next instruction in the program order.

. On return from an SVCall exception, the address of the next instruction in the program order.

Rxkpp The least significant bit of the return address from an exception is RESO.
B3-74 Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.f

Non-Confidential 1D092917

B3 Programmers’ Model
B3.18 Exception handling

See also:

Exception enable, pending, and active bits on page B3-56.

Priority model on page B3-64.

Exception entry, context stacking on page B3-76.

Exception entry, register clearing after context stacking on page B3-81.
Vector tables on page B3-96.

Stack limit checks on page B3-82.

Exceptions during exception entry on page B3-89.

The following table lists the individual rules in this section and the extensions that must be implemented in order
for the rule to apply.

Architecture

Rule . Required extensions Notes
version

YFHR From 8.0 None -

VLDB From 8.0 None -

WBND From 8.0 None Some steps might require additional
extensions

NJVF From 8.0 S An INVEP or INVTRAN SecureFault
requires M

QLHB From 8.0 None -

XKDD From 8.0 None -

ARM DDI 0553A.f Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. B3-75

1D092917

Non-Confidential

B3 Programmers’ Model

B3.19 Exception entry, context stacking

B3.19 Exception entry, context stacking

Rpwwa On taking an exception, the PE hardware saves state context onto the stack that the SP register points to. The state
context that is saved is eight 32-bit words:

RETPSR.
ReturnAddress.
LR.

R12.

R3-RO.

RpTRL In a PE without the Security Extension but with the Floating-point Extension, on taking an exception, the PE
hardware saves state context onto the stack that the SP register points to. [f CONTROL.FPCA is 1 when the
exception is taken, then in addition to the state context being saved, there are the following possible modes for the
FP context:

Stack the FP context.

Reserve space on the stack for the FP context. This is called lazy FP context preservation.

Stack the state Lazy FP context save Do not stack the FP
and FP contexts context or reserve any
space for it. Stack only the
SP state context.
offset
0x68 <« Original SP <« Original SP «—Original SP
0x64 Reserved Reserved xPSR
0x60 FPSCR B B ReturnAddress
0x5C S15 LR (R14)
0x58 S14 R12
0x54 S13 R3
0x50 $12 R2
0x4C SN R1
0x48 $10 RO <« New SP
0x44 S9
0x40 S8 FP context Reserved for
FP context

0x3C S7
0x38 S6
0x34 S5
0x30 S4
0x2C S3
0x28 S2
0x24 S1
0x20 S0
0x1C xPSR 8 xPSR R
0x18 [ReturnAddress ReturnAddress
0x14 LR (R14) LR (R14)
g:g(c) RR132 State context F:g: State context
0x08 R2 R2
0x04 R1 R1
0x00 RO) 4=New SP RO)4 New SP

Extended stack Extended stack .

frame frame Basic stack frame
Rprum In a PE with the Security Extension, on taking an exception, the PE hardware:
1. Saves state context onto the stack that the SP register points to.
B3-76 Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.f
Non-Confidential 1D092917

Rpuprp

B3 Programmers’ Model
B3.19 Exception entry, context stacking

2. If exception entry is to Non-secure state, regardless of whether a higher priority derived or late-arriving
exception targeting Secure state occurs, the PE hardware extends the stack frame, and also saves additional

state context, as shown here:

Exception taken from Secure

state to Non-secure state

SP

offset
0x48
0x44 xPSR
0x40 ReturnAddress
0x3C LR (R14)
0x38 R12
0x34 R3
0x30 R2
0x2C R1
0x28 RO
0x24 R11
0x20 R10
0xIC R9
0x18 R8
0x14 R7
0x10 R6
0x0C R5
0x08 R4
0x04 Reserved
0x00 Magic signature

«— Original SP
—

-

State context

Additional
state context

<+— New SP

In a PE with the Security Extension and the Floating-point Extension, on taking an exception from:

Non-secure state

Behavior is the same as a PE without the Security Extension but with the Floating-point Extension.

Secure state when CONTROL.FPCA is 0

Behavior is the same as for a PE with the Security Extension but without the Floating-point Extension.

Secure state when CONTROL.FPCA is 1
The PE hardware:

1. Saves state context onto the stack that the SP register points to.

2. If FPCCR_S.TS is 0 when the exception is taken, the PE hardware either stacks the FP context

or reserves space on the stack for the FP context.

If FPCCR_S.TS is 1 when the exception is taken, the PE hardware either stacks both the FP
context and additional FP context, or reserves space on the stack for both the FP context and

additional FP context.

3. If exception entry is to Non-secure state, including when a higher priority derived or late-arriving
exception targeting Secure state occurs, the PE hardware extends the stack frame, and also saves

the additional state context.

ARM DDI 0553A.f
1D092917

Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved.

Non-Confidential

B3-77

B3 Programmers’ Model
B3.19 Exception entry, context stacking

The following figure shows PE stacking behavior when CONTROL.FPCA is 1, FPCCR_S.TS is 1 (and both the FP
context and additional FP context is stacked), and exception entry is to Non-secure state:

SP offset

0xDO «— Original SP'

0xCC $31)

0xC8 S30

0xC4 S29

0xCO S28

0xBC S27

0xB8 S26

0xB4 S25

0xBO S24 -
Additional FP context

O0xAC S23

0xA8 S22

0xA4 S21

0xAO0 S20

0x9C S19

0x98 S18

0x94 S17

0x90 S16

0x8C Reserved B

0x88 FPSCR

0x84 S15

0x80 S14

0x7C S13

0x78 S12

0x74 S11

0x70 S10

0x6C S9

0x68 <8 FP context

0x64 S7

0x60 S6

0x5C S5

0x58 S4

0x54 S3

0x50 S2

0x4C S1

0x48 SO

0x44 RETPSR =

0x40 ReturnAddress

0x3C LR (R14)

0x38 R12
State context

0x34 R3

0x30 R2

0x2C R1

0x28 RO

0x24 R11 =

0x20 R10

0x1C R9

0x18 R8

0x14 R7 .
Additional state context

0x10 R6

0x0C R5

0x08 R4

0x04 Reserved

0x00 Integrity signature)<= New SP

"Or at offset 0xD4 if at a word-aligned but not doubleword-aligned address.

B3-78 Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.f
Non-Confidential ID092917

B3 Programmers’ Model
B3.19 Exception entry, context stacking

RekvD On an exception, the RETPSR value that is stacked is all the following:

. The APSR, IPSR, and EPSR.

. CONTROL.SFPA, in RETPSR[20].

In addition, on an exception, the PE uses RETPSR.SPREALIGN to indicate whether the PE realigned the stack to

make it doubleword-aligned:

1 The PE realigned the stack.

0 The PE did not realign the stack.

Ropko Full descending stacks are used.

Rpwew In a PE with the Floating-point Extension:

. Because setting FPCCR.ASPEN to one causes the PE to automatically set CONTROL.FPCA to 1 on the
execution of a floating-point instruction, setting FPCCR.ASPEN to one means that the PE hardware
automatically either:

— Stacks FP context on taking an exception.
— Uses lazy FP context preservation on taking an exception.
If CONTROL.FPCA == 1, it is FPCCR.LSPEN that determines which of the above the PE hardware performs:
0 The PE hardware automatically stacks FP context on taking an exception. In a PE that also includes the
Security Extension, if FPCCR_S.TS == 1, the hardware stacks the additional FP context and the FP
context.

1 The PE hardware uses lazy FP context preservation on taking an exception, and sets all of:

. The FPCAR, to point to the reserved SO stack address.

. FPCCR.LSPACT to 1.

. FPCCR.{USER, THREAD, HFREADY, MMRDY, BFRDY, SFRDY, MONRDY, UFRDY}, to
record the permissions and fault possibilities to be applied to any subsequent FP context save.

In a PE that also includes the Security Extension, if FPCCR_S.TS is 1, the hardware reserves space on

the stack for both the FP context and the additional FP context. Otherwise, the hardware only reserves

space on the stack for the FP context.

RGHDJ Execution of a floating-point instruction while FPCCR.LSPACT == 1 indicates that lazy FP context preservation is
active.

RmBxL If an attempt is made to execute a floating-point instruction while lazy FP context preservation is active, the access
permissions that CPACR and NSACR define are checked against the context that activated lazy FP context
preservation, as stored in the FPCCR.

. If no permission violation is detected, the PE:

1. Saves FP context to the reserved area on the stack, as identified by the FPCAR.
2. Sets FPCCR.LSPACT to 0 to indicate that lazy FP context preservation is no longer active.
3. Processes the floating-point instruction.

. If a permission violation is detected, the PE generates a NOCP UsageFault and does not save FP context to
the reserved area on the stack.

RigNs When the following conditions are met on exception entry, the PE generates a Secure NOCP UsageFault and does
not allocate space on the stack for FP context:

. CONTROL.FPCA == 1.

. CPACR.CP10 is 0.

. The Background state is Non-secure state.

RkmBN If lazy FP context preservation is activated when FPCCR.LSPACT is already set to 1, the PE generates an LSERR
SecureFault.

RevTL CONTROL.SFPA is set automatically by hardware on any of the following events:

. An SG instruction fetched from secure memory and executed in Non-secure state clears CONTROL.SFPA to
0.

. A BXNS instruction that causes a transition from Secure state to Non-secure state clears CONTROL.SFPA to 0.

ARM DDI 0553A.f Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. B3-79

1D092917

Non-Confidential

B3 Programmers’ Model

B3.19 Exception entry, context stacking

A BLXNS instruction that causes a transition from Secure state to Non-secure state preserves the value in
CONTROL.SFPA in the FNC_RETURN stack frame and then clears CONTROL.SFPA to 0.

A valid instruction that loads FNC_RETURN into the PC sets CONTROL.SFPA to the value retrieved from
the FNC_RETURN payload.

CONTROL.SFPA is saved and restored on exception entry or return in the RETPSR value in the stack frame.
Exception entry, including tail chaining, clears CONTROL.SFPA to 0.

If the value of FPCCR.ASPEN is one, then any floating-point instruction (excluding VLLDM and VLSTM)
executed in Secure state sets the value of CONTROL.SFPA to one. If the value of FPCCR.ASPEN is one and

the value of CONTROL.SFPA is zero when a floating-point instruction is executed in the Secure state, the
FPSCR value is taken from the values set in FPDSCR.

See also:

Stack pointer on page B3-51.

Exception entry, register clearing after context stacking on page B3-81.

Integrity signature on page B3-88.

PushStack on page E2-1313.

The following table lists the individual rules in this section and the extensions that must be implemented in order

for the rule to apply.
Rule Arch_itecture Required extensions Notes
version

PWWG From 8.0 None -

PTRL From 8.0 IS && FP -

PLHM From 8.0 S -

DHPD From 8.0 S && FP -

BKVD From 8.0 None -

QDKQ From 8.0 None -

PWBW From 8.0 FP Space is reserved for both the FP context and

additional FP context if S is implemented

GHDJ From 8.0 FP -

MBXL From 8.0 FP -

LGNS From 8.0 S && FP -

KMBN From 8.0 S && FP -

FVTL From 8.0 S && FP -

B3-80 Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.f

Non-Confidential

ID092917

B3.20

RprrB

Rpjrx

RsnpB

Rywsk

B3 Programmers’ Model
B3.20 Exception entry, register clearing after context stacking

Exception entry, register clearing after context stacking

The PE hardware sets RO-R3, R12, APSR, and EPSR to an UNKNOWN value after it has pushed state context to the
stack.

In a PE:

. The PE hardware sets R0-R3, R12, APSR, and EPSR to an UNKNOWN value after it has pushed state context
to the stack.

. The PE hardware sets SO-S15 and the FPSCR to an UNKNOWN value after it has pushed FP context to the
stack.

After the PE hardware has pushed state context to the stack, it sets R0-R3, R12, APSR, and EPSR to:

. An UNKNOWN value if the exception is taken to Secure state.

. Zero if the exception is taken to Non-secure state.

If the PE did not also push additional state context to the stack, as indicated by EXC_RETURN.DCRS, the values
of R4-R11 remain unchanged.

If the PE also pushed additional state context to the stack, as indicated by EXC RETURN.DCRS, then afterwards:
. If the Background state is Non-secure, R4-R11 remain unchanged.

. If the Background state is Secure, the PE sets R4-R11 to:
— An UNKNOWN value if the exception is taken to Secure state.

Zero if the exception is taken to Non-secure state.

Register clearing behavior after context stacking is as follows:

State context and additional state context
Register clearing behavior is the same as for a PE with the Security Extension but without the
Floating-point Extension.

FP context and additional FP context

. If FPCCR_S.TS is 0 when the FP context is pushed to the stack, S0-S15 and the FPSCR are set
to an UNKNOWN value after stacking.

. IfFPCCR_S.TS is 1 when the FP context and additional FP context are both pushed to the stack,
S0-S31 and the FPSCR are set to zero after stacking.

In both cases, CONTROL.FPCA is set to 0 to indicate that the Floating-point Extension is not active.

See also:
. Exception entry, context stacking on page B3-76.
. Tail-chaining on page B3-91.

The following table lists the individual rules in this section and the extensions that must be implemented in order
for the rule to apply.

Architecture

Rule version Required extensions Notes
DRRB From 8.0 None -
DJRX From 8.0 FP -
SNDB From 8.0 S -
JWBK From 8.0 S && FP -
ARM DDI 0553A.f Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. B3-81

1D092917

Non-Confidential

B3 Programmers’ Model
B3.21 Stack limit checks

B3.21 Stack limit checks
RpcRrT A PE that does not implement the Main Extension, and does not implement the Security Extension does not
implement stack-limit checking.
RNHBX In a PE without the Main Extension but with the Security Extension, there are two stack limit registers in Secure
state for the purposes of stack-limit checking.
Security state Stack Stack limit register
Secure Main MSPLIM_S
Process PSPLIM S
Rjprx In a PE with the Main Extension but without the Security Extension, there are two stack limit registers:
Stack Stack limit register
Main MSPLIM
Process PSPLIM
Rxqps In a PE with the Main Extension and the Security Extension, there are four stack limit registers:
Security state Stack Stack limit register
Secure Main MSPLIM S
Process PSPLIM S
Non-secure Main MSPLIM_NS
Process PSPLIM NS
Ikprg A stack can descend to its stack limit value. Any attempt to descend the stack further than its stack limit value is a
violation of the stack limit.
Rrexn xSPLIM_x[2:0] are treated as RESO, so that all stack pointer limits are always guaranteed to be doubleword-aligned.
Bits [31:3] of the xSPLIM_x registers are writeable.
Rpksr Stack limit checks are performed during the creation of a stack frame for all of the following:
. Exception entry.
. Tail-chaining from a Secure to a Non-secure exception.
. A function call from Secure code to Non-secure code.
RzizG On a violation of a stack limit during either exception entry or tail-chaining:
. In a PE with the Main Extension, a synchronous STKOF UsageFault is generated. Otherwise, a HardFault is
generated.
. The stack pointer is set to the stack limit value.
. Push operations to addresses below the stack limit value are not performed.
. It is IMPLEMENTATION DEFINED whether push operations to addresses equal to or above the stack limit value
are performed.
Reesce On a violation of a Secure stack limit during a function call:
. In a PE with the Main Extension, a synchronous STKOF UsageFault is generated. Otherwise, a Secure
HardFault is generated.
. Push operations to addresses below the stack limit value are not performed.
B3-82 Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.f

Non-Confidential 1D092917

RGGru

Ryvwr

Ipynx

RpBsa

B3 Programmers’ Model
B3.21 Stack limit checks

It is IMPLEMENTATION DEFINED whether push operations to addresses equal to or above the stack limit value
are performed.

Unstacking operations are not subject to stack limit checking.

Updates to the stack pointer by the following instructions are subjected to stack limit checking:

ADD (SP plus immediate).
ADD (SP plus register).
SUB (SP minus immediate).
SUB (SP minus register).
BLX, BLXNS.

LDC, LDC2 (immediate).
LDM, LDMIA, LDMFD.
LDMDB, LDMEA.

LDR (immediate).

LDR (Titeral).

LDR (register).

LDRB (immediate).

LDRD (immediate).

LDRH (immediate).

LDRSB (immediate).

LDRSH (immediate).

MOV (register).

POP (multiple registers).
PUSH (multiple registers).
VPOP.

VPUSH.

STC, STC2.

STM, STMIA, STMEA.
STMDB, STMFD.

STR (immediate).

STRB (immediate).

STRD (immediate).

STRH (immediate).

VLDM.

VSTM.

Updates to the stack pointer by the MSR instruction targeting SP_NS are subject to stack limit checking. Updates to
the stack pointer and stack pointer limit by any other MSR instruction are not subject to stack limit checking.

LDR instructions write to two registers, the address register and the destination register. The stack limit check is only
carried out against the address register. Updates to the stack pointer by the LDR instructions are only subject to stack
limit checking if the stack pointer is the address register.

For all other instructions that can update the stack pointer and stack pointer limit, it is IMPLEMENTATION DEFINED
whether stack limit checking is performed.

When an instruction updates the stack pointer, if it results in a violation of the stack limit, it is the modification of
the stack pointer that generates the exception, rather than an access that uses the out-of-range stack pointer.

On a violation of a stack limit when an instruction updates the stack pointer:

It is IMPLEMENTATION DEFINED whether accesses to addresses equal to or above the stack limit value are
performed.

It is IMPLEMENTATION DEFINED whether the destination register or registers of load instructions are updated
as long as the base register, stack pointer, and PC are not modified.

Accesses below the stack limit are not performed.

ARM DDI 0553A.f
1D092917

Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. B3-83
Non-Confidential

B3 Programmers’ Model
B3.21 Stack limit checks

CCR.STKOFHFNMIGN controls whether stack limit violations are IGNORED while executing at a requested

IRrRDX
execution priority that is negative.
RxcoL It is UNKNOWN whether a stack limit check is performed on any use of the SP marked as UNPREDICTABLE.
Ryxrp Store operations using the SP as a base register do not perform any stores below the associated stack limit address.
RjsLc It is UNKNOWN whether Load/Store instructions that specify the SP as a base register and attempt a read or write
below the associated stack limit but write-back a value greater than the stack limit address generate an STKOF
UsageFault.
See also:
. Stack pointer on page B3-51.
. Tail-chaining on page B3-91.
The following table lists the individual rules in this section and the extensions that must be implemented in order
for the rule to apply.
Rule Arch.itecture Required extensions Notes
version
PCRT From 8.0 M && IS -
NHBX From 8.0 M && S -
JPFX From 8.0 M && IS -
XQDS From 8.0 M && S -
TCXN From 8.0 None -
DKSR From 8.0 None Secure exceptions and secure code require S
Z1L7G From 8.0 None A UsageFault requires M
CCSC From 8.0 S A UsageFault requires M
GGRH From 8.0 None -
YVWT From 8.0 None -
DBSG From 8.0 None -
XCQL From 8.0 None -
JXFP From 8.0 None -
JSLC From 8.0 M -
B3-84 Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.f

Non-Confidential 1D092917

B3 Programmers’ Model
B3.22 Exception return

B3.22 Exception return

Rxpss

Rrxpw

RGevH

Rxrcp

RsmrL

Ryxsr

RpqLL

The PE begins an exception return when both of the following are true:
. The PE is in Handler mode.

. One of the following instructions loads an EXC RETURN value, 0xFFXXXXXX, into the PC:
— A POP (multiple registers) (multiple registers) or LDM that includes loading the PC.
— An LDR with the PC as a destination.
— A BX with any register.
— A BXNS with any register.

When both of these are true, then on detecting an EXC_RETURN value in the PC, the PE unstacks the exception
stack frame and resumes execution of the unstacked context.

Ifan EXC_RETURN value is loaded into the PC by an instruction other than those listed, or from the vector table,
the value is treated as an address.

Ifan EXC_RETURN value is loaded into the PC when the PE is in Thread mode, the value is treated as an address.

Behavior is UNPREDICTABLE if EXC_RETURN.FType is 0 and the Floating-point Extension register file is not
implemented.

Behavior is UNPREDICTABLE if EXC RETURNJ[23:7] are not all 1.

Behavior is UNPREDICTABLE if any of the following are true and the Security Extension is not implemented:
. EXC RETURN.S is 1.

. EXC RETURN.DCRS is 0.

. EXC RETURN.ES is 1.

The following integrity checks on exception return are performed on every exception return:

1. In a PE with the Security Extension, the integrity check that is called the EXC RETURN.ES validation check,
as follows:

. If the PE was in Non-secure state when EXC_RETURN was loaded into the PC and either
EXC RETURN.DCRS is 0 or EXC_ RETURN.ES is 1, an INVER SecureFault is generated and the
PE sets EXC_RETURN.ES to 0.

2. A check that the exception number being returned from, as held in the IPSR, is shown as active in the SHCSR
or NVIC_IABRn. If this check fails:

. In a PE with the Main Extension, an INVPC UsageFault is generated. If the PE includes the Security
Extension, the INVPC UsageFault targets the Security state that the exception return instruction was
executed in.

. In a PE without the Main Extension, a HardFault is generated. If the PE includes the Security
Extension, the HardFault targets the Security state that EXC_RETURN.S specifies.

3. In a PE with the Main Extension, an INVPC UsageFault is generated if EXC_ RETURNTJ1] is 1. If the PE
includes the Security Extension, the INVPC UsageFault targets the Security state that the exception return
instruction was executed in.

4. A check that if the return is to Thread mode, the value that is restored to the IPSR from the RETPSR is zero,
or that if the return is to Handler mode, the value that is restored to the IPSR from the RETPSR is non-zero.
If this check fails:

. In a PE with the Main Extension, an INVPC UsageFault is generated. If the PE includes the Security
Extension, the INVPC UsageFault targets the Background state.

. In a PE without the Main Extension, a HardFault is generated. If the PE includes the Security
Extension, the HardFault targets the Security state that EXC_RETURN.S specifies.

When returning from Non-secure state, EXC RETURN.ES is treated as zero for all purposes other than raising the
INVER integrity check.

On returning from Non-secure state, if EXC_RETURN.ES causes an INVER integrity check failure, the subsequent
EXC RETURN.DCRS bit that is presented in the LR on entry to the next exception is permitted to be UNKNOWN.

ARM DDI 0553A.f
1D092917

Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. B3-85
Non-Confidential

B3 Programmers’ Model
B3.22 Exception return

IrLxs

Rymic

RrpGL

Iecrwe

IrQvB

ReomL

Ippwr
INONR

RxNNG

RvGar

Repvr

Runnw

RLmNG

RyryH

ARM recommends that the subsequent EXC_RETURN.DCRS bit that is presented in the LR on entry to the next
exception is not UNKNOWN.

After the EXC_RETURN.ES validation check has been performed on an exception return:
. If EXC_RETURN.ES is 1, EXC_RETURN.SPSEL is written to CONTROL_S.SPSEL.
. If EXC RETURN.ES is 0, EXC RETURN.SPSEL is written to CONTROL_NS.SPSEL.

On an exception return that successfully returns to the Background state, with no tail-chaining or failed integrity
checks, the Security state is set to EXC_RETURN.S.

In a PE with the Security Extension, after a successful exception return to the Background state, the PE is in the
correct Security state before the next instruction from the background code is executed. This means that in the case
where the Background state is Secure state, there is no need for an SG instruction at the exception return address.

In a PE with the Floating-point Extension register file, on exception entry:
1. EXC RETURN.FType is saved as the inverse of CONTROL.FPCA.
2. CONTROL.FPCA is then cleared to 0 if it was 1, or remains unchanged if it was 0.

On exception return, the inverse of EXC_RETURN.FType is written to CONTROL.FPCA.

When the following conditions are met on exception return, the PE hardware sets SO-S15 and the FPSCR to 0:
. CONTROL.FPCA is 1.

. FPCCR.CLRONRET is .

. If the PE implements the Security Extension FPCCR_S.LSPACT is 0.

If the PE implements the Security Extension and all these fields are 1 on exception return, the PE generates an
LSERR SecureFault instead.

Attempts to access NSACR when the Floating-point unit is disabled result in a NOCP UsageFault.
IsCPEnabled() indicates the prioritization if the access is blocked by multiple registers.

When the following conditions are met on exception return, the PE generates an LSERR SecureFault:
. EXC_RETURN.FType is 0.

. The stack might contain Secure FP context, that would be unstacked on the return. That is,
FPCCR_S.LSPACT is 1.

. The return is to Non-secure state.

A check of FPCCR_S.LSPACT, CPACR.CP10, and the relevant fields in NSACR and CPPWR is undertaken prior
to unstacking of the floating-point registers.

The floating-point registers are not modified if the checks prior to unstacking fail.

If the PE abandons unstacking of the floating-point registers to tail-chain into another exception, then if the Security
Extension is implemented, the PE clears to zero any floating-point registers that would have been unstacked.

If the PE abandons unstacking of the floating-point registers to tail-chain into another exception, then if the Security
Extension is not implemented, the floating-point registers that would have been unstacked become UNKNOWN.

Following completion of the requirements of the EXC RETURN the PE returns to execution and the following
occurs:

. The registers pushed to the stack as part of the exception entry are restored from the stack frame (in
accordance with the EXC_RETURN flags).

. APSR, EPSR, and IPSR are restored from RETPSR.
. The PC is set to ReturnAddress[31:1]:°0’.
. Bit[0] of the ReturnAddress is discarded.

See also:
. Exception handling on page B3-74.

B3-86

Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.f
Non-Confidential ID092917

B3 Programmers’ Model
B3.22 Exception return

The following table lists the individual rules in this section and the extensions that must be implemented in order
for the rule to apply.

Architecture

Rule version Required extensions Notes

KPSS From 8.0 None -

TXDW From 8.0 None -

GBVH From 8.0 None -

XLCP From 8.0 None -

SMFL From 8.0 None Some steps require additional extensions, as

listed in the rule

HXSR From 8.0 S -
DQLL From 8.0 S -
IMJC From 8.0 S -
RPGL From 8.0 S -
CGML From 8.0 FP A SecureFault requires S
XNNG From 8.0 S && FP -
VGGF From 8.0 FP -
GDVT From 8.0 FP -
HNNW From 8.0 S && FP -
LMNG From 8.0 IS && FP -
HRJH From 8.0 None -
ARM DDI 0553A.f Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. B3-87

1D092917 Non-Confidential

B3 Programmers’ Model
B3.23 Integrity signature

B3.23 Integrity signature

Rpppp In a PE with the Floating-point Extension register file, the integrity signature value is:

3130292827 26252423222120191817161514131211109 8 7 6 56 4 3 2 1 O

1171111101111 101000010010010110 1[SFTC

Stack Frame Type Check -/

In a PE with the Floating-point Extension, when returning from a Non-secure exception to Secure state, if the
unstacked integrity signature does not match this value, including if SFTC does not match EXC_RETURN.Ftype,
a SecureFault is generated.

Rmvks In a PE without the Floating-point Extension register file, the integrity signature value is:

3130292827 26252423222120191817161514131211109 8 7 6 56 4 3 2 1 0

1111111011111 0100001001001011011

. In a PE with the Main Extension, when returning from a Non-secure exception to Secure state, if the
unstacked integrity signature does not match this value, a SecureFault is generated.

. In a PE without the Main Extension, when returning from a Non-secure exception to Secure state, if the
unstacked integrity signature does not match this value, a Secure HardFault is generated.

IrrTS The integrity signature is an XN address. When performing a function return from Non-secure code, if the integrity
signature value is restored to the PC as the function return address, a MemManage fault, if the Main Extension is
implemented, or a HardFault, in an implementation without the Main Extension, is generated when the PE attempts
execution.

See also:
. Exception entry, context stacking on page B3-76.
. Exception return on page B3-85.

The following table lists the individual rules in this section and the extensions that must be implemented in order
for the rule to apply.

Architecture

Rule . Required extensions Notes
version
PHBP From 8.0 S &&FP -
MVKS From 8.0 IFP && S A SecureFault requires M
B3-88 Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.f

Non-Confidential 1D092917

B3.24

ILBGQ

RMRTR

RpxTB

RGpNT

Rgvav

Injew

B3 Programmers’ Model
B3.24 Exceptions during exception entry

Exceptions during exception entry

During exception entry exceptions can occur, for example asynchronous exceptions, or the exception entry
sequence itself might cause an exception, for example a MemManage fault on the push to the stack.

Any exception that occurs during exception entry is a late-arriving exception, and:

. The exception that caused the original entry sequence is the original exception.

. The priority of the code stream running at the time of the original exception is the preempted priority.

When the exception entry sequence itself causes an exception, the latter exception is a derived exception.
The following mechanism is called late-arrival preemption:

. The PE takes a late-arriving exception during an exception entry if the late-arriving exception is higher
priority, including accounting for any priority adjustment by AIRCR.PRIS. In this case:

— The late-arriving exception uses the exception entry sequence started by the original exception. The
original exception remains pending.

— The PE takes the original exception after returning from the late-arriving exception.
For Derived exceptions, late-arrival preemption is mandatory.

For late-arriving asynchronous exceptions, it is IMPLEMENTATION DEFINED whether late-arrival preemption is used.
If the PE does not implement late-arrival preemption for late-arriving asynchronous exceptions, late-arriving
asynchronous exceptions become pending.

If the group priority field value of a derived exception is higher than or equal to the preempted priority:
. If the derived exception is a DebugMonitor exception, it is IGNORED.
. Otherwise, the PE escalates the derived exception to HardFault.

If a higher priority late-arriving Secure exception occurs during entry to a Non-secure exception when the
Background state is Secure, it is IMPLEMENTATION DEFINED whether:

. The stacking of the additional state context is rolled back.
. The stacking of the additional state context is completed and EXC_RETURN.DCRS is set to 0.

The architecture does not specify the point during exception entry at which the PE recognizes the arrival of an
asynchronous exception.

See also:

. Exception numbers and exception priority numbers on page B3-53.
. Priority model on page B3-64.

. Exception handling on page B3-74.

. Tail-chaining on page B3-91.

The following table lists the individual rules in this section and the extensions that must be implemented in order
for the rule to apply.

Architecture

Rule . Required extensions Notes
version

MRTR From 8.0 None -

BXTB From 8.0 None -

GDNT From 8.0 None A DebugMonitor exception requires

DebugMonitor exception
GVHV From 8.0 S -
ARM DDI 0553A.f Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. B3-89

1D092917

Non-Confidential

B3 Programmers’ Model
B3.25 Exceptions during exception return

B3.25 Exceptions during exception return

Ixkxpy During exception return exceptions can occur, for example asynchronous exceptions, or the exception return might
itself cause an exception.

Any exception that occurs during exception return is a late-arriving exception.
When the exception return sequence itself causes an exception, the latter exception is a derived exception.

RTrREM When a late-arriving exception during exception return is higher priority than the priority being returned to, the PE
takes the late-arriving exception by using tail-chaining.

IMBNG The architecture does not specify the point during exception return at which the PE recognizes the arrival of an
asynchronous exception. If a PE recognizes an asynchronous exception after an exception return has completed,
there is no opportunity to tail-chain the asynchronous exception.

RmipN If the priority of a derived exception during exception return is equal to or lower than the priority being returned to:
. If the derived exception is a DebugMonitor exception, the PE ignores the derived exception.

. Otherwise, the PE escalates the derived exception to HardFault and the escalated exception is tail-chained.

Rpurk If the priority of a derived exception during exception return, after priority escalation if appropriate, is higher
priority than the priority being returned to, the PE uses tail-chaining to take the derived exception.

See also:
. Exception numbers and exception priority numbers on page B3-53.
. Priority model on page B3-64.
. Exception return on page B3-85.
. Tail-chaining on page B3-91.
. DebugMonitor exception on page B11-243.
The following table lists the individual rules in this section and the extensions that must be implemented in order
for the rule to apply.
Rule Arch_ltecture Required extensions Notes
version
TRFM From 8.0 None -
MJDN From 8.0 None A DebugMonitor exception requires
DebugMonitor exception
DHFK From 8.0 None -
B3-90 Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.f

Non-Confidential 1D092917

B3 Programmers’ Model
B3.26 Tail-chaining

B3.26 Tail-chaining

Rrkxx

[pywk

IrwDT

Rpxve

Tail-chaining behavior is as follows:

On detecting an EXC RETURN value in the PC, if there is a pending exception that is higher priority than the
execution priority being returned to, the PE hardware:

1. Does not unstack the stack.
2. Takes the pending exception.

. The PE will tail-chain any derived exception on exception return if the derived exception has higher
priority than the execution priority being returned to.

. The PE will tail-chain any synchronous fault on exception return if the synchronous exception has
higher priority than the execution priority being returned to.

3. When tail-chaining the PE will not execute any instructions from the thread of execution that has the priority
that would have been returned to but for the tail-chained exception.

Tail-chaining is an optimization. It removes unstacking and stacking operations. In the following example the

second exception is a tail-chained exception:

All in Non-secure state:

1% exception 2" exception
| | |

No exception is active No exception is active

f T

Stacking operation Unstacking operation

Nothing is unstacked

If tail-chaining prevents a derived exception on exception return, the derived exception might instead be generated
on the return from the last tail-chained exception.

When the Background state is Secure state, if tail-chaining causes a change of Security state from Secure to
Non-secure, additional context is saved on taking the Non-secure exception:

In a PE without the FP Extension:

1% exception 2" exception
| | |
Secure state Secure state Non-secure state Secure state
State context pushed to stack. Unstacking operation

Nothing is unstacked.
Additional state context pushed to stack.

ARM DDI 0553A.f
1D092917

Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. B3-91
Non-Confidential

B3 Programmers’ Model
B3.26 Tail-chaining

ITkIM When multiple exceptions are tail-chained, EXC_RETURN.DCRS keeps track of whether the additional context is
stacked. The following figure is an example:
1% exception 2" exception 3™ exception
| | | |
Secure state Non-secure state Secure state Non-secure state Secure state
T A
State context and additional state Unstacking operation

context pushed to stack®.

Unstacking all additional context is
skipped.
PE sets EXC_RETURN.DCRS to 0.

Stacking all additional context is skipped.
PE sets EXC_RETURN.DCRS to 1.

a In a PE with the FP Extension, FP context and additional FP context is also stacked if CONTROL.FPCAis 1.

IrmvE When multiple exceptions are tail-chained, a Secure tail-chained exception after a Non-secure exception cannot rely
on any registers containing the values they had when no exception was active.

IcvrD ARM recommends that Secure exception handlers clear the FP context registers to zero before they return.

ILnpPQ If FPCCR.CLRONRET is set to 1, hardware automatically clears the FP context registers to zero on exception
return.

RimHSs If the PE recognizes a new asynchronous exception while it is tail-chaining, and the new asynchronous exception

has a higher priority than the next tailed-chained exception, the PE can, instead, take the new asynchronous
exception, using late-arrival preemption.

This rule is true even if the next tail-chained exception is a derived exception on exception return. The PE can,
instead, take the new asynchronous exception. If it does, the derived exception becomes pending.

See also:
. Exception entry, context stacking on page B3-76.
. Exceptions during exception return on page B3-90.

The following table lists the individual rules in this section and the extensions that must be implemented in order

for the rule to apply.
Rule Arch_ntecture Required extensions Notes
version
FKXX From 8.0 None -
PXVB From 8.0 S -
JMHS From 8.0 None -
B3-92 Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.f

Non-Confidential 1D092917

B3 Programmers’ Model
B3.27 Exceptions, instruction resume, or instruction restart

B3.27 Exceptions, instruction resume, or instruction restart

RpGre

RgrLL

Rkcemp

INDQT

Rrgro

RrpHK

RveBx

Rowww

Rovrc

RxrGN

RrrGk

RyjxkqQ

Iiox

The PE can take an exception during execution of a Load Multiple or Store Multiple instruction, effectively halting
the instruction, and resume execution of the instruction after returning from the exception. This is called instruction
resume.

The PE can abandon execution of a Load Multiple or Store Multiple instruction to take an exception, and after
returning from the exception, restart the Load Multiple or Store Multiple instruction again from the start of the
instruction. This is called instruction restart.

To support instruction restart, singleword load instructions do not update the destination register when the PE takes
an exception during execution.

Instructions that the PE can halt to use instruction resume are called exception-continuable instructions.

The exception-continuable instructions are LDM, LDMDB, STM, STMDB, POP (multiple registers), and PUSH (multiple
registers).

In a PE with the Floating-point Extension, the floating-point exception-continuable instructions are VLDM, VLLDM,
VLSTM, VSTM, VPOP, and VPUSH.

Where a fault is taken during the execution of a VLLDM instruction the PE abandons the stacking of the Secure
floating-point register contents and save the state so that on return from the fault the instruction can be restarted.

It is IMPLEMENTATION DEFINED whether a VLLDM or VLSTM instruction aborts or completes when an interrupt occurs.

When the PE is using instruction resume, EPSR.ICI is set to a non-zero value that is the continuation state of the
exception-continuable instruction:
. For LDM, LDMDB, STM, STMDB, POP (multiple registers), and PUSH (multiple registers) instructions, EPSR.ICI

contains the number of the first register in the register list that is to be loaded or stored after instruction
resume.

. For the floating-point instructions VLDM, VSTM, VPOP, and VPUSH, EPSR.ICI contains the number of the lowest
numbered doubleword Floating-point Extension register that was not loaded or stored before the PE took the
exception.

The EPSR.ICI values shown in the following table are valid EPSR.ICI values:

EPSR[26:25] EPSR[15:12] EPSR[11:10]

ICI[7:6] =0b00 ICI[5:2] =reg num ICI[1:0] = 0bo0

ICI[7:6] =0bo0 ICI[5:2] =0b0000 ICI[1:0] = 0b0o

Behavior is UNPREDICTABLE if EPSR.IT/ICI contains a valid EPSR.IT/ICI non-zero value and the register number
that it contains is either:

. Not in the register list of the exception-continuable Load Multiple or Store Multiple instruction.
. The first register in the register list of the exception-continuable Load Multiple or Store Multiple instruction.

The PE generates an INVSTATE UsageFault if EPSR.IT/ICI contains a valid nonzero value and the instruction
being executed is not a Load Multiple or Store Multiple instruction. A fault is not generated if the instruction is a
BKPT instruction.

If the PE uses instruction resume during a Load Multiple instruction, then after the exception return, the values of
all registers in the register list are UNKNOWN, except for the following:

. Registers that are marked by EPSR.IT/ICI as already loaded.
. The base register.
. The PC.

If the PE is using instruction restart, ARM recommends that Load Multiple or Store Multiple instructions are not
used with data in volatile memory.

ARM DDI 0553A.f
1D092917

Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. B3-93
Non-Confidential

B3 Programmers’ Model
B3.27 Exceptions, instruction resume, or instruction restart

RNkNQ

Risco

RRrGF

Rsgws

When a Load Multiple instruction has the PC in its register list, if the PE uses instruction resume or instruction
restart during the instruction:

. If the PC is loaded before generation of the exception, the PE restores the PC before taking the exception, so
that after the exception the PE returns to either:
— Continue execution of the Load Multiple instruction, if the PE used instruction resume.
— Restart the Load Multiple instruction, if the PE used instruction restart.

In a PE without the Main Extension, if the PE takes any exception during any Load Multiple or Store Multiple
instruction, including PUSH (multiple registers) and POP (multiple registers), the PE uses instruction restart and
the base register is restored to the original value.

In a PE with the Main Extension, if the PE takes an exception during any Load Multiple or Store Multiple
instruction, including PUSH (multiple registers) and POP (multiple registers):

. If the instruction is not in an IT block and the exception is an asynchronous exception, the PE uses instruction
resume and EPSR.IT/ICI holds the continuation state. The base register is restored to the original value
except in the following cases:

Interrupt of an instruction that is using SP as the base register
The SP that is presented to the exception entry sequence is lower than any element pushed by an
STM, or not yet popped by an LDM.
For Decrement Before (DB) variants of the instruction, the SP is set to the final value. This is the
lowest value in the list.
For Increment After (IA) variants of the instruction, the SP is restored to the initial value. This is
the lowest value in the list.

Interrupt of an instruction that is not using SP as the base register
The base register is set to the final value, whether the instruction is a Decrement Before (DB)
variant or an Increment After (IA) variant.

. For all other cases:

— The PE uses instruction restart and the base register is restored to the original value. If the instruction
is not in an IT block, EPSR.IT/ICI is cleared to zero.
When a Load Multiple instruction includes its base register in its register list, if the PE takes an exception during
the instruction:
. The base register is restored to the original value, and:
— If'the instruction is in an IT block, the PE uses instruction restart.

— If the instruction is not in an IT block, and the PE takes the exception after it loads the base register,
EPSR.IT/ICI can be set to an IMPLEMENTATION DEFINED value that will load at least the base register
and subsequent locations again after returning from the interrupt.

The following table lists the individual rules in this section and the extensions that must be implemented in order
for the rule to apply.

Rule Arch.ltecture Required extensions Notes
version

PGRC From 8.0 M -

KRLL From 8.0 None -

KCMD From 8.0 None -
LGPQ From 8.0 M -

RDHK From 8.0 FP -

VFBX From 8.0 S && FP -

B3-94

Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.f
Non-Confidential ID092917

B3 Programmers’ Model
B3.27 Exceptions, instruction resume, or instruction restart

Architecture

Rule version Required extensions Notes
QWWW From 8.0 M -
QVEC From 8.0 None Some instructions listed require FP
XFGN From 8.0 None -
LRGK From 8.0 M -
JXKQ From 8.0 M -
NKNQ From 8.0 None Instruction resume requires M
LSCQ From 8.0 'M -
RFGF From 8.0 M -
SGWB From 8.0 None -
ARM DDI 0553A.f Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. B3-95

1D092917 Non-Confidential

B3 Programmers’ Model

B3.28 Vector tables

B3.28 Vector tables

RNWFF In a PE with the Security Extension, two vector tables are implemented, the Secure Vector table and the Non-secure
Vector table, and it is IMPLEMENTATION DEFINED which of the following is true:
. The PE supports configurability of each vector table base, and two Vector Table Offset Registers, VTOR_S
and VTOR_NS, are provided for this purpose.
. The PE does not support configurability of either vector table base, and VTOR_S and VTOR NS are
RAZ/WL.
If the PE supports configurability of each vector table base:
. Exceptions that target Secure state use VTOR S to determine the base address of the Secure vector table.
. Exceptions that target Non-secure state use VTOR NS to determine the base address of the Non-secure
vector table.
ReTig In a PE without the Security Extension, a single vector table is implemented, and it is IMPLEMENTATION DEFINED
which of the following is true:
. The PE supports configurability of the vector table base, and a single Vector Table Offset Register, VTOR,
is provided for this purpose.
. The PE does not support configurability of the vector table base, and VTOR is RAZ/WI.
IwrGx ARM recommends that VTOR_S points to memory that is Secure and not Non-secure callable.
RwpRT A vector table contains both:
. The initialization value for the main stack pointer on reset.
. The start address of each exception handler.
The exception number defines the order of entries.
Word offset in vector table Value that is held at offset
0 Initial value for the main stack pointer on reset
1 Start address for the reset handler
Exception number Start address for the handler for the exception with that number
Exception number Start address for the handler for the exception with that number
RirDpL In a PE with a configurable vector table base, the vector table is naturally aligned to a power of two, with an
alignment value that is:
. A minimum of 128 bytes.
. Greater than or equal to (Number of Exceptions supported x4).
Rxppr For all vector table entries other than the entry at offset 0, if bit[0] is not set to 1, the first instruction in the exception
results in an INVSTATE UsageFault.
Igvsc For all vector table entries other than the entry at offset 0, bit[0] defines EPSR.T on exception entry. Setting bit[0]
to 1 indicates that the exception handler is in the T32 instruction set state.
Rvppp Vector fetches for entries beyond the natural alignment of the associated VTOR occur from an UNKNOWN entry
within the vector table.
B3-96 Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.f

Non-Confidential 1D092917

B3 Programmers’ Model
B3.28 Vector tables

IpLsB ARM recommends that it is ensured that the vector table and VTOR are aligned so that the entry for the highest
taken exception falls within the natural alignment of the table, and at a minimum that the vector table is 128 byte
aligned. A PE might impose further restrictions on the VTOR.

Rugss If a vector fetch causes a Security attribution unit violation or an IMPLEMENTATION DEFINED attribution unit
violation, a secure VECTTBL HardFault is raised. If the exception priority prevents any secure VECTTBL
HardFault preempting, one of the following occurs:
. The PE enters lockup at the priority of the original exception.
. The original exception transitions from the pending to the active state.

. If the original exception and the VECTTBL HardFault are different, or target different Security states, the
VECTTBL HardFault becomes pending.

See also:

. IMPLEMENTATION DEFINED Attribution Unit (IDAU) on page B8-211.
. Security attribution unit (SAU) on page B8-209.

. Exception numbers and exception priority numbers on page B3-53.

. Execution Program Status Register (EPSR) on page B3-46.

The following table lists the individual rules in this section and the extensions that must be implemented in order
for the rule to apply.

Architecture

Rule version Required extensions Notes
NWFF From 8.0 S -
GTJQ From 8.0 IS -
WPRT From 8.0 None -
LFDL From 8.0 None -
XPPT From 8.0 M -
VDPD From 8.0 None -
HBSS From 8.0 S -
ARM DDI 0553A.f Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. B3-97

1D092917 Non-Confidential

B3 Programmers’ Model
B3.29 Hardware-controlled priority escalation to HardFault

B3.29

RGNvs

Rpgig

Rpgrr

Hardware-controlled priority escalation to HardFault

When current execution has a priority number >0:

. If a synchronous exception with an equal or lower priority is pending, the PE hardware escalates it to become
a HardFault. This rule applies to all synchronous exceptions and DebugMonitor exceptions that are caused
by the BKPT instruction. This rule does not apply to asynchronous exceptions and all other DebugMonitor
exceptions.

When current execution has a priority number > 0, if a disabled configurable priority exception occurs:
. If it is a synchronous exception, the PE hardware escalates the exception to become a HardFault.
. If it is an interrupt, the PE does not escalate the interrupt. The interrupt remains pending.

A fault that has been escalated to a HardFault retains the return address behavior of the original fault.

See also:

. Exception numbers and exception priority numbers on page B3-53.
. DebugMonitor exception on page B11-243.

. Lockup on page B3-101.

. Security states, exception banking on page B3-58

The following table lists the individual rules in this section and the extensions that must be implemented in order
for the rule to apply.

Architecture Required

Rule . .
version extensions

Notes

GNVS From 8.0 None A DebugMonitor exception requires DebugMonitor exception

PBJQ From 8.0 None -

DQRR From 8.0 None -

B3-98

Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.f
Non-Confidential ID092917

B3 Programmers’ Model
B3.30 Special-purpose mask registers, PRIMASK, BASEPRI, FAULTMASK, for configurable priority boosting

B3.30 Special-purpose mask registers, PRIMASK, BASEPRI, FAULTMASK, for
configurable priority boosting

IBNIG In a PE with the Main Extension, the PRIMASK, FAULTMASK, and BASEPRI registers can be used as follows.
A PE without the Main Extension implements PRIMASK, but does not implement FAULTMASK and BASEPRI.

PRIMASK

In a PE without the Security Extension:

. Setting this bit to one boosts the current execution priority to 0, masking all exceptions with a
lower priority.

In a PE with the Security Extension:

. Setting PRIMASK S to one boosts the current execution priority to 0.

. If AIRCR.PRIS is:
0 Setting PRIMASK NS to one boosts the current execution priority to 0.

1 Setting PRIMASK NS to one boosts the current execution priority to 9x80.

In a PE with the Security Extension, when the current execution priority is boosted to a particular value,
all exceptions with a lower priority are masked.

FAULTMASK

In a PE without the Security Extension:

. Setting this bit to one boosts the current execution priority to -1, masking all exceptions with a
lower priority.
In a PE with the Security Extension, if AIRCR.BFHFNMINS is:

0 Setting FAULTMASK S to one boosts the current execution priority to -1.

If AIRCR.PRIS is:

0 Setting FAULTMASK NS to one boosts the current execution priority to 0.

1 Setting FAULTMASK NS to one boosts the current execution priority to 0x80.
1 Setting FAULTMASK S to one boosts the current execution priority to -3.

Setting FAULTMASK NS to one boosts the current execution priority to -1.

In a PE with the Security Extension, when the current execution priority is boosted to a particular value,
all exceptions with a lower priority are masked.

BASEPRI
In a PE without the Security Extension:

. This field can be set to a priority number between 1 and the maximum supported priority number.
This boosts the current execution priority to that number, masking all exceptions with a lower
priority.

In a PE with the Security Extension:

. BASEPRI_S can be set to a priority number between 1 and the maximum supported priority
number.

. If AIRCR.PRIS is:

0 BASEPRI NS can be set to a priority number between 1 and the maximum supported
priority number.

1 BASEPRI_NS can be set to a priority number between 1 and the maximum supported
priority number. The value in BASEPRI NS is then mapped to the bottom half of the
priority range, so that the current execution priority is boosted to the mapped-to value
in the bottom half of the priority range.

In a PE with the Security Extension, when the current execution priority is boosted to a particular value,
all exceptions with a lower priority are masked.

Rrumc The PRIMASK, FAULTMASK, and BASEPRI priority boosting mechanisms only boost the group priority, not the
subpriority.

ARM DDI 0553A.f Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. B3-99
1D092917 Non-Confidential

B3 Programmers’ Model
B3.30 Special-purpose mask registers, PRIMASK, BASEPRI, FAULTMASK, for configurable priority boosting

Remor Without the Security Extension:
. An exception return other than from an NMI sets FAULTMASK to 0.
Rurt™ With the Security Extension:
. An exception return other than from an NMI sets FAULTMASK to 0 if the raw execution priority is greater
than or equal to 0. EXC_RETURN.ES indicates which banked instance of FAULTMASK is set to 0.
IpLKD The raw execution priority is:
. The execution priority minus the effects of AIRCR.PRIS == 1, and minus any configurable PRIMASK,
FAULTMASK, or BASEPRI priority boosting.
IgBvVL The requested execution priority is negative when any of the following are true:
. The banked FAULTMASK bit for the current Security state is 1, including when AIRCR.PRIS is also 1.
. HardFault for the current Security state is active.
. AIRCR.BFHFNMINS.
See also:
. Priority model on page B3-64.
. Exception numbers and exception priority numbers on page B3-53.
The following table lists the individual rules in this section and the extensions that must be implemented in order
for the rule to apply.
Rule Arch.ltecture Required extensions Notes
version
FHMC From 8.0 M -
FMQF From 8.0 IS -
HRTM From 8.0 S -
B3-100 Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.f

Non-Confidential 1D092917

B3.31

IrxsB

IpsFr

RmBTM™

Rjric

Ruynp

RsppN

Icrus

B3 Programmers’ Model
B3.31 Lockup

Lockup

Lockup is a PE state where the PE stops executing instructions in response to an error for which escalation to an
appropriate HardFault handler is not possible because of the current execution priority. An example is a synchronous
exception that would escalate to a Secure HardFault, but that cannot escalate to a Secure HardFault because Secure
HardFault is already active.

ARM recommends that an implementation provides a LOCKUP signal that, when the PE is in lockup, signals to
the external system that the PE is in lockup.

When the PE is in lockup:

. DHCSR.S LOCKUP reads as 1.

. The PC reads as 0xEFFFFFFE. This is an XN address.

. The PE stops fetching and executing instructions.

. If the implementation provides an external LOCKUP signal, LOCKUP is asserted HIGH.

Exit from lockup is only by one of the following:
. A Cold reset.

. A Warm reset.

. Entry to Debug state.

. Preemption by another exception.

Exit from lockup causes both DHCSR.S LOCKUP and, if implemented, the external LOCKUP signal, to be
deasserted.

On an exit from lockup by entry to Debug state, or by preemption by another exception, the return address is
OXEFFFFFFE.

After exit from lockup by entry to Debug state, or by preemption by another exception, a subsequent return from
Debug state or that exception without modifying the return address attempts to execute from 0xEFFFFFFE. Execution
from this address is guaranteed to generate an IACCVIOL MemManage fault, causing the PE to reenter lockup if
the execution priority has not been modified. Modification of the return address would enable execution to be
resumed, however ARM recommends treating entry to lockup as fatal and requiring the PE to be reset.

See also:
. Priority model on page B3-64

. Instruction execution on page B3-102

. Floating-point lazy FP context preservation on page B3-103.

. Vector or stack pointer error on reset on page B3-104.

. Errors on preemption and stacking for exception entry on page B3-104.
. Vector read error on NMI or HardFault entry on page B3-105.

. Integrity checks on exception return on page B3-106.

. Errors when unstacking state on exception return on page B3-107.

. Chapter B11 Debug

ARM DDI 0553A.f
1D092917

Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. B3-101
Non-Confidential

B3 Programmers’ Model

B3.31 Lockup

The following table lists the individual rules in this section and the extensions that must be implemented in order
for the rule to apply.

Architecture

Rule . Required extensions Notes
version
MBTM From 8.0 None -
JRIC From 8.0 None Entry to Debug state requires Halting debug
HINP From 8.0 None -
SPPN From 8.0 None Entry to Debug state requires Halting debug
B3.31.1 Instruction-related lockup behavior
Instruction execution
RvGMR A synchronous exception results in lockup when:
. The synchronous exception would otherwise escalate to a Secure HardFault and any of the following is true:
— Secure HardFault is already active.
— NMI s active and AIRCR.BFHFNMINS is 0.
— FAULTMASK S.FMis 1.
— Non-secure HardFault is active and AIRCR.BFHFNMINS is 0.
. The synchronous exception would otherwise escalate to a Non-secure HardFault and any of the following is
true:
— Non-secure HardFault or Secure HardFault is already active.
— NMIis active.
— FAULTMASK NS.FM or FAULTMASK _S.FM is 1.
RommB If the Security Extension is not implemented and the Main Extension is implemented, a synchronous exception
results in lockup when:
. The synchronous exception would otherwise escalate to HardFault and any of the following is true:
— HardFault is already active.
— NMl s active.
— FAULTMASK.FM is 1.
Ryxxn If the Main Extension and Security Extension are not implemented a synchronous exception results in lockup when:
. The synchronous exception would otherwise escalate to HardFault and any of the following is true:
— HardFault is already active.
— NMI s active.
RyGNw Entry to lockup from an exception causes:
. Any Fault Status Registers associated with the exception to be updated.
. No update to the pending exception state or to the active exception state.
. The PC to be set to OxEFFFFFFE.
. EPSR.IT to be become UNKNOWN.
In addition, HFSR.FORCED is not changed.
Rpwkp Asynchronous BusFaults do not cause lockup.
B3-102 Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.f

Non-Confidential 1D092917

RkTom

RrnkB

RmwmB)

RxFQJ

B3 Programmers’ Model
B3.31 Lockup

When a BusFault does not cause lockup, the value that is read or written to the location that generated the BusFault
iS UNKNOWN.

The following table lists the individual rules in this section and the extensions that must be implemented in order
for the rule to apply.

Architecture

Rule version Required extensions Notes
VGMR From 8.0 S

QMMB From 8.0 M && IS -
VXXH From 8.0 M && IS -
VGNW From 8.0 None -
DWKP From 8.0 S -
KTQM From 8.0 S -

Floating-point lazy FP context preservation

When FPCCR.LSPACT is 1, a NOCP UsageFault, AU violation, MPU violation, or synchronous bus error during
lazy FP context preservation causes lockup if any of the following is true:

. FPCCR.HFRDY is 0.

. The exception would escalate to a Secure HardFault and any of the following is true:
— Secure HardFault is already active.
— NMIis active and AIRCR.BFHFNMINS is 0.
— FAULTMASK S.FMis 1.
— Non-secure HardFault is active and AIRCR.BFHFNMINS is 0.

. The exception would escalate to a Non-secure HardFault and any of the following is true:
— Non-secure HardFault or Secure HardFault is already active.
— NMIlis active.
— FAULTMASK NS.FM or FAULTMASK_S.FM is 1.

When FPCCR.LSPEN is 0, any faults that are caused by floating-point register reads or writes during exception
entry or exception return are handled as faults on stacking or unstacking respectively.

When FPCCR.LSPEN is 1 and a Secure NOCP UsageFault or LSERR Secure fault causes lockup, that entry to
lockup causes:

. Any Fault Status Registers associated with the exception to be updated.
. No update to the pending and active exception state.

. The PC to be set to OxEFFFFFFE.

. EPSR.IT to be become UNKNOWN.

In addition, HFSR.FORCED is not changed.

ARM DDI 0553A.f
1D092917

Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. B3-103
Non-Confidential

B3 Programmers’ Model

B3.31 Lockup

The following table lists the individual rules in this section and the extensions that must be implemented in order
for the rule to apply.

Architecture

Rule . Required extensions Notes
version
RNKB From 8.0 FP && S . An MPU violation requires MPU
MMBJ From 8.0 FP -
XFQJ From 8.0 FP && S . An MPU violation requires MPU
B3.31.2 Exception-related lockup behavior
Vector or stack pointer error on reset
Rpuvag On reset, if reading the vector table to obtain either the vector for the reset handler or the initialization value for the
main stack pointer causes a bus error, the PE enters lockup in HardFault with the following behavior:
. HFSR.VECTTBL is set to 1.
. In a PE with the Security Extension, Secure HardFault is made active. Thatis, SHCSR _S.HARDFAULTACT
issetto 1.
. In a PE without the Security Extension, HardFault is made active. That is, SHCSR.HARDFAULTACT is set
to 1.
. An UNKNOWN value is loaded into the main stack pointer.
. The IPSR is set to 0.
. EPSR.T is UNKNOWN.
. EPSR.IT is set to zero.
. The PC is set to OxEFFFFFFE.
IxpNL Because the PE always resets into Secure state and the highest privilege, SAU and MPU violations are not possible
on accesses to the reset vector.
The following table lists the individual rules in this section and the extensions that must be implemented in order
for the rule to apply.
Rule Arch_ntecture Required extensions Notes
version
BHVG From 8.0 None A Secure HardFault requires S
Errors on preemption and stacking for exception entry
RvkTx An AU violation, MPU violation, NOCP UsageFault, STKOF UsageFault, LSERR SecureFault, or synchronous
bus error during context stacking causes lockup when:
. The exception would escalate to a Secure HardFault and any of the following is true:
— Secure HardFault is already active.
— NMl is active and AIRCR.BFHFNMINS is 0.
— FAULTMASK S.FMis 1.
B3-104 Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.f

Non-Confidential 1D092917

Rosss

Rane

Rerke

B3 Programmers’ Model
B3.31 Lockup

. The exception would escalate to a Non-secure HardFault and any of the following is true:
— Non-secure HardFault or Secure HardFault is already active.
— NMIis active.
— FAULTMASK NS.FM or FAULTMASK S.FMis 1.

In these cases, the point of PE lockup is when, after the exception to be taken has been chosen, the handler for that
exception is entered. These cases do not in themselves cause any additional exception to become pending.

When an AU violation, MPU violation, NOCP UsageFault, STKOF UsageFault, LSERR SecureFault, or
synchronous bus error occurs during context stacking, it is IMPLEMENTATION DEFINED whether the PE continues to
stack any of the remaining context.

At the point of encountering an AU violation, MPU violation, NOCP UsageFault, STKOF UsageFault, LSERR
SecureFault, or synchronous bus error during context stacking, the PE:

. Updates any Fault Status Registers associated with the error.
. Does not change HFSR.FORCED.
At the point of lockup:
. All state, including the LR, IPSR, and active and pending bits, is modified as though the fault on context
stacking had never occurred, other than the following:
— EPSR.T becomes UNKNOWN.
— EPSR.IT is set to zero.
— The PC is set to OXEFFFFFFE.

The following table lists the individual rules in this section and the extensions that must be implemented in order
for the rule to apply.

Rule Arch.ltecture Required extensions Notes
version

VKTX From 8.0 S . An AU violation requires S
. An MPU violation requires MPU
. A UsageFault requires M
. A SecureFault requires S

QSSB From 8.0 None . An AU violation requires S
. An MPU violation requires MPU
. A UsageFault requires M
. A SecureFault requires S

GJIG From 8.0 None . An AU violation requires S
. An MPU violation requires MPU
. A UsageFault requires M
. A SecureFault requires S

Vector read error on NMI or HardFault entry

On entry to an NMI or HardFault, if reading the vector table to obtain the vector for the NMI or HardFault handler
causes a bus error, the PE enters lockup with the following behavior:

. HFSR.VECTTBL is set to 1.

. The IPSR is updated to hold the exception number of the exception taken.
. The active bit of the exception that is taken is set to 1.
. The pending bit of the exception that is taken is cleared to 0.
. EPSR.T is UNKNOWN.
ARM DDI 0553A.f Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. B3-105

1D092917

Non-Confidential

B3 Programmers’ Model

B3.31 Lockup

INMRW

R1RrE)

Rwavc

Rprkp

. EPSR.IT is set to zero.
. The LR is set to the EXC_RETURN value that would have been used had the fault not occurred.
. The PC is set to @OXEFFFFFFE.

Because AU violations on vector reads are required to be treated as late-arriving, they cannot cause lockup, and
instead result in a higher priority exception being taken. Vector reads always use the default memory map and cannot
generate MPU violations.

The following table lists the individual rules in this section and the extensions that must be implemented in order
for the rule to apply.

Rule Arch_ltecture Required extensions Notes
version

CTKP From 8.0 None -

Integrity checks on exception return

A fault that is generated by a failed integrity check on exception return is generated after either the active bit for the
returning exception, or the active bit for NMI or HardFault, has been cleared to 0, and if applicable, after
FAULTMASK has also been cleared to 0. A fault that is generated by a failed integrity check on exception return
causes lockup when:
. The exception would escalate to a Secure HardFault and any of the following is true:

— Secure HardFault is already active.

— NMIis active and AIRCR.BFHFNMINS is 0.

— FAULTMASK S.FMis 1.

— Non-secure HardFault is active and AIRCR.BFHFNMINS is 0.
. The exception would escalate to a Non-secure HardFault and any of the following is true:

— Non-secure HardFault or Secure HardFault is already active.

— NMI s active.

— FAULTMASK NS.FM or FAULTMASK S.FM is 1.

The target Security state of an INVPC UsageFault generated because of a failed integrity check on exception return

is either the Security state the exception return was executed in or the Background state dependent on when the

INVPC UsageFault was generated.

When the PE enters lockup because of a fault that is generated by a failed integrity check, the PE:

. Updates any Fault Status Registers associated with the error.

. Sets IPSR to 0, if EXC_RETURN for the returning exception indicated a return to Thread mode.

. Sets IPSR to 3, if EXC_RETURN for the returning exception indicated a return to Handler mode.

. Sets the stack pointer that is used for unstacking to the value it would have had if the fault had not occurred.
— Ifthe XPSR load faults, the SP is 64-bit aligned.

. Updates CONTROL.FPCA, based on EXC_RETURN.FType.

. Sets the PC to OXEFFFFFFE.

In addition, the APSR, EPSR, FPSCR, R0-R12, LR, and S0-S31 are UNKNOWN.

B3-106

Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.f
Non-Confidential ID092917

Rwkss

Rxrco

B3 Programmers’ Model
B3.31 Lockup

The following table lists the individual rules in this section and the extensions that must be implemented in order
for the rule to apply.

Architecture

Rule version Required extensions Notes
TRFJ From 8.0 S -
WBVC From 8.0 M && S -
DFKP From 8.0 None -

Errors when unstacking state on exception return

Context unstacking is performed after any clearing of exception active bits or FAULTMASK, that is required by the
exception return, has been made visible. An AU violation, MPU violation, or synchronous bus error during context
unstacking causes lockup when:

. The exception would escalate to a Secure HardFault and any of the following is true:
— Secure HardFault is already active.
— FAULTMASK S.FMis 1.
— Non-secure HardFault is active and AIRCR.BFHFNMINS is 0.

. The exception would escalate to a Non-secure HardFault and any of the following is true:
— Non-secure HardFault or Secure HardFault is already active.
— NMI s active.
— FAULTMASK NS.FM or FAULTMASK S.FM s 1.

When an AU violation, MPU violation, or synchronous bus error during context unstacking causes lockup, the PE:

. Updates any Fault Status Registers associated with the error.

. Sets IPSR to 0, if EXC_RETURN for the returning exception indicated a return to Thread mode.

. Sets IPSR to 3, if EXC_RETURN for the returning exception indicated a return to Handler mode.

. Sets the stack pointer that is used for unstacking to the value it would have had if the fault had not occurred.
— Ifthe XPSR load faults, the SP is 64-bit aligned.

. Updates CONTROL.FPCA, based on EXC_ RETURN.FType.

. Sets the PC to @XEFFFFFFE.

In addition, the APSR, EPSR, FPSCR, R0-R12, LR, and S0-S31 are UNKNOWN.

The following table lists the individual rules in this section and the extensions that must be implemented in order
for the rule to apply.

Architecture

Rule . Required extensions Notes

version
WKSJ From 8.0 S . An MPU violation requires MPU
XFCQ From 8.0 None . An AU violation requires S

. An MPU violation requires MPU

ARM DDI 0553A.f
1D092917

Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. B3-107
Non-Confidential

B3 Programmers’ Model
B3.32 Context Synchronization Event

B3.32 Context Synchronization Event
Roxwp The architecture requires a Context synchronization event to guarantee visibility of any change to any
memory-mapped register described in the architecture. Following a Context synchronization event a completed
write to a memory-mapped register is visible to an indirect read by an instruction appearing in program order after
the context synchronization event.
Rrvhx Between any change to a memory-mapped register and a subsequent Context synchronization event, it is
UNPREDICTABLE whether an indirect read of the register by the PE uses the old or new values.
RrvvMm Where multiple changes are made to memory-mapped registers before a Context synchronization event, each value
might independently be the old or new value.
RnsLQ Where unsynchronized values apply to different areas of architectural functionality, or IMPLEMENTATION DEFINED
functionality, those areas might independently treat the values as being either the old or new value.
RBksx The choice between the behaviors is IMPLEMENTATION DEFINED and might vary for each use of the unsynchronized
value.
The following table lists the individual rules in this section and the extensions that must be implemented in order
for the rule to apply.
Rule Arch_ltecture Required extensions Notes
version
QXWD From 8.0 None -
TVHX From 8.0 None -
RMMM From 8.0 None -
NSLQ From 8.0 None -
BKSX From 8.0 None -
B3-108 Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.f

Non-Confidential

ID092917

B3.33

RpsLx
IiBmG

Rxsqn
RupH

RxprQ

Rosre
RcrmbD
RxxpG

RrmLv

B3 Programmers’ Model
B3.33 Coprocessor support

Coprocessor support

Coprocessor support is OPTIONAL.

When coprocessors are not supported, CPACR and NSACR are RAZ/WI.
The architecture supports 0-16 coprocessors, CP0 to CP15.

CPO to CP7 are IMPLEMENTATION DEFINED.

It is IMPLEMENTATION DEFINED whether CP0 to CP7 can be used from both Secure and Non-secure states or whether
the coprocessor is enabled for only Secure or Non-secure state.

ARM reserves CP8 to CP15.
CP10 to CP11 are reserved to support the Floating-point Extension.
Instructions that are issued to unimplemented or disabled coprocessors result in a NOCP UsageFault.

If a coprocessor cannot complete an instruction, an UNDEFINSTR UsageFault is generated.

See also:

. Chapter B4 Floating-point Support.

. CPACR, Coprocessor Access Control Register on page D1-896.
. CPPWR, Coprocessor Power Control Register on page D1-898.

The following table lists the individual rules in this section and the extensions that must be implemented in order
for the rule to apply.

Architecture

Rule version Required extensions Notes

BSLX From 8.0 M -

XSQH From 8.0 M -

HIDH From 8.0 M -

XPRQ From 8.0 M Secure state requires S
QSRC From 8.0 M -

CRMD From 8.0 FP -

XXDG From 8.0 M -

RMLV From 8.0 M -

ARM DDI 0553A.f Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. B3-109

1D092917

Non-Confidential

B3 Programmers’ Model
B3.33 Coprocessor support

B3-110 Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.f
Non-Confidential ID092917

Chapter B4
Floating-point Support

This chapter specifies the ARMv8-M floating-point support rules. It contains the following sections:
. The optional Floating-point Extension, FPv5 on page B4-112.

. About the Floating-point Status and Control Registers on page B4-114.

. Registers for floating-point data processing, S0-S31, or DO-D15 on page B4-115.

. Floating-point standards and terminology on page B4-116.

. Floating-point data representable on page B4-117.

. Floating-point encoding formats, half-precision, single-precision, and double-precision on page B4-118.
. The IEEE 754 floating-point exceptions on page B4-121.

. The Flush-to-zero mode on page B4-122.

. The Default NaN mode, and NaN handling on page B4-124.

. The Default NaN on page B4-125.

. Combinations of floating-point exceptions on page B4-126.
. Priority of floating-point exceptions relative to other floating-point exceptions on page B4-127.
ARM DDI 0553A.f Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. B4-111

1D092917 Non-Confidential

B4 Floating-point Support
B4.1 The optional Floating-point Extension, FPv5

B4.1 The optional Floating-point Extension, FPv5

IvBNH The optional Floating-point Extension defines a Floating Point Unit (FPU). Coprocessors 10 and 11 support the
Extension.
IrxQx Floating-point is sometimes abbreviated to FP.
RGoBMm The version of Floating-point Extension that is supported is FPv5.
IrGsG FPv5 provides all of the following:
. Single-precision arithmetic operations.
. Optional double-precision arithmetic operations.
. Conversions between integer, double-precision, single-precision, and half-precision formats.

. Registers for floating-point processing, S0-S31, or DO-D15.

. Data transfers, between ARM general-purpose registers and FPv5 Extension registers S0-S31 or DO-D15, of
single-precision and double-precision values.

. A Flush-to-zero mode that software can enable or disable.
. A Default NaN mode that software can enable or disable.
. An optional alternative half-precision interpretation of the IEEE 754 half-precision encoding format.

FPv5 adds the following System registers:
. The FPSCR, to the CP10 and CP11 System register space.
. The FPCAR, FPCCR, FPDSCR, MVFR0O, MVFR1, and MVFR2, to the System Control Block (SCB).

IpvBQ When the Floating-point Extension is implemented, some software tools might require the following information:
. Single-precision arithmetic Single and double-precision arithmetic
Extension . .
operations only operations
FPv5 FPv5-SP-D16-M FPv5-D16-M
IrtDS When the Floating-point Extension is implemented, software can interrogate MVFR0, MVFR1, and MVFR2 to
discover the floating-point features that are implemented.
Iipig To use the Floating-point Extension, software must enable access to CP10, by programming CPACR.CP10.
Rppmv The value of CPACR.CP11 is UNKNOWN if it is not programmed to the same value as CPACR.CP10.
See also:

. ARMvVS-M variants on page A1-27.

. The System Control Space (SCS) on page B6-190.

. About the Floating-point Status and Control Registers on page B4-114.

. Registers for floating-point data processing, S0-S31, or DO-D15 on page B4-115.
. The Flush-to-zero mode on page B4-122.

. The Default NaN mode, and NaN handling on page B4-124.

. Floating-point encoding formats, half-precision, single-precision, and double-precision on page B4-118.

B4-112 Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.f
Non-Confidential ID092917

B4 Floating-point Support
B4.1 The optional Floating-point Extension, FPv5

The following table lists the individual rules in this section and the extensions that must be implemented in order
for the rule to apply.

Architecture

Rule . Required extensions Notes
version
GQBM From 8.0 FP -
PDMV From 8.0 FP -
ARM DDI 0553A.f Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. B4-113

1D092917

Non-Confidential

B4 Floating-point Support
B4.2 About the Floating-point Status and Control Registers

B4.2

Ixxzs

Rycrs

Lgrwp

RrxB)

About the Floating-point Status and Control Registers

CP10 and CP11 are used for floating-point control, and many coprocessor instruction encodings targeting CP10 and
CP11 are used as floating-point instruction encodings.

The register map of the coprocessor System register space is as follows.

Location Register Information

0b0001 FPSCR. -

All locations that are not explicitly listed in this table are reserved, and accesses to these locations result in
UNPREDICTABLE behavior.

Software can use VMRS and VMSR instructions to access the Floating-point Status and Control registers.

Execution of floating-point instructions that generate floating-point exceptions update the appropriate status fields
of FPSCR.

See also:

. Coprocessor support on page B3-109.

. The optional Floating-point Extension, FPv5 on page B4-112.

. FPSCR, Floating-point Status and Control Register on page D1-997.

The following table lists the individual rules in this section and the extensions that must be implemented in order
for the rule to apply.

Rule Arch'ltecture Required extensions Notes
version

HCIS From 8.0 FP -

FXBJ From 8.0 FP -

B4-114

Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.f
Non-Confidential ID092917

B4 Floating-point Support
B4.3 Registers for floating-point data processing, S0-S31, or DO-D15

B4.3 Registers for floating-point data processing, S0-S31, or D0-D15

Rrwes The registers that FPv5 adds for floating-point processing are visible as either:
. 32 single-precision registers, S0-S31.
. 16 double-precision registers, DO-D15.

These map as follows:

S0-S31 DO0-D15
so |
st | — DO —
S2
L D1 —
ss
S4
L D2 —
ss |1
S6
L D3 —
sr
s28 |
s | —— D14 —
S30
S — D15 —
Rxwiq After a reset, the values of S0-S31 or DO-D15 are UNKNOWN.
See also:

. The optional Floating-point Extension, FPv5 on page B4-112.
. Exception handling on page B3-74.

The following table lists the individual rules in this section and the extensions that must be implemented in order

for the rule to apply.
Rule Arch_ltecture Required extensions Notes
version
TWCB From 8.0 FP -
XWIJQ From 8.0 FP -
ARM DDI 0553A.f Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. B4-115

1D092917 Non-Confidential

B4 Floating-point Support
B4.4 Floating-point standards and terminology

B4.4 Floating-point standards and terminology

IxnMN There are two editions of the IEEE 754 standard:
. IEEE 754-1985.
. 1IEEE 754-2008.

In this manual, references to IEEE 754 that do not include the year apply to either edition.

ImqrFs The floating-point terminology that this manual uses differs from that used in IEEE 754-2008 as follows:
This manual |IEEE 754-2008
Normalized Normal
Denormal, or denormalized Subnormal

Round towards Minus Infinity (RM) roundTowardsNegative

Round towards Plus Infinity (RP) roundTowardsPositive
Round towards Zero (RZ) roundTowardZero
Round to Nearest (RN) roundTiesToEven

Round to Nearest with Ties to Away roundTiesToAway

Rounding mode Rounding-direction attribute

IBGPN The following is called ARM standard floating-point operation:
. IEEE 754-2008 plus the following FPSCR configuration:
— Flush-to-zero mode enabled.
— Default NaN mode enabled.
— Round to Nearest mode selected.
— Alternative half-precision interpretation not selected.

See also:

. 1IEEE 754-2008, IEEE Standard for Floating-point Arithmetic, August 2008.
. The Flush-to-zero mode on page B4-122.

. The Default NaN mode, and NaN handling on page B4-124.

. Floating-point encoding formats, half-precision, single-precision, and double-precision on page B4-118.

B4-116 Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.f
Non-Confidential ID092917

B4 Floating-point Support
B4.5 Floating-point data representable

B4.5 Floating-point data representable

Rrwxc

FPv5 supports the following, as defined by IEEE 754:

. Normalized numbers.

. Denormalized numbers.
. Zeros, +0 and -0.

. Infinities, +o0 and -oo.

. NaNs, signaling NaN and quiet NaN.

See also:
. Floating-point standards and terminology on page B4-116.
. IEEE 754-2008, IEEE Standard for Floating-point Arithmetic, August 2008.

. Floating-point encoding formats, half-precision, single-precision, and double-precision on page B4-118.

The following table lists the individual rules in this section and the extensions that must be implemented in order
for the rule to apply.

Architecture

Rule . Required extensions Notes
version
FWXC From 8.0 FP -
ARM DDI 0553A.f Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. B4-117

1D092917

Non-Confidential

B4 Floating-point Support
B4.6 Floating-point encoding formats, half-precision, single-precision, and double-precision

B4.6

Rruks

ILgT

Icwsp

[rvwy

Rrwrw

Floating-point encoding formats, half-precision, single-precision, and
double-precision

63 62

The half-precision, single-precision, and double-precision encoding formats are those defined by IEEE 754-2008,
in addition to an alternative half-precision format.

The half-precision encoding format that is defined by IEEE 754-2008 is:
1514 10 9 0

E (biased
exponent)

S T (trailing significand field)

L sign bit
The alternative half-precision encoding format is defined in R-RWRW.

The single-precision encoding format that is defined by IEEE 754-2008 is:
3130 2322 0

S| E (biased exponent) T (trailing significand field)

L sign bit
The double-precision encoding format that is defined by IEEE 754-2008 is:

52 51 32 31 0

(¢

S

(biased exponent)

)T

E T (trailing significand field)

((

t

L sign bit

The interpretations of the IEEE 754-2008 half-precision, single-precision, and double-precision encoding formats
are as follows.
Half-precision
The interpretation depends on the setting of FPSCR.AHP. It is either:
. The interpretation that is defined by IEEE 754-2008.
. An alternative half-precision interpretation.
Single-precision
The interpretation that is defined by IEEE 754-2008.
Double-precision
The interpretation that is defined by IEEE 754-2008.

B4-118

Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.f
Non-Confidential ID092917

See the following table:

B4 Floating-point Support

B4.6 Floating-point encoding formats, half-precision, single-precision, and double-precision

E (biased exponent) T (trailing significand) S (Sign bit) MSB of T2 Value
Zero, for all formats. Non-zero - - A denormalized number
Zero 0 - Zero, +0
1 - Zero, -0
Zero < E <0x1F, if one of the half-precision - - - A normalized number
formats.
Zero < E < 0xFF, if single-precision format.
Zero < E < 0x7FF, if double-precision
format.
0x1F, if half-precision format, IEEE Non-zero - 0 A signaling NaN
interpretation. .
OxFF, if single-precision format.) ! A quiet NaN
0x7FF, if double-precision format. Zero 0 - Infinity, +oo
1 - Infinity, -co
0x1F, if half-precision, alternative - - - A normalized number
half-precision interpretation.
a. MSB = most significant bit.
RppHH The value of a normalized number is equal to:
Half-precision
(=1)S x 2(E-15) x (1.T)
Single-precision
(=1)8 x 2(E-127) x (1.T)
Double-precision
(_I)S x 2(E-1023) x (IT)
The value of a denormalized number is equal to:
Half-precision
(-1)S x 2-14 x (0.7)
Single-precision
(=1)S x 2-126 x (0.T)
Double-precision
(=1)S x 271022 x (0.T)
Rpkxp Denormalized numbers can be flushed to zero. FPv5 provides a Flush-to-zero mode.

See also:

. IEEE 754-2008, IEEE Standard for Floating-point Arithmetic, August 2008.
. Floating-point data representable on page B4-117.

ARM DDI 0553A.f Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved.

1D092917

Non-Confidential

B4-119

B4 Floating-point Support
B4.6 Floating-point encoding formats, half-precision, single-precision, and double-precision

The following table lists the individual rules in this section and the extensions that must be implemented in order
for the rule to apply.

Architecture

Rule version Required extensions Notes
RHKS From 8.0 FP -
RWRW From 8.0 FP -
DPHH From 8.0 FP -
PKXD From 8.0 FP -
B4-120 Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.f

Non-Confidential 1D092917

B4 Floating-point Support
B4.7 The IEEE 754 floating-point exceptions

B4.7 The IEEE 754 floating-point exceptions

RpccL

Iijcws

INFHK

The IEEE 754 floating-point exceptions are:

Invalid Operation
This exception is as IEEE 754-2008 (7.2) describes.
Division by zero
This exception is as IEEE 754-2008 (7.3) describes, with the following assumption:

. For the reciprocal and reciprocal square root estimate functions the dividend is assumed to be
+1.0.

Overflow
This exception is as IEEE 754-2008 (7.4) describes.

Underflow
This exception is as IEEE 754-2008 (7.5) describes, with the additional clarification that:

. Assessing whether a result is tiny and non-zero is done before rounding.

Inexact
This exception is as IEEE 754-2008 (7.6) describes.

The criteria for the Underflow exception to be generated are different in Flush-to-zero mode.

The corresponding status flags for the IEEE 754 floating-point exceptions are FPSCR.{IOC, DZC, OFC, UFC,
IXC}.

See also:
. 1IEEE 754-2008, IEEE Standard for Floating-point Arithmetic, August 2008.
. The Flush-to-zero mode on page B4-122.

The following table lists the individual rules in this section and the extensions that must be implemented in order
for the rule to apply.

Architecture

Rule . Required extensions Notes
version
BCCL From 8.0 FP -
ARM DDI 0553A.f Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. B4-121

1D092917

Non-Confidential

B4 Floating-point Support
B4.8 The Flush-to-zero mode

B4.8 The Flush-to-zero mode
IxGrp Software can enable Flush-to-zero mode by setting FPSCR.FZ to 1.
TwMKJ Using Flush-to-zero mode is a deviation from IEEE 754.
Rjqnux Half-precision floating-point numbers are exempt from Flush-to-zero mode.
Ryisr When Flush-to-zero mode is enabled, all single-precision denormalized inputs and double-precision denormalized
inputs to floating-point operations are treated as though they are zero, that is they are flushed to zero.
Rkgy) When an input to a floating-point operation is flushed to zero, the PE generates an Input Denormal exception.
RsBck Input Denormal exceptions are only generated in Flush-to-zero mode.
Rwipm When Flush-to-zero mode is enabled, the sequence of events for an input to a floating-point operation is:
1. Flush to Zero processing takes place. If appropriate, the input is flushed to zero and the PE generates an Input
Denormal exception.
2. Tests for the generation of any other floating-point exceptions are done after Flush to Zero processing.
Rpgpr When Flush-to-zero mode is enabled, the result of a floating-point operation is treated as if it is zero if, before
rounding, it satisfies the condition:
0 < Abs(result) < MinNorm, where:
. MinNorm is 2-126 for single-precision.
. MinNorm is 2-1022 for double-precision.
The result is said to be flushed to zero.
Raopor When the result of a floating-point operation is flushed to zero, the PE generates an Underflow exception.
RrpvD In Flush-to-zero mode, the PE generates Underflow exceptions only when a result is flushed to zero. This uses
different criteria than when Flush-to-zero mode is disabled.
RR1PH When a floating-point number is flushed to zero, the sign is preserved. That is, the sign bit of the zero matches the
sign bit of the number being flushed to zero.
RRWRT The PE does not generate an Inexact exception when a floating-point number is flushed to zero.
Isqcy The corresponding status flag for the Input Denormal exception is FPSCR.IDC.
See also:
. The IEEE 754 floating-point exceptions on page B4-121.
The following table lists the individual rules in this section and the extensions that must be implemented in order
for the rule to apply.
Rule Arch_ltecture Required extensions Notes
version
JQHX From 8.0 FP -
VISF From 8.0 FP -
KBJJ From 8.0 FP -
SBCK From 8.0 FP -
WIDM From 8.0 FP -
B4-122 Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.f

Non-Confidential 1D092917

B4 Floating-point Support
B4.8 The Flush-to-zero mode

Architecture

Rule version Required extensions Notes
PHPT From 8.0 FP -
QPQF From 8.0 FP -
TPVD From 8.0 FP -
RTPH From 8.0 FP -
RWRT From 8.0 FP -
ARM DDI 0553A.f Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. B4-123

1D092917 Non-Confidential

B4 Floating-point Support
B4.9 The Default NaN mode, and NaN handling

B4.9

IrGpN
IpjvH

Romoc

RNprL

Rycss

ILxLF

The Default NaN mode, and NaN handling

Software can enable Default NaN mode by setting FPSCR.DN to 1.
Using Default NaN mode is a deviation from IEEE 754.

When Default NaN mode is enabled, the Default NaN is the result of both:
. All floating-point operations that produce an untrapped Invalid Operation exception.

. All floating-point operations whose inputs include at least one quiet NaN but no signaling NaNs.

IEEE 754 specifies that:
. An operation that produces an untrapped Invalid Operation exception returns a quiet NaN as its result.
When Default NaN mode is disabled, behavior complies with this and adds:

. If the Invalid Operation exception was generated because one of the inputs to the operation was a signaling
NaN, the quiet NaN result is equal to the first signaling NaN input with its most significant bit set to 1.

. The quiet NaN result is the Default NaN otherwise.

The first signaling NaN input means the first argument, in the left-to-right ordering of arguments, that is passed to
the pseudocode function describing the operation.

IEEE 754 specifies that:

. An operation using a quiet NaN as an input, but no signaling NaNs as inputs, returns one of its quiet NaN
inputs as its result.

When Default NaN mode is disabled, behavior complies with this and adds:
. The quiet NaN result is the first quiet NaN input.
The first quiet NaN input means the first argument, in the left-to-right ordering of arguments, that is passed to the

pseudocode function describing the operation.

Depending on the floating-point operation, the exact value of a quiet NaN result might differ in both sign and the
number of T bits from its source.

See also:
. The Default NaN on page B4-125.

. Floating-point encoding formats, half-precision, single-precision, and double-precision on page B4-118.

The following table lists the individual rules in this section and the extensions that must be implemented in order
for the rule to apply.

Rule Arch_ltecture Required extensions Notes
version

QMQC From 8.0 FP -

NPRL From 8.0 FP -

VCSB From 8.0 FP -

B4-124

Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.f
Non-Confidential ID092917

B4 Floating-point Support
B4.10 The Default NaN

B4.10 The Default NaN

RrqorG The Default NaN is:
Field Half-precision, IEEE 754-2008 interpretation Single-precision Double-precision
S 0 0 0
E 0x1F OxFF Ox7FF
T Bit[9] == 1, bits[8:0] = bit[22] == 1, bits[21:0] ==0 bit[51] == 1, bits[50:0] ==
See also:
. Floating-point encoding formats, half-precision, single-precision, and double-precision on page B4-118.

. The Default NaN mode, and NaN handling on page B4-124.

The following table lists the individual rules in this section and the extensions that must be implemented in order

for the rule to apply.
Rule Arch.ltecture Required extensions Notes
version
FQFG From 8.0 FP -
ARM DDI 0553A.f Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. B4-125

1D092917 Non-Confidential

B4 Floating-point Support
B4.11 Combinations of floating-point exceptions

B4.11

IgTTH

RrrvH

Combinations of floating-point exceptions

In compliance with IEEE 754:
. An Inexact floating-point exception can occur with an Overflow floating-point exception.

. An Inexact floating-point exception can occur with an Underflow floating-point exception.

An Input Denormal exception can occur with other floating-point exceptions.

See also:
. The IEEE 754 floating-point exceptions on page B4-121.
. The Flush-to-zero mode on page B4-122.

The following table lists the individual rules in this section and the extensions that must be implemented in order
for the rule to apply.

Rule Arch'ltecture Required extensions Notes
version

LFVH From 8.0 FP -

B4-126

Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.f
Non-Confidential ID092917

B4 Floating-point Support
B4.12 Priority of floating-point exceptions relative to other floating-point exceptions

B4.12 Priority of floating-point exceptions relative to other floating-point exceptions
Rprmy Some floating-point instructions specify more than one floating-point operation. In these cases, an exception on one

operation is higher priority than an exception on another operation when generation of the second exception depends
on the result of the first operation. Otherwise, it is UNPREDICTABLE which exception is higher priority.

See also:
. The IEEE 754 floating-point exceptions on page B4-121.

The following table lists the individual rules in this section and the extensions that must be implemented in order

for the rule to apply.
Rule Arch'ltecture Required extensions Notes
version
PLHJ From 8.0 FP -
ARM DDI 0553A.f Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. B4-127

1D092917 Non-Confidential

B4 Floating-point Support
B4.12 Priority of floating-point exceptions relative to other floating-point exceptions

B4-128 Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.f
Non-Confidential ID092917

Chapter BS
Memory Model

This chapter specifies the ARMv8-M memory model architecture rules. It contains the following sections:
. Memory accesses on page B5-131.

. Address space on page B5-132.

. Endianness on page B5-133.

. Alignment behavior on page B5-135.

. Atomicity on page B5-136.

. Concurrent modification and execution of instructions on page B5-138.

. Access rights on page B5-140.

. Observability of memory accesses on page B5-142.

. Completion of memory accesses on page B5-144.

. Ordering requirements for memory accesses on page B5-145.
. Ordering of implicit memory accesses on page B5-146.

. Ordering of explicit memory accesses on page B5-147.

. Memory barriers on page B5-148.

. Normal memory on page B5-152.

. Cacheability attributes on page B5-154.

. Device memory on page B5-155.

. Device memory attributes on page B5-157.
. Shareability domains on page B5-161.

. Shareability attributes on page B5-163.

. Memory access restrictions on page B5-164.

. Mismatched memory attributes on page B5-165.

. Load-Exclusive and Store-Exclusive accesses to Normal memory on page B5-167.
. Load-Acquire and Store-Release accesses to memory on page B5-168.

. Caches on page B5-170.

ARM DDI 0553A.f
1D092917

Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. B5-129
Non-Confidential

B5 Memory Model

. Cache identification on page B5-172.

. Cache visibility on page B5-173.

. Cache coherency on page B5-174.

. Cache enabling and disabling on page B5-175.

. Cache behavior at reset on page B5-176.

. Behavior of Preload Data (PLD) and Preload Instruction (PLI) instructions with caches on page B5-177.
. Branch predictors on page B5-178.

. Cache maintenance operations on page B5-179.
. Ordering of cache maintenance operations on page B5-182.
. Branch predictor maintenance operations on page B5-183.
B5-130 Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.f

Non-Confidential 1D092917

B5 Memory Model
B5.1 Memory accesses

B5.1 Memory accesses

IxrDS The memory accesses that are referred to in describing the memory model are instruction fetches from memory and
load or store data accesses.

Rikon The instruction operation uses the MemA[] or MemU[] helper functions. If the Main Extension is not implemented
unaligned accesses using the MemU[] helper functions generate an alignment fault.

RBENF A memory access is governed by:
. Whether the access is a read or a write.
. The address alignment.
. Data endianness.

. Memory attributes.

See also:
. Ordering of implicit memory accesses on page B5-146.
. Ordering of explicit memory accesses on page B5-147.

. Normal memory on page B5-152.
. Device memory on page B5-155.

. Memory access restrictions on page B5-164.

The following table lists the individual rules in this section and the extensions that must be implemented in order

for the rule to apply.
Rule Arch_ltecture Required extensions Notes
version
LKQN From 8.0 None -
BFNF From 8.0 None -
ARM DDI 0553A.f Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. B5-131

1D092917 Non-Confidential

B5 Memory Model
B5.2 Address space

B5.2 Address space

RrrmK The address space is a single, flat address space of 232 bytes.

Rsnpy In the address space, byte addresses are unsigned numbers in the range 0-232-1.

RRrGBT If an address calculation overflows or underflows the address space, it wraps around. Address calculations are
modulo 232,

[yTkm Normal sequential execution cannot overflow the top of the address space, because the top of memory always has
the Execute Never (XN) memory attribute.

Repmp LDC, LDM, LDRD, POP (multiple registers), PUSH (multiple registers), STC, STRD, STM, VLDM, VPOP, VPUSH, VSTM, VLDR.64,
and VSTR.64 instructions access a sequence of words at increasing memory addresses, effectively incrementing the
address by 4 for each load or store. If this calculation overflows the top of the address space, the result is
UNPREDICTABLE.

See also:
. System address map on page B6-186.
The following table lists the individual rules in this section and the extensions that must be implemented in order
for the rule to apply.
Architecture . .
Rule . Required extensions Notes
version
FFMK From 8.0 None -
SNPV From 8.0 None -
RGBT From 8.0 None -
BPMP From 8.0 None . The encodings of some instructions
require M
. The encodings of some instructions
require FP
B5-132 Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.f

Non-Confidential 1D092917

B5 Memory Model

B5.3 Endianness
B5.3 Endianness
Ietvy In memory:
. The following figures show the relationship between:
— The word at address A.
— The halfwords at addresses A and A+2.
— The bytes at addresses A, A+1, A+2, and A+3.
Data arranged in a little-endian format
31 24 23 16 15 8 0
Word at address A
Halfword at address A+2 Halfword at address A
Byte at address A+3 Byte at address A+2 Byte at address A+1 Byte at address A
{
Most significant byte T Least significant byte
Most significant bit
Least significant bit

Data arranged in a big-endian format

31 24 23 16 15 8 0
Word at address A
Halfword at address A Halfword at address A+2
Byte at address A Byte at address A+ Byte at address A+2 Byte at address A+3
Most significant byte T Least significant byte
Most significant bit
Least significant bit
Instruction alignment and byte ordering
15 8 7 015 8 7 0
T32 instruction, hw1® T32 instruction, hw2°
Byte at address A+1 Byte at address A Byte at address A+3 Byte at address A+2
a) Bits[15:0]: this is hw 1 for a T32 instruction with a 16-bit encoding
b) Bits[31:0]: this is hw1 and hw2 for a T32 instruction with a 32-bit encoding
RyqL Instruction fetches are always little-endian, which means that the PE assumes a little-endian arrangement of
instructions in memory.
RyvNsB All accesses to the Private Peripheral Bus (PPB) are always little-endian, which means that the PE assumes a
little-endian arrangement of the PPB registers.
RTrKG The endianness of data accesses is IMPLEMENTATION DEFINED, as indicated by AIRCR.ENDIANNESS.
Rkpcr AIRCR.ENDIANNESS is either:
. Implemented with a static value.
ARM DDI 0553A.f Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. B5-133

1D092917

Non-Confidential

B5 Memory Model

B5.3 Endianness

Rxpyv

Rouwc

. Configured by a hardware input on reset.

Instructions that cause a memory access that crosses the PPB boundary are CONSTRAINED UNPREDICTABLE if
AIRCR.ENDIANNESS is set to 1. The permitted behavior is one of the following:

. The instruction behaves as a NOP.

. The instruction raises an UNALIGNED UsageFault.

. If the instruction that crossed the PPB boundary was a load, the value of the destination register becomes
UNKNOWN.

. If the instruction that crossed the PPB boundary was a store, the value of the memory locations accessed

becomes UNKNOWN.

For data accesses, the following table shows the data element size that endianness applies to, for endianness
conversion purposes.

Instruction class

Instructions

Element size

Load or store byte LDR{S}B{T}, LDAB, LDAEXB, STLB, STLEXB, STRB{T}, TBB, LDREXB, STREXB ~ Byte

Load or store halfword LDR{S}H{T}, LDAH, LDAEXH, STLH, STLEXH, and STRH{T}, TBH, LDREXH, Halfword
STREXH

Load or store word LDR{T}, LDA, LDAEX, STL, STLEX, and STR{T}, LDREX, STREX, VLDR.F32, Word
VSTR.F32

Load or store two words LDRD, STRD, VLDR.F64, VSTR.F64 Word

Load or store multiple words ~ LDM{IA,DB}, STM{IA,DB}, PUSH (multiple registers), POP (multiple Word

registers), LDC, STC, VLDM, VSTM, VPUSH, VPOP, BLX, BLXNS, BX, BXNS,
VLLDM, VLSTM.

Rxnvs The following instructions change the endianness of data that is loaded or stored:
REV Reverse word (four bytes) register, for transforming 32-bit representations.
REVSH Reverse halfword and sign extend, for transforming signed 16-bit representations.
REV16 Reverse packed halfwords in a register for transforming unsigned 16-bit representations.
The following table lists the individual rules in this section and the extensions that must be implemented in order
for the rule to apply.
Rule Arch.ltecture Required extensions Notes
version
JJQL From 8.0 None -
MNSB From 8.0 None -
TFKG From 8.0 None -
KPCF From 8.0 None -
XDJV From 8.0 None A UsageFault requires M
QHWC From 8.0 None -
XNVS From 8.0 None -
B5-134 Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.f

Non-Confidential

ID092917

B5.4

Rrkagv

RroGe

Ryucm

RiLcs
RpzrT
Rwevx
RrNDS

RpnBx

Repvp

B5 Memory Model
Bb5.4 Alignment behavior

Alignment behavior

All instruction fetches are halfword-aligned.

The following are unaligned data accesses that always generate an alignment fault:
. Non halfword-aligned LDAH, LDREXH, LDAEXH, STLH, STLEXH, and STREXH.

. Non word-aligned LDREX, LDAEX, STLEX, STREX, LDRD, LDMIA, LDMDB, POP (multiple registers), LDC, VLDR, VLDM,
VPOP, LDA, STL, STMIA, STMDB, PUSH (multiple registers), STC, VSTR, VSTM, VPUSH, VLLDM, and VLSTM.

If CCR.UNALIGN_TRP is set to 1, the following are unaligned data accesses that generate an alignment fault:
. Non halfword-aligned LDR{S}H{T}, and STRH{T}.

. Non halfword-aligned TBH.

. Non word-aligned LDR{T}, and STR{T}.

Unaligned accesses are only supported if the Main Extension is implemented.

If the Main Extension is not implemented, unaligned accesses generate an alignment fault.
Accesses to Device memory are always aligned.

Alignment faults are synchronous and generate an UNALIGNED UsageFault.

The CONSTRAINED UNPREDICTABLE behavior of unaligned loads and stores is one of the following:
. Generate an UNALIGNED UsageFault.
. Perform the specified load or store to the unaligned memory location.

Unaligned loads and stores perform the specified load and store to the unaligned memory location.

See also:
. Normal memory on page B5-152.
. Device memory on page B5-155.

The following table lists the individual rules in this section and the extensions that must be implemented in order
for the rule to apply.

Architecture

Rule version Required extensions Notes
LKGV From 8.0 None -
RQGG From 8.0 None -
MHCM From 8.0 None -
JLGS From 8.0 M -
PZTT From 8.0 M -
WCVX From 8.0 None -
RNDS From 8.0 M -
BNBX From 8.0 M -
LPVP From 8.0 None -
ARM DDI 0553A.f Copyright © 2015-2017 ARM Limited or its affiliates. All rights reserved. B5-135

1D092917

Non-Confidential

B5 Memory Model
B5.5 Atomicity

B5.5 Atomicity

B5.5.1 Single-copy atomicity
INwVK Store operations are single-copy atomic if, when they overlap bytes in memory:
1. All of the writes from one of the stores are inserted into the coherence order of each overlapping byte.
2. All of the writes from another of the stores are inserted into the coherence order of each overlapping byte.
3. Step 2 repeats, for each single-copy store atomic operation that overlaps.
RpsHy The following data accesses are single-copy atomic:
. All byte accesses.
. All halfword accesses to halfword-aligned locations.
. All word accesses to word-aligned locations.
Ronpx Instruction fetches are single-copy atomic at halfword granularity.
Ryxwe For instructions that access a sequence of word-aligned words, each word access is single-copy atomic.
Rikpm For instructions that access a sequence of word-aligned words, the architecture does not require two or more

subsequent word accesses to be single-copy atomic.

The following table lists the individual rules in this section and the extensions that must be implemented in order
for the rule to apply.

Architecture

Rule version Required extensions Notes
BSHJ From 8.0 None -
QNPX From 8.0 None -
MXWC From 8.0 None -
LKPM From 8.0 None -

B5.5.2 Multi-copy atomicity

IBcHk In a multiprocessing environment, writes to memory are multi-copy atomic if all of the following are true:
. All writes to the same location are observed in the same order by all observers, although some of the
observers might not observe