

 Advanced Micro Devices

[Public]

SEV Secure Nested Paging
Firmware ABI Specification

 Publication # 56860 Revision: 1.51
 Issue Date: January 2022

[Public]

Specification Agreement

This Specification Agreement (this “Agreement”) is a legal agreement between Advanced Micro Devices, Inc.
(“AMD”) and “You” as the recipient of the attached AMD Specification (the “Specification”). If you are accessing the
Specification as part of your performance of work for another party, you acknowledge that you have authority to bind
such party to the terms and conditions of this Agreement. If you accessed the Specification by any means or otherwise
use or provide Feedback (defined below) on the Specification, You agree to the terms and conditions set forth in this
Agreement. If You do not agree to the terms and conditions set forth in this Agreement, you are not licensed to use the
Specification; do not use, access or provide Feedback about the Specification.

In consideration of Your use or access of the Specification (in whole or in part), the receipt and sufficiency of which
are acknowledged, You agree as follows:

1. You may review the Specification only (a) as a reference to assist You in planning and designing Your product,
service or technology (“Product”) to interface with an AMD product in compliance with the requirements as set forth
in the Specification and (b) to provide Feedback about the information disclosed in the Specification to AMD.

2. Except as expressly set forth in Paragraph 1, all rights in and to the Specification are retained by AMD. This
Agreement does not give You any rights under any AMD patents, copyrights, trademarks or other intellectual property
rights. You may not (i) duplicate any part of the Specification; (ii) remove this Agreement or any notices from the
Specification, or (iii) give any part of the Specification, or assign or otherwise provide Your rights under this
Agreement, to anyone else.

3. The Specification may contain preliminary information, errors, or inaccuracies, or may not include certain necessary
information. Additionally, AMD reserves the right to discontinue or make changes to the Specification and its
products at any time without notice. The Specification is provided entirely “AS IS.” AMD MAKES NO WARRANTY
OF ANY KIND AND DISCLAIMS ALL EXPRESS, IMPLIED AND STATUTORY WARRANTIES, INCLUDING
BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, NONINFRINGEMENT, TITLE OR THOSE WARRANTIES ARISING AS A COURSE OF DEALING
OR CUSTOM OF TRADE. AMD SHALL NOT BE LIABLE FOR DIRECT, INDIRECT, CONSEQUENTIAL,
SPECIAL, INCIDENTAL, PUNITIVE OR EXEMPLARY DAMAGES OF ANY KIND (INCLUDING LOSS OF
BUSINESS, LOSS OF INFORMATION OR DATA, LOST PROFITS, LOSS OF CAPITAL, LOSS OF
GOODWILL) REGARDLESS OF THE FORM OF ACTION WHETHER IN CONTRACT, TORT (INCLUDING
NEGLIGENCE) AND STRICT PRODUCT LIABILITY OR OTHERWISE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

4. Furthermore, AMD’s products are not designed, intended, authorized or warranted for use as components in systems
intended for surgical implant into the body, or in other applications intended to support or sustain life, or in any other
application in which the failure of AMD’s product could create a situation where personal injury, death, or severe
property or environmental damage may occur.

5. You have no obligation to give AMD any suggestions, comments or feedback (“Feedback”) relating to the
Specification. However, any Feedback You voluntarily provide may be used by AMD without restriction, fee or
obligation of confidentiality. Accordingly, if You do give AMD Feedback on any version of the Specification, You
agree AMD may freely use, reproduce, license, distribute, and otherwise commercialize Your Feedback in any
product, as well as has the right to sublicense third parties to do the same. Further, You will not give AMD any
Feedback that You may have reason to believe is (i) subject to any patent, copyright or other intellectual property
claim or right of any third party; or (ii) subject to license terms which seek to require any product or intellectual
property incorporating or derived from Feedback or any Product or other AMD intellectual property to be licensed to
or otherwise provided to any third party.

6. You shall adhere to all applicable U.S., European, and other export laws, including but not limited to the U.S.
Export Administration Regulations (“EAR”), (15 C.F.R. Sections 730 through 774), and E.U. Council Regulation (EC)
No 428/2009 of 5 May 2009. Further, pursuant to Section 740.6 of the EAR, You hereby certifies that, except pursuant
to a license granted by the United States Department of Commerce Bureau of Industry and Security or as otherwise
permitted pursuant to a License Exception under the U.S. Export Administration Regulations ("EAR"), You will not
(1) export, re-export or release to a national of a country in Country Groups D:1, E:1 or E:2 any restricted technology,

AMD Confidential—Advance Information
56860 Rev. 1.51 January 2022 SEV Secure Nested Paging Firmware ABI

Specification

[Public]

software, or source code You receive hereunder, or (2) export to Country Groups D:1, E:1 or E:2 the direct product of
such technology or software, if such foreign produced direct product is subject to national security controls as
identified on the Commerce Control List (currently found in Supplement 1 to Part 774 of EAR). For the most current
Country Group listings, or for additional information about the EAR or Your obligations under those regulations,
please refer to the U.S. Bureau of Industry and Security’s website at http://www.bis.doc.gov/.

7. If You are a part of the U.S. Government, then the Specification is provided with “RESTRICTED RIGHTS” as set
forth in subparagraphs (c) (1) and (2) of the Commercial Computer Software-Restricted Rights clause at FAR 52.227-
14 or subparagraph (c) (1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.277-7013,
as applicable.

8. This Agreement is governed by the laws of the State of California without regard to its choice of law principles.
Any dispute involving it must be brought in a court having jurisdiction of such dispute in Santa Clara County,
California, and You waive any defenses and rights allowing the dispute to be litigated elsewhere. If any part of this
agreement is unenforceable, it will be considered modified to the extent necessary to make it enforceable, and the
remainder shall continue in effect. The failure of AMD to enforce any rights granted hereunder or to take action
against You in the event of any breach hereunder shall not be deemed a waiver by AMD as to subsequent enforcement
of rights or subsequent actions in the event of future breaches. This Agreement is the entire agreement between You
and AMD concerning the Specification; it may be changed only by a written document signed by both You and an
authorized representative of AMD.

[Public]

© 2020–2022 Advanced Micro Devices, Inc. All rights reserved.

The information contained herein is for informational purposes only, and is subject to change without notice. While
every precaution has been taken in the preparation of this document, it may contain technical inaccuracies, omissions
and typographical errors, and AMD is under no obligation to update or otherwise correct this information. Advanced
Micro Devices, Inc. makes no representations or warranties with respect to the accuracy or completeness of the
contents of this document, and assumes no liability of any kind, including the implied warranties of noninfringement,
merchantability or fitness for particular purposes, with respect to the operation or use of AMD hardware, software
or other products described herein. No license, including implied or arising by estoppel, to any intellectual property
rights is granted by this document. Terms and limitations applicable to the purchase or use of AMD’s products are
as set forth in a signed agreement between the parties or in AMD's Standard Terms and Conditions of Sale.

Trademarks

AMD, the AMD Arrow logo, AMD EPYC, and combinations thereof are trademarks of Advanced Micro Devices,
Inc. Other product names used in this publication are for identification purposes only and may be trademarks of their
respective companies.

Linux is a registered trademark of Linus Torvalds.

56860 Rev. 1.51 January 2022 SEV Secure Nested Paging Firmware ABI Specification

 Contents 5

[Public]

Contents
Chapter 1 Introduction .. 18

1.1 Purpose ... 18

1.2 Scope .. 18

1.3 Intended Audience ... 18

1.4 References .. 18

Chapter 2 Data Structures and Encodings .. 19

2.1 Metadata Entries (MDATA) .. 19

2.2 TCB_VERSION .. 20

2.3 VCEK ... 20

2.4 Invalid Physical Address (PADDR_INVALID) .. 20

Chapter 3 Platform Management ... 21

3.1 Feature Detection and Enablement .. 21

3.2 Platform State Machine ... 21

3.3 Firmware Updates .. 21

3.4 Reported TCB .. 23

Chapter 4 Guest Management .. 24

4.1 Guest Context .. 24

4.1.1 Live Update .. 25

4.2 Guest State Machine .. 26

4.3 Guest Policy ... 27

4.4 Guest Activation .. 27

4.5 Launching a Guest ... 28

4.6 Identity Block .. 29

4.7 Decommissioning a Guest ... 29

4.8 Guest Messages .. 29

4.9 Remote Attestation .. 29

4.10 Guest Keys ... 30

4.11 Migration ... 30

4.12 Guest Assisted Migration ... 31

Chapter 5 Page Management .. 32

SEV Secure Nested Paging Firmware ABI Specification 56860 Rev. 1.51 January 2022

6 Contents

[Public]

5.1 Page Security Attributes .. 32

5.2 Page States... 32

5.3 Page State Transitions ... 33

5.3.1 RMPUPDATE ... 34

5.3.2 PVALIDATE .. 34

5.3.3 Page Management Commands .. 35

5.3.4 Launch Commands .. 35

5.3.5 Guest Request Commands .. 35

5.3.6 Platform Commands .. 35

5.3.7 SEV Legacy Commands ... 35

5.4 Metadata Entries .. 36

Chapter 6 Mailbox Protocol ... 37

6.1 Command Identifier .. 37

6.2 Status Codes .. 38

Chapter 7 Guest Messages .. 39

7.1 CPUID Reporting .. 39

7.2 Key Derivation .. 41

7.3 Attestation ... 43

7.4 VM Export .. 46

7.5 VM Import .. 49

7.6 VM Absorb .. 51

7.7 VM Absorb – No Migration Agent ... 52

7.8 VMRK Message .. 53

7.9 TSC Info .. 54

Chapter 8 Command Reference ... 56

8.1 DOWNLOAD_FIRMWARE .. 56

8.2 DOWNLOAD_FIRMWARE_EX .. 57

8.2.1 Parameters ... 57

8.2.2 Actions .. 57

8.2.3 Status Codes .. 58

8.3 SNP_COMMIT ... 59

56860 Rev. 1.51 January 2022 SEV Secure Nested Paging Firmware ABI Specification

 Contents 7

[Public]

8.3.1 Parameters .. 59

8.3.2 Actions ... 59

8.3.3 Status Codes ... 59

8.4 GET_ID ... 60

8.5 SNP_PLATFORM_STATUS .. 61

8.5.1 Parameters .. 61

8.5.2 Actions ... 61

8.5.3 Status Codes ... 62

8.6 SNP_CONFIG ... 63

8.6.1 Parameters .. 63

8.6.2 Actions ... 63

8.6.3 Status Codes ... 63

8.7 SNP_INIT .. 64

8.7.1 Parameters .. 64

8.7.2 Actions ... 64

8.7.3 Status Codes ... 64

8.8 SNP_INIT_EX ... 65

8.8.1 Parameters .. 65

8.8.2 Actions ... 65

8.8.3 Status Codes ... 66

8.9 SNP_GCTX_CREATE .. 67

8.9.1 Parameters .. 67

8.9.2 Actions ... 67

8.9.3 Status Codes ... 68

8.10 SNP_ACTIVATE .. 69

8.10.1 Parameters .. 69

8.10.2 Actions ... 69

8.10.3 Status Codes ... 70

8.11 SNP_ACTIVATE_EX ... 71

8.11.1 Parameters .. 71

8.11.2 Actions ... 71

SEV Secure Nested Paging Firmware ABI Specification 56860 Rev. 1.51 January 2022

8 Contents

[Public]

8.11.3 Status Codes .. 72

8.12 SNP_DECOMMISSION ... 73

8.12.1 Parameters ... 73

8.12.2 Actions .. 73

8.12.3 Status Codes .. 73

8.13 SNP_DF_FLUSH .. 74

8.13.1 Parameters ... 74

8.13.2 Actions .. 74

8.13.3 Status Codes .. 74

8.14 SNP_SHUTDOWN ... 75

8.14.1 Parameters ... 75

8.14.2 Actions .. 75

8.14.3 Status Codes .. 75

8.15 SNP_SHUTDOWN_EX ... 76

8.15.1 Parameters ... 76

8.15.2 Actions .. 76

8.15.3 Status Codes .. 76

8.16 SNP_LAUNCH_START .. 78

8.16.1 Parameters ... 78

8.16.2 Actions .. 78

8.16.3 Status Codes .. 80

8.17 SNP_LAUNCH_UPDATE ... 81

8.17.1 Parameters ... 81

8.17.2 Actions .. 82

8.17.3 Status Codes .. 88

8.18 SNP_LAUNCH_FINISH .. 89

8.18.1 Parameters ... 89

8.18.2 Actions .. 90

8.18.3 Status Codes .. 91

8.19 SNP_GUEST_STATUS ... 92

8.19.1 Parameters ... 92

56860 Rev. 1.51 January 2022 SEV Secure Nested Paging Firmware ABI Specification

 Contents 9

[Public]

8.19.2 Actions ... 92

8.19.3 Status Codes ... 92

8.20 SNP_PAGE_MOVE .. 94

8.20.1 Parameters .. 94

8.20.2 Actions ... 94

8.20.3 Status Codes ... 96

8.21 SNP_PAGE_MD_INIT ... 97

8.21.1 Parameters .. 97

8.21.2 Actions ... 97

8.21.3 Status Codes ... 97

8.22 SNP_PAGE_SWAP_OUT .. 99

8.22.1 Parameters .. 99

8.22.2 Actions ... 100

8.22.3 Status Codes ... 103

8.23 SNP_PAGE_SWAP_IN .. 104

8.23.1 Parameters .. 104

8.23.2 Actions ... 104

8.23.3 Status Codes ... 107

8.24 SNP_PAGE_RECLAIM .. 109

8.24.1 Parameters .. 109

8.24.2 Actions ... 109

8.24.3 Status Codes ... 110

8.25 SNP_PAGE_UNSMASH .. 111

8.25.1 Parameters .. 111

8.25.2 Actions ... 111

8.25.3 Status Codes ... 112

8.26 SNP_GUEST_REQUEST ... 113

8.26.1 Parameters .. 113

8.26.2 Actions ... 115

8.26.3 Status Codes ... 116

8.27 SNP_DBG_DECRYPT ... 118

SEV Secure Nested Paging Firmware ABI Specification 56860 Rev. 1.51 January 2022

10 Contents

[Public]

8.27.1 Parameters ... 118

8.27.2 Actions .. 118

8.27.3 Status Codes .. 119

8.28 SNP_DBG_ENCRYPT ... 120

8.28.1 Parameters ... 120

8.28.2 Actions .. 120

8.28.3 Status Codes .. 121

Chapter 9 APPENDIX: Common Algorithms .. 122

9.1 Aead_Wrap() ... 122

9.2 Aead_Unwrap() ... 123

Chapter 10 APPENDIX: Digital Signatures ... 124

56860 Rev. 1.51 January 2022 SEV Secure Nested Paging Firmware ABI Specification

 List of Tables 11

[Public]

List of Tables
Table 1. External References ... 18

Table 2. Layout of the MDATA Structure ... 19

Table 3. Structure of the TCB_VERSION .. 20

Table 4. Commands Available in Each State ... 21

Table 5. Fields of the Guest Context (GCTX) ... 24

Table 6. Guest State Definition .. 26

Table 7. Guest State Transitions .. 26

Table 8. Guest Policy Structure ... 27

Table 9. Page State Definitions .. 32

Table 10. Contents of Metadata Entries for Swapped-Out Data Pages, VMSA Pages, and
Metadata Pages .. 36

Table 11. Command Identifiers ... 37

Table 12. Status Codes ... 38

Table 13. MSG_CPUID_REQ Structure ... 39

Table 14. CPUID_FUNCTION Structure.. 40

Table 15. MSG_CPUID_RSP Structure .. 41

Table 16. Data Mixed into the Derived Guest Key ... 41

Table 17. MSG_KEY_REQ Message Structure .. 42

Table 18. Structure of the GUEST_FIELD_SELECT Field ... 42

Table 19. MSG_KEY_RSP Message Structure ... 43

Table 20. MSG_REPORT_REQ Message Structure ... 43

Table 21. ATTESTATION_REPORT Structure ... 44

Table 22. Structure of the PLATFORM_INFO Field .. 45

Table 23. MSG_REPORT_RSP Message Structure .. 46

Table 24. MSG_EXPORT_REQ Message Structure ... 47

Table 25. MSG_EXPORT_RSP Message Structure ... 47

Table 26. GCTX Field Structure .. 48

Table 27. MSG_IMPORT_REQ Message Structure ... 50

Table 28. Guest Context Initialized by the MSG_IMPORT_REQ Guest Message 50

Table 29. MSG_IMPORT_RSP Message Structure .. 50

SEV Secure Nested Paging Firmware ABI Specification 56860 Rev. 1.51 January 2022

12 List of Tables

[Public]

Table 30. MSG_ABSORB_REQ Message Structure ... 51

Table 31. MSG_ABSORB_RSP Message Structure .. 52

Table 32. MSG_ABSORB_NOMA_REQ Message Structure ... 52

Table 33. MSG_ABSORB_NOMA_RSP Message Structure .. 53

Table 34. Structure of the MSG_VMRK_REQ Guest Message ... 53

Table 35. MSG_VMRK_RSP Message Structure .. 54

Table 36. MSG_TSC_INFO_REQ Message Structure ... 54

Table 37. MSG_TSC_INFO_RSP Message Structure .. 55

Table 38. Layout of the CMDBUF_SNP_DOWNLOAD_FIRMWARE_EX Structure 57

Table 39. Status Codes for SNP_PLATFORM_STATUS .. 58

Table 40. Layout of the CMDBUF_SNP_COMMIT Structure .. 59

Table 41. Status Codes for SNP_PLATFORM_STATUS .. 59

Table 42. Layout of the CMDBUF_SNP_PLATFORM_STATUS Structure 61

Table 43. Layout of the STRUCT_PLATFORM_STATUS Structure ... 61

Table 44. Status Codes for SNP_PLATFORM_STATUS .. 62

Table 45. Layout of the CMDBUF_SNP_CONFIG_STATUS Structure 63

Table 46. Status Codes for SNP_CONFIG_STATUS .. 63

Table 47. Status Codes for SNP_INIT .. 66

Table 48. Layout of the CMDBUF_SNP_GCTX_CREATE Structure .. 67

Table 49. Guest Context Initialized by the SNP_GCTX_CREATE Command 67

Table 50. Status Codes for SNP_GCTX_CREATE .. 68

Table 51. Layout of the CMDBUF_SNP_ACTIVATE Structure .. 69

Table 52. Status Codes for SNP_ACTIVATE .. 70

Table 53. Layout of the CMDBUF_SNP_ACTIVATE_EX Structure ... 71

Table 54. Status Codes for SNP_ACTIVATE_EX ... 72

Table 55. Layout of the CMDBUF_SNP_DECOMMISSION Structure 73

Table 56. Status Codes for SNP_DECOMMISSION ... 73

Table 57. Status Codes for SNP_DF_FLUSH .. 74

Table 58. Status Codes for SNP_SHUTDOWN ... 75

Table 59. Layout of the CMDBUF_SNP_SHUTDOWN_EX Structure .. 76

Table 60. Status Codes for SNP_SHUTDOWN_EX .. 76

56860 Rev. 1.51 January 2022 SEV Secure Nested Paging Firmware ABI Specification

 List of Tables 13

[Public]

Table 61. Layout of the CMDBUF_SNP_LAUNCH_START Structure .. 78

Table 62. Guest Context Field Initialization for the Launch Flow .. 79

Table 63. Status Codes for SNP_LAUNCH_START ... 80

Table 64. Layout of the CMDBUF_SNP_LAUNCH_UPDATE Structure 81

Table 65. Encodings for the PAGE_TYPE Field .. 81

Table 66. VMPL Permission Mask .. 82

Table 67. Layout of the PAGE_INFO Structure ... 83

Table 68. Secrets Page Format ... 86

Table 69. CPUID Page Format .. 88

Table 70. Status Codes for SNP_LAUNCH_UPDATE .. 88

Table 71. Layout of the CMDBUF_SNP_LAUNCH_FINISH Structure 89

Table 72. Structure of the ID Block ... 89

Table 73. Structure of the ID Authentication Information Structure ... 90

Table 74. Guest Context Fields Initialized During SNP_LAUNCH_FINISH 91

Table 75. Status Codes for SNP_LAUNCH_FINISH ... 91

Table 76. Layout of the CMDBUF_SNP_GUEST_STATUS Structure ... 92

Table 77. Layout of the STRUCT_SNP_GUEST_STATUS Structure ... 92

Table 78. Status Codes for SNP_GUEST_STATUS ... 92

Table 79. Layout of the CMDBUF_SNP_PAGE_MOVE Structure ... 94

Table 80. Status Codes for SNP_PAGE_MOVE .. 96

Table 81. Layout of the CMDBUF_SNP_PAGE_MD_INIT Structure .. 97

Table 82. Status Codes for SNP_PAGE_MD_INIT .. 97

Table 83. Layout of the CMDBUF_SNP_PAGE_SWAP_OUT Structure 99

Table 84. Metadata Entry (MDATA) for Data Pages .. 101

Table 85. Metadata Entry (MDATA) for Metadata Pages .. 102

Table 86. Metadata Entry (MDATA) for Data Pages .. 103

Table 87. Status Codes for SNP_PAGE_SWAP_OUT ... 103

Table 88. Layout of the CMDBUF_SNP_PAGE_SWAP_IN Structure 104

Table 89. Determining the Page Type Based on the Metadata Entry .. 105

Table 90. Status Codes for SNP_PAGE_SWAP_IN ... 107

Table 91. Layout of the CMDBUF_SNP_PAGE_PAGE_RECLAIM Structure 109

SEV Secure Nested Paging Firmware ABI Specification 56860 Rev. 1.51 January 2022

14 List of Tables

[Public]

Table 92. State Transitions Triggered by the SNP_PAGE_RECLAIM Command 109

Table 93. Status Codes for SNP_PAGE_RO_RESTORE .. 110

Table 94. Layout of the CMDBUF_SNP_PAGE_UNSMASH Structure 111

Table 95. Status Codes for SNP_PAGE_UNSMASH .. 112

Table 96. Layout of the CMDBUF_SNP_GUEST_REQUEST Structure 113

Table 97. Message Header Format .. 113

Table 98. AEAD Algorithm Encodings .. 114

Table 99. Message Type Encodings .. 114

Table 100. Status Codes for SNP_GUEST_REQUEST ... 116

Table 101. Layout of the CMDBUF_SNP_DBG_DECRYPT Structure 118

Table 102. Status Codes for SNP_DBG_DECRYPT ... 119

Table 103. Layout of the CMDBUF_SNP_DBG_ENCRYPT Structure 120

Table 104. Status Codes for SNP_DBG_ENCRYPT ... 121

Table 105: Encoding for signing algorithms ... 124

Table 106. ECC curve identifier encodings .. 124

Table 107. Format for an ECDSA P-384 with SHA-384 Signature ... 124

Table 108. Format for an ECDSA P-384 Public Key ... 124

56860 Rev. 1.51 January 2022 SEV Secure Nested Paging Firmware ABI Specification

 Revision History 15

[Public]

Revision History

Date Revision Description
January 2022 1.51 Updates and Additions:

• Updated 2.2 TCB_VERSION
• Updated 2.3 VCEK
• Added 3.3 Firmware Updates
• Added 3.4 Reported TCB
• Updated 4.1 Guest Context
• Added 4.1.1 Live Update
• Updated 4.3 Guest Policy
• Updated 4.4 Guest Activation
• Updated 5.3.7 SEV Legacy Commands
• Updated 6.1 Command Identifier
• Updated 6.2 Status Codes
• Updated 7.2 Key Derivation
• Updated 7.3 Attestation
• Updated 7.4 VM Export
• Updated 7.5 VM Import
• Updated 7.6 VM Absorb
• Updated 7.7 VM Absorb – No Migration Agent
• Added 7.9 TSC Info
• Added 8.2 DOWNLOAD_FIRMWARE_EX
• Added 8.3 SNP_COMMIT
• Updated 8.5.2 Actions
• Updated 8.6 SNP_CONFIG
• Updated 8.8.2 Actions
• Updated 8.9.2 Actions
• Updated 8.10.2 Actions
• Uupdated 8.10.3 Status Codes
• Updated 8.11 SNP_ACTIVATE_EX
• Updated 8.12 SNP_DECOMMISSION
• Updated 8.14 SNP_SHUTDOWN
• Added 8.15 SNP_SHUTDOWN_EX
• Updated 8.16 SNP_LAUNCH_START
• Updated 8.17 SNP_LAUNCH_UPDATE
• Updated 8.18 SNP_LAUNCH_FINISH
• Updated 8.19 SNP_GUEST_STATUS

SEV Secure Nested Paging Firmware ABI Specification 56860 Rev. 1.51 January 2022

16 Revision History

[Public]

Date Revision Description
• Updated 8.20 SNP_PAGE_MOVE
• Updated 8.21 SNP_PAGE_MD_INIT
• Updated 8.22 SNP_PAGE_SWAP_OUT
• Updated 8.23 SNP_PAGE_SWAP_IN
• Updated 8.26 SNP_GUEST_REQUEST
• Updated 8.27 SNP_DBG_DECRYPT
• Updated 8.28 SNP_DBG_ENCRYPT
• Added Chapter 10 APPENDIX: Digital Signatures

April 2021 0.9 Updates and Additions:
• Updated 5.3.7 SEV Legacy Commands.
• Updated 6.1 Command Identifier.
• Updated 7.1 CPUID Reporting.
• Updated 7.3 Attestation.
• Updated 7.4 VM Export.
• Updated 7.5 VM Import.
• Updated 7.6 VM Absorb.
• Added 7.7 VM Absorb – No Migration Agent.
• Updated 8.4 GET_ID.
• Added 8.7 SNP_INIT.
• Updated 8.8 SNP_INIT_EX.
• Updated 8.10.2 Actions.
• Updated 8.11.3 Status Codes.
• Updated 8.14 SNP_SHUTDOWN.
• Updated 8.16 SNP_LAUNCH_START.
• Updated 8.17 SNP_LAUNCH_UPDATE.
• Updated 8.18 SNP_LAUNCH_FINISH.
• Updated 8.22 SNP_PAGE_SWAP_OUT.
• Updated 8.26 SNP_GUEST_REQUEST.

56860 Rev. 1.51 January 2022 SEV Secure Nested Paging Firmware ABI Specification

 Revision History 17

[Public]

Date Revision Description
August 2020 0.8 Updates and Additions:

• Updated Section 3.2 Platform State Machine.
• Updated Table 11. Command Identifiers.
• Updated Section 7.3 Attestation.
• Updated Table 21. ATTESTATION_REPORT Structure.
• Updated Section 8.5.2 Actions for SNP_PLATFORM_STATUS.
• Updated Table 43. Layout of the STRUCT_PLATFORM_STATUS

Structure.
• Added Section 8.6 SNP_.
• Updated Section 8.8.2 Actions for SNP_INIT
• Updated Table 47. Status Codes for SNP_INIT.
• Updated Section 8.13.2 Actions for SNP_DF_FLUSH.
• Updated Table 57. Status Codes for SNP_DF_FLUSH.
• Updated Section 8.14.2 Actions for SNP_SHUTDOWN.

April 2020 0.7 Initial public release.

18

[Public]

Chapter 1 Introduction

1.1 Purpose
The purpose of this document is to provide details of the Platform Security Processor (PSP)
firmware support for the Secure Nested Paging (SEV-SNP) enhancement to SEV. The PSP
exposes a set of functions to the hypervisor for guest lifecycle management of SNP-enabled
guests.

1.2 Scope
This document describes the software interface for the functions supported by the PSP for SNP
VM management. It does not describe the x86 CPU or System-on-Chip (SOC) hardware support
for SNP. While certain sections of this document may describe potential hypervisor usage of the
firmware ABI, this document is not intended to prescribe any specific use or hypervisor
architecture. Please refer to [APM] for the x86 ISA mechanisms related to SEV-SNP and to the
whitepaper [SNP-WP] for a high-level description of SEV-SNP and the features it provides.

1.3 Intended Audience
The intended audience of this document is hypervisor developers, kernel developers, and security
architects. Hypervisor developers supporting SNP will need to use the firmware functions
described herein for VM lifecycle management. Additionally, kernel developers and security
architects will need to use the guest message functions to perform secure attestation, key
management, and migration.

1.4 References
Table 1. External References

Reference Document

APM AMD64 Architecture Programmer’s Manual (Volumes 1–5)
#s 24592, 24593, 24594, 26568, and 26569

PPR Processor Programming Reference

SNP-WP AMD SEV-SNP: Strengthening VM Isolation with Integrity
Protection and More

SEV Secure Encrypted Virtualization API, #55766

 19

[Public]

Chapter 2 Data Structures and Encodings

This section describes data structures that are common to multiple commands.

2.1 Metadata Entries (MDATA)
Table 2 describes a metadata entry within a metadata page. Metadata entries describe security
attributes of pages that have been swapped out. When pages are swapped back in, the firmware
uses the metadata entries to ensure the SNP security properties are not violated.

Table 2. Layout of the MDATA Structure
Byte

Offset
Bits Name Description

00h 63:0 SOFTWARE_DATA Software available data supplied by the hypervisor.

08h 63:0 IV Initialization vector used to encrypt the swapped-out page.

10h 127:0 AUTH_TAG Authentication tag of the swapped-out page.

20h 63:12 GPA Bits 63:12 of the gPA of the swapped-out page.

11:5 - Reserved.

4 PAGE_SIZE Indicates the size of the swapped-out page. If set to 0, the
page is 4 KB. If set to 1, the page is 2 MB.

3 METADATA Indicates that the swapped-out page is a metadata page.

2 VMSA Contains RMP.VMSA of the page at the time the page was
swapped out.

1 PAGE_VALIDATED Contains RMP.Validated of the page at the time the page
was swapped out.

0 VALID Indicates this metadata entry is valid.

28h 31:24 VMPL3 The permission mask RMP.VMPL3 of the page at the time
the page was swapped out.

23:16 VMPL2 The permission mask RMP.VMPL2 of the page at the time
the page was swapped out.

15:8 VMPL1 The permission mask RMP.VMPL1 of the page at the time
the page was swapped out.

7:0 VMPL0 The permission mask RMP.VMPL0 of the page at the time
the page was swapped out.

2Ch 31:0 - Reserved.

30h 63:0 - Reserved.

38h 63:0 - Reserved.

20

[Public]

2.2 TCB_VERSION
The TCB_VERSION is a structure containing the security version numbers of each component in
the trusted computing base (TCB) of the SNP firmware. associated A TCB_VERSION is
associated with each image of firmware. The TCB_VERSION structure is described in Table 3.

Table 3. Structure of the TCB_VERSION
Bits Field Description

63:56 MICROCODE Lowest current patch level of all the cores.

55:48 SNP Version of the SNP firmware
Security Version Number (SVN) of SNP firmware.

47:16 - Reserved.

15:8 TEE Current PSP OS version
SVN of PSP operating system.

7:0 BOOT_LOADER Current bootloader version
SVN of PSP bootloader.

2.3 VCEK
The Versioned Chip Endorsement Key (VCEK) is a attestation signing key derived from chip-
unique secrets and a TCB_VERSION. The VCEK can be computed for any TCB_VERSION less
than or equal to the CurrentTcb (see Section 3.3 for details), allowing for migrations of secrets
from previous version to the current version.

2.4 Invalid Physical Address (PADDR_INVALID)
The value PADDR_INVALID represents an invalid value for sPA and gPA fields in this
specification. PADDR_INVALID is defined as two’s-complement –1 with a width of the field to
which it is assigned. Note that 0h is a valid sPA and gPA.

 21

[Public]

Chapter 3 Platform Management

Before SNP VMs can be launched, the platform must be properly configured and initialized.
Platform initialization is accomplished via the SNP_INIT command, which verifies that SNP has
been enabled across all CPUs and configured correctly. Further, the platform contains a state
machine that restricts which commands may be executed at certain times throughout execution.

3.1 Feature Detection and Enablement
On initialization, the SNP_INIT command will check that the SEV-SNP feature is available and
globally enabled. See [APM] Volume 2, Section 15.36, for information on feature detection and
enablement.

3.2 Platform State Machine
The SNP firmware may exist in two states: UNINIT and INIT. Certain commands may be
executed only in each of these states.

Table 4. Commands Available in Each State
State Encoding Description Allowed Platform Commands

UNINIT 0h The platform is uninitialized. This is
the reset state of the PSP firmware.

SNP_INIT
SNP_PLATFORM_STATUS
DOWNLOAD_FIRMWARE
GET_ID

INIT 1h The platform is initialized All SNP commands except
SNP_INIT,
DOWNLOAD_FIRMWARE

3.3 Firmware Updates
Each SNP firmware is associated with a firmware version which comprises a major version, minor
version, and build number. When loaded, the firmware tracks its firmware version with
CurrentVersion. SNP firmware images are also associated with a security version number (SVN).
Together with the SVNs of the other components of the TCB, loaded firmware tracks its current
TCB_VERSION in CurrentTcb.

The hypervisor may request to replace the current firmware image with a different firmware image
using the DOWNLOAD_FIRMWARE_EX command. This is usable when the SNP firmware is in
either the UNINIT or INIT states, but SEV-legacy firmware must be in the UNINIT state. When
the new firmware image is installed, the CurrentVersion and CurrentTcb are updated with the new
firmware image’s version and SVN.

22

[Public]

The firmware supports provisionally updating firmware such that, if the hypervisor chose to, the
hypervisor could roll back to the previously loaded firmware. To accomplish this, the firmware
tracks the committed firmware version and TCB_VERSION in CommittedVersion and
CommittedTcb fields. When CommittedVersion is equal to CurrentVersion, the currently loaded
firmware is committed. When CommittedVersion is less than CurrentVersion, the currently loaded
firmware is provisional.

Provisional firmware execution is identical to committed firmware execution except that the
TCB_VERSION used to derive the VCEK for key derivation and attestation reports never exceed
the CommittedTcb.

When executing provisionally installed firmware images, the hypervisor may choose to commit or
roll back. To commit, the hypervisor calls SNP_COMMIT which updates CommittedVersion and
CommittedTcb to CurrentVersion and CurrentTcb, respectively. To roll back, the hypervisor
invokes DOWNLOAD_FIRMWARE_EX with the image of the previously committed firmware
version.

As an example, consider a platform that boots with version 1.51.1 stored in flash. The hypervisor
may provisionally install an image of version 1.51.21 with DOWNLOAD_FIRMWARE_EX. At
this point, CurrentVersion is 1.51.21 and CommittedVersion is 1.51.1. The hypervisor may either
invoke SNP_COMMIT to set CommittedVersion to 1.51.21, or the hypervisor may invoke
DOWNLOAD_FIRMWARE_EX with the firmware image of 1.51.1 to roll back. The firmware
will reject any firmware update other than to 1.51.1. After committing to 1.51.21, the hypervisor
may provisionally install newer versioned firmware.

Each firmware image is also associated with a minimum version from which it can live upgrade
called MinUpgradeFrom. DOWNLOAD_FIRMWARE_EX uses this number to determine if the
current firmware version is too far in the past from the provided firmware image to be capable of
changing with SNP guests running. In this scenario, the hypervisor must invoke
SNP_SHUTDOWN before executing DOWNLOAD_FIRMWARE_EX to return the firmware to
UNINIT. MinUpgradeFrom is set per image based on the specific nature of the upgrade and
technical limitations of upgrading from distant past versions.

Guest context pages are versioned with the last firmware version that touched them. If
CurrentVersion is different from the latest firmware version that touched the guest context page,
the firmware will upgrade or downgrade the context page. A command that triggers an upgrade of
the guest context page to a provisional version of the firmware may fail by returning
UPDATE_FAILED. A failed update does not alter the guest context page.

If a guest context page is updated to a provisional firmware version, then updating the context
page back to the committed version after a roll back will always succeed.

Hypervisors should ensure that all guest context pages have been successfully updated before
committing a firmware image. If one of the updates fails, the hypervisor should roll back to the
committed version and roll back any guest context pages that were updated to the provisional
version back as well.

 23

[Public]

3.4 Reported TCB
The firmware maintains a TCB_VERSION called the ReportedTcb. ReportedTcb is used to derive
the VCEK that signs the attestation report.

ReportedTcb is initially set to the CurrentTcb. When SNP_CONFIG is invoked with a non-zero
REPORTED_TCB parameter, ReprotedTcb is set to the provided value. ReportedTcb is reset back
to CurrentTcb either on SNP_COMMIT or if SNP_CONIFG is provided a zero
REPORTED_TCB.

ReportedTcb can be used by hypervisors to decouple installation of a new firmware image from
the use of its new VCEK. A hypervisor can install a new firmware image and then set
ReportedTcb via SNP_CONFIG so that all attestation reports are still signed with the VCEK. This
allows a hypervisor the opportunity to ensure that guest owners have retrieved the VCEK
certificates before using the new VCEK.

24

[Public]

Chapter 4 Guest Management

The lifecycles of SNP-enabled guests are managed through the guest management ABI functions.
SNP-enabled guests are identified via their guest context pages, and may be launched, attested,
migrated, etc. via the appropriate ABI calls. An SNP-enabled guest is created by first allocating a
context page, then activating the guest on a specific ASID, and then adding an initial set of
plaintext pages into the guest address space. After the guest has begun execution, it may request
attestation reports, derived keys, and assist in scenarios such as live migration directly through a
trusted channel with the PSP firmware.

4.1 Guest Context
The guest context (represented as GCTX throughout this specification) contains all the
information, keys, and metadata associated with the guest that the firmware tracks to implement
the SEV and SNP features. The guest context is specified in Table 5.

Table 5. Fields of the Guest Context (GCTX)
Field Migrated? Description

ASID No The ASID that the guest’s keys are installed on, if at all.

State Yes The current state of the guest.

MsgCount0 Yes The number of guest messages that the firmware has sent to or
received from VMPL0.

MsgCount1 Yes The number of guest messages that the firmware has sent to or
received from VMPL1.

MsgCount2 Yes The number of guest messages that the firmware has sent to or
received from VMPL2.

MsgCount3 Yes The number of guest messages that the firmware has sent to or
received from VMPL3.

Policy Yes The guest’s security policy.

MA No The migration agent of the guest, if the guest is associated with a
migration agent.

LD Yes The launch digest context used to measure the guest during the launch
command flow.

OEK Yes The offline encryption key associated with this guest.

OekIvCount Yes The IV counter used for encryption with the OEK

VEK No The VM encryption key used to encrypt the guest’s memory.

VMPCK0, VMPCK1,
VMPCK2, VMPCK3

Yes The VM communication keys.

VMRK Yes The VM root key provided by the MA at guest launch or guest import.

 25

[Public]

Field Migrated? Description

HostData Yes Host data provided by the hypervisor during guest launch. This firmware
includes this value in all attestation reports for this guest.

IDBlockEn Yes Indicates whether an ID block was associated with the guest.

IDBlock Yes The associated ID block, if any.

IDKeyDigest Yes The ID key digest, if any.

AuthorKeyEn Yes Indicates whether an Author key signed the ID key.

AuthorKeyDigest Yes The Author key digest, if any.

ReportID Yes Attestation report ID.

RootMDEntry Yes The root metadata entry.

IMD Yes The measurement of the Incoming Migration Image (IMI).

IMIEn No Indicates whether the current launch flow is an IMI migration or not.
Used only when the guest is in the GSTATE_LAUNCH state.

GOSVW Yes Guest OS visible workarounds. Provided in SNP_LAUNCH_START by the
hypervisor.

DesiredTscFreq Yes Desired TSC frequency of the guest in KHz

PspTscOffset Yes Offset applied to guest TSC reads

LaunchTcb Yes The CurrentTcb of the firmware at the time the guest was created,
imported, or absorbed.

LastAccessVersion No The CurrentVersion of the firmware that last updated or created this
guest context page.

The firmware stores the guest context in a page donated by the hypervisor. The hypervisor donates
the page through the SNP_GCTX_CREATE command and reclaims it with
SNP_PAGE_RECLAIM command. Because the guest context page is in the Context state (see
Chapter 5 for details on the page state machine), the hypervisor cannot write to the page. The
firmware prevents the hypervisor from reading from the page by encrypting the guest context.

4.1.1 Live Update

The DOWNLOAD_FIRMWARE_EX command allows the hypervisor to replace the existing
firmware without affecting SNP guests. This command will update (that is, downgrade or
upgrade) the internal state of the SNP firmware immediately. In contrast, guest context pages will
be updated during the next command or guest message that takes the guest context page.

If the hypervisor issues a second DOWNLOAD_FIRMWARE_EX without triggering an update of
a guest’s context page, the guest context page may become irrecoverable and all commands and
guest messages taking the guest’s context page may fail except SNP_DECOMMISSION.
Hypervisors can use SNP_GUEST_STATUS on guest context pages to force an update.

26

[Public]

If a guest context page fails to update, the command or guest message will return the status code
UPDATE_FAILED. On success, the CurrentVersion of the guest context page is updated to the
current version of the firmware.

See Section 3.3 for further information on live updates.

4.2 Guest State Machine
The commands that can be successfully issued for a guest are restricted according to an internal
guest state machine. The guest state machine ensures that commands are executed in the correct
order. The current guest state is stored in GCTX.State.

Table 6. Guest State Definition
State Encoding Description Allowed Guest Commands

GSTATE_INIT 0h The initial state of the
guest.

SNP_LAUNCH_START
SNP_GUEST_REQUEST (VM_IMPORT)
SNP_PAGE_RECLAIM
SNP_DECOMMISSION

GSTATE_LAUNCH 1h The guest is being
launched.

SNP_GCTX_CREATE
SNP_LAUNCH_UPDATE
SNP_LAUNCH_FINISH
SNP_ACTIVATE
SNP_DECOMMISSION
SNP_PAGE_RECLAIM
SNP_PAGE_MOVE
SNP_PAGE_SWAP_OUT
SNP_PAGE_SWAP_IN
SNP_PAGE_UNSMASH

GSTATE_RUNNING 2h The guest is currently
running.

SNP_ACTIVATE
SNP_DECOMMISSION
SNP_PAGE_RECLAIM
SNP_PAGE_MOVE
SNP_PAGE_SWAP_OUT
SNP_PAGE_SWAP_IN
SNP_PAGE_UNSMASH
SNP_GUEST_REQUEST

Table 7. Guest State Transitions
Command Start State End State

SNP_LAUNCH_START GSTATE_INIT GSTATE_LAUNCH

SNP_LAUNCH_FINISH GSTATE_LAUNCH GSTATE_RUNNING

VM_ABSORB GSTATE_LAUNCH GSTATE_RUNNING

 27

[Public]

VM_IMPORT GSTATE_INIT GSTATE_RUNNING

4.3 Guest Policy
The firmware associates each guest with a guest policy that the guest owner provides. The
firmware restricts what actions the hypervisor can take on this guest according to the guest policy.
The policy also indicates the minimum firmware version to for the guest.

The guest owner provides the guest policy to the firmware during launch. The firmware then binds
the policy to the guest. The policy cannot be changed throughout the lifetime of the guest. The
policy is also migrated with the guest and enforced by the destination platform firmware.

The guest policy is an 8-byte structure with the fields shown in Table 8.

Table 8. Guest Policy Structure
Bit(s) Name Description

63:20 - Reserved. MBZ.

20 SINGLE_SOCKET 0: Guest can be activated on multiple sockets
1: Guest can only be activated on one socket

19 DEBUG 0: Debugging is disallowed.
1: Debugging is allowed.

18 MIGRATE_MA 0: Association with a migration agent is disallowed.
1: Association with a migration agent is allowed.

17 - Reserved. Must be one.

16 SMT 0: SMT is disallowed.
1: SMT is allowed.

15:8 ABI_MAJOR The minimum ABI major version required for this
guest to run.

7:0 ABI_MINOR The minimum ABI minor version required for this
guest to run.

The policy bits for a given guest are referenced with the format POLICY.<FLAG_NAME>. For
instance, the flag indicating that SMT is allowed is referred to as POLICY.SMT.

4.4 Guest Activation
The processor associates each guest memory transaction with the Address Space Identifier (ASID)
specified in the guest’s VMCB. The ASID of a guest selects the key used by the memory
controller to encrypt that guest’s memory. The hypervisor must inform the firmware on which
ASID it will execute the guest with using the VMRUN instruction. The firmware then installs the
guest’s VEK in the key slot associated with that ASID. To inform the firmware of the guest-ASID
binding, the hypervisor calls SNP_ACTIVATE.

28

[Public]

All guest data in the caches and data fabric write buffers are unencrypted. Guests with different
ASIDs have logically separate caches. However, guests with the same ASID share cache lines. To
ensure that a previously decommissioned guest’s data are not accessible to a new guest,
SNP_ACTIVATE will require that the caches are invalidated and that the data fabric write buffers
are flushed. In this case, the hypervisor must first invoke WBINVD on all cores. Following the
WBINVD completion, the hypervisor must invoke the SNP_DF_FLUSH command. This ensures
that no plaintext data owned by another guest exist in the caches or in the write buffers before
activation.

The hypervisor can activate a guest on a subset of core complexes using SNP_ACTIVATE_EX. If
a guest is activated on a core complex, the hypervisor may execute the guest with that ASID on
only that core complex. Note that if POLICY.SINGLE_SOCKET is set for a guest executing on a
system with more than one socket populated, SNP_ACTIVATE will always fail since it activates
the guest on all sockets. Instead, the hypervisor can use SNP_ACTIVATE_EX to activate the
guest on the core complexes of a single socket.

Guest activation must always occur before any memory is assigned to the guest by the hypervisor
using the RMPUPDATE instruction.

4.5 Launching a Guest
The hypervisor starts an SNP guest by launching the guest. The hypervisor uses the commands
SNP_LAUNCH_START, SNP_LAUNCH_UPDATE, and SNP_LAUNCH_FINISH to launch the
guest.

SNP_LAUNCH_START begins the launch process. Through this command, the firmware
initializes a cryptographic digest context used to construct the measurement of the guest. If the
guest is expected to be migrated, SNP_LAUNCH_START also binds a Migration Agent (MA) to
the guest. (See 4.11 for further information about migration.)

SNP_LAUNCH_UPDATE inserts data into the guest’s memory. The firmware extends the
cryptographic digest context with the data to bind the measurement of the guest with all operations
that the hypervisor took on the guest’s memory contents.

SNP_LAUNCH_UPDATE can insert two special pages into the guest’s memory: the secrets page
and the CPUID page. The secrets page contains encryption keys used by the guest to interact with
the firmware. Because the secrets page is encrypted with the guest’s memory encryption key, the
hypervisor cannot read the keys. The CPUID page contains hypervisor provided CPUID function
values that it passes to the guest. The firmware validates these values to ensure the hypervisor is
not providing out-of-range values.

SNP_LAUNCH_FINISH finalizes the cryptographic digest and stores it as the measurement of the
guest at launch. This measurement is a critical part of the guest’s attestation report produced by
the firmware. This command also takes identity keys to be associated with guest used as part of
the attestation report. For further information about the identity bloc, see 4.6. For attestation,
see 4.9.

 29

[Public]

After SNP_LAUNCH_FINISH completes successfully, the hypervisor may invoke VMRUN on
the x86 CPU to execute the guest.

4.6 Identity Block
As part of the input to the SNP_LAUNCH_FINISH command, the hypervisor may provide an
optional data structure called the identity block. The identity block contains the expected launch
digest of the guest, information uniquely identifying the guest, the guest policy bitfield, and a
signature by the guest owner. The provided launch digest is checked against the computed launch
digest, and the provided policy is checked against the policy used to launch the guest. The
identifying information is stored in the guest context to be used during key derivation and
attestation. Finally, the firmware will check that the signature is valid.

The firmware stores the keys used to sign the identity block in the guest context. Attestation
reports for the guest contain the public keys to reflect the binding of the guest to the guest owner.
A guest owner that sees its public keys in the attestation report knows that the launch process used
an identity block provided by that guest owner to validate the guest.

4.7 Decommissioning a Guest
The hypervisor may decommission a guest by calling SNP_DECOMMISSION on the guest
context page. The firmware prevents the hypervisor from running a decommissioned guest by
marking the guest’s ASID as unusable. Further, the firmware transitions the guest context page to
a Firmware page, thus rendering the context page unusable.

4.8 Guest Messages
During the launch sequence, a special secrets page may be inserted that contains VM Platform
Communication Keys (VMPCKs) that may be used by the guest to send and receive secure
messages to the PSP. Guests encrypt messages as described in the SNP_GUEST_REQUEST
function before presenting the encrypted payload to the hypervisor. The hypervisor in turn calls
SNP_GUEST_REQUEST and returns the result (also encrypted with the VMPCK) to the guest.
Guest messages are used for getting attestation reports, derived keys, handling migration, and
other uses.

4.9 Remote Attestation
Guests may ask the PSP to generate an attestation report on their behalf via a
SNP_GUEST_REQUEST call. The guest may ask for an attestation report at any time and
multiple reports can be generated. When the guest asks for a report, it supplies 512 bits of arbitrary
data to be included in the report. The resulting report will contain this data, identity information
about the guest (from the launch sequence), migration, and policy information. The report is
signed by VCEK, a chip-unique key specific to the current TCB version.

30

[Public]

Guests may supply attestation reports to 3rd parties to establish trust. The 3rd party should verify
the authenticity of the report based on its signature. A successful signature verification proves that
the 512 bits of guest data supplied in the report came from the guest whose identity is described.
For instance, this may be used to securely associate a public key with a particular VM instance.

4.10 Guest Keys
Guests may ask the PSP to derive keys for them based on various information via a
SNP_GUEST_REQUEST call. Keys are either rooted in a VM Root Key (VMRK) that is supplied
as part of the launch flow (and migrates with the guest), or in the VCEK, which is machine
specific. When asked for a key, the PSP uses a key derivation function (KDF) to generate the
requested key based on the root value and additional parameters. Certain pieces of guest
information are always mixed into the derived key while others may be optionally mixed when
requested by the guest. Keys may be used to seal information to the identity of the guest, or for
other purposes.

4.11 Migration
Migration is supported in the SNP architecture through Migration Agents (MAs). A Migration
Agent is itself an SNP VM that is bound to the primary VM during the launch process. A VM may
be associated only with a single MA, but a single MA may manage multiple primary VMs. The
MA is responsible for supplying the VMRK during the launch process and for enforcing the guest
migration policy.

The MA is considered part of the guest VM’s TCB. Consequently, when a guest generates an
attestation report, the report includes information about the MA associated with the guest (if one
exists). A 3rd party verifying the attestation report of a guest should also verify the report of the
guest’s MA.

The hypervisor may migrate a guest with or without the assistance of the guest. 4.12 describes
how a hypervisor migrates with the assistance of the guest. When the hypervisor wishes to migrate
a guest without the assistance of the guest, it first swaps all guest memory and associated metadata
pages using the SNP_PAGE_SWAP_OUT command (see Chapter 5 for additional details).
Swapped pages are encrypted using the OEK (Offline Encryption Key). Because each swapped
page must be associated with a metadata entry, eventually there will be a single metadata page
remaining after all other pages are swapped. When the hypervisor swaps this page, it can choose to
store its metadata entry in the special RootMDEntry field in the guest context.

After all the guest memory is swapped, the hypervisor asks the MA to perform the VM_EXPORT
function via SNP_GUEST_REQUEST. This function sends the context page of the guest to be
migrated to the MA via an encrypted channel. At this point, the primary VM is no longer
runnable.

The MA sends the VM context to a trusted location, such as a MA on a new machine. The
mechanism that the MA uses to transfer this data and enforce security on it is outside the scope of
this document.

 31

[Public]

In a typical scenario, a MA will have started on the destination machine to receive the guest
context information. After the hypervisor creates a guest context (as described earlier) it may ask
the MA to perform the VM_IMPORT function (via SNP_GUEST_REQUEST), which installs the
provided guest context on the new machine. At this point, the hypervisor may proceed with
swapping in guest memory (via SNP_PAGE_SWAP_IN) and begin executing the guest.

The use of an MA is optional and SNP guests may be started without a MA. Guests that are started
without a MA may not be exported and therefore cannot be migrated without shutting themselves
down.

4.12 Guest Assisted Migration
If the guest has an Initial Migration Image (IMI), the guest may assist the hypervisor during the
migration process to increase migration throughput. An IMI is software measured during the guest
launch process that can reconstruct a guest on the receiving platform from pages it is sent by the
sending guest.

On launch, a subset of the pages launched may be marked as part of the IMI. The launch process
measures the IMI separately into the Initial Migration Digest (IMD) and is stored in the guest
context. To start a migration operation, the cloud provider performs a modified launch flow on the
receiving platform. This launch flow differs from normal launch in two important ways:

• Only the IMI pages are launched via SNP_LAUNCH_UPDATE

• SNP_LAUNCH_FINISH is replaced by the absorb guest message
The absorb guest message takes a guest context exported by the sending machine using the export
guest message. The absorb message differs from the import message mainly by overwriting the
IMI context with the incoming guest context. However, the absorb message requires that the
launch digest of the IMI matches the IMD of the migrated guest. This ensures that the receiving
IMI is exactly the IMI that was launched with the guest.

When the guest is exported on the sending platform for the purpose of guest assisted migration,
the guest remains runnable. This allows the guest to send its own memory contents to the IMI.

32

[Public]

Chapter 5 Page Management

5.1 Page Security Attributes
The Reverse Map Table (RMP) is a structure that resides in DRAM and maps system physical
addresses (sPAs) to guest physical addresses (gPAs). There is only one RMP for the entire system,
which is configured using x86 model specific registers (MSRs). See [APM] volume 2,
Section 15.36, for details.

Each RMP entry is indexed by the sPA the page. The RMP, combined with all guests’ nested page
tables, creates a global one-to-one mapping between sPAs and gPAs. That is, the RMP ensures
that a page cannot be mapped into multiple guests at once, and it cannot be mapped multiple times
into a single guest at once.

The RMP also contains various security attributes of each that are managed by the hypervisor
through hardware-mediated and firmware-mediated controls. The fields of an RMP entry are
described in [APM] volume 2, Section 15.36.3.

5.2 Page States
A page’s state is completely determined by the fields in the page’s RMP entry. Specifically, the
page state depends on the Assigned, Validated, ASID, Immutable, GPA, and VMSA RMP entry
fields. Table 9 enumerates and defines each of the page states. Note that (-) in a cell indicates that
the page state is not dependent on that field.

Table 9. Page State Definitions
Page State Assigned Validated ASID Immutable GPA VMSA

Hypervisor 0 0 0 0 - -

Reclaim 1 0 0 0 - -

Firmware 1 0 0 1 0 0

Context 1 0 0 1 0 1

Metadata 1 0 0 1 >0 -

Pre-Guest 1 0 >0 1 - -

Guest-Invalid 1 0 >0 0 - -

Pre-Swap 1 1 >0 1 - -

Guest-Valid 1 1 >0 0 - -

Default See discussion below.

A Hypervisor page is used by the hypervisor for its normal execution. SNP places no restrictions
on the use of Hypervisor pages for purposes outside of managing SNP guests. A Default page is a
page that does not have an RMP entry. Pages do not have an RMP entry if the sPA indexes to an

 33

[Public]

entry past the end of the RMP table—that is, past RMP_END. Default pages have the same access
permissions as a Hypervisor page but cannot be transitioned to any other page state.

Pages in the Firmware state are owned by the firmware. Because the RMP.Immutable bit is set,
the hypervisor cannot write to Firmware pages nor alter the RMP entry with the RMPUPDATE
instruction. A Firmware page is used by the hypervisor to donate writeable memory to the
firmware to operate on. Such pages may be used to output data to the hypervisor, or to transition
into a special page state, such as Metadata pages or Context pages.

When an immutable page is returned to the hypervisor by the firmware, the page is transitioned
into the Reclaim page state. The Reclaim page state can then be transitioned to other non-
immutable pages by the hypervisor using RMPUPDATE.

A Context page is a firmware-owned page that contains all context information of a guest. The
format of the Context page is implementation specific. The content of a Context page is encrypted
and integrity protected so that the hypervisor cannot not read or write to it.

A Metadata page is a firmware-owned page that contains the metadata of a swapped-out page.
Metadata pages have a well-defined format. The firmware converts a Firmware into a Metadata
page by making the GPA field non-zero.

A Guest-Invalid page has been donated to the guest but has not yet been validated by the guest. If
the hypervisor wishes to have the firmware operate on them, the hypervisor transitions the page
into a Pre-Guest page.

Similarly, a Guest-Valid page has been donated to the guest, and the guest has validated the page.
If the hypervisor wishes to have the firmware operate on them, the hypervisor transitions the page
into a Pre-Swap page.

5.3 Page State Transitions
The only ways in which a page can transition between states are by invoking the RMPUPDATE
and PVALIDATE instructions or by issuing firmware commands described in this specification.
The hardware and firmware mediate all page state transitions to ensure that only secure state
transitions occur.

34

[Public]

ReclaimHypervisor Firmware

Context MetadataPre-Guest

Guest-
Invalid

Pre-Swap

Guest-Valid

SNP_PAGE_MOVE
SNP_PAGE_RECLAIM

SNP_LAUNCH_UPDATE
SNP_PAGE_MOVE

SNP_PAGE_SWAP_IN

SNP_PAGE_SWAP_OUT

SNP_PAGE_RECLAIM
SNP_GCTX_CREATE

SNP_DECOMMISSION
SNP_PAGE_MOVE

SNP_PAGE_MD_INIT
SNP_PAGE_SWAP_IN

SNP_PAGE_MOVE
SNP_PAGE_SWAP_OUT

SNP_PAGE_RECLAIM

SNP_PAGE_RECLAIM

RMPUPDATE
PVALIDATE
Firmware Commands

Legend

Figure 1. SNP Page State Machine

Red edges in Figure 1 represent hypervisor actions. Blue edges represent guest actions. Green
edges represent firmware commands specified in this document. Note that the some transitive
RMPUPDATE edges are omitted for clarity.

Actions that trigger a page state transition are depicted in Figure 1. The following subsections
describe the transitions in further detail. Notably, the following subsections do not describe the
Default page state because Default pages cannot transition to other page states.

5.3.1 RMPUPDATE

The RMPUPDATE instruction may be used by the hypervisor to alter the RMP entries of pages.
This allows the hypervisor to directly alter the state of most pages.

Notably, RMPUPDATE can invalidate a page but cannot validate a page. This means that the
hypervisor cannot produce pages in the Pre-Swap or Guest-Valid states without assistance from a
guest or from the PSP firmware.

Also, RMPUPDATE cannot affect the page state of an immutable page. A hypervisor can produce
pages in the Pre-Guest or Pre-Swap states with RMPUPDATE. However, once in those states, the
hypervisor must rely on the PSP firmware to transition them.

5.3.2 PVALIDATE

The PVALIDATE instruction may be used by a guest to alter the Validated flag of a page. This
allows a guest to signal to the hardware and firmware that the page at a specified gPA is
validated—that is, the guest expects the hardware and firmware to protect the integrity of the page.

 35

[Public]

Because PVALIDATE can be executed only within the guest, PVALIDATE can operate only on
pages addressable within the guest’s physical address space. Further, Pre-Guest, and Pre-Swap
pages have their RMP.Immutable flags equal to 1, which prevents the guest from transitioning
them.

5.3.3 Page Management Commands

The hypervisor can invoke the commands described in this specification to manage memory
without violating the security provided by SNP.

The hypervisor must perform these actions using RMPUPDATE. This restriction allows
RMPUPDATE to mediate all re-assignments of pages so that the appropriate TLB and cache
operations happen.

5.3.4 Launch Commands

The SNP_GCTX_CREATE command transitions a page from the Firmware state to the Context
state. This is the only way a Context page can be created.

The launch commands, specifically SNP_LAUNCH_UPDATE, take unencrypted guest pages and
convert them into encrypted pages. In doing so, this command also transitions the launched pages
to Guest-Valid pages.

5.3.5 Guest Request Commands

Neither the SNP_GUEST_REQUEST command itself nor any of the guest messages alter the state
of the pages passed to it.

5.3.6 Platform Commands

SNP_INIT initializes the state of all pages within the system by initializing the RMP. Other
platform commands do not alter the state of any pages.

5.3.7 SEV Legacy Commands

The behavior of the SEV-legacy commands is altered when the SNP firmware is in the INIT state.
In this case, the SEV-legacy commands require any page that the SEV-legacy command writes to
be a Firmware or Default page.

When the RMP has been initialized, as reported by SNP_PLATFORM_STATUS, any invocation
of the SEV-legacy commands INIT and INIT_EX require that TMR_PADDR must be 2MB
aligned instead of 1MB, and TMR_LENGTH must be 2MB instead of 1MB.

When SNP is in the INIT state, the SEV-legacy command INIT will check that the buffer
addressed by the TMR_PADDR parameter resides entirely inside Firmware pages.

36

[Public]

5.4 Metadata Entries
A metadata entry contains security attributes associated with a swapped-out page. A Metadata
page can describe three types of swapped-out pages: Data pages, Metadata pages, or VMSA
pages. Each page type determines how the metadata entry is constructed.

Table 10 describes the contents of a metadata entry. All references to RMP fields or addresses
refer to the attributes of the page at the time the hypervisor swapped it out.

Table 10. Contents of Metadata Entries for Swapped-Out Data Pages, VMSA Pages, and
Metadata Pages

Field Data Page VMSA Page Metadata Page

SOFTWARE_DATA Software-provided data Software-provided data Software-provided data

IV Initialization vector Initialization vector Initialization vector

AUTH_TAG Authentication tag Authentication tag Authentication tag

PAGE_SIZE RMP.Page_Size RMP.Page_Size RMP.Page_Size

VALID 1 1 1

METADATA 0 0 1

VMSA 0 1 0

GPA gPA of the page gPA of the page PADDR_INVALID

PAGE_VALIDATED RMP.Validated RMP.Validated 0

VMPL0 RMP.VMPL0 if VMPLs
are enabled. 0h
otherwise.

RMP.VMPL0 if VMPLs
are enabled. 0h
otherwise.

0h

VMPL1 RMP.VMPL1 if VMPLs
are enabled. 0h
otherwise.

RMP.VMPL1 if VMPLs
are enabled. 0h
otherwise.

0h

VMPL2 RMP.VMPL2 if VMPLs
are enabled. 0h
otherwise.

RMP.VMPL2 if VMPLs
are enabled. 0h
otherwise.

0h

VMPL3 RMP.VMPL3 if VMPLs
are enabled. 0h
otherwise.

RMP.VMPL3 if VMPLs
are enabled. 0h
otherwise.

0h

Reserved fields 0h 0h 0h

The hypervisor may request that the firmware place data into SOFTWARE_DATA for its own
purposes. The firmware never interprets this field. Because the hypervisor can read the metadata
entries in Metadata pages, the hypervisor can use SOFTWARE_DATA for its own bookkeeping
purposes.

An entry with VALID set to 0h is invalid and does not refer to any swapped-out page. When
VALID is 0, the firmware does not interpret any other fields of the entry.

 37

[Public]

Chapter 6 Mailbox Protocol

Software on the x86 CPUs communicate with the PSP through a set of MMIO registers, referred
to as mailbox registers. This ABI used the mailbox protocol defined in Chapter 4 of [SEV]. This
ABI adds new commands and status codes, which extend the SEV mailbox protocol. These
command and status codes are described in the following sections.

6.1 Command Identifier
This ABI adds many new commands to be handled by the mailbox protocol. Table 11 summarizes
the additional commands and their identifiers. See the command definitions for further details.

Table 11. Command Identifiers
Command ID Description

SNP_INIT 81h Initialize platform for SNP.

SNP_SHUTDOWN 82h Un-initialize platform for SNP.

SNP_PLATFORM_STATUS 83h Query platform information.

SNP_DF_FLUSH 84h Flush data fabric buffers.

SNP_INIT_EX 85h Initialize platform for SNP with extended parameters.

SNP_SHUTDOWN_EX

86h Shutdown the platform with extended capabilities to
shutdown SNP enforcing controls such as IOMMU SNP
enforcement

SNP_DECOMMISSION 90h Destroy a guest context.

SNP_ACTIVATE 91h Assign an ASID to a guest.

SNP_GUEST_STATUS 92h Query guest information.

SNP_GCTX_CREATE 93h Create a guest context.

SNP_GUEST_REQUEST 94h Process a guest request.

SNP_ACTIVATE_EX 95h Assign an ASID to a guest on select cores.

SNP_LAUNCH_START A0h Begin to launch a new guest.

SNP_LAUNCH_UPDATE A1h Add memory to a launching guest.

SNP_LAUNCH_FINISH A2h Complete launching a guest.

SNP_DBG_DECRYPT B0h Decrypt guest memory for debugging.

SNP_DBG_ENCRYPT B1h Encrypt guest memory for debugging.

SNP_PAGE_SWAP_OUT C0h Swap a page out of guest memory.

SNP_PAGE_SWAP_IN C1h Swap a page into guest memory.

SNP_PAGE_MOVE C2h Move a Memory page.

SNP_PAGE_MD_INIT C3h Initialize a Metadata page.

38

[Public]

SNP_PAGE_RECLAIM C7h Clear the immutable bit on a page.

SNP_PAGE_UNSMASH C8h Convert a sequence of 4 k pages into a 2 MB page.

SNP_CONFIG C9h Set the system wide configuration values

DOWNLOAD_FIRMWARE_EX CAh Perform a live update of SNP firmware

SNP_COMMIT CBh Commit the current firmware

6.2 Status Codes
This ABI introduces several new status codes to the mailbox protocol. Table 12 summarizes the
additional status codes added by this ABI.

Table 12. Status Codes
Status Code Description

INVALID_PAGE_SIZE 19h The RMP page size is incorrect.

INVALID_PAGE_STATE 1Ah The RMP page state is incorrect.

INVALID_MDATA_ENTRY 1Bh The metadata entry is invalid.

INVALID_PAGE_OWNER 1Ch The page ownership is incorrect.

AEAD_OFLOW 1Dh The AEAD algorithm would have overflowed.

RMP_INIT_REQUIRED 20h The RMP must be reinitialized

BAD_SVN 21h SVN of provided image is lower than the committed SVN

BAD_VERSION 22h Firmware version anti-rollback

SHUTDOWN_REQUIRED 23h An invocation of SNP_SHUTDOWN is required to
complete this action

UPDATE_FAILED 24h Update of the firmware internal state or a guest context
page has failed

RESTORE_REQUIRED 25h Install of the committed firmware image required

 39

[Public]

Chapter 7 Guest Messages

Guest messages provide the guest a mechanism to communicate with the PSP without risk from a
malicious hypervisor who wishes to read, alter, drop, or replay the messages sent. A guest may
issue requests of firmware via the SNP_GUEST_REQUEST command. This command constructs
a trusted channel between the guest and the PSP firmware. The hypervisor cannot alter the
messages without detection nor read the plaintext of the messages.

The firmware constructs the channel using a Virtual Machine Platform Communication key
(VMPCK). Each guest has four VMPCKs, which the firmware generates and provides to the guest
in a special secrets page as part of the guest launch process (see SNP_LAUNCH_UPDATE in
Section 8.17 details). Only the guest and the firmware possess the VMPCKs.

Each message contains a sequence number per VMPCK. The sequence number is incremented
with each message sent. Messages sent by the guest to the firmware and by the firmware to the
guest must be delivered in order. If not, the firmware will reject subsequent messages by the guest
when it detects that the sequence numbers are out of sync.

Each message is protected with an Authenticated Encryption with Associated Data algorithm
(AEAD), namely AES-256 GCM.

Details on how to send a message via the SNP_GUEST_REQUEST command can be found in
Section 8.26.

7.1 CPUID Reporting
Note: This guest message may be removed in future versions as it is redundant with the CPUID

page in SNP_LAUNCH_UPDATE (see Section 8.17).

The firmware provides a service to the guest to validate CPUID function values provided by the
hypervisor. This ensures that CPUID function values provided by the hypervisor are within range
of the hardware. To use this service, the guest constructs an MSG_CPUID_REQ message.

The guest constructs an MSG_CPUID_REQ message as defined in Table 13. This message
contains an array of CPUID function structures as defined in Table 13. The guest fills the structure
with the information the guest received from the CPUID instruction from the hypervisor.

The message contains enough space for COUNT_MAX function structures, but only COUNT
function structures are valid. COUNT_MAX is 64.

Table 13. MSG_CPUID_REQ Structure
Byte

Offset
Bits Name Description

00h 31:0 COUNT Number of CPUID functions to validate. Must be less

40

[Public]

Byte
Offset

Bits Name Description

than COUNT_MAX.

04h 31:0 - Reserved. Must be zero.

08h 63:0 - Reserved. Must be zero.

10h CPUID_FUNCTION[] COUNT_MAX number of CPUID_FUNCTION records.
Only the first COUNT records are valid.

Table 14. CPUID_FUNCTION Structure

Byte
Offset

Bits Name Description

00h 31:0 EAX_IN EAX input parameter to CPUID.

04h 31:0 ECX_IN ECX input parameter to CPUID.

08h 63:0 XCR0_IN XCR0 at the time of CPUID execution.

10h 63:0 XSS_IN IA32_XSS MSR at the time of CPUID execution.

18h 31:0 EAX EAX output parameter of CPUID.

1Ch 31:0 EBX EBX output parameter of CPUID.

20h 31:0 ECX ECX output parameter of CPUID.

24h 31:0 EDX EDX output parameter of CPUID.

28h 63:0 - Reserved. Must be zero.

The firmware returns an MSG_CPUID_RSP message as defined in Table 15. The message
contains the same CPUID function structures that may be altered by the firmware. The firmware
will alter the function structure when the hypervisor has provided an insecure value.

If firmware encounters a CPUID function that is not in the standard range (Fn0000_0000 through
Fn0000_FFFF) or the extended range (Fn8000_0000 through Fn8000_FFFF), the firmware does
not perform any checks on the function output.

If firmware encounters a CPUID function that is in the standard or extended ranges, then the
firmware performs a check to ensure that the provided output would not lead to an insecure guest
state. If insecure function output is identified, the firmware sets the field in the response message
with to an acceptable value. Note that some functions have multiple acceptable values, and the
firmware may choose any one of them. The firmware then returns INVALID_PARAM in the
STATUS field of the response message.

The policy used by the firmware to assess CPUID function output can be found in [PPR].

 41

[Public]

Table 15. MSG_CPUID_RSP Structure
Byte

Offset
Bits Name Description

00h 31:0 STATUS The status of key derivation operation.
0h: Success.
16h: Invalid parameters.

04h 31:0 COUNT Number of CPUID functions that have been validated.

08h 63:0 - Reserved.

10h CPUID_FUNCTION[] COUNT_MAX number of CPUID_FUNCTION records. Only
the first COUNT records are valid.

7.2 Key Derivation
The guest can ask the firmware to provide a key derived from a root key. This key may be used by
the guest for any purpose it chooses, such as sealing keys or communicating with external entities.

The data that the firmware mixes into the derived key is described in Table 16. The firmware
unconditionally mixes some of the fields into the key while the guest may optionally select and
even supply other data to mix into the key.

Table 16. Data Mixed into the Derived Guest Key

Data Description Mix Type Provided in Message

VCEK/VMRK VCEK or VMRK of the guest. The guest
selects which of the keys is used.

Always No

VMPL The VMPL selected by the guest. Always Yes

Host Data The host data provided at launch. Always No

ID key/
Author key

The author key provided at launch. If
an author key was not provided, then
the firmware uses the ID key instead.

Always No

Guest Field
Selection

A bitmask describing which of the
fields in this table are mixed into the
key. This covers the guest-selectable
fields as well as other field selection
done by the firmware.

Always Yes

TCB Version The TCB version selected by the
guest.

Optional Yes

Guest SVN SVN of the guest. Optional Yes

Measurement The measurement of the guest at
launch.

Optional No

Family ID The family ID provided at launch. Optional No

42

[Public]

Data Description Mix Type Provided in Message

Image ID The image ID provided at launch. Optional No

Guest Policy The guest policy provided at launch. Optional No

Table 17 describes the MSG_KEY_REQ message structure that the guest sends to the firmware to
request a derived key.

Table 17. MSG_KEY_REQ Message Structure
Byte

Offset
Bits Name Description

0h 31:1 - Reserved. Must be zero.

0 ROOT_KEY_SELECT Selects the root key to derive the key from. 0 indicates
VCEK. 1 indicates VMRK.

4h 31:0 - Reserved. Must be zero.

8h 63:0 GUEST_FIELD_SELECT Bitmask indicating which data will be mixed into the
derived key. See Table 16 for the structure of this bitmask.

10h 31:0 VMPL The VMPL to mix into the derived key. Must be greater
than or equal to the current VMPL.

14h 31:0 GUEST_SVN The guest SVN to mix into the key. Must not exceed the
guest SVN provided at launch in the ID block.

18h 63:0 TCB_VERSION The TCB version to mix into the derived key. Must not
exceed CommittedTcb.

The MSG_KEY_REQ described in Table 17 describes the MSG_REQ message structure that the
guest sends to the firmware to request a derived key. GUEST_FIELD_SELECT indicates which
guest-selectable fields will be mixed into the key that is described in Table 18.

Table 18. Structure of the GUEST_FIELD_SELECT Field
Bits Field Description

63:6 - Reserved. Must be zero.

5 TCB_VERSION Indicates that the guest-provided TCB_VERSION will be mixed into the key.

4 GUEST_SVN Indicates that the guest-provided SVN will be mixed into the key.

3 MEASUREMENT Indicates the measurement of the guest during launch will be mixed into the
key.

2 FAMILY_ID Indicates the family ID of the guest will be mixed into the key.

1 IMAGE_ID Indicates that the image ID of the guest will be mixed into the key.

0 GUEST_POLICY Indicates that the guest policy will be mixed into the key.

The firmware returns the MSG_KEY_RSP message defined Table 19 to the guest.

 43

[Public]

Table 19. MSG_KEY_RSP Message Structure
Byte

Offset
Bits Name Description

00h 31:0 STATUS The status of key derivation operation.
0h: Success.
16h: Invalid parameters.

04h–1Fh - Reserved.

20h 255:0 DERIVED_KEY The requested derived key if STATUS is 0h.

7.3 Attestation
The guest can request that the firmware construct an attestation report. External entities can use an
attestation report to assure the identity and security configuration of the guest.

A guest requests an attestation report by constructing an MSG_REPORT_REQ as specified in
Table 20. The message contains data provided by the guest in REPORT_DATA to be included
into the report; the firmware does not interpret this data.

Table 20. MSG_REPORT_REQ Message Structure
Byte

Offset
Bits Name Description

00h 511:0 REPORT_DATA Guest-provided data to be included into the attestation report

40h 31:0 VMPL The VMPL to put into the attestation report. Must be greater
than or equal to the current VMPL and at most three.

44h–5Fh - Reserved. Must be zero.

The guest may generate attestation reports for VMPLs that are greater than or equal to the current
VMPL. The desired VMPL is provided by the guest in the request message.

Upon receiving a request for an attestation report, the firmware constructs the report according to
Table 21.

The firmware generates a report ID for each guest that persists with the guest instance throughout
its lifetime. In each attestation report, the report ID is placed in REPORT_ID. If the guest has a
migration agent associated with it, the REPORT_ID_MA is filled in with the report ID of the
migration agent.

The firmware signs the attestation report with its VCEK. The firmware uses the system wide
ReportedTcb value as the TCB version to derive the VCEK. This value is set by the hypervisor.
The firmware guarantees that the ReportedTcb value is never greater than the installed TCB
version.

44

[Public]

Table 21. ATTESTATION_REPORT Structure
Byte Offset Bits Name Description

00h 31:0 VERSION Version number of this attestation
report. Set to 2h for this
specification.

04h 31:0 GUEST_SVN The guest SVN.

08h 63:0 POLICY The guest policy. See Table 8 for a
description of the guest policy
structure.

10h 127:0 FAMILY_ID The family ID provided at launch.

20h 127:0 IMAGE_ID The image ID provided at launch.

30h 31:0 VMPL The request VMPL for the attestation
report.

34h 31:0 SIGNATURE_ALGO The signature algorithm used to sign
this report. See Chapter 10 for
encodings.

38h 63:0 CURRENT_TCB CurrentTcb

40h 63:0 PLATFORM_INFO Information about the platform. See
Table 22.

48h 31:1 - Reserved. Must be zero.

0 AUTHOR_KEY_EN Indicates that the digest of the
author key is present in
AUTHOR_KEY_DIGEST. Set to the
value of GCTX.AuthorKeyEn.

4Ch 31:0 - Reserved. Must be zero.

50h 511:0 REPORT_DATA Guest-provided data.

90h 383:0 MEASUREMENT The measurement calculated at
launch.

C0h 255:0 HOST_DATA Data provided by the hypervisor at
launch.

E0h 383:0 ID_KEY_DIGEST SHA-384 digest of the ID public key
that signed the ID block provided in
SNP_LANUNCH_FINISH.

110h 383:0 AUTHOR_KEY_DIGEST SHA-384 digest of the Author public
key that certified the ID key, if
provided in SNP_LAUNCH_FINSIH.
Zeroes if AUTHOR_KEY__EN is 1.

140h 255:0 REPORT_ID Report ID of this guest.

160h 255:0 REPORT_ID_MA Report ID of this guest’s migration
agent.

 45

[Public]

Byte Offset Bits Name Description

180h 63:0 REPORTED_TCB Reported TCB version used to derive
the VCEK that signed this report.

188h – 19Fh - Reserved.

1A0h-1DFh 511:0 CHIP_ID If MaskChipId is set to 0, Identifier
unique to the chip. Otherwise, set to
0h.

1E0h 63:0 COMMITTED_TCB CommittedTcb

1E8h 7:0 CURRENT_BUILD The build number of CurrentVersion

1E9h 7:0 CURRENT_MINOR The minor number of CurrentVersion

1EAh 7:0 CURRENT_MAJOR The major number of CurrentVersion

1EBh 7:0 - Reserved.

1ECh 7:0 COMMITTED_BUILD The build number of
CommittedVersion

1Edh 7:0 COMMITTED_MINOR The minor version of
CommittedVersion

1EEh 7:0 COMMITTED_MAJOR The major version of
CommittedVersion

1EFh 7:0 - Reserved.

1F0h 63:0 LAUNCH_TCB The CurrentTcb at the time the guest
was launched or imported

1F8h-29Fh - Reserved.

2A0h-49Fh SIGNATURE Signature of bytes 0h to 29Fh
inclusive of this report. The format of
the signature is described inChapter
10.

Table 22. Structure of the PLATFORM_INFO Field
Byte

Offset
Bits Name Description

0h 63:2 - Reserved.

1 TSME_EN Indicates that TSME is enabled in the system

0 SMT_EN Indicates that SMT is enabled in the system.

The firmware constructs an MSG_REPORT_RSP message containing the generated attestation
report as defined in Table 23.

46

[Public]

Table 23. MSG_REPORT_RSP Message Structure
Byte

Offset
Bits Name Description

00h 31:0 STATUS The status of key derivation operation.
0h: Success.
16h: Invalid parameters.

04h 31:0 REPORT_SIZE Size in bytes of the report.

08h–1Fh - Reserved.

20h REPORT The attestation report generated by the firmware.

7.4 VM Export
When the hypervisor wishes to migrate a guest, it sends a request to that guest or its migration
agent. The guest (or its migration agent) then sends the PSP a request message to export the
guest’s data. The format of this request is defined in Table 24.

 47

[Public]

Table 24. MSG_EXPORT_REQ Message Structure
Byte

Offset
Bits Name Description

00h 63:12 GCTX_PADDR Bits 63:12 of the sPA of the guest context page for the target
guest to be exported.

11:0 - Reserved. Must be zero.

08h 31:1 - Reserved. Must be zero.

0 IMI_EN Indicates that an IMI is used to migrate the guest.

0Ch 31:0 - Reserved. Must be zero.

The firmware checks that GCTX_PADDR is a valid sPA. If not, the firmware returns a status of
INVALID_ADDRESS.

The firmware checks that GCTX_PADDR is a Context page. The firmware checks that either

• The guest sending the message is the migration agent of the exported guest. That is,
GCTX.MA of the provided guest context page matches the sPA of the requesting guest’s
guest context page, or

• The guest sending the message has no migration agent and is exporting itself. That is,
GCTX_PADDR matches the sPA of the requesting guest’s context page, and GCTX.MA of
the requesting guest is PADDR_INVALID.

In summary, the guest can export itself if it has no migration agent. Otherwise, only its migration
agent can export it. If either check fails, the firmware returns a status of INVALID_GUEST.

If the guest is exporting itself, the firmware checks that the guest message was encrypted with
VMPCK0. That is, only VMPL0 can self-export. If not, the firmware returns a status of
INVALID_GUEST.

The firmware checks that the guest to be exported is in the GSTATE_RUNNING state. If not, the
firmware returns INVALID_GUEST_STATE.

The firmware responds with a MSG_EXPORT_RSP message containing the guest context defined
in Table 25. The size of the payload is such that HDR_SIZE + MSG_SIZE is 4096. That is, the
message fills a 4 KB page.

Table 25. MSG_EXPORT_RSP Message Structure
Byte

Offset
Bits Name Description

00h 31:0 STATUS The status of the attestation request.
0h: Success
16h: Invalid parameters

48

[Public]

Byte
Offset

Bits Name Description

04h 31:0 GCTX_SIZE Size in bytes of the guest context stored in GCTX

08h 31:0 GCTX_VERSION Version of the GCTX field. Set to 3h for this ABI version.

0Ch–1Fh - Reserved.

20h–2AFh GCTX Guest context. See
Table 26 for the format of this field.

If the exported guest supports the Secure TSC feature, the caller of this guest request should
update the guest context before migration as follows:

PspTscOffset = PspTscOffset + (RDTSC / GUEST_TSC_FREQ) * DesiredTscFreq

where the RDTSC instruction invocation and the GUEST_TSC_FREQ MSR read occur within the
guest that sent this message.

Table 26. GCTX Field Structure
Byte

Offset
Bits Name Description

000h 383:0 LD See 4.1 for description of this field.

030h 255:0 OEK

050h 255:0 VMPCK0

070h 255:0 VMPCK1

090h 255:0 VMPCK2

0B0h 255:0 VMPCK3

0D0h 255:0 VMRK

0F0h 255:0 HostData

110h 383:0 IDKeyDigest

140h 383:0 AuthorKeyDigest

170h 255:0 ReportID

190h 383:0 IMD

1C0h 63:0 MsgCount0

1C8h 63:0 MsgCount1

1D0h 63:0 MsgCount2

1D8h 63:0 MsgCount3

1E0h RootMDEntry See 5.1 for description of this field. If IMI_EN is set, then
this field is set to 0h.

220h 61:2 - Reserved. Must be zero.

1 IDBlockEn See 4.1 for description of this field.

 49

[Public]

Byte
Offset

Bits Name Description

0 AuthorKeyEn See 4.1 for description of this field.

228h 63:0 Policy See 4.1 for description of this field.

230h 7:0 State See 4.1 for description of this field.

238h 63:0 OekIvCount See 4.1 for description of this field.

240h-29Fh IDBlock See 8.1 for the description of this field and Table 51 for the
format of the field.

2A0h 127:0 GOSVW See 4.1 for description of this field.

2B0h 31:0 DesiredTscFreq See 4.1 for description of this field.

2B4h 31:0 - Reserved.

2B8h 63:0 PspTscOffset See 4.1 for description of this field.

2C0h 63:0 LaunchTcb The CurrentTcb at the time the guest was launched

2C8h – 2FFh - Reserved. Must be zero.

If IMI_EN message parameter is 0, the firmware makes the exported guest unable to run on this
platform.

If IMI_EN message parameter is 1, the firmware allows the exported guest to continue running on
this platform. The IMI within the guest is expected to make itself not runnable after it has
completed migration.

If IMI_EN message parameter is 1, the firmware does not export the RootMDEntry. Instead, it
writes 0h to the RootMDEntry field.

7.5 VM Import
When the hypervisor wishes to receive a migrated guest from another system, it first constructs a
guest context with SNP_GCTX_CREATE. The hypervisor then passes the new guest context sPA
to the migration agent. The migration agent then sends the PSP a request message to import the
guest’s data to the migration agent. The format of this request is defined in Table 27.

If the imported guest supports the Secure TSC feature, the guest calling this guest message should
update the guest context before import as follows:

PspTscOffset = PspTscOffset – (RDTSC / GUEST_TSC_FREQ) * DesiredTscFreq

where the RDTSC instruction invocation and the GUEST_TSC_FREQ MSR read occur within the
guest that sent this message.

A hypervisor should ensure that all pages of the guest have been swapped out before invoking this
command. The RootMDEntry in the guest contest should contain the root metadata entry of the
guest that covers all pages of the guest.

50

[Public]

Table 27. MSG_IMPORT_REQ Message Structure
Byte Offset Bits Name Description

00h 63:12 GCTX_PADDR Bits 63:12 of the sPA of a page donated to the
firmware by the hypervisor to contain the guest
context.

11:0 - Reserved. Must be zero.

08h 31:0 GCTX_SIZE Size in bytes of the guest context stored in GCTX

0Ch 31:0 GCTX_VERSION Version of the GCTX field. Set to 3h for this ABI
version.

10h–1Fh - Reserved. Must be zero.

20h–2AFh INCOMING_GCTX Incoming guest context. See
Table 26 for the format of this field.

The firmware checks that GCTX_PADDR is a valid sPA. If not, the firmware returns the status
INVALID_ADDRESS. The firmware then checks that GCTX_PADDR is a Context page. If not,
the firmware returns the status INVALID_GUEST.

The firmware checks that the guest is in the GSTATE_INIT state. If not, the firmware returns
INVALID_GUEST_STATE.

The firmware checks that RootMDEntry of the incoming guest context has its VALID field set
to 1. If not, the firmware returns INVALID_MDATA_ENTRY.

The firmware copies the incoming guest context into the context page at GCTX_PADDR. The
firmware then sets the fields of the guest context page according to Table 28.

Table 28. Guest Context Initialized by the MSG_IMPORT_REQ Guest Message
Field Value

MA The GCTX_PADDR of the migration agent that sent this message.

ReportId Generated using a CSRNG.

IMIEn 0

The firmware transitions the guest to the GSTATE_RUNNING state.

The firmware responds with a message containing the status of the import. The response message
is defined in Table 29.

Table 29. MSG_IMPORT_RSP Message Structure
Byte

Offset
Bits Name Description

0h 31:0 STATUS Status of the import operation

4h–Fh - Reserved.

 51

[Public]

7.6 VM Absorb
When an IMI is used to accelerate guest migration, a migration agent imports the new guest using
the MSG_ABSORB_REQ message. This message requests that, after the hypervisor has launched
the IMI, the firmware replace the guest’s context with the context migrated from another machine.

If the imported guest supports the Secure TSC feature, the guest calling this guest message should
update the guest context before absorb as follows:

PspTscOffset = PspTscOffset – (RDTSC / GUEST_TSC_FREQ) * DesiredTscFreq

where the RDTSC instruction invocation and the GUEST_TSC_FREQ MSR read occur within the
guest that sent this message.

The migration agent sends the firmware an MSG_ABSORB_REQ message as described in Table
30.

Table 30. MSG_ABSORB_REQ Message Structure
Byte

Offset
Bits Name Description

00h 63:12 GCTX_PADDR Bits 63:12 of the sPA of a page donated to the firmware by
the hypervisor to contain the guest context.

11:0 - Reserved. Must be zero.

08h 31:0 IN_GCTX_SIZE Size in bytes of the guest context stored in GCTX.

0Ch 31:0 IN_GCTX_VERSION Version of the GCTX field.. Set to 3h for this ABI version.

10h–1Fh - Reserved.

20h–28Fh IN_GCTX Incoming guest context. See Table 26 for the format of this
field.

The firmware checks that GCTX_PADDR is a valid sPA. If not, the firmware returns the status
INVALID_ADDRESS. The firmware then checks that GCTX_PADDR is a Context page. If not,
the firmware returns the status INVALID_GUEST.

The firmware checks that the guest is in the GSTATE_LAUNCH state. The firmware also checks
that GCTX.IMIEn is 1. If either check fails, the firmware returns the status
INVALID_GUEST_STATE.

The firmware checks that the IN_GCTX.IMD is equal to GCTX.LD. If not, the firmware returns
the status BAD_MEASUREMENT.

The firmware checks that it supports the IN_GCTX_VERSION and that the IN_GCTX_SIZE is
compatible with this version. If not, the firmware returns the status INVALID_PARAM.

The firmware checks that RootMDEntry of the incoming guest context has its VALID field set to
0. If not, the firmware returns INVALID_MDATA_ENTRY.

52

[Public]

Because the guest that sent this message is the new migration agent of the incoming guest, the
firmware sets the GCTX.MA of the incoming guest context to GCTX_PADDR.

The firmware overwrites the guest context at GCT7X_PADDR with the guest context in the
IN_GCTX field except the ReportID field. The firmware preserves the ReportID field generated
during guest launch. The firmware then sets the state of the guest to the GSTATE_RUNNING
state.

The firmware responds with a message containing the status of the import. The response message
is defined in Table 31.

Table 31. MSG_ABSORB_RSP Message Structure
Byte

Offset
Bits Name Description

0h 31:0 STATUS Status of the absorb operation

4h–Fh - Reserved. Must be zero.

7.7 VM Absorb – No Migration Agent
This message is similar in use to the MSG_ABSORB_REQ except that it allows a guest to import
its own guest context. This can be used with the MSG_EXPORT_REQ message to allow a guest
to manage its migration without a migration agent.

If the imported guest supports the Secure TSC feature, the guest calling this guest message should
update the guest context before import as follows:

PspTscOffset = PspTscOffset – (TSC / GUEST_TSC_FREQ) * DesiredTscFreq

where TSC is the timestamp counter read by the guest using RDTSC, GUEST_TSC_FREQ is the
MSR (C001_0134) to retrieve the guest effective TSC frequency, and DesiredTscFreq is the value
stored in the guest’s context page.

Table 32. MSG_ABSORB_NOMA_REQ Message Structure
Byte

Offset
Bits Name Description

00h 63:0 - Reserved. Must be zero.

08h 31:0 IN_GCTX_SIZE Size in bytes of the guest context stored in GCTX.

0Ch 31:0 IN_GCTX_VERSION Version of the GCTX field. Set to 3h for this ABI version.

10h–1Fh - Reserved.

20h–28Fh IN_GCTX Incoming guest context. See Table 26 for the format of this
field.

 53

[Public]

The firmware checks that GCTX.MA is INVALID_PADDR. That is, the guest sending this
message has no migration agent. If this check fails, the firmware returns the status
INVALID_GUEST.

The firmware checks that the IN_GCTX.IMD is equal to GCTX.LD and IN_GCTX.IMD is equal
to GCTX.IMD. If not, the firmware returns the status BAD_MEASUREMENT.

The firmware checks that it supports the IN_GCTX_VERSION and that the IN_GCTX_SIZE is
compatible with this version. If not, the firmware returns the status INVALID_PARAM.

The firmware checks that RootMDEntry of the incoming guest context has its VALID field set to
0. If not, the firmware returns INVALID_MDATA_ENTRY.

The firmware overwrites the guest context at GCTX_PADDR with the guest context in the
IN_GCTX field excluding the following fields which remain unaltered.

• HostData

• IDKeyDigest

• AuthorKeyDigest

• ReportId

• IDBlockEn

• AuthorKeyEn

• State

• IDBlock
The firmware responds with a message containing the status of the import. The response message
is defined in Table 31.

Table 33. MSG_ABSORB_NOMA_RSP Message Structure
Byte

Offset
Bits Name Description

0h 31:0 STATUS Status of the absorb operation

4h–Fh - Reserved. Must be zero.

7.8 VMRK Message
During launch, the migration agent of the guest sends the VMRK to use for the guest. It must be
encrypted with the migration agent’s VMPCK0. If not, the firmware returns INVALID_PARAM.

The structure of the VMRK message is defined in Table 34.

Table 34. Structure of the MSG_VMRK_REQ Guest Message

54

[Public]

Byte
Offset

Bits Name Description

0h 63:12 GCTX_PADDR Bits 63:12 of the sPA of a page donated to the firmware by the
hypervisor to contain the guest context.

11:0 - Reserved. Must be zero.

4h–1Fh - Reserved. Must be zero.

20h 255:0 VMRK A VMRK generated by a migration agent.

The firmware checks that GCTX_PADDR is a valid sPA. If not, the firmware returns the status
INVALID_ADDRESS. The firmware then checks that GCTX_PADDR is a Context page. If not,
the firmware returns the status INVALID_GUEST.

The firmware checks that the guest is in the GSTATE_LAUNCH state. The firmware also checks
that GCTX.IMIEn is 0. If either check fails, the firmware returns the status
INVALID_GUEST_STATE.

The firmware checks that GCTX.MA of the guest matches the GCTX_PADDR of the migration
agent—that is, the guest sending the MSG_VMRK_REQ message. If not, the firmware returns the
status INVALID_GUEST.

The firmware installs the VMRK into the guest’s GCTX.VMRK.

The firmware responds with a message containing the status. The response message is defined in
Table 35.

Table 35. MSG_VMRK_RSP Message Structure
Byte

Offset
Bits Name Description

0h 31:0 STATUS Status of the VMRK operation.

4h–Fh - Reserved.

7.9 TSC Info
When a guest creates its own VMSA, it must query the PSP for information with the TSC_INFO
message to determine the correct values to write into GUEST_TSC_SCALE and
GUEST_TSC_OFFSET. The guest MSG_TSC_INFO_REQ request is described in Table 36.

Table 36. MSG_TSC_INFO_REQ Message Structure
Byte

Offset
Bits Name Description

0h – 7Fh - Reserved. Must be zero.

The firmware responds with the MSG_TSC_INFO_RSP response as described in Table 37.

 55

[Public]

Table 37. MSG_TSC_INFO_RSP Message Structure
Byte

Offset
Bits Name Description

0h 31:0 STATUS Status of the TSC_INFO message

4h 31:0 - Reserved.

8h 63:0 GUEST_TSC_SCALE Calculated as GCTX.DesiredTscFreq / (mean native
frequency)

10h 63:0 GUEST_TSC_OFFSET GCTX.PspTscOffset

18h 31:0 TSC_FACTOR Encoding of the percentage decrease from nominal TSC
frequency to mean TSC frequency due to clocking
parameters. Mean TSC frequency can be calculated by the
guest as:

GUEST_TSC_FREQ * (1 – (TSC_FACTOR * 0.00001))

For instance, a TSC_FACTOR value of 200 indicates a
reduction of 0.2% from nominal TSC frequency.

1Ch – 7Fh - Reserved.

The guest should set the GUEST_TSC_SCALE and GUEST_TSC_OFFSET VMSA fields to the
values provided by the PSP.

56

[Public]

Chapter 8 Command Reference

8.1 DOWNLOAD_FIRMWARE
This command allows the hypervisor to install new SNP firmware newer than the currently active
firmware. This command is a legacy SEV command and documented in Section 5 of [SEV].

In addition to the checks performed in [SEV], the SNP platform state must be UNINIT. If not, the
firmware returns INVALID_PLATFORM_STATE.

 57

[Public]

8.2 DOWNLOAD_FIRMWARE_EX
This command replaces the current SEV-SNP firmware application with a new SEV-SNP
application. This command extends the functionality of DOWNLOAD_FIRMWARE with support
for provisional updates and for updates while SNP firmware is in the INIT state.

See Section 3.3 for further information on live updates.

Note that when SNP is in the UNINIT state and COMMIT set to 1, this command behaves as if
DOWNLOAD_FIRMWARE was called instead.

8.2.1 Parameters

Table 38. Layout of the CMDBUF_SNP_DOWNLOAD_FIRMWARE_EX Structure
Byte

Offset
Bits In/Out Name Description

00h 31:0 In LENGTH Length of this command buffer in
bytes.

04h 31:0 - - Reserved. Must be zero.

08h 63:0 In FW_PADDR System physical address of the
region that contains a SEV-SNP
firmware image. This region must
be 32 B aligned.

10h 31:0 In FW_LEN Length of the SEV-SNP firmware in
bytes.

14h 31:1 - - Reserved. Must be zero.

0 In COMMIT Indicates that this command will
automatically commit the newly
installed image.

8.2.2 Actions

The SNP firmware may be in any state. SEV must be in the UNINIT state.

The firmware checks that the image is well formed and is compatible with the currently installed
firmware within the PSP. This check is implementation specific and include internal consistency
checks and signature validation. If the provided image is not well formed, then the firmware
returns INVALID_PARAM.

If the FirmwareVersion of the current firmware is less than the FirmwareVersion of the provided
image, then this command is processing an upgrade. In this case, the provided image restricts the
minimum version from which it will upgrade with its MinUpgradeFrom attribute. The firmware
checks that MinUpgradeFrom of the provided image is less than or equal to the Firmware version
of the current firmware. If not, the firmware returns SHUTDOWN_REQUIRED.

58

[Public]

If the FirmwareVersion of the current firmware is greater than the FirmwareVersion of the
provided image, then this command is processing a downgrade. In this case, the current firmware
restricts minimum firmware version to which it allows a downgrade with its MinDowngradeTo
attribute. The firmware checks that MinDowngradeTo of the current firmware is less than or equal
to the FirmwareVersion of the provided image. If not, the firmware returns
SHUTDOWN_REQUIRED.

Further, on downgrade, the current firmware checks that the FirmwareVersion of the provided
image is equal to the CommittedVersion of the current firmware. If not, the firmware returns
BAD_VERSION.

The firmware then installs the provided image, replacing the current firmware. If the firmware is
in the INIT sate, all SNP firmware state is retained.. Guest context pages may be updated by the
hypervisor as described in Section 4.1.1.

The firmware returns RESTORE_REQUIRED when a provided image is installed but the new
firmware detects it cannot proceed safely. After returning this status, the firmware will only
successfully execute DOWNLOAD_FIRMWARE_EX. Hypervisors should resolve this condition
by rolling back to the committed version of the firmware. This is accomplished by invoking
DOWNLOAD_FIRMWARE_EX with the firmware image of the committed version.

The firmware sets its MinDowngradeTo and FirmwareVersion fields to the MinDowngradeTo and
FirmwareVersion of the provided image, respectively.

If COMMIT is 1 and the command successfully completes, the firmware implicitly commits the
SVN and FirmwareVersion of the provided image as if SNP_COMMIT was called.

8.2.3 Status Codes

Table 39. Status Codes for SNP_PLATFORM_STATUS
Status Condition

SUCCESS Successful completion.

RESTORE_REQUIRED New firmware image is installed but is unusable.

INVALID_PARAM Provided image is not well formed.

SHUTDOWN_REQUIRED Provided image cannot be live updated.

BAD_VERSION Provided image is less than CommittedVersion

 59

[Public]

8.3 SNP_COMMIT
This command commits the currently installed firmware. Once committed, the firmware cannot be
replaced with a previous firmware version or SVN.

See Section 3.3 for further information on live updates.

8.3.1 Parameters

Table 40. Layout of the CMDBUF_SNP_COMMIT Structure
Byte

Offset
Bits In/Out Name Description

00h 31:0 In LENGTH Length of this command buffer in
bytes.

8.3.2 Actions

The firmware sets the CommittedTcb to the CurrentTcb of the current firmware.

The firmware sets the CommittedVersion to the FirmwareVersion of the current firmware.

The firmware sets the ReportedTcb to the CommittedTcb of the current version.

8.3.3 Status Codes

Table 41. Status Codes for SNP_PLATFORM_STATUS
Status Condition

SUCCESS Successful completion.

60

[Public]

8.4 GET_ID
This command returns a unique ID for the system that can be used to obtain a certificate for the
VCEK from AMD’s Key Distribution Server. This command is a legacy SEV command and
documented in Section 5 of [SEV].

In addition to the checks in [SEV], the firmware also checks that, if the SNP firmware state is
INIT, the 16 B buffer pointed at by ID_PADDR resides entirely in Firmware or Default pages.
Otherwise, the firmware returns INVALID_PAGE_STATE.

 61

[Public]

8.5 SNP_PLATFORM_STATUS
This command returns information about the current status and capabilities of the platform.

8.5.1 Parameters

Table 42. Layout of the CMDBUF_SNP_PLATFORM_STATUS Structure
Byte

Offset
Bits In/Out Name Description

00h 63:0 In STATUS_PADDR sPA to write the platform status
structure. See Table 43.

8.5.2 Actions

The platform may be in any state when this command is called.

The firmware checks that STATUS_PADDR is a valid sPA. If not, the firmware returns
INVALID_ADDRESS.

If the SNP firmware state is INIT, the page must be either a Firmware or Default page. If not, the
firmware returns INVALID_PAGE_STATE.

If the platform state is UNINIT, the firmware does not check the state or size of the page.

The following data structure is written to memory at STATUS_PADDR

Table 43. Layout of the STRUCT_PLATFORM_STATUS Structure
Byte

Offset
Bits Name Description

00h 7:0 API_MAJOR Major API version.

01h 7:0 API_MINOR Minor API version.

02h 7:0 STATE The current platform state, zero extended. See 3.2 for
encodings.

03h 7:1 - Reserved.

0 IS_RMP_INIT Set to the value of IsRmpInitiailzied.

04h 31:0 BUILD Firmware build ID for this API version.

08h 31:1 - Reserved.

0 MASK_CHIP_ID Set to the value of MaskChipId.

0Ch 31:0 GUEST_COUNT The number of guests currently managed by the firmware.

10h 63:0 CURRENT_TCB The CurrentTcb of the firmware

18h 63:0 REPORTED_TCB The reported TCB version in guest attestation reports.

62

[Public]

8.5.3 Status Codes

Table 44. Status Codes for SNP_PLATFORM_STATUS
Status Condition

SUCCESS Successful completion.

INVALID_ADDRESS The address is invalid for use by the firmware.

INVALID_PARAM MBZ fields are not zero.

INVALID_PAGE_STATE The page at STATUS_PADDR is not in the correct RMP page state.

 63

[Public]

8.6 SNP_CONFIG
This command sets the system wide configuration values for SNP.

8.6.1 Parameters

Table 45. Layout of the CMDBUF_SNP_CONFIG_STATUS Structure
Byte

Offset
Bits In/Out Name Description

00h 63:0 In REPORTED_TCB The TCB_VERSION to report in
guest attestation reports.

08h 31:1 - - Reserved. Must be zero.

0 In MASK_CHIP_ID Indicates that the CHIP_ID field in
the attestation report will always
be zero.

0Ch – 3Fh - - Reserved. Must be zero.

8.6.2 Actions

The firmware checks that the REPORTED_TCB parameter is less than or equal to CommittedTcb.
If not, the firmware returns INVALID_PARAM.

If REPORTED_TCB is 0, the firmware sets ReportedTcb to CommittedTcb. Otherwise, the
firmware sets ReportedTcb value to REPORTED_TCB.

The firmware sets the system wide MaskChipId to MASK_CHIP_ID.

8.6.3 Status Codes

Table 46. Status Codes for SNP_CONFIG_STATUS
Status Condition

SUCCESS Successful completion.

INVALID_PARAM The desired reported TCB_VERSION is invalid

INVALID_PLATFORM_STATE The platform is not in the INIT state

64

[Public]

8.7 SNP_INIT
This command validates the platform configuration of the SNP and initializes the firmware. This
command is a specialization of the SNP_INIT_EX command.

8.7.1 Parameters

None.

8.7.2 Actions

This command behaves as if SNP_INIT_EX was called with INIT_RMP set to 1 and all other
parameters set to zero.

8.7.3 Status Codes

See SNP_INIT_EX.

 65

[Public]

8.8 SNP_INIT_EX
This command validates the platform configuration of the SNP and initializes the firmware.

8.8.1 Parameters

Layout of the CMDBUF_SNP_INIT_EX Structure
Byte

Offset
Bits In/Out Name Description

00h 31:1 - - Reserved. Must be zero.

0 In INIT_RMP Indicates that the RMP should
be initialized.

04h – 39h - - Reserved. Must be zero.

8.8.2 Actions

Before invoking SNP_INIT_EX with INIT_RMP set to 1, software must ensure that no CPUs
contain dirty cache lines for the memory containing the RMP.

The firmware checks that the platform is in the UNINIT state. The firmware also checks that SEV-
legacy firmware is not already initialized. If either check fails, the firmware returns
INVALID_PLATFORM_STATE.

If INIT_RMP is 0, then the firmware determines if SNP can be initialized securely without
initializing the RMP table. The firmware requires initialization if the RMP is not yet initialized.
The firmware may also require initialization for other reasons, such as if the RMP was
incompatibly initialized by a previous version of the firmware. If the firmware determines the
RMP requires initialization, the firmware returns RMP_INIT_REQUIRED.

If INIT_RMP is 1, then the firmware ensures the following system requirements are met:

• SYSCFG[MemoryEncryptionModEn] must be set to 1 across all cores (SEV must be enabled)

• SYSCFG[SecureNestedPagingEn] must be set to 1 across all cores

• SYSCFG[VMPLEn] must be set to 1 across all cores.

• SYSCFG[MFDM] must be set to 1 across all cores

• VM_HSAVE_PA (MSR C001_0117) must be set to 0h across all cores

• Bit 2 and 7 of DEBUG_STATUS must be set to zero across all cores
The following MSRs must be set identically across all cores:

• DEBUG_STATUS

66

[Public]

• All MTRRs

• IORR_BASE

• IORR_MASK

• TOM

• TOM2
If any of the above checks fail, the firmware returns INVALID_CONFIG.

If INIT_RMP is 1, then the firmware also ensures that the following requirements for the RMP
have been met:

• RMP_BASE and RMP_END must be set identically across all cores

• RMP_BASE must be 1 MB aligned

• RMP_END – RMP_BASE + 1 must be a multiple of 1 MB

• RMP is large enough to protect itself
If any of the above checks fail, the firmware returns INVALID_ADDRESS.

The firmware initializes the IOMMU to perform RMP enforcement. The firmware also transitions
the event log, PPR log, and completion wait buffers of the IOMMU to an RMP page state that is
read-only to the hypervisor and cannot be assigned to guests.

If INIT_RMP is 1, then the firmware alters the RMP such that pages of the RMP are in the
Firmware state and all other pages covered by the RMP are in the Hypervisor state, The firmware
also initializes any microarchitectural data structures within the RMP. Immediately after
completing RMP initialization, the firmware forces a TLB flush across all cores on all sockets.

The firmware marks all encryption capable ASIDs as unusable for encrypted virtualization.

The firmware sets the platform state to INIT.

8.8.3 Status Codes

Table 47. Status Codes for SNP_INIT
Status Condition

SUCCESS Successful completion.

INVALID_CONFIG The system is not in a valid configuration that can support SNP.

INVALID_PLATFORM_STATE The platform is not in the UNINIT state.

INVALID_ADDRESS RMP_BASE or RMP_END are not valid addresses

RMP_INIT_REQUIRED Initialization of the RMP is required.

 67

[Public]

8.9 SNP_GCTX_CREATE
This command donates a page from the hypervisor to the firmware to be used to store the guest
context.

8.9.1 Parameters

Table 48. Layout of the CMDBUF_SNP_GCTX_CREATE Structure
Byte

Offset
Bits In/Out Name Description

00h 63:12 In GCTX_PADDR Bits 63:12 of the sPA of a page donated to the
firmware by the hypervisor to contain the guest
context.

11:0 - - Reserved. Must be zero.

8.9.2 Actions

The firmware checks that the platform is in the INIT state. If not, the firmware returns
INVALID_PLATFORM_STATE.

The firmware checks that GCTX_PADDR is a valid sPA. If not, the firmware returns
INVALID_ADDRESS.

The firmware checks that the donated context page is in the Firmware state. If not, the firmware
returns INVALID_PAGE_STATE. The firmware checks that the donated page is marked as a 4
KB page in the RMP. If not, the firmware returns INVALID_PAGE_SIZE.

The firmware transitions the page to the Context state and initializes the guest context according to
Table 49. All other fields within the guest context remain indeterminate until they are initialized
through the launch process or through the import process.

Table 49. Guest Context Initialized by the SNP_GCTX_CREATE Command
Field Value

ASID Set to 0h indicating that no ASID has been associated with this guest.

State GSTATE_INIT.

VEK Generated using a CSRNG.

OekIvCount 0h

LaunchTcb Set to CurrentTcb

LastAccessVersion Set to CurrentVersion

68

[Public]

8.9.3 Status Codes

Table 50. Status Codes for SNP_GCTX_CREATE
Status Condition

SUCCESS Successful completion.

INVALID_PLATFORM_STATE The platform is not in the INIT state.

INVALID_ADDRESS The address is invalid for use by the firmware.

INVALID_PARAM MBZ fields are not zero.

INVALID_PAGE_STATE The page is not in the Firmware state.

INVALID_PAGE_SIZE The page is not a 4 KB page.

 69

[Public]

8.10 SNP_ACTIVATE
This command installs the guest’s VEK into the memory controller in the key slot associated with
a given ASID.

8.10.1 Parameters

Table 51. Layout of the CMDBUF_SNP_ACTIVATE Structure
Byte

Offset
Bits In/Out Name Description

00h 63:12 In GCTX_PADDR Bits 63:12 of the sPA of a page
donated to the firmware by the
hypervisor to contain the guest
context.

11:0 - - Reserved. Must be zero.

08h 31:0 In ASID ASID to bind to the guest.

8.10.2 Actions

The firmware checks that the platform is in the INIT state. If not, the firmware returns
INVALID_PLATFORM_STATE.

The firmware checks that GCTX_PADDR is a valid sPA. If not, the firmware returns
INVALID_ADDRESS. The firmware then checks that the page at GCTX_PADDR is in the
Context state. If not, the firmware returns INVALID_GUEST.

The firmware checks that the guest is in the GSTATE_LAUNCH state or in the
GSTATE_RUNNING state. If not, the firmware returns INVALID_GUEST_STATE.

The firmware checks that ASID is an encryption capable ASID and must be within the range 1h to
(MIN_SEV_ASID-1), inclusive. The MIN_SEV_ASID value is discovered by CPUID
Fn8000_001F[EDX]. If not, the firmware returns INVALID_ASID. If the ASID is already
assigned to another guest, the firmware returns ASID_OWNED. If the guest is already activated,
the firmware returns ACTIVE.

The firmware checks that a DF_FLUSH is not required. If a DF_FLUSH is required, the firmware
returns DFFLUSH_REQUIRED. Note that all ASIDs are marked to require a DF_FLUSH at reset.

The firmware checks that there are no pages assigned to the ASID in the RMP. If not, the
firmware returns INVALID_CONFIG.

If POLICY.SINGLE_SOCKET is 1 and the system has more than one socket populated, the
firmware returns POLICY_FAILURE. The firmware installs the guest’s VEK into the memory
controllers in the key slot associated with the given ASID.

70

[Public]

8.10.3 Status Codes

Table 52. Status Codes for SNP_ACTIVATE
Status Condition

SUCCESS Successful completion.

INVALID_CONFIG ASID has pages assigned to it already.

INVALID_PLATFORM_STATE The platform is not in the INIT state.

INVALID_GUEST_STATE The guest is not in the LAUNCH state.

INVALID_ADDRESS The address is invalid for use by the firmware.

INVALID_PARAM MBZ fields are not zero.

INVALID_GUEST The guest is invalid.

INVALID_ASID The provided ASID is not an encryption capable ASID.

ASID_OWNED The ASID is already owned by another guest.

POLICY_FAILURE The guest policy prevents activation on multiple sockets

UPDATE_FAILED Update of the firmware internal state or a guest context page has failed

ACTIVE The guest is already activated.

DFFLUSH_REQUIRED DF_FLUSH was not invoked before this command.

 71

[Public]

8.11 SNP_ACTIVATE_EX
This command installs the guest’s VEK into the memory controller in the key slot associated with
a given ASID on select core complexes. Only hardware threads in the selected core complex may
execute the guest. When an ASID is later re-used, WBINVD need be done only on core complexes
associated with the guest.

8.11.1 Parameters

Table 53. Layout of the CMDBUF_SNP_ACTIVATE_EX Structure
Byte

Offset
Bits In/Out Name Description

00h 31:0 In EX_LEN Length of command buffer. 20h for
this version.

04h 31:0 - - Reserved.

08h 63:12 In GCTX_PADDR Bits 63:12 of the sPA of a page
donated to the firmware by the
hypervisor to contain the guest
context.

11:0 - - Reserved. Must be zero.

10h 31:0 In ASID The ASID in which the guest should
be bound.

14h 31:0 In NUMIDs Number of APIC IDs in the
ID_PADDR list.

18h 63:0 In ID_PADDR Bits 63:0 of the sPA of a list of 32-
bit APIC IDs.

8.11.2 Actions

The firmware checks that the platform is in the INIT state. If not, the firmware returns
INVALID_PLATFORM_STATE.

The firmware checks that GCTX_PADDR is a valid sPA. If not, the firmware returns
INVALID_ADDRESS. The firmware then checks that the page at GCTX_PADDR is in the
Context state. If not, the firmware returns INVALID_GUEST.

The firmware checks that the guest is in the GSTATE_LAUNCH state or in the
GSTATE_RUNNING state. If not, the firmware returns INVALID_GUEST_STATE.

The firmware checks that ASID is an encryption capable ASID. If not, the firmware returns
INVALID_ASID. If the ASID is already assigned to another guest, the firmware returns
ASID_OWNED. If the guest is already activated but on a different ASID, the firmware returns
ACTIVE.

72

[Public]

The firmware checks that a DF_FLUSH is not required. If so, the firmware returns
DFFLUSH_REQUIRED. Note that all ASIDs are marked to require a DF_FLUSH at reset.

If the guest is not yet activated, the firmware checks that there are no pages assigned to the ASID
in the RMP. If not, the firmware returns INVALID_CONFIG.

If POLICY.SINGLE_SOCKET is 1, the firmware performs the following checks:

• If the guest is bound to a migration agent, the migration agent must already be activated and
completing this command must not result in activating the guest on a different socket than its
migration agent.

• Completing this command will not result in activating the guest on multiple sockets
If any of the checks fail, the firmware returns POLICY_FAILURE. The firmware installs the
guest’s VEK into the memory controllers for the given APIC IDs into the key slot associated with
the given ASID. This command can be called multiple times in order to expand the set of CCXs
on which the guest may execute.

8.11.3 Status Codes

Table 54. Status Codes for SNP_ACTIVATE_EX
Status Condition

INVALID_CONFIG ASID has pages assigned to it already.

INVALID_PLATFORM_STATE The platform is not in the INIT state.

INVALID_GUEST_STATE The guest is not in the LAUNCH state.

INVALID_ADDRESS The address is invalid for use by the firmware.

INVALID_PARAM MBZ fields are not zero.

INVALID_GUEST The guest is invalid.

INVALID_ASID The provided ASID is not an encryption capable
ASID.

ASID_OWNED The ASID is already owned by another guest.

POLICY_FAILURE The guest policy prevents activation on multiple
sockets

UPDATE_FAILED Update of the firmware internal state or a guest
context page has failed

ACTIVE The guest is already activated.

DFFLUSH_REQUIRED DF_FLUSH was not invoked before this command.

SUCCESS Successful completion.

 73

[Public]

8.12 SNP_DECOMMISSION
This command destroys a guest context. After this command successfully completes, the guest
will not long be runnable.

8.12.1 Parameters

Table 55. Layout of the CMDBUF_SNP_DECOMMISSION Structure
Byte

Offset
Bits In/Out Name Description

00h 63:12 In GCTX_PADDR Bits 63:12 of the sPA of the guest’s
context page.

11:0 - - Reserved. Must be zero.

8.12.2 Actions

The firmware checks that the platform is in the INIT state. If not, the firmware returns
INVALID_PLATFORM_STATE.

The firmware checks that the GCTX_PADDR is a valid sPA. If not, the firmware returns
INVALID_ADDRESS.

The firmware checks that the page is a Context page. If not, the firmware returns
INVALID_GUEST.

The firmware marks the ASID of the guest as not runnable. Then, the firmware records that each
CPU core on each of the CCXs that the guest was activated on requires a WBINVD followed by a
single DF_FLUSH command to ensure that all unencrypted data in the caches are invalidated
before reusing the ASID. The firmware then transitions the page into a Firmware page.

8.12.3 Status Codes

Table 56. Status Codes for SNP_DECOMMISSION
Status Condition

SUCCESS Successful completion.

INVALID_PLATFORM_STATE The platform is not in the INIT state.

INVALID_ADDRESS The address is not valid or is misaligned.

INVALID_PARAM MBZ fields are not zero.

INVALID_GUEST The guest is not valid.

UPDATE_FAILED Update of the firmware internal state or a guest context page has
failed

74

[Public]

8.13 SNP_DF_FLUSH
This command flushes SOC data buffers after CPU caches have been invalidated. After a VM is
decommissioned or exported, the hypervisor must execute a WBINVD on the cores that the
previous guest was active on before invoking the SNP_DF_FLUSH command. The combination
of WBINVD and SNP_DF_FLUSH ensures that all data associated with the previous guest is no
longer in any CPU caches.

8.13.1 Parameters

None

8.13.2 Actions

For each core marked for cache invalidation, the firmware checks that the core has executed a
WBINVD instruction. If not, the firmware returns WBINVD_REQUIRED. The commands that
mark cores for cache invalidation include SNP_DECOMMISSION and the guest request
MSG_EXPORT_REQ.

The firmware flushes the write buffers of the data fabric and records that a flush has been
performed for all decommissioned ASIDs.

8.13.3 Status Codes

Table 57. Status Codes for SNP_DF_FLUSH
Status Condition

SUCCESS Successful completion.

INVALID_PLATFORM_STATE The firmware is not in the INIT state.

WBINVD_REQUIRED At least one core did not execute a WBINVD instruction before
calling this command.

 75

[Public]

8.14 SNP_SHUTDOWN
This command returns the firmware to an uninitialized state.

8.14.1 Parameters

None

8.14.2 Actions

This command is equivalent to executing SNP_SHUTDOWN_EX with a command buffer
containing zeroes.

8.14.3 Status Codes

Table 58. Status Codes for SNP_SHUTDOWN
Status Condition

INVALID_PLATFORM_STATE SEV is not in the UNINIT state.

DFFLUSH_REQUIRED DF_FLUSH was not invoked before this command

SUCCESS Successful completion.

76

[Public]

8.15 SNP_SHUTDOWN_EX
This command returns the firmware to an uninitialized state and optionally disables the SNP
enforcement in the IOMMU and sets the associated pages to the Hypervisor state.

8.15.1 Parameters

Table 59. Layout of the CMDBUF_SNP_SHUTDOWN_EX Structure
Byte

Offset
Bits In/Out Name Description

0h 31:0 In LENGTH Length of this command buffer in bytes.

4h 31:1 - - Reserved. Must be zero.

0 In IOMMU_SNP_SHUTDOWN Disable enforcement of SNP in the
IOMMU

8.15.2 Actions

If SEV firmware is not in the UNINIT state, the firmware returns
INVALID_PLATFORM_STATE.

If IOMMU_SNP_SHUTDOWN is set to 1, the firmware performs the following actions:

• Disables SNP enforcement by the IOMMU

• Transitions all pages associated with the IOMMU to the Hypervisor state

• Records that a full RMP re-initialization is required by the next SNP_INIT invocation
If IOMMU_SNP_SHUTDOWN is 0, the firmware leaves the IOMMU and its pages unaltered.
The firmware then checks if the firmware is in the UNINIT state. If so, the firmware returns
SUCCESS without taking any further action.

If the SNP firmware is in the INIT state, the firmware checks for every encryption capable ASID
that the ASID is not in use by a guest and a DF_FLUSH is not required. If a DF_FLUSH is
required, the firmware returns DFFLUSH_REQUIRED.

The firmware clears the encryption keys out of the memory controller and transitions the platform
to the UNINIT state and returns SUCCESS.

Note that, aside from the IOMMU pages referenced above, the firmware will not automatically
reclaim any pages marked as immutable in the RMP. The hypervisor should either reclaim the
pages using SNP_PAGE_RECLAIM or should call SNP_INIT afterwards to reset the RMP.

8.15.3 Status Codes

Table 60. Status Codes for SNP_SHUTDOWN_EX

 77

[Public]

Status Condition

INVALID_PLATFORM_STATE SEV is not in the UNINIT state.

DFFLUSH_REQUIRED DF_FLUSH was not invoked before this command

SUCCESS Successful completion.

78

[Public]

8.16 SNP_LAUNCH_START
This command initializes the flow to launch a guest.

8.16.1 Parameters

Table 61. Layout of the CMDBUF_SNP_LAUNCH_START Structure
Byte

Offset
Bits In/Out Name Description

00h 63:12 In GCTX_PADDR Bits 63:12 of the sPA of the guest context
page.

11:0 - - Reserved. Must be zero.

08h 63:0 In POLICY Guest policy. See Table 7 for a description of
the guest policy structure.

10h 63:12 In MA_GCTX_PADDR Bits 63:12 of the sPA of the guest context of
the migration agent. Ignored if MA_EN is 0.

11:0 In - Reserved. Must be zero.

18h 31:2 - - Reserved. Must be zero.

1 In IMI_EN Indicates that this launch flow is launching an
IMI for the purpose of guest-assisted
migration.

0 In MA_EN 1 if this guest is associated with a migration
agent. Otherwise 0.

1Ch 31:0 In DESIRED_TSC_FREQ Hypervisor desired mean TSC frequency in
KHz of the guest. This field has no effect if
guests do not enable Secure TSC in the
VMSA. The hypervisor should set this field to
0h if it does not support Secure TSC for this
guest.

20h 127:0 In GOSVW Hypervisor provided value to indicate guest
OS visible workarounds. The format is
hypervisor defined.

8.16.2 Actions

The firmware checks that the platform is in the INIT state. If not, the firmware returns
INVALID_PLATFORM_STATE.

The firmware checks that GCTX_PADDR is a valid sPA. If MA_EN is 1, the firmware checks
that MA_GCTX_PADDR is a valid sPA. If not, the firmware returns INVALID_ADDRESS. The
firmware then checks that GCTX_PADDR is a Context page. If MA_EN is 1, the firmware checks
that MA_GCTX_PADDR is a Context pages. If not, the firmware returns INVALID_GUEST.

 79

[Public]

The firmware checks that the guest is in the GSTATE_INIT state. If not, the firmware returns
INVALID_GUEST_STATE.

The firmware checks that the guest’s policy is satisfied by checking that the following conditions
are met:

• If MA_EN is 1, POLICY.MIGRATE_MA must be 1.

• If MA_EN is 1, then the migration agent must not be migratable—that is, the migration agent
itself must not be bound to another migration agent.

• If POLICY.SMT is 0, then SMT must be disabled.

• POLICY.ABI_MAJOR must be equal the major version of this ABI.

• POLICY.ABI_MINOR must be less than or equal to the minor version of this ABI.

• If POLICY.SINGLE_SOCKET is 1 and MA_EN is 1, then the migration agent’s
POLICY.SINGLE_SOCKET must be 1.

If any of the above conditions are not met, the firmware returns POLICY_FAILURE.

The firmware initializes the guest context with the values defined in Table 62.

Table 62. Guest Context Field Initialization for the Launch Flow
Field Value

MsgCount0
MsgCount1
MsgCount2
MsgCount3

0h

Policy Set to POLICY.

MA Set to MA_GCTX_PADDR if MA_EN is 1. Set to PADDR_INVALID
otherwise.

OEK Generated using a CSRNG.

VMPCK0
VMPCK1
VMPCK2
VMPCK3

Generated using a CSRNG.

VMRK Generated using a CSRNG. May be replaced by a VMRK guest message
from the associated migration agent. See 7.7.

LD 0h

IMD 0h

IDBlockEn 0

IDBlock 0h

IDKeyDigest 0h

AuthorKeyEn 0

80

[Public]

Field Value

AuthorKeyDigest 0h

ReportID Generated using a CSRNG.

IMIEn Set to IMI_EN.

GOSVW GOSVW field.

DesiredTscFreq Set to DESIRED_TSC_FREQ

PspTscOffset 0h

The firmware sets the guest state to GSTATE_LAUNCH.

8.16.3 Status Codes

Table 63. Status Codes for SNP_LAUNCH_START
Status Condition

SUCCESS Successful completion.

INVALID_PLATFORM_STATE The platform is not in the INIT state.

INVALID_ADDRESS An address was not a valid sPA or properly aligned.

INVALID_PARAM MBZ fields are not zero.

INVALID_GUEST The guest is invalid.

INVALID_GUEST_STATE The guest was not in the GSTATE_INIT state.

POLICY_FAILURE The guest’s policy was violated.

UPDATE_FAILED Update of the firmware internal state or a guest context page has
failed

 81

[Public]

8.17 SNP_LAUNCH_UPDATE
This command inserts pages into the guest physical address space.

8.17.1 Parameters

Table 64. Layout of the CMDBUF_SNP_LAUNCH_UPDATE Structure
Byte Offset Bits In/Out Name Description

00h 63:12 In GCTX_PADDR Bits 63:12 of the sPA of the guest context page.

11:0 - - Reserved. Must be zero.

08h 31:5 - - Reserved. Must be zero.

4 In IMI_PAGE Indicates that this page is part of the IMI of the
guest.

3:1 In PAGE_TYPE Encoded page type. See
Table 65.

0 In PAGE_SIZE Indicates page size. 0 indicates a 4 KB page. 1
indicates a 2 MB page.

0Ch 31:0 - - Reserved. Must be zero.

10h 63:12 In PAGE_PADDR Bits 63:12 of the sPA of the destination page.
The page size is determined by PAGE_SIZE.

11:0 - - Reserved. Must be zero.

18h 63:32 - - Reserved. Must be zero.

31:24 In VMPL3_PERMS VMPL permission mask for VMPL3. See Table 66
for the definition of the mask.

23:16 In VMPL2_PERMS VMPL permission mask for VMPL2 See Table 66
for the definition of the mask.

15:8 In VMPL1_PERMS VMPL permission mask for VMPL1. See Table 66
for the definition of the mask.

7:0 - - Reserved. Must be zero.

Table 65. Encodings for the PAGE_TYPE Field

Value Name Description

00h - Reserved.

01h PAGE_TYPE_NORMAL A normal data page.

02h PAGE_TYPE_VMSA A VMSA page.

03h PAGE_TYPE_ZERO A page full of zeroes.

04h PAGE_TYPE_UNMEASURED A page that is encrypted but not measured.

05h PAGE_TYPE_SECRETS A page for the firmware to store secrets for the guest.

82

[Public]

Value Name Description

06h PAGE_TYPE_CPUID A page for the hypervisor to provide CPUID function
values.

All other encodings Reserved.

Table 66. VMPL Permission Mask
Bit Field Description

7:4 - Reserved. Must be zero.

3 Execute-Supervisor Page is executable by the VMPL in CPL2, CPL1, and CPL0.

2 Execute-User Page is executable by the VMPL in CPL3.

1 Write Page is writeable by the VMPL.

0 Read Page is readable by the VMPL.

8.17.2 Actions

The firmware checks that the platform is in the INIT state. If not, the firmware returns
INVALID_PLATFORM_STATE.

The firmware checks that GCTX_PADDR and PAGE_PADDR are valid sPAs. If not, the
firmware returns INVALID_ADDRESS. The firmware checks that if PAGE_SIZE is 1, then
PAGE_PADDR is 2 MB aligned. If this check fails, the firmware returns INVALID_ADDRESS.

The firmware checks that GCTX_PADDR is a Context page. If not, the firmware returns
INVALID_GUEST.

The firmware checks that the guest is in the GSTATE_LAUNCH state. If not, the firmware
returns INVALID_GUEST_STATE.

The firmware also checks that the page at PAGE_PADDR is Pre-Guest page. If not, the firmware
returns INVALID_PAGE_STATE.

The firmware checks that the guest is activated—that is, it has an assigned ASID. If not, the
firmware returns INACTIVE.

The firmware checks that the ASID of the destination page indicated by the RMP matches the
ASID of the guest. If not, the firmware returns INVALID_PAGE_OWNER.

The firmware checks that the destination page size indicated by the RMP matches the page size
indicated by the PAGE_SIZE parameter. If not, the firmware returns INVALID_PAGE_SIZE.

The firmware checks that if GCTX.IMIEn is 1, then IMI_PAGE is also 1. If not, then the firmware
returns INVALID_PARAM.

The firmware checks that if VMPLs are not enabled, then VMPL1_PERMS, VMPL2_PERMS,
and VMPL3_PERMS must be zero. If not, the firmware returns INVALID_PARAM.

 83

[Public]

The firmware updates the GCTX.LD and possibly the GCTX.IMD with information describing
the contents and location of the pages inserted into the guest. Each update to the digest is of the
following form:

 DIGEST_NEW := SHA-384(PAGE_INFO)

where PAGE_INFO is the structure defined in Table 67.

Table 67. Layout of the PAGE_INFO Structure
Byte

Offset
Bits Field Description

0h 383:0 DIGEST_CUR The value of the current digest (either LD or IMD).

30h 383:0 CONTENTS The SHA-384 digest of the measured contents of the region, if
any. See the following subsections.

60h 15:0 LENGTH Length of this structure in bytes.

62h 7:0 PAGE_TYPE The zero-extended PAGE_TYPE field provided by the hypervisor.

63h 7:1 - 0h

0 IMI_PAGE Set to the IMI_PAGE flag provided by the hypervisor.

64h 31:24 VMPL3_PERMS The VMPL3_PERMS field provided by the hypervisor.

23:16 VMPL2_PERMS The VMPL2_PERMS field provided by the hypervisor.

15:8 VMPL1_PERMS The VMPL1_PERMS field provided by the hypervisor.

7:0 - 0h

68h 63:0 GPA The 64-bit gPA of the region.

The firmware unconditionally updates GCTX.LD. If IMI_PAGE is 1, the firmware updates the
GCTX.IMD.

The following subsections describe how the PAGE_TYPE, GPA, and CONTENTS fields are
determined.

Note that the guest physical address space is limited according to CPUID Fn80000008_EAX and
thus the GPAs used by the firmware in measurement calculation are equally limited. Hypervisors
should not attempt to map pages outside of this limit.

The following subsections describes the actions the firmware takes on the guest address space
depending on the page type, PAGE_TYPE. If the page size is 2 MB, then the firmware will update
the launch digest as if the data were provided in a contiguous sequence of 4 KB pages. The final
launch digest is therefore independent of how the hypervisor chooses to size the pages within the
nested page tables and in the RMP.

84

[Public]

8.17.2.1 PAGE_TYPE_NORMAL

The firmware performs the actions in this subsection when PAGE_TYPE is
PAGE_TYPE_NORMAL.

For each 4 KB chunk within the page, the firmware constructs a PAGE_INFO structure with the
following data:

• PAGE_TYPE: PAGE_TYPE_NORMAL

• GPA: The gPA of the 4 KB chunk. The firmware calculates this by adding the offset of the
chunk to RMP.GPA of the page.

• CONTENTS: The SHA-384 digest of the contents of the 4 KB chunk
The firmware updates GCTX.LD and GCTX.IMD as described above.

The firmware encrypts the page with the VEK in place. The firmware then sets the VMPL
permissions for the page and transitions the destination page to Guest-Valid.

8.17.2.2 PAGE_TYPE_VMSA

The firmware performs the actions in this subsection when PAGE_TYPE is
PAGE_TYPE_VMSA.

The firmware checks that the destination page is 4 KB. If not, the firmware returns
INVALID_PAGE_SIZE.

The firmware constructs a PAGE_INFO structure with the following data:

• PAGE_TYPE: PAGE_TYPE_VMSA

• GPA: The gPA of the 4 KB page. The firmware uses the RMP.GPA of the page.

• CONTENTS: The SHA-384 digest of the contents of the 4 KB page. The firmware ignores
the values of GUEST_TSC_SCALE and GUEST_TSC_OFFSET and measures the VMSA
as if those fields contained zero.

The firmware updates GCTX.LD and GCTX.IMD as described above.

If VmsaRegProt in the SEV_FEATURES field of VMSA is 1 and the current microcode level
supports VmsaRegProt, then the firmware generates an 8B random tweak value and writes it to
offset 300h of the VMSA. The firmware then XORs the tweaked quadwords of the VMSA with
the tweak value. The quadwords of the VMSA that are tweaked are determined by the family,
model, stepping, and microcode patch of the processor. This information is shared with the guest
via the PAGE_TYPE_SECRETS page. If the current microcode level does not support Vmsa
RegProt, the firmware returns NOT_SUPPORTED.

Note that the firmware measures the VMSA provided by the hypervisor prior to any tweak
operations.

 85

[Public]

If SecureTsc in the SEV_FEATURES field of VMSA is 1, the firmware sets the
GUEST_TSC_SCALE and GUEST_TSC_OFFSET fields in the VMSA as follows:

GUEST_TSC_SCALE := GCTX.DesiredTscFreq / (mean native frequency)
GUEST_TSC_OFFSET := 0

Note that these VMSA fields are changed after the measurement is calculated.

If SecureTsc in the SEV_FEATURES field of VMSA is 0, then the firmware does not alter
GUEST_TSC_SCALE or GUEST_TSC_OFFSET.

The firmware encrypts the page with the VEK in place. The firmware sets the RMP.VMSA of the
page to 1. The firmware sets the VMPL permissions for the page and transitions the page to
Guest-Valid.

8.17.2.3 PAGE_TYPE_ZERO

The firmware performs the actions in this subsection when PAGE_TYPE is PAGE_TYPE_ZERO.

For each 4 KB chunk within the page, the firmware constructs a PAGE_INFO structure with the
following data:

• PAGE_TYPE: PAGE_TYPE_ZERO

• GPA: The gPA of the 4 KB chunk. The firmware calculates this by adding the offset of the
chunk to RMP.GPA of the page.

• CONTENTS: 0h.
The firmware updates GCTX.LD and GCTX.IMD as described above.

The firmware encrypts a page of zeroes with the VEK. The firmware sets the VMPL permissions
for the page and transitions the page to Guest-Valid.

8.17.2.4 PAGE_TYPE_UNMEASURED

The firmware performs the actions in this subsection when PAGE_TYPE is
PAGE_TYPE_UNMEASURED.

For each 4 KB chunk within the page, the firmware constructs a PAGE_INFO structure with the
following data:

• PAGE_TYPE: PAGE_TYPE_UNMEASURED

• GPA: The gPA of the 4 KB chunk. The firmware calculates this by adding the offset of the
chunk to RMP.GPA of the page.

• CONTENTS: 0h.

The firmware updates GCTX.LD and GCTX.IMD as described above.

86

[Public]

The firmware encrypts the page with the VEK in place. The firmware sets the VMPL permissions
for the page and transitions the page to Guest-Valid.

8.17.2.5 PAGE_TYPE_SECRETS

The firmware performs the actions in this subsection when PAGE_TYPE is
PAGE_TYPE_SECRETS.

The firmware checks that the destination page is 4 KB. If not, the firmware returns
INVALID_PAGE_SIZE.

The firmware constructs a PAGE_INFO structure with the following data:

• PAGE_TYPE: PAGE_TYPE_SECRETS

• GPA: The gPA of the 4 KB page. The firmware uses the RMP.GPA of the page.

• CONTENTS: 0h.
The firmware updates GCTX.LD and GCTX.IMD as described above.

The firmware constructs the 4 KB data structure described in Table 56. Reserved fields are set to
0h. The firmware then encrypts the data structure with the guest’s VEK and writes it into the page.
The firmware ensures that the data structure content remains confidential to the guest and the
firmware.

Table 68. Secrets Page Format
Byte

Offset
Bits Name Description

000h 31:0 VERSION Version of the secrets page format. The version
described in this specification is 3h.

004h 31:1 - Reserved.

0 IMI_EN Set to the value of GCTX.IMIEn.

008h 31:0 FMS Family, model, and stepping information as reported in
CPUID Fn0000_0001_EAX.

0Ch 31:0 - Reserved.

10h 127:0 GOSVW GOSVW guest context field as provided by the
hypervisor in SNP_LAUNCH_START.

020h 255:0 VMPCK0 Set to GCTX.VMPCK0.

040h 255:0 VMPCK1 Set to GCTX.VMPCK1.

060h 255:0 VMPCK2 Set to GCTX.VMPCK2.

080h 255:0 VMPCK3 Set to GCTX.VMPCK3.

0A0h – 0FFh - Reserved for guest OS usage

100h – 13Fh VMSA_TWEAK_BITMAP Set to the bitmap of the VMSA tweak. The kth bit of the

 87

[Public]

Byte
Offset

Bits Name Description

bitmap indicates that the kth quadword of the VMSA is
tweaked.

140h – 15Fh - Reserved for guest OS usage

160h 31:0 TSC_FACTOR Encoding of the percentage decrease in mean TSC
frequency due to clocking parameters. Real TSC
frequency can be calculated by the guest as:

GUEST_TSC_FREQ * (1 – (TSC_FACTOR * 0.00001))

For instance, a TSC_FACTOR value of 200 indicates a
reduction of 0.2% of TSC frequency.

164h–FFFh - Reserved.

The firmware sets the VMPL permissions for the page and transitions the page to Guest-Valid.

8.17.2.6 PAGE_TYPE_CPUID

The firmware performs the actions in this subsection when PAGE_TYPE is
PAGE_TYPE_CPUID.

The firmware checks that the destination page is 4 KB. If not, the firmware returns
INVALID_PAGE_SIZE.

The hypervisor should fill the page with CPUID functions structures as described in Table 69.
These structures inform the guest of the machine configuration exposed to the guest by the
hypervisor. However, a malicious hypervisor could provide a value that puts the guest in an
insecure state. Therefore, the firmware checks each CPUID function structure to determine if the
provided value is secure.

If firmware encounters a CPUID function that is not in the standard range (Fn0000_0000 through
Fn0000_FFFF) or the extended range (Fn8000_0000 through Fn8000_FFFF), the firmware does
not perform any checks on the function output.

If firmware encounters a CPUID function that is in the standard or extended ranges, then the
firmware performs a check to ensure that the provided output would not lead to an insecure guest
state. If insecure function output is identified, the firmware updates the field with an acceptable
value. Note that some functions have multiple acceptable values, and the firmware may choose
any one of them. The firmware then returns INVALID_PARAM. Note that in this failure case, the
page is not encrypted with the VEK, the page measurement is not updated, and the page state
remains unaltered.

The policy used by the firmware to assess CPUID function output can be found in [PPR].

The firmware constructs a PAGE_INFO structure with the following data:

88

[Public]

• PAGE_TYPE: PAGE_TYPE_CPUID

• GPA: The gPA of the 4 KB page. The firmware uses the RMP.GPA of the page.

• CONTENTS: 0h.
The firmware updates GCTX.LD and GCTX.IMD as described above.

The page has enough for COUNT_MAX function structures, but only COUNT function structures
are valid. COUNT_MAX is 64.
The firmware then encrypts the page with the VEK in place.
Table 69. CPUID Page Format

Byte
Offset

Bits Name Description

00h 31:0 COUNT Number of CPUID functions to validate. Must be less
than or equal to COUNT_MAX.

04h 31:0 - Reserved. Must be zero.

08h 63:0 - Reserved. Must be zero.

10h–C0Fh CPUID_FUNCTION[] COUNT_MAX number of CPUID_FUNCTION records (See
7.1 for the format of this record). Only the first COUNT
records are valid.

The firmware sets the VMPL permissions for the page and transitions the page to Guest-Valid.

8.17.3 Status Codes

Table 70. Status Codes for SNP_LAUNCH_UPDATE
Status Condition

SUCCESS Successful completion.

INVALID_PLATFORM_STATE The platform is not in the INIT state.

INVALID_ADDRESS An address is invalid or incorrectly aligned.

INVALID_PARAM MBZ fields are not zero.

INVALID_GUEST The guest is invalid.

INVALID_GUEST_STATE The guest is not in the GSTATE_LAUNCH state.

INACTIVE The guest has not been activated.

INVALID_PAGE_STATE A page was not in the correct state.

INVALID_PAGE_OWNER The destination page was not owned by the guest.

INVALID_PAGE_SIZE The destination page was not the correct size.

INVALID_PARAM IMI_PAGE was incorrectly set.

UPDATE_FAILED Update of the firmware internal state or a guest
context page has failed

 89

[Public]

8.18 SNP_LAUNCH_FINISH
This command completes the guest launch flow.

8.18.1 Parameters

Table 71. Layout of the CMDBUF_SNP_LAUNCH_FINISH Structure
Byte

Offset
Bits In/Out Name Description

00h 63:12 In GCTX_PADDR Bits 63:12 of the sPA of the guest context
page.

11:0 - - Reserved. Must be zero.

08h 63:0 In ID_BLOCK_PADDR sPA of the ID block.
Ignored if ID_BLOCK_EN is 0.

10h 63:0 In ID_AUTH_PADDR sPA of the authentication information of the
ID block.
Ignored if ID_BLOCK_EN is 0.

18h 63:2 - - Reserved. Must be zero.

1 In AUTH_KEY_EN Indicates that the author key is present in
the ID authentication information structure.
Ignored if ID_BLOCK_EN is 0.

0 In ID_BLOCK_EN Indicates that the ID block is present.

20h 255:0 In HOST_DATA Opaque host-supplied data to describe the
guest. The firmware does not interpret this
value.

Table 72. Structure of the ID Block

Byte
Offset

Bits Name Description

0h 383:0 LD The expected launch digest of the guest.

30h 127:0 FAMILY_ID Family ID of the guest, provided by the guest owner and
uninterpreted by the firmware.

40h 127:0 IMAGE_ID Image ID of the guest, provided by the guest owner and
uninterpreted by the firmware.

50h 31:0 VERSION Version of the ID block format. Must be 1h for this version of the
ABI.

54h 31:0 GUEST_SVN SVN of the guest.

58h 63:0 POLICY The policy of the guest.

90

[Public]

Table 73. Structure of the ID Authentication Information Structure
Byte

Offset
Bits Name Description

0h 31:0 ID_KEY_ALGO The algorithm of the ID Key. See Chapter 10 for details

4h 31:0 AUTH_KEY_ALGO The algorithm of the Author Key. See Chapter 10 for
details.

8h–3Fh - Reserved. Should be zero.

40h–23Fh ID_BLOCK_SIG The signature of all bytes of the the ID block. See Chapter
10 for the format of the signature.

240h–643h ID_KEY The public component of the ID key. See Chapter 10 for
the format of the public key

644h–67Fh - Reserved. Should be zero.

680h–87Fh ID_KEY_SIG The signature of the ID_KEY. See Chapter 10 for the
format of the signature.

880h–C83h AUTHOR_KEY The public component of the Author key. See Chapter 10
for the format of the public key
Ignored if AUTHOR_KEY_EN is 0.

C84h–FFFh - Reserved. Should be zero.

8.18.2 Actions

The firmware checks that the platform is in the INIT state. If not, the firmware returns
INVALID_PLATFORM_STATE.

The firmware checks that GCTX_PADDR is a valid sPA. If not, the firmware returns
INVALID_ADDRESS. The firmware then checks that GCTX_PADDR is a Context page. If not,
the firmware returns INVALID_GUEST.

The firmware checks that the guest is in the GSTATE_LAUNCH state. The firmware also checks
that GCTX.IMIEn is 0. If either check fails, the firmware returns INVALID_GUEST_STATE.

The firmware checks that the guest is activated—that is, it has an assigned ASID. If not, the
firmware returns INACTIVE.

The firmware checks that, if ID_BLOCK_EN is 1, then ID_BLOCK_PADDR and
ID_AUTH_PADDR are valid sPAs. If not, the firmware returns INVALID_ADDRESS.

 91

[Public]

If ID_BLOCK_EN is 1, the firmware checks that the LD field of the ID block is equal to
GCTX.LD. If not, the firmware returns BAD_MEASUREMENT. The firmware then checks that
the POLICY field of the ID block is equal to GCTX.Policy. If not, the firmware returns
POLICY_FAILURE. The firmware then validates the signature of the ID block using the ID
public key. If AUTH_KEY_EN is also 1, the firmware validates the signature of the ID key using
the Author public key. If either signature fails to validate, the firmware returns
BAD_SIGNATURE.

The firmware then initializes the guest context fields according to Table 74.

Table 74. Guest Context Fields Initialized During SNP_LAUNCH_FINISH
Field Value

HostData HOST_DATA.

IDBlockEn ID_BLOCK_EN.

IDBlock If ID_BLOCK_EN is 1, then set to the ID block. 0 otherwise.

IDKeyDigest If ID_BLOCK_EN is 1, then set to the SHA-384 digest of the ID public key. 0
otherwise.

AuthorKeyEn AUTHOR_KEY_EN.

AuthorKeyDigest If AUTHOR_KEY_EN is 1, then set to the SHA-384 digest of the Author public
key. 0 otherwise.

The firmware makes the guest runnable on the ASID it is activated on. The firmware then sets the
guest state to GSTATE_RUNNING.

8.18.3 Status Codes

Table 75. Status Codes for SNP_LAUNCH_FINISH
Status Condition

SUCCESS Successful completion.

INVALID_PLATFORM_STATE The platform is not in the INIT state.

INVALID_GUEST_STATE The guest is not in the GSTATE_LAUNCH state or GCTX.IMIEn is
not 0.

INVALID_GUEST The guest is invalid.

INVALID_ADDRESS An address is invalid or incorrectly aligned.

INVALID_PARAM MBZ fields are not zero.

INVALID_PAGE_STATE A page was not in the correct state.

INACTIVE The guest has not been activated.

BAD_SIGNATURE Incorrect signature provided.

UPDATE_FAILED Update of the firmware internal state or a guest context page has
failed

92

[Public]

8.19 SNP_GUEST_STATUS
This command is used to retrieve information about an SNP guest.

8.19.1 Parameters

Table 76. Layout of the CMDBUF_SNP_GUEST_STATUS Structure
Byte

Offset
Bits In/Out Name Description

00h 63:12 In GCTX_PADDR Bits 63:12 of the sPA of the guest
context page.

11:0 - - Reserved. Must be zero.

08h 63:0 In STATUS_PADDR Bits 63:0 of the sPA of the guest
status structure. See Table 77.

8.19.2 Actions

The firmware checks that the platform is in the INIT state. If not, the firmware returns
INVALID_PLATFORM_STATE.

The firmware checks that the GCTX_PADDR and STATUS_PADDR are valid sPAs. If either
check fails, the firmware returns INVALID_ADDRESS.

The firmware checks that the guest context page is a Context page. If not, the firmware returns
INVALID_GUEST. The firmware checks that the guest status page is a Firmware or Default page.
If not, the firmware returns INVALID_PAGE_STATE.

The firmware writes the following structure to the beginning of the guest status page.

Table 77. Layout of the STRUCT_SNP_GUEST_STATUS Structure
Byte

Offset
Bits Name Description

00h 63:0 POLICY Guest policy.

08h 31:0 ASID Current ASID. If none is assigned, set to 0h.

0Ch 7:0 STATE Current guest state.

0Dh 7:0 - Reserved.

0Eh 15:0 - Reserved.

10h 63:0 Reserved.

18h 63:0 - Reserved.

8.19.3 Status Codes

Table 78. Status Codes for SNP_GUEST_STATUS

 93

[Public]

Status Condition

SUCCESS Successful completion.

INVALID_PLATFORM_STATE The platform is not in the INIT state.

INVALID_ADDRESS The address is invalid for use by the firmware.

INVALID_PARAM MBZ fields are not zero.

INVALID_GUEST The guest context page was invalid.

INVALID_PAGE_STATE The guest status page was not in the correct state.

INVALID_PAGE_SIZE The guest status page was not the correct size.

UPDATE_FAILED Update of the firmware internal state or a guest context page has failed

94

[Public]

8.20 SNP_PAGE_MOVE
This command moves the contents of SNP-protected pages within the system physical address
space without violating SNP security.

8.20.1 Parameters

Table 79. Layout of the CMDBUF_SNP_PAGE_MOVE Structure
Byte

Offset
Bits In/Out Name Description

00h 63:12 In GCTX_PADDR Bits 63:12 of the sPA of the guest
context page.

11:0 - - Reserved. Must be zero.

08h 31:1 - - Reserved. Must be zero.

0 In PAGE_SIZE Indicates page size. 0 indicates a
4 KB page. 1 indicates a 2 MB
page.

0Ch 31:0 - - Reserved. Must be zero.

10h 63:12 In SRC_PADDR Bits 63:12 of the sPA of the source
page. The page size is determined
by PAGE_SIZE.

11:0 - - Reserved. Must be zero.

18h 63:12 In DST_PADDR Bits 63:12 of the sPA of the
destination page. The page size is
determined by PAGE_SIZE.

11:0 - - Reserved. Must be zero.

8.20.2 Actions

The firmware checks that the platform is in the INIT state. If not, the firmware returns
INVALID_PLATFORM_STATE.

The firmware checks that GCTX_PADDR is a valid sPA. If not, the firmware returns
INVALID_ADDRESS. The firmware then checks that the page at GCTX_PADDR is in the
Context state. If not, the firmware returns INVALID_GUEST.

The firmware checks that the guest is in the GSTATE_LAUNCH or GSTATE_RUNNING states.
If not, the firmware returns INVALID_GUEST_STATE. The firmware then checks that the guest
is activated. If not, the firmware returns INACTIVE.

The firmware checks that SRC_PADDR and DST_PADDR are valid sPAs. If not, the firmware
returns INVALD_ADDRESS.

 95

[Public]

The firmware checks that the source and destination page sizes indicated by the RMP match the
page size indicated by the PAGE_SIZE parameter. If not, the firmware returns
INVALID_PAGE_SIZE.

This command operates either on guest pages or on Metadata pages. The following subsections
describe each case.

8.20.2.1 Guest Pages

The firmware performs the actions in this section when the source page is a Pre-Swap or Pre-
Guest page.

The firmware checks that the destination page is a Pre-Guest page. If either check fails, the
firmware returns INVALID_PAGE_STATE.

The firmware checks that the RMP.ASID of both the source and destination pages are equal to the
ASID of the guest. If not, the firmware returns INVALID_PAGE_OWNER.

The firmware uses the guest’s VEK to copy the plaintext of the source page into the plaintext of
the destination page.

The firmware sets the RMP.GPA and RMP.VMSA of the destination page to match the
RMP.GPA and RMP.VMSA of the source page. If VMPLs are enabled, the firmware also sets the
VMPL permissions bits of the destination page to match the VMPL permission bits of the source
page.

If the source page is a Pre-Guest page, the firmware transitions the destination page into a Guest-
Invalid page. If the source page is a Pre-Swap page, the firmware transitions the destination page
into a Guest-Valid page. Finally, the firmware transitions the source page into a Guest-Invalid
page.

8.20.2.2 Metadata Pages

The firmware performs the actions in this section when the source page is a Metadata page.

The firmware checks that the destination page is a Firmware page. If either check fails, the
firmware returns INVALID_PAGE_STATE.

The firmware checks that the RMP.GPA of the source page is equal to the sPA of the guest
context. If not, the firmware returns INVALID_PAGE_OWNER.

The firmware copies the contents of the source page into the destination page. The firmware then
sets the RMP.GPA of the destination to match the sPA of the guest context page and transitions
the destination page into a Metadata page.

Finally, the firmware transitions the source page into a Firmware page.

96

[Public]

8.20.3 Status Codes

Table 80. Status Codes for SNP_PAGE_MOVE
Status Condition

SUCCESS Successful completion.

INVALID_PLATFORM_STATE The platform is not in the INIT state.

INVALID_PARAM MBZ fields are not zero.

INVALID_ADDRESS An address is invalid for use by the firmware or is misaligned.

INVALID_GUEST The guest is invalid.

INVALID_GUEST_STATE The guest is not in the correct state.

INACTIVE The guest is not activated.

INVALID_PAGE_STATE A page was in the incorrect state.

INVALID_PAGE_OWNER A page was not owned by the guest.

INVALID_PAGE_SIZE A page was not the correct size.

UPDATE_FAILED Update of the firmware internal state or a guest context page has failed

 97

[Public]

8.21 SNP_PAGE_MD_INIT
This command constructs a new Metadata page that can be used to store metadata entries.

8.21.1 Parameters

Table 81. Layout of the CMDBUF_SNP_PAGE_MD_INIT Structure
Byte

Offset
Bits In/Out Name Description

00h 63:12 In GCTX_PADDR Bits 63:12 of the sPA of the guest
context page.

11:0 - - Reserved. Must be zero.

08h 63:12 In PAGE_PADDR Bits 63:12 of the sPA of the page
to turn into a metadata page.

11:0 - - Reserved. Must be zero.

8.21.2 Actions

The firmware checks that the platform is in the INIT state. If not, the firmware returns
INVALID_PLATFORM_STATE.

The firmware checks that GCTX_PADDR is a valid sPA. If not, the firmware returns
INVALID_ADDRESS. The firmware then checks that the page at GCTX_PADDR is in the
Context state. If not, the firmware returns INVALID_GUEST.

The firmware checks that the guest is in the GSTATE_LAUNCH or GSTATE_RUNNING states.
If not, the firmware returns INVALID_GUEST_STATE.

The firmware checks that PAGE_PADDR is a valid sPA. If not, the firmware returns
INVALID_ADDRESS. The firmware then checks that the page pointed at by PAGE_PADDR is a
Firmware page. If not, the firmware returns INVALID_PAGE_STATE.

The firmware zeroes the page then transitions the page into a Metadata page and setting its
RMP.GPA to GCTX_PADDR.

8.21.3 Status Codes

Table 82. Status Codes for SNP_PAGE_MD_INIT
Status Condition

SUCCESS Successful completion.

INVALID_PLATFORM_STATE The platform is not in the INIT state.

INVALID_PARAM MBZ fields are not zero.

INVALID_ADDRESS An address is invalid for use by the firmware or is misaligned.

98

[Public]

Status Condition

INVALID_GUEST The guest is invalid.

INVALID_GUEST_STATE The guest is not in the correct state.

INVALID_PAGE_STATE A page was in the incorrect state.

UPDATE_FAILED Update of the firmware internal state or a guest context page has
failed

 99

[Public]

8.22 SNP_PAGE_SWAP_OUT
This command swaps an SNP-protected page out so that the hypervisor can relieve memory
pressure or migrate the guest.

8.22.1 Parameters

Table 83. Layout of the CMDBUF_SNP_PAGE_SWAP_OUT Structure
Byte

Offset
Bits In/Out Name Description

00h 63:12 In GCTX_PADDR Bits 63:12 of the sPA of the Guest
Context page.

11:0 In - Reserved. Must be zero.

08h 63:12 In SRC_PADDR Bits 63:12 of the sPA of the source
page. The page size is determined
by PAGE_SIZE.

11:0 - - Reserved. Must be zero.

10h 63:12 In DST_PADDR Bits 63:12 of the sPA of the
destination page. The page size is
determined by PAGE_SIZE.

11:0 - - Reserved. Must be zero.

18h 63:0 In MDATA_PADDR Bits 63:0 of the sPA of a metadata
entry. See 2.1 for the format of a
metadata entry. Ignored if
ROOT_MDATA_EN is 1.

20h 63:0 In SOFTWARE_DATA Software available data supplied
by the hypervisor.

28h 63:5 - - Reserved. Must be zero.

4 In ROOT_MDATA_EN Indicates that the metadata entry
will be stored in the guest context
and not in MDATA_PADDR.

3 - - Reserved. Must be zero.

2:1 In PAGE_TYPE Indicates the page type of the
source page. 0h indicates a Data
page. 1h indicates a Metadata
page. 2h indicates a VMSA page.
Other encodings are reserved.

0 In PAGE_SIZE Indicates page size. 0 indicates a
4 KB page. 1 indicates a 2 MB page.

100

[Public]

8.22.2 Actions

The firmware checks that the platform is in the INIT state. If not, the firmware returns
INVALID_PLATFORM_STATE.

The firmware checks that GCTX_PADDR is a valid sPA. If not, the firmware returns
INVALID_ADDRESS. The firmware then checks that the page at GCTX_PADDR is in the
Context state. If not, the firmware returns INVALID_GUEST.

The firmware checks that the guest is in the GSTATE_LAUNCH or GSTATE_RUNNING states.
If not, the firmware returns INVALID_GUEST_STATE. The firmware then checks that the guest
is activated. If not, the firmware returns INACTIVE.

The firmware checks that SRC_PADDR, DST_PADDR are valid sPAs. If ROOT_MDATA_EN is
0, the firmware also checks that MDATA_PADDR is a valid sPA, is aligned to the size of an
MDATA structure (64 B) and does not overlap the source or destination pages. If not, the
firmware returns INVALD_ADDRESS.

The firmware checks that the source page size indicated by the RMP matches the page size
indicated by the PAGE_SIZE parameter. If the destination page is not a Default page, the
firmware checks that the destination page size also matches the PAGE_SIZE parameter. If either
check fails, the firmware returns INVALID_PAGE_SIZE.

If ROOT_MDATA_EN is 0, then the firmware checks that the page containing MDATA_PADDR
is a Metadata page. If not, the firmware returns INVALID_PAGE_STATE. Then the firmware
checks that the RMP.GPA of the page containing MDATA_ENTRY matches GCTX_PADDR. If
not, the firmware returns INVALID_PAGE_OWNER.

This command operates on data pages, metadata pages, or VMSA pages. The firmware performs
the actions in one of the following subsections depending on the value of PAGE_TYPE.

8.22.2.1 Data Pages

The actions in this section are performed only when PAGE_TYPE is 0h.

The firmware checks that the source page is a Pre-Swap or a Pre-Guest page. The firmware then
checks that the destination page is a Firmware or Default page. If either check fails, the firmware
returns INVALID_PAGE_STATE.

The firmware checks that the RMP.ASID of the source page matches the ASID of the guest. If
not, the firmware returns INVALID_PAGE_OWNER.

The firmware uses the guest’s VEK to decrypt the contents of the source page and uses the guest’s
OEK to wrap the contents with Aead_Wrap() (see Chapter 9) without AAD. The firmware checks
that incrementing the OekIvCount would not cause an overflow. If overflow would occur, the
firmware returns AEAD_OFLOW. Otherwise, the firmware increments the OekIvCount and uses

 101

[Public]

that new value as the IV. The firmware then writes the produced ciphertext into the destination
page.

The firmware then constructs a MDATA structure as described in Table 84. If
ROOT_MDATA_EN is 0, the firmware writes the MDATA entry at MDATA_PADDR. If
ROOT_MDATA_EN is 1, the firmware writes the MDATA entry into GCTX.RootMDEntry.

Table 84. Metadata Entry (MDATA) for Data Pages
MDATA Field Value

SOFTWARE_DATA SOFTWARE_DATA.

IV Constructed from OekIvCount.

AUTH_TAG Authentication tag generated by Aead_Wrap().

PAGE_SIZE RMP.Page_Size of the source page.

VALID 1

METADATA 0

VMSA 0

GPA gPA of the source page.

PAGE_VALIDATED RMP.Validated of the source page.

VMPL0 RMP.VMPL0 of the source page if VMPLs are enabled. 0h otherwise.

VMPL1 RMP.VMPL1 of the source page if VMPLs are enabled. 0h otherwise.

VMPL2 RMP.VMPL2 of the source page if VMPLs are enabled. 0h otherwise.

VMPL3 RMP.VMPL3 of the source page if VMPLs are enabled. 0h otherwise.

The firmware then transitions the source page into a Pre-Guest page state.

8.22.2.2 Metadata Page

The actions in this section are performed only when PAGE_TYPE is 1h.

The firmware checks that the source page is a Metadata page. The firmware then checks that the
destination page is a Firmware or Default page. If either check fails, the firmware returns
INVALID_PAGE_STATE.

The firmware checks that the RMP.GPA of the source page matches GCTX_PADDR. If not, the
firmware returns INVALID_PAGE_OWNER.

The firmware uses the guest’s OEK to wrap the contents of the source page with Aead_Wrap()
without AAD. The firmware checks that incrementing the OekIvCount would not cause an
overflow. If overflow would occur, the firmware returns AEAD_OFLOW. Otherwise, the
firmware increments the OekIvCount and uses that new value as the IV. The firmware then writes
the produced ciphertext into the destination page.

102

[Public]

The firmware then constructs a MDATA structure as described in Table 85. If
ROOT_MDATA_EN is 0h, the firmware writes the MDATA entry at MDATA_PADDR. If
ROOT_MDATA_EN is 1h, the firmware writes the MDATA entry into GCTX.RootMDEntry.

Table 85. Metadata Entry (MDATA) for Metadata Pages
MDATA Field Value

SOFTWARE_DATA SOFTWARE_DATA.

IV Constructed from OekIvCount.

AUTH_TAG Authentication tag generated by Aead_Wrap().

PAGE_SIZE RMP.Page_Size of the source page.

VALID 1

METADATA 1

VMSA 0

GPA PADDR_INVALID.

PAGE_VALIDATED 0

VMPL0 0h

VMPL1 0h

VMPL2 0h

VMPL3 0h

The firmware then transitions the source page into a Firmware page state.

8.22.2.3 VMSA Pages

The actions in this section are performed only when PAGE_TYPE is 2h.

The firmware checks that the source page is a Pre-Swap or Pre-Guest page. The firmware then
checks that the destination page is a Firmware or Default page. If either check fails, the firmware
returns INVALID_PAGE_STATE.

The firmware checks that the RMP.ASID of the source page matches the ASID of the guest. If
not, the firmware returns INVALID_PAGE_OWNER.

The firmware uses the guest’s OEK to wrap the contents of the source page with Aead_Wrap()
without AAD. The firmware checks that incrementing the OekIvCount would not cause an
overflow. If overflow would occur, the firmware returns AEAD_OFLOW. Otherwise, the
firmware increments the OekIvCount and uses that new value as the IV. The firmware then writes
the produced ciphertext into the destination page.

The firmware then constructs a MDATA structure as described in Table 86. If
ROOT_MDATA_EN is 0, the firmware writes the MDATA entry at MDATA_PADDR. If
ROOT_MDATA_EN is 1, the firmware writes the MDATA entry into GCTX.RootMDEntry.

 103

[Public]

Table 86. Metadata Entry (MDATA) for Data Pages
MDATA Field Value

SOFTWARE_DATA SOFTWARE_DATA.

IV Constructed from OekIvCount.

AUTH_TAG Authentication tag generated by Aead_Wrap().

PAGE_SIZE RMP.Page_Size of the source page.

VALID 1

METADATA 0

VMSA 1

GPA gPA of the source page.

PAGE_VALIDATED RMP.Validated of the source page.

VMPL0 RMP.VMPL0 of the source page if VMPLs are enabled. 0h otherwise.

VMPL1 RMP.VMPL1 of the source page if VMPLs are enabled. 0h otherwise.

VMPL2 RMP.VMPL2 of the source page if VMPLs are enabled. 0h otherwise.

VMPL3 RMP.VMPL3 of the source page if VMPLs are enabled. 0h otherwise.

The firmware then transitions the source page into a Pre-Guest page state.

8.22.3 Status Codes

Table 87. Status Codes for SNP_PAGE_SWAP_OUT
Status Condition

SUCCESS Successful completion.

INVALID_PLATFORM_STATE The platform is not in the INIT state.

INVALID_PARAM MBZ fields are not zero.

INVALID_ADDRESS An address is invalid for use by the firmware or is misaligned.

INVALID_GUEST The guest is invalid.

INVALID_GUEST_STATE The guest is not in the correct state.

INACTIVE The guest is not activated.

INVALID_MDATA_ENTRY The metadata entry is not correct.

INVALID_PAGE_STATE A page was in the incorrect state.

INVALID_PAGE_OWNER A page was not owned by the guest.

INVALID_PAGE_SIZE A page was not the correct size.

AEAD_OFLOW An overflow in the IV counter was detected

UPDATE_FAILED Update of the firmware internal state or a guest context page has
failed

104

[Public]

8.23 SNP_PAGE_SWAP_IN
This command swaps an SNP-protected page back in.

8.23.1 Parameters

Table 88. Layout of the CMDBUF_SNP_PAGE_SWAP_IN Structure
Byte

Offset
Bits In/Out Name Description

00h 63:12 In GCTX_PADDR Bits 63:12 of the sPA of the guest context page.

11:0 - - Reserved. Must be zero.

08h 63:12 In SRC_PADDR Bits 63:12 of the sPA of the source page. The
page size is determined by PAGE_SIZE.

11:0 - - Reserved. Must be zero.

10h 63:12 In DST_PADDR Bits 63:12 of the sPA of the destination page.
The page size is determined by PAGE_SIZE.

11:0 - - Reserved. Must be zero.

18h 63:0 In MDATA_PADDR Bits 63:0 of the sPA of a metadata entry. See
2.1 for the format of a metadata entry. Ignored
if ROOT_MDATA_EN is 1.

20h 63:0 - - Reserved. Must be zero.

28h 63:5 - - Reserved. Must be zero.

4 In ROOT_MDATA_EN Indicates that the metadata entry will be
retrieved in the guest context and not in
MDATA_PADDR.

3 In SWAP_IN_PLACE If set, then SRC_PADDR and DST_PADDR are
equal and the page will be swapped in place.

2:1 In PAGE_TYPE Indicates the page type of the source page. 0h
indicates a data page. 1h indicates a metadata
page. 2h indicates a VMSA page. Other
encodings are reserved.

0 In PAGE_SIZE Indicates page size. 0 indicates a 4 KB page. 1
indicates a 2 MB page.

8.23.2 Actions

The firmware checks that the platform is in the INIT state. If not, the firmware returns
INVALID_PLATFORM_STATE.

The firmware checks that GCTX_PADDR is a valid sPA. If not, the firmware returns
INVALID_ADDRESS. The firmware then checks that the page at GCTX_PADDR is in the
Context state. If not, the firmware returns INVALID_GUEST.

 105

[Public]

The firmware checks that the guest is in the GSTATE_LAUNCH or GSTATE_RUNNING states.
If not, the firmware returns INVALID_GUEST_STATE. The firmware then checks that the guest
is activated. If not, the firmware returns INACTIVE.

The firmware checks that SRC_PADDR, DST_PADDR are valid sPAs. If ROOT_MDATA_EN is
0, the firmware also checks that MDATA_PADDR is a valid sPA and is aligned to the size of an
MDATA structure (64B) and does not overlap the source and destination pages. If not, the
firmware returns INVALD_ADDRESS.

If ROOT_MDATA_EN is 0, then the firmware checks that the page containing MDATA_PADDR
is a Metadata page. If not, the firmware returns INVALID_PAGE_STATE. Then the firmware
checks that the RMP.GPA of the page containing MDATA_ENTRY matches GCTX_PADDR. If
not, the firmware returns INVALID_PAGE_OWNER.

The metadata entry used for this command is selected according to ROOT_MDATA_EN. If
ROOT_MDATA_EN is set, the firmware uses the metadata entry in GCTX.RootMDEntry. If
ROOT_MDATA_EN is clear, the firmware uses the metadata entry at MDATA_PADDR.

The firmware checks that the destination page size indicated by the RMP matches the page size
indicated by the PAGE_SIZE parameter. If the source page is not a Default page, the firmware
checks that the destination page size also matches the PAGE_SIZE parameter. The firmware then
checks that the PAGE_SIZE field of the metadata entry matches the PAGE_SIZE parameter. If
either check fails, the firmware returns INVALID_PAGE_SIZE.

The metadata entry determines the page type according to Table 89.

Table 89. Determining the Page Type Based on the Metadata Entry
Page Type METADATA VMSA

PAGE_TYPE_DATA 0 0

PAGE_TYPE_MDATA 1 0

PAGE_TYPE_VMSA 0 1

The firmware checks that the page type indicated by the metadata entry matches PAGE_TYPE.
The firmware then checks that that the VALID bit in the metadata entry is set. If either check fails,
the firmware returns INVALID_MDATA_ENTRY.

This command operates on data pages, metadata pages, or VMSA pages. The firmware performs
the actions in one of the following subsections depending on the value of PAGE_TYPE.

8.23.2.1 Data Pages

The actions in this section are performed only when PAGE_TYPE is PAGE_TYPE_DATA.

If SWAP_IN_PLACE is 0, the firmware checks that the destination page is a Pre-Guest page. If
not, the firmware returns INVALID_PAGE_STATE.

106

[Public]

If SWAP_IN_PLACE is 1, the firmware checks that the SRC_PADDR equals DST_PADDR. If
not, the firmware returns INVALID_ADDRESS. The firmware then checks that the page is in the
Pre-Guest state. If not, the firmware returns INVALID_PAGE_STATE.

The firmware checks that the RMP.ASID of the destination page matches the ASID of the guest.
If not, the firmware returns INVALID_PAGE_OWNER.

The firmware uses the IV field in the metadata entry and the guest’s OEK to unwrap the contents
of the source page with Aead_Unwrap() with no AAD. The firmware checks that the produced
authentication tag is equal to AUTH_TAG in the metadata entry. If not, the firmware returns
BAD_MEASUREMENT.

The firmware clears the VALID flag in the metadata entry.

The firmware writes the plaintext produced by Aead_Unwrap() into the destination page and
updates the RMP of the destination page as follows:

• Sets the RMP.GPA to GPA in the metadata entry

• Sets the RMP.VMSA to 0

• If VMPLs are enabled, sets the VMPL permission masks in the RMP entry to the VMPL
permission masks in the metadata entry

If PAGE_VALIDATED in the metadata entry is 1, the firmware transitions the destination page
into a Pre-Swap page.

8.23.2.2 Metadata Pages

The actions in this section are performed only when PAGE_TYPE is PAGE_TYPE_MDATA.

The firmware checks that SWAP_IN_PLACE is 0. If not, the firmware returns
INVALID_PARAM.

The firmware checks that the that the destination page is a Firmware page. If not, the firmware
returns INVALID_PAGE_STATE.

The firmware uses the IV field in the metadata entry and the guest’s OEK to unwrap the contents
of the source page with Aead_Unwrap() with no AAD. The firmware checks that the produced
authentication tag is equal to AUTH_TAG in the metadata entry. If not, the firmware returns
BAD_MEASUREMENT.

The firmware clears the VALID flag in the metadata entry.

The firmware writes the plaintext produced by Aead_Unwrap() into the destination page.

The firmware then transitions the destination page into a Metadata page by setting the RMP.GPA
of the destination page to the GCTX_PADDR of the guest.

 107

[Public]

8.23.2.3 VMSA Pages

The actions in this section are performed only when PAGE_TYPE is PAGE_TYPE_VMSA.

The firmware checks that SWAP_IN_PLACE is 0. If not, the firmware returns
INVALID_PARAM.

The firmware checks that PAGE_SIZE indicates a 4 KB page size. If not, the firmware returns
INVALID_PAGE_SIZE.

The firmware checks that the destination page is a Pre-Guest page. If not, the firmware returns
INVALID_PAGE_STATE.

The firmware checks that the RMP.ASID of the destination page matches the ASID of the guest.
If not, the firmware returns INVALID_PAGE_OWNER.

The firmware uses the IV field in the metadata entry and the guest’s OEK to unwrap the contents
of the source page with Aead_Unwrap() with no AAD. The firmware checks that the produced
authentication tag is equal to AUTH_TAG in the metadata entry. If not, the firmware returns
BAD_MEASUREMENT.

The firmware clears the VALID flag in the metadata entry.

The firmware writes the plaintext produced by Aead_Unwrap() into the destination page and
updates the RMP of the destination page as follows:

• Sets the RMP.GPA to GPA field in the metadata entry

• Sets the RMP.VMSA to 1

• If VMPLs are enabled, sets the VMPL permission masks in the RMP entry to the VMPL
permission masks in the metadata entry

If bit 9 of SEV_FEATURES of the VMSA is 1, the firmware sets the GUEST_TSC_SCALE and
GUEST_TSC_OFFSET fields of the VMSA as follows:

GUEST_TSC_SCALE := GCTX.DesiredTscFreq / (mean native frequency)
GUEST_TSC_OFFSET := GCTX.PspTscOffset

If PAGE_VALIDATED in the metadata entry is 1h, the firmware transitions the destination page
into a Pre-Swap page.

8.23.3 Status Codes

Table 90. Status Codes for SNP_PAGE_SWAP_IN
Status Condition

SUCCESS Successful completion.

INVALID_PLATFORM_STATE The platform is not in the INIT state.

108

[Public]

Status Condition

INVALID_PARAM MBZ fields are not zero.

INVALID_ADDRESS An address is invalid for use by the firmware or is misaligned.

INVALID_GUEST The guest is invalid.

INVALID_GUEST_STATE The guest is not in the correct state.

INACTIVE The guest is not activated.

INVALID_MDATA_ENTRY The metadata entry is not correct.

BAD_MEASUREMENT The page does not match the metadata entry’s authentication tag.

INVALID_PAGE_STATE A page was in the incorrect state.

INVALID_PAGE_OWNER A page was not owned by the guest.

INVALID_PAGE_SIZE A page was not the correct size.

UPDATE_FAILED Update of the firmware internal state or a guest context page has failed

 109

[Public]

8.24 SNP_PAGE_RECLAIM
This command reclaims Metadata, Firmware, Pre-Guest, and Pre-Swap pages.

8.24.1 Parameters

Table 91. Layout of the CMDBUF_SNP_PAGE_PAGE_RECLAIM Structure
Byte

Offset
Bits In/Out Name Description

00h 63:12 In PAGE_PADDR Bits 63:12 of the sPAs of the page.
The page size is determined by
PAGE_SIZE.

11:1 - - Reserved. Must be zero.

0 In PAGE_SIZE Indicates page size. 0 indicates a
4 KB page. 1 indicates a 2 MB
page.

8.24.2 Actions

The firmware checks that the platform is in the INIT state. If not, the firmware returns
INVALID_PLATFORM_STATE.

The firmware checks that PAGE_PADDR is a valid sPA. If not, the firmware returns
INVALID_ADDRESS.

The firmware checks that RMP.Immutable equals 1. If not, the firmware returns SUCCESS
without taking any further actions. The firmware then checks that the page is either a Metadata,
Firmware, Pre-Guest, or Pre-Swap page. If not, the firmware returns INVALID_PAGE_STATE.

The firmware checks that PAGE_SIZE equals the RMP.PageSize of the page. If not, the firmware
returns INVALID_PAGE_SIZE. The firmware then checks that if the page size is 2 MB, then the
PAGE_PADDR is 2 MB aligned. If not, the firmware returns INVALID_ADDRESS.

The firmware transitions the provided page according to Table 92.

Table 92. State Transitions Triggered by the SNP_PAGE_RECLAIM Command
Original State New State

Metadata Reclaim.

Firmware Reclaim.

Pre-Guest Guest-Invalid.

Pre-Swap Guest-Valid.

110

[Public]

8.24.3 Status Codes

Table 93. Status Codes for SNP_PAGE_RO_RESTORE
Status Condition

SUCCESS Successful completion.

INVALID_ADDRESS The address is invalid for use by the firmware or is misaligned.

INVALID_PARAM MBZ fields are not zero.

INVALID_PAGE_STATE The page is not in the correct state.

INVALID_PAGE_SIZE The page is not the correct size.

 111

[Public]

8.25 SNP_PAGE_UNSMASH
This command combines 512 pages of 4 KB in size into a single 2 MB page in the RMP.

8.25.1 Parameters

Table 94. Layout of the CMDBUF_SNP_PAGE_UNSMASH Structure
Byte

Offset
Bits In/Out Name Description

00h 63:12 In PAGE_PADDR Bits 63:12 of the sPAs of the page.

11:0 - - Reserved. Must be zero.

8.25.2 Actions

The firmware checks that the platform is in the INIT state. If not, the firmware returns
INVALID_PLATFORM_STATE.

The firmware checks that PAGE_PADDR is a valid sPA. If not, the firmware returns
INVALID_ADDRESS.

The firmware checks that each 4 KB page in the 2 MB region starting at PAGE_PADDR meet the
following requirements.

Each page has RMP.PageSize that indicates a 4 KB page.

Each page has RMP.Immutable equal to 1.

Each page has RMP.VMSA equal to 0.

All pages are in the same state.

If VMPLs are enabled, then all pages have identical VMPL permissions.

All pages have RMP.ASID set identically and must not be zero.

If any of the above checks fail, the firmware returns INVALID_PAGE_STATE.

The firmware checks that the range of guest physical pages are 2 MB total in size, 2 MB aligned,
and consecutive. The firmware also checks that PAGE_PADDR is 2 MB aligned. If either check
fails, the firmware returns INVALID_PAGE_STATE.

The firmware then turns the 4 KB pages into one 2 MB page. The resulting page is in the same
state as its constituent pages.

112

[Public]

8.25.3 Status Codes

Table 95. Status Codes for SNP_PAGE_UNSMASH
Status Condition

SUCCESS Successful completion.

INVALID_PLATFORM_STATE The platform is not in the INIT state.

INVALID_PARAM MBZ fields are not zero.

INVALID_ADDRESS An address is invalid for use by the firmware or is misaligned.

INVALID_PAGE_STATE A page was in the incorrect state.

 113

[Public]

8.26 SNP_GUEST_REQUEST
This command sends a guest message to the firmware and returns the firmware response. See
Chapter 7 for details.

8.26.1 Parameters

Table 96. Layout of the CMDBUF_SNP_GUEST_REQUEST Structure
Byte

Offset
Bits In/Out Name Description

00h 63:12 In GCTX_PADDR Bits 63:12 of the sPA of the guest
context page.

11:0 - - Reserved. Must be zero.

08h 63:0 In REQUEST_PADDR Bits 63:0 of the sPA of the request
message. See Chapter 7 for
details.

10h 63:0 In RESPONSE_PADDR Bits 63:0 of the sPA of the
response message See Chapter 7
for details.

Table 97. Message Header Format
Byte

Offset
Bits Name Description

00h 255:0 AUTHTAG Message authentication tag. If the authentication tag for the
designated algorithm is shorter than 32 B, the first bytes of
AUTHTAG are used and the remaining bytes must be zero.
The authentication tag authenticates the bytes from 20h to
the end of the encrypted payload.

20h 127:64 - Reserved. Must be zero.

63:0 MSG_SEQNO The sequence number for this message. Used to construct
the IV.

30h 7:0 ALGO The AEAD used to encrypt this message. See Table 98.

31h 7:0 HDR_VERSION The version of the message header. Set to 1h for this
specification.

32h 15:0 HDR_SIZE The size of the message header in bytes.

34h 7:0 MSG_TYPE The type of the payload. See Table 99.

35h 7:0 MSG_VERSION The version of the payload.

36h 15:0 MSG_SIZE The size of the payload in bytes.

38h 31:0 - Reserved. Must be zero.

114

[Public]

Byte
Offset

Bits Name Description

3Ch 7:0 MSG_VMPCK The ID of the VMPCK used to protect this message.

3Dh 7:0 - Reserved. Must be zero.

3Eh 15:0 - Reserved. Must be zero.

40h-5Fh - Reserved. Must be zero.

60h PAYLOAD Encrypted payload.

Table 98. AEAD Algorithm Encodings
Value Algorithm

0 Invalid

1 AES-256-GCM

All other encodings reserved.

Table 99. Message Type Encodings
Value Message Type Message Version

0 Invalid -

1 MSG_CPUID_REQ 1

2 MSG_CPUID_RSP 1

3 MSG_KEY_REQ 1

4 MSG_KEY_RSP 1

5 MSG_REPORT_REQ 1

6 MSG_REPORT_RSP 1

7 MSG_EXPORT_REQ 1

8 MSG_EXPORT_RSP 1

9 MSG_IMPORT_REQ 1

10 MSG_IMPORT_RSP 1

11 MSG_ABSORB_REQ 1

12 MSG_ABSORB_RSP 1

13 MSG_VMRK_REQ 1

14 MSG_VMRK_RSP 1

15 MSG_ABSORB_NOMA_REQ 1

16 MSG_ABSORB_NOMA_RESP 1

17 MSG_TSC_INFO_REQ 1

 115

[Public]

Value Message Type Message Version

18 MSG_TSC_INFO_RSP 1

All other encodings reserved. -

8.26.2 Actions

The firmware checks that the platform is in the INIT state. If not, the firmware returns
INVALID_PLATFORM_STATE.

The firmware checks that GCTX_PADDR is a valid sPA. If not, the firmware returns
INVALID_ADDRESS. The firmware then checks that the page at GCTX_PADDR is in the
Context state. If not, the firmware returns INVALID_GUEST.

The firmware checks that the guest is in the GSTATE_RUNNING states. If not, the firmware
returns INVALID_GUEST_STATE.

The firmware checks that REQUEST_PADDR and RESPONSE_PADDR are valid sPAs. The
firmware checks that the response message will not cross a 4kB system physical page boundary
when written. If either of these checks fail, the firmware returns INVALD_ADDRESS.

The firmware checks that the request and response page sizes indicated by the RMP are 4KB. If
not, the firmware returns INVALID_PAGE_SIZE.

The firmware checks that the response page is a Firmware page. If not, the firmware returns
INVALID_PAGE_STATE.

The firmware constructs the incoming 96 bit IV. The firmware sets bits IV[63:0] to the
MSG_SEQNO and bits IV[95:64] to 0h.

The firmware unwraps the message by setting the parameters of Aead_Unwrap() to the following:

• C: PAYLOAD

• A: Bytes 30h to 5Fh of the request message

• IV: Constructed IV.

• K: The guest’s VMPCK identified by MSG_VMPCK

• T: AUTHTAG
The firmware checks that the Aead_Unwrap() did not indicate inauthenticity. If the
Aead_Unwrap() function did report inauthenticity, the firmware returns BAD_MEASUREMENT.

The firmware checks that the guest’s message count of the VMPCK used to unwrap this message
will not overflow by processing this message. If this check fails, the firmware returns
AEAD_OFLOW.

116

[Public]

The firmware checks that MSG_SEQNO is one greater than the guest’s message count for the
VMPCK used to unwrap this message. If not, the firmware returns AEAD_OFLOW.

The firmware checks that HDR_VERSION is supported by this ABI version and that the
HDR_SIZE matches the expected size for the given header version. When HDR_VERSION is 1h,
then HDR_SIZE must be 60h. The firmware also checks that MSG_VERSION is supported by
this ABI. If any of these checks fail, the firmware returns INVALID_PARAM.

The firmware checks that MSG_TYPE is a valid message type. The firmware then checks that
MSG_SIZE is large enough to hold the indicated message type at the indicated message version. If
not, the firmware returns INVALID_PARAM.

The firmware creates a message in response to the guest’s message. The firmware sets
MSG_SEQNO of the response message to one greater than the MSG_SEQNO of the request
message. The firmware then constructs a new IV and wraps the message by setting the parameters
of Aead_Wrap() to the following:

• P: PAYLOAD plaintext

• A: Bytes 30h to 5Fh of the request message

• IV: Bits 95:0 of the IV

• K: The guest’s VMPCK identified by VMPCK_ID
The firmware constructs the IV by setting IV[63:0] to MSG_SEQNO and setting IV[95:64] to 0h.

The firmware writes the resulting authentication tag into AUTHTAG and writes the ciphertext into
PAYLOAD.

The firmware then increments the guest’s message count for the VMPCK count by two to account
for both the request message and the firmware’s response message.

8.26.3 Status Codes

Table 100. Status Codes for SNP_GUEST_REQUEST
Status Condition

SUCCESS Successful completion.

INVALID_PLATFORM_STATE The platform is not in the INIT state.

INVALID_PARAM MBZ fields are not zero.

INVALID_ADDRESS An address is invalid for use by the firmware or is misaligned.

INVALID_GUEST The guest is invalid.

INVALID_GUEST_STATE The guest is not in the correct state.

INACTIVE The guest is not activated.

INVALID_PAGE_STATE A page was in the incorrect state.

INVALID_PAGE_SIZE A page was not the correct size.

 117

[Public]

Status Condition

AEAD_OFLOW The message sequence number was incorrect or the guest’s message
count would overflow.

BAD_MEASUREMENT The message failed to authenticate.

UPDATE_FAILED Update of the firmware internal state or a guest context page has
failed

118

[Public]

8.27 SNP_DBG_DECRYPT
This command enables developers to read encrypted memory in debug enabled VMs.

8.27.1 Parameters

Table 101. Layout of the CMDBUF_SNP_DBG_DECRYPT Structure
Byte

Offset
Bits In/Out Name Description

00h 63:12 In GCTX_PADDR Bits 63:12 of the sPA of the guest
context page.

11:0 - - Reserved. Must be zero.

08h 63:12 In SRC_PADDR Bits 63:12 of the sPA of the source
4 KB region to decrypt.

11:0 - - Reserved. Must be zero.

10h 63:12 In DST_PADDR Bits 63:12 of the sPA of the
destination page to store the
decrypted data.

11:0 - - Reserved. Must be zero.

8.27.2 Actions

The firmware checks that the platform is in the INIT state. If not, the firmware returns
INVALID_PLATFORM_STATE.

The firmware checks that GCTX_PADDR is a valid sPA. If not, the firmware returns
INVALID_ADDRESS. The firmware checks that GCTX_PADDR is a Context page. If not, the
firmware returns INVALID_GUEST.

The firmware checks that the guest is in the GSTATE_LAUNCH or GSTATE_RUNNING guest
state. If not, the firmware returns INVALID_GUEST_STATE. The firmware then checks that the
guest is activated. If not, the firmware returns INACTIVE.

The firmware checks that the guest’s policy allows debugging. If not, the firmware returns
POLICY_FAILURE.

The firmware checks that SRC_PADDR and DST_PADDR are valid sPAs. If not, the firmware
returns INVALID_ADDRESS.

The firmware checks that the page containing the 4 KB region to decrypt is a Pre-Guest, Pre-
Swap, Guest-Invalid, or Guest-Valid page. The firmware also checks that the destination page is a
Firmware page. If either check fails, the firmware returns INVALID_PAGE_STATE.

 119

[Public]

The firmware checks that the source page containing the 4 KB region is owned by the indicated
guest. If not, the firmware returns INVALID_PAGE_OWNER.

Note that this command always operates on 4 KB regions despite the page size indicated by the
RMP entries. If the underlying page is a 2 MB page, the firmware uses the RMP entry for the
2 MB page for the RMP checks.

The firmware decrypts the contents of the 4 KB region at SRC_PADDR with the guest’s VEK and
writes the plaintext to DST_PADDR.

8.27.3 Status Codes

Table 102. Status Codes for SNP_DBG_DECRYPT
Status Condition

SUCCESS Successful completion.

INVALID_PLATFORM_STATE The platform is not in the INIT state.

INVALID_GUEST The guest is not valid.

INACTIVE The guest is not active.

INVALID_GUEST_STATE The guest is not in the RUNNING or LAUNCH states.

POLICY_FAILURE The guest policy disallows debugging.

INVALID_ADDRESS An address is invalid or misaligned.

INVALID_PARAM MBZ fields are not zero.

INVALID_PAGE_STATE A page is not in the correct state.

INVALID_PAGE_OWNER A page is not owned by the guest.

UPDATE_FAILED Update of the firmware internal state or a guest context page has
failed

120

[Public]

8.28 SNP_DBG_ENCRYPT
This command enables developers to write to encrypted memory in debug enabled VMs

8.28.1 Parameters

Table 103. Layout of the CMDBUF_SNP_DBG_ENCRYPT Structure
Byte

Offset
Bits In/Out Name Description

00h 63:12 In GCTX_PADDR Bits 63:12 of the sPA of the guest context page.

11:0 - - Reserved. Must be zero.

08h 63:12 In SRC_PADDR Bits 63:12 of the sPA of the 4 KB region to be
encrypted.

11:0 - - Reserved. Must be zero.

10h 63:12 In DST_PADDR Bits 63:12 of the sPA of the 4 KB region page to
store the encrypted data.

11:0 - - Reserved. Must be zero.

8.28.2 Actions

The firmware checks that the platform is in the INIT state. If not, the firmware returns
INVALID_PLATFORM_STATE.

The firmware checks that GCTX_PADDR is a valid sPA. If not, the firmware returns
INVALID_ADDRESS. The firmware checks that GCTX_PADDR is a Context page. If not, the
firmware returns INVALID_GUEST. The firmware then checks that the guest is activated. If not,
the firmware returns INACTIVE.

The firmware checks that the guest is in the GSTATE_LAUNCH or GSTATE_RUNNING guest
state. If not, the firmware returns INVALID_GUEST_STATE.

The firmware checks that the guest’s policy allows debugging. If not, the firmware returns
POLICY_FAILURE.

The firmware checks that SRC_PADDR and DST_PADDR are valid sPAs. If not, the firmware
returns INVALID_ADDRESS.

The firmware checks that the destination 4 KB region is a Pre-Swap or a Pre-Guest page. If not,
the firmware returns INVALID_PAGE_STATE.

The firmware checks that the destination page containing the 4 KB region is owned by the
indicated guest. If not, the firmware returns INVALID_PAGE_OWNER.

 121

[Public]

Note that this command always operates on 4 KB regions despite the page size indicated by the
RMP entries. If the underlying page is a 2 MB page, the firmware uses the RMP entry for the
2 MB page for the RMP checks.

The firmware encrypts the contents of the source 4 KB region at SRC_PADDR with the guest’s
VEK and writes the ciphertext to DST_PADDR.

8.28.3 Status Codes

Table 104. Status Codes for SNP_DBG_ENCRYPT
Status Condition

SUCCESS Successful completion.

INVALID_PLATFORM_STATE The platform is not in the INIT state.

INVALID_GUEST The guest is invalid.

INACTIVATE The guest is not activated.

INVALID_GUEST_STATE The guest is not in the RUNNING or LAUNCH states.

POLICY_FAILURE The guest policy disallows debugging.

INVALID_ADDRESS An address is invalid or misaligned.

INVALID_PARAM MBZ fields are not zero.

INVALID_PAGE_STATE A page is not in the correct state.

INVALID_PAGE_OWNER A page is not owned by the guest.

UPDATE_FAILED Update of the firmware internal state or a guest context page has
failed

122

[Public]

Chapter 9 APPENDIX: Common Algorithms

9.1 Aead_Wrap()
Inputs:

• P: Zero or more bytes to be encrypted and authenticated

• A: Zero or more bytes to be authenticated

• IV: Initialization vector (at most 96 bits)

• K: Key used to encrypt and authenticate the plaintext and AAD (256 bits)
Outputs:

• C: The encrypted plaintext

• T: Authentication tag (128 bits)
Algorithm:

If len(IV) < 96, then let IV’ = 096-len(IV) || IV. Otherwise, IV’ = IV

Let (C,T) = GCM-AEK(IV’, P, A)

Return (C, T)

 123

[Public]

9.2 Aead_Unwrap()
Inputs:

• C: Zero or more bytes to be decrypted and authenticated

• A: Zero or more bytes to be authenticated

• IV: Initialization vector (at most 96 bits)

• K: Key used to encrypt and authenticate the plaintext and AAD (256 bits)

• T: Authentication tag (128 bits)
Outputs:

• P: The decrypted plaintext or indication of inauthenticity
Algorithm:

If len(IV) < 96, then let IV’ = 096-len(IV) || IV. Otherwise, IV’ = IV

Let P = GCM-ADK(IV’, C, A, T)

Return P

124

[Public]

Chapter 10 APPENDIX: Digital Signatures

The SNP firmware uses digital signatures to sign objects such as the attestation report and to
validate signatures such as the ID block. The supported algorithms and their encodings are
described in

Table 105: Encoding for signing algorithms

Signing Algorithm Encoding

ECDSA P-384 with SHA-384 1h

All other encodings are reserved.

Elliptic curves are defined in

Table 106. ECC curve identifier encodings
ECC Curve Encoding

P-384 2h

All other encodings reserved.

The ECDSA P-384 with SHA-384 signature format is defined in Table 107.

Table 107. Format for an ECDSA P-384 with SHA-384 Signature
Byte Offset Bits Name Description

000h 575:0 R R component of this signature. Value is zero-extended little-
endian encoded.

048h 575:0 S S component of this signature. Value is zero-extended little-
endian encoded.

090h–1FFh - Reserved.

The ECDSA P-384 public key format is defined Table 108.

Table 108. Format for an ECDSA P-384 Public Key
Byte

Offset
Bits Name Description

000h 31:0 CURVE Curve ID. 2h indicates P-384. All other encodings are reserved.

004h 575:0 QX R component of this signature. Value is zero-extended little-endian
encoded.

04Ch 575:0 QY S component of this signature. Value is zero-extended little-endian
encoded.

094h–403h - Reserved. Must be zero.

	SEV Secure Nested Paging Firmware ABI Specification
	Chapter 1 Introduction
	1.1 Purpose
	1.2 Scope
	1.3 Intended Audience
	1.4 References

	Chapter 2 Data Structures and Encodings
	2.1 Metadata Entries (MDATA)
	2.2 TCB_VERSION
	2.3 VCEK
	2.4 Invalid Physical Address (PADDR_INVALID)

	Chapter 3 Platform Management
	3.1 Feature Detection and Enablement
	3.2 Platform State Machine
	3.3 Firmware Updates
	3.4 Reported TCB

	Chapter 4 Guest Management
	4.1 Guest Context
	4.1.1 Live Update

	4.2 Guest State Machine
	4.3 Guest Policy
	4.4 Guest Activation
	4.5 Launching a Guest
	4.6 Identity Block
	4.7 Decommissioning a Guest
	4.8 Guest Messages
	4.9 Remote Attestation
	4.10 Guest Keys
	4.11 Migration
	4.12 Guest Assisted Migration

	Chapter 5 Page Management
	5.1 Page Security Attributes
	5.2 Page States
	5.3 Page State Transitions
	5.3.1 RMPUPDATE
	5.3.2 PVALIDATE
	5.3.3 Page Management Commands
	5.3.4 Launch Commands
	5.3.5 Guest Request Commands
	5.3.6 Platform Commands
	5.3.7 SEV Legacy Commands

	5.4 Metadata Entries

	Mailbox Protocol
	6.1 Command Identifier
	6.2 Status Codes

	Chapter 7 Guest Messages
	7.1 CPUID Reporting
	7.2 Key Derivation
	7.3 Attestation
	7.4 VM Export
	7.5 VM Import
	7.6 VM Absorb
	7.7 VM Absorb – No Migration Agent
	7.8 VMRK Message
	7.9 TSC Info

	Chapter 8 Command Reference
	8.1 DOWNLOAD_FIRMWARE
	8.2 DOWNLOAD_FIRMWARE_EX
	8.2.1 Parameters
	8.2.2 Actions
	8.2.3 Status Codes

	8.3 SNP_COMMIT
	8.3.1 Parameters
	8.3.2 Actions
	8.3.3 Status Codes

	8.4 GET_ID
	8.5 SNP_PLATFORM_STATUS
	8.5.1 Parameters
	8.5.2 Actions
	8.5.3 Status Codes

	8.6 SNP_CONFIG
	8.6.1 Parameters
	8.6.2 Actions
	8.6.3 Status Codes

	8.7 SNP_INIT
	8.7.1 Parameters
	8.7.2 Actions
	8.7.3 Status Codes

	8.8 SNP_INIT_EX
	8.8.1 Parameters
	8.8.2 Actions
	8.8.3 Status Codes

	8.9 SNP_GCTX_CREATE
	8.9.1 Parameters
	8.9.2 Actions
	8.9.3 Status Codes

	8.10 SNP_ACTIVATE
	8.10.1 Parameters
	8.10.2 Actions
	8.10.3 Status Codes

	8.11 SNP_ACTIVATE_EX
	8.11.1 Parameters
	8.11.2 Actions
	8.11.3 Status Codes

	8.12 SNP_DECOMMISSION
	8.12.1 Parameters
	8.12.2 Actions
	8.12.3 Status Codes

	8.13 SNP_DF_FLUSH
	8.13.1 Parameters
	8.13.2 Actions
	8.13.3 Status Codes

	8.14 SNP_SHUTDOWN
	8.14.1 Parameters
	8.14.2 Actions
	8.14.3 Status Codes

	8.15 SNP_SHUTDOWN_EX
	8.15.1 Parameters
	8.15.2 Actions
	8.15.3 Status Codes

	8.16 SNP_LAUNCH_START
	8.16.1 Parameters
	8.16.2 Actions
	8.16.3 Status Codes

	8.17 SNP_LAUNCH_UPDATE
	8.17.1 Parameters
	8.17.2 Actions
	8.17.2.1 PAGE_TYPE_NORMAL
	8.17.2.2 PAGE_TYPE_VMSA
	8.17.2.3 PAGE_TYPE_ZERO
	8.17.2.4 PAGE_TYPE_UNMEASURED
	8.17.2.5 PAGE_TYPE_SECRETS
	8.17.2.6 PAGE_TYPE_CPUID

	8.17.3 Status Codes

	8.18 SNP_LAUNCH_FINISH
	8.18.1 Parameters
	8.18.2 Actions
	8.18.3 Status Codes

	8.19 SNP_GUEST_STATUS
	8.19.1 Parameters
	8.19.2 Actions
	8.19.3 Status Codes

	8.20 SNP_PAGE_MOVE
	8.20.1 Parameters
	8.20.2 Actions
	8.20.2.1 Guest Pages
	8.20.2.2 Metadata Pages

	8.20.3 Status Codes

	8.21 SNP_PAGE_MD_INIT
	8.21.1 Parameters
	8.21.2 Actions
	8.21.3 Status Codes

	8.22 SNP_PAGE_SWAP_OUT
	8.22.1 Parameters
	8.22.2 Actions
	8.22.2.1 Data Pages
	8.22.2.2 Metadata Page
	8.22.2.3 VMSA Pages

	8.22.3 Status Codes

	8.23 SNP_PAGE_SWAP_IN
	8.23.1 Parameters
	8.23.2 Actions
	8.23.2.1 Data Pages
	8.23.2.2 Metadata Pages
	8.23.2.3 VMSA Pages

	8.23.3 Status Codes

	8.24 SNP_PAGE_RECLAIM
	8.24.1 Parameters
	8.24.2 Actions
	8.24.3 Status Codes

	8.25 SNP_PAGE_UNSMASH
	8.25.1 Parameters
	8.25.2 Actions
	8.25.3 Status Codes

	8.26 SNP_GUEST_REQUEST
	8.26.1 Parameters
	8.26.2 Actions
	8.26.3 Status Codes

	8.27 SNP_DBG_DECRYPT
	8.27.1 Parameters
	8.27.2 Actions
	8.27.3 Status Codes

	8.28 SNP_DBG_ENCRYPT
	8.28.1 Parameters
	8.28.2 Actions
	8.28.3 Status Codes

	Chapter 9 APPENDIX: Common Algorithms
	9.1 Aead_Wrap()
	9.2 Aead_Unwrap()

	Chapter 10 APPENDIX: Digital Signatures

