
Arm® Architecture Reference Manual Armv8, for
Armv8-A architecture profile

Known issues in Issue G.a

Non-Confidential
Copyright © 2020–2021 Arm Limited (or its affiliates).
All rights reserved.

Issue 05
102105_G.a_05_en

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Arm® Architecture Reference Manual Armv8, for Armv8-A architecture profile
Known issues in Issue G.a

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history

Issue Date Confidentiality Change

F.c-00 27 August 2020 Non-
Confidential

Known Issues in Arm® Architecture Reference Manual, Issue F.c, as of 21
August 2020

F.c-01 30 September
2020

Non-
Confidential

Known Issues in Arm® Architecture Reference Manual, Issue F.c, as of 25
September 2020

F.c-02 30 October
2020

Non-
Confidential

Known Issues in Arm® Architecture Reference Manual, Issue F.c, as of 23
October 2020

F.c-03 30 November
2020

Non-
Confidential

Known Issues in Arm® Architecture Reference Manual, Issue F.c, as of 20
November 2020

F.c-04 18 December
2020

Non-
Confidential

Known Issues in Arm® Architecture Reference Manual, Issue F.c, as of 18
December 2020

G.a-00 22 January
2021

Non-
Confidential

Known Issues in Arm® Architecture Reference Manual, Issue G.a, as of 18
December 2020

G.a-01 26 February
2021

Non-
Confidential

Known Issues in Arm® Architecture Reference Manual, Issue G.a, as of 19
February 2021

G.a-02 31 March 2021 Non-
Confidential

Known Issues in Arm® Architecture Reference Manual, Issue G.a, as of 19
March 2021

G.a-03 30 April 2021 Non-
Confidential

Known Issues in Arm® Architecture Reference Manual, Issue G.a, as of 23
April 2021

G.a-04 31 May 2021 Non-
Confidential

Known Issues in Arm® Architecture Reference Manual, Issue G.a, as of 21
May 2021

G.a-05 30 June 2021 Non-
Confidential

Known Issues in Arm® Architecture Reference Manual, Issue G.a, as of 18
June 2021

Proprietary Notice

This document is protected by copyright and other related rights and the practice or
implementation of the information contained in this document may be protected by one or more
patents or pending patent applications. No part of this document may be reproduced in any form
by any means without the express prior written permission of Arm. No license, express or implied,
by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Your access to the information in this document is conditional upon your acceptance that you
will not use or permit others to use the information for the purposes of determining whether
implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION,
THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-
INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, third party patents,
copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR
ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that
any use, duplication or disclosure of this document complies fully with any relevant export laws
and regulations to assure that this document or any portion thereof is not exported, directly
or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s
customers is not intended to create or refer to any partnership relationship with any other
company. Arm may make changes to this document at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click
through or signed written agreement covering this document with Arm, then the click through or
signed written agreement prevails over and supersedes the conflicting provisions of these terms.
This document may be translated into other languages for convenience, and you agree that if there
is any conflict between the English version of this document and any translation, the terms of the
English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks
of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands
and names mentioned in this document may be the trademarks of their respective owners. Please
follow Arm’s trademark usage guidelines at https://www.arm.com/company/policies/trademarks.

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349)

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 121

https://www.arm.com/company/policies/trademarks

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be
subject to license restrictions in accordance with the terms of the agreement entered into by Arm
and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Web address

developer.arm.com

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language
that can be offensive. Arm strives to lead the industry and create change.

We believe that this document contains no offensive language. To report offensive language in this
document, email terms@arm.com.

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 121

https://developer.arm.com
mailto:terms@arm.com

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05
Contents

Contents

1 Introduction...11
1.1 Conventions... 11
1.2 Additional reading...12
1.3 Feedback...12
1.4 Other information...13

2 Known issues..14
2.1 D8901... 14
2.2 D10129...15
2.3 R10550... 16
2.4 D11312...16
2.5 D12962...16
2.6 E13850... 17
2.7 D14169...17
2.8 E14362... 17
2.9 D14810...18
2.10 D14928.. 18
2.11 D15346.. 18
2.12 D15977.. 19
2.13 D16029.. 19
2.14 D16093.. 21
2.15 D16367.. 22
2.16 D16403.. 23
2.17 D16493.. 24
2.18 D16664.. 24
2.19 C16668...24
2.20 D16815.. 26
2.21 D16907.. 27
2.22 D16933.. 28
2.23 D16936.. 29
2.24 D16960.. 29
2.25 R16961...30

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05
Contents

2.26 D16997.. 30
2.27 D17015.. 31
2.28 D17020.. 32
2.29 D17052.. 32
2.30 D17119.. 32
2.31 D17151.. 32
2.32 D17170.. 33
2.33 D17193.. 34
2.34 D17196.. 34
2.35 D17199.. 35
2.36 C17238...38
2.37 D17292.. 39
2.38 D17295.. 39
2.39 C17310...40
2.40 D17338.. 40
2.41 D17359.. 41
2.42 D17387.. 42
2.43 D17392.. 42
2.44 C17393...42
2.45 D17396.. 43
2.46 D17401.. 43
2.47 D17405.. 44
2.48 R17415...45
2.49 D17416.. 45
2.50 D17417.. 46
2.51 R17420...47
2.52 D17422.. 47
2.53 D17423.. 50
2.54 D17425.. 50
2.55 E17427...51
2.56 D17428.. 51
2.57 D17428.. 51
2.58 D17433.. 52
2.59 R17435...52
2.60 C17438...53
2.61 D17441.. 53

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05
Contents

2.62 D17445.. 53
2.63 D17464.. 55
2.64 C17466...55
2.65 D17478.. 56
2.66 D17492.. 57
2.67 D17527.. 58
2.68 D17534.. 58
2.69 D17539.. 59
2.70 D17541.. 59
2.71 D17557.. 59
2.72 D17558.. 61
2.73 C17562...62
2.74 D17565.. 62
2.75 D17571.. 63
2.76 D17572.. 65
2.77 D17573.. 65
2.78 R17578...65
2.79 R17579...66
2.80 D17583.. 67
2.81 R17584...67
2.82 D17590.. 68
2.83 D17592.. 69
2.84 D17593.. 70
2.85 D17604.. 71
2.86 D17606.. 72
2.87 D17615.. 72
2.88 D17617.. 73
2.89 D17632.. 74
2.90 D17633.. 74
2.91 D17640.. 75
2.92 C17641...75
2.93 C17651...76
2.94 D17653.. 76
2.95 D17654.. 76
2.96 C17669...77
2.97 D17673.. 77

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05
Contents

2.98 C17680...77
2.99 D17682.. 78
2.100 D17684..79
2.101 C17685.. 79
2.102 D17686..80
2.103 D17687..80
2.104 D17694..81
2.105 D17700..81
2.106 D17705..81
2.107 D17712..82
2.108 D17715..82
2.109 D17722..83
2.110 D17723..83
2.111 C17732.. 84
2.112 C17734.. 84
2.113 C17735.. 84
2.114 R17738.. 84
2.115 D17754..85
2.116 D17762..85
2.117 D17763..86
2.118 D17765..86
2.119 D17767..87
2.120 D17773..87
2.121 C17774.. 88
2.122 C17775.. 88
2.123 D17777..89
2.124 D17782..89
2.125 D17783..89
2.126 C17811.. 90
2.127 D17819..90
2.128 D17820..91
2.129 D17826..91
2.130 D17831..92
2.131 D17834..92
2.132 D17837..93
2.133 D17859..93

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05
Contents

2.134 D17867..94
2.135 D17870..95
2.136 D17883..95
2.137 R17892.. 97
2.138 D17896..97
2.139 E17909.. 98
2.140 C17911.. 99
2.141 C17921..100
2.142 R17932..101
2.143 D17934... 101
2.144 D17935... 102
2.145 C17938..103
2.146 D17943... 103
2.147 D17944... 103
2.148 D17945... 104
2.149 D17948... 104
2.150 D17956... 104
2.151 D17958... 105
2.152 D17975... 105
2.153 R17983..106
2.154 C17986..106
2.155 D17991... 107
2.156 D17998... 108
2.157 D18001... 109
2.158 D18003... 109
2.159 D18009... 110
2.160 D18022... 110
2.161 D18023... 111
2.162 D18031... 111
2.163 D18034... 111
2.164 D18037... 112
2.165 D18060... 112
2.166 D18100... 113
2.167 D18106... 113
2.168 D18112... 114
2.169 D18119... 115

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05
Contents

2.170 D18138... 116
2.171 D18140... 116
2.172 D18141... 117
2.173 C18142..117
2.174 D18149... 119
2.175 D18159... 119
2.176 D18160... 120
2.177 D18162... 120
2.178 D18165... 121

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Introduction

1 Introduction

1.1 Conventions
The following subsections describe conventions used in Arm documents.

Glossary
The Arm Glossary is a list of terms used in Arm documentation, together with definitions for
those terms. The Arm Glossary does not contain terms that are industry standard unless the Arm
meaning differs from the generally accepted meaning.

See the Arm® Glossary for more information: developer.arm.com/glossary.

Typographic conventions
Arm documentation uses typographical conventions to convey specific meaning.

Convention Use

italic Introduces special terminology, denotes cross-references, and citations.

bold Highlights interface elements, such as menu names. Denotes signal names. Also used for terms in
descriptive lists, where appropriate.

monospace Denotes text that you can enter at the keyboard, such as commands, file and program names, and source
code.

monospace italic Denotes arguments to monospace text where the argument is to be replaced by a specific value.

monospace bold Denotes language keywords when used outside example code.

monospace underline Denotes a permitted abbreviation for a command or option. You can enter the underlined text instead of
the full command or option name.

<and> Encloses replaceable terms for assembler syntax where they appear in code or code fragments. For ex-
ample:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS Used in body text for a few terms that have specific technical meanings, that are defined in the
Arm Glossary. For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and
UNPREDICTABLE.

This represents a recommendation which, if not followed, might lead to system failure or damage.

This represents a requirement for the system that, if not followed, might result in system failure or
damage.

This represents a requirement for the system that, if not followed, will result in system failure or damage.

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 121

https://developer.arm.com/glossary

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Introduction

Convention Use
This represents an important piece of information that needs your attention.

This represents a useful tip that might make it easier, better or faster to perform a task.

This is a reminder of something important that relates to the information you are reading.

1.2 Additional reading
This document contains information that is specific to this product. See the following documents
for other relevant information:

Table 1-2: Arm publications

Document Name Document ID Licensee only

Arm® Architecture Reference Manual Armv8,
for Armv8-A architecture profile, Issue G.a

DDI 0487G.a No

1.3 Feedback
Arm welcomes feedback on this product and its documentation.

Feedback on this product
If you have any comments or suggestions about this product, contact your supplier and give:

• The product name.

• The product revision or version.

• An explanation with as much information as you can provide. Include symptoms and diagnostic
procedures if appropriate.

Feedback on content
If you have comments on content then send an e-mail to errata@arm.com. Give:

• The title Arm® Architecture Reference Manual Armv8, for Armv8-A architecture profile Known
issues in Issue G.a.

• The number 102105_G.a_05_en.

• If applicable, the page number(s) to which your comments refer.

• A concise explanation of your comments.

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 121

mailto:errata@arm.com

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Introduction

Arm also welcomes general suggestions for additions and improvements.

Arm tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot
guarantee the quality of the represented document when used with any other PDF
reader.

1.4 Other information
See the Arm website for other relevant information.

• Arm® Developer.

• Arm® Documentation.

• Technical Support

• Arm® Glossary.

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 121

https://developer.arm.com/
https://developer.arm.com/documentation
http://www.arm.com/support/technical-support
https://developer.arm.com/support/arm-glossary

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

2 Known issues
This document records known issues in the Arm Architecture Reference Manual, Armv8, for
Armv8-A architecture profile (DD10487), Issue G.a.

Issue G.a is the initial release of the Arm Architecture Reference Manual including the Armv8.7
architecture extensions.

The pseudocode descriptions for the Armv8.7 architecture extensions in Issue G.a are at Alpha
quality, which means that most major features of the specification are described in the manual,
some features and details might be missing. For the latest status and updates to the pseudocode
descriptions, please see: https://developer.arm.com/architectures/cpu-architecture/a-profile/
exploration-tools.

The remainder of the information in Issue G.a is at EAC quality, which means that all features of the
specification are described in the manual.

Key

• C = Clarification.

• D = Defect.

• R = Relaxation.

• E = Enhancement.

2.1 D8901
In section G1.21.2 (PL1 configurable controls), subsection 'Disabling or enabling PL0 and PL1 use
of AArch32 deprecated functionality', the bullet points that read:

• The SED control is always implemented.

• Whether each of the ITD, CP15BEN controls is implemented is IMPLEMENTATION DEFINED. If a
control is not implemented, then the associated functionality cannot be disabled.

are changed to read:

• The SED control is implemented if the implementation supports mixed-endian operation at
any Exception level.

• Whether the ITD control is implemented is IMPLEMENTATION DEFINED.

• Whether the CP15BEN control is implemented is IMPLEMENTATION DEFINED.

• If a control is not implemented, then the associated functionality cannot be disabled.

The equivalent changes are made in sections D1.14.2 (EL1 configurable controls), subsection
'Disabling or enabling EL0 use of AArch32 deprecated functionality', and G1.21.3 (EL2 configurable
controls), subsection 'Disabling or enabling EL2 use of deprecated AArch32 functionality'. Instances
of 'deprecated' are changed to 'optional' in the subsection titles.

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 121

https://developer.arm.com/architectures/cpu-architecture/a-profile/exploration-tools
https://developer.arm.com/architectures/cpu-architecture/a-profile/exploration-tools

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

In section D13.2.116 (SCTLR_EL1), the following text in the ITD field description:

ITD is optional, but if it is implemented in the SCTLR then it must also be implemented in the
SCTLR_EL1.

is changed to read:

ITD is optional, but if it is implemented in the SCTLR_EL1 then it must also be implemented in
the SCTLR_EL2, HSCTLR, and SCTLR.

The equivalent change is made to the SCTLR_EL1.CP15BEN field description, and to the ITD and
CP15BEN fields in sections D13.2.117 (SCTLR_EL2), G8.2.72 (HSCTLR), and G8.2.126 (SCTLR).

2.2 D10129
In section K1.1.33 (CONSTRAINED UNPREDICTABLE behavior of EL2 features), the sub-section
'Accessing registers that cannot be accessed using MSR/MRS instructions' is deleted, and the
contents of sub-section 'MSR (banked register) and MRS (banked register)' are replaced with:

If the target register specified by the {R, SYSm} fields of the instruction encoding is not accessible
from the PE mode in which the instruction was executed (see 'Usage restrictions on the banked
register transfer instructions'), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as a NOP.

• For MRS (banked register) instructions, the destination general-purpose register becomes
UNKNOWN.

• For MSR (banked register) instructions, if the register specified could be accessed from
the current mode by other mechanisms, then this register is UNKNOWN. Otherwise, the
instruction is a NOP.

If the instruction was executed specifying an unallocated {R, SYSm} field value or an
unimplemented register (see 'Encoding the register argument in the banked register transfer
instructions'), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as a NOP.

• An allocated MRS (banked register) or MSR (banked register) instruction is executed.

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

2.3 R10550
In section F5.1.228 (STMIB, STMFA), in the description of the CONSTRAINED UNPREDICTABLE
behavior when BitCount(registers) < 1, the bullet that reads:

The instruction operates as an STM with the same addressing mode but targeting an unspecified
set of registers. These registers might include R15.

is corrected to read:

The instruction operates as an STM with the same addressing mode but targeting an unspecified
set of registers. These registers might include R15. If the instruction specifies writeback, the
modification to the base address on writeback might differ from the number of registers stored.

2.4 D11312
In sections D3.2.1 (Controls to prohibit trace at Exception levels) and G3.2.1 (Controls to prohibit
trace at Exception levels), Tables D3-1 'Export of PMU events prohibited' and G3-1 'Export of PMU
events prohibited' are deleted, and are replaced with the following text:

If SelfHostedTraceEnabled() == TRUE, no events are exported to the PE Trace Unit when tracing
is prohibited.

If SelfHostedTraceEnabled() == FALSE, no events are exported to the PE Trace Unit when the PE
is in Secure state and counting in Secure state is prohibited.

When PMCR_EL0.X==0 or PMCR.X==0, no PMU events are exported to the PE Trace Unit.

Otherwise, PMU events are exported to the PE Trace Unit.

2.5 D12962
In section G8.3.22 (DBGOSLAR), under the 'Configurations' heading, the text that reads:

AArch32 System register DBGOSLAR bits [31:0] are architecturally mapped to AArch64 System
register OSLAR_EL1[31:0]. AArch32 System register DBGOSLAR bits [31:0] are architecturally
mapped to External register OSLAR_EL1[31:0].

is deleted, and is replaced with the following text:

The OS lock can also be locked or unlocked using the AArch64 System register OSLAR_EL1 and
External register OSLAR_EL1.

The equivalent changes are made in section D13.3.25 (OSLAR_EL1), and H9.2.46 (OSLAR_EL1).

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

2.6 E13850
In section J1 (Armv8 Pseudocode), the description of the pseudocode functions
AArch64.TranslateAddress() and AArch32.TranslateAddress(), and the functions they call pertaining
to VMSA implementation, is refactored as follows:

• For each enabled stage of translation, a common structure containing all the parameters
affecting translation is populated from the appropriate registers for the regime.

• A structure representing the current walk state is populated with initial values based on the
walk parameters.

• The walk process iteratively updates the walk state, and state that would be reported in a fault,
until a result or a fault is detected.

• For a successful translation, the final walk state is used to perform the translation and the fault
information is discarded.

• For a faulting access, the walk state is discarded and the fault state is used to populate the
appropriate syndrome registers.

Additionally, the pseudocode is updated to describe the behavior of FEAT_LPA2, FEAT_PAN3, and
FEAT_XS.

2.7 D14169
In section D5.2.9 (The effects of disabling a stage of address translation), the following bulleted
text:

• No memory access permission checks are performed and therefore no MMU faults can be
generated for this stage of address translation.

is corrected to read:

• No memory access permission checks are performed, and therefore no MMU Permission
faults can be generated for this stage of address translation.

The equivalent change is made in section G5.2.1 (VMSAv8-32 behavior when stage 1 address
translation is disabled).

2.8 E14362
In section B2.2.5 (Concurrent modification and execution of instructions), the two lists of
instructions supported by concurrent modification and execution are updated to include the
B.cond, CBZ, TBZ, CBNZ, and TBNZ instructions.

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

2.9 D14810
In section D13.2.148 (VTCR_EL2, Virtualization Translation Control Register), in the values table for
the VS field, references to the System register VSTTBR_EL2 are removed.

2.10 D14928
In section D9.6.9 (Exceptions), the text that reads:

If the sampled operation generates an exception, it is UNPREDICTABLE whether the sample
record contains any other information.

Where a sampled operation generates an exception and the type of exception means that a
particular item is not computed by the sampled operation, that information is not collected by the
profiling operation. For more information, see Synchronization and Statistical Profiling on page
D9-2953.

is corrected to read:

If the sampled operation generates an exception condition, it is UNPREDICTABLE whether the
sample record contains any other information. This includes operations that generate faults or
other exception conditions but do not generate exceptions. For example:

• An instruction on a misspeculated path.

• A load operation that is part of a Non-fault load instruction or is not the First active element
of a First-fault load instruction that generates an MMU fault or watchpoint.

• An address translation operation or prefetch instruction that generates an MMU fault.

Where a sampled operation generates an exception condition and the type of exception
condition means that a particular item is not computed by the sampled operation, that
information is not collected by the profiling operation. For more information, see Synchronization
and Statistical Profiling on page D9-2953.

2.11 D15346
In section D1.7.1 (Accessing PSTATE fields), the following text:

PSTATE.{N, Z, C, V, TCO} can be accessed at EL0. Access to PSTATE.{D, A, I, F} at EL0 using
AArch64 depends on SCTLR_EL1.UMA, see Traps to EL1 of EL0 accesses to the PSTATE.{D, A,
I, F} interrupt masks on page D1-2496. All other PSTATE access instructions can be executed at
EL1 or higher and are UNDEFINED at EL0.

is corrected to read:

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 18 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

PSTATE.{N, Z, C, V, SSBS, DIT, TCO} can be accessed at EL0. Access to PSTATE.{D, A, I, F} at
EL0 using AArch64 depends on SCTLR_EL1.UMA, see Traps to EL1 of EL0 accesses to the
PSTATE.{D, A, I, F} interrupt masks on page D1-2496. All other PSTATE access instructions can
be executed at EL1 or higher and are UNDEFINED at EL0.

2.12 D15977
In section D13.2.115 (SCR_EL3, Secure Configuration Register), the bullet point in the API, bit [17]
field when FEAT_SEL2 is not implemented and FEAT_PAuth is implemented, that reads:

• In Secure EL0, when the associated SCTLR_EL2.En<N><M> == 1.

is corrected to read:

• In Secure EL0, when the associated SCTLR_EL1.En<N><M> == 1.

2.13 D16029
In section D13.8.29 (CNTVCT_EL0, Counter-timer Virtual Count register), the accessibility
pseudocode that currently reads:

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VCTEN == '0'
 then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VCTEN == '0'
 then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVCT == '1'
 then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return CNTVCT_EL0;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && CNTHCTL_EL2.EL1TVCT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return CNTVCT_EL0;
elsif PSTATE.EL == EL2 then
 return CNTVCT_EL0;
elsif PSTATE.EL == EL3 then
 return CNTVCT_EL0;

is changed to read:

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VCTEN == '0'
 then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 19 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VCTEN == '0'
 then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVCT == '1'
 then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 if HaveEL(EL2) && (!EL2Enabled() || HCR_EL2.<E2H,TGE> != '11') then
 return PhysicalCountInt() - CNTVOFF_EL2;
 else
 return PhysicalCountInt();
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && CNTHCTL_EL2.EL1TVCT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 if HaveEL(EL2) then
 return PhysicalCountInt() - CNTVOFF_EL2;
 else
 return PhysicalCountInt();
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '0' then
 return PhysicalCountInt() - CNTVOFF_EL2;
 else
 return PhysicalCountInt();
elsif PSTATE.EL == EL3 then
 if HaveEL(EL2) && !ELUsingAArch32(EL2) then
 return PhysicalCountInt() - CNTVOFF_EL2;
 elsif HaveEL(EL2) && EL2UsingAArch32(EL2) then
 return PhysicalCountInt() - CNTVOFF;
 else
 return PhysicalCountInt();

Equivalent changes are made in the following sections:

• D13.8.28 (CNTVCTSS_EL0, Counter-timer Self-Synchronized Virtual Count register),

• G8.7.24 (CNTVCT, Counter-timer Virtual Count register),

• G8.7.25 (CNTVCTSS, Counter-timer Self-Synchronized Virtual Count register).

In section D13.8.20 (CNTPCT_EL0, Counter-timer Physical Count), the accessibility pseudocode
that currently reads:

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PCTEN == '0'
 then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PCTEN == '0'
 then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PCTEN == '0'
 then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return CNTPCT_EL0;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && CNTHCTL_EL2.EL1PCTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 20 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

 else
 return CNTPCT_EL0;
elsif PSTATE.EL == EL2 then
 return CNTPCT_EL0;
elsif PSTATE.EL == EL3 then
 return CNTPCT_EL0;

is changed to read:

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PCTEN == '0'
 then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PCTEN == '0'
 then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PCTEN == '0'
 then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 if IsFeatureImplemented(FEAT_ECV) && EL2Enabled() && SCR_EL3.ECVEn == '1' &&
 CNTHCTL_EL2.ECV == '1' && HCR_EL2.<E2H,TGE> != '11' then
 return PhysicalCountInt() - CNTPOFF_EL2;
 else
 return PhysicalCountInt();
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && CNTHCTL_EL2.EL1PCTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 if IsFeatureImplemented(FEAT_ECV) && EL2Enabled() && SCR_EL3.ECVEn == '1' &&
 CNTHCTL_EL2.ECV == '1' then
 return PhysicalCountInt() - CNTPOFF_EL2;
 else
 return PhysicalCountInt();
elsif PSTATE.EL == EL2 then
 return PhysicalCountInt();
elsif PSTATE.EL == EL3 then
 return PhysicalCountInt();

Equivalent changes are made in the following sections:

• D13.8.19 (CNTPCTSS_EL0, Counter-timer Self-Synchronized Physical Count register),

• G8.7.19 (CNTPCT, Counter-timer Physical Count register),

• G8.7.20 (CNTPCTSS, Counter-timer Self-Synchronized Physical Count register).

2.14 D16093
In section D7.10.3 (Common event numbers), in the subsection 'Common microarchitectural
events', instances of 'demand refill' are corrected to 'refill' in the following event descriptions:

• 0x0001, L1I_CACHE_REFILL, Level 1 instruction cache refill,

• 0x0003, L1D_CACHE_REFILL, Level 1 data cache refill,

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 21 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

• 0x0017, L2D_CACHE_REFILL, Level 2 data cache refill,

• 0x0028, L2I_CACHE_REFILL, Attributable Level 2 instruction cache refill,

• 0x002A, L3D_CACHE_REFILL, Attributable Level 3 data cache refill.

2.15 D16367
In section J1.2.4 (aarch32/translation), the AArch32.CheckWatchpoint() function is updated to
ignore excluded access types from the watchpoint check.

The code that reads:

 assert ELUsingAArch32(S1TranslationRegime());

 match = FALSE;

is updated to read:

 assert ELUsingAArch32(S1TranslationRegime());
 if acctype IN {AccType_PTW, AccType_IC, AccType_AT} then
 return AArch32.NoFault();
 if acctype == AccType_DC then
 if !iswrite then
 return AArch32.NoFault();
 elsif !(boolean IMPLEMENTATION_DEFINED \"DCIMVAC generates watchpoint\")
 then
 return AArch32.NoFault();

 match = FALSE;

In section J1.1.5 (aarch64/translation), the AArch64.CheckWatchpoint() function is also updated.

The code that reads:

 assert !ELUsingAArch32(S1TranslationRegime());

 match = FALSE;

is updated to read:

 assert !ELUsingAArch32(S1TranslationRegime());
 if acctype IN {AccType_PTW, AccType_IC, AccType_AT} then
 return AArch32.NoFault();
 if acctype == AccType_DC then
 if !iswrite then
 return AArch32.NoFault();

 match = FALSE;

In section J1.2.4 (aarch32/translation), in the AArch32.TranslateAddress() function, the check for
the excluded access types is moved to the AArch32.CheckWatchpoint() function.

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 22 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

The code that reads:

 result = AArch32.FullTranslate(vaddress, acctype, iswrite, wasaligned, size);
 if !(acctype IN {AccType_PTW, AccType_IC, AccType_AT}) && !IsFault(result) then
 result.fault = AArch32.CheckDebug(vaddress, acctype, iswrite, size);

is updated to read:

 result = AArch32.FullTranslate(vaddress, acctype, iswrite, wasaligned, size);
 if !IsFault(result) then
 result.fault = AArch32.CheckDebug(vaddress, acctype, iswrite, size);

In section J1.1.5 (aarch64/translation), in the AArch64.TranslateAddress() function, the check for
the excluded access types is moved to the AArch64.CheckWatchpoint() function.

The code that reads:

 result = AArch64.FullTranslate(vaddress, acctype, iswrite, wasaligned, size);
 if !(acctype IN {AccType_PTW, AccType_IC, AccType_AT}) && !IsFault(result) then
 result.fault = AArch64.CheckDebug(vaddress, acctype, iswrite, size);

is updated to read:

 result = AArch64.FullTranslate(vaddress, acctype, iswrite, wasaligned, size);
 if !IsFault(result) then
 result.fault = AArch64.CheckDebug(vaddress, acctype, iswrite, size);

2.16 D16403
In section D5.9.1 (Use of ASIDs and VMIDs to reduce TLB maintenance requirements), in the
subsection 'Common not private translations', the bullet that reads:

• If an ASID applies to the stage of translation corresponding to that TTBR_ELx then the
current ASID value must be the same for all of the PEs that are sharing entries for any
translation table entry that is not global or leaf level.

is changed to read:

• If an ASID applies to the stage of translation corresponding to that TTBR_ELx then the
current ASID value must be the same for all of the PEs that are sharing entries for any
translation table entry that is not global or not leaf level.

Similar changes are made in section G5.9.1 (General TLB maintenance requirements), subsection
'Common not private translations in VMSAv8-32'.

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 23 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

2.17 D16493
In section C6.2.114 (LDAXP), the text that currently reads:

A 32-bit pair requires the address to be doubleword aligned and is single-copy atomic at
doubleword granularity. A 64-bit pair requires the address to be quadword aligned and is single-
copy atomic for each doubleword at doubleword granularity.

is replaced by the following text:

For information on single-copy atomicity and alignment requirements, see Requirements for
single-copy atomicity and Alignment of data accesses.

Equivalent changes are made in sections C6.2.174 (LDXP), C6.2.272 (STLXP), and C6.2.305 (STXP).

2.18 D16664
In section D1.14.3 (EL2 configurable controls), the following controls are added to Table D1-21
(Instruction disables and trap controls provided by EL2), along with the relevant overview
subsections in the 'Description' column of each entry:

Control Control
type

Description

CPTR_EL2.FPEN T Traps to EL2 of EL2, EL1, and EL0 accesses to SIMD and floating-point functionality on page
D1-2504

SCTLR_EL2.UCI T Traps to EL2 of EL0 execution of cache maintenance instructions on page D1-2511

SCTLR_EL2.{nTWE,
nTWI}

T Traps to EL2 of EL0 and EL1 execution of WFE, WFI, WFET, and WFIT instructions on page
D1-2508

SCTLR_EL2.UCT T Traps to EL2 of EL0 accesses to the CTR_EL0 on page D1-2511

SCTLR_EL2.DZE T Traps to EL2 of EL0 execution of DC ZVA instructions on page D1-2512

SCTLR_EL2.{SED, ITD} D Disabling or enabling EL0 use of AArch32 optional functionality on page D1-2512

SCTLR_EL2.CP15BEN E Disabling or enabling EL0 use of AArch32 optional functionality on page D1-2512

2.19 C16668
In section D7.6 (Multithreaded implementations), the text that reads:

However, even when the Effective value of PMEVTYPER<n>.MT is 1, the PE does not count an
event that is Attributable to Secure state or EL2 on another thread if counting events Attributable
to Secure state or EL2 is prohibited on the PE that is counting the events.

is replaced by the following:

However, even when the Effective value of PMEVTYPER<n>.MT is 1, PEA does not count an
event that is Attributable to Secure state on PEB if counting events Attributable to Secure state

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 24 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

is prohibited on PEA. Similarly, PEAdoes not count an event that is Attributable to EL2 on PEB if
counting events Attributable to EL2 is prohibited on PEA.

In the same section, in example D7-1 (The effect of having PMEVTYPER<n>.MT==1), the text that
reads:

If the value of MDCR_EL3.SPME is 0, and <n> is less than PMCR.N on one thread, then event
counter <n> on this thread does not count events Attributable to Secure state on another thread,
even if one or both of the following applies:

• This thread is in Non-secure state.

• MDCR_EL3.SPME==1 on the other thread.

is replaced by the following:

If the value of MDCR_EL3.SPME is 0, and <n> is less than PMCR.N on PEA, then event counter
<n> on PEA does not count events Attributable to Secure state on PEB, even if one or both of the
following applies:

• PEA is in Non-secure state.

• MDCR_EL3.SPME==1 on PEB.

In the same section, in example D7-2 (The effect of having PMEVTYPER<n>.MT==1), the text that
reads:

If the value of MDCR_EL2.HPMD is 1 and <n> is less than MDCR_EL2.HPMN on one thread,
then event counter <n> on this thread does not count events Attributable to EL2 on another
thread, even if one of the following applies:

• MDCR_EL2.HPMD==0 on the other thread.

• This thread is not executing at EL2.

is replaced by the following:

If the value of MDCR_EL2.HPMD is 1 and <n> is less than MDCR_EL2.HPMN on PEA, then
event counter <n> on PEA does not count events Attributable to EL2 on PEB, even if one of the
following applies:

• MDCR_EL2.HPMD==0 on PEB.

• PEA is not executing at EL2.

The text later within the same section that reads:

When the current configuration prohibits counting of events Attributable to Secure state or EL2
in Secure state or at EL2, it is IMPLEMENTATION DEFINED whether:

• Counting events Attributable to Secure state on this PE in Non-secure state is permitted.

• Counting events Attributable to EL2 when this PE is using another Exception level is
permitted

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 25 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

• Counting Unattributable events related to other secure operations in the system or at EL2
is permitted. If not specified above, counting events that are not prohibited on either PE is
permitted.

is replaced by the following:

When the current configuration is not multithreaded, and PEA prohibits counting of events
Attributable to Secure state when PEA is in Secure state, it is IMPLEMENTATION DEFINED whether:

• Counting events Attributable to Secure state when PEA is in Non-secure state is permitted.

• Counting Unattributable events related to other secure operations in the system when
PEA is in Non-secure state is permitted. Otherwise, counting events in Non-secure state is
permitted.

When the current configuration is not multithreaded, and PEA prohibits counting of events
Attributable to EL2 when PEAis at EL2, it is IMPLEMENTATION DEFINED whether:

• Counting events Attributable to EL2 when PEA is using another Exception level is permitted.

• Counting Unattributable events related EL2 when PEA is using another Exception level is
permitted. Otherwise, counting events at another Exception level is permitted.

2.20 D16815
In section D13.2.101 (MVFR1_EL1, AArch32 Media and VFP Feature Register 1), in the SIMDHP
field, the text that reads:

In Armv8-A, the permitted values are:

• 0b0000 in an implementation without SIMD floating-point support.

• 0b0010 in an implementation with SIMD floating-point support that does not include the
FEAT_FP16 extension.

• 0b0011 in an implementation with SIMD floating-point support that includes the FEAT_FP16
extension.

is corrected to:

In Armv8-A, the permitted values are:

• 0b0000 in an implementation without SIMD floating-point support.

• 0b0001 in an implementation with SIMD floating-point support that does not include the
FEAT_FP16 extension.

• 0b0010 in an implementation with SIMD floating-point support that includes the FEAT_FP16
extension.

The equivalent change is made in section G8.2.116 (MVFR1, Media and VFP Feature Register 1).

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 26 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

2.21 D16907
In section J1.1.2 (aarch64/exceptions), in CheckLDST64BEnabled(), CheckST64BVEnabled(),
CheckST64BV0Enabled(), and AArch64.RaiseTagCheckFault(), the check for HCR_EL2 is now
qualified with EL2Enabled().

In section J1.2.2 (aarch32/exceptions), in AArch32.CheckForSMCUndefOrTrap(), the check for
HCR_EL2 is now qualified with EL2Enabled().

In section J1.2.2 (aarch32/exceptions), in AArch32.TakePrefetchAbortException() and
AArch32.TakeDataAbortException(), the check '(HaveEL(EL2) && !IsSecure()' has been simplified by
the use of EL2Enabled().

In section J1.2.2 (aarch32/exceptions), in AArch32.CheckAdvSIMDOrFPEnabled() the code that
reads:

 if PSTATE.EL == EL0 && (!HaveEL(EL2) || (!ELUsingAArch32(EL2) && HCR_EL2.TGE ==
 '0')) && !ELUsingAArch32(EL1) then
 // The PE behaves as if FPEXC.EN is 1
 AArch64.CheckFPAdvSIMDEnabled();
 elsif PSTATE.EL == EL0 && HaveEL(EL2) && !ELUsingAArch32(EL2) && HCR_EL2.TGE ==
 '1' && !ELUsingAArch32(EL1) then

is updated to read:

 if PSTATE.EL == EL0 && (!EL2Enabled() || (!ELUsingAArch32(EL2) && HCR_EL2.TGE ==
 '0')) && !ELUsingAArch32(EL1) then
 // The PE behaves as if FPEXC.EN is 1
 AArch64.CheckFPEnabled();
 AArch64.CheckFPAdvSIMDEnabled();
 elsif PSTATE.EL == EL0 && EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE ==
 '1' && !ELUsingAArch32(EL1) then

In section J1.1.2 (aarch64/exceptions), in AArch64.InstructionAbort(), the code that reads:

 if PSTATE.EL == EL3 || route_to_el3 then
 AArch64.TakeException(EL3, exception, preferred_exception_return, vect_off\
set);
 elsif PSTATE.EL == EL2 || route_to_el2 then
 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_off\
set);
 else
 AArch64.TakeException(EL1, exception, preferred_exception_return, vect_off\
set);

is updated to read:

 bits(2) target_el = EL1;
 if PSTATE.EL == EL3 || route_to_el3 then
 target_el = EL3;
 elsif PSTATE.EL == EL2 || route_to_el2 then
 target_el = EL2;
 AArch64.TakeException(target_el, exception, preferred_exception_return, vec\
t_offset);

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 27 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

In section J1.1.2 (aarch64/exceptions), in AArch64.PCAlignmentFault(), AArch64.SPAlignmentFault()
and AArch64.BranchTargetException(), the code that reads:

 if UInt(PSTATE.EL) > UInt(EL1) then
 AArch64.TakeException(PSTATE.EL, exception, preferred_exception_return, vec\
t_offset);
 elsif EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_off\
set);
 else
 AArch64.TakeException(EL1, exception, preferred_exception_return, vect_off\
set);

is updated to read:

 bits(2) target_el = EL1;
 if UInt(PSTATE.EL) > UInt(EL1) then
 target_el = PSTATE.EL;
 elsif EL2Enabled() && HCR_EL2.TGE == '1' then
 target_el = EL2;
 AArch64.TakeException(target_el, exception, preferred_exception_return, vec\
t_offset);

2.22 D16933
In section D9.6.3 (Additional information for each profiled memory access operation), after the text
that reads:

The sampled data physical address is the address generated from translating the sampled data
virtual address. The sampled data physical address packet is not output if any of the following are
true:

• The PE does not translate the address, for example because it does not perform the access or
the address translation generates a Translation fault.

• The sampled data virtual address packet is not output.

• Prohibited by System register controls.

The following text is added:

If a sampled virtual address packet is not output:

• It is IMPLEMENTATION DEFINED whether the Translation latency Counter packet for the load or
store is either not recorded, or recorded with a value of zero.

• It is IMPLEMENTATION DEFINED whether the bits corresponding to the access in the Events
packet are recorded or always zero. If access does not occur, these bits are zero.

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 28 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

2.23 D16936
In section D7.10.3 (Common event numbers), in subsection 'Common microarchitectural events', in
the STALL_SLOT event definition, the text that reads:

If FEAT_PMUv3p4 is implemented:

• If STALL_SLOT is not implemented, it is IMPLEMENTATION DEFINED whether the PMMIR System
registers are implemented.

• If STALL_SLOT is implemented, then the PMMIR System registers are implemented.

is changed to read:

If FEAT_PMUv3p4 is implemented then PMMIR.SLOTS defines the largest value by which this
event can increment the counter in a single cycle.

2.24 D16960
In section D9.8.4 (External aborts), in the bullet list under 'If a write to the Profiling Buffer
generates an External abort that is reported to the Statistical Profiling Extension:', the following text
is added:

• If PMBSR_EL1.S == 0, a buffer management event is generated:

◦ PMBSR_EL1.S is set to 1.

◦ PMBSR_EL1.EC is set to one of:

▪ 0b100100, stage 1 data abort on write to buffer.

▪ 0b100101, stage 2 data abort on write to buffer.

◦ PMBSR_EL1.MSS is set as follows:

▪ PMBSR_EL1.FSC is set to indicate a synchronous or asynchronous external abort.

Additionally, in section D9.8.2 (Buffer full event), the following bullet is added to the list under
'If, after writing a sample record, there is not sufficient space in the Profiling Buffer for a sample
record of the size indicated by PMSIDR_EL1.MaxSize, and PMBSR_EL1.S is 0, a Profiling Buffer
management event is generated':

• PMBSR_EL1.S is set to 1.

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 29 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

2.25 R16961
In section D9.6.3 (Additional information for each profiled memory access operation), the below
text is added after the first Note:

If FEAT_MTE2 is implemented, an instruction which loads or stores an Allocation Tag or multiple
Allocation Tags will be treated as a load or store if profiling is enabled. Each Allocation Tag covers
multiple locations in a Tag Granule. It is IMPLEMENTATION DEFINED whether the implementation
treats each Allocation Tag access as an access to the data location addressed in the operation,
or the whole Tag Granule. That is, whether the data virtual address associated with the sampled
access or chosen part of the access is the address of the location being accessed, or the lowest
address covered by the same Allocation Tag or Allocation Tags. For more information, see
Chapter D6 Memory Tagging Extension.

And the following text:

The sampled data physical address is the address generated from translating the sampled data
virtual address.

Is updated to read:

If FEAT_MTE2 is implemented and the operation is an access to an Allocation Tag or multiple
Allocation Tags, it is IMPLEMENTATION DEFINED whether the sampled data physical address is the
address generated from translating the sampled data virtual address or the address generated
from translating the lowest address covered by the same Allocation Tag or Allocation Tags,
when these differ. Otherwise, the sampled data physical address is the address generated from
translating the sampled data virtual address.

In addition, the following paragraph is deleted:

If FEAT_MTE2 is implemented, an instruction which loads or stores an Allocation tag will be
treated as a load or store if profiling is enabled. For more information, see Chapter D6 Memory
Tagging Extension.

2.26 D16997
In section D13.2.37 (ESR_EL1, Exception Syndrome Register (EL1)), under the heading 'ISS
encoding an exception from an MCR or MRC access', the Rt field description that currently reads:

The Rt value from the issued instruction, the general-purpose register used for the transfer. The
reported value gives the AArch64 view of the register.

is corrected to read:

The Rt value from the issued instruction, the general-purpose register used for the transfer. If
the Rt value is not 0b1111, then the reported value gives the AArch64 view of the register.
Otherwise, if the Rt value is 0b1111:

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 30 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

• If the instruction that generated the exception is not UNPREDICTABLE, then the register
specifier takes the value 0b11111.

• If the instruction that generated the exception is UNPREDICTABLE, then the register specifier
takes an UNKNOWN value, which is restricted to either:

◦ The AArch64 view of one of the registers that could have been used in AArch32 state at
the Exception level that the instruction was executed at.

◦ The value 0b11111.

Similar changes are made to the Rt2 and Rt field descriptions under the heading 'ISS encoding an
exception from an MCRR or MRRC access', and to the Rn field description under the heading 'ISS
encoding an exception from an LDC or STC instruction'.

The equivalent changes are made in sections D13.2.38 (ESR_EL2, Exception Syndrome Register
(EL2)) and D13.2.39 (ESR_EL3, Exception Syndrome Register (EL3)).

2.27 D17015
In section F5.1.216 (STC), the STC execution pseudocode is changed to read:

if ConditionPassed() then
 EncodingSpecificOperations();
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];

 // System register read from DBGDTRRXint.
 MemA[address,4] = AArch32.SysRegRead(cp, ThisInstr());

 if wback then R[n] = offset_addr;

In section F5.1.64 (LDC (immediate)), the LDC execution pseudocode is changed to read:

if ConditionPassed() then
 EncodingSpecificOperations();
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];

 // System register write to DBGDTRTXint.
 AArch32.SysRegWriteM(cp, ThisInstr(), address);

 if wback then R[n] = offset_addr;

Details of traps will be added through the use of new LDC and STC accessibility pseudocode in
sections G8.3.17 (DBGDTRRXint) and G8.3.18 (DBGDTRTXint). This accessibility pseudocode is
the same as for the equivalent MRC and MCR instructions, except that:

• The reported exception syndrome value, if applicable, is 0x06.

• For LDC instructions the accessibility pseudocode loads the value to be written to the System
register from 'MemA[address, 4]', where 'address' is the virtual address calculated by the LDC
instruction.

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 31 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

The equivalent change is made in section F5.1.65 (LDC (literal)).

2.28 D17020
In section D13.3.18 (MDCR_EL3, Monitor Debug Configuration Register (EL3)), in the SDD field,
the following additional text is added:

If Secure EL2 is implemented and enabled, and Secure EL1 is using AArch32 then:

• If debug exceptions from Secure EL1 are enabled, then debug exceptions from Secure EL0
are also enabled.

• Otherwise, debug exceptions from Secure EL0 are enabled only if the value of
SDER32_EL3.SUIDEN is 0b1.

2.29 D17052
In section C6.2.82 (DSB), the encoding shows the CRm field as being restricted with the condition !
= 0x00. This is intended to cover encodings 0b0000 and 0b0100, which are used for the SSBB
and PSSBB instructions.

This description is clarified by making SSBB and PSSBB as architectural aliases of DSB.

2.30 D17119
In the following sections:

• F3.1.10 (Advanced SIMD shifts and immediate generation), sub-section 'Advanced SIMD two
registers and shift amount'

• F4.1.22 (Advanced SIMD shifts and immediate generation), sub-section 'Advanced SIMD two
registers and shift amount'

The following constraints are added to VMOVL:

• 'L' must be '0'.

• 'imm3H' cannot be '000'.

2.31 D17151
In section J1.3.1 (shared/debug), the pseudocode for OSLockStatus() and SoftwareLockStatus() is
added:

// OSLockStatus()

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 32 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

// ==============
// Returns the state of the OS Lock.
boolean OSLockStatus()
 return (if ELUsingAArch32(EL1) then DBGOSLSR.OSLK else OSLSR_EL1.OSLK) == '1';

// Component
// =========
// Component Types.

enumeration Component {
 Component_PMU,
 Component_Debug,
 Component_CTI
};

// SoftwareLockStatus()
// ====================
// Returns the state of the Software Lock.

boolean SoftwareLockStatus()
 Component component = GetAccessComponent();
 if !HaveSoftwareLock(component) then
 return FALSE;
 case component of
 when Component_Debug
 return EDLSR.SLK == '1';
 when Component_PMU
 return PMLSR.SLK == '1';
 when Component_CTI
 return CTILSR.SLK == '1';
 otherwise
 Unreachable();

// GetAccessComponent()
// ====================
// Returns the accessed component.

Component GetAccessComponent();

// HaveSoftwareLock()
// ==================
// Returns TRUE if Software Lock is implemented.

boolean HaveSoftwareLock(Component component)
 if Havev8p4Debug() then
 return FALSE;
 if HaveDoPD() && component != Component_CTI then
 return FALSE;
 case component of
 when Component_Debug
 return boolean IMPLEMENTATION_DEFINED \"Debug has Software Lock\";
 when Component_PMU
 return boolean IMPLEMENTATION_DEFINED \"PMU has Software Lock\";
 when Component_CTI
 return boolean IMPLEMENTATION_DEFINED \"CTI has Software Lock\";
 otherwise
 Unreachable();

2.32 D17170
In section D3.3 (Self-hosted trace timestamps), the fourth item in the indented bulleted list that
currently reads:

• EL2 is enabled in the current Security state and is using AArch32.

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 33 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

is changed to read:

• The Effective value of SCR_EL3.{NS,RW} is {1,0}.

An equivalent change is made in section D9.6 (The profiling data).

2.33 D17193
In section D13.2.48 (HCR_EL2, Hypervisor Configuration Register), in the TID2 field, the text that
currently states:

If the value of SCTLR_EL1.UCT is 0, then EL0 reads of CTR_EL0 are UNDEFINED and any resulting
exception takes precedence over this trap.

is updated to:

If the value of SCTLR_EL1.UCT is 0, then EL0 reads of CTR_EL0 are trapped to EL1 and the
resulting exception takes precedence over this trap.

2.34 D17196
In section D13.3.27 (SDER32_EL2, AArch32 Secure Debug Enable Register), the following lines of
the accessibility pseudocode:

elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED
 \"EL3 trap priority when SDD == '1'\" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return SDER32_EL2;

are replaced with:

elsif PSTATE.EL == EL1 then
 if !IsSecure() then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if !IsSecure() then

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 34 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DE\
FINED \"EL3 trap priority when SDD == '1'\" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return SDER32_EL2;
elsif PSTATE.EL == EL3 then
 if SCR_EL3.EEL2 == '0' then
 UNDEFINED;
 else
 return SDER32_EL2;

This fix also results in the accessibility pseudocode line in the EL1 and EL2 accesses of the
following registers:

• D13.2.146 (VSTCR_EL2, Virtualization Secure Translation Control Register)

• D13.2.147 (VSTTBR_EL2, Virtualization Secure Translation Table Base Register)

• D13.8.6 (CNTHPS_CTL_EL2, Counter-timer Secure Physical Timer Control register (EL2))

• D13.8.7 (CNTHPS_CVAL_EL2, Counter-timer Secure Physical Timer CompareValue register
(EL2))

• D13.8.8 (CNTHPS_TVAL_EL2, Counter-timer Secure Physical Timer TimerValue register (EL2))

• D13.8.12 (CNTHVS_CTL_EL2, Counter-timer Secure Virtual Timer Control register (EL2))

• D13.8.13 (CNTHVS_CVAL_EL2, Counter-timer Secure Virtual Timer CompareValue register
(EL2))

• D13.8.14 (CNTHVS_TVAL_EL2, Counter-timer Secure Virtual Timer TimerValue register (EL2))

changing from:

if HaveEL(EL3) && SCR_EL3.NS =='1' then
 UNDEFINED;

to:

if !IsSecure() then
 UNDEFINED;

2.35 D17199
In section D13.2.42 (FPEXC32_EL2, Floating-Point Exception Control register), the definition of
EN, bit [30] that reads:

When executing at EL0 using AArch32:

• If EL1 is using AArch64 then behavior is as if the value of FPEXC.EN is 1.

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 35 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

• If EL2 is using AArch64 and enabled in the current Security state, and the value of HCR_EL2.
{RW, TGE} is {1, 1} then behavior is as if the value of FPEXC.EN is 1.

• If EL2 is using AArch64 and enabled in the current Security state, and the value of HCR_EL2.
{RW, TGE} is {0, 1} then it is IMPLEMENTATION DEFINED whether the behavior is:

◦ As if the value of FPEXC.EN is 1.

◦ Determined by the value of FPEXC32_EL2.EN, as described in this field description.
However, Arm deprecates using the value of FPEXC32_EL2.EN to determine behavior.

is updated to read:

When executing at EL0 using AArch32:

• If EL1 is using AArch64, then the Effective value of FPEXC.EN is 1.

• If EL2 is using AArch64 and is enabled in the current Security state, HCR_EL2.TGE is 1, and
the Effective value of HCR_EL2.RW is 1, then the Effective value of FPEXC.EN is 1. However,
Arm deprecates using the value of FPEXC32_EL2.EN to determine behavior.

Similarly, in section G8.2.53 (FPEXC, Floating-Point Exception Control register), the definition of
EN, bit [30] that reads:

When executing at EL0 using AArch32:

• If EL1 is using AArch64 then behavior is as if the value of FPEXC.EN is 1.

• If EL2 is using AArch64 and enabled in the current Security state, and the value of HCR_EL2.
{RW, TGE} is {1, 1}, then the behavior is as if the value of FPEXC.EN is 1.

• If EL2 is using AArch64 and enabled in the current Security state, and the value of HCR_EL2.
{RW, TGE} is {0, 1}, then it is IMPLEMENTATION DEFINED whether the behavior is:

◦ As if the value of FPEXC.EN is 1.

◦ Determined by the value of FPEXC.EN, as described in this field description. However,
Arm deprecates using the value of FPEXC.EN to determine behavior.

is updated to read:

When executing at EL0 using AArch32:

• If EL1 is using AArch64, then the Effective value of FPEXC.EN is 1. This includes when EL2 is
using AArch64 and enabled in the current Security state, HCR_EL2.TGE is 1, and the Effective
value of HCR_EL2.RW is 1.

• If EL2 is using AArch64 and is enabled in the current Security state, HCR_EL2.TGE is 1, and
the Effective value of HCR_EL2.RW is 0, then it is IMPLEMENTATION DEFINED whether
the Effective value of FPEXC.EN is 1 or the value written to FPEXC.EN. However, Arm
deprecates using the value of FPEXC.EN to determine behavior.

In section J1.2.3 (aarch32/functions), in the function AArch32.CheckAdvSIMDOrFPEnabled(), the
code that reads:

 if PSTATE.EL == EL0 && (!EL2Enabled() || (!ELUsingAArch32(EL2) && HCR_EL2.TGE ==
 '0')) && !ELUsingAArch32(EL1) then

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 36 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

 // The PE behaves as if FPEXC.EN is 1

 AArch64.CheckFPEnabled();

 AArch64.CheckFPAdvSIMDEnabled();

 elsif PSTATE.EL == EL0 && EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE ==
 '1' && !ELUsingAArch32(EL1) then
 if fpexc_check && HCR_EL2.RW == '0' then

 fpexc_en = bits(1) IMPLEMENTATION_DEFINED "FPEXC.EN value when TGE==1
 and RW==0";
 if fpexc_en == '0' then UNDEFINED;

 AArch64.CheckFPEnabled();

 else

 …

 // If required, check FPEXC enabled bit.

 if fpexc_check && FPEXC.EN == '0' then UNDEFINED;

 AArch32.CheckFPAdvSIMDTrap(advsimd); // Also check against HCPTR and CP\
TR_EL3

is corrected to:

 if PSTATE.EL == EL0 && !ELUsingAArch32(EL1) then
 // When executing at EL0 using AArch32, if EL1 is using AArch64 then the Ef\
fective value of FPEXC.EN is 1.
 // This includes when EL2 is using AArch64 and enabled in the current Secu\
rity state, HCR_EL2.TGE is 1,
 // and the Effective value of HCR_EL2.RW is 1.
 AArch64.CheckFPAdvSIMDEnabled();

 else

 …

 // If required, check the FPEXC enabled bit
 if fpexc_check && PSTATE.EL == EL0 && EL2Enabled() && !ELUsingAArch32(EL2)
 && HCR_EL2.TGE == '1' then
 // When executing at EL0 using AArch32, if EL2 is using AArch64 and en\
abled in the current Security state, HCR_EL2.TGE is 1,
 // and the Effective value of HCR_EL2.RW is 0, then it is IMPLEMENTATION
 DEFINED whether the Effective value of FPEXC.EN is 1
 // or the value of FPEXC32_EL2.EN.
 fpexc_check = boolean IMPLEMENTATION_DEFINED "Use FPEXC32_EL2.EN value
 when {TGE,RW} == {1,0}";

 if fpexc_check && FPEXC.EN == '0' then
 UNDEFINED;

 AArch32.CheckFPAdvSIMDTrap(advsimd); // Also check against HCPTR and CP\
TR_EL3

That is, the following corrections are made to align with the definition of FPEXC.EN:

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 37 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

• The tests that include HCR_EL2 are updated to check that EL2 is enabled in the current
security state.

• The '!ELUsingAArch32(EL1)' check in the 'HCR_EL2.TGE == '1'' case is not correct and is
removed.

• For the case when HCR_EL2.{RW,TGE} == {0,1}, the IMPLEMENTATION DEFINED choice is
between the value in FPEXC32_EL2.EN and '1', not '0' and '1' as previously.

2.36 C17238
In section F3.1.13 (Floating-point data-processing), in subsection 'Floating-point data-processing
(two registers)', the following changes are made:

The row that currently appears as:

o1 opc2 size o3 Instruction page Feature

0 010 - 0 VCVTB - Half-precision to double-precision variant -

is replaced by the following rows:

o1 opc2 size o3 Instruction page Feature

0 010 10 0 VCVTB - Half-precision to single-precision variant -

0 010 11 0 VCVTB - Half-precision to double-precision variant -

and the row that currently appears as:

o1 opc2 size o3 Instruction page Feature

0 010 - 1 VCVTT - Half-precision to double-precision variant -

is replaced by the following rows:

o1 opc2 size o3 Instruction page Feature

0 010 10 1 VCVTT - Half-precision to single-precision variant -

0 010 11 1 VCVTT - Half-precision to double-precision variant -

In section F4.1.17 (Floating-point data-processing), in subsection 'Floating-point data-processing
(two registers)', the following changes are made:

The row that currently appears as:

o1 opc2 size o3 Instruction page Feature

0 010 - 0 VCVTB - Half-precision to double-precision variant -

is replaced by the following rows:

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 38 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

o1 opc2 size o3 Instruction page Feature

0 010 10 0 VCVTB - Half-precision to single-precision variant -

0 010 11 0 VCVTB - Half-precision to double-precision variant -

and the row that currently appears as:

o1 opc2 size o3 Instruction page Feature

0 010 - 1 VCVTT - Half-precision to double-precision variant -

is replaced by the following rows:

o1 opc2 size o3 Instruction page Feature

0 010 10 1 VCVTT - Half-precision to single-precision variant -

0 010 11 1 VCVTT - Half-precision to double-precision variant -

2.37 D17292
In a future release, Arm will introduce specific reset domains for the following register
specifications:

• Timer reset domain for external Timer registers. These are currently IMPLEMENTATION
DEFINED, and referenced generically as reset in the registers.

• AMU reset domain, for AMU registers that are currently indicated as reset on Cold reset in the
registers, or IMPLEMENTATION DEFINED in D8.2.3 (Power and reset domains).

• GIC reset domain for GICD, GICR, GITS registers. These are currently generically referenced as
reset in the registers.

• MSC reset domain for MPAM registers prefixed with: MPAMCFG, MPAMF, and MSMON.

Additionally, RW fields that currently do not specify a reset domain and reset value will be updated
with a specific reset domain and reset value (typically architecturally UNKNOWN).

2.38 D17295
In section G8.3.35 (SDER, Secure Debug Enable Register), the EL1 accessibility pseudocode:

elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif (!HaveEL(EL3) || !ELUsingAArch32(EL3)) && SCR_EL3.NS == '0' then
 return SDER;
 else
 UNDEFINED;

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 39 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

is updated to:

elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif !IsSecure() then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DE\
FINED \"EL3 trap priority when SDD == '1'\" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA
 == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return SDER;

2.39 C17310
In section J1.1.1 (aarch64/debug), in the pseudocode function
AArch64.TakeExceptionInDebugState(), the code that reads as:

// SCTLR[].IESB might be ignored in Debug state.
if !ConstrainUnpredictableBool() then
 sync_errors = FALSE;

is clarified to read:

// SCTLR[].IESB and/or SCR_EL3.NMEA (if applicable) might be ignored in Debug state.
if !ConstrainUnpredictableBool() then
 sync_errors = FALSE;

2.40 D17338
In sections G8.4.3 (PMCEID0, Performance Monitors Common Event Identification register
0), G8.4.4 (PMCEID1, Performance Monitors Common Event Identification register 1), G8.4.5
(PMCEID2, Performance Monitors Common Event Identification register 2) and G8.4.6 (PMCEID3,
Performance Monitors Common Event Identification register 3), the following is added to the
accessibility pseudocode for access at EL0:

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!
HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMCEIDn_EL0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 40 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

In sections D13.4.3 (PMCEID0_EL0, Performance Monitors Common Event Identification register
0) and D13.4.4 (PMCEID1_EL0, Performance Monitors Common Event Identification register 1),
the following is added to the accessibility pseudocode for access at EL0:

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn ==
 '1') && HDFGRTR_EL2.PMCEIDn_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);

and at EL1:

 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PM\
CEIDn_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);

2.41 D17359
In section B2.7.2 (Device memory) in the subsection 'Early Write Acknowledgement', the text that
reads:

For memory system endpoints where the system architecture in which the PE is operating
requires that acknowledgement of a write comes from the endpoint, assigning the No Early Write
Acknowledgement attribute to a Device memory location guarantees that:

• Only the endpoint of the write access returns a write acknowledgement of the access.

• No earlier point in the memory system returns a write acknowledgement.

is clarified to read:

If the No Early Write Acknowledgement attribute is assigned for a Device memory location:

• For memory system endpoints where the system architecture in which the PE is operating
requires that acknowledgement of a write comes from the endpoint, it is guaranteed that:

◦ Only the endpoint of the write access returns a write acknowledgement of the access.

◦ No earlier point in the memory system returns a write acknowledgement.

• For memory system endpoints where the system architecture in which the PE is operating
does not require that acknowledgement of a write comes from the endpoint, the
acknowledgement of a write is not required to come from the endpoint.

Note: A write with the No Early Write Acknowledgement attribute assigned for a Device memory
location is not expected to generate an abort in any situation where the equivalent write to
the same location without the No Early Write Acknowledgement attribute assigned does not
generate an abort.

The same change is made in section E2.8.2 (Device memory).

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 41 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

2.42 D17387
In section H9.2.42 (EDSCR, External Debug Status and Control Register), the following text is
added in the definition of INTdis, bits [23:22] when FEAT_Debugv8p4 is implemented:

When FEAT_Debugv8p4 is implemented, bit[23] of the register is RES0.

and references to 'ExternalDebugEnabled' and 'ExternalSecureDebugEnabled' are corrected to
'ExternalInvasiveDebugEnabled' and 'ExternalSecureInvasiveDebugEnabled', respectively.

The following text is added when FEAT_Debugv8p4 is not implemented:

Support for the values 0b01 and 0b10 is IMPLEMENTATION DEFINED. If these values are not
supported, they are reserved. If programmed with a reserved value, the PE behaves as if INTdis
has been programmed with a defined value, other than for a direct read of EDSCR, and the value
returned by a read of EDSCR.INTdis is UNKNOWN.

and the following condition is added to the value definitions:

This field is ignored by the PE and treated as zero when ExternalInvasiveDebugEnabled() ==
FALSE.

2.43 D17392
In the D7.5.3 (Prohibiting event and cycle counting) section, the following software usage
information is added:

If a direct read of PMOVSCLR_EL0 returns a non-zero value for a subset of the overflow
flags, which means an event counter <n> should not count, then a sequence of direct
reads of PMEVCNTR<n>_EL0 ordered after the read of PMOVSCLR_EL0 and before the
PMSOVSCLR_EL0 flags are cleared to zero, will return the same value for each read, because the
event counter has stopped counting.

Note: Direct reads of System registers require explicit synchronization for following direct reads
of other System registers to be ordered after the first direct read.

2.44 C17393
In sections C5.3.23 (DC IGDVAC, Invalidate of Data and Allocation Tags by VA to PoC), C5.3.25
(DC IGVAC, Invalidate of Allocation Tags by VA to PoC), and C5.3.27 (DC IVAC, Data or unified
Cache line Invalidate by VA to PoC), the following EL1 accessibility pseudocode is removed:

elsif EL2Enabled() && HCR_EL2.<DC,VM> != '00' then
 DC_CIGDVAC(X[t]);

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 42 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

Similarly, the following EL1 accessibility pseudocode is removed from sections C5.3.22 (DC
IGDSW, Invalidate of Data and Allocation Tags by Set/Way), C5.3.24 (DC IGSW, Invalidate of
Allocation Tags by Set/Way), and C5.3.26 (DC ISW, Data or unified Cache line Invalidate by Set/
Way):

elsif EL2Enabled() && HCR_EL2.SWIO == '1' then
 DC_CIGDSW(X[t]);
elsif EL2Enabled() && HCR_EL2.<DC,VM> != '00' then
 DC_CIGDSW(X[t]);

In section G8.2.43 (DCIMVAC, Data Cache line Invalidate by VA to PoC) the following EL1
accessibility pseudocode is removed:

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<DC,VM> != '00' then
 DCCIMVAC(R[t]);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.<DC,VM> != '00' then
 DCCIMVAC(R[t]);

Similarly, the following EL1 accessibility pseudocode in section G8.2.44 (DCISW, Data Cache line
Invalidate by Set/Way) is removed:

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.SWIO == '1' then
 DCCISW(R[t]);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<DC,VM> != '00' then
 DCCISW(R[t]);
elsif EL2Enabled() && EL2UsingAArch32(EL2) && HCR_EL2.SWIO == '1' then
 DCCISW(R[t]);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.<DC,VM> != '00' then
 DCCISW(R[t]);

2.45 D17396
In section D1.14.3 (EL2 configurable controls), the text that reads:

These controls are ignored if EL2 is not enabled in the current Security state.

is corrected to read:

If Secure EL2 is implemented and enabled, configurable instruction controls available at EL2 apply
in Secure state. If Secure EL2 is not implemented or not enabled, the configurable instruction
controls available at EL2 are ignored in Secure state.

2.46 D17401
In section H3.2.4 (Detailed Halting Step state machine behavior), in subsection 'Entering the active-
not-pending state', the text that reads:

The PE enters the active-not-pending state:

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 43 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

• By exiting Debug state with EDECR.SS == 1.

is corrected to read:

The PE enters the active-not-pending state:

• By exiting Debug state to a state where halting is allowed with EDECR.SS == 1.

Within the same section, in subsection 'PE behavior in the active-not-pending state', the text that
reads:

When the PE is in the active-not-pending state it does one of the following:

• It executes one instruction and does one of the following:

◦ Completes it without generating a synchronous exception.

◦ Generates a synchronous exception.

◦ Generates a debug event that causes entry to Debug state.

is clarified to read:

When the PE is in the active-not-pending state it does one of the following:

• It executes one instruction and does one of the following:

◦ Completes it without taking a synchronous exception.

◦ Takes a synchronous exception generated by the instruction.

◦ Generates a debug event that causes entry to Debug state.

2.47 D17405
In section A2.7.1 (Architectural features added by Armv8.4), the text that reads:

FEAT_TLBIOS provides TLBI maintenance instructions that extend to the Outer Shareable
domain and TLBI invalidation instructions that apply to a range of input addresses.

is changed to read:

FEAT_TLBIOS provides TLBI maintenance instructions that extend to the Outer Shareable
domain.

And the text that reads:

FEAT_TLBIRANGE provides TLBI maintenance instructions that extend to the Outer Shareable
domain and TLBI invalidation instructions that apply to a range of input addresses.

is changed to read:

FEAT_TLBIRANGE provides TLBI maintenance instructions that apply to a range of input
addresses. FEAT_TLBIRANGE being implemented implies that FEAT_TLBIOS is implemented.

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 44 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

2.48 R17415
In section I5.8.23 (ERR<n>CTLR, Error Record Control Register, n = 0 - 65534), in the descriptions
of the WUE and UE fields, the following text is added:

It is IMPLEMENTATION DEFINED whether an uncorrected error that is deferred but not deferred to
the Requester will signal an in-band error response.

The same addition is made to the description of the UE field in section I5.8.24 (ERR<n>FR, Error
Record Feature Register, n = 0 - 65534).

Additionally, in section I5.8.32 (ERR<n>STATUS, Error Record Primary Status Register, n = 0 -
65534), in the description of the ER field, the text that currently reads:

It is IMPLEMENTATION DEFINED whether this bit can be set to 0b1 by a Deferred error.

is replaced by the following text:

It is IMPLEMENTATION DEFINED whether an uncorrected error that is deferred but not deferred to
the Requester will signal an in-band error response causing this bit to be set to 0b1.

2.49 D17416
In section J1.1.4 (aarch64/instrs), the code in AArch64.ExceptionReturn() that reads:

 sync_errors = HaveIESB() && SCTLR[].IESB == '1';
 if HaveDoubleFaultExt() then
 sync_errors = sync_errors || (SCR_EL3.EA == '1' && SCR_EL3.NMEA == '1' &&
 PSTATE.EL == EL3);
 if sync_errors then
 SynchronizeErrors();
 iesb_req = TRUE;
 TakeUnmaskedPhysicalSErrorInterrupts(iesb_req);

is corrected to read:

 if HaveIESB() then
 sync_errors = SCTLR[].IESB == '1';
 if HaveDoubleFaultExt() then
 sync_errors = sync_errors || (SCR_EL3.<EA,NMEA> == '11' && PSTATE.EL ==
 EL3);
 if sync_errors then
 SynchronizeErrors();
 iesb_req = TRUE;

In section J1.1.2 (aarch64/exceptions), the code in AArch64.TakeException() that reads:

 sync_errors = HaveIESB() && SCTLR[target_el].IESB == '1';
 if HaveDoubleFaultExt() then

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 45 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

 sync_errors = sync_errors || (SCR_EL3.EA == '1' && SCR_EL3.NMEA == '1' &&
 target_el == EL3);
 if sync_errors && InsertIESBBeforeException(target_el) then
 SynchronizeErrors();
 iesb_req = FALSE;
 sync_errors = FALSE;
 TakeUnmaskedPhysicalSErrorInterrupts(iesb_req);

is corrected to read:

 if HaveIESB() then
 sync_errors = SCTLR[target_el].IESB == '1';
 if HaveDoubleFaultExt() then
 sync_errors = sync_errors || (SCR_EL3.<EA,NMEA> == '11' && target_el ==
 EL3);
 if sync_errors && InsertIESBBeforeException(target_el) then
 SynchronizeErrors();
 iesb_req = FALSE;
 sync_errors = FALSE;
 TakeUnmaskedPhysicalSErrorInterrupts(iesb_req);
 else
 sync_errors = FALSE;

2.50 D17417
In section A2.7.1 (Architectural features added by Armv8.4), in the subsection titled
'FEAT_RASv1p1, RAS Extension v1.1', the text that currently reads:

FEAT_RASv1p1 implements RAS System Architecture v1.1 and adds support for:

• FEAT_DoubleFault.

• Simplifications to ERR<n>STATUS.

• Additional ERR<n>MISC<m> registers.

• The OPTIONAL RAS Common Fault Injection Model Extension.

is corrected to read:

FEAT_RASv1p1 implements RAS System Architecture v1.1 and adds support for:

• Simplifications to ERR<n>STATUS.

• Additional ERR<n>MISC<m> registers.

• The OPTIONAL RAS Common Fault Injection Model Extension.

In section D13.2.67 (ID_AA64PFR0_EL1, AArch64 Processor Feature Register 0), in the RAS, bits
[31:28] field, the text that currently reads:

0b0010 FEAT_RASv1p1 present. As 0b0001, and adds support for:

• If EL3 is implemented, FEAT_DoubleFault.

is corrected to read:

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 46 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

0b0010 FEAT_RASv1p1 and, if EL3 is implemented, FEAT_DoubleFault present. As 0b0001, and
adds support for:

• If EL3 is implemented, FEAT_DoubleFault.

2.51 R17420
In section D13.2.118 (SCTLR_EL3, System Control Register (EL3)), in the IESB, bit [21] field, the
text that currently reads:

When the PE is in Debug state, the effect of this field is CONSTRAINED UNPREDICTABLE, and its
Effective value might be 0 or 1 regardless of the value of the field.

is corrected to read:

When the PE is in Debug state, the effect of this field is CONSTRAINED UNPREDICTABLE, and
its Effective value might be 0 or 1 regardless of the value of the field and, if implemented,
SCR_EL3.NMEA.

Within the same section, the text that currently reads:

When FEAT_DoubleFault is implemented, and the Effective value of SCR_EL3.NMEA is 1, this
field is ignored and its Effective value is 1.

is corrected to read:

When FEAT_DoubleFault is implemented, the PE is in Non-debug state, and the Effective value
of SCR_EL3.NMEA is 1, this field is ignored and its Effective value is 1.

2.52 D17422
In section D8.3.1 (Architected event counters), the AMU CPU_CYCLES event description text:

0x0011, CPU_CYCLES, Processor frequency cycles This event is defined identically to
CPU_CYCLES in the PMUv3 architecture. When the PE is in WFI or WFE, this counter does
not increment. When in a multithreaded implementation, regardless of which PE is currently
active, this counter continues to count for all PEs not in WFI or WFE. This event is counted by
AMEVCNTR0<n>, where n is 0.

is changed to read:

0x0011, CPU_CYCLES, Processor frequency cycles The counter increments on every cycle when
the PE is not in WFI or WFE state. When the PE is in WFI or WFE state, this counter does not
increment. This event is counted by AMEVCNTR0<n>, where n is 0.

And the AMU CNT_CYCLES event description is changed from:

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 47 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

0x4004, CNT_CYCLES, Constant frequency cycles The constant frequency cycles counter
increments at a constant frequency equal to the rate of increment of the System counter,
CNTPCT_EL0. When the PE is in WFI or WFE, this counter does not increment. When in a
multithreaded implementation, regardless of which PE is currently active, this counter continues
to count for all PEs not in WFI or WFE. This event is counted by AMEVCNTR0<n>, where n is 1.

to read:

0x4004, CNT_CYCLES, Constant frequency cycles The counter increments at a constant
frequency when the PE is not in WFI or WFE state, equal to the rate of increment of the System
counter, CNTPCT_EL0. When the PE is in WFI or WFE state, this counter does not increment.
This event is counted by AMEVCNTR0<n>, where n is 1.

In section D7.10.3 (Common event numbers), the following text in the 0x0011, CPU_CYCLES,
Cycle event description:

All counters are subject to changes in clock frequency, including when a WFI or WFE instruction
stops the clock. This means that it is CONSTRAINED UNPREDICTABLE whether or not CPU_CYCLES
continues to increment when the clocks are stopped by WFI and WFE instructions.

is changed to read:

All counters are subject to changes in clock frequency. It is CONSTRAINED UNPREDICTABLE whether
or not CPU_CYCLES continues to increment when the PE is in WFI or WFE state.

And the following text:

In a multithreaded implementation, CPU_CYCLES counts each cycle for the processor for which
this PE thread was active and could issue an instruction. For more information, see Cycle event
counting on multithreaded implementations.

is changed to read:

In a multithreaded implementation, CPU_CYCLES counts each cycle for the processor for which
this PE thread is active and can issue an instruction. For more information, see Cycle event
counting.

Within the same section, the PMU CNT_CYCLES event description is changed from:

0x4004, CNT_CYCLES, Constant frequency cycles The counter is defined identically to
CNT_CYCLES in the AMUv1 architecture.

to read:

0x4004, CNT_CYCLES, Constant frequency cycles The counter increments at a constant
frequency equal to the rate of increment of the System counter, CNTPCT_EL0. It is CONSTRAINED
UNPREDICTABLE whether or not CNT_CYCLES continues to increment when the PE is in WFI
or WFE state. In a multithreaded implementation, CNT_CYCLES counts when this PE thread is
active and can issue an instruction. For more information, see Cycle event counting.

Also, the PMU STALL_BACKEND_MEM event description is changed from:
Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 48 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

0x4005, STALL_BACKEND_MEM, Memory stall cycles The counter is defined identically to
STALL_BACKEND_MEM in the AMUv1 architecture.

to read:

0x4005, STALL_BACKEND_MEM, Memory stall cycles The counter counts each cycle counted
by STALL_BACKEND where there is a cache miss in the last level of cache within the PE clock
domain. It is IMPLEMENTATION DEFINED whether the counter counts backend stall cycles
when a non-cacheable access is in progress.

Section D7.1.5 (Interaction with power saving operations) is deleted, and section D7.10.4 (Cycle
event counting on multithreaded implementations) is changed to the following:

D7.10.4 Cycle event counting

The CPU_CYCLES event and the cycle counter, PMCCNTR, count cycles. The duration of a cycle
is subject to any changes in clock frequency, including clock stopping caused by the WFI and
WFE instructions. It is implementation specific whether CPU_CYCLES and PMCCNTR count
when the PE is in WFI or WFE state, even if the clocks are not stopped.

In addition, events such as STALL, STALL_FRONTEND and STALL_BACKEND that are defined to
only count cycles that are counted by the CPU_CYCLES event have the same limitation.

Multithreaded implementations

Multithreaded implementations can have various forms, some examples of these are:

• Simultaneous Multithreading (SMT), where every PE thread is active on every Processor cycle.

• Fine-grained Multithreading (FGMT), also known as a Barrel processor, where one PE thread
is active on each Processor cycle, and this changes regularly.

• Switch on Event Multithreading (SoEMT), also known as Coarse-grained Multithreading
(CGMT), where high latency events cause the processor to switch the active PE thread.

In the above examples, active means that the PE might execute the instructions. A PE can be
active but not executing instructions when no instruction is available or because of limited
execution resources.

It is implementation specific whether a thread is active when the thread is in WFE or WFI state.
This applies for all forms of multithreaded implementation.

When the PMU implementation supports multithreading, and the Effective value of
PMEVTYPER<n>_EL0.MT bit is 0, the CPU_CYCLES event does not count Processor cycles on
which the thread was not active. For the example multithreaded implementations, this means
that, if the event counter is enabled, event counting is not prohibited, and the thread is not in
WFE or WFI state:

• For an SMT implementation, the CPU_CYCLES event counts every Processor cycle.

• For a particular FGMT implementation, that alternates between two threads on each
Processor cycle, the CPU_CYCLES event counts every other Processor cycle.

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 49 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

• For a particular SoEMT implementation, that is waiting for a long latency operation, the
CPU_CYCLES event does not count Processor cycles, as the PE thread is not active.

If the Effective value of PMEVTYPER<n>_EL0.MT bit is 1, the CPU_CYCLES event counts each
Processor cycle, and can only count a maximum of one each Processor cycle.

Events that only count cycles that are counted by the CPU_CYCLES event have the same
limitation. For example, in an SMT implementation, if a PE thread cannot issue an instruction
because of contention with other PE threads, these are counted as STALL_BACKEND cycles. If
the Effective value of PMEVTYPER<n>_EL0.MT bit is 1, the PE only counts cycles on which no
operation is issued from any thread.

Note: The cycle counter, PMCCNTR, is not affected by whether the thread is active or inactive.
When enabled, PMCCNTR counts every Processor cycle.

See Multithreaded implementations, MDCR_EL3.MTPME, SDCR.MTPME, MDCR_EL2.MTPME,
and HDCR.MTPME for more information about when the Effective value of
PMEVTYPER<n>_EL0.MT is 0.

2.53 D17423
In section D5.10.2 (TLB maintenance instructions), in the subsection 'Scope of the A64 TLB
maintenance instructions', for each of the entries VA, VAL, VAA, VAAL, the bullet list that currently
reads:

• The Security state specified by SCR_EL3.NS and SCR_EL3.EEL2.

• For the Secure or Non-secure EL1&0, when EL2 is enabled, translation regime, the current
VMID.

is changed to read:

• The Security state specified by SCR_EL3.NS and SCR_EL3.EEL2.

• The current VMID, for the Secure or Non-secure EL1&0 translation regime, when EL2 is
enabled.

• The current translation regime. For EL2&0 translation regimes, this is determined by
HCR_EL2.E2H.

2.54 D17425
In section F5.1.229 (STR (immediate)), T4 encoding, the following text is removed:

If wback && n == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 50 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

• The instruction executes without writeback of the base address.

• The instruction uses the addressing mode described in the equivalent immediate offset
instruction.

The same text is also removed from section F5.1.231 (STRB (immediate)), T3 encoding.

2.55 E17427
In section J1 (Armv8 pseudocode), in order to better represent the handling of External aborts,
_Mem[] getters and setters are replaced with physical memory read and write functions
PhysMemRead() and PhysMemWrite(). These functions return a new structure PhysMemRetStatus,
which may contain External abort related information. For MTE support, getters and setters
_MemTag[] are similarly replaced with PhysMemTagRead() and PhysMemTagWrite().

2.56 D17428
In section J1.1.1 (aarch64/debug) the pseudocode function AArch64.BreakpointValueMatch() that
reads:

elsif match_cid2 then
 BXVR_match = ((HaveVirtHostExt() || HaveV82Debug()) && EL2Enabled() && DBGB\
VR_EL1[n]<63:32> == CONTEXTIDR_EL2);

is corrected to read:

elsif match_cid2 then
 BXVR_match = (PSTATE.EL != EL3 && (HaveVirtHostExt() || HaveV82Debug()) &&
 EL2Enabled() && DBGBVR_EL1[n]<63:32> == CONTEXTIDR_EL2);

2.57 D17428
In section J1.1.1 (aarch64/debug) the pseudocode function AArch64.BreakpointValueMatch() that
reads:

elsif match_cid2 then
 BXVR_match = ((HaveVirtHostExt() || HaveV82Debug()) && EL2Enabled() && DBGB\
VR_EL1[n]<63:32> == CONTEXTIDR_EL2);

is corrected to read:

elsif match_cid2 then
 BXVR_match = (PSTATE.EL != EL3 && (HaveVirtHostExt() || HaveV82Debug()) &&
 EL2Enabled() && DBGBVR_EL1[n]<63:32> == CONTEXTIDR_EL2);

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 51 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

2.58 D17433
In section D10.1.3 (Byte Order), the text that currently reads:

Header bytes and payload bytes are written in ascending address order. Within a payload value,
values are written in little-endian byte order.

is corrected to read:

This chapter describes header bytes and payload bytes in ascending memory address order.
Within a payload value, values are in little-endian byte order.

Additionally, the following Note is removed:

Note: This means that if the memory type accessed is non-Gathering Device, the architecture
does not require a specific access granule size at the end device.

2.59 R17435
In section H9.2.25 (EDECCR, External Debug Exception Catch Control Register), the text in the
description for each field that currently reads:

A value of the (NSR, SR, NSE, SE) field that enables an Exception Catch debug event for an
Exception level that is not implemented is reserved. If the (NSR, SR, NSE, SE) field is programmed
with a reserved value then:

• The PE behaves as if it is programmed with a defined value, other than for a read of EDECCR.

• The value returned for (NSR, SR, NSE, SE) by a read of EDECCR is UNKNOWN.

is changed to the following:

in the NSR field:

If EL<n> is not implemented then NSR<n> is RES0.

in the SR field:

If FEAT_SEL2 is not implemented then SR<2> is RES0. If EL<n> is not implemented then SR<n>
is RES0.

in the NSE fields:

NSE<0> is RES0. If EL<n> is not implemented then NSE<n> is RES0.

in the SE fields:

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 52 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

SE<0> is RES0. If FEAT_SEL2 is not implemented then SE<2> is RES0. If EL<n> is not
implemented then SE<n> is RES0.

2.60 C17438
In section D13.2.52 (HFGITR_EL2, Hypervisor Fine-Grained Instruction Trap Register), in the
DCZVA field, bit [11], the following Note is added to the specification:

Note: Unlike HCR_EL2.TDZ, this field does not have an impact on DCZID_EL0.DZP.

2.61 D17441
In section D13.2.25 (CCSIDR2_EL1, Current Cache Size ID Register 2), the text that currently
reads:

In an AArch64 only implementation, it is IMPLEMENTATION DEFINED whether reading this
register gives an UNKNOWN value or is UNDEFINED.

is relaxed to read:

In an implementation which does not support AArch32 at EL1, it is IMPLEMENTATION
DEFINED whether reading this register gives an UNKNOWN value or is UNDEFINED.

Similarly, in section G8.2.25 (CCSIDR2, Current Cache Size ID Register 2), the text that reads:

This register is present only when AArch32 is supported at any Exception level and FEAT_CCIDX
is implemented. Otherwise, direct accesses to CCSIDR2 are UNDEFINED.

is relaxed to read:

This register is present only when AArch32 is supported at EL1 and FEAT_CCIDX is
implemented. Otherwise, direct accesses to CCSIDR2 are UNDEFINED.

2.62 D17445
In section D7.10.3 (Common Event Numbers), in the subsection 'Common microarchitectural
events', some event descriptions are replaced.

The description of event 0x80DB, 'LDST_FIXED_BYTES_SPEC' is replaced with:

The counter counts bytes speculatively read or written due to all non-SVE load, store and atomic
operations, all SVE non-vector load and store operations, and SVE replicating LD1R and LD1RQ
instructions.

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 53 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

For each instruction, the counter is incremented by the number of bytes transferred per register
multiplied by the number of registers transferred multiplied by the number of transfers made per
register. For example, the counter counts bytes as follows:

• Non-SVE load and store of a single register instructions increment the counter by (MSIZE ÷
8).

• Non-SVE load and store of a pair of registers instructions increment the counter by 2 ×
(MSIZE ÷ 8).

• AArch32 load and store multiple registers instructions increment the counter by the number
of registers transferred multiplied by (MSIZE ÷ 8).

• Atomic store instructions increment the counter by (MSIZE ÷ 8). These are instructions that
atomically update a value in memory without returning a value to a register.

• Atomic load, compare and swap of a single register, and swap instructions increment the
counter by 2 × (MSIZE ÷ 8). Atomic load instructions are instructions that atomically update a
value in memory, returning a value to a register.

• Compare and swap of a pair of registers increment the counter by 4 × (MSIZE ÷ 8).

• SVE and Advanced SIMD LD1R instructions increment the counter by (MSIZE ÷ 8).

• SVE LD1RQ instructions increment the counter by 16.

• Advanced SIMD LD[1-4] and ST[1-4] instructions increment the counter by the number of
registers transferred multiplied by the number of bytes being transferred per register.

• DC ZVA and DC GZVA instructions increment by the counter by 2^(DCZID_EL0.BS).

The description of event 0x80DD, 'LD_FIXED_BYTES_SPEC' is replaced with:

The counter counts bytes speculatively read due to all non-SVE load and atomic operations, all
SVE non-vector load operations, and SVE replicating LD1R and LD1RQ instructions. For each
instruction, the counter is incremented by the number of bytes transferred per register multiplied
by the number of registers transferred. That is, the counter is incremented by:

• Half the value that the LDST_FIXED_BYTES_SPEC event counts if the operation is a load
atomic, compare and swap, or compare operation.

• The same as for LDST_FIXED_BYTES_SPEC if the operation is any other load operation.

The description of event 0x80DF, 'ST_FIXED_BYTES_SPEC' is replaced with:

The counter counts bytes written due to all non-SVE store and atomic operations, and all SVE
non-vector store operations. For each instruction, the counter is incremented by the number
of bytes transferred per register multiplied by the number of registers transferred. That is, the
counter is incremented by:

• Half the value that the LDST_FIXED_BYTES_SPEC event counts if the operation is a compare
and swap or compare operation.

• The same as for LDST_FIXED_BYTES_SPEC if the operation is any other store operation,
including an atomic store operation.

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 54 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

2.63 D17464
In section C5.6.1 (CFP RCTX, Control Flow Prediction Restriction by Context), the paragraph that
reads:

When this instruction is complete and synchronized, control flow prediction does not permit
later speculative execution within the target execution context to be observable through side
channels.

is replaced by the following paragraph:

Control flow predictions determined by the actions of code in the target execution context(s)
appearing in program order before the instruction cannot exploitatively control speculative
execution occurring after the instruction is complete and synchronized.

The equivalent edits are made to the following sections:

• C5.6.2 (CPP RCTX, Cache Prefetch Prediction Restriction by Context).

• C5.6.3 (DVP RCTX, Data Value Prediction Restriction by Context).

• C6.2.51 (CFP).

• C6.2.65 (CPP).

• C6.2.83 (DVP).

• G8.2.26 (CFPRCTX, Control Flow Prediction Restriction by Context).

• G8.2.34 (CPPRCTX, Cache Prefetch Prediction Restriction by Context).

• G8.2.50 (DVPRCTX, Data Value Prediction Restriction by Context).

2.64 C17466
In section D9.6.3 (Additional information for each profiled memory access operation), the text that
currently reads:

For each of the Last level cache and another socket indicators, it is IMPLEMENTATION DEFINED
whether this information is present only for load accesses, only for store accesses, for neither, or
for both.

Note: A store might be marked as not accessing a cache or another socket because it
microarchitecturally finished before doing so. For example, the write was held in a write buffer.
This behavior is IMPLEMENTATION DEFINED, and such events must be interpreted with care.

is changed to read:

For each of the cache and another socket indicators, it is IMPLEMENTATION DEFINED and might be
UNPREDICTABLE whether this information is present for store accesses. The Last level cache
and another socket indicators are optional and might not be present.

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 55 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

Note: A store might be marked as not accessing a cache or another socket because it
microarchitecturally-finished execution before doing so. For example, the write was placed into a
write buffer. This behavior is IMPLEMENTATION DEFINED and might change from time to time, and
such events must be interpreted with care.

In section D10.2.6 (Events packet), the following clarification is added to each of the E[2] (Level 1
Data cache access) and E[3] (Level 1 Data cache refill) events:

It is IMPLEMENTATION DEFINED and might be UNPREDICTABLE whether a store can finish
execution before this event is generated, meaning this event is never recorded for stores.

Within the same section, the text in E[2] that reads:

If PMUv3 is implemented this Event is required to be implemented consistently with
L1D_CACHE.

is changed to the following, with a similar change made in E[3]:

If PMUv3 is implemented this event is required to be implemented consistently with
L1D_CACHE or L1D_CACHE_RD.

Additionally, the following clarification is added to each of the E[8] (Last Level cache access), E[9]
(Last Level cache miss), and E[10] (Remote access) events:

This event is optional. When this event is implemented, it is further IMPLEMENTATION DEFINED and
might be UNPREDICTABLE whether a store can finish execution before this event is generated,
meaning this event is never recorded for stores.

And the text in E[8] that reads:

If PMUv3 is implemented this Event is required to be implemented consistently with LL_CACHE.

is changed to the following, with similar changes made in E[9] and E[10]:

If this event and PMUv3 are both implemented this event is required to be implemented
consistently with LL_CACHE or LL_CACHE_RD.

2.65 D17478
In section D4.4.13 (Execution and data prediction restriction System instructions), the text that
reads:

When FEAT_SPECRES is implemented, the System instructions listed in A64 System instructions
for prediction restriction on page C5-845 prevent predictions based on information gathered
from earlier execution within a particular execution context from affecting the later speculative
execution within that context, to the extent that the speculative execution is observable through
side-channels.

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 56 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

The prediction restriction System instructions being used by a particular execution context apply
to:

is clarified to read:

When FEAT_SPECRES is implemented, the System instructions listed in A64 System instructions
for prediction restriction on page C5-845 prevent predictions based on information gathered
from earlier execution within a particular execution context, termed for these instructions as
a CTX, from affecting the later Speculative execution within that CTX, to the extent that the
speculative execution is observable through side-channels.

The prediction restriction System instructions being used by a particular CTX apply to:

Within the same section, the text that reads:

For these System instructions, the execution context is defined by:

is clarified to read:

For these System instructions, the CTX is defined by:

The equivalent changes are made to section G4.4.8 (Execution and data prediction restriction
System instructions).

2.66 D17492
In section I5.5.7 (AMCNTENCLR0, Activity Monitors Count Enable Clear Register 0), the field
'P<n>, bit [n], for n = 31 to 0' that currently reads:

P<n>, bit [n], for n = 31 to 0 Activity monitor event counter disable bit for AMEVCNTR0<n>. Bits
[31:N] are RAZ/WI. N is the value in AMCGCR.CG0NC.

is corrected to read:

P<n>, bit [n], for n = 15 to 0 Activity monitor event counter disable bit for AMEVCNTR0<n>. Bits
[15:N] are RAZ/WI, where N is the value in AMCGCR.CG0NC.

A new RES0 field is added for bits [31:16].

The equivalent changes are made to the following sections:

• I5.5.8 (AMCNTENCLR1, Activity Monitors Count Enable Clear Register 1),

• I5.5.9 (AMCNTENSET0, Activity Monitors Count Enable Set Register 0),

• I5.5.10 (AMCNTENSET1, Activity Monitors Count Enable Set Register 1).

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 57 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

2.67 D17527
In section J1.2.4 (aarch32/translation), the pseudocode for AArch32.FirstStageTranslate() that
reads:

 if PSTATE.EL == EL2 then
 s1_enabled = HSCTLR.M == '1';
 elsif EL2Enabled() then
 tge = (if ELUsingAArch32(EL2) then HCR.TGE else HCR_EL2.TGE);
 dc = (if ELUsingAArch32(EL2) then HCR.DC else HCR_EL2.DC);
 s1_enabled = tge == '0' && dc == '0' && SCTLR.M == '1';
 else
 s1_enabled = SCTLR.M == '1';

is replaced with:

 el = S1TranslationRegime();
 if el == EL2 then
 s1_enabled = HSCTLR.M == '1';
 elsif el == EL1 && EL2Enabled() then
 tge = (if ELUsingAArch32(EL2) then HCR.TGE else HCR_EL2.TGE);
 dc = (if ELUsingAArch32(EL2) then HCR.DC else HCR_EL2.DC);
 s1_enabled = tge == '0' && dc == '0' && SCTLR.M == '1';
 else
 s1_enabled = SCTLR.M == '1';

2.68 D17534
In section G8.2.80 (ICIALLUIS, Instruction Cache Invalidate All to PoU, Inner Shareable), the
following lines of the MCR register write pseudocode:

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TPU == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TICAB == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TOCU == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TPU == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TICAB == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TOCU == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 ICIALLUIS();

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 58 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

are replaced with:

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TPU == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TICAB == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TPU == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TICAB == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 ICIALLUIS();

2.69 D17539
In D13.4.12 (PMMIR_EL1, Performance Monitors Machine Identification Register) and G8.3.33
(PMMIR, Performance Monitors Machine Identification Register), the following text in the
BUS_WIDTH and BUS_SLOTS fields is removed:

From Armv8.7:

2.70 D17541
In D7.10.3 (Common event numbers), subsection 'Common microarchitectural events', each
instance of 'the access' is changed to 'the access that caused the walk', in the final list of the
following event number descriptions:

• 0x8136, 'DTLB_STEP, Data TLB translation table walk, step',

• 0x8137, 'ITLB_STEP, Instruction TLB translation table walk, step'.

2.71 D17557
In section D7.10.3 (Common event numbers), in the subsection 'Common microarchitectural
events', the event definition '0x80CB, LDST_FIXED_OPS_SPEC, Non-scalable load and store
element Operations speculatively executed' that reads:

The counter counts speculatively executed memory read and write operations as follows:

• Loading or storing a single scalar register increments the counter by 1.

• Loading or storing a pair of scalar registers increments the counter by 2.

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 59 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

• An atomic store instruction increments the counter by 1.

• An atomic load instruction increments the counter by 2.

• SVE and Advanced SIMD LD1R instructions increment the counter by 1.

• SVE LD1RQ instructions increment the counter by (128 ÷ CSIZE).

• Advanced SIMD LD[1-4] and ST[1-4] instructions increment the counter by the number of
elements transferred per vector multiplied by the number of transferred registers.

is clarified to read:

The counter counts speculatively executed Memory-read and Memory-write operations due to
all non-SVE load, store and atomic operations, all SVE non-vector load and store operations, and
SVE replicating LD1R and LD1RQ instructions.

For each instruction, the counter is incremented by the number of operations specified by the
instruction. For example, the counter counts operations as follows:

• Non-SVE load and store of a single register instructions increment the counter by 1. This
includes loads and stores of Sx, Dx, and Qx SIMD&FP registers.

• Non-SVE load and store of a pair of registers instructions increment the counter by 2. This
includes loads and stores of pairs of Sx, Dx, and Qx SIMD&FP registers.

• AArch32 load and store multiple registers instructions increment the counter by the number
of registers transferred.

• Atomic store instructions increment the counter by 1. These are instructions that atomically
update a value in memory without returning a value to a register.

• Atomic load, compare and swap of a single register, and swap instructions increment the
counter by 2. Atomic load instructions are instructions that atomically update a value in
memory, returning a value to a register.

• Compare and swap of a pair of registers increment the counter by 4.

• SVE and Advanced SIMD LD1R instructions increment the counter by 1.

• SVE LD1RQ instructions increment the counter by (128 ÷ CSIZE).

• Advanced SIMD LD[1-4] and ST[1-4] instructions increment the counter by the number of
elements transferred per vector multiplied by the number of transferred registers.

• DC ZVA and DC GZVA instructions increment by the counter by an IMPLEMENTATION DEFINED
amount.

In the same section, the event definition '0x80CD, LD_FIXED_OPS_SPEC, Non-scalable load
element Operations speculatively executed' is changed to read:

The counter counts speculatively executed Memory-read operations due to all non-SVE load and
atomic operations, all SVE non-vector load operations, and SVE replicating LD1R and LD1RQ
instructions.

For each instruction, the counter is incremented by the number of operations specified by the
instruction. That is, the counter is incremented by:

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 60 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

• Half the value that the LDST_FIXED_OPS_SPEC event counts if the operation is a load
atomic, compare and swap, or compare operation.

• The same as for LDST_FIXED_OPS_SPEC if the operation is any other load operation.

and the event definition '0x80CF, ST_FIXED_OPS_SPEC, Non-scalable store element Operations
speculatively executed' is changed to read:

The counter counts speculatively executed Memory-write operations due to all non-SVE store
and atomic operations, and all SVE non-vector store operations.

For each instruction, the counter is incremented by the number of operations specified by the
instruction. That is, the counter is incremented by:

• Half the value that the LDST_FIXED_OPS_SPEC event counts if the operation is a compare
and swap or compare operation.

• The same as for LDST_FIXED_OPS_SPEC if the operation is any other store operation,
including an atomic store operation.

2.72 D17558
In section B2.3.10 (Memory barriers), in the subsection 'Data Synchronization Barrier (DSB)', the
text that reads:

If FEAT_MTE2 is implemented, on completion of a DSB instruction, all updates to TFSR_ELx.TFx
or TFSRE0_EL1.TFx due to Tag Check fails caused by accesses for which the DSB operates will
be complete.

Is changed to read:

If FEAT_MTE2 is implemented, on completion of a DSB instruction operating over the Non-
shareable domain, all updates to TFSR_ELx.TFx or TFSRE0_EL1.TFx due to Tag Check fails caused
by accesses for which the DSB operates will be complete.

Also, the text in section D6.7 (PE handling of Tag Check Fault) that reads:

Indirect writes to TFSRE0_EL1, and any TFSR_ELx accessible at ELy, which are caused by a Tag
Check Fault are synchronized by any of:

• An exception entry to ELy, if SCTLR_ELy.ITFSB has the value of 0b1.

• A DSB at ELy in program order, after the instruction causing the Tag Check Fault.

is changed to read:

Indirect writes to TFSRE0_EL1 and any TFSR_ELx accessible at ELy that are caused by a Tag
Check Fault are synchronized by any of:

• An exception entry to ELy, if SCTLR_ELy.ITFSB has the value of 0b1.

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 61 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

• A DSB over the Non-shareable domain at ELy in program order, after the instruction causing
the Tag Check Fault.

In section D13.1.2 (General behavior of accesses to the AArch64 System registers), in the
subsection 'Synchronization requirements for AArch64 System registers', the text that reads:

If FEAT_MTE2 is implemented, a data synchronization barrier (DSB) or an exception entry to
ELy with SCTLR_ELy.ITFSB = 0b1 is required between an indirect write to TFSRE0_EL1, or any
TFSR_ELx accessible at ELy, and a direct read or direct write of that register

Is changed to read:

If FEAT_MTE2 is implemented, a DSB instruction over the Non-shareable domain or an exception
entry to ELy with SCTLR_ELy.ITFSB = 0b1 is required between an indirect write to TFSRE0_EL1,
or any TFSR_ELx accessible at ELy, and a direct read or direct write of that register.

2.73 C17562
In D13.2.47 (HAFGRTR_EL2, Hypervisor Activity Monitors Fine-Grained Read Trap Register), each
of the bits AMEVCNTR1x_EL0 and AMEVTYPER1x_EL0 are made conditional on AMEVCNTR1<x>
and AMEVTYPER1<x> registers being implemented. Otherwise, these fields are RES0.

2.74 D17565
In section J1.1.4 (aarch64/functions), the following is changed:

The code that reads:

(bits(25), bits(5)) AArch64.FaultSyndrome(boolean d_side, FaultRecord fault)
 ...
 if !HaveFeatLS64() && HaveRASExt() && IsAsyncAbort(fault) then
 iss<12:11> = fault.errortype; // SET
 ...

is updated to read:

(bits(25), bits(5)) AArch64.FaultSyndrome(boolean d_side, FaultRecord fault)
 ...
 if HaveRASExt() && IsExternalSyncAbort(fault) then
 iss<12:11> = fault.errortype; // SET
 ...

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 62 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

2.75 D17571
In sections C6.2.94 (HVC) and F5.1.54 (HVC), the text that reads:

Non-secure software executing at EL1 can use this instruction to call the hypervisor to request a
service.

is changed to read:

Software executing at EL1 can use this instruction to call the hypervisor to request a service.

In section C6.2.94 (HVC), the text under 'The HVC instruction is UNDEFINED:' that currently reads:

• At EL0.

• At EL1 if EL2 is not enabled in the current Security state.

• When SCR_EL3.HCE is set to 0.

is changed to read:

• When EL3 is implemented and SCR_EL2.HCE is set to 0.

• When EL3 is not implemented and HCR_EL3.HCD is set to 1.

• When EL2 is not implemented.

• At EL1 if EL2 is not enabled in the current Security state.

• At EL0.

In section F5.1.54 (HVC), the text that currently reads:

The HVC instruction is:

• UNDEFINED in Secure state, and in User mode in Non-secure state.

• When SCR_EL3.HCE is set to 0, UNDEFINED in Non-secure EL1 modes and CONSTRAINED
UNPREDICTABLE in Hyp mode.

is changed to read:

The HVC instruction is UNDEFINED:

• When EL3 is implemented and using AArch64, and SCR_EL3.HCE is set to 0.

• In Non-secure EL1 modes when EL3 is implemented and using AArch32, and SCR.HCE is set
to 0.

• When EL3 is not implemented and either HCR_EL2.HCD is set to 1, or HCR.HCD is set to 1.

• When EL2 is not implemented.

• In Secure state, if EL2 is not enabled in the current Security state.

• In User mode.

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 63 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

The HVC instruction is CONSTRAINED UNPREDICTABLE in Hyp mode when EL3 is
implemented and using AArch32, and SCR.HCE is set to 0.

In section D1.14.3 (EL2 configurable controls), the subsection title 'Disabling Non-secure state
execution of HVC instructions' is changed to 'Disabling execution of HVC instructions'. Similarly,
in section D1.14.4 (EL3 configurable controls), the subsection title 'Enabling EL3, EL2, and Non-
secure EL1 execution of HVC instructions' is changed to 'Enabling EL3, EL2, and EL1 execution of
HVC instructions', and the text within the subsection that reads:

For EL1, this enable control applies to HVC instructions in Non-secure state only.

is changed to read:

For EL1, this enable control applies to Secure state only if EL2 is enabled in Secure state in the
current Execution state.

In section G1.9.1 (AArch32 state PE mode descriptions), in the subsection 'Notes on the AArch32
PE modes', the text under the 'Hyp mode' entry that reads:

The Hypervisor Call exception and Hyp Trap exception are implemented as part of EL2 and are
always taken to Hyp mode.

Note: This means that Hypervisor Call and Hyp Trap exceptions cannot be taken from Secure
state.

When the value of the Hypervisor Call enable bit, SCR.HCE, is 1, executing an HVC (Hypervisor
Call) instruction in a Non-secure EL1 mode generates a Hypervisor Call exception.

is changed to read:

The Hypervisor Call exception and Hyp Trap exception are implemented as part of EL2 and are
always taken to Hyp mode when EL2 is using AArch32.

Executing an HVC (Hypervisor Call) instruction generates a Hypervisor Call exception. See
Hypervisor Call (HVC) exception on page G1-6012.

Within the same section, in the subsection 'Hyp mode', the following text is removed:

In an implementation that includes EL3, from reset, the HVC instruction is UNDEFINED in Non-
secure EL1 modes, meaning entry to Hyp mode is disabled by default.

and the following text:

If EL3 is not implemented and HCR_EL2 or HCR.HCD is set to 1, the HVC instruction is
undefined in Hyp mode.

is changed to read:

If EL3 is not implemented and HCR.HCD is set to 1, the HVC instruction is undefined in Hyp
mode

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 64 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

2.76 D17572
In section C3.2.12 (Atomic instructions), the following text is added at the start of the section:

The atomic instructions perform atomic read and write operations on a memory location such
that the architecture guarantees that no modification of that memory location by another
observer can occur between the read and the write defined by that instruction.

2.77 D17573
In section J1.1.4 (aarch64/functions), the function AArch64.AccessIsTagChecked() is changed:

The code that reads:

 if acctype IN {AccType_IFETCH, AccType_TTW} then
 return FALSE;

is updated to read:

 if acctype IN {AccType_IFETCH, AccType_TTW, AccType_DC, AccType_IC} then
 return FALSE;

2.78 R17578
In section I5.8.31 (ERR<n>PFGF, Pseudo-fault Generation Feature Register, n = 0 - 65534), a new
ID field is added at bit [28]:

NA, bits [28]

No access. Defines whether this component fakes detection of the error on an access to the
component or spontaneously in the fault injection state.

The defined values of this field are:

0b0 The component fakes detection of the error on an access to the component.

0b1 The component fakes detection of the error spontaneously in the fault injection state.

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 65 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

2.79 R17579
In section B2.3.7 (Completion and endpoint ordering), subsection 'Peripherals', under the heading
'Peripheral coherence order', the following bullet point:

• RW1 and RW2 are accesses using Device-nGnRE or Device-nGnRnE attributes and RW1
appears in program order before RW2.

is changed to read:

• RW1 and RW2 are accesses using Device-nGnRE or Device-nGnRnE attributes, with the
same XS attribute value, and RW1 appears in program order before RW2.

and the following text is added as a Note immediately after the bulleted list:

Note: When FEAT_XS is implemented, if accesses marked with the Device-nGnRE or Device-
nGnRnE attributes are within the same memory mapped peripheral, but the XS attribute is
not the same on those accesses, the order of arrival at the endpoint is not defined by the
architecture.

In section B2.7.2 (Device Memory), subsection 'Reordering', the bullet point that reads:

If the same memory location is mapped with different aliases, with a different Reordering
attribute value or any different Device memory attribute values, these are a type of mismatched
attribute. For information about the effects of accessing memory with mismatched attributes, see
Mismatched memory attributes on page B2-175.

is replaced with:

If the same memory location is mapped with different aliases, and different attribute values, these
are a type of mismatched attribute. The different attributes could be:

• A different Reordering attribute value.

• A different Device memory attribute value.

• When FEAT_XS is implemented, a different XS attribute value. For information about the
effects of accessing memory with mismatched attributes, see Mismatched memory attributes
on page B2-175.

and in section B2.8 (Mismatched memory attributes), under the following bulleted list:

Physical memory locations are accessed with mismatched attributes if all accesses to the location
do not use a common definition of all of the following attributes of that location:

• Memory type: Device-nGnRnE, Device-nGnRE, Device-nGRE, Device-GRE or Normal.

• Shareability.

• Cacheability, for the same level of the inner or outer cache, but excluding any cache
allocation hints.

a new bullet point is added:

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 66 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

• When FEAT_XS is implemented, XS attribute.

2.80 D17583
In section D13.8.22 (CNTPOFF_EL2, Counter-timer Physical Offset register), the text that reads:

The offsetting of the timers and counters based on EL2 using AArch64 apply at:

• EL1 when EL1 is using AArch64 or AArch32.

• EL0 when EL0 is using AArch64 or AArch32.

When EL2 is implemented and enabled in the current Security state, the physical counter uses a
fixed physical offset of zero if either of the following are true:

• CNTHCTL_EL2.ECV is 0.

• SCR_EL3.ECVEn is 0.

• HCR_EL2.{E2H, TGE} is {1, 1}.

is changed to read:

The CNTPOFF_EL2 offset applies to:

• Direct reads of the physical counter from EL0 or EL1.

• Indirect reads of the physical counter by the EL1 physical timer.

When EL2 is implemented and enabled in the current Security state, the physical counter uses a
fixed physical offset of zero if any of the following are true:

• CNTHCTL_EL2.ECV is 0.

• SCR_EL3.ECVEn is 0.

• HCR_EL2.{E2H, TGE} is {1, 1}.

2.81 R17584
In section D6.4.1 (Virtual address translation), the following statement is added:

If SCTLR_ELx.C is 0 for a stage 1 translation regime, it is CONSTRAINED UNPREDICTABLE between:

• The stage 1 translation is treated as Untagged.

• SCTLR_ELx.C has no effect on whether the stage 1 translation is treated as Tagged or
Untagged.

Note: To ensure consistent behaviour, software can set SCTLR_ELx.ATA to 0 when SCTLR_ELx.C
is 0.

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 67 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

In section D5.5.7 (Combining the stage 1 and stage 2 attributes, EL1&0 translation regime), the
statement which currently reads:

If the stage 1 page or block descriptor specifies the Tagged attribute, the final memory type is
Tagged only if the final cacheable memory type is Inner and Outer Write-back Cacheable and the
final allocation hints are Read-Allocate, Write-Allocate.

is changed to read:

If the stage 1 translation is treated as Tagged, the final memory type is Tagged only if the final
cacheable memory type is Inner and Outer Write-back Cacheable and the final allocation hints
are Read-Allocate, Write-Allocate.

In section J1.1.5 (aarch64/translation), the pseudocode for the S1AttrDecode() function which
currently reads:

elsif HaveMTE2Ext() && attrfield == '11110000' then // Normal, Tagged WB-RWA
 memattrs.memtype = MemType_Normal;
 memattrs.outer = LongConvertAttrsHints('1111', acctype); // WB_RWA
 memattrs.inner = LongConvertAttrsHints('1111', acctype); // WB_RWA
 memattrs.shareable = SH<1> == '1';
 memattrs.outershareable = SH == '10';
 memattrs.tagged = TRUE;

is changed to read:

elsif HaveMTE2Ext() && attrfield == '11110000' then // Normal, Tagged WB-RWA
 memattrs.memtype = MemType_Normal;
 memattrs.outer = LongConvertAttrsHints('1111', acctype); // WB_RWA
 memattrs.inner = LongConvertAttrsHints('1111', acctype); // WB_RWA
 memattrs.shareable = SH<1> == '1';
 memattrs.outershareable = SH == '10';
 // if SCTLR_ELx.C is 0 it is Constrained UNPREDICTABLE if the S1 Cache disable
 has an effect on whether
 // the stage 1 translation is treated as Tagged
 if ConstrainedUnpredictableBool() then
 memattrs.tagged = memattrs.inner.attrs == MemAttr_WB && memattrs.outer.attrs
 == MemAttr_WB;
 else
 memattrs.tagged = TRUE;

2.82 D17590
In section D9.7.2 (The owning Exception level), in the subsection 'When the owning Exception
level is Non-secure EL2', the text that reads:

The Profiling Buffer addresses are in the Non-secure EL2 translation regime. If both
HCR_EL2.E2H is set to 1 and HCR_EL2.TGE is set to 1, this is an EL2&0 translation regime using
the current EL2&0 translation regime ASID from TTBRx_EL2.

is corrected to read:

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 68 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

The Profiling Buffer addresses are in the Non-secure EL2 translation regime. If HCR_EL2.E2H
is 1, this is an EL2&0 translation regime using the current EL2&0 translation regime ASID from
TTBRx_EL2.

Within the same section, in the subsection 'When the owning Exception level is Secure EL2', the
text that reads:

The Profiling Buffer addresses are in the Secure EL2 translation regime. If both HCR_EL2.E2H
is set to 1 and HCR_EL2.TGE is set to 1, this is an EL2&0 translation regime using the current
EL2&0 translation regime ASID from TTBRx_EL2.

is corrected to read:

The Profiling Buffer addresses are in the Secure EL2 translation regime. If HCR_EL2.E2H is
1, this is an EL2&0 translation regime using the current EL2&0 translation regime ASID from
TTBRx_EL2.

2.83 D17592
In section J1.1.2 (aarch64/exceptions), the following is changed:

The code in AArch64.EffectiveTCF() that reads:

bits(2) AArch64.EffectiveTCF(bits(2) el)
 bits(2) tcf;

 if el == EL3 then
 tcf = SCTLR_EL3.TCF;
 elsif el == EL2 then
 tcf = SCTLR_EL2.TCF;
 elsif el == EL1 then
 tcf = SCTLR_EL1.TCF;
 elsif el == EL0 && HCR_EL2.<E2H,TGE> == '11' then
 tcf = SCTLR_EL2.TCF0;
 elsif el == EL0 && HCR_EL2.<E2H,TGE> != '11' then
 tcf = SCTLR_EL1.TCF0;

 return tcf;

is updated to read:

bits(2) AArch64.EffectiveTCF(AccType acctype)
 bits(2) tcf, el;
 el = S1TranslationRegime();

 if el == EL3 then
 tcf = SCTLR_EL3.TCF;
 elsif el == EL2 then
 if AArch64.AccessUsesEL(acctype) == EL0 then
 tcf = SCTLR_EL2.TCF0;
 else
 tcf = SCTLR_EL2.TCF;
 elsif el == EL1 then
 if AArch64.AccessUsesEL(acctype) == EL0 then
 tcf = SCTLR_EL1.TCF0;
 else

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 69 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

 tcf = SCTLR_EL1.TCF;
 if tcf == '11' then //reserved value
 if !HaveMTE3Ext() then
 (-,tcf) = ConstrainUnpredictableBits(Unpredictable_RESTCF);

 return tcf;

And the code in AArch64.TagCheckFault() that reads:

AArch64.TagCheckFault(bits(64) vaddress, AccType acctype, boolean iswrite)
 bits(2) tcf = AArch64.EffectiveTCF(PSTATE.EL);
 if !HaveMTE3Ext() && tcf == '11' then
 (-,tcf) = ConstrainUnpredictableBits(Unpredictable_RESTCF);

 case tcf of
 when '00' // Tag Check Faults have no effect on the PE
 return;
 when '01' // Tag Check Faults cause a synchronous exception
 AArch64.RaiseTagCheckFault(vaddress, iswrite);
 when '10' // Tag Check Faults are asynchronously accumulated
 AArch64.ReportTagCheckFault(PSTATE.EL, vaddress<55>);
 when '11' // Tag Check Faults cause a synchronous exception on reads
 or on
 // a read-write access, and are asynchronously accumulated
 on writes
 // Check for access performing both a read and a write.
 readwrite = acctype IN {AccType_ATOMICRW,
 AccType_ORDEREDATOMICRW,
 AccType_ORDEREDRW};

is updated to read:

AArch64.TagCheckFault(bits(64) vaddress, AccType acctype, boolean iswrite)
 bits(2) tcf;
 tcf = AArch64.EffectiveTCF(acctype);

 case tcf of
 when '00' // Tag Check Faults have no effect on the PE
 return;
 when '01' // Tag Check Faults cause a synchronous exception
 AArch64.RaiseTagCheckFault(vaddress, iswrite);
 when '10' // Tag Check Faults are asynchronously accumulated
 AArch64.ReportTagCheckFault(PSTATE.EL, vaddress<55>);
 when '11'
 // Check for access performing both a read and a write.
 readwrite = acctype IN {AccType_ATOMICRW,
 AccType_ORDEREDATOMICRW,
 AccType_ORDEREDRW};

2.84 D17593
In section J1.1.2 (aarch64/exceptions), AArch64.TakeException and in section J1.2.2 (aarch32/
exceptions) in each of the AArch32.EnterXXXMode functions, the following is added after existing
calls to 'BranchTo':

 CheckExceptionCatch(TRUE); // Check for debug event on excep\
tion entry

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 70 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

In sections J1.1.4 (aarch64/instrs) and J1.2.3 (aarch32/functions), in the functions
AArch64.ExceptionReturn and AArch32.ExceptionReturn respectively, the following is added after
the calls to 'BranchTo':

 CheckExceptionCatch(FALSE); // Check for debug event on exception
 return

In section J1.3.1 (shared/debug), the following comment in CheckExceptionCatch:

 // Called after an exception entry or exit, that is, such that IsSecure() and
 PSTATE.EL are correct
 // for the exception target.

is updated to read:

 // Called after an exception entry or exit, that is, such that IsSecure() and
 PSTATE.EL are correct
 // for the exception target. When FEAT_Debugv8p2 is not implemented, this func\
tion might also be called
 // at any time.

The similar comment for returns is also updated. Such calls are outside the scope of the Armv8
Pseudocode model.

2.85 D17604
In section D13.2.50 (HDFGRTR_EL2, Hypervisor Debug Fine-Grained Read Trap Register), the
following field is added at bit [63]:

PMBIDR_EL1, bit [63]

When FEAT_SPE is implemented: PMBIDR_EL1. Trap MRS reads of PMBIDR_EL1 at EL1 using
AArch64 to EL2.

0b0 MRS reads of PMBIDR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 0b1, then MRS reads of PMBIDR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise: Reserved, RES0.

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 71 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

2.86 D17606
In section D13.2.48 (HCR_EL2, Hypervisor Configuration Register), in the EnSCXT field, the text
that reads:

When FEAT_CSV2 is implemented:

is replaced with:

When FEAT_CSV2_2 or FEAT_CSV2_1p2 is implemented:

The same change is made in the following sections:

• D13.2.53 (HFGRTR_EL2, Hypervisor Fine-Grained Read Trap Register), for the SCXTNUM_EL0
and SCXTNUM_EL1 fields,

• D13.2.54 (HFGWTR_EL2, Hypervisor Fine-Grained Write Trap Register), for the
SCXTNUM_EL0 and SCXTNUM_EL1 fields,

• D13.2.115 (SCR_EL3, Secure Configuration Register), for the EnSCXT field,

• D13.2.116 (SCTLR_EL1, System Control Register (EL1)), for the TSCXT field,

• D13.2.117 (SCTLR_EL2, System Control Register (EL2)), for the TSCXT field.

2.87 D17615
In section D13.6.10 (PMSIDR_EL1, Sample Profiling ID Register), the following field is added at bit
[24]:

PBT, bit [24]

Previous branch target Address packet. Defined values are:

0b0 Previous branch target Address packet not supported.

0b1 Previous branch target Address packet support implemented. FEAT_SPEv1p2 adds the
OPTIONAL functionality identified by the value 1.

Otherwise: Reserved, RAZ.

In section D13.2.59 (ID_AA64DFR0_EL1, AArch64 Debug Feature Register 0), in the PMSVer field
description, the following bulleted text in the 0b0011 value definition is deleted:

• The last branch target Address packet.

and is replaced by the following bullet:

• Support for the OPTIONAL previous branch target Address packet.

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 72 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

2.88 D17617
In section D5.5.1 (The stage 1 memory region attributes), in the subsection 'Stage 1 definition of
the XS attribute', the text that reads:

When FEAT_XS is implemented, all stage 1 memory types defined in the MAIR_ELx registers
have the XS attribute set to 1, unless they are any of the following, which have the XS attribute
set to 0:

• For Device memory:

◦ Device memory types that use the MAIR_ELx.Attrn encoding 0b0000dd01.

• For Normal memory:

◦ Inner Write-Back Cacheable, Outer Write-back Cacheable memory types, including any
memory types that are treated as Write-Back Cacheable as a result of IMPLEMENTATION
DEFINED choices in the architecture.

◦ Inner Write-through Cacheable and Outer Write-through Cacheable memory types that
use the MAIR_ELx.Attrn encoding 0b1010000.

◦ Inner Non-cacheable, Outer Non-cacheable memory types that use the MAIR_ELx.Attrn
encoding 0b01000000.

is corrected to read:

When FEAT_XS is implemented, all stage 1 memory types defined in the MAIR_ELx or TCR_ELx
registers have the XS attribute set to 1, unless they are any of the following, which have the XS
attribute set to 0:

• For Device memory:

◦ Device memory types that use the MAIR_ELx.Attrn encoding 0b0000dd01.

• For Normal memory:

◦ Inner Write-Back Cacheable, Outer Write-back Cacheable memory types defined in the
MAIR_ELx or TCR_ELx registers, including any memory types that are treated as Write-
Back Cacheable as a result of IMPLEMENTATION DEFINED choices in the architecture.

◦ Inner Write-through Cacheable and Outer Write-through Cacheable memory types that
use the MAIR_ELx.Attrn encoding 0b1010000.

◦ Inner Non-cacheable, Outer Non-cacheable memory types that use the MAIR_ELx.Attrn
encoding 0b01000000.

Similarly, in section G5.7.1 (Overview of memory region attributes for stage 1 translations), in the
subsection 'Stage 1 definition of the XS attribute', the text that reads:

When FEAT_XS is implemented, all stage 1 memory types defined in the MAIR0, MAIR1,
HMAIR0, HMAIR1, PRRR, and NMRR registers have the XS attribute set to 1, unless they are
Inner Write-Back Cacheable, Outer Write-back Cacheable, which have the XS attribute set to
0. This includes any memory types which, as a result of IMPLEMENTATION DEFINED choices in the
architecture, are treated as Write-Back Cacheable.

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 73 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

is clarified to read:

When FEAT_XS is implemented, all stage 1 memory types defined in the MAIR0, MAIR1,
HMAIR0, HMAIR1, PRRR, and NMRR or TTBCR or HTCR registers or in the page tables have the
XS attribute set to 1, unless they are Inner Write-Back Cacheable, Outer Write-back Cacheable,
which have the XS attribute set to 0. This includes any memory types which, as a result of
IMPLEMENTATION DEFINED choices in the architecture, are treated as Write-Back Cacheable.

2.89 D17632
In section D13.4.1 (PMCCFILTR_EL0, Performance Monitors Cycle Count Filter), in the descriptions
of the M and SH fields, the following Note is deleted:

This field is not visible in the AArch32 PMCCFILTR System register.

The equivalent Notes are deleted in section D13.4.9 (PMEVTYPER<n>_EL0, Performance Monitors
Event Type Registers, n = 0 - 30), in the descriptions of the M and SH fields.

2.90 D17633
In section J1.3.3 (shared/functions), the pseudocode function GenMPAMcurEL() generates the
default PARTID in some conditions when it should not.

As such, the code that reads as:

MPAMinfo GenMPAMcurEL(AccType acctype)
 :
 if HaveEMPAMExt() then
 if MPAMisEnabled() && (!secure || MPAM3_EL3.SDEFLT == '0') then
 if UsingAArch32() then
 :
 else
 mpamel = PSTATE.EL;
 :

is changed to read:

MPAMinfo GenMPAMcurEL(AccType acctype)
 :
 if HaveEMPAMExt() then
 if MPAMisEnabled() && (!secure || MPAM3_EL3.SDEFLT == '0') then
 if UsingAArch32() then
 :
 else
 validEL = TRUE;
 mpamel = PSTATE.EL;
 :

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 74 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

2.91 D17640
In section D4.4.8 (A64 Cache maintenance instructions), in the subsection 'Effects of virtualization
and Security state on the cache maintenance instructions', the footnote to table D4-7 that reads:

Dependencies on the VMID apply even when HCR_EL2.VM is set to 0. VTTBR_EL2.VMID resets
to zero, meaning there is a valid VMID.

is changed to read:

Dependencies on the VMID apply even when HCR_EL2.VM is set to 0. The architecture does
not define a reset value for VTTBR_EL2.VMID, and therefore, in any implementation that includes
EL2, the boot software executed when reset is deasserted must initialize VTTBR_EL2.VMID.

2.92 C17641
In section D5.9.2 (About Armv8 Translation Lookaside Buffers (TLBs)), in the subsection 'Global and
process-specific translation table entries', the text that reads:

When a PE is using the VMSAv8-64 translation table format, and is in Secure state, a translation
must be treated as non-global, regardless of the value of the nG bit, if NSTable is set to 1 at any
level of the translation table walk.

is clarified to read:

When a PE is using the VMSAv8-64 translation table format which supports both global and
non-global entries, and is in Secure state, a stage 1 translation must be treated as non-global,
regardless of the value of the nG bit, if NSTable is set to 1 at any level of the translation table
walk.

In section D5.3.4 (Control of Secure or Non-secure memory access), in the subsection 'Hierarchical
control of Secure or Non-secure memory accesses', the text that reads:

In addition, an entry fetched in Secure state is treated as non-global if it is read from the Non-
secure IPA space memory. That is, these entries must be treated as if nG==1, regardless of the
value of the nG bit.

is clarified to read:

In addition, an entry fetched in Secure state is treated as non-global if it is part of a stage 1
translation which supports both global and non-global entries, and the stage 1 translation was
read from a non-secure stage 1 output address . These entries must be treated as if nG==1,
regardless of the value of the nG bit.

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 75 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

2.93 C17651
In sections D13.3.9 (MDRAR_EL1, Monitor Debug ROM Address Register) and G8.3.12
(DBGDRAR, Debug ROM Address Register), the following text is added to the description of the
'Valid, bits [1:0]' field:

Arm recommends implementations set this field to zero.

Additionally, in section K2.1 (About the recommended external debug interface), in Table K2-1
'Recommended debug interface signals', the following text is added to the Notes column entries for
DBGROMADDR[n:12] and DBGROMADDRV:

Arm recommends these signals are tied LOW.

2.94 D17653
In section G6.2.4 (Timers), the text that reads:

A Secure PL1 physical timer. This timer:

• Is accessible from Secure EL1 using AArch32 when EL3 is using AArch64.

• Is accessible from Secure EL3 when EL3 is using AArch32.

is corrected to read:

A Secure PL1 physical timer. This timer is accessible from EL3 when EL3 is using AArch32. Note:
when EL3 is using AArch64, the AArch32 EL1 timers are not banked between Secure and Non-
secure state.

2.95 D17654
In section A2.5.1 (Architectural features added by Armv8.2), for FEAT_PAN2 , the text that reads:

This feature is mandatory in Armv8.2 implementations.

is updated to read:

This feature is OPTIONAL in Armv8.1 implementations and mandatory in Armv8.2
implementations.

In section D13.2.65 (ID_AA64MMFR1_EL1, AArch64 Memory Model Feature Register 1), PAN bits
[23:20], the values that read:

In Armv8.1, the permitted values are 0b0001 and 0b0011.

are updated to read:

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 76 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

In Armv8.1, the permitted values are 0b0001, 0b0010, and 0b0011.

2.96 C17669
In section B2.3.9 (Restrictions on the effects of speculation), and in section E2.3.9 (Restrictions on
the effects of speculation), the following Note is added:

Note: The prohibition of using data loaded under speculation with faults to form addresses,
condition codes or SVE predicate values does not prohibit the use of value predicted data from
such locations for such purposes, so long as the training of the data value prediction was from
the hardware defined context that is using the prediction. A consequence of this is that training
of value prediction cannot be based on data loaded under speculation with a translation or
permission fault.

2.97 D17673
In section H9.2.40 (EDPRSR, External Debug Processor Status Register), in the EPMAD field, the
condition that reads:

When FEAT_Debugv8p4 is implemented:

is corrected to read:

When FEAT_Debugv8p4 is implemented and FEAT_PMUv3 is implemented:

2.98 C17680
In section H9.2.42 (EDSCR, External Debug Status and Control Register), in the RW field, the value
text that reads:

RW Meaning Applies when

0b1111 All Exception levels are using AArch64 or the PE is in Non-debug state.

0b1110 The PE is in Debug state. EL0 is using AArch32. All other Exception levels are using
AArch64. Only permitted if the PE is executing at EL0.

When AArch32 is supported at
any Exception level

is clarified to read:

RW Meaning Applies when

0b1111 Any of the following:

- The PE is in Non-debug state.

- The PE is at EL0 using AArch64.

- The PE is not at EL0, and EL1, EL2, and EL3 are using AArch64.

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 77 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

RW Meaning Applies when
0b1110 The PE is in Debug state at EL0. EL0 is using AArch32. EL1, EL2, and EL3 are

using AArch64.
When AArch32 is supported at any
Exception level

2.99 D17682
In section G8.2.54 (FPSCR, Floating-Point Status and Control Register), the accessibility
pseudocode that reads:

 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TFP
 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);

is replaced with:

 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED
 \"EL3 trap priority when SDD == '1'\" && !ELUsingAArch32(EL3) && CPTR_EL3.TFP ==
 '1' then
 UNDEFINED;
.
.
.

 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;

Also, the accessibility pseudocode that reads:

 if HCR_EL2.E2H == '0' && CPTR_EL2.TFP == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);

is replaced with:

 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED
 \"EL3 trap priority when SDD == '1'\" && !ELUsingAArch32(EL3) && CPTR_EL3.TFP ==
 '1' then
 UNDEFINED;

.

.

.

 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;

The following accessibility pseudocode is added:

 elsif CPTR_EL3.TFP == '1' then
 AArch64.AArch32SystemAccessTrap(EL3, 0x07);

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 78 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

The equivalent changes are made in the following sections:

• G8.2.53 (FPEXC, Floating-Point Exception Control register),

• G8.2.55 (FPSID, Floating-Point System ID register),

• G8.2.115 (MVFR0, Media and VFP Feature Register 0),

• G8.2.116 (MVFR1, Media and VFP Feature Register 1),

• G8.2.117 (MVFR2, Media and VFP Feature Register 2).

Additionally, in section D13.2.32 (CPTR_EL3, Architectural Feature Trap Register (EL3)), the text in
the TFP, bit [10] field description is clarified to read:

This includes the following registers, all reported using ESR_ELx.EC value 0x07:

• FPCR, FPSR, FPEXC32_EL2, and any of the SIMD and floating-point registers V0-V31,
including their views as D0-D31 registers or S0-S31 registers.

• MVFR0, MVFR1, MVFR2, FPSCR, FPEXC, and any of the SIMD and floating-point registers
Q0-Q15, including their views as D0-D31 registers or S0-S31 registers.

• VMSR accesses to FPSID. Permitted VMSR accesses to FPSID are ignored, but for the
purposes of this trap the architecture defines a VMSR access to the FPSID from EL1 or higher
as an access to a SIMD and floating-point register.

2.100 D17684
In section D13.2.68 (ID_AA64PFR1_EL1, AArch64 Processor Feature Register 1), in the CSV2_frac
field, the text that reads:

In Armv8.0, the permitted values are 0b0000, 0b0001, and 0b0010. From Armv8.5, the
permitted values are 0b0001 and 0b0010.

is changed to read:

From Armv8.0, the permitted values are 0b0000, 0b0001, and 0b0010.

2.101 C17685
In section B1.3.6 (About PSTATE.DIT), after the bullet point that reads:

• All loads and stores must have their timing insensitive to the value of the data being loaded or
stored.

the following Note is added:

Note: The use of value prediction for load data values when PSTATE.DIT is set, is not compatible
with the requirement that the timing is insensitive to the data value being loaded.

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 79 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

2.102 D17686
In section A2.5.1 (Architectural features added by Armv8.2), under the item 'FEAT_XNX,
Translation table stage 2 Unprivileged Execute-never', the text that reads:

This feature is mandatory in Armv8.2 implementations.

is clarified to read:

This feature is mandatory in Armv8.2 implementations that implement EL2.

Similarly, in section A2.7.1 (Architectural features added by Armv8.4), under the item
'FEAT_S2FWB, Stage 2 forced Write-Back', the line that reads:

This feature is mandatory in Armv8.4 implementations.

is clarified to read:

This feature is mandatory in Armv8.4 implementations that implement EL2.

2.103 D17687
In section D13.2.135 (TTBR0_EL1, Translation Table Base Register 0 (EL1)), the text in the BADDR
field description that reads:

When the value of ID_AA64MMFR0_EL1.PARange indicates that the implementation does not
support a 52 bit PA size, if a translation table lookup uses this register when TCR_EL1.IPS is
0b110 and the value of register bits[5:2] is nonzero, an Address size fault is generated.

is changed to read:

When the value of ID_AA64MMFR0_EL1.PARange indicates that the implementation does not
support a 52 bit PA size, if a translation table lookup uses this register when the Effective value
of TCR_EL1.IPS is 0b110 and the value of register bits[5:2] is nonzero, an Address size fault is
generated.

The equivalent changes are made in the following sections:

• D13.2.136 (TTBR0_EL2, Translation Table Base Register 0 (EL2)),

• D13.2.137 (TTBR0_EL3, Translation Table Base Register 0 (EL3)),

• D13.2.138 (TTBR1_EL1, Translation Table Base Register 1 (EL1)),

• D13.2.139 (TTBR1_EL2, Translation Table Base Register 1 (EL2)).

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 80 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

2.104 D17694
In section A2.10.1 (Architectural features added by Armv8.7), under the item 'FEAT_AFP, Alternate
floating-point behavior', the text that reads:

This feature is OPTIONAL in Armv8.7 implementations.

is corrected to read:

This feature is mandatory in Armv8.7 implementations that implement floating-point.

2.105 D17700
In section G8.2.126 (SCTLR, System Control Register), the text that reads:

When FEAT_CSV2 is implemented:

is corrected to read:

When FEAT_SPECRES is implemented:

2.106 D17705
In section D13.2.48 (HCR_EL2, Hypervisor Configuration Register), in the FMO, bit [3] field, the
definition of value 0b0 that currently reads:

0b0 When executing at Exception levels below EL2, and EL2 is enabled in the current Security
state:

• Physical FIQ interrupts are not taken to EL2.

• When the value of HCR_EL2.TGE is 0, if the PE is executing at EL2 using AArch64, physical
FIQ interrupts are not taken unless they are routed to EL3 by the SCR_EL3.FIQ bit.

• Virtual FIQ interrupts are disabled.

is corrected to read:

0b0 When executing at Exception levels below EL2, and EL2 is enabled in the current Security
state:

• When the value of HCR_EL2.TGE is 0, Physical FIQ interrupts are not taken to EL2.

• When the value of HCR_EL2.TGE is 1, Physical FIQ interrupts are taken to EL2 unless they
are routed to EL3.

• Virtual FIQ interrupts are disabled.

Within the same section, equivalent edits are made for the IMO, bit [4], and AMO, bit [5] fields.

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 81 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

2.107 D17712
In section D13.2.38 (ESR_EL2, Exception Syndrome Register (EL2)), in the subsection 'ISS encoding
an exception from a Data Abort', the text in the SRT, bits [20:16] field that reads:

Syndrome Register Transfer. When FEAT_LS64 is implemented, if a memory access generated
by an ST64BV, ST64BV0, ST64B, or LD64B instruction generates a Data Abort for a Translation
fault, Access flag fault, or Permission fault, then this field holds register specifier, Xt.

is corrected to read:

Syndrome Register Transfer. The register number of the Wt/Xt/Rt operand of the faulting
instruction.

2.108 D17715
In section D13.5.4 (AMCNTENCLR0_EL0, Activity Monitors Count Enable Clear Register 0), the
text that reads:

Bits [15:N] are RAZ/WI. N is the value in AMCGCR_EL0.CG0NC.

is clarified to read:

When N is less than 16, bits [15:N] are RAZ/WI, where N is the value in AMCGCR_EL0.CG0NC.

Equivalent changes are made in the following sections:

• D13.5.6 (AMCNTENSET0_EL0, Activity Monitors Count Enable Set Register 0),

• G8.5.3 (AMCNTENCLR0, Activity Monitors Count Enable Clear Register 0),

• G8.5.5 (AMCNTENSET0, Activity Monitors Count Enable Set Register 0),

• I5.5.7 (AMCNTENCLR0, Activity Monitors Count Enable Clear Register 0),

• I5.5.9 (AMCNTENSET0, Activity Monitors Count Enable Set Register 0).

In section D13.5.5 (AMCNTENCLR1_EL0, Activity Monitors Count Enable Clear Register 1), the
text that reads:

Bits [15:N] are RAZ/WI. N is the value in AMCGCR_EL0.CG1NC.

is clarified to read:

When N is less than 16, bits [15:N] are RAZ/WI, where N is the value in AMCGCR_EL0.CG1NC.

Equivalent changes are made in the following sections:

• D13.5.7 (AMCNTENSET1_EL0, Activity Monitors Count Enable Set Register 1),

• G8.5.4 (AMCNTENCLR1, Activity Monitors Count Enable Clear Register 1),
Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 82 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

• G8.5.6 (AMCNTENSET1, Activity Monitors Count Enable Set Register 1),

• I5.5.8 (AMCNTENCLR1, Activity Monitors Count Enable Clear Register 1),

• I5.5.10 (AMCNTENSET1, Activity Monitors Count Enable Set Register 1).

2.109 D17722
In section D1.9.1 (PE state on reset to AArch64 state), the following text is deleted:

• The enables for the counter event stream are set to 0. This means that the following bits are
set to 0:

◦ CNTKCTL_EL1.EVNTEN.

◦ If the implementation includes EL2, CNTHCTL_EL2.EVNTEN.

Additionally, in section D13.8.2 (CNTHCTL_EL2, Counter-timer Hypervisor Control register) in the
'Otherwise' fieldset, and section D13.8.15 (CNTKCTL_EL1, Counter-timer Kernel Control register),
the text in the EVNTEN, bit [2] description that reads:

On a Warm reset, this field resets to 0.

is changed to read:

On a Warm reset, this field resets to an architecturally UNKNOWN value.

2.110 D17723
In H9.2.42 (EDSCR, External Debug Status and Control Register), in the field 'RW, bits [13:10]', the
value text that reads:

RW Meaning Applies when

0b110x The PE is in Debug state. EL0 and EL1 are using AArch32. EL2 and EL3
are using AArch64. Only permitted if EL2 is implemented and enabled in
the current Security state.

When AArch32 is supported at any Exception level

0b10xx The PE is in Debug state. EL0, EL1, and, if implemented in the current
Security state, EL2 are using AArch32. EL3 is using AArch64.

When AArch32 is supported at any Exception level,
EL3 is implemented, EL3 is using AArch64 and EL2
is implemented

is corrected to read:

RW Meaning Applies when

0b110x The PE is in Debug state. EL0 and EL1 are using AArch32. EL2 is enabled in the
current Security state and using AArch64. If implemented, EL3 is using AArch64.

When AArch32 is supported at any
Exception level and EL2 is implemented

0b10xx The PE is in Debug state. EL0 and EL1 are using AArch32. EL2 is not implemented,
disabled in the current Security state, or using AArch32. EL3 is using AArch64.

When AArch32 is supported at any
Exception level and EL3 is implemented

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 83 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

2.111 C17732
In section D13.1.3, (Principles of the ID scheme for fields in ID registers), a new subsection
'Alternative ID scheme used for ID_AA64MMFR0_EL1 granule fields' is created, which explains the
scheme and the code required by software that depends on a particular granule size.

In section D13.2.64 (ID_AA64MMFR0_EL1, AArch64 Memory Model Feature Regsiter 0) for each
of the TGranx_2 fields, the following note is added:

Note: This field does not follow the usual ID scheme. See [xref to new section].

2.112 C17734
In section H6.4.1 (Powerup request mechanism if FEAT_DoPD is implemented), the following note
is added:

Note: If the Core power domain can be powered down independently of the Debug power
domain, Arm recommends the system implements an external debug component with a powerup
request mechanism which can request the Core power domain to be powered up.

2.113 C17735
In section D13.6.10 (PMSIDR_EL1, Sample Profiling ID Register), the following text is added to the
description of the MaxSize:

The values 0b0100 and 0b0101 are not permitted for an implementation.

2.114 R17738
In section H2.4.2 (Executing instructions in Debug state), sub-section 'Executing T32 instruction in
Debug state', under the heading 'Instructions that move System or Special-purpose registers to or
from a general-purpose register', the entry that reads:

MRS SPSR, MSR SPSR.

is updated to read:

MRS SPSR, MSR SPSR_fsxc (register).

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 84 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

2.115 D17754
In section J1.1.1 (aarch64/debug), in the pseudocode function
AArch64.GenerateDebugExceptionsFrom(), the code that reads:

 enabled = !HaveEL(EL3) || !secure || MDCR_EL3.SDD == '0';

is updated to read:

 if HaveEL(EL3) && secure then
 enabled = MDCR_EL3.SDD == '0';
 if from == EL0 && ELUsingAArch32(EL1) then
 enabled = enabled || SDER32_EL3.SUIDEN == '1';
 else
 enabled = TRUE;

2.116 D17762
In section G3.1.2 (Register controls to enable self-hosted trace), the lines that read:

If FEAT_TRF is implemented, and external self-hosted trace is not implemented, self-hosted trace
is always enabled. If FEAT_TRF is implemented, and external self-hosted trace is implemented,
self-hosted trace is also enabled if one of the following is true:

are changed to read:

If FEAT_TRF is implemented, self-hosted trace is enabled if one of the following is true:

And the line that reads:

While SelfHostedTraceEnabled() == FALSE, ExternalSecureNoninvasiveDebugEnabled() and
ExternalNoninvasiveDebugEnabled() control whether external tracing is prohibited or allowed in
each Security state.

is changed to read:

While SelfHostedTraceEnabled() == FALSE, ExternalSecureNoninvasiveDebugEnabled() and
ExternalNoninvasiveDebugEnabled() control whether tracing is prohibited or allowed in each
Security state.

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 85 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

2.117 D17763
In section J1.1.4 (aarch64/instrs), the following is updated:

The lines in function TLBI_RIPAS2() that read as:

r.address.address = start_address<51:0>;

TLBI(r);

are corrected to read as:

r.address.address = start_address<51:0>;
r.address.NS = if security == SS_NonSecure then '1' else Xt<63>;

TLBI(r);

2.118 D17765
In section J1.1.2 (aarch64/exceptions), in the pseudocode function AArch64.TagCheckFault() the
code that reads:

AArch64.TagCheckFault(bits(64) vaddress, AccType acctype, boolean iswrite)
 bits(2) tcf = AArch64.EffectiveTCF(acctype);

 case tcf of
 when '00' // Tag Check Faults have no effect on the PE
 return;
 when '01' // Tag Check Faults cause a synchronous exception
 AArch64.RaiseTagCheckFault(vaddress, iswrite);
 when '10' // Tag Check Faults are asynchronously accumulated
 AArch64.ReportTagCheckFault(PSTATE.EL, vaddress<55>);

is updated to read:

AArch64.TagCheckFault(bits(64) vaddress, AccType acctype, boolean iswrite)
 bits(2) tcf, el;
 el = AArch64.AccessUsesEL(acctype);
 tcf = AArch64.EffectiveTCF(acctype);
 case tcf of
 when '00' // Tag Check Faults have no effect on the PE
 return;
 when '01' // Tag Check Faults cause a synchronous exception
 AArch64.RaiseTagCheckFault(vaddress, iswrite);
 when '10' // Tag Check Faults are asynchronously accumulated
 AArch64.ReportTagCheckFault(el, vaddress<55>);

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 86 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

2.119 D17767
In section D5.11.2 (Instruction caches), in the subsection 'VPIPT (VMID-aware PIPT) instruction
caches', the text that currently reads:

For a VPIPT instruction cache:

• Instruction fetches from Non-secure EL1 and Non-secure EL0 are only permitted to hit in the
cache if the instruction fetch is made using the VMID that was used when the entry in the
instruction cache was fetched.

• An instruction cache maintenance instruction executed at Non-secure EL0 or at Non-secure
EL1 is required to have an effect on entries in the instruction cache only if those entries were
fetched using the VMID that is current when the cache maintenance instruction is executed.

is modified to read:

For a VPIPT instruction cache:

• If VMIDs are being used for the current security state, instruction fetches from EL1 and EL0
are only permitted to hit in the cache if the instruction fetch is made using the VMID that was
used when the entry in the instruction cache was fetched.

• If VMIDs are being used for the current security state, an instruction cache maintenance
instruction executed at EL0 or at EL1 is required to have an effect on entries in the
instruction cache only if those entries were fetched using the VMID that is current when the
cache maintenance instruction is executed.

The same edit is made in section G5.10.2 (Instruction Caches).

2.120 D17773
In section D7.10.3 (Common event numbers), subsection 'Common microarchitectural events'
event 0x813D, ITLB_WALK_RD, the text:

The counter counts each access counted by L1I_TLB_RD that causes a refill or update of an
instruction or unified LB involving at least one translation table walk access.

is updated to:

The counter counts each access counted by L1I_TLB_RD that causes a refill or update of an
instruction TLB involving at least one translation table walk access.

And in event 0x813F ITLB_WALK_PRFM, the text:

The counter counts each access counted by L1I_TLB_PRFM that causes a refill or update of an
instruction or unified TLB involving at least one translation table walk access.

is updated to:

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 87 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

The counter counts each access counted by L1I_TLB_PRFM that causes a refill or update of an
instruction TLB involving at least one translation table walk access.

2.121 C17774
In section K1.1.12 (CONSTRAINED UNPREDICTABLE behaviors due to caching of control or data
values), the title that reads:

CONSTRAINED UNPREDICTABLE behaviors due to caching of control or data values

is changed to read:

CONSTRAINED UNPREDICTABLE behaviors due to caching of System register control or data values

Also, the text that reads:

The Arm architecture allows copies of control values or data values to be cached in a cache or
TLB.

is changed to read:

The Arm architecture allows copies of System register control or data values to be cached in a
cache or TLB.

2.122 C17775
In section D13.2.83 (ID_MMFR4_EL1, AArch32 Memory Model Feature Register 4), in the
description of the EVT bit, the text that reads:

From Armv8.5, the permitted values are:

• 0b0000 when EL2 is not implemented.

• 0b0010 when EL2 is implemented.

is clarified to read:

From Armv8.5, the permitted values are:

• 0b0000 when EL2 is not implemented or does not support AArch32.

• 0b0010 when EL2 is implemented and supports AArch32.

An equivalent clarification is made in section G8.2.96 (ID_MMFR4, Memory Model Feature
Register 4).

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 88 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

2.123 D17777
In section C5.1.3 (op0==0b00, architectural hints, barriers and CLREX, and PSTATE access), in the
subsection 'Instructions for accessing the PSTATE fields', the line that reads:

Writes to PSTATE.{PAN, D, A, I, F} occur in program order without the need for additional
synchronization.

is updated to read:

Writes to PSTATE occur in program order without the need for additional synchronization.

2.124 D17782
In section F4.1.7 (Data-processing immediate), in the subsection 'Move Special Register and Hints
(immediate)', a new line is added to the table:

R:imm4 imm12 Instruction page Feature

00000 xxxx0001011x Reserved hint, behaves as NOP. -

And the following line is removed:

R:imm4 imm12 Instruction page Feature

00000 xxxx0001111x Reserved hint, behaves as NOP. -

2.125 D17783
In section D13.2.63 (ID_AA64ISAR2_EL1, AArch64 Instruction Set Attribute Register 2), the text
that reads:

Configurations

This register is present only from Armv8.7. Otherwise, direct accesses to ID_AA64ISAR2_EL1 are
UNDEFINED. This register is introduced in 8.7.

is replaced by the following:

Configurations

Note: Prior to the introduction of the features described by this register, this register was
unnamed and reserved, RES0 from EL1, EL2, and EL3.

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 89 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

2.126 C17811
In section I5.8.32 (ERR<n>STATUS, Error Record Primary Status Register, n = 0 - 65534), under the
heading 'Accessing the ERR<n>STATUS', the text that reads:

To ensure correct and portable operation, when software is clearing the valid fields in the register
to allow new errors to be recorded, Arm recommends that software:

• Read ERR<n>STATUS and determine which fields need to be cleared to zero.

• Write ones to all the W1C fields that are nonzero in the read value.

• Write zero to all the W1C fields that are zero in the read value.

• Write zero to all the RW fields.

is clarified to read:

To ensure correct and portable operation, when software is clearing the valid fields in the register
to allow new errors to be recorded, Arm recommends that software:

• Read ERR<n>STATUS and determine which fields need to be cleared to zero.

• In a single write to ERR<n>STATUS: – Write ones to all the W1C fields that are nonzero in
the read value. – Write zero to all the W1C fields that are zero in the read value. – Write zero
to all the RW fields.

• Read back ERR<n>STATUS after the write to confirm no new fault has been recorded.

2.127 D17819
In section D7.10.1 (Definitions), the term 'Operation counts for dot-product and multiply-
accumulate operations' is changed to 'ALU operation counts', and the text that reads:

Table D7-5 gives the operation counts for any combination of an applicable instruction when a
PMU event in the range 0x80C0 to 0x80CF is implemented.

is changed to read:

The PMU events 0x80C0 to 0x80CF count the number of ALU operations performed by each
instruction. Table D7-5 gives the ALU operation counts for applicable instructions for these PMU
events. For other instructions:

• Multiply-add, multiply-subtract, fused multiply-add, and fused multiply-subtract instructions
generate two ALU operations of the specified type per input element. For floating-point
operations, these are the instructions counted by FP_FMA_SPEC.

• All other data processing operations generate 1 ALU operation of the specified type per input
element.

Within the same section, the following text is added to the definition of the term 'Operation
speculatively executed':

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 90 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

A Microarchitectural operation that is Speculatively executed.

Note: In some events, operation has a more specific meaning described in the event. See also
ALU operation counts.

In section D7.10.3 (Common event numbers), in subsection 'Common microarchitectural events',
the part of the 0x80C1, FP_FIXED_OPS_SPEC event definition that reads:

Non-scalable floating-point element Operations speculatively executed

The counter counts speculatively executed operations that would be counted by FP_SPEC but
not by SVE_FP_SPEC.

is changed to read:

Non-scalable floating-point element ALU operation speculatively executed

The counter counts the number of ALU operations generated for speculatively executed
operations that would be counted by FP_SPEC but not by SVE_FP_SPEC.

Similar changes are made to the other FIXED_OPS and SCALE_OPS events (0x80C0 to 0x80CF),
and the descriptions of counts for scalar and multiply-add operations is removed from these
events.

2.128 D17820
The description of the condition HaveAnyAArch32() will be replaced, to mean 'There is at least
one Exception level that supports AArch32', and an equivalent clarification will be made for the
condition HaveAnyAArch64().

As a consequence of existing architecture rules, HaveAnyAArch32() can be replaced by the newer
condition HaveAArch32EL(EL0), and HaveAnyAArch64() can be replaced by the newer condition !
HighestELUsingAArch32(), but in some cases, stricter conditions can be applied.

2.129 D17826
In section D13.2.48 (HCR_EL2, Hypervisor Configuration Register), the following text in the ATA,
bit [56] description is removed:

This field is permitted to be cached in a TLB.

The equivalent changes are made in the following sections:

• D13.2.115 (SCR_EL3, Secure Configuration Register), in the ATA, bit [26] description,

• D13.2.116 (SCTLR_EL1, System Control Register (EL1)), in the ATA, bit [43] description, and
ATA0, bit [42] description,

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 91 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

• D13.2.117 (SCTLR_EL2, System Control Register (EL2)), in the ATA, bit [43] description, and
ATA0, bit [42] description,

• D13.2.118 (SCTLR_EL3, System Control Register (EL3)), in the ATA, bit [43] description.

2.130 D17831
In section J1.3.3 (shared/functions), InterruptPending() which reads:

boolean InterruptPending()
 bit vIRQstatus = (if VirtualIRQPending() then '1' else '0') OR HCR_EL2.VI;
 bit vFIQstatus = (if VirtualFIQPending() then '1' else '0') OR HCR_EL2.VF;
 bits(3) v_interrupts = HCR_EL2.VSE : vIRQstatus : vFIQstatus;

 pending_physical_interrupt = (IRQPending() || FIQPending() ||
 IsPhysicalSErrorPending());
 pending_virtual_interrupt = !IsInHost() && ((v_interrupts AND
 HCR_EL2.<AMO,IMO,FMO>) != '000');
 return pending_physical_interrupt || pending_virtual_interrupt;

is updated to read:

 boolean pending_virtual_interrupt = FALSE;
 boolean pending_physical_interrupt = (IRQPending() || FIQPending() ||
 IsPhysicalSErrorPending());
 if EL2Enabled() && PSTATE.EL IN {EL0, EL1} && HCR_EL2.TGE == '0' then
 boolean virq_pending = HCR_EL2.IMO == '1' && (VirtualIRQPending() ||
 HCR_EL2.VI == '1') ;
 boolean vfiq_pending = HCR_EL2.FMO == '1' && (VirtualFIQPending() ||
 HCR_EL2.VF == '1');
 boolean vsei_pending = HCR_EL2.AMO == '1' && (IsVirtualSErrorPending() ||
 HCR_EL2.VSE == '1');
 pending_virtual_interrupt = vsei_pending || virq_pending || vfiq_pending;
\t\t
\t\treturn pending_physical_interrupt || pending_virtual_interrupt;

2.131 D17834
In section H9.3.14 (CTICONTROL, CTI Control register), in the GLBEN field, the text:

If a previously asserted output trigger has not been acknowledged, it remains asserted after the
mapping functions are disabled.

is replaced with:

If a previously asserted output trigger has not been acknowledged, it is CONSTRAINED
UNPREDICTABLE which of the following occurs:

• The output trigger remains asserted after the mapping functions are disabled.

• The output trigger is deasserted after the mapping functions are disabled.

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 92 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

2.132 D17837
In section J1.2.2 (aarch32/exceptions), the pseudocode function AArch32.ReportDataAbort() now
uses the correct DFSR format to report synchronous External aborts to Monitor mode.

The code that reads as:

 long_format = FALSE;
 if route_to_monitor && !IsSecure() then
 long_format = TTBCR_S.EAE == '1';
 if !IsSErrorInterrupt(fault) && !long_format then
 long_format = PSTATE.EL == EL2 || TTBCR.EAE == '1';

is updated to read:

 long_format = FALSE;
 if route_to_monitor && !IsSecure() then
 long_format = ((TTBCR_S.EAE == '1') ||
 (IsExternalSyncAbort(fault) && ((PSTATE.EL == EL2 ||
 TTBCR.EAE == '1') ||
 (fault.secondstage && boolean IMPLEMENTATION_DEFINED \"Stage
 2 synchronous external abort reports using Long-descriptor format when TTBCR_S.EAE
 is 0b0\"))));

2.133 D17859
In section G8.2.89 (ID_ISAR4, Instruction Set Attribute Register 4), in the SMC field, the text that
reads:

In Armv8-A, the only permitted value is 0b0001.

is corrected to read:

In Armv8-A, the permitted values are:

• If EL3 is implemented, the only permitted value is 0b0001.

• If neither EL3 nor EL2 is implemented, the only permitted value is 0b0000.

The equivalent change is made in section D13.2.76 (ID_ISAR4_EL1, AArch32 Instruction Set
Attribute Register 4).

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 93 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

2.134 D17867
In section D5.10.2 (TLB maintenance instructions), in the subsection 'Ordering and completion of
TLB maintenance instructions', the text that currently reads:

A TLB maintenance operation without the nXS qualifier generated by a TLB maintenance
instruction is finished for a PE when all memory accesses generated by that PE using in-scope old
translation information are complete.

A TLB maintenance operation with the nXS qualifier generated by a TLB maintenance instruction
is finished for a PE when all memory accesses with the XS attribute set to 0 generated by that PE
using in-scope old translation information are complete.

is enhanced to read:

A TLB maintenance operation without the nXS qualifier generated by a TLB maintenance
instruction is finished for a PE when:

• All memory accesses generated by that PE using in-scope old translation information are
complete.

• All memory accesses RWx generated by that PE are complete. RWx is the set of all memory
accesses generated by instructions for that PE that appear in program order before an
instruction (I1) executed by that PE where:

• I1 uses the in-scope old translation information.

• The use of the in-scope old translation information generates a synchronous data abort.

• If I1 did not generate an abort from use of the in-scope old translation information, I1 would
generate a memory access that RWx would be locally-ordered-before. A TLB maintenance
operation with the nXS qualifier generated by a TLB maintenance instruction is finished for a
PE when:

• All memory accesses with the XS attribute set to 0 generated by that PE using in-scope old
translation information are complete.

• All memory accesses RWx generated by that PE are complete. RWx is the set of all memory
accesses generated by instructions for that PE that appear in program order before an
instruction (I1) executed by that PE where:

• I1 uses the in-scope old translation information.

• The use of the in-scope old translation information generates a synchronous data abort.

• If I1 did not generate an abort from use of the in-scope old translation information, I1 would
generate a memory access with the XS attribute set to 0 that RWx would be locally-ordered-
before.

The equivalent changes are made in section G5.9.1 (General TLB maintenance requirements).

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 94 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

2.135 D17870
In sections B2.3.3 (Ordering relations) and E2.3.3 (Ordering relations), under the heading 'Barrier-
ordered-before', the clause that reads:

• RW1 appears in program order before an atomic instruction with both Acquire and Release
semantics that appears in program order before RW2.

is changed to read:

• RW1 is a memory write effect W1 and is generated by an atomic instruction with both
Acquire and Release semantics.

2.136 D17883
In section A1.5.4 (Flushing denormalized numbers to zero), in the subsection 'Flushing
denormalized outputs to zero', the line that reads:

If FPCR.AH == 1, and if FPCR.FZ == 1, Advanced SIMD, floating-point and BF16 instructions,
for single-precision, double-precision and BF16 outputs, the FPCR.FZ setting does not cause
denormalized outputs to be flushed to zero, although other factors might cause denormalized
outputs to be flushed to zero.

is corrected to read:

If FPCR.AH == 1, and if FPCR.FZ == 0, Advanced SIMD, floating-point and BF16 instructions,
for single-precision, double-precision and BF16 outputs, the FPCR.FZ setting does not cause
denormalized outputs to be flushed to zero, although other factors might cause denormalized
outputs to be flushed to zero.

In section C5.2.7 (FPCR, Floating-point Control Register), the following changes are made:

The definition of the FIZ, bit [0] that currently reads:

0b0 If FPCR.AH is 0, this bit is RES0. If FPCR.AH is 1, disables flushing to zero of inputs that
are single-precision, double-precision, and BF16 denormalized numbers, other than for some
instructions. For more information, see 'Flushing denormalized numbers to zero'.

0b1 If FPCR.AH is 0, this bit is RES0. If FPCR.AH is 1, enables flushing to zero of inputs that
are single-precision, double-precision, and BF16 denormalized numbers, other than for some
instructions. For more information, see 'Flushing denormalized numbers to zero'.

is modified to read:

0b0 The flushing to zero of single-precision and double-precision denormalized inputs to
floating-point instructions not enabled by this control, but other factors might cause the input
denormalized numbers to be flushed to zero.

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 95 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

0b1 Denormalized single-precision and double-precision inputs to most floating-point
instructions flushed to zero.

For more information, see 'Flushing denormalized numbers to zero' and the pseudocode of the
floating-point instructions.

The definition of the FZ, bit [24] that currently reads:

0b0 If FPCR.AH is 0, disables flushing to zero of inputs and outputs that are single-precision,
double-precision, and BF16 denormalized numbers, other than for some instructions. For more
information, see 'Flushing denormalized numbers to zero'. If FPCR.AH is 1, disables flushing to
zero of outputs that are single-precision, double-precision, and BF16 denormalized numbers,
other than for some instructions. For more information, see 'Flushing denormalized numbers to
zero'.

0b1 Flushing denormalized numbers to zero enabled. If FPCR.AH is 0, enables flushing to
zero of inputs and outputs that are single-precision, double-precision, and BF16 denormalized
numbers, other than for some instructions. For more information, see 'Flushing denormalized
numbers to zero'. If FPCR.AH is 1, enables flushing to zero of outputs that are single-precision,
double-precision, and BF16 denormalized numbers, other than for some instructions. For more
information, see 'Flushing denormalized numbers to zero'.

The value of this bit controls both scalar and Advanced SIMD floating-point arithmetic.

is modified to read:

0b0 If FPCR.AH is 0, the flushing to zero of single-precision and double-precision denormalized
inputs to, and outputs of, floating-point instructions not enabled by this control, but other
factors might cause the input denormalized numbers to be flushed to zero. If FPCR.AH is 1, the
flushing to zero of single-precision and double-precision denormalized outputs of floating-point
instructions not enabled by this control, but other factors might cause the input denormalized
numbers to be flushed to zero.

0b1 If FPCR.AH is 0, denormalized single-precision and double-precision inputs to, and outputs
from, floating-point instructions are flushed to zero. If FPCR.AH is 1, denormalized single-
precision and double-precision outputs from floating-point instructions are flushed to zero.

When FEAT_AFP is implemented, for more information see 'Flushing denormalized numbers to
zero' and the pseudocode of the floating-point instructions.

The definition of the AH, bit [1] that currently reads:

Alternate Handling. Controls alternate handling of denormalized floating-point numbers.

0b0 FPCR.FZ controls flushing to zero of inputs and outputs that are single-precision, double-
precision, and BF16 denormalized numbers. FPCR.FIZ is RES0. For half-precision, single-precision,
and double-precision numbers, the test for a denormalized number for the purpose of flushing
the output to zero occurs before rounding. For more information, see 'Flushing denormalized
numbers to zero'.

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 96 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

0b1 FPCR.FZ controls flushing to zero of outputs that are single-precision, double-precision,
and BF16 denormalized numbers. For all precisions, the test for a denormalized number for
the purpose of flushing the output to zero occurs after rounding with an unbounded exponent.
FPCR.FIZ controls flushing to zero of inputs that are single-precision, double-precision, and BF16
denormalized numbers. Some instructions unconditionally flush to zero. For more information,
see 'Flushing denormalized numbers to zero'. The AH bit affects the generation and operation
of floating-point exceptions. For more information, see 'Floating-point exceptions and exception
traps'.

is modified to read:

Alternate Handling. Controls alternate handling of floating-point numbers.

The Arm architecture supports two models for handing some of the corner cases of the floating-
point behaviors, such as the nature of flushing of denormalized numbers, the detection of
tininess and other exceptions and a range of other behaviors. The value of FPCR.AH bit selects
between these models.

For more information on the FPCR.AH bit, see 'Flushing denormalized numbers to zero', 'Floating-
point exceptions and exception traps' and the pseudocode of the floating-point instructions.

2.137 R17892
In sections D11.2.3 (Event streams) and G6.2.3 (Event Streams), the following Note is added:

Note: If the event stream is configured to produce events from the low order bits of the counter
when the counter frequency is very high (for example 1GHz), then the practical update rate of
the counter might mean that the event stream is not generated as the low order bit might not
change. Software can rely on an event stream rate of at least 1MHz in normal operation.

2.138 D17896
In section D13.2.123 (TCR_EL1, Translation Control Register (EL1)), the text under the 'Otherwise'
heading in the HWU* fields that reads:

Reserved, RES0.

is corrected to read:

Reserved, RAZ/WI.

Equivalent changes are made to HWU* fields in the following sections:

• D13.2.124 (TCR_EL2, Translation Control Register (EL2)),

• D13.2.125 (TCR_EL3, Translation Control Register (EL3)),

• D13.2.148 (VTCR_EL2, Virtualization Translation Control Register),

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 97 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

• G8.2.165 (TTBCR2, Translation Table Base Control Register 2),

• G8.2.171 (VTCR, Virtualization Translation Control Register),

and to the T2E field in section G8.2.164 (TTBCR, Translation Table Base Control Register).

2.139 E17909
In section A2.10.1 (Architectural features added by Armv8.7), the title 'FEAT_WFxT, WFE and WFI
instructions with timeout' is updated to include FEAT_WFxT2, and the following text is added to
the feature description:

FEAT_WFxT2 adds a mechanism to report the register number that holds the timeout value in
ESR_ELx for trapped WFET and WFIT instructions.

FEAT_WFxT is mandatory in Armv8.7 implementations. FEAT_WFxT2 is OPTIONAL in Armv8.7
implementations.

Note: Arm deprecates not implementing FEAT_WFxT2.

The ID_AA64ISAR2_EL1.WFxT field identifies the presence of FEAT_WFxT and FEAT_WFxT2.

In section D13.2.64 (ID_AA64ISAR2_EL1), the 'WFxT, bits [3:0]' field is updated to read:

Indicates support for the WFET and WFIT instructions in AArch64 state. Defined values are:

0b0000 WFET and WFIT are not supported.

0b0001 WFET and WFIT are supported, but the register number is not reported in the ESR_ELx
on exceptions.

0b0010 WFET and WFIT are supported, and the register number is reported in the ESR_ELx on
exceptions.

All other values are reserved.

FEAT_WFxT implements the functionality identified by the value 0b0001.

FEAT_WFxT2 implements the functionality identified by the value 0b0010.

From Armv8.7, the permitted values are 0b0001 and 0b0010.

Note: Arm deprecates not implementing FEAT_WFxT2.

Correspondingly, in sections D13.2.37 (ESR_EL1), D13.2.38 (ESR_EL2), and D13.2.39 (ESR_EL3), in
the ISS encoding an exception from a WF* instruction, the following fields are added:

RN, bits [9:5]

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 98 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

When FEAT_WFxT2 is implemented:

Indicates the Register Number supplied for a WFET or WFIT instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

RV, bit [2]

When FEAT_WFxT2 is implemented:

Register field Valid.

If TI[1] == 1, then this field indicates whether RN holds a valid register number for the register
argument to the trapped WFET or WFIT instruction.

0b0 Register field invalid.

0b1 Register field valid.

If TI[1] == 0, then this field is RES0.

When FEAT_WFxT2 is implemented, RV is set to 1 on a trap on WFET or WFIT.

When FEAT_WFxT2 is not implemented, RV is set to 0 on a trap on WFET or WFIT.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Instances of 'FEAT_WFxT' in the Arm ARM are updated to read 'FEAT_WFxT or FEAT_WFxT2'.

2.140 C17911
In section D2.10.5 (Determining the memory location that caused a Watchpoint exception), in
subsection 'Address recorded for Watchpoint exceptions generated by instructions other than data
cache maintenance instructions', the text that reads:

The address recorded must be both:

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 99 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

• From the inclusive range between:

◦ The lowest address accessed by the memory access that triggered the watchpoint.

◦ The highest watchpointed address accessed by the memory access. A watchpointed
address is an address that the watchpoint is watching.

• Within a naturally-aligned block of memory that is all of the following:

◦ A power-of-two size.

◦ No larger than the DC ZVA block size.

◦ Contains a watchpointed address accessed by the memory access.

is clarified to read:

The address recorded must be both:

• From the inclusive range between:

◦ The lowest address accessed by the memory access or set of contiguous memory
accesses made by the instruction that triggered the watchpoint.

◦ The highest watchpointed address accessed by the memory access or set of contiguous
memory accesses made by the instruction that triggered the watchpoint. A watchpointed
address is an address that the watchpoint is watching.

• Within a naturally-aligned block of memory that is all of the following:

◦ A power-of-two size.

◦ No larger than the DC ZVA block size.

◦ Contains a watchpointed address accessed by the memory access or set of contiguous
memory accesses made by the instruction that triggered the watchpoint.

Similar changes are updated to section G2.10.5 (Determining the memory location that caused a
Watchpoint exception), in subsection 'Address recorded for Watchpoint exceptions generated by
instructions other than data cache maintenance instructions'.

2.141 C17921
At the end of section B2.8 (Mismatched memory attributes), the following Note is added:

Note: As described in <xref:D4.4.6 Non-cacheable accesses and instruction caches>, a non-
cacheable access is permitted to be cached in an instruction cache, despite the fact that a non-
cacheable access is not permitted to be cached in a unified cache. Despite this, when cacheable
and non-cacheable aliases exist for memory which is executable, these must be treated as
mismatched aliases to avoid coherency issues from the data or unified caches that might hold
entries that will be brought into the instruction caches.

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 100 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

2.142 R17932
In section B2.7.2 (Device memory), the bullet point that reads:

• All accesses to memory with any Device memory attribute must be aligned. Any unaligned
access generates an Alignment fault at the first stage of translation that defined the location
as being Device.

is relaxed to read:

• If a memory location is not capable of supporting unaligned memory accesses, then an
unaligned access to that memory location generates an Alignment fault at the first stage of
translation that defined the location as being Device.

• If a memory location is capable of supporting unaligned memory accesses, then it is
IMPLEMENTATION DEFINED whether, if such a memory location is marked as Device, then an
unaligned access to that memory location generates an Alignment fault at the first stage of
translation that defined the location as being Device.

Additionally, the following text is added to sections B2.2.6 (Possible implementation restrictions on
using atomic instructions), B2.9.2 (Exclusive access instructions and Shareable memory locations)
and D5.4.14 (Restriction on memory types for hardware updates on translation tables), after the
bullet points that specify 'Inner/Outer Shareable, Inner Write-Back, Outer Write-Back Normal
memory with Read allocation hints and Write allocation hints and not transient' memory types:

The architecture only requires that conventional memory that is mapped in this way supports this
functionality.

2.143 D17934
In section A2.2.1 (Additional functionality added to Armv8.0 in later releases), the title 'FEAT_SSBS,
Speculative Store Bypass Safe' is updated to 'FEAT_SSBS, FEAT_SBSS2, Speculative Store Bypass
Safe'. In the description of FEAT_SBSS and FEAT_SBSS2, the text that reads:

FEAT_SSBS allows software to indicate whether hardware is permitted to load or store
speculatively in a manner that could give rise to a cache timing side channel, which in turn could
be used to derive an address from values loaded to a register from memory. To do this, the
software sets the PSTATE.SSBS.

This feature is supported in both AArch64 and AArch32 states.

is updated to read:

FEAT_SSBS allows software to indicate whether hardware is permitted to load or store
speculatively in a manner that could give rise to a cache timing side channel, which in turn could
be used to derive an address from values loaded to a register from memory.

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 101 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

FEAT_SSBS2 provides controls for the MSR and MRS instructions to read and write the
PSTATE.SSBS field.

FEAT_SSBS is supported in both AArch64 and AArch32 states. FEAT_SSBS2 is supported in
AArch64 state only.

and the text that reads:

The following fields identify the presence of FEAT_SSBS:

is updated to read:

The following fields identify the presence of FEAT_SSBS and FEAT_SSBS2:

2.144 D17935
In section G8.2.167 (TTBR1, Translation Table Base Register 1), the accessibility pseudocode for
write to Secure TTBR1 at EL3 is corrected.

The MCR pseudocode at EL3:

 elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' && CP15SDISABLE == HIGH then
 UNDEFINED;
 elsif SCR.NS == '0' && CP15SDISABLE2 == HIGH then
 UNDEFINED;
 else
 if SCR.NS == '0' then
 TTBR1_S = ZeroExtend(R[t]);
 else
 TTBR1_NS = ZeroExtend(R[t]);

is updated to:

 elsif PSTATE.EL == EL3 then
 elsif SCR.NS == '0' && CP15SDISABLE2 == HIGH then
 UNDEFINED;
 else
 if SCR.NS == '0' then
 TTBR1_S = ZeroExtend(R[t]);
 else
 TTBR1_NS = ZeroExtend(R[t]);

The MCRR pseudocode at EL3:

 elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' && CP15SDISABLE == HIGH then
 UNDEFINED;
 else
 if SCR.NS == '0' then
 TTBR1_S = R[t2]:R[t];
 else
 TTBR1_NS = R[t2]:R[t];

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 102 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

is updated to:

 elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' && CP15SDISABLE2 == HIGH then
 UNDEFINED;
 else
 if SCR.NS == '0' then
 TTBR1_S = R[t2]:R[t];
 else
 TTBR1_NS = R[t2]:R[t];

2.145 C17938
In section C5.6.1 (CFP RCTX, Control Flow Prediction Restriction by Context), the following line is
added to the VMID, bits [47:32] field:

If the implementation supports 16 bits of VMID, then the upper 8 bits of the VMID must be
written to 0 by software when the context being affected only uses 8 bits.

And the following line is added to the ASID, bits [15:0] field:

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be
written to 0 by software when the context being affected only uses 8 bits.

The same changes are applied to sections C5.6.2 (CPP RCTX, Cache Prefetch Prediction Restriction
by Context) and C5.6.3 (DVP RCTX, Data Value Prediction Restriction by Context).

2.146 D17943
In section C7.2.227 (SABDL, SABDL2), the sentence that reads:

The SABDL instruction writes the vector to the lower half of the destination register and
clears the upper half, while the SABDL2 instruction writes the vector to the upper half of the
destination register without affecting the other bits of the register.

is corrected to read:

The SABDL instruction extracts each source vector from the lower half of each source register,
while the SABDL2 instruction extracts each source vector from the upper half of each source
register.

2.147 D17944
In section C7.2.397 (USUBW, USUBW2), the sentence that reads:

All the values in this instruction are signed integer values.

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 103 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

is corrected to read:

All the values in this instruction are unsigned integer values.

2.148 D17945
In section B2.3.10 (Memory barriers), in subsection 'Data Synchronization Barrier (DSB)', the
following bullet is deleted:

• If the required access types of the DSB is reads and writes, then all cache maintenance
instructions, all TLB maintenance instructions, and all PSB CYNC instructions issued by PEe
before the DSB are complete for the required shareability domain.

2.149 D17948
The following changes are made:

• In section I5.2.1 (Performance Monitors external register views), an entry for PMMIR is added
to table I5-1, 'Performance Monitors external register views'.

• In section I5.3.30 (PMMIR, Performance Monitors Machine Identification Register),
BUS_WIDTH and BUS_SLOTS fields are added at bits [19:16] and [15:8] respectively.

2.150 D17956
In section K11.3.3 (Ticket Locks), the text that currently reads:

Releasing the ticket lock simply involves incrementing the current ticket number, that is still
assumed to be in R3, and doing a Store-Release:

is corrected to read:

Releasing the ticket lock simply involves incrementing the current ticket number, which is
assumed in this example to be in R6, and doing a Store Release:

Within the same section, the AArch64 code that reads:

ADD W5, W5, #0x10000 ; increment the next number
STXR W6, W5, [X1] ; and update the value

is corrected to read:

ADD W3, W5, #0x10000 ; increment the next number
STXR W6, W3, [X1] ; and update the value

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 104 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

Similarly, the AArch32 code within the same section that reads:

ADD R5, R5, #0x10000 ; increment the next number
STREX R6, R5, [R1] ; and update the value

is corrected to read:

ADD R3, R5, #0x10000 ; increment the next number
STREX R6, R3, [R1] ; and update the value

The AArch32 code within the same section that reads:

BEQ block_start

is enhanced to read:

MOV R6, R5
BEQ block_start

The equivalent changes for this enhancement are made in section K11.3.4 (Use of Wait For Event
(WFE) and Send Event (SEV) with locks), in the AArch32 code within the subsection 'Ticket lock'.

2.151 D17958
In section J1.1.1 (aarch64/debug), the sense of the SPME bit when used in conjunction with
MPMX is flipped.

In AArch64.CountEvents, the code that reads:

prohibited = (MDCR_EL3.MPMX == '1' && (MDCR_EL3.SPME == '1' || !resvd_for_el2));

is updated to read:

prohibited = (MDCR_EL3.MPMX == '1' && (MDCR_EL3.SPME == '0' || !resvd_for_el2));

2.152 D17975
In section J1.1.4 (aarch64/instrs), in the function AArch64.TLBI_RVA() the following line:

r.address.NS = if security == SS_NonSecure then '1' else Xt<63>;

is removed.

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 105 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

2.153 R17983
The following bits are relaxed to RES0, to align with the equivalent bits in the AArch64 and AArch32
registers:

• Section I5.5.11 (AMCR, Activity Monitors Control Register), Bits [9:0],

• Section I5.5.18 (AMEVTYPER0<n>, Activity Monitors Event Type Registers 0, n = 0 - 15), Bits
[31:25],

• Section I5.5.19 (AMEVTYPER1<n>, Activity Monitors Event Type Registers 1, n = 0 - 15), Bits
[31:25].

2.154 C17986
In section I5.5.7 (AMCNTENCLR0, Activity Monitors Count Enable Clear Register 0), the text that
reads:

0b0 When read, means that AMEVCNTR0<n> is disabled. When written, has no effect. 0b1
When read, means that AMEVCNTR0<n> is enabled. When written, disables AMEVCNTR0<n>.

is clarified to read:

0b0 When read, means that AMEVCNTR0<n> is disabled.

0b1 When read, means that AMEVCNTR0<n> is enabled.

The equivalent changes are made in the following sections:

• I5.5.8 (AMCNTENCLR1, Activity Monitors Count Enable Clear Register 1),

• I5.5.9 (AMCNTENSET0, Activity Monitors Count Enable Set Register 0),

• I5.5.10 (AMCNTENSET1, Activity Monitors Count Enable Set Register 1).

In the following sections, instances of 'RAZ/WI' in 'Accessing the [register]' are changed to 'RAZ':

• I5.5.8 (AMCNTENCLR1, Activity Monitors Count Enable Clear Register 1),

• I5.5.10 (AMCNTENSET1, Activity Monitors Count Enable Set Register 1),

• I5.5.16 (AMEVCNTR0<n>, Activity Monitors Event Counter Registers 0, n = 0 - 15),

• I5.5.17 (AMEVCNTR1<n>, Activity Monitors Event Counter Registers 1, n = 0 - 15),

• I5.5.18 (AMEVTYPER0<n>, Activity Monitors Event Type Registers 0, n = 0 - 15),

• I5.5.19 (AMEVTYPER1<n>, Activity Monitors Event Type Registers 1, n = 0 - 15).

The change from 'RAZ/WI' to 'RAZ' is also applied to the P<n> field descriptions in
AMCNTENCLR1 and AMCNTENSET1.

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 106 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

In sections I5.5.16 (AMEVCNTR0<n>, Activity Monitors Event Counter Registers 0, n = 0 - 15) and
I5.5.17 (AMEVCNTR1<n>, Activity Monitors Event Counter Registers 1, n = 0 - 15), the following
text in the ACNT, bits [63:0] description is removed:

If the counter is enabled, writes to this register have UNPREDICTABLE results.

In section I5.5.19 (AMEVTYPER1<n>, Activity Monitors Event Type Registers 1, n = 0 - 15), the
following text in the evtCount, bits [15:0] field is removed:

If software writes a value to this field which is not supported by the corresponding counter
AMEVCNTR1<n>, then:

• It is UNPREDICTABLE which event will be counted.

• The value read back is UNKNOWN.

Note: The event counted by AMEVCNTR1<n> might be fixed at implementation. In this case, the
field is read-only and writes are UNDEFINED.

If the corresponding counter AMEVCNTR1<n> is enabled, writes to this register have
UNPREDICTABLE results.

2.155 D17991
In section C5.3.29 (IC IALLU, Instruction Cache Invalidate All to PoU), the line that reads:

Purpose

Invalidate all instruction caches to Point of Unification.

is corrected to read:

Purpose

Invalidate all instruction caches of the PE executing the instruction to the Point of Unification.

In section C5.3.30 (IC IALLUIS, Instruction Cache Invalidate All to PoU, Inner Shareable), the text
that reads:

Purpose

Invalidate all instruction caches in Inner Shareable domain to Point of Unification.

is corrected to read:

Purpose

Invalidate all instruction caches in the Inner Shareable domain of the PE executing the instruction
to the Point of Unification.

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 107 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

Equivalents edits are made in sections G8.2.79 (ICIALLU, Instruction Cache Invalidate All to PoU)
and G8.2.80 (ICIALLUIS, Instruction Cache Invalidate All to PoU, Inner Shareable).

2.156 D17998
In section B2.3.9 (Restrictions on the effects of speculation), in the subsection 'Restrictions on the
effects of speculation', the text that reads:

• When data is loaded under speculation with a translation fault, it cannot be used to form
an address, generate condition codes, or generate SVE predicate values to be used by
instructions newer than the load in the speculative sequence.

• When data is loaded under speculation from a location without a translation for the
translation regime being speculated in, the data cannot be used to form an address, generate
condition codes, or generate SVE predicate values to be used by instructions newer than the
load in the speculative sequence.

is corrected to read:

• When data is loaded under speculation with a translation fault, it cannot be used to form
an address, generate condition codes, or generate SVE predicate values to be used by other
instructions in the speculative sequence.

• When data is loaded under speculation from a location without a translation for the
translation regime being speculated in, the data cannot be used to form an address, generate
condition codes, or generate SVE predicate values to be used by other instructions in the
speculative sequence.

In the subsection 'Restrictions on the effects of speculation from Armv8.5', the text that reads:

• Data loaded under speculation with a permission or domain fault cannot be used to form
an address, to generate condition codes, or to generate SVE predicate values to be used by
instructions newer than the load in the speculative sequence.

• Any System register read under speculation to a register that is not architecturally accessible
from the current Exception level cannot be used to form an address, to generate condition
codes, or to generate SVE predicate values to be used by instructions newer than the load in
the speculative sequence.

is corrected to read:

• Data loaded under speculation with a permission or domain fault cannot be used to form
an address, to generate condition codes, or to generate SVE predicate values to be used by
other instructions in the speculative sequence.

• Any System register read under speculation to a register that is not architecturally accessible
from the current Exception level cannot be used to form an address, to generate condition
codes, or to generate SVE predicate values to be used by other instructions in the speculative
sequence.

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 108 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

The equivalent changes are made in section E2.3.9 (Restrictions on the effects of speculation),
and in the definitions of the CSV3 field in sections D13.2.67 (ID_AA64PFR0_EL1, AArch64
Processor Feature Register 0), D13.2.87 (ID_PFR2_EL1, AArch32 Processor Feature Register 2),
and G8.2.100 (ID_PFR2, Processor Feature Register 2).

2.157 D18001
In section D2.10.6 (Watchpoint behavior on other instructions), the Note that reads:

Note: Despite its mnemonic, the DC ZVA, Data Cache Zero by VA instruction is not a data cache
maintenance instruction.

is clarified to read:

Note: Despite their mnemonics, the DC GVA, DC GZVA, and DC ZVA instructions are not data
cache maintenance instructions.

The equivalent Notes in sections D2.10.5 (Determining the memory location that caused a
Watchpoint exception) and D4.4.8 (A64 Cache maintenance instructions), subsection 'The data
cache maintenance instruction (DC)', are similarly clarified.

The following changes are made in section D4.4.8 (A64 Cache maintenance instructions),
subsection 'Ordering and completion of data and instruction cache instructions':

• The references to 'data cache instructions, other than DC ZVA' are clarified to 'data cache
instructions, other than DC ZVA, GC GVA, and DC GZVA'.

• In the list for all data cache maintenance instructions that do not specify an address, the
reference 'other than Data Cache Zero' is clarified to 'other than DC ZVA, GC GVA, and DC
GZVA'.

In section D5.4.2 (About PSTATE.PAN), the following item in the list of instructions that the PAN
bit does not affect:

Data Cache instructions other than DC ZVA.

is clarified to read:

Data cache instructions other than DC GVA, DC GZVA, and DC ZVA.

2.158 D18003
In section J1.1.5 (aarch64/translation), AArch64.S2Translate() which reads:

AArch64.S2Translate()
 ...
 if walkparams.vm != '1' then
 // Stage 2 translation is disabled
 fault.level = 0;

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 109 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

 if AArch64.S2HasAlignmentFault(acctype, aligned, ipa.memattrs) then
 fault.statuscode = Fault_Alignment;
 return (fault, AddressDescriptor UNKNOWN);
 else
 return (fault, ipa);

is updated to read:

AArch64.S2Translate()
 ...
 if walkparams.vm != '1' then
 // Stage 2 translation is disabled
 return (fault, ipa);

2.159 D18009
In section J1.1.4 (aarch64/instrs), the type TLBIRecord which reads:

type TLBIRecord is (
 ...
 FullAddress address, // VA/IPA/BaseAddress
 ...
)

is updated to read:

type TLBIRecord is (
 ...
 PASpace ipaspace, // For operations that take IPA as input address
 bits(64) address, // input address, for range operations, start ad\
dress
 ...
)

In section J1.1.4 (aarch64/instrs), for the functions AArch64.TLBI_VA() and AArch64.TLBI_VAA(),
the line that reads:

r.address.address = Xt<39:0> : Zeros(12);

is updated to read:

r.address = ZeroExtend(Xt<43:0> : Zeros(12));

2.160 D18022
In section H2.4.2 (Executing instructions in Debug state), in the subsection 'A64 instructions that
are CONSTRAINED UNPREDICTABLE in Debug state', the entry 'Instructions that request entry to a low-

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 110 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

power state' is augmented to include WFET and WFIT, and the entry 'Instructions with register
argument' is deleted.

2.161 D18023
In section J1.1.4 (aarch64/instrs), in the functions AArch64.TLBI_RVA(), AArch64.TLBI_RVAA(), and
AArch64.TLBI_RIPAS2() the line that reads:

 r.ttl = Xt<47:44>;

is corrected to read:

 r.ttl = Xt<38:37>;

2.162 D18031
In section D13.6.1 (PMBIDR_EL1, Profiling Buffer ID Register), in the long description of the
PMBIDR_EL1.P 'Programming not allowed' bit, the text that reads:

Programming not allowed. The Profiling Buffer is owned by a higher Exception level or the other
Security state.

0b0 Profiling Buffer is owned by the current or a lower Exception level in the current Security
state.

0b1 Profiling Buffer is owned by a higher Exception level or the other Security state.

is corrected to read:

Programming not allowed. When read at EL3, this field reads as zero. Otherwise, indicates that
the Profiling Buffer is owned by a higher Exception level or another Security state. Defined values
are:

0b0 Programming is allowed.

0b1 Programming not allowed.

2.163 D18034
In section D7.10.3 (Common event numbers), the Note that reads:

The requirement that an event that is implemented retrospectively does not require
additional features in the PMU means that it must be possible to represent the event n the

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 111 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

PMEVTYPER<n>_EL0.evtCount field. This means, for example, that an implementation with a
12-bit PMEVTYPER<n>_EL0.evtCount field can only implement events with event numbers
0x000-0xFFF.

is corrected to read:

The requirement that an event that is implemented retrospectively does not require
additional features in the PMU means that it must be possible to represent the event n the
PMEVTYPER<n>_EL0.evtCount field. This means, for example, that an implementation with a
10-bit PMEVTYPER<n>_EL0.evtCount field can only implement events with event numbers
0x0000-0x03FF.

2.164 D18037
In section D9.6.5 (Additional information for each profiled Scalable Vector Extension operation), the
bullet point in the Note that reads:

• FADDV, and SMAX write scalar values to SIMD&FP registers.

is corrected to read:

• FADDV, and SMAXV write scalar values to SIMD&FP registers.

2.165 D18060
In section D7.10.3 (Common event numbers), in the subsection 'Common microarchitectural
events', the following events are deleted, and the event numbers are reserved:

• 0x8125, BUS_ACCESS_RD_PERCYC, Event in progress, BUS_ACCESS_RD.

• 0x8126, BUS_ACCESS_WR_PERCYC, Event in progress, BUS_ACCESS_WR.

• 0x8127, BUS_ACCESS_PERCYC, Event in progress, BUS_ACCESS.

To align with these changes, in section D7.10.2 (The PMU event number space and common
events), in Table D7-6 'Allocation of the PMU event number space', the entry that reads:

Event numbers Allocation

0x8100-0x81FF Previously reserved. From Armv8.6, Common architectural and microarchitectural events.

is split into the following three entries:

Event numbers Allocation

0x8100-0x8124 Previously reserved. From Armv8.6, common architectural and microarchitectural events.

0x8125-0x8127 Reserved.

0x8128-0x81FF Previously reserved. From Armv8.6, common architectural and microarchitectural events.

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 112 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

2.166 D18100
In section D4.4.8 (A64 Cache maintenance instructions) in Table D4-3 System instructions for
cache maintenance), the following forms of cache maintenance instructions are added:

System
Instruction

Instruction Notes

DC CVADP Clean by Virtual Address to point of Deep Persistence When SCTLR_EL1.UCIa == 1, EL0
access.

DC CIGVAC Clean and invalidate of allocation tags by virtual address to Point of Coherency When SCTLR_EL1.UCIa == 1, EL0
access.

DC CIGDVAC Clean and invalidate of data and Allocation Tags by virtual address to Point of
Coherency

When SCTLR_EL1.UCIa == 1, EL0
access.

DC IGVAC Invalidate of Allocation Tags by virtual address to Point of Coherency EL1 or higher access.

DC IGDVAC Invalidate of data and Allocation Tags by virtual address to Point of Coherency EL1 or higher access.

DC CGVAC Clean of Allocation Tags by virtual address to Point of Coherency When SCTLR_EL1.UCIa == 1, EL0
access.

DC CGDVAC Clean of data and Allocation Tags by virtual address to Point of Coherency When SCTLR_EL1.UCIa == 1, EL0
access.

DC CGVAP Clean of Allocation Tags by virtual address to Point of Persistence When SCTLR_EL1.UCIa == 1, EL0
access.

DC CGDVAP Clean of data and Allocation Tags by virtual address to Point of Persistence When SCTLR_EL1.UCIa == 1, EL0
access.

DC CGVADP Clean of Allocation Tags by virtual address to Point of Deep Persistence When SCTLR_EL1.UCIa == 1, EL0
access.

DC CGDVADP Clean of data and Allocation Tags by virtual address to Point of Deep
Persistence

When SCTLR_EL1.UCIa == 1, EL0
access.

2.167 D18106
In section H7.1.3 (Permitted behavior that might make the PC Sample-based profiling registers
UNKNOWN), the text that reads:

If no instruction has been retired since the PE left Debug state, Reset state, or a state where PC
Sample-based profiling is prohibited, the sampled value is UNKNOWN. If an instruction has been
retired but this is the first time the PMPCSR or EDPCSR is read since the PE left Reset state, the
sampled value is permitted but not required to return the value 0xFFFFFFF.

is relaxed to read:

If no branch instruction has been retired since the PE left Debug state, Reset state, or a state
where PC Sample-based profiling is prohibited, the sampled value is UNKNOWN. If a branch
instruction has been retired but this is the first time the PMPCSR or EDPCSR is read since the PE
left Reset state, the sampled value is permitted but not required to return the value 0xFFFFFFF.

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 113 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

Similarly, in section H9.2.32 (EDPCSR, External Debug Program Counter Sample Register), the text
in the Bits [31:0] description that reads:

If an instruction has retired since the PE left Reset state, then the first read of EDPSCR[31:0] is
permitted but not required to return 0xFFFFFFFF. EDPCSRlo reads as an UNKNOWN value when
any of the following are true:

• The PE is in Reset state.

• No instruction has retired since the PE left Reset state, Debug state, or a state where PC
Sample-based Profiling is prohibited.

• No instruction has retired since the last read of EDPCSR[31:0].

is relaxed to read:

If a branch instruction has retired since the PE left Reset state, then the first read of
EDPSCR[31:0] is permitted but not required to return 0xFFFFFFFF. EDPCSRlo reads as an
UNKNOWN value when any of the following are true:

• The PE is in Reset state.

• No branch instruction has retired since the PE left Reset state, Debug state, or a state where
PC Sample-based Profiling is prohibited.

• No branch instruction has retired since the last read of EDPCSR[31:0].

The equivalent changes are made in section I5.3.33 (PMPCSR, Program Counter Sample Register).

2.168 D18112
In section B2.3.9 (Restrictions on the effects of speculation), in the subsection 'Speculative Store
Bypass Safe (SSBS)', the text that reads:

When FEAT_SSBS is implemented, PSTATE.SSBS is a control that can be set by software to
indicate whether hardware is permitted to load or store speculatively, in a manner that could be
exploited to produce a cache timing side channel using an address derived from a register value
that has been loaded from memory using a load instruction that speculatively read an entry for
the location being loaded from, where the entry that is speculatively read is from earlier in the
coherence order than the entry generated by the latest store to that location using the same
virtual address as the load instruction.

When the value of PSTATE.SSBS is 0, hardware is not permitted to load or store speculatively in
this way.

When the value of PSTATE.SSBS is 1, hardware is permitted to load or store speculatively in this
way.

is clarified to read:

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 114 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

When FEAT_SSBS is implemented, PSTATE.SSBS is a control that can be set by software to
indicate whether hardware is permitted to use, in a manner that is potentially speculatively
exploitable, a speculative value in a register that has been loaded from memory using a load
instruction that speculatively read the location being loaded from, where the entry that is
speculatively read is from earlier in the coherence order than the entry generated by the latest
store to that location using the same virtual address as the load instruction.

A speculative value in a register is used in a potentially speculatively exploitable manner if it
is used to form an address, generate condition codes, or generate SVE predicate values to be
used by other instructions in the speculative sequence or if the execution timing of any other
instructions in the speculative sequence is a function of the data loaded under speculation.

When the value of PSTATE.SSBS is 0, hardware is not permitted to use speculative register
values in a potentially speculatively exploitable manner if the speculative read that loads the
register is from earlier in the coherence order than the entry generated by the latest store to that
location using the same virtual address as the load instruction.

When the value of PSTATE.SSBS is 1, hardware is permitted to use speculative register values
in a potentially speculatively exploitable manner if the speculative read that loads the register is
from earlier in the coherence order than the entry generated by the latest store to that location
using the same virtual address as the load instruction.

The clarification is also made to the equivalent text in section E2.3.9 (Restrictions on the effects of
speculation), in the subsection 'Speculative Store Bypass Safe (SSBS)'.

2.169 D18119
The text in section B2.7.3 (Memory access restrictions) that reads:

For accesses to any two bytes, p and q, that are generated by the same instruction:

• The bytes p and q must have the same memory type and Shareability attributes, otherwise
the results are CONSTRAINED UNPREDICTABLE. For example, an LD1, ST1, or an unaligned
load or store that spans the boundary between Normal memory and Device memory is
CONSTRAINED UNPREDICTABLE.

• Except for possible differences in the cache allocation hints, Arm deprecates having different
cacheability attributes for bytes p and q.

is clarified to read:

For two explicit memory reads to any two adjacent bytes in memory, p and p+1, generated by
the same instruction, and for two explicit writes to any two adjacent bytes in memory, p and p+1,
that are generated by the same instruction:

• The bytes p and p+1 must have the same memory type and Shareability attributes, otherwise
the results are CONSTRAINED UNPREDICTABLE. For example, an LD1, ST1, or an unaligned
load or store that spans the boundary between Normal memory and Device memory is
CONSTRAINED UNPREDICTABLE.

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 115 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

• Except for possible differences in the cache allocation hints, Arm deprecates having different
cacheability attributes for bytes p and p+1.

The clarification is also made to the equivalent text in section E2.8.3 (Memory access restrictions).

2.170 D18138
In section C7.2.146 (FRECPX), the text that reads:

This instruction finds an approximate reciprocal exponent for each vector element in the
source SIMD&FP register, places the result in a vector, and writes the vector to the destination
SIMD&FP register.

is replaced by the following text:

This instruction finds an approximate reciprocal exponent for the source SIMD&FP register and
writes the result to the destination SIMD&FP register.

2.171 D18140
In sections B2.3.8 (Ordering of instruction fetches) and E2.3.8 (Ordering of instruction fetches), the
text that reads:

For two memory locations A and B, if A has been written to and been made coherent with the
instruction fetches of the shareability domain, before an update to B by an observer in the same
shareability domain, then the instruction stream of each observer in the shareability domain will
not see the updated value of B without also seeing the updated value of A.

is corrected to read:

For two memory locations A and B:

If A has been written to with an updated value and been made coherent with the instruction
fetches of the shareability domain, before B has been written to with an updated value by an
observer in the same shareability domain, then where, for an observer in the shareability domain,
an instruction read from B appears in program order before an instruction fetched from A, if
the instruction read from B contains the updated value of B then the instruction read from A
appearing later in program order will contain the updated value of A.

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 116 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

2.172 D18141
In sections B2.3.10 (Memory barriers), in the subsection 'Data Memory Barrier (DMB)', the
following line is deleted:

A DMB instruction intended to ensure the completion of cache maintenance instructions must
have an access type of both loads and stores.

In section G4.4.7 (AArch32 cache and branch predictor maintenance instructions), the following
line has references to DMB removed:

A DSB or DMB instruction intended to ensure the completion of cache maintenance instructions
or branch predictor instructions must have an access type of both loads and stores.

2.173 C18142
In section D4.4.8 (A64 Cache maintenance instructions) in the subsection 'Ordering and
completion of data and instruction cache instructions', a new sub-subsection is added, titled
'Ordering and completion of Data Cache Clean to Point of Persistence', as follows:

The update of the persistent memory as a result of Data Cache Clean to the Point of Persistence
is guaranteed to have occurred either after:

• The execution of a DSB applying to both reads and writes after the execution of the Data
Cache Clean to the Point of Persistence.

• The update to persistent memory caused by a different Data Cache Clean to the Point of
Persistence that is ordered after a DMB applying to both reads and writes that appears after
the original Data Cache Clean to the Point of Persistence.

Note: This second point is an aspect of the fact that the Data Cache Clean to the Point of
Persistence instructions are ordered by DMB, and this controls the order of arrival in persistent
memory.

Note: The ordering effect for the Data Cache Clean to the Point of Persistence by DMB applying
to both read and writes is not sufficient to ensure that in the following sequence, observation
of the value '1' in the memory location X3 implies that the Data Cache Clean to the Point of
Persistence has caused an update of persistent memory:

; initial conditions has [X3]=0.
DC CVAP, X1
DMB
MOV X2,#1
STR X2, [X3]

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 117 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

However, in the following example, the ordering effects of the DMB instruction will ensure that
the location pointed by P0:X1 will reach the Point of Persistence before, or at the same time as,
the location pointed by P1:X8.

; initial conditions has P0:X3 and P1:X3 point to the same location, which is 0 at
 the start of this example
P0:
 DC CVAP, X1
 DMB
 MOV X2, #1
 STR X2, [X3]

P1
loop
 LDR X2, [X3]
 CBZ X2, loop
 DMB
 DC CVAP, X8

The following sub-subsection, titled 'Ordering and completion of Data Cache Clean to the Point of
Deep Persistence', is also added:

The update of the deep persistent memory as a result of Data Cache Clean to the Point of Deep
Persistence is guaranteed to have occurred either after:

• The execution of a DSB applying to both reads and writes after the execution of the Data
Cache Clean to the Point of Deep Persistence.

• The update to persistent memory caused by a different Data Cache Clean to the Point of
Deep Persistence that is ordered after a DMB applying to both reads and writes that appears
after the original Data Cache Clean to the Point of Deep Persistence.

Note: This second point is an aspect of the fact that the Data Cache Clean to the Point of Deep
Persistence instructions are ordered by DMB, and this controls the order of arrival in deep
persistent memory.

Note: The ordering effect for the Data Cache Clean to the Point of Deep Persistence by DMB
applying to both read and writes is not sufficient to ensure that in the following sequence,
observation of the value '1' in the memory location X3 implies that the Data Cache Clean to the
Point of Deep Persistence has caused an update of deep persistent memory:

; initial conditions has [X3]=0.
DC CVADP, X1
DMB
MOV X2,#1
STR X2, [X3]

However, in the following example, the ordering effects of the DMB instruction will ensure that
the location pointed by P0:X1 will reach the Point of Deep Persistence before, or at the same
time as, the location pointed by P1:X8.

; initial conditions has P0:X3 and P1:X3 point to the same location, which is 0 at
 the start of this example
P0:
 DC CVADP, X1
 DMB

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 118 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

 MOV X2, #1
 STR X2, [X3]

P1
loop
 LDR X2, [X3]
 CBZ X2, loop
 DMB
 DC CVADP, X8

2.174 D18149
In section J1.3.3 (shared/functions), the function FPRoundBase() that reads as:

 // Deal with flush-to-zero before rounding if FPCR.AH != '1'.
 if (!altfp && ((fpcr.FZ == '1' && N != 16) || (fpcr.FZ16 == '1' && N == 16)) &&
 exponent < minimum_exp) then
 // Flush-to-zero never generates a trapped exception.
 if UsingAArch32() then
 FPSCR.UFC = '1';
 else
 FPSR.UFC = '1';
 return FPZero(sign);

is updated to read as:

 // Deal with flush-to-zero before rounding if FPCR.AH != '1'.
 if (!altfp && ((fpcr.FZ == '1' && N != 16) || (fpcr.FZ16 == '1' && N == 16)) &&
 exponent < minimum_exp) then
 // Flush-to-zero never generates a trapped exception.
 if UsingAArch32() then
 FPSCR.UFC = '1';
 else
 if fpexc then FPSR.UFC = '1';
 return FPZero(sign);

2.175 D18159
In section J1.3.3 (shared/functions), the function GenMPAMcurEL() which reads:

MPAMinfo GenMPAMcurEL(AccType acctype)
 ...
 PARTIDspaceType pspace;
 ...
 otherwise
 // other access types are DATA accesses
 InD = FALSE;
 pspace = PARTIDspaceFromSS(security);
 if !validEL then
 ...
 return genMPAM(mpamEL, InD, pspace);

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 119 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

is updated to read:

MPAMinfo GenMPAMcurEL(AccType acctype)
 ...
 PARTIDspaceType pspace = PARTIDspaceFromSS(security);
 if pspace == PIdSpace_NonSecure && !MPAMisEnabled() then
 return DefaultMPAMinfo(pspace);
 ...
 otherwise
 // other access types are DATA accesses
 InD = FALSE;
 if !validEL then
 ...
 if !MPAMisEnabled() then
 return DefaultMPAMinfo(pspace);
 else
 return genMPAM(mpamEL, InD, pspace);

2.176 D18160
In section J1.1.1 (aarch64/debug), the code in AArch64.CountEvents() that reads:

// PMCR_EL0.DP disables the cycle counter when event counting is prohibited
if enabled && prohibited && n == 31 then
 enabled = PMCR_EL0.DP == '0';

is corrected to read:

// PMCR_EL0.DP disables the cycle counter when event counting is prohibited
if prohibited && n == 31 then
 enabled = enabled && PMCR_EL0.DP == '0';
 prohibited = FALSE; // Otherwise whether event counting is prohibited does
 not affect the cycle counter

A similar correction is made in section J1.2.1 (aarch32/debug) to AArch32.CountEvents().

2.177 D18162
In section D10.2.6 (Events packet), the text in 'E[17], byte 2 bit [17], when SZ == 0b10, or SZ ==
0b11' that reads:

If PMUv3 and The Scalable Vector Extension (SVE) are implemented this Event is required to be
implemented consistently with SVE_PRED_EMPTY_SPEC and SVE_PRED_PARTIAL_SPEC in the
Arm Architecture Reference Manual Supplement, the Scalable Vector Extension, for v8-A.

is corrected to read:

If PMUv3 and The Scalable Vector Extension (SVE) are implemented, this Event is required to be
implemented consistently with SVE_PRED_NOT_FULL_SPEC [link to PMU event 0x8079].

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 120 of 121

Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile Known issues in Issue G.a

Document ID: 102105_G.a_05_en
Issue: 05

Known issues

Similarly, the text in 'E[18], byte 2 bit [18], when SZ == 0b10, or SZ == 0b11' that reads:

If PMUv3 and The Scalable Vector Extension (SVE) are implemented this Event is required to
be implemented consistently with SVE_PRED_EMPTY_SPEC in the Arm Architecture Reference
Manual Supplement, the Scalable Vector Extension, for v8-A.

is clarified to read:

If PMUv3 and The Scalable Vector Extension (SVE) are implemented, this Event is required to be
implemented consistently with SVE_PRED_EMPTY_SPEC [link to PMU event 0x8075].

2.178 D18165
In section D5.9.1 (Use of ASIDs and VMIDs to reduce TLB maintenance requirements), in the
subsection 'VMID size', the line that reads:

When the value of VTCR_EL2.VS is 0, VMID[63:56]:

is corrected to read:

When the value of VTCR_EL2.VS is 0, VTTBR_EL2[63:56]:

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 121 of 121

	Arm® Architecture Reference Manual Armv8, for Armv8-A architecture profile Known issues in Issue G.a
	Contents
	1 Introduction
	1.1 Conventions
	1.2 Additional reading
	1.3 Feedback
	1.4 Other information

	2 Known issues
	2.1 D8901
	2.2 D10129
	2.3 R10550
	2.4 D11312
	2.5 D12962
	2.6 E13850
	2.7 D14169
	2.8 E14362
	2.9 D14810
	2.10 D14928
	2.11 D15346
	2.12 D15977
	2.13 D16029
	2.14 D16093
	2.15 D16367
	2.16 D16403
	2.17 D16493
	2.18 D16664
	2.19 C16668
	2.20 D16815
	2.21 D16907
	2.22 D16933
	2.23 D16936
	2.24 D16960
	2.25 R16961
	2.26 D16997
	2.27 D17015
	2.28 D17020
	2.29 D17052
	2.30 D17119
	2.31 D17151
	2.32 D17170
	2.33 D17193
	2.34 D17196
	2.35 D17199
	2.36 C17238
	2.37 D17292
	2.38 D17295
	2.39 C17310
	2.40 D17338
	2.41 D17359
	2.42 D17387
	2.43 D17392
	2.44 C17393
	2.45 D17396
	2.46 D17401
	2.47 D17405
	2.48 R17415
	2.49 D17416
	2.50 D17417
	2.51 R17420
	2.52 D17422
	2.53 D17423
	2.54 D17425
	2.55 E17427
	2.56 D17428
	2.57 D17428
	2.58 D17433
	2.59 R17435
	2.60 C17438
	2.61 D17441
	2.62 D17445
	2.63 D17464
	2.64 C17466
	2.65 D17478
	2.66 D17492
	2.67 D17527
	2.68 D17534
	2.69 D17539
	2.70 D17541
	2.71 D17557
	2.72 D17558
	2.73 C17562
	2.74 D17565
	2.75 D17571
	2.76 D17572
	2.77 D17573
	2.78 R17578
	2.79 R17579
	2.80 D17583
	2.81 R17584
	2.82 D17590
	2.83 D17592
	2.84 D17593
	2.85 D17604
	2.86 D17606
	2.87 D17615
	2.88 D17617
	2.89 D17632
	2.90 D17633
	2.91 D17640
	2.92 C17641
	2.93 C17651
	2.94 D17653
	2.95 D17654
	2.96 C17669
	2.97 D17673
	2.98 C17680
	2.99 D17682
	2.100 D17684
	2.101 C17685
	2.102 D17686
	2.103 D17687
	2.104 D17694
	2.105 D17700
	2.106 D17705
	2.107 D17712
	2.108 D17715
	2.109 D17722
	2.110 D17723
	2.111 C17732
	2.112 C17734
	2.113 C17735
	2.114 R17738
	2.115 D17754
	2.116 D17762
	2.117 D17763
	2.118 D17765
	2.119 D17767
	2.120 D17773
	2.121 C17774
	2.122 C17775
	2.123 D17777
	2.124 D17782
	2.125 D17783
	2.126 C17811
	2.127 D17819
	2.128 D17820
	2.129 D17826
	2.130 D17831
	2.131 D17834
	2.132 D17837
	2.133 D17859
	2.134 D17867
	2.135 D17870
	2.136 D17883
	2.137 R17892
	2.138 D17896
	2.139 E17909
	2.140 C17911
	2.141 C17921
	2.142 R17932
	2.143 D17934
	2.144 D17935
	2.145 C17938
	2.146 D17943
	2.147 D17944
	2.148 D17945
	2.149 D17948
	2.150 D17956
	2.151 D17958
	2.152 D17975
	2.153 R17983
	2.154 C17986
	2.155 D17991
	2.156 D17998
	2.157 D18001
	2.158 D18003
	2.159 D18009
	2.160 D18022
	2.161 D18023
	2.162 D18031
	2.163 D18034
	2.164 D18037
	2.165 D18060
	2.166 D18100
	2.167 D18106
	2.168 D18112
	2.169 D18119
	2.170 D18138
	2.171 D18140
	2.172 D18141
	2.173 C18142
	2.174 D18149
	2.175 D18159
	2.176 D18160
	2.177 D18162
	2.178 D18165

