
Arm® Architecture Reference Manual
Supplement, Custom Datapath Extension for

Armv8-M

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
DDI0607A.b ID31032020

Release information

Date Version Changes

31/03/2020 A.b Non-
confidential-
EAC

• EAC release

17/12/2019 A.a Non-
confidential-
Beta

• Beta release

DDI0607A.b
ID31032020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

0-ii

Armv8-M Architecture Reference Manual

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. The copyright statement reflects the fact that some
draft issues of this document have been released, to a limited circulation.

Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained
in this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS,
IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABIL-
ITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT
TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has undertaken no analysis
to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, INCLUD-
ING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL
DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE
OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure
of this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof
is not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s customers
is not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document
at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or signed written
agreement covering this document with Arm, then the click through or signed written agreement prevails over and supersedes the
conflicting provisions of these terms. This document may be translated into other languages for convenience, and you agree that
if there is any conflict between the English version of this document and any translation, the terms of the English version of the
Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited
(or its subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this
document may be the trademarks of their respective owners. Please follow Arm’s trademark usage guidelines at
http://www.arm.com/company/policies/trademarks.

Copyright © 2015 - 2020 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20349

Confidentiality Status

This document is Non-confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

DDI0607A.b
ID31032020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

0-iii

Product Status

The information in this document is final, that is a developed product.

Web Address

http://www.arm.com

DDI0607A.b
ID31032020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

iv

Contents

Arm® Architecture Reference Manual Supplement, Custom Data-
path Extension for Armv8-M

Release information . ii
Armv8-M Architecture Reference Manual . iii
Proprietary Notice . iii
Confidentiality Status . iii
Product Status . iv
Web Address . iv

Preface
Additional reading . viii

Arm publications . viii

Part A Custom Datapath Extension for the Armv8-M Architecture Intro-
duction and Overview

Chapter A1 Introduction
A1.1 Document layout and terminology . 11

A1.1.1 Structure of the document . 11
A1.1.2 Scope of the document . 12
A1.1.3 Intended audience . 12
A1.1.4 Terminology, phrases . 12
A1.1.5 Terminology, Armv8-M specific terms 12

A1.2 The Custom Datapath Extension for Armv8-M 13
A1.3 Overview of the Custom Datapath Extension 14

Part B Custom Datapath Extension for the Armv8-M Architecture, Pro-
grammers’ model

Chapter B1 Programmers’ Model
B1.1 Enabling CDE instructions . 17
B1.2 Execution of CDE instructions . 19

Part C Instruction Specification

Chapter C1 Alphabetical list of instructions
C1.0.1 CDP, CDP2 . 23
C1.0.2 CX1 . 25
C1.0.3 CX1D . 27
C1.0.4 CX2 . 29
C1.0.5 CX2D . 31
C1.0.6 CX3 . 33
C1.0.7 CX3D . 35
C1.0.8 LDC, LDC2 (immediate) . 37
C1.0.9 LDC, LDC2 (literal) . 40
C1.0.10 MCR, MCR2 . 42
C1.0.11 MCRR, MCRR2 . 44

DDI0607A.b
ID31032020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

v

Contents
Contents

C1.0.12 MRC, MRC2 . 46
C1.0.13 MRRC, MRRC2 . 48
C1.0.14 STC, STC2 . 50
C1.0.15 VCX1 (vector) . 53
C1.0.16 VCX1 . 55
C1.0.17 VCX2 (vector) . 57
C1.0.18 VCX2 . 59
C1.0.19 VCX3 (vector) . 61
C1.0.20 VCX3 . 63

Part D Pseudocode Specification

Chapter D1 Pseudocode Specification
D1.1 Alphabetical Pseudocode List . 67

D1.1.1 CdeImpDefValue . 67
D1.1.2 CoprocType . 67
D1.1.3 CPDef . 67
D1.1.4 CX_op0 . 67
D1.1.5 CX_op1 . 67
D1.1.6 CX_op2 . 68
D1.1.7 CX_op3 . 68
D1.1.8 RF . 68
D1.1.9 RFD . 69
D1.1.10 VCX_op0 . 69
D1.1.11 VCX_op1 . 69
D1.1.12 VCX_op2 . 70
D1.1.13 VCX_op3 . 70

Glossary

DDI0607A.b
ID31032020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

vi

Preface

This preface introduces the Armv8-M Custom Datapath Extension. It contains the following sections:

Introduction to CDE

Custom Datapath Extension for the Armv8-M Architecture, Programmers’ Model

Alphabetical list of instructions

Pseudocode Specification

vii

Additional reading

This section lists relevant publications from Arm and third parties.

See https://developer.arm.com, for access to Arm documentation.

Arm publications

• Arm®v8-M Architecture Reference Manual (ARM DDI 0553B.k)

viii

https://developer.arm.com

Part A
Custom Datapath Extension for the Armv8-M Architecture

Introduction and Overview

Chapter A1
Introduction

This chapter introduces the Custom Datapath Extension for the Armv8-M architecture. It contains the following
sections:

A1.1 Document layout and terminology on page 11.

A1.2 The Custom Datapath Extension for Armv8-M on page 13.

A1.3 Overview of the Custom Datapath Extension on page 14.

DDI0607A.b
ID31032020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

10

Chapter A1. Introduction
A1.1. Document layout and terminology

A1.1 Document layout and terminology

This section describes the structure and scope of this supplement. This section also describes the terminology that
this supplement uses. It does not constitute part of the supplement, and must not be interpreted as implementation
guidance.

A1.1.1 Structure of the document

This supplement describes the behavior of the Custom Datapath Extension as a set of individual rules.

Each rule is clearly identified by the letter R, followed by a random group of subscript letters that do not reflect any
intended order or priority, for example RBSHJ. In the following example, RBSHJ is simply a random rule identifier
that has no significance apart from uniquely identifying a rule in this supplement.

RBSHJ The following data accesses are single-copy atomic:

All byte accesses.

All halfword accesses to halfword-aligned locations.

All word accesses to word-aligned locations.

Identifier Rule

Applies to an implementation of the architecture from Armv8.0-M onwards

Additional Information

Rules must not be read in isolation, and where more than one rule relating to a particular feature exists, individual
rules are grouped into sections and subsections to provide the proper context. Where appropriate, these sections
contain a short introduction to aid the reader.

An implementation that conforms to all the rules described in this supplement constitutes an Custom Datapath
Extension for Armv8-M compliant implementation. An implementation whose behavior deviates from these rules
is not compliant with the Custom Datapath Extension for Armv8-M architecture.

Some sections contain additional information and guidance that do not constitute rules. This information and
guidance is provided purely as an aid to understanding the architecture. Information statements are clearly
identified by the letter I, followed by a random group of subscript letters, for example IPRTD.

Note

Arm strongly recommends that implementers read all chapters and sections of this document to ensure
that an implementation is compliant.

An implementation that conforms to all the rules described in this specification but chooses to ignore any additional
information and guidance is compliant with the Armv8-M architecture.

In the following parts of this supplement, architectural rules are not identified by a specific prefix and a random
group of subscript letters:

• Part C Custom Datapath Extension for Armv8-M Instruction Set.

DDI0607A.b
ID31032020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

11

Chapter A1. Introduction
A1.1. Document layout and terminology

A1.1.2 Scope of the document

This supplement contains only rules and information that relate specifically to the Custom Datapath Extension for
Armv8-M architecture. It does not include any information about other Arm architectures, nor does it describe the
full details of the Armv8-M architecture.

A1.1.3 Intended audience

This supplement is written for users who want to design, implement, or program the Custom Datapath Extension
for Armv8-M. This supplement is not a full description of the Armv8-M architecture.

The supplement provides a precise, accurate, and correct set of rules that must be followed in order for a Custom
Datapath Extension for Armv8-M implementation to be architecturally compliant. It is an explicit reference
supplement, and not a general introduction to, or user guide for, the Custom Datapath Extension for Armv8-M
architecture.

A1.1.4 Terminology, phrases

This subsection identifies some standard words and phrases that are used in the Arm architecture documentation.
These words and phrases have an Arm-specific definition, which is described in this section.

Architecturally visible

Something that is visible to the controlling agent. The controlling agent might be software.

Arm recommends

A particular usage that ensures consistency and usability. Following all the rules listed in this supplement leads to
a predictable outcome that is compliant with the architecture, but might produce an unexpected output. Adhering
to a recommendation ensures that the output is as expected.

Arm strongly recommends

Something that is essentially mandatory, but that is outside the scope of the architecture described in this supplement.
Failing to adhere to a strong recommendation can break the system, although the PE itself remains compliant with
the architecture that is described in this supplement.

Finite time

An action will occur at some point in the future. Finite time does not make any statement about the time involved.
However, delaying an action longer than is absolutely necessary might have an adverse impact on performance.

Permitted

Allowed behavior.

Required

Mandatory behavior.

Support

The implementation has implemented a particular feature.

A1.1.5 Terminology, Armv8-M specific terms

For definitions of Custom Datapath Extension specific terms, see the Glossary.

DDI0607A.b
ID31032020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

12

Chapter A1. Introduction
A1.2. The Custom Datapath Extension for Armv8-M

A1.2 The Custom Datapath Extension for Armv8-M

The Custom Datapath Extension is an OPTIONAL feature available from Armv8-M architecture. An implementation
that includes the Custom Datapath Extension must implement the features that are provided by the Main Extension
(M), and might implement the following OPTIONAL features:

• The features that are provided by the Floating-point Extension (FP). Instructions that operate on the S or D
register file require FP or MVE.

• The features that are provided by the Armv8.1 M-Profile Vector Extension (MVE). Instructions that operate
on the Q register file require MVE.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Where applicable, a line below each rule or information statement indicates the extensions that are required for the
rule or information statement to apply, and any other notes.

Applies to an implementation of the architecture from Armv8.0-M onwards.

A line below each rule or information statement indicates the architecture version, the extensions that are required
for the rule or information statement to apply, and any other notes. Some extensions depend on the implementation
of other extensions, for example FP.

Applies to an implementation of the architecture from Armv8.0-M onwards.

DDI0607A.b
ID31032020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

13

Chapter A1. Introduction
A1.3. Overview of the Custom Datapath Extension

A1.3 Overview of the Custom Datapath Extension

IQNBG The Custom Datapath Extension (CDE) for the Armv8-M architecture introduces three classes of two instructions
in the co-processor instruction space:

• Three classes operate on the general-purpose register file, including the condition code flags APSR_nzcv.
• Three classes operate on the Floating-point or SIMD register file only.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - CDE. Note, (FP
|| MVE) required for Floating-point register file. MVE is only available in an Armv8.1-M implementation.

IJWBF A Custom Datapath instruction operating on the Floating-point or SIMD register files uses one of:

• 32-bit S registers.
• 64-bit D registers.
• 128-bit Q registers.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - CDE && (FP ||
MVE). Note, Q registers require MVE, MVE is only available in an Armv8.1-M implementation.

IRBLJ The three classes are defined by the following instruction patterns:

• <operation code> <destination register>.
• <operation code> <destination register>, <source register>.
• <operation code> <destination register>, <source register 1>, <source register 2>.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - CDE.

IFZRZ The destination register of an instruction might be optionally read, as well as written.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - CDE.

IBXBG The operation code can be split between a true operation code in the custom datapath and an immediate value used
in the custom datapath. The architecture does not prescribe any split.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - CDE.

INFMB Immediate consequences of the above are:

• No operations on the Floating-point or SIMD registers can set condition codes.
• There are no instructions that support the use of all of, or any combination of, S registers, D registers, Q

registers and, the general-purpose register file.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - CDE. Note, Q
registers require MVE, MVE is only available in an Armv8.1-M implementation.

ITVRP Operations on the general-purpose register file operate on 32-bit registers, or a dual-register consisting of a 64-bit
value constructed from an even numbered general-purpose register and its immediately following odd numbered
pair.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - CDE.

DDI0607A.b
ID31032020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

14

Part B
Custom Datapath Extension for the Armv8-M

Architecture, Programmers’ model

Chapter B1
Programmers’ Model

This chapter specifies the rules associated with the Custom Datapath Extension (CDE) for Armv8-M. It contains
the following sections:

B1.1 Enabling CDE instructions on page 17

B1.2 Execution of CDE instructions on page 19

DDI0607A.b
ID31032020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

16

Chapter B1. Programmers’ Model
B1.1. Enabling CDE instructions

B1.1 Enabling CDE instructions

ICXBC Custom Datapath instructions can be found within, and are associated with, the existing coprocessor encoding and
numbering spaces.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - CDE.

RXLTS Custom Datapath instructions fall into encoding spaces associated with a coprocessor number in the range 0 to 7
inclusive.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - CDE.

IWWNQ Enabling the coprocessor space in which the Custom Datapath Extension is implemented is the same as other
IMPLEMENTATION DEFINED coprocessors. The function IsCPEnabled() describes this.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - CDE. Note, S
required for Secure state.

RVSVW If a coprocessor is associated with the Custom Datapath Extension, that coprocessor cannot execute the following
instructions:

• CDP, CDP2.
• LDC, LDC2 (immediate).
• LDC, LDC2 (literal).
• MCR, MCR2.
• MCRR, MCRR2.
• MRC, MRC2.
• MRRC, MRRC2.
• STC, STC2.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - CDE.

RSKRX Execution of a Custom Datapath instruction that accesses the Floating-point or SIMD register file causes Lazy
Floating-point stacking as specified by the architecture.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - CDE && (FP ||
MVE). Note, MVE is only available in an Armv8.1-M implementation.

RLQTN When executing a CDE instruction the PE checks that the coprocessor associated with CDE is enabled. If access
to another coprocessor is required, for example the Floating-point Extension or MVE, a second coprocessor check
is carried out.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - CDE && (FP ||
MVE). Note, MVE is only available in an Armv8.1-M implementation.

IZCCK If the execution of a CDE instruction requires access to the Floating-point or MVE register file the Floating-point
Extension or MVE must be enabled using CPACR or NSACR dependent on Security state. Before the execution of
a CDE instruction that requires access to the Floating-point Extension or MVE register file, the following registers
are checked to ensure that CP10 is enabled:

• CPACR.
• NSACR.
• CPPWR.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - CDE && (FP ||
MVE). Note, MVE is only available in an Armv8.1-M implementation.

IMVXW Armv8-M double-precision Floating-point Extension implements 16 “D” registers, D0 to D15. The instructions
defined by the Custom Datapath Extension are capable of indexing registers D0 to D31.

DDI0607A.b
ID31032020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

17

Chapter B1. Programmers’ Model
B1.1. Enabling CDE instructions

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - CDE && (FP ||
MVE). Note, MVE is only available in an Armv8.1-M implementation.

ILPPY Armv8.1-M MVE implements eight “Q” registers, Q0 to Q7. The instructions defined by the Custom Datapath
Extension are capable of indexing registers Q0 to Q15.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - CDE && MVE.
Note, MVE is only available in an Armv8.1-M implementation.

RLBNN Execution of a Custom Datapath instruction that attempts to access an unimplemented Floating-point or SIMD
register, is CONSTRAINED UNPREDICTABLE and either of the following behaviors can occur:

• The instruction is UNDEFINED.
• The instruction is treated as a NOP.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - CDE && (FP ||
MVE). Note, MVE is only available in an Armv8.1-M implementation.

DDI0607A.b
ID31032020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

18

Chapter B1. Programmers’ Model
B1.2. Execution of CDE instructions

B1.2 Execution of CDE instructions

RQGNK The source and destination registers for any Custom Datapath instruction are restricted to those that are specified
by the instruction pseudocode.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - CDE.

RGPLC The operation of a Custom Datapath instruction cannot be stateful, and cannot operate directly on memory.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - CDE.

RXFCV It is IMPLEMENTATION DEFINED which Custom Datapath instructions are implemented.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - CDE.

RSVBN An unimplemented Custom Datapath instruction whose associated coprocessor is not disabled is UNDEFINED.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - CDE.

RJKXH The execution of an unimplemented immediate value in the encoding of a Custom Datapath instruction is
CONSTRAINED UNPREDICTABLE and either of the following behaviors can occur:

• The instruction is UNDEFINED.
• The instruction is treated as a NOP.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - CDE.

RSGPM Which coprocessors adhere to the Custom Datapath Extension or the Arm architecture coprocessor instruction set
is IMPLEMENTATION DEFINED.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - CDE.

ILCVM Arm strongly recommends that CDE instructions must conform with data independent timing.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - CDE && DIT.
Note, DIT is only available in an Armv8.1-M implementation.

RDVDG If the Performance Monitors Extension is implemented only the instruction counter, Cycle counter and, IMPLE-
MENTATION DEFINED counters increment on execution of Custom Datapath Extension instructions. There are no
architected PMU events for Custom Datapath Extension instructions.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - CDE && PMU.
Note, PMU is only available in an Armv8.1-M implementation.

RVPLL When executing a CDE scalar dual instruction the CDE enabled coprocessor must process general-purpose register
pairs according to the PE’s current endianness.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - CDE.

IRRTS All of the rules required for the M-Profile Vector Extension and the Low Overhead Loop and Branch Future
Extension apply to all CDE beat-wise compatible instructions.

This includes the following, but is not limited to:

• Exception continuable behavior.
• Overlapping of beat-wise instructions.
• VPT predication.
• Tail predicated low overhead loops.

The CDE instructions are as follows:

• VCX1 (vector).

DDI0607A.b
ID31032020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

19

Chapter B1. Programmers’ Model
B1.2. Execution of CDE instructions

• VCX2 (vector).
• VCX3 (vector).

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - CDE && MVE
&& LOB. Note, LOB && MVE are only available in an Armv8.1-M implementation.

DDI0607A.b
ID31032020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

20

Part C
Instruction Specification

Chapter C1
Alphabetical list of instructions

Instructions relevant to this Extension are listed in this section. For the full list of Armv8-M instruction see
Armv8-M Architecture Reference Manual.

DDI0607A.b
ID31032020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

22

Chapter C1. Alphabetical list of instructions

C1.0.1 CDP, CDP2

Coprocessor Data Processing. Coprocessor Data Processing tells a coprocessor to perform an operation.

If no coprocessor can execute the instruction, a UsageFault exception is generated.

Arm reserves coprocessors CP8 to CP15, and this manual defines the valid instructions when coproc is in this
range.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 opc1 CRn CRd coproc opc2 0 CRm

T1 variant

CDP{<c>}{<q>} <coproc>, {#}<opc1>, <CRd>, <CRn>, <CRm> {, {#}<opc2>}

Decode for this encoding
1 if coproc IN {'100x', '101x', '111x'} then SEE "Floating-point and MVE";
2 if CoprocType(UInt(coproc)) == CP_CDEv1 then SEE "CDE instructions";
3 if !HaveMainExt() then UNDEFINED;
4 cp = UInt(coproc);

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 opc1 CRn CRd coproc opc2 0 CRm

T2 variant

CDP2{<c>}{<q>} <coproc>, {#}<opc1>, <CRd>, <CRn>, <CRm> {, {#}<opc2>}

Decode for this encoding
1 if coproc IN {'100x', '101x', '111x'} then SEE "Floating-point and MVE";
2 if CoprocType(UInt(coproc)) == CP_CDEv1 then SEE "CDE instructions";
3 if !HaveMainExt() then UNDEFINED;
4 cp = UInt(coproc);

Assembler symbols for all encodings

<c> See Standard assembler syntax fields.
<q> See Standard assembler syntax fields.
<coproc> Is the name of the coprocessor, encoded in the "coproc" field. The generic coprocessor names

are p0 to p15.
<opc1> Is a coprocessor-specific opcode, in the range 0 to 15, encoded in the "opc1" field.
<CRd> Is the destination coprocessor register, encoded in the "CRd" field.
<CRn> Is the coprocessor register that contains the first operand, encoded in the "CRn" field.
<CRm> Is the coprocessor register that contains the second operand, encoded in the "CRm" field.
<opc2> Is a coprocessor-specific opcode in the range 0 to 7, defaulting to 0 and encoded in the "opc2"

field.

DDI0607A.b
ID31032020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

23

Chapter C1. Alphabetical list of instructions

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteCPCheck(cp);
4 if !Coproc_Accepted(cp, ThisInstr()) then
5 GenerateCoprocessorException();
6 else
7 Coproc_InternalOperation(cp, ThisInstr());

DDI0607A.b
ID31032020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

24

Chapter C1. Alphabetical list of instructions

C1.0.2 CX1

Custom Instruction Class 1. Custom instruction class 1 computes a value based on an immediate, and optionally
the destination value, and writes the result to the destination register.

The source and destination registers can be either general-purpose registers or the Condition flags, specified by use
of APSR_nzcv.

T1
Armv8-M Custom Datapath Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 A 1 1 1 0 0 0 op1 Rd 0 coproc op2 0 op3

Accumulator variant

Applies when A == 1

CX1A<c>, <coproc>, <Rd>, #<imm>

Non-accumulator variant

Applies when A == 0

CX1 <coproc>, <Rd>, #<imm>

Decode for this encoding
1 if CoprocType(UInt(coproc)) != CP_CDEv1 then SEE "Coprocessor instructions";
2 if !HaveMainExt() then UNDEFINED;
3 cp = UInt(coproc);
4 d = UInt(Rd);
5 imm = op1:op2:op3;
6 acc = (A == '1');
7 ExecuteCPCheck(cp);
8 if d == 13 then UNPREDICTABLE;
9 if !acc && InITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If d == 13, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction returns an UNKNOWN value in SP.

• The instruction executes as NOP.

CONSTRAINED UNPREDICTABLE behavior
If d == 13, then one of the following behaviors must occur:

• It is UNKNOWN whether a stack limit check is performed.

CONSTRAINED UNPREDICTABLE behavior
If !acc && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP.

DDI0607A.b
ID31032020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

25

Chapter C1. Alphabetical list of instructions

Assembler symbols for all encodings

<A> Accumulate with existing register contents. This parameter must be one of the following
values:
" Encoded as A = 0
A Encoded as A = 1

<c> See Standard assembler syntax fields.
<coproc> Is the name of the coprocessor, encoding in the "coproc" field. Valid names are p0 to p7

inclusive.
<Rd> Is the general-purpose R0 - R14 or APSR_nzcv destination register, encoded in the "Rd"

field. For accumulator variants <Rd> also specifies the source register. APSR_nzcv is
encoded by the "Rd" field value 0b1111.

<imm> Is the immediate encoded in op1:op2:op3.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 if (!Coproc_Accepted(cp, ThisInstr())) then
4 GenerateCoprocessorException();
5 elsif acc then
6 RF[d] = CX_op1(ThisInstr(), RF[d], 32);
7 else
8 RF[d] = CX_op0(ThisInstr(), 32);

DDI0607A.b
ID31032020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

26

Chapter C1. Alphabetical list of instructions

C1.0.3 CX1D

Custom Instruction Class 1. Custom instruction class 1 dual computes a value based on an immediate, and
optionally the destination register pair value, and writes the result to a destination register pair.

The destination registers are a consecutive pair of general-purpose registers.

The significance of the words in each pair is consistent with the current data endianness.

T1
Armv8-M Custom Datapath Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 A 1 1 1 0 0 0 op1 Rd 0 coproc op2 1 op3

Accumulator variant

Applies when A == 1

CX1DA<c>, <coproc>, <Rd>, <Rd+1>, #<imm>

Non-accumulator variant

Applies when A == 0

CX1D <coproc>, <Rd>, <Rd+1>, #<imm>

Decode for this encoding
1 if CoprocType(UInt(coproc)) != CP_CDEv1 then SEE "Coprocessor instructions";
2 if !HaveMainExt() then UNDEFINED;
3 cp = UInt(coproc);
4 d = UInt(Rd);
5 d2 = d + 1;
6 imm = op1:op2:op3;
7 acc = (A == '1');
8 ExecuteCPCheck(cp);
9 // Register pairs containing SP or PC are UNPREDICTABLE.

10 if d > 10 then UNPREDICTABLE;
11 if Rd[0] == '1' then UNPREDICTABLE;
12 if !acc && InITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If d is odd, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction returns and UNKNOWN value in Rd, Rd + 1 and Rd - 1.

• The instruction executes as NOP.

CONSTRAINED UNPREDICTABLE behavior
If d == 12, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction returns and UNKNOWN value in R12 and SP.

• The instruction executes as NOP.

DDI0607A.b
ID31032020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

27

Chapter C1. Alphabetical list of instructions

CONSTRAINED UNPREDICTABLE behavior
If d == 12 || d == 13, then one of the following behaviors must occur:

• It is UNKNOWN whether a stack limit check is performed.

CONSTRAINED UNPREDICTABLE behavior
If d == 14, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

CONSTRAINED UNPREDICTABLE behavior
If !acc && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP.

Assembler symbols for all encodings

<A> Accumulate with existing register contents. This parameter must be one of the following
values:
" Encoded as A = 0
A Encoded as A = 1

<c> See Standard assembler syntax fields.
<coproc> Is the name of the coprocessor, encoding in the "coproc" field. Valid names are p0 to p7

inclusive.
<Rd> Is the general-purpose register R0 - R10 specifying the first of destination register pair,

encoded in the "Rd" field. For accumulator variants, <Rd> also specifies the source register.
<imm> Is the immediate encoded in op1:op2:op3.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 if (!Coproc_Accepted(cp, ThisInstr())) then
4 GenerateCoprocessorException();
5 elsif acc then
6 RFD[d] = CX_op1(ThisInstr(), RFD[d], 64);
7 else
8 RFD[d] = CX_op0(ThisInstr(), 64);

DDI0607A.b
ID31032020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

28

Chapter C1. Alphabetical list of instructions

C1.0.4 CX2

Custom Instruction Class 2. Custom instruction class 2 computes a value based on a source register, an immediate,
and optionally the destination value, and writes the result to the destination register. The source and destination
registers can be either general-purpose registers or the Condition flags, specified by use of APSR_nzcv.

T1
Armv8-M Custom Datapath Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 A 1 1 1 0 0 1 op1 Rn Rd 0 coproc op2 0 op3

Accumulator variant

Applies when A == 1

CX2A<c>, <coproc>, <Rd>, <Rn>, #<imm>

Non-accumulator variant

Applies when A == 0

CX2 <coproc>, <Rd>, <Rn>, #<imm>

Decode for this encoding
1 if CoprocType(UInt(coproc)) != CP_CDEv1 then SEE "Coprocessor instructions";
2 if !HaveMainExt() then UNDEFINED;
3 cp = UInt(coproc);
4 d = UInt(Rd);
5 n = UInt(Rn);
6 imm = op1:op2:op3;
7 acc = (A == '1');
8 ExecuteCPCheck(cp);
9 if d == 13 || n == 13 then UNPREDICTABLE;

10 if !acc && InITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If d == 13, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction returns an UNKNOWN value in SP.

• The instruction executes as NOP.

CONSTRAINED UNPREDICTABLE behavior
If d == 13, then one of the following behaviors must occur:

• It is UNKNOWN whether a stack limit check is performed.

CONSTRAINED UNPREDICTABLE behavior
If n == 13, then one of the following behaviors must occur:

• The instruction executes as NOP.

• The instruction returns an UNKNOWN value.

• The instruction is UNDEFINED.

DDI0607A.b
ID31032020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

29

Chapter C1. Alphabetical list of instructions

CONSTRAINED UNPREDICTABLE behavior
If !acc && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP.

Assembler symbols for all encodings

<A> Accumulate with existing register contents. This parameter must be one of the following
values:
" Encoded as A = 0
A Encoded as A = 1

<c> See Standard assembler syntax fields.
<coproc> Is the name of the coprocessor, encoding in the "coproc" field. Valid names are p0 to p7

inclusive.
<Rd> Is the general-purpose R0 - R14 or APSR_nzcv destination register, encoded in the "Rd"

field. For accumulator variants <Rd> also specifies the source register. APSR_nzcv is
encoded by the "Rd" field value 0b1111.

<Rn> Is the general-purpose R0 - R14 or APSR_nzcv source register, encoded in the "Rn" field.
APSR_nzcv is encoded by the "Rn" field value 0b1111.

<imm> Is the immediate encoded in op1:op2:op3.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 if (!Coproc_Accepted(cp, ThisInstr())) then
4 GenerateCoprocessorException();
5 elsif acc then
6 RF[d] = CX_op2(ThisInstr(), RF[d], RF[n], 32);
7 else
8 RF[d] = CX_op1(ThisInstr(), RF[n], 32);

DDI0607A.b
ID31032020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

30

Chapter C1. Alphabetical list of instructions

C1.0.5 CX2D

Custom Instruction Class 2. Custom instruction class 2 dual computes a value based on a source register, an
immediate, and optionally the destination register pair value, and writes the result to the destination register pair.

The destination registers are a consecutive pair of general-purpose registers.

The source registers can be either general-purpose registers or the Condition flags, specified by use of APSR_nzcv.

The significance of the words in each pair is consistent with the current data endianness.

T1
Armv8-M Custom Datapath Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 A 1 1 1 0 0 1 op1 Rn Rd 0 coproc op2 1 op3

Accumulator variant

Applies when A == 1

CX2DA<c>, <coproc>, <Rd>, <Rd+1>, <Rn>, #<imm>

Non-accumulator variant

Applies when A == 0

CX2D <coproc>, <Rd>, <Rd+1>, <Rn>, #<imm>

Decode for this encoding
1 if CoprocType(UInt(coproc)) != CP_CDEv1 then SEE "Coprocessor instructions";
2 if !HaveMainExt() then UNDEFINED;
3 cp = UInt(coproc);
4 d = UInt(Rd);
5 n = UInt(Rn);
6 imm = op1:op2:op3;
7 acc = (A == '1');
8 ExecuteCPCheck(cp);
9 // Register pairs containing SP or PC are UNPREDICTABLE.

10 if d > 10 then UNPREDICTABLE;
11 if n == 13 then UNPREDICTABLE;
12 if Rd[0] == '1' then UNPREDICTABLE;
13 if !acc && InITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If d is odd, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction returns and UNKNOWN value in Rd, Rd + 1 and Rd - 1.

• The instruction executes as NOP.

CONSTRAINED UNPREDICTABLE behavior
If d == 12, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction returns and UNKNOWN value in R12 and SP.

DDI0607A.b
ID31032020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

31

Chapter C1. Alphabetical list of instructions

• The instruction executes as NOP.

CONSTRAINED UNPREDICTABLE behavior
If d == 12 || d == 13, then one of the following behaviors must occur:

• It is UNKNOWN whether a stack limit check is performed.

CONSTRAINED UNPREDICTABLE behavior
If d == 14, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

CONSTRAINED UNPREDICTABLE behavior
If n == 13, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The value in the destination register is UNKNOWN.

• The instruction executes as NOP.

CONSTRAINED UNPREDICTABLE behavior
If !acc && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP.

Assembler symbols for all encodings

<A> Accumulate with existing register contents. This parameter must be one of the following
values:
" Encoded as A = 0
A Encoded as A = 1

<c> See Standard assembler syntax fields.
<coproc> Is the name of the coprocessor, encoding in the "coproc" field. Valid names are p0 to p7

inclusive.
<Rd> Is the general-purpose register R0 - R10 specifying the first of destination register pair,

encoded in the "Rd" field. For accumulator variants, <Rd> also specifies the source register.
<Rn> Is the general-purpose R0 - R14 or APSR_nzcv source register, encoded in the "Rn" field.

APSR_nzcv is encoded by the "Rn" field value 0b1111.
<imm> Is the immediate encoded in op1:op2:op3.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 if (!Coproc_Accepted(cp, ThisInstr())) then
4 GenerateCoprocessorException();
5 elsif acc then
6 RFD[d] = CX_op2(ThisInstr(), RFD[d], RF[n], 64);
7 else
8 RFD[d] = CX_op1(ThisInstr(), RF[n], 64);

DDI0607A.b
ID31032020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

32

Chapter C1. Alphabetical list of instructions

C1.0.6 CX3

Custom Instruction Class 3. Custom instruction class 3 computes a value based two source registers, an immediate
and optionally the destination value, and writes the result to the destination register.

The source and destination registers can be either general-purpose registers or the Condition flags, specified by use
of APSR_nzcv.

T1
Armv8-M Custom Datapath Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 A 1 1 1 0 1 op1 Rn Rm 0 coproc op2 0 op3 Rd

Accumulator variant

Applies when A == 1

CX3A<c>, <coproc>, <Rd>, <Rn>, <Rm>, #<imm>

Non-accumulator variant

Applies when A == 0

CX3 <coproc>, <Rd>, <Rn>, <Rm>, #<imm>

Decode for this encoding
1 if CoprocType(UInt(coproc)) != CP_CDEv1 then SEE "Coprocessor instructions";
2 if !HaveMainExt() then UNDEFINED;
3 cp = UInt(coproc);
4 d = UInt(Rd);
5 n = UInt(Rn);
6 m = UInt(Rm);
7 imm = op1:op2:op3;
8 acc = (A == '1');
9 ExecuteCPCheck(cp);

10 if d == 13 || n == 13 || m == 13 then UNPREDICTABLE;
11 if !acc && InITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If d == 13, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction returns an UNKNOWN value in SP.

• The instruction executes as NOP.

CONSTRAINED UNPREDICTABLE behavior
If d == 13, then one of the following behaviors must occur:

• It is UNKNOWN whether a stack limit check is performed.

CONSTRAINED UNPREDICTABLE behavior
If n == 13 or m == 13, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

DDI0607A.b
ID31032020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

33

Chapter C1. Alphabetical list of instructions

• The instruction returns and UNKNOWN value in SP.

• The instruction executes as NOP.

CONSTRAINED UNPREDICTABLE behavior
If !acc && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP.

Assembler symbols for all encodings

<A> Accumulate with existing register contents. This parameter must be one of the following
values:
" Encoded as A = 0
A Encoded as A = 1

<c> See Standard assembler syntax fields.
<coproc> Is the name of the coprocessor, encoding in the "coproc" field. Valid names are p0 to p7

inclusive.
<Rd> Is the general-purpose R0 - R14 or APSR_nzcv destination register, encoded in the "Rd"

field. For accumulator variants <Rd> also specifies the source register. APSR_nzcv is
encoded by the "Rd" field value 0b1111.

<Rn> Is the general-purpose R0 - R14 or APSR_nzcv destination register, encoded in the "Rn"
field. APSR_nzcv is encoded by the "Rn" field value 0b1111.

<Rm> Is the general-purpose R0 - R14 or APSR_nzcv destination register, encoded in the "Rm"
field. APSR_nzcv is encoded by the "Rm" field value 0b1111.

<imm> Is the immediate encoded in op1:op2:op3.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 if (!Coproc_Accepted(cp, ThisInstr())) then
4 GenerateCoprocessorException();
5 elsif acc then
6 RF[d] = CX_op3(ThisInstr(), RF[d], RF[n], RF[m], 32);
7 else
8 RF[d] = CX_op2(ThisInstr(), RF[n], RF[m], 32);

DDI0607A.b
ID31032020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

34

Chapter C1. Alphabetical list of instructions

C1.0.7 CX3D

Custom Instruction Class 3. Custom instruction class 3 dual computes a value based on two source registers, an
immediate, and optionally the destination register pair value, and writes the result to the destination register pair.

The source registers can be either general-purpose registers or the Condition flags, specified by use of APSR_nzcv.

The destination registers are a consecutive pair of general-purpose registers.

The significance of the words in each pair is consistent with the current data endianness.

T1
Armv8-M Custom Datapath Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 A 1 1 1 0 1 op1 Rn Rm 0 coproc op2 1 op3 Rd

Accumulator variant

Applies when A == 1

CX3DA<c>, <coproc>, <Rd>, <Rd+1>, <Rn>, <Rm>, #<imm>

Non-accumulator variant

Applies when A == 0

CX3D <coproc>, <Rd>, <Rd+1>, <Rn>, <Rm>, #<imm>

Decode for this encoding
1 if CoprocType(UInt(coproc)) != CP_CDEv1 then SEE "Coprocessor instructions";
2 if !HaveMainExt() then UNDEFINED;
3 cp = UInt(coproc);
4 d = UInt(Rd);
5 n = UInt(Rn);
6 m = UInt(Rm);
7 imm = op1:op2:op3;
8 acc = (A == '1');
9 ExecuteCPCheck(cp);

10 // Register pairs containing SP or PC are UNPREDICTABLE.
11 if d > 10 then UNPREDICTABLE;
12 if n == 13 || m == 13 then UNPREDICTABLE;
13 if Rd[0] == '1' then UNPREDICTABLE;
14 if !acc && InITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If d is odd, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction returns and UNKNOWN value in Rd, Rd + 1 and Rd - 1.

• The instruction executes as NOP.

CONSTRAINED UNPREDICTABLE behavior
If d == 12, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction returns and UNKNOWN value in SP.

DDI0607A.b
ID31032020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

35

Chapter C1. Alphabetical list of instructions

• The instruction executes as NOP.

CONSTRAINED UNPREDICTABLE behavior
If d == 12 || d == 13, then one of the following behaviors must occur:

• It is UNKNOWN whether a stack limit check is performed.

CONSTRAINED UNPREDICTABLE behavior
If d == 14, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

CONSTRAINED UNPREDICTABLE behavior
If n == 13 || m == 13, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The value in the destination register is UNKNOWN.

• The instruction executes as NOP.

CONSTRAINED UNPREDICTABLE behavior
If !acc && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP.

Assembler symbols for all encodings

<A> Accumulate with existing register contents. This parameter must be one of the following
values:
" Encoded as A = 0
A Encoded as A = 1

<c> See Standard assembler syntax fields.
<coproc> Is the name of the coprocessor, encoding in the "coproc" field. Valid names are p0 to p7

inclusive.
<Rd> Is the general-purpose register R0 - R10 specifying the first of destination register pair,

encoded in the "Rd" field. For accumulator variants, <Rd> also specifies the source register.
<Rn> Is the general-purpose R0 - R14 or APSR_nzcv source register, encoded in the "Rn" field.

APSR_nzcv is encoded by the "Rn" field value 0b1111.
<Rm> Is the general-purpose R0 - R14 or APSR_nzcv source register, encoded in the "Rm" field.

APSR_nzcv is encoded by the "Rm" field value 0b1111.
<imm> Is the immediate encoded in op1:op2:op3.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 if (!Coproc_Accepted(cp, ThisInstr())) then
4 GenerateCoprocessorException();
5 elsif acc then
6 RFD[d] = CX_op3(ThisInstr(), RFD[d], RF[n], RF[m], 64);
7 else
8 RFD[d] = CX_op2(ThisInstr(), RF[n], RF[m], 64);

DDI0607A.b
ID31032020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

36

Chapter C1. Alphabetical list of instructions

C1.0.8 LDC, LDC2 (immediate)

Load Coprocessor (immediate). Load Coprocessor loads memory data from a sequence of consecutive memory
addresses to a coprocessor. If no coprocessor can execute the instruction, a UsageFault exception is generated.

This is a generic coprocessor instruction. Some of the fields have no functionality defined by the architecture and
are free for use by the coprocessor instruction set designer. These fields are the D bit, the CRd field, and in the
Unindexed addressing mode only, the imm8 field.

Arm reserves coprocessors CP8 to CP15, and this manual defines the valid instructions when coproc is in this
range.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 P U D W 1 Rn != 1111 CRd coproc imm8

Offset variant

Applies when P == 1 && W == 0.

LDC{L}{<c>}{<q>} <coproc>, <CRd>, [<Rn>{, #{+/-}<imm>}]

Post-indexed variant

Applies when P == 0 && W == 1.

LDC{L}{<c>}{<q>} <coproc>, <CRd>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

LDC{L}{<c>}{<q>} <coproc>, <CRd>, [<Rn>, #{+/-}<imm>]!

Unindexed variant

Applies when P == 0 && U == 1 && W == 0.

LDC{L}{<c>}{<q>} <coproc>, <CRd>, [<Rn>], <option>

Decode for this encoding
1 if Rn == '1111' then SEE "LDC (literal)";
2 if coproc IN {'100x', '101x', '111x'} then SEE "Floating-point and MVE";
3 if CoprocType(UInt(coproc)) == CP_CDEv1 then SEE "CDE instructions";
4 if P == '0' && U == '0' && D == '1' && W == '0' then SEE "MRRC, MRRC2";
5 if P == '0' && U == '0' && D == '0' && W == '0' then UNDEFINED;
6 if !HaveMainExt() then UNDEFINED;
7 n = UInt(Rn); cp = UInt(coproc); imm32 = ZeroExtend(imm8:'00', 32);
8 index = (P == '1'); add = (U == '1'); wback = (W == '1');

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 0 P U D W 1 Rn != 1111 CRd coproc imm8

DDI0607A.b
ID31032020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

37

Chapter C1. Alphabetical list of instructions

Offset variant

Applies when P == 1 && W == 0.

LDC2{L}{<c>}{<q>} <coproc>, <CRd>, [<Rn>{, #{+/-}<imm>}]

Post-indexed variant

Applies when P == 0 && W == 1.

LDC2{L}{<c>}{<q>} <coproc>, <CRd>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

LDC2{L}{<c>}{<q>} <coproc>, <CRd>, [<Rn>, #{+/-}<imm>]!

Unindexed variant

Applies when P == 0 && U == 1 && W == 0.

LDC2{L}{<c>}{<q>} <coproc>, <CRd>, [<Rn>], <option>

Decode for this encoding
1 if Rn == '1111' then SEE "LDC (literal)";
2 if coproc IN {'100x', '101x', '111x'} then SEE "Floating-point and MVE";
3 if CoprocType(UInt(coproc)) == CP_CDEv1 then SEE "CDE instructions";
4 if P == '0' && U == '0' && D == '1' && W == '0' then SEE "MRRC, MRRC2";
5 if P == '0' && U == '0' && D == '0' && W == '0' then UNDEFINED;
6 if !HaveMainExt() then UNDEFINED;
7 n = UInt(Rn); cp = UInt(coproc); imm32 = ZeroExtend(imm8:'00', 32);
8 index = (P == '1'); add = (U == '1'); wback = (W == '1');

Assembler symbols for all encodings

L If specified, selects the D == 1 form of the encoding. If omitted, selects the D == 0 form.
<c> See Standard assembler syntax fields.
<q> See Standard assembler syntax fields.
<coproc> Is the name of the coprocessor, encoded in the "coproc" field. The generic coprocessor names

are p0 to p15.
<CRd> Is the coprocessor register to be transferred, encoded in the "CRd" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field. If the PC is used, see LDC,

LDC2 (literal).
<option> Is a coprocessor option, in the range 0 to 255 enclosed in { }, encoded in the "imm8" field.
+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted

and encoded in the "U" field. It can have the following values:
- when U = 0
+ when U = 1

<imm> Is the immediate offset used for forming the address, a multiple of 4 in the range 0-1020,
defaulting to 0 and encoded in the "imm8" field, as <imm>/4.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteCPCheck(cp);
4
5 thisInstr = ThisInstr();
6 if !Coproc_Accepted(cp, thisInstr) then

DDI0607A.b
ID31032020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

38

Chapter C1. Alphabetical list of instructions

7 GenerateCoprocessorException();
8 else
9 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);

10 address = if index then offset_addr else R[n];
11
12 // Determine if the stack pointer limit check should be performed
13 if wback && n == 13 then
14 violatesLimit = ViolatesSPLim(LookUpSP(), offset_addr);
15 else
16 violatesLimit = FALSE;
17
18 // Memory operation only performed if limit not violated
19 if !violatesLimit then
20 repeat
21 Coproc_SendLoadedWord(MemA[address,4], cp, thisInstr);
22 address = address + 4;
23 until Coproc_DoneLoading(cp, thisInstr);
24
25 // If the stack pointer is being updated a fault will be raised
26 // if the limit is violated
27 if wback then RSPCheck[n] = offset_addr;

DDI0607A.b
ID31032020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

39

Chapter C1. Alphabetical list of instructions

C1.0.9 LDC, LDC2 (literal)

Load Coprocessor (literal). Load Coprocessor loads memory data from a sequence of consecutive memory
addresses to a coprocessor. If no coprocessor can execute the instruction, a UsageFault exception is generated.

This is a generic coprocessor instruction. The D bit and the CRd field have no functionality defined by the
architecture and are free for use by the coprocessor instruction set designer.

Arm reserves coprocessors CP8 to CP15, and this manual defines the valid instructions when coproc is in this
range.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 P U D W 1 1 1 1 1 CRd coproc imm8

T1 variant

Applies when !(P == 0 && U == 0 && W == 0).

LDC{L}{<c>}{<q>} <coproc>, <CRd>, <label>
LDC{L}{<c>}{<q>} <coproc>, <CRd>, [PC, #{+/-}<imm>]

Decode for this encoding
1 if coproc IN {'100x', '101x', '111x'} then SEE "Floating-point and MVE";
2 if CoprocType(UInt(coproc)) == CP_CDEv1 then SEE "CDE instructions";
3 if P == '0' && U == '0' && D == '1' && W == '0' then SEE "MRRC, MRRC2";
4 if P == '0' && U == '0' && D == '0' && W == '0' then UNDEFINED;
5 if !HaveMainExt() then UNDEFINED;
6 index = (P == '1'); // Always TRUE in the T32 instruction set
7 add = (U == '1'); cp = UInt(coproc); imm32 = ZeroExtend(imm8:'00', 32);
8 if W == '1' || P == '0' then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If W == ’1’ || P == ’0’, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes without writeback of the base address.

• The instruction executes as LDC with writeback to the PC.

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 0 P U D W 1 1 1 1 1 CRd coproc imm8

T2 variant

Applies when !(P == 0 && U == 0 && W == 0).

LDC2{L}{<c>}{<q>} <coproc>, <CRd>, <label>
LDC2{L}{<c>}{<q>} <coproc>, <CRd>, [PC, #{+/-}<imm>]

DDI0607A.b
ID31032020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

40

Chapter C1. Alphabetical list of instructions

Decode for this encoding
1 if coproc IN {'100x', '101x', '111x'} then SEE "Floating-point and MVE";
2 if CoprocType(UInt(coproc)) == CP_CDEv1 then SEE "CDE instructions";
3 if P == '0' && U == '0' && D == '1' && W == '0' then SEE "MRRC, MRRC2";
4 if P == '0' && U == '0' && D == '0' && W == '0' then UNDEFINED;
5 if !HaveMainExt() then UNDEFINED;
6 index = (P == '1'); // Always TRUE in the T32 instruction set
7 add = (U == '1'); cp = UInt(coproc); imm32 = ZeroExtend(imm8:'00', 32);
8 if W == '1' || P == '0' then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If W == ’1’ || P == ’0’, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes without writeback of the base address.

• The instruction executes as LDC with writeback to the PC.

Assembler symbols for all encodings

L If specified, selects the D == 1 form of the encoding. If omitted, selects the D == 0 form.
<c> See Standard assembler syntax fields.
<q> See Standard assembler syntax fields.
<coproc> Is the name of the coprocessor, encoded in the "coproc" field. The generic coprocessor names

are p0 to p15.
<CRd> Is the coprocessor register to be transferred, encoded in the "CRd" field.
<label> The label of the literal data item that is to be loaded into <Rt>. The assembler calculates

the required value of the offset from the Align(PC, 4) value of the instruction to this label.
Permitted values of the offset are multiples of 4 in the range -1020 to 1020. If the offset is
zero or positive, imm32 is equal to the offset and add == TRUE (encoded as U == 1). If the
offset is negative, imm32 is equal to minus the offset and add == FALSE (encoded as
U == 0).

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted
and encoded in the "U" field. It can have the following values:
- when U = 0
+ when U = 1

<imm> Is the immediate offset used for forming the address, a multiple of 4 in the range 0-1020,
defaulting to 0 and encoded in the "imm8" field, as <imm>/4.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteCPCheck(cp);
4
5 thisInstr = ThisInstr();
6 if !Coproc_Accepted(cp, thisInstr) then
7 GenerateCoprocessorException();
8 else
9 offset_addr = if add then (Align(PC,4) + imm32) else (Align(PC,4) - imm32);

10 address = if index then offset_addr else Align(PC,4);
11 repeat
12 Coproc_SendLoadedWord(MemA[address,4], cp, thisInstr); address = address + 4;
13 until Coproc_DoneLoading(cp, thisInstr);

DDI0607A.b
ID31032020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

41

Chapter C1. Alphabetical list of instructions

C1.0.10 MCR, MCR2

Move to Coprocessor from Register. Move to Coprocessor from Register passes the value of a general-purpose
register to a coprocessor.

If no coprocessor can execute the instruction, a UsageFault exception is generated.

Arm reserves coprocessors CP8 to CP15, and this manual defines the valid instructions when coproc is in this
range.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 opc1 0 CRn Rt coproc opc2 1 CRm

T1 variant

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

Decode for this encoding
1 if coproc IN {'100x', '101x', '111x'} then SEE "Floating-point and MVE";
2 if CoprocType(UInt(coproc)) == CP_CDEv1 then SEE "CDE instructions";
3 if !HaveMainExt() then UNDEFINED;
4 t = UInt(Rt); cp = UInt(coproc);
5 if t == 15 || t == 13 then UNPREDICTABLE;

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 opc1 0 CRn Rt coproc opc2 1 CRm

T2 variant

MCR2{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

Decode for this encoding
1 if coproc IN {'100x', '101x', '111x'} then SEE "Floating-point and MVE";
2 if CoprocType(UInt(coproc)) == CP_CDEv1 then SEE "CDE instructions";
3 if !HaveMainExt() then UNDEFINED;
4 t = UInt(Rt); cp = UInt(coproc);
5 if t == 15 || t == 13 then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See Standard assembler syntax fields.
<q> See Standard assembler syntax fields.
<coproc> Is the name of the coprocessor, encoded in the "coproc" field. The generic coprocessor names

are p0 to p15.
<opc1> Is a coprocessor-specific opcode in the range 0 to 7, encoded in the "opc1" field.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<CRn> Is the first coprocessor register, encoded in the "CRn" field.
<CRm> Is the second coprocessor register, encoded in the "CRm" field.
<opc2> Is a coprocessor-specific opcode in the range 0 to 7, defaulting to 0 and encoded in the "opc2"

field.

DDI0607A.b
ID31032020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

42

Chapter C1. Alphabetical list of instructions

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteCPCheck(cp);
4 if !Coproc_Accepted(cp, ThisInstr()) then
5 GenerateCoprocessorException();
6 else
7 Coproc_SendOneWord(R[t], cp, ThisInstr());

DDI0607A.b
ID31032020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

43

Chapter C1. Alphabetical list of instructions

C1.0.11 MCRR, MCRR2

Move to Coprocessor from two Registers. Move to Coprocessor from two Registers passes the values of two
general-purpose registers to a coprocessor.

If no coprocessor can execute the instruction, a UsageFault exception is generated.

Arm reserves coprocessors CP8 to CP15, and this manual defines the valid instructions when coproc is in this
range.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 0 0 1 0 0 Rt2 Rt coproc opc1 CRm

T1 variant

MCRR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

Decode for this encoding
1 if coproc IN {'100x', '101x', '111x'} then SEE "Floating-point and MVE";
2 if CoprocType(UInt(coproc)) == CP_CDEv1 then SEE "CDE instructions";
3 if !HaveMainExt() then UNDEFINED;
4 t = UInt(Rt); t2 = UInt(Rt2); cp = UInt(coproc);
5 if t == 15 || t2 == 15 then UNPREDICTABLE;
6 if t == 13 || t2 == 13 then UNPREDICTABLE;

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 0 0 0 1 0 0 Rt2 Rt coproc opc1 CRm

T2 variant

MCRR2{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

Decode for this encoding
1 if coproc IN {'100x', '101x', '111x'} then SEE "Floating-point and MVE";
2 if CoprocType(UInt(coproc)) == CP_CDEv1 then SEE "CDE instructions";
3 if !HaveMainExt() then UNDEFINED;
4 t = UInt(Rt); t2 = UInt(Rt2); cp = UInt(coproc);
5 if t == 15 || t2 == 15 then UNPREDICTABLE;
6 if t == 13 || t2 == 13 then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See Standard assembler syntax fields.
<q> See Standard assembler syntax fields.
<coproc> Is the name of the coprocessor, encoded in the "coproc" field. The generic coprocessor names

are p0 to p15.
<opc1> Is a coprocessor-specific opcode in the range 0 to 15, encoded in the "opc1" field.
<Rt> Is the first general-purpose register to be transferred, encoded in the "Rt" field.
<Rt2> Is the second general-purpose register to be transferred, encoded in the "Rt2" field.
<CRm> Is a coprocessor register, encoded in the "CRm" field.

DDI0607A.b
ID31032020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

44

Chapter C1. Alphabetical list of instructions

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteCPCheck(cp);
4 if !Coproc_Accepted(cp, ThisInstr()) then
5 GenerateCoprocessorException();
6 else
7 Coproc_SendTwoWords(R[t2], R[t], cp, ThisInstr());

DDI0607A.b
ID31032020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

45

Chapter C1. Alphabetical list of instructions

C1.0.12 MRC, MRC2

Move to Register from Coprocessor. Move to Register from Coprocessor causes a coprocessor to transfer a value
to a general-purpose register or to the condition flags.

Arm reserves coprocessors CP8 to CP15, and this manual defines the valid instructions when coproc is in this
range.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 opc1 1 CRn Rt coproc opc2 1 CRm

T1 variant

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

Decode for this encoding
1 if coproc IN {'100x', '101x', '111x'} then SEE "Floating-point and MVE";
2 if CoprocType(UInt(coproc)) == CP_CDEv1 then SEE "CDE instructions";
3 if !HaveMainExt() then UNDEFINED;
4 t = UInt(Rt); cp = UInt(coproc);
5 if t == 13 then UNPREDICTABLE;

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 opc1 1 CRn Rt coproc opc2 1 CRm

T2 variant

MRC2{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

Decode for this encoding
1 if coproc IN {'100x', '101x', '111x'} then SEE "Floating-point and MVE";
2 if CoprocType(UInt(coproc)) == CP_CDEv1 then SEE "CDE instructions";
3 if !HaveMainExt() then UNDEFINED;
4 t = UInt(Rt); cp = UInt(coproc);
5 if t == 13 then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See Standard assembler syntax fields.
<q> See Standard assembler syntax fields.
<coproc> Is the name of the coprocessor, encoded in the "coproc" field. The generic coprocessor names

are p0 to p15.
<opc1> Is a coprocessor-specific opcode in the range 0 to 7, encoded in the "opc1" field.
<Rt> Is the general-purpose register to be transferred or APSR_nzcv (encoded as 0b1111),

encoded in the "Rt" field. If APSR_nzcv is used, bits [31:28] of the transferred value are
written to the APSR condition flags.

<CRn> Is the first coprocessor register, encoded in the "CRn" field.
<CRm> Is the second coprocessor register, encoded in the "CRm" field.
<opc2> Is a coprocessor-specific opcode in the range 0 to 7, defaulting to 0 and encoded in the "opc2"

field.
DDI0607A.b
ID31032020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

46

Chapter C1. Alphabetical list of instructions

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteCPCheck(cp);
4 if !Coproc_Accepted(cp, ThisInstr()) then
5 GenerateCoprocessorException();
6 else
7 value = Coproc_GetOneWord(cp, ThisInstr());
8 if t != 15 then
9 R[t] = value;

10 else
11 APSR.N = value[31];
12 APSR.Z = value[30];
13 APSR.C = value[29];
14 APSR.V = value[28];
15 // value[27:0] are not used.

DDI0607A.b
ID31032020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

47

Chapter C1. Alphabetical list of instructions

C1.0.13 MRRC, MRRC2

Move to two Registers from Coprocessor. Move to two Registers from Coprocessor causes a coprocessor to
transfer values to two general-purpose registers.

If no coprocessor can execute the instruction, a UsageFault exception is generated.

Arm reserves coprocessors CP8 to CP15, and this manual defines the valid instructions when coproc is in this
range.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 0 0 1 0 1 Rt2 Rt coproc opc1 CRm

T1 variant

MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

Decode for this encoding
1 if coproc IN {'100x', '101x', '111x'} then SEE "Floating-point and MVE";
2 if CoprocType(UInt(coproc)) == CP_CDEv1 then SEE "CDE instructions";
3 if !HaveMainExt() then UNDEFINED;
4 t = UInt(Rt); t2 = UInt(Rt2); cp = UInt(coproc);
5 if t == 15 || t2 == 15 || t == t2 then UNPREDICTABLE;
6 if t == 13 || t2 == 13 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If t == t2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 0 0 0 1 0 1 Rt2 Rt coproc opc1 CRm

T2 variant

MRRC2{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

Decode for this encoding
1 if coproc IN {'100x', '101x', '111x'} then SEE "Floating-point and MVE";
2 if CoprocType(UInt(coproc)) == CP_CDEv1 then SEE "CDE instructions";
3 if !HaveMainExt() then UNDEFINED;
4 t = UInt(Rt); t2 = UInt(Rt2); cp = UInt(coproc);
5 if t == 15 || t2 == 15 || t == t2 then UNPREDICTABLE;
6 if t == 13 || t2 == 13 then UNPREDICTABLE;

DDI0607A.b
ID31032020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

48

Chapter C1. Alphabetical list of instructions

CONSTRAINED UNPREDICTABLE behavior
If t == t2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

Assembler symbols for all encodings

<c> See Standard assembler syntax fields.
<q> See Standard assembler syntax fields.
<coproc> Is the name of the coprocessor, encoded in the "coproc" field. The generic coprocessor names

are p0 to p15.
<opc1> Is a coprocessor-specific opcode in the range 0 to 15, encoded in the "opc1" field.
<Rt> Is the first general-purpose register to be transferred, encoded in the "Rt" field.
<Rt2> Is the second general-purpose register to be transferred, encoded in the "Rt2" field.
<CRm> Is a coprocessor register, encoded in the "CRm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteCPCheck(cp);
4 if !Coproc_Accepted(cp, ThisInstr()) then
5 GenerateCoprocessorException();
6 else
7 (R[t2], R[t]) = Coproc_GetTwoWords(cp, ThisInstr());

DDI0607A.b
ID31032020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

49

Chapter C1. Alphabetical list of instructions

C1.0.14 STC, STC2

Store Coprocessor. Store Coprocessor stores data from a coprocessor to a sequence of consecutive memory
addresses.

If no coprocessor can execute the instruction, a UsageFault exception is generated.

Arm reserves coprocessors CP8 to CP15, and this manual defines the valid instructions when coproc is in this
range.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 P U D W 0 Rn CRd coproc imm8

Offset variant

Applies when P == 1 && W == 0.

STC{L}{<c>}{<q>} <coproc>, <CRd>, [<Rn>{, #{+/-}<imm>}]

Post-indexed variant

Applies when P == 0 && W == 1.

STC{L}{<c>}{<q>} <coproc>, <CRd>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

STC{L}{<c>}{<q>} <coproc>, <CRd>, [<Rn>, #{+/-}<imm>]!

Unindexed variant

Applies when P == 0 && U == 1 && W == 0.

STC{L}{<c>}{<q>} <coproc>, <CRd>, [<Rn>], <option>

Decode for this encoding
1 if coproc IN {'100x', '101x', '111x'} then SEE "Floating-point and MVE";
2 if CoprocType(UInt(coproc)) == CP_CDEv1 then SEE "CDE instructions";
3 if P == '0' && U == '0' && D == '1' && W == '0' then SEE "MCRR, MCRR2";
4 if P == '0' && U == '0' && D == '0' && W == '0' then UNDEFINED;
5 if !HaveMainExt() then UNDEFINED;
6 n = UInt(Rn); cp = UInt(coproc); imm32 = ZeroExtend(imm8:'00', 32);
7 index = (P == '1'); add = (U == '1'); wback = (W == '1');
8 if n == 15 then UNPREDICTABLE;

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 0 P U D W 0 Rn CRd coproc imm8

Offset variant

Applies when P == 1 && W == 0.

DDI0607A.b
ID31032020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

50

Chapter C1. Alphabetical list of instructions

STC2{L}{<c>}{<q>} <coproc>, <CRd>, [<Rn>{, #{+/-}<imm>}]

Post-indexed variant

Applies when P == 0 && W == 1.

STC2{L}{<c>}{<q>} <coproc>, <CRd>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

STC2{L}{<c>}{<q>} <coproc>, <CRd>, [<Rn>, #{+/-}<imm>]!

Unindexed variant

Applies when P == 0 && U == 1 && W == 0.

STC2{L}{<c>}{<q>} <coproc>, <CRd>, [<Rn>], <option>

Decode for this encoding
1 if coproc IN {'100x', '101x', '111x'} then SEE "Floating-point and MVE";
2 if CoprocType(UInt(coproc)) == CP_CDEv1 then SEE "CDE instructions";
3 if P == '0' && U == '0' && D == '1' && W == '0' then SEE "MCRR, MCRR2";
4 if P == '0' && U == '0' && D == '0' && W == '0' then UNDEFINED;
5 if !HaveMainExt() then UNDEFINED;
6 n = UInt(Rn); cp = UInt(coproc); imm32 = ZeroExtend(imm8:'00', 32);
7 index = (P == '1'); add = (U == '1'); wback = (W == '1');
8 if n == 15 then UNPREDICTABLE;

Assembler symbols for all encodings

L If specified, selects the D == 1 form of the encoding. If omitted, selects the D == 0 form.
<c> See Standard assembler syntax fields.
<q> See Standard assembler syntax fields.
<coproc> Is the name of the coprocessor, encoded in the "coproc" field. The generic coprocessor names

are p0 to p15.
<CRd> Is the coprocessor register to be transferred, encoded in the "CRd" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
<option> Is a coprocessor option, in the range 0 to 255 enclosed in { }, encoded in the "imm8" field.
+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted

and encoded in the "U" field. It can have the following values:
- when U = 0
+ when U = 1

<imm> Is the immediate offset used for forming the address, a multiple of 4 in the range 0-1020,
defaulting to 0 and encoded in the "imm8" field, as <imm>/4.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteCPCheck(cp);
4 if !Coproc_Accepted(cp, ThisInstr()) then
5 GenerateCoprocessorException();
6 else
7 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
8 address = if index then offset_addr else R[n];
9

10 // Determine if the stack pointer limit check should be performed
11 if wback && n == 13 then

DDI0607A.b
ID31032020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

51

Chapter C1. Alphabetical list of instructions

12 violatesLimit = ViolatesSPLim(LookUpSP(), offset_addr);
13 else
14 violatesLimit = FALSE;
15
16 // Memory operation only performed if limit not violated
17 if !violatesLimit then
18 repeat
19 MemA[address,4] = Coproc_GetWordToStore(cp, ThisInstr());
20 address = address + 4;
21 until Coproc_DoneStoring(cp, ThisInstr());
22
23 // If the stack pointer is being updated a fault will be raised
24 // if the limit is violated
25 if wback then RSPCheck[n] = offset_addr;

DDI0607A.b
ID31032020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

52

Chapter C1. Alphabetical list of instructions

C1.0.15 VCX1 (vector)

Custom Extension Instruction Class 1 Vector. Custom extension register instruction class 1 vector computes a
value based on an immediate, and optionally the destination value, and writes the result to the destination register.
The source and destination registers are within the Floating-point and SIMD register file, and require the current
execution state to have access to these registers.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8-M Custom Datapath Extension with Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 A 1 1 0 op1 0 D 1 0 op2 Vd 0 coproc op3 1 op4

Accumulator variant

Applies when A == 1

VCX1A<v> <coproc>, <Qd>, #<imm>

Non-accumulator variant

Applies when A == 0

VCX1<v> <coproc>, <Qd>, #<imm>

Decode for this encoding
1 if CoprocType(UInt(coproc)) != CP_CDEv1 then SEE "Coprocessor instructions";
2 cp = UInt(coproc);
3 ExecuteCPCheck(cp);
4 ExecuteCPCheck(10);
5 CheckDecodeFaults(ExtType_Mve);
6 if VFPSmallRegisterBank() && Vd[0] == '1' then UNDEFINED;
7 imm = op1:op2:op3:op4;
8 acc = (A == '1');
9 d = UInt(D:Vd[3:1]);

10 if InITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP.

Assembler symbols for all encodings

A Accumulate with existing register contents. This parameter must be one of the following
values:
" Encoded as A = 0
A Encoded as A = 1

<v> See Standard assembler syntax fields.

DDI0607A.b
ID31032020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

53

Chapter C1. Alphabetical list of instructions

<coproc> Is the name of the coprocessor, encoding in the "coproc" field. Valid names are p0 to p7
inclusive.

<Qd> Is the source and destination vector register Q0 - Q7, encoded in the "D:Vd" fields as
<Qd>*2.

<imm> Is the immediate encoded in "op1:op2:op3:op4".

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3 if (!Coproc_Accepted(cp, ThisInstr())) then GenerateCoprocessorException();
4
5 // Get current beat number and predication mask
6 (curBeat, elmtMask) = GetCurInstrBeat();
7
8 result = Zeros(32);
9 if acc then

10 // If the accumulator variant is used, then the 32-bit value from the vector
11 // source-destination register is used as an input to the custom operation
12 result = VCX_op1(ThisInstr(), Q[d, curBeat], 32, TRUE, curBeat, elmtMask);
13 else
14 result = VCX_op0(ThisInstr(), 32, TRUE, curBeat, elmtMask);
15
16 for e = 0 to 3
17 // If the vector lane is not predicated
18 if elmtMask[e] == '1' then
19 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0607A.b
ID31032020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

54

Chapter C1. Alphabetical list of instructions

C1.0.16 VCX1

Custom Extension Instruction Class 1. Custom extension register instruction class 1 computes a value based on
an immediate, and optionally the destination value, and writes the result to the destination register. The source
and destination registers are within the Floating-point register file, and require the current execution state to have
access to these registers.

T1
Armv8-M Custom Datapath Extension with Armv8.1-M MVE or Armv8-M Floating-point Extension.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 A 1 1 0 sz 0 D 1 0 op1 Vd 0 coproc op2 0 op3

Single-register accumulator variant

Applies when A == 1 and sz == 0

VCX1A <coproc>, <Sd>, #<imm>

Double-register accumulator variant

Applies when A == 1 and sz == 1

VCX1A <coproc>, <Dd>, #<imm>

Single-register non-accumulator variant

Applies when A == 0 and sz == 0

VCX1 <coproc>, <Sd>, #<imm>

Double-register non-accumulator variant

Applies when A == 0 and sz == 1

VCX1 <coproc>, <Dd>, #<imm>

Decode for this encoding
1 if CoprocType(UInt(coproc)) != CP_CDEv1 then SEE "Coprocessor instructions";
2 cp = UInt(coproc);
3 ExecuteCPCheck(cp);
4 ExecuteCPCheck(10);
5 CheckDecodeFaults(ExtType_MveOrFp);
6 dp_operation = (sz == '1');
7 imm = op1:op2:op3;
8 acc = (A == '1');
9 d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);

10 if VFPSmallRegisterBank() && dp_operation && d > 16 then UNDEFINED;
11 if InITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP.

DDI0607A.b
ID31032020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

55

Chapter C1. Alphabetical list of instructions

Assembler symbols for all encodings

<A> Accumulate with existing register contents. This parameter must be one of the following
values:
" Encoded as A = 0
A Encoded as A = 1

<coproc> Is the name of the coprocessor, encoding in the "coproc" field. Valid names are p0 to p7
inclusive.

<Dd> Is the 64-bit name of the floating-point source and destination register D0 - D15 encoded in
the "D:Vd" fields.

<Sd> Is the 32-bit name of the floating-point source and destination register S0 - S31 encoded in
the "Vd:D" fields.

<imm> Is the immediate encoded in "op1:op2:op3".

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4 if (!Coproc_Accepted(cp, ThisInstr())) then
5 GenerateCoprocessorException();
6 elsif dp_operation then
7 if acc then
8 D[d] = VCX_op1(ThisInstr(), D[d], 64);
9 else

10 D[d] = VCX_op0(ThisInstr(), 64);
11 else
12 if acc then
13 S[d] = VCX_op1(ThisInstr(), S[d], 32);
14 else
15 S[d] = VCX_op0(ThisInstr(), 32);

DDI0607A.b
ID31032020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

56

Chapter C1. Alphabetical list of instructions

C1.0.17 VCX2 (vector)

Custom Extension Instruction Class 2 Vector. Custom extension register instruction class 2 vector computes a
value based on a source register, an immediate, and optionally the destination value, and writes the result to the
destination register. The source and destination registers are within the Floating-point and SIMD register file, and
require the current execution state to have access to these registers.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8-M Custom Datapath Extension with Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 A 1 1 0 op1 0 D 1 1 op2 Vd 0 coproc op3 1 M op4 Vm

Accumulator variant

Applies when A == 1

VCX2A<v> <coproc>, <Qd>, <Qm>, #<imm>

Non-accumulator variant

Applies when A == 0

VCX2<v> <coproc>, <Qd>, <Qm>, #<imm>

Decode for this encoding
1 if CoprocType(UInt(coproc)) != CP_CDEv1 then SEE "Coprocessor instructions";
2 cp = UInt(coproc);
3 ExecuteCPCheck(cp);
4 ExecuteCPCheck(10);
5 CheckDecodeFaults(ExtType_Mve);
6 if VFPSmallRegisterBank() && (Vd[0] == '1' || Vm[0] == '1') then UNDEFINED;
7 imm = op1:op2:op3:op4;
8 acc = (A == '1');
9 d = UInt(D:Vd[3:1]);

10 m = UInt(M:Vm[3:1]);
11 if InITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP.

Assembler symbols for all encodings

A Accumulate with existing register contents. This parameter must be one of the following
values:
" Encoded as A = 0
A Encoded as A = 1

<v> See Standard assembler syntax fields.

DDI0607A.b
ID31032020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

57

Chapter C1. Alphabetical list of instructions

<coproc> Is the name of the coprocessor, encoding in the "coproc" field. Valid names are p0 to p7
inclusive.

<Qd> Is the source and destination vector register Q0 - Q7, encoded in the "D:Vd" fields as
<Qd>*2.

<Qm> Is the source vector register Q0 - Q7, encoded in the "M:Vm" fields as <Qm>*2.
<imm> Is the immediate encoded in "op1:op2:op3:op4".

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3 if (!Coproc_Accepted(cp, ThisInstr())) then GenerateCoprocessorException();
4
5 // Get current beat number and predication mask
6 (curBeat, elmtMask) = GetCurInstrBeat();
7
8 result = Zeros(32);
9 if acc then

10 // If the accumulator variant is used, then the 32-bit value from the vector
11 // source-destination register is used as an input to the custom operation
12 result = VCX_op2(ThisInstr(), Q[d, curBeat], Q[m, curBeat], 32, TRUE,
13 curBeat, elmtMask);
14 else
15 result = VCX_op1(ThisInstr(), Q[m, curBeat], 32, TRUE, curBeat, elmtMask);
16
17 for e = 0 to 3
18 // If the vector lane is not predicated
19 if elmtMask[e] == '1' then
20 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0607A.b
ID31032020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

58

Chapter C1. Alphabetical list of instructions

C1.0.18 VCX2

Custom Extension Instruction Class 2. Custom extension register instruction class 2 computes a value based on a
source register, an immediate, and optionally the destination value, and writes the result to the destination register.
The source and destination registers are within the Floating-point register file, and require the current execution
state to have access to these registers.

T1
Armv8-M Custom Datapath Extension with Armv8.1-M MVE or Armv8-M Floating-point Extension.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 A 1 1 0 sz 0 D 1 1 op1 Vd 0 coproc op2 0 M op3 Vm

Single-register accumulator variant

Applies when A == 1 and sz == 0

VCX2A <coproc>, <Sd>, <Sm>, #<imm>

Double-register accumulator variant

Applies when A == 1 and sz == 1

VCX2A <coproc>, <Dd>, <Dm>, #<imm>

Single-register non-accumulator variant

Applies when A == 0 and sz == 0

VCX2 <coproc>, <Sd>, <Sm>, #<imm>

Double-register non-accumulator variant

Applies when A == 0 and sz == 1

VCX2 <coproc>, <Dd>, <Dm>, #<imm>

Decode for this encoding
1 if CoprocType(UInt(coproc)) != CP_CDEv1 then SEE "Coprocessor instructions";
2 cp = UInt(coproc);
3 ExecuteCPCheck(cp);
4 ExecuteCPCheck(10);
5 CheckDecodeFaults(ExtType_MveOrFp);
6 dp_operation = (sz == '1');
7 imm = op1:op2:op3;
8 acc = (A == '1');
9 d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);

10 m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);
11 if VFPSmallRegisterBank() && dp_operation && (d > 16 || m > 16) then UNDEFINED;
12 if InITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP.

DDI0607A.b
ID31032020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

59

Chapter C1. Alphabetical list of instructions

Assembler symbols for all encodings

<A> Accumulate with existing register contents. This parameter must be one of the following
values:
" Encoded as A = 0
A Encoded as A = 1

<coproc> Is the name of the coprocessor, encoding in the "coproc" field. Valid names are p0 to p7
inclusive.

<Dd> Is the 64-bit name of the floating-point source and destination register D0 - D15 encoded in
the "D:Vd" fields.

<Dm> Is the 64-bit name of the floating-point source register D0 - D15, encoded in the "M:Vm"
fields.

<Sd> Is the 32-bit name of the floating-point source and destination register S0 - S31 encoded in
the "Vd:D" fields.

<Sm> Is the 32-bit name of the floating-point source register S0 - S31, encoded in the "Vm:M"
fields

<imm> Is the immediate encoded in "op1:op2:op3".

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4 if (!Coproc_Accepted(cp, ThisInstr())) then
5 GenerateCoprocessorException();
6 elsif dp_operation then
7 if acc then
8 D[d] = VCX_op2(ThisInstr(), D[d], D[m], 64);
9 else

10 D[d] = VCX_op1(ThisInstr(), D[m], 64);
11 else
12 if acc then
13 S[d] = VCX_op2(ThisInstr(), S[d], S[m], 32);
14 else
15 S[d] = VCX_op1(ThisInstr(), S[m], 32);

DDI0607A.b
ID31032020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

60

Chapter C1. Alphabetical list of instructions

C1.0.19 VCX3 (vector)

Custom Extension Instruction Class 3 Vector. Custom extension register instruction class 3 vector computes a
value based on two source registers, an immediate, and optionally the destination value, and writes the result to the
destination register. The source and destination registers are within the Floating-point and SIMD register file, and
require the current execution state to have access to these registers.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8-M Custom Datapath Extension with Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 A 1 1 0 op1 1 D op2 Vn Vd 0 coproc N 1 M op3 Vm

Accumulator variant

Applies when A == 1

VCX3A<v> <coproc>, <Qd>, <Qn>, <Qm>, #<imm>

Non-accumulator variant

Applies when A == 0

VCX3<v> <coproc>, <Qd>, <Qn>, <Qm>, #<imm>

Decode for this encoding
1 if CoprocType(UInt(coproc)) != CP_CDEv1 then SEE "Coprocessor instructions";
2 cp = UInt(coproc);
3 ExecuteCPCheck(cp);
4 ExecuteCPCheck(10);
5 CheckDecodeFaults(ExtType_Mve);
6 if VFPSmallRegisterBank() && (Vd[0] == '1' || Vn[0] == '1' || Vm[0] == '1') then UNDEFINED;
7 imm = op1:op2:op3;
8 acc = (A == '1');
9 d = UInt(D:Vd[3:1]);

10 n = UInt(N:Vn[3:1]);
11 m = UInt(M:Vm[3:1]);
12 if InITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP.

Assembler symbols for all encodings

A Accumulate with existing register contents. This parameter must be one of the following
values:
" Encoded as A = 0
A Encoded as A = 1

DDI0607A.b
ID31032020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

61

Chapter C1. Alphabetical list of instructions

<v> See Standard assembler syntax fields.
<coproc> Is the name of the coprocessor, encoding in the "coproc" field. Valid names are p0 to p7

inclusive.
<Qm> Is the source vector register Q0 - Q7, encoded in the "M:Vm" fields as <Qm>*2.
<Qd> Is the source and destination vector register Q0 - Q7, encoded in the "D:Vd" fields as

<Qd>*2.
<Qn> Is the source vector register Q0 - Q7, encoded in the "N:Vn" fields as <Qn>*2.
<imm> Is the immediate encoded in "op1:op2:op3".

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3 if (!Coproc_Accepted(cp, ThisInstr())) then GenerateCoprocessorException();
4
5 // Get current beat number and predication mask
6 (curBeat, elmtMask) = GetCurInstrBeat();
7
8 result = Zeros(32);
9 if acc then

10 // If the accumulator variant is used, then the 32-bit value from the vector
11 // source-destination register is used as an input to the custom operation
12 result = VCX_op3(ThisInstr(), Q[d, curBeat], Q[n, curBeat], Q[m, curBeat], 32,
13 TRUE, curBeat, elmtMask);
14 else
15 result = VCX_op2(ThisInstr(), Q[n, curBeat], Q[m, curBeat], 32,
16 TRUE, curBeat, elmtMask);
17
18 for e = 0 to 3
19 // If the vector lane is not predicated
20 if elmtMask[e] == '1' then
21 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0607A.b
ID31032020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

62

Chapter C1. Alphabetical list of instructions

C1.0.20 VCX3

Custom Extension Instruction Class 3. Custom extension register instruction class 3 computes a value based on
two source registers, an immediate, and optionally the destination value, and writes the result to the destination
register. The source and destination registers are within the Floating-point register file, and require the current
execution state to have access to these registers.

T1
Armv8-M Custom Datapath Extension with Armv8.1-M MVE or Armv8-M Floating-point Extension.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 A 1 1 0 sz 1 D op1 Vn Vd 0 coproc N 0 M op2 Vm

Single-register accumulator variant

Applies when A == 1 and sz == 0

VCX3A <coproc>, <Sd>, <Sn>, <Sm>, #<imm>

Double-register accumulator variant

Applies when A == 1 and sz == 1

VCX3A <coproc>, <Dd>, <Dn>, <Dm>, #<imm>

Single-register non-accumulator variant

Applies when A == 0 and sz == 0

VCX3 <coproc>, <Sd>, <Sn>, <Sm>, #<imm>

Double-register non-accumulator variant

Applies when A == 0 and sz == 1

VCX3 <coproc>, <Dd>, <Dn>, <Dm>, #<imm>

Decode for this encoding
1 if CoprocType(UInt(coproc)) != CP_CDEv1 then SEE "Coprocessor instructions";
2 cp = UInt(coproc);
3 ExecuteCPCheck(cp);
4 ExecuteCPCheck(10);
5 CheckDecodeFaults(ExtType_MveOrFp);
6 dp_operation = (sz == '1');
7 imm = op1:op2;
8 acc = (A == '1');
9 d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);

10 n = if dp_operation then UInt(N:Vn) else UInt(Vn:N);
11 m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);
12 if VFPSmallRegisterBank() && dp_operation && (d > 16 || n > 16 || m > 16) then UNDEFINED;
13 if InITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP.

DDI0607A.b
ID31032020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

63

Chapter C1. Alphabetical list of instructions

Assembler symbols for all encodings

<A> Accumulate with existing register contents. This parameter must be one of the following
values:
" Encoded as A = 0
A Encoded as A = 1

<coproc> Is the name of the coprocessor, encoding in the "coproc" field. Valid names are p0 to p7
inclusive.

<Dd> Is the 64-bit name of the floating-point source and destination register D0 - D15 encoded in
the "D:Vd" fields.

<Dm> Is the 64-bit name of the floating-point source register D0 - D15, encoded in the "M:Vm"
fields.

<Dn> Is the 64-bit name of the floating-point source register D0 - D15, encoded in the "N:Vn"
fields

<Sd> Is the 32-bit name of the floating-point source and destination register S0 - S31 encoded in
the "Vd:D" fields.

<Sm> Is the 32-bit name of the floating-point source register S0 - S31, encoded in the "Vm:M"
fields

<Sn> Is the 32-bit name of the floating-point source register S0 - S31, encoded in the "Vn:N"
fields.

<imm> Is the immediate encoded in "op1:op2".

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4 if (!Coproc_Accepted(cp, ThisInstr())) then
5 GenerateCoprocessorException();
6 elsif dp_operation then
7 if acc then
8 D[d] = VCX_op3(ThisInstr(), D[d], D[n], D[m], 64);
9 else

10 D[d] = VCX_op2(ThisInstr(), D[n], D[m], 64);
11 else
12 if acc then
13 S[d] = VCX_op3(ThisInstr(), S[d], S[n], S[m], 32);
14 else
15 S[d] = VCX_op2(ThisInstr(), S[n], S[m], 32);

DDI0607A.b
ID31032020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

64

Part D
Pseudocode Specification

Chapter D1
Pseudocode Specification

This chapter specifies the Armv8-M pseudocode. It contains the following section:

Alphabetical Pseudocode List

DDI0607A.b
ID31032020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

66

Chapter D1. Pseudocode Specification
D1.1. Alphabetical Pseudocode List

D1.1 Alphabetical Pseudocode List

D1.1.1 CdeImpDefValue

1 // CdeImpDefValue()
2 // ================
3 // IMPLEMENTATION DEFINED value functions for the Custom Datapath Extension
4
5 bits(size) CdeImpDefValue(bits(N) instr);
6 bits(size) CdeImpDefValue(bits(N) instr, bits(M) opa);
7 bits(size) CdeImpDefValue(bits(N) instr, bits(M) opa, bits(L) opb);
8 bits(size) CdeImpDefValue(bits(N) instr, bits(M) opa, bits(L) opb, bits(K) opc);
9

10 bits(size) CdeImpDefValue(bits(N) instr, integer curBeat, bits(4) elmtMask);
11 bits(size) CdeImpDefValue(bits(N) instr, bits(M) opa, integer curBeat, bits(4) elmtMask);
12 bits(size) CdeImpDefValue(bits(N) instr, bits(M) opa, bits(L) opb, integer curBeat,
13 bits(4) elmtMask);
14 bits(size) CdeImpDefValue(bits(N) instr, bits(M) opa, bits(L) opb, bits(K) opc,
15 integer curBeat, bits(4) elmtMask);

D1.1.2 CoprocType

1 // CoprocType
2 // ==========
3
4 CPDef CoprocType(integer coproc)
5 assert coproc >= 0 && coproc <= 7;
6
7 // Returns the architecture defined enumeration of the instruction set
8 // supported by the given coprocessor space.
9

10 // The CDE extension defines two encoding patterns:
11 // - CP_GCP : The architected coprocessor encodings for MRC, MCR, CDP etc.
12 // - CP_CDEv1 : Version 1 of the Custom Datapath Extension.
13
14 cdeEn = boolean IMPLEMENTATION_DEFINED "CDE enabled coprocessor";
15 return if cdeEn then CP_CDEv1 else CP_GCP;

D1.1.3 CPDef

1 // CPDef
2 // =====
3 // The CDE extension defines two encoding patterns
4
5 enumeration CPDef { CP_GCP, // The architected coprocessor encodings for MRC, MCR, CDP etc.
6 CP_CDEv1 // Version 1 of the Custom Datapath Extension.
7 };

D1.1.4 CX_op0

1 // CX_op0
2 // ======
3
4 bits(size) CX_op0(bits(32) instr, integer size)
5 assert size IN {32, 64};
6
7 // Custom data path returning IMPLEMENTATION DEFINED value based on
8 // instruction opcode only.
9 return CdeImpDefValue(instr);

D1.1.5 CX_op1

DDI0607A.b
ID31032020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

67

Chapter D1. Pseudocode Specification
D1.1. Alphabetical Pseudocode List

1 // CX_op1
2 // ======
3
4 bits(size) CX_op1(bits(32) instr, bits(N) opa, integer size)
5 assert N IN {32, 64};
6 assert size IN {32, 64};
7
8 // Custom data path returning IMPLEMENTATION DEFINED value based on
9 // instruction opcode and single 32-bit or 64-bit operand, opa, only.

10 return CdeImpDefValue(instr, opa);

D1.1.6 CX_op2

1 // CX_op2
2 // ======
3
4 bits(size) CX_op2(bits(32) instr, bits(N) opa, bits(32) opb, integer size)
5 assert N IN {32, 64};
6 assert size IN {32, 64};
7
8 // Custom data path returning IMPLEMENTATION DEFINED value based on instruction
9 // opcode and two 32-bit or 64-bit operands, opa and opb, only.

10 return CdeImpDefValue(instr, opa, opb);

D1.1.7 CX_op3

1 // CX_op3
2 // ======
3
4 bits(size) CX_op3(bits(32) instr, bits(N) opa, bits(32) opb, bits(32) opc, integer size)
5 assert N IN {32, 64};
6 assert size IN {32, 64};
7
8 // Custom data path returning IMPLEMENTATION DEFINED value based on instruction
9 // opcode and three 32-bit or 64-bit operands, opa, opb and opc, only.

10 return CdeImpDefValue(instr, opa, opb, opc);

D1.1.8 RF

1 // RF[] - non-assignment form
2 // ==========================
3
4 bits(32) RF[integer n]
5 assert n >= 0 && n <= 15;
6
7 // Returns the selected general-purpose register for indices less than 15,
8 // or the APSR Condition flags for the index 15.
9

10 if n < 15 then
11 result = R[n];
12 else
13 result = APSR[31:28] : Zeros(28);
14
15 return result;
16
17 // RF[] - assignment form
18 // ======================
19
20 RF[integer n] = bits(32) value
21 assert n >= 0 && n <= 15;
22
23 // Assigns a value to the selected general-purpose register for indices
24 // less than 15, or the APSR Condition flags for the index 15.
25
26 if n < 15 then

DDI0607A.b
ID31032020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

68

Chapter D1. Pseudocode Specification
D1.1. Alphabetical Pseudocode List

27 R[n] = value;
28 else
29 APSR.N = value[31];
30 APSR.Z = value[30];
31 APSR.C = value[29];
32 APSR.V = value[28];

D1.1.9 RFD

1 // RFD[] - non-assignment form
2 // ===========================
3
4 bits(64) RFD[integer n]
5 assert n >= 0 && n <= 14;
6 assert n[0] == '0';
7
8 // Returns the selected general-purpose register pair
9 // Register pairs containing SP or PC are UNPREDICTABLE

10 if n > 10 then UNPREDICTABLE;
11
12 result = R[n+1]:R[n];
13 return result;
14
15 // RFD[] - assignment form
16 // ======================
17
18 RFD[integer n] = bits(64) value
19 assert n >= 0 && n <= 14;
20 assert n[0] == '0';
21
22 // Assigns a value to the selected general-purpose register pair
23 // Register pairs containing SP or PC are UNPREDICTABLE
24 if n > 10 then UNPREDICTABLE;
25
26 R[n+1] = value[63:32];
27 R[n] = value[31:0];

D1.1.10 VCX_op0

1 // VCX_op0
2 // =======
3
4 bits(size) VCX_op0(bits(32) instr, integer size)
5 return VCX_op0(instr, size, FALSE, integer UNKNOWN, bits(4) UNKNOWN);
6
7 bits(size) VCX_op0(bits(32) instr, integer size, boolean isBeatWise, integer curBeat,
8 bits(4) elmtMask)
9 assert size IN {32, 64};

10
11 // Custom data path returning IMPLEMENTATION DEFINED value based on
12 // instruction opcode only.
13 if isBeatWise then
14 return CdeImpDefValue(instr, curBeat, elmtMask);
15 else
16 return CdeImpDefValue(instr);

D1.1.11 VCX_op1

1 // VCX_op1
2 // =======
3
4 bits(size) VCX_op1(bits(32) instr, bits(N) opa, integer size)
5 return VCX_op1(instr, opa, size, FALSE, integer UNKNOWN, bits(4) UNKNOWN);
6
7 bits(size) VCX_op1(bits(32) instr, bits(N) opa, integer size, boolean isBeatWise,

DDI0607A.b
ID31032020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

69

Chapter D1. Pseudocode Specification
D1.1. Alphabetical Pseudocode List

8 integer curBeat, bits(4) elmtMask)
9 assert N IN {32, 64, 128};

10 assert size IN {32, 64, 128};
11
12 // Custom data path returning IMPLEMENTATION DEFINED value based on instruction
13 // opcode and single 32-bit, 64-bit, or 128-bit operand, opa, only.
14 if isBeatWise then
15 return CdeImpDefValue(instr, opa, curBeat, elmtMask);
16 else
17 return CdeImpDefValue(instr, opa);

D1.1.12 VCX_op2

1 // VCX_op2
2 // ======
3
4 bits(size) VCX_op2(bits(32) instr, bits(N) opa, bits(N) opb, integer size)
5 return VCX_op2(instr, opa, opb, size, FALSE, integer UNKNOWN, bits(4) UNKNOWN);
6
7 bits(size) VCX_op2(bits(32) instr, bits(N) opa, bits(N) opb, integer size,
8 boolean isBeatWise, integer curBeat, bits(4) elmtMask)
9 assert N IN {32, 64, 128};

10 assert size IN {32, 64, 128};
11
12 // Custom data path returning IMPLEMENTATION DEFINED value based on instruction
13 // opcode and two 32-bit or 64-bit operands, opa and opb, only.
14 if isBeatWise then
15 return CdeImpDefValue(instr, opa, opb, curBeat, elmtMask);
16 else
17 return CdeImpDefValue(instr, opa, opb);

D1.1.13 VCX_op3

1 // VCX_op3
2 // =======
3
4 bits(size) VCX_op3(bits(32) instr, bits(N) opa, bits(N) opb, bits(N) opc, integer size)
5 return VCX_op3(instr, opa, opb, opc, size, FALSE, integer UNKNOWN, bits(4) UNKNOWN);
6
7 bits(size) VCX_op3(bits(32) instr, bits(N) opa, bits(N) opb, bits(N) opc, integer size,
8 boolean isBeatWise, integer curBeat, bits(4) elmtMask)
9 assert N IN {32, 64, 128};

10 assert size IN {32, 64, 128};
11
12 // Custom data path returning IMPLEMENTATION DEFINED value based on instruction
13 // opcode and three 32-bit, 64-bit, or 128-bit operands, opa, opb and opc, only.
14 if isBeatWise then
15 return CdeImpDefValue(instr, opa, opb, opc, curBeat, elmtMask);
16 else
17 return CdeImpDefValue(instr, opa, opb, opc);

DDI0607A.b
ID31032020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

70

Glossary

Application Program Status Register (APSR)

The register containing those bits that deliver status information about the results of instructions, the N, Z, C, and
V bits of the XPSR. In an implementation that includes the DSP extension, the APSR includes the GE bits that
provide status information from DSP operations.

APSR

See Application Program Status Register.

Architecturally executed

An instruction is architecturally executed only if it would be executed in a simple sequential execution of the
program. When such an instruction has been executed and retired it has been architecturally executed. Any
instruction that, in a simple sequential execution of a program, is treated as a NOP because it fails its condition
code check, is an architecturally executed instruction.

In a PE that performs Speculative execution, an instruction is not architecturally executed if the PE discards the
results of a Speculative execution.

See also Condition code check, Simple sequential execution.

Architecturally Unknown

An architecturally UNKNOWN value is a value that is not defined by the architecture but must meet the requirements
of the definition of UNKNOWN. Implementations can define the value of the field, but are not required to do so.

See also Implementation Defined.

Behaves as if

Where this manual indicates that a PE behaves as if a certain condition applies, all descriptions of the operation
of the PE must be re-evaluated taking account of that condition, together with any other conditions that affect
operation.

Byte

An 8-bit data item.

Callee-saved registers

Are registers that a called procedure must preserve. To preserve a callee-saved register, the called procedure would
normally either not use the register at all, or store the register to the stack during procedure entry and reload it
from the stack during procedure exit.

Caller-saved registers

Are registers that a called procedure is not required to preserve. If the calling procedure requires their values to be
preserved, it must store and reload them itself.

Condition code check

The process of determining whether a conditional instruction executes normally or is treated as a NOP. For an
instruction that includes a condition code field, that field is compared with the condition flags to determine whether
the instruction is executed normally. For a T32 instruction in an IT block, the value of EPSR.IT determines whether
the instruction is executed normally.

See also Condition code field, Condition flags, Conditional execution.

Condition code field
71

Glossary

A 4-bit field in an instruction that specifies the condition under which the instruction executes.

See also Condition code check.

Condition flags

The N, Z, C, and V bits of APSR, or XPSR.

See also Condition code check.

Conditional execution

When a conditional instruction starts executing, if the condition code check returns TRUE, the instruction executes
normally. Otherwise, it is treated as a NOP.

See also Condition code check.

CONSTRAINED UNPREDICTABLE

Where an instruction can result in UNPREDICTABLE behavior, the Armv8 architecture specifies a narrow range of
permitted behaviors. This range is the range of CONSTRAINED UNPREDICTABLE behavior. All implementations
that are compliant with the architecture must follow the CONSTRAINED UNPREDICTABLE behavior within the
limits defined for each particular case, and this behavior might vary.

In body text, the term CONSTRAINED UNPREDICTABLE is shown in SMALLCAPS.

See also Unpredictable.

Doubleword

A 64-bit data item. Doublewords are normally at least word-aligned in Arm systems.

Exception

Handles an event. For example, an exception could handle an external interrupt or an undefined instruction.

Halfword

A 16-bit data item. Halfwords are normally halfword-aligned in Arm systems.

If-Then block (IT block)

An IT block is a block of up to four instructions following an If-Then (IT) instruction. Each instruction in the block
is conditional. The conditions for the instructions are either all the same, or some are the inverse of others.

Immediate and offset fields

Are unsigned unless otherwise stated.

Immediate value

A value that is encoded directly in the instruction and used as numeric data when the instruction is executed. Many
T32 instructions can be used with an immediate argument.

IMP DEF

An abbreviation that is used in diagrams to indicate that one or more bits have IMPLEMENTATION DEFINED
behavior.

IMPLEMENTATION DEFINED

Means that the behavior is not architecturally defined, but must be defined and documented by individual
implementations.

In body text, the term IMPLEMENTATION DEFINED is shown in SMALLCAPS.

OPTIONAL

When applied to a feature of the architecture, OPTIONAL indicates a feature that is not required in an implementation
of the Arm architecture:

DDI0607A.b
ID31032020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

72

Glossary

• If a feature is OPTIONAL and deprecated, this indicates that the feature is being phased out of the architecture.
Arm expects such a feature to be included in a new implementation only if there is a known backwards-
compatibility reason for the inclusion of the feature.

A feature that is OPTIONAL and deprecated might not be present in future versions of the architecture.

• A feature that is OPTIONAL but not deprecated is, typically, a feature added to a version of the Arm architecture
after the initial release of that version of the architecture. Arm recommends that such features are included in
all new implementations of the architecture.

In body text, these meanings of the term OPTIONAL are shown in SMALLCAPS.

Note: Do not confuse these Arm-specific uses of OPTIONAL with other uses of OPTIONAL, where it has its usual
meaning. These include:

• Optional arguments in the syntax of many instructions.
• Behavior that is determined by an implementation choice.

PE

See Processing element.

Processing element (PE)

The abstract machine that is defined in the Arm architecture, as documented in an Arm Architecture Reference
Manual. A PE implementation compliant with the Arm architecture must conform with the behaviors described in
the corresponding Arm Architecture Reference Manual.

Quadword

A 128-bit data item. Quadwords are normally at least word-aligned in Arm systems.

Reserved

Unless otherwise stated:

• Instructions that are reserved or that access reserved registers have UNPREDICTABLE or CONSTRAINED
UNPREDICTABLE behavior.

• Bit positions that are described as reserved are:

– In an RW or WO register, RES0.
– In an RO register, UNK.

See also CONSTRAINED UNPREDICTABLE, RES0, RES1, UNDEFINED, UNK, UNPREDICTABLE.

SIMD

Single-Instruction, Multiple-Data.

T32 instruction

One or two halfwords that specify an operation to be performed by a PE. T32 instructions must be halfword-aligned.

T32 instructions were previously called Thumb instructions.

UAL

See Unified Assembler Language.

Unallocated

Except where otherwise stated in this manual, an instruction encoding is unallocated if the architecture does not
assign a specific function to the entire bit pattern of the instruction, but instead describes it as CONSTRAINED
UNPREDICTABLE, UNDEFINED, UNPREDICTABLE, or as an unallocated hint instruction.

A bit in a register is unallocated if the architecture does not assign a function to that bit.

See also CONSTRAINED UNPREDICTABLE, UNPREDICTABLE, UNDEFINED.

DDI0607A.b
ID31032020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

73

Glossary

UNDEFINED

Indicates an instruction that generates an Undefined Instruction exception.

In body text, the term UNDEFINED is shown in SMALLCAPS.

Unified Assembler Language

The assembler language that is introduced with Thumb-2 technology that is used in this manual.

UNK

An abbreviation indicating that software must treat a field as containing an UNKNOWN value.

Hardware must implement the bit as read as 0, or all 0s for a multi-bit field. Software must not rely on the field
reading as zero.

See also UNKNOWN.

UNKNOWN

An UNKNOWN value does not contain valid data, and can vary from moment to moment, instruction to instruction,
and implementation to implementation. An UNKNOWN value must not return information that cannot be accessed
at the current or a lower level of privilege using functionality that is not UNKNOWN, is not CONSTRAINED
UNPREDICTABLE, and does not return UNKNOWN values.

An Unknown value must not be documented or promoted as having a defined value or effect.

In body text, the term UNKNOWN is shown in SMALLCAPS.

See also CONSTRAINED UNPREDICTABLE, UNDEFINED, UNK, UNPREDICTABLE.

UNPREDICTABLE

Means the behavior cannot be relied on. UNPREDICTABLE behavior must not perform any function that cannot be
performed at the current or a lower level of privilege or security using instructions that are not UNPREDICTABLE.

UNPREDICTABLE behavior must not be documented or promoted as having a defined effect.

An instruction that is UNPREDICTABLE can be implemented as UNDEFINED.

In body text, the term UNPREDICTABLE is shown in SMALLCAPS.

See also CONSTRAINED UNPREDICTABLE, UNDEFINED.

Word

A 32-bit data item. Words are normally word-aligned in Arm systems.

DDI0607A.b
ID31032020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

74

	Contents
	Preface
	Additional reading

	A Custom Datapath Extension for the Armv8-M Architecture Introduction and Overview
	A1 Introduction
	A1.1 Document layout and terminology
	A1.2 The Custom Datapath Extension for Armv8-M
	A1.3 Overview of the Custom Datapath Extension

	B Custom Datapath Extension for the Armv8-M Architecture, Programmers' model
	B1 Programmers' Model
	B1.1 Enabling CDE instructions
	B1.2 Execution of CDE instructions

	C Instruction Specification
	C1 Alphabetical list of instructions
	C1.0.1 CDP, CDP2
	C1.0.2 CX1
	C1.0.3 CX1D
	C1.0.4 CX2
	C1.0.5 CX2D
	C1.0.6 CX3
	C1.0.7 CX3D
	C1.0.8 LDC, LDC2 (immediate)
	C1.0.9 LDC, LDC2 (literal)
	C1.0.10 MCR, MCR2
	C1.0.11 MCRR, MCRR2
	C1.0.12 MRC, MRC2
	C1.0.13 MRRC, MRRC2
	C1.0.14 STC, STC2
	C1.0.15 VCX1 (vector)
	C1.0.16 VCX1
	C1.0.17 VCX2 (vector)
	C1.0.18 VCX2
	C1.0.19 VCX3 (vector)
	C1.0.20 VCX3

	D Pseudocode Specification
	D1 Pseudocode Specification
	D1.1 Alphabetical Pseudocode List
	D1.1.1 CdeImpDefValue
	D1.1.2 CoprocType
	D1.1.3 CPDef
	D1.1.4 CX_op0
	D1.1.5 CX_op1
	D1.1.6 CX_op2
	D1.1.7 CX_op3
	D1.1.8 RF
	D1.1.9 RFD
	D1.1.10 VCX_op0
	D1.1.11 VCX_op1
	D1.1.12 VCX_op2
	D1.1.13 VCX_op3

	Glossary

