AMDA
48882—Rev 2.62—February 2015 AMD /0 Virtualization Technology (IOMMU) Specification

Specification Agreement

This Specification Agreement (this “Agreement”) is a legal agreement between Advanced Micro
Devices, Inc. (“AMD”) and “You” as the recipient of the attached AMD Specification (the “Specifi-
cation”). If you are accessing the Specification as part of your performance of work for another party,
you acknowledge that you have authority to bind such party to the terms and conditions of this Agree-
ment. If you accessed the Specification by any means or otherwise use or provide Feedback (defined
below) on the Specification, You agree to the terms and conditions set forth in this Agreement. If You
do not agree to the terms and conditions set forth in this Agreement, you are not licensed to use the
Specification; do not use, access or provide Feedback about the Specification.

In consideration of Your use or access of the Specification (in whole or in part), the receipt and suffi-
ciency of which are acknowledged, You agree as follows:

1. You may review the Specification only (a) as a reference to assist You in planning and designing
Your product, service or technology (“Product”) to interface with an AMD product in compliance
with the requirements as set forth in the Specification and (b) to provide Feedback about the informa-
tion disclosed in the Specification to AMD.

2. Except as expressly set forth in Paragraph 1, all rights in and to the Specification are retained by
AMD. This Agreement does not give You any rights under any AMD patents, copyrights, trademarks
or other intellectual property rights. You may not (i) duplicate any part of the Specification; (ii)
remove this Agreement or any notices from the Specification, or (iii) give any part of the Specifica-
tion, or assign or otherwise provide Your rights under this Agreement, to anyone else.

3. The Specification may contain preliminary information, errors, or inaccuracies, or may not include
certain necessary information. Additionally, AMD reserves the right to discontinue or make changes
to the Specification and its products at any time without notice. The Specification is provided entirely
“AS IS.” AMD MAKES NO WARRANTY OF ANY KIND AND DISCLAIMS ALL EXPRESS,
IMPLIED AND STATUTORY WARRANTIES, INCLUDING BUT NOT LIMITED TO IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-
INFRINGEMENT, TITLE OR THOSE WARRANTIES ARISING AS A COURSE OF DEALING
OR CUSTOM OF TRADE. AMD SHALL NOT BE LIABLE FOR DIRECT, INDIRECT, CONSE-
QUENTIAL, SPECIAL, INCIDENTAL, PUNITIVE OR EXEMPLARY DAMAGES OF ANY
KIND (INCLUDING LOSS OF BUSINESS, LOSS OF INFORMATION OR DATA, LOST PROF-
ITS, LOSS OF CAPITAL, LOSS OF GOODWILL) REGARDLESS OF THE FORM OF ACTION
WHETHER IN CONTRACT, TORT (INCLUDING NEGLIGENCE) AND STRICT PRODUCT
LIABILITY OR OTHERWISE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGES.

4. Furthermore, AMD’s products are not designed, intended, authorized or warranted for use as com-
ponents in systems intended for surgical implant into the body, or in other applications intended to
support or sustain life, or in any other application in which the failure of AMD’s product could create
a situation where personal injury, death, or severe property or environmental damage may occur.

5. You have no obligation to give AMD any suggestions, comments or feedback (“Feedback™) relat-
ing to the Specification. However, any Feedback You voluntarily provide may be used by AMD with-
out restriction, fee or obligation of confidentiality. Accordingly, if You do give AMD Feedback on

AMDAA
AMD /0O Virtualization Technology (IOMMU) Specification 48882—Rev 2.62—February 2015

any version of the Specification, You agree AMD may freely use, reproduce, license, distribute, and
otherwise commercialize Your Feedback in any product, as well as has the right to sublicense third
parties to do the same. Further, You will not give AMD any Feedback that You may have reason to
believe is (i) subject to any patent, copyright or other intellectual property claim or right of any third
party; or (ii) subject to license terms which seek to require any product or intellectual property incor-
porating or derived from Feedback or any Product or other AMD intellectual property to be licensed
to or otherwise provided to any third party.

6. You shall adhere to all applicable U.S., European, and other export laws, including but not limited
to the U.S. Export Administration Regulations (“EAR”), (15 C.F.R. Sections 730 through 774), and
E.U. Council Regulation (EC) No 428/2009 of 5 May 2009. Further, pursuant to Section 740.6 of the
EAR, You hereby certifies that, except pursuant to a license granted by the United States Department
of Commerce Bureau of Industry and Security or as otherwise permitted pursuant to a License Excep-
tion under the U.S. Export Administration Regulations ("EAR"), You will not (1) export, re-export or
release to a national of a country in Country Groups D:1, E:1 or E:2 any restricted technology, soft-
ware, or source code You receive hereunder, or (2) export to Country Groups D:1, E:1 or E:2 the
direct product of such technology or software, if such foreign produced direct product is subject to
national security controls as identified on the Commerce Control List (currently found in Supplement
1 to Part 774 of EAR). For the most current Country Group listings, or for additional information
about the EAR or Your obligations under those regulations, please refer to the U.S. Bureau of Indus-
try and Security’s website at http://www.bis.doc.gov/.

7. If You are a part of the U.S. Government, then the Specification is provided with “RESTRICTED
RIGHTS?” as set forth in subparagraphs (c) (1) and (2) of the Commercial Computer Software-
Restricted Rights clause at FAR 52.227-14 or subparagraph (c) (1)(ii) of the Rights in Technical Data
and Computer Software clause at DFARS 252.277-7013, as applicable.

8. This Agreement is governed by the laws of the State of California without regard to its choice of
law principles. Any dispute involving it must be brought in a court having jurisdiction of such dispute
in Santa Clara County, California, and You waive any defenses and rights allowing the dispute to be
litigated elsewhere. If any part of this agreement is unenforceable, it will be considered modified to
the extent necessary to make it enforceable, and the remainder shall continue in effect. The failure of
AMD to enforce any rights granted hereunder or to take action against You in the event of any breach
hereunder shall not be deemed a waiver by AMD as to subsequent enforcement of rights or subse-
quent actions in the event of future breaches. This Agreement is the entire agreement between You
and AMD concerning the Specification; it may be changed only by a written document signed by
both You and an authorized representative of AMD.

AMDA

AMD .1

AMD 1/O Virtualization Technology
(IOMMU) Specification

Publication # 48882 Revision: 2.62
Issue Date: February 2015

© 2015 Advanced Micro Devices Inc. All rights reserved.

The information contained herein is for informational purposes only, and is subject to change without
notice. While every precaution has been taken in the preparation of this document, it may contain
technical inaccuracies, omissions and typographical errors, and AMD is under no obligation to update
or otherwise correct this information. Advanced Micro Devices, Inc. makes no representations or
warranties with respect to the accuracy or completeness of the contents of this document, and
assumes no liability of any kind, including the implied warranties of noninfringement, merchantabil-
ity or fitness for particular purposes, with respect to the operation or use of AMD hardware, software
or other products described herein. No license, including implied or arising by estoppel, to any intel-
lectual property rights is granted by this document. Terms and limitations applicable to the purchase
or use of AMD’s products are as set forth in a signed agreement between the parties or in AMD's
Standard Terms and Conditions of Sale.

AMD's products are not designed, intended, authorized or warranted for use as components in sys-
tems intended for surgical implant into the body, or in other applications intended to support or sus-
tain life, or in any other application in which the failure of AMD's product could create a situation
where personal injury, death, or severe property or environmental damage may occur. AMD reserves

Trademarks

AMD, the AMD Arrow logo, and combinations thereof are trademarks of Advanced Micro Devices,
Inc. Other product names used in this publication are for identification purposes only and may be
trademarks of their respective companies. HyperTransport is a licensed trademark of the HyperTrans-
port Technology Consortium. PCI Express, PCle, and PCI-X are registered trademarks of PCI-Spe-
cial Interest Group (PCI-SIG).

AMDA

48882—Rev 2.62—February 2015 AMD /0 Virtualization Technology (IOMMU) Specification
Contents

(O 1 (=T | £ 5

FIQUIES . o 9

TaDIES . . 13

ReVISION HiSTOTY e 17

PrelaCE . . 19

1 IOMMU OVEIVIEWttt et ettt e e e e e e e e 27

1.1 Summary of IOMMU Capabilitiest e e e 27

1.2 Usage Modelso 29

1.2.1 Replacingthe GART e 29

1.2.2 Replacing the Device Exclusion Vector Mechanism. 30

1.2.3 32-bit to 64-bit Legacy I[/O Device Mappingcuuiririnenenanan.. 30

1.2.4 User Mode Device ACCESSES . .« ot ottt e ettt et ettt 31

1.2.5 Virtual Machine Guest Accessto Devices.ttt 31

1.2.6 Virtualizing the IOMMU. e 32

1.2.7 Virtualized User Mode Device ACCESSES. ..ottt eeeeeenn 32

1.3 IOMMU Optional Features.ttt e e e e 33

1.3.1 Two-level Translation for Guest and Host Address Spaces 36

1.3.2 Enhanced AMD64 Long Mode Page Table Compatibility 38

1.3.3 Performance Features. i 38

1.3.4 Address Translation Services for Guest Virtual Addresses. 40

1.3.5 Peripheral Page Request Support Compatible with PCI-SIGPRI. 41

1.3.6 Selecting Translation Tables in a Memory Transaction 41

1.3.7 Interrupt Virtualization (Guest Virtual APIC Interrupt Controller) 41

1.3.8 SMI FIlter. . . .o e e e 41

1.3.9 Hardware Error Registers i, 42

2 ATCNITECTUNE. . . o 43

2.1 Behavior 43

2. 1.1 Normal Operationuttit ittt ettt et 43

2.1.2 IOMMU Logical Topologyot e et e 45

2.1.3 IOMMU Event Reporting e 45

2.1.4 Special Conditions.ttt 47

2.1.5 System Management Interrupt (SMI) Controls. 49

2.2 Data StruCtUres oot e 52

2.2.1 Updating Shared Tables.ttt et 55

222 DeviceTable 55

2.2.3 1/O Page Tables for Host Translations. it 69

2.2.4 Sharing AMD64 Processor and IOMMU Page Tables—GPA-to-SPA. 76

2.2.5 Interrupt Remapping Tables it 77

2.2.6 1/0 Page Tables for Guest Translations., &4

2.2.7 Guest and Nested Address Translation 100

2.2.8 Guest Virtual APIC Table for Interrupt Virtualization 106

2.3 Starting the IOMMU. e 106

AMDAQ

AMD /0O Virtualization Technology (IOMMU) Specification 48882—Rev 2.62—February 2015
2.3.1 Data Structure Initialization. 106

2.3.2 Making Guest Interrupt Virtualization Changes 107

24 Commands 107
24.1 COMPLETION WAIT ... e e e 109

24.2 INVALIDATE DEVTAB ENTRY i 111

2.4.3 INVALIDATE IOMMU PAGES e 112

244 INVALIDATE IOTLB PAGES.ttt 114

2.45 INVALIDATE INTERRUPT TABLE 116

24.6 PREFETCH IOMMU PAGES. i 117

247 COMPLETE PPR REQUEST 120

2.4.8 INVALIDATE IOMMU ALL.t 122

24.9 IOMMU Ordering Rules i e 123

2.5 Event LOgging.ottt 124
2.5.1 Event Log Restart Procedure. i, 126

2.5.2 ILLEGAL DEV TABLE ENTRY Event i .. 135

253 10 PAGE FAULTEVeNto.io e e 137

2.54 DEV_TAB HARDWARE ERROREvent........................ 139

2.5.5 PAGE TAB HARDWARE ERROREvent 140

2.5.6 ILLEGAL COMMAND ERROREvent............. ..o, 142

2.577 COMMAND HARDWARE ERROREvent.............................. 142

2.5.8 TOTLB INV TIMEOUTEvent iuiiiininanan.. 143

2.5.9 INVALID DEVICE REQUESTEvent i, 144
2.5.10 INVALID PPR REQUEST Event........... ...t 146
2.5.11 EVENT COUNTER ZEROEvent........ ..o, 149
2.5.12 IOMMU Event Reportingttt 149
2.5.13 EventLogDual Buffering............ i, 151

2.6 Peripheral Page Request (PPR) Logging 153
2.6.1 PPRLogDualBuffering i, 154

2.6.2 Peripheral Page Request Log Restart Procedure 155

2.6.3 Peripheral Page Request Entry. 157

2.6.4 PPR Log Overflow Protection.00t 159

2.7 Guest Virtual APIC (GA) Logging.o ittt et et e e e e 160
2.7.1 Guest VAPIC Virtual Interrupt Request Log 161

2.7.2 Guest Virtual APIC Log Entry (Generic) ..., 164

2.7.3 Guest Virtual APIC Request Entry (GA_ GUEST NR) 164

2.7.4 Guest Virtual APIC Log Restart Procedure. 165

2.8 IOMMU Interrupt SUPPOTt oot 166
2.9 Memory Address Routing and Control (MARC), 166
3 REOIS EES. . . oot 169
3.1 PCIRESOUICES. . . ot vttt et e e et e e e e e e e e e e e e e e e e 169
3.1.1 Accessing MSI Capability Block Registers. 169

3.2 IOMMU Base Capability Block Registers, 170
3.3 IOMMU MMIO REZISLEIS . .. vttt v ettt e e ettt e e e ettt et e 176
3.3.1 Control and Status Registersttt 176

332 PPRLOg Re@ISterS. . ..ot 191

333 SMIFIRer. . .ot 193

3.3.4 Guest Virtual APIC Log Registerso i, 195

AMDA

48882—Rev 2.62—February 2015 AMD /0 Virtualization Technology (IOMMU) Specification
3.3.5 Alternate PPR and Event Log Base Registers. 197

3.3.6 Device Table Segment [1-7] Base Address Registers. 199

3.3.7 Device-Specific Feature Registers., 200

3.3.8 MMIO Access to MSI Capability Block Registers 202

3.3.9 Performance Optimization Control Register............................... 205

3.3.10 Memory Access and Routing (MARC) Registers 205

3.3.11 Reserved Registerttt e e e e 208

3.3.12 Command and Event Log Pointer Registers 209

3.3.13 Command and Event Status Register., 212

3.3.14 PPR Log Head and Tail Pointer Registers. 215

3.3.15 Guest Virtual APIC Log Head and Tail Pointer Registers 217

3.3.16 PPR Log B Head and Tail Pointer Registers............................... 219

3.3.17 Event Log B Head and Tail Pointer Registers. 221

3.3.18 PPR Log Overflow Protection Registers.cuu... 223

3.3.19 IOMMU Event Counter Registers.ottt 225

4 Implementation Considerations i e 237
4.1 Caching and Invalidation Strategiesttt 237

4.2 TOMMU ToPologies . . o vttt e e 238

4.3 Issues Specific to the HyperTransport™ Architecture. 240

4.4 Chipset Specific Implementation ISSues. i, 241

4.5 Software and Platform Firmware Implementation Issues. 241

5 1/0 Virtualization ACPI Table 243
5.1 TOMMU Control FIOWot e e 244

5.2 /O Virtualization Reporting Structure IVRS). 245

52.1 IVRSHeaderFields. i 246

5.2.2 1/O Virtualization Definition Blocks 247

INAeX 10 REQISIErS . . .ot 265

AMDAA
AMD /0O Virtualization Technology (IOMMU) Specification 48882—Rev 2.62—February 2015

AMDA

48882—Rev 2.62—February 2015 AMD /0 Virtualization Technology (IOMMU) Specification
Figures

Figure 1: Example Platform Architecture 29
Figure 2: Nested Address Spaces. e e e 37
Figure 3: System Management Interrupt Address Format. 50
Figure 4: IOMMU Data Structuresttt et et 54
Figure 5: Example DevicelD Derived from Peripheral RequesterID 55
Figure 6: DevicelD Derived from Peripheral UnitID 55
Figure 7: Device Table Entry (DTE) Fields. 58
Figure 8: 1/O Page Table Entry Not Present (any level) 72
Figure 9: 1/O Page Translation Entry (PTE), PR=1......... 72
Figure 10: 1/O Page Directory Entry (PDE), PR=1 74
Figure 11: Address Translation Example with Skipped Level and 2-Mbyte page 75
Figure 12: Address Translation Example with Page Size Larger than Default Size 76
Figure 13: Sharing AMD64 and IOMMU Host Page Tables with Identical Addressing 77
Figure 14: Interrupt Remapping Table Lookup for Fixed and Arbitrated Interrupts. 79
Figure 15: Interrupt Remapping Table Entry - Basic Format 79
Figure 16: Bit numbering of virtual IRR in the virtual APIC backingpage 82
Figure 17: IRTE Fields with Guest Virtual APIC, IRTE[GuestMode]=0.................... 82
Figure 18: IRTE Fields with Guest Virtual APIC, IRTE[GuestMode]=1.................... 83
Figure 19: Guest CR3 Table, 1-level e 86
Figure 20: GCR3 Base Pointer Entry Format 87
Figure 21: Guest CR3 Table, 2-level e 88
Figure 22: Guest CR3 Level-2 Base Table Pointer Format............................... 89
Figure 23: Guest CR3 Level-1 Entry Format.o .. 89
Figure 24: AMD64 Long Mode 4-Kbyte Page Address Translation........................ 91
Figure 25: AMDG64 Long Mode 4-Kbyte PML4E Format. 91
Figure 26: AMD64 Long Mode 4-Kbyte PDPE Format 91
Figure 27: AMD64 Long Mode 4-Kbyte PDE Format 92
Figure 28: AMDG64 Long Mode 4-Kbyte PTE Format. 92
Figure 29: AMD64 Long Mode 2-Mbyte Page Address Translation 94
Figure 30: AMD64 Long Mode 2-Mbyte PML4E Format 94
Figure 31: AMDG64 Long Mode 2-Mbyte PDPE Format................................. 94
Figure 32: AMDG64 Long Mode 2-Mbyte PDE Format 95

AMDAQ

AMD /0O Virtualization Technology (IOMMU) Specification 48882—Rev 2.62—February 2015
Figure 33: AMD64 Long Mode 1-Gbyte Page Address Translation. 97
Figure 34: AMD64 Long Mode 1-Gbyte PML4E Format. 97
Figure 35: AMD64 Long Mode 1-Gbyte PDPE Format 97
Figure 36: Complete GVA-to-SPA Address Translation. 99
Figure 37: PCle TLP PASID Prefix Payload Format. 104
Figure 38: PCI-SIG TLP Prefix Format. i 105
Figure 39: Command Buffer in System Memory. i i 108
Figure 40: Generic Command Buffer Entry Format 109
Figure 41: COMPLETION WAIT Command Format 110
Figure 42: INVALIDATE DEVTAB ENTRY Command Format 111
Figure 43: INVALIDATE IOMMU PAGES Command Format......................... 112
Figure 44: INVALIDATE IOTLB PAGES Command Format....................... ... 114
Figure 45: INVALIDATE INTERRUPT TABLE Command Format..................... 116
Figure 46: PREFETCH IOMMU PAGES Command Format........................... 118
Figure 47: COMPLETE PPR REQUEST Command Format 120
Figure 48: INVALIDATE IOMMU ALL Command Format 122
Figure 49: Event Log in System Memoryo 125
Figure 50: Event Log State Diagram i 127
Figure 51: Generic Event Log Buffer Entry. 128
Figure 52: ILLEGAL DEV TABLE ENTRY Event Log Buffer Entry Format............. 136
Figure 53: 10 PAGE FAULT Event Log Buffer Entry Format....................... ... 137
Figure 54: DEV_TAB HARDWARE ERROR Event Log Buffer Entry Format 139
Figure 55: PAGE TAB HARDWARE ERROR Event Log Buffer Entry Format 140
Figure 56: ILLEGAL COMMAND ERROR Event Log Buffer Entry Format.............. 142
Figure 57: COMMAND HARDWARE ERROR Event Log Buffer Entry Format........... 143
Figure 58: 1OTLB_INV_TIMEOUT Event Log Buffer Entry Format 144
Figure 59: INVALID DEVICE REQUEST Event Log Buffer Entry Format 145
Figure 60: INVALID PPR REQUEST Event Log Buffer Entry Format, RX=0............ 147
Figure 61: INVALID PPR REQUEST Event Log Buffer Entry Format, RX=1............ 147
Figure 62: EVENT COUNTER ZERO Event Log Buffer Entry Format 149
Figure 63: Translation and Remapping Validation Sequence 150
Figure 64: Peripheral Page Request Log in System Memory 153
Figure 65: PPR Log State Diagramttt 156
Figure 66: Generic Peripheral Page Request Log Buffer Entry Format 156

10

AMDA

48882—Rev 2.62—February 2015 AMD /0 Virtualization Technology (IOMMU) Specification
Figure 67: PAGE SERVICE REQUEST PPR Log Buffer Entry Format 157
Figure 68: Guest VAPIC Log in System Memoryt 161
Figure 69: Guest Virtual APIC Log State Diagram, 162
Figure 70: Generic Guest Virtual APIC Log Buffer Entry Format 164
Figure 71: GA_GUEST NR Log Buffer Entry Format. 165
Figure 72: IOMMU Counter Register Address Decode. 228
Figure 73: IOMMU inaTunnel. e 239
Figure 74: IOMMU in a Peripheral Bus Bridge. i 239
Figure 75: Hybrid IOMMU e 240
Figure 76: Chained Hybrid IOMMU ina Large System 240
Figure 77: Example Platform Architecture i 244
Figure 78: IVHD Type 10h IOMMU Feature Reporting Field Format. 251

11

AMDAA
AMD /0O Virtualization Technology (IOMMU) Specification 48882—Rev 2.62—February 2015

12

AMDA

48882—Rev 2.62—February 2015 AMD /0 Virtualization Technology (IOMMU) Specification
Tables

Table 1: Bit Attribute Definitions. 25
Table 2: Software-Visible Features. 35
Table 3: Special Address Controls (GPA) e 45
Table 4: System Management Interrupt Address Fields. 50
Table 5: Feature Enablement for Address Translation.............. 56
Table 6: Feature Enablement for Interrupt Remapping and Virtualization 57
Table 7: Device Table Entry (DTE) Field Definitions 58
Table 8: V, TV, and GV Fields in Device Table Entry 64
Table 9: IV and IntCtl Fields in Device Table Entry for Fixed and Arbitrated Interrupts 64
Table 10: IV and Pass Fields in Device Table Entry for Selected Interrupts 65
Table 11: ~ GLX and maximum translatable PASID size.......... 65
Table 12: Cache bit and U bit for ATS requests. 66
Table 13: Registers Utilized to Allocate Device Table Segments 68
Table 14: Example Page Size Encodings 70
Table 15: Page Table Level Parameters i 72
Table 16: 1/O Page Table Entry Not Present Fields, PR=0............................... 72
Table 17: 1/O Page Translation Entry (PTE) Fields, PR=1............................... 73
Table 18: 1/O Page Directory Entry (PDE) Fields, PR=1........ 74
Table 19: IOMMU Controls and Actions for Upstream Interrupts 78
Table 20: Interrupt Remapping Table Fields - Basic Format. 79
Table 21: Interrupt Virtualization Controls for Upstream Interrupts 81
Table 22: IRTE Field Descriptions with Guest Virtual APIC, IRTE[GuestMode]=0 82
Table 23: IRTE Field Descriptions with Guest Virtual APIC, IRTE[GuestMode]=1 84
Table 24: Guest Address Translation Controls. 85
Table 25: Guest CR3 Level-1 Table Format. i 87
Table 26: GCR3 Base Pointer Entry Fields 87
Table 27: Guest CR3 Level-2 Table Format. i 89
Table 28: Guest CR3 Level-2 Base Table Pointer Fields. 89
Table 29: Guest CR3 Level-1 Table Entry Fields. 90

Table 30: IOMMU Interpretation of AMD64 Page Table Fields for 4-Kbyte Page Translation . .92
Table 31: IOMMU Interpretation of AMD64 Page Table Fields for 2-Mbyte Page Translation. .95
Table 32: IOMMU Interpretation of AMD64 Long Mode 1-Gbyte Page Table Fields......... 98

13

AMDAQ

AMD /0O Virtualization Technology (IOMMU) Specification 48882—Rev 2.62—February 2015
Table 33: Access Privilege Conversion Table for ATS Request 103
Table 34: PCle TLP Prefix Payload Fields. i 104
Table 35: PCI-SIG TLP Prefix Fields. 105
Table 36: COMPLETION WAITFields i 110
Table 37: INVALIDATE DEV TAB ENTRY Fields 111
Table 38: INVALIDATE IOMMU PAGESFields it 113
Table 39: INVALIDATE IOTLB PAGES Fields. o, 114
Table 40: INVALIDATE INTERRUPT TABLE command Fields................... ... 117
Table 41: PREFETCH IOMMU PAGES Fields. 118
Table 42: COMPLETE PPR REQUEST Fields 121
Table 43: INVALIDATE IOMMU ALLFields........ ..., 122
Table 44: Event Type Summary o e 128
Table 45: ILLEGAL DEV TABLE ENTRY Event Types 129
Table 46: 10 PAGE FAULT Event Typest i 130
Table 47: DEV_TAB HARDWARE ERROREvent Types..............c.c. i, 132
Table 48: PAGE TAB HARDWARE ERROR Event Typest 132
Table 499: COMMAND HARDWARE ERROR Event Types 132
Table 50: ILLEGAL COMMAND ERROR Event Typesc.coiiiiii... 133
Table 51: IOTLB_INV_TIMEOUT Event Typesc.uuiuiininiiinnen.. 133
Table 52: INVALID DEVICE REQUEST Event Types (Access).coooiuinienon.. 134
Table 53: INVALID DEVICE REQUEST Event Types (Translation Request) 135
Table 54: INVALID PPR REQUEST Event Summary, 135
Table 55: EVENT COUNTER ZERO Event Types.ot 135
Table 56: ILLEGAL DEV TABLE ENTRY Event Log Buffer Entry Fields.............. 136
Table 57: 10 PAGE FAULT Event Log Buffer Entry Fields. 137
Table 58: Event Log Type Field Encodings 139
Table 59: DEV_TAB HARDWARE ERROR Event Log Buffer Entry Fields 139
Table 60: PAGE TAB HARDWARE ERROR Event Log Buffer Entry Fields 140
Table 61: ILLEGAL COMMAND ERROR Event Log Buffer Entry Fields............... 142
Table 62: COMMAND HARDWARE ERROR Event Log Buffer Entry Fields. 143
Table 63: IOTLB_INV_TIMEOUT Event Log Buffer Entry Fields 144
Table 64: INVALID DEVICE REQUEST Type Field Encodings. 145
Table 65: INVALID DEVICE REQUEST Event Log Buffer Entry Fields................ 146
Table 66: INVALID PPR REQUEST Event Log Buffer Entry Fields. 147

14

AMDA

48882—Rev 2.62—February 2015 AMD /0 Virtualization Technology (IOMMU) Specification
Table 67: EVENT COUNTER ZERO Event Log Buffer Entry Fields 149
Table 68: PAGE SERVICE REQUEST PPR Log Buffer Entry Fields 157
Table 69: GA GUEST NR Log Buffer Entry Fields. 165
Table 70: ~ SMI Filter Register MMIO Offset Assignments v, 194
Table 71: Device Table Segment Base Address Registers; Offsets and Maximum Size Value. .199
Table 72: MARC Aperture Register Offsets (hexadecimal). 206
Table 73: Counter Bank Addressing (MMIO) 228
Table 74: Architectural Counter Input Group, CAC=0b 231
Table 75: I/O Virtualization Reporting Structure (IVRS) 245
Table 76: IVRS Fields. o 246
Table 77: IVRSRevision Field. 247
Table 78: IVRSIVinfo Field i 247
Table 79: 1/O Virtualization Hardware Definition (IVHD) Block Generic Format........... 248
Table 80: I/O Virtualization Hardware Definition IVHD) Type 10h 250
Table 81: IVHD Type 10h Field Definitions 250
Table 82: IVHD Flags Field e 251
Table 83: IVHDIOMMU Info Field 251
Table 84: IVHD IOMMU Feature Reporting Field 251
Table 85: I/O Virtualization Hardware Definition IVHD) Type 11h 253
Table 86: IVHD Type 11h Field Definitions 253
Table 87: IVHD Flags Field e 254
Table 88: IVHD Type 11h IOMMU Attributesc. .. 254
Table 89: I/O Virtualization Hardware Definition IVHD) Type 40h Fields................ 255
Table 90: IVHD Type 40h Field Definitions 255
Table 91: IVHD Type40 Flags Field 256
Table 92: IVHD Type 40h IOMMU Attributes 256
Table 93: IVHD Device Entry Length Basedon Type. 257
Table 94: IVHD Device Entry Fields (4-byte)o 257
Table 95: IVHD Device Entry Type Codes (4-byte), 257
Table 96: IVHD Device Table Entry DTE Setting. 258
Table 97: IVHD Device Entry Type Codes (8-byte), 259
Table 98: IVHD Device Entry Extended DTE Setting Field 260
Table 99: IVHD Special Device Entry Variety Field.............. 260
Table 100: Device EntryType FOh Fields. 261

15

AMDAQ

AMD /0O Virtualization Technology (IOMMU) Specification 48882—Rev 2.62—February 2015
Table 101: IVMD Types 20h—22h Format. i 262
Table 102: IVMD Types 20h-—22h Fields. 262
Table 103: IVMD Flags Definitions. e 263

16

AMDA
48882—Rev 2.62—February 2015 AMD /0 Virtualization Technology (IOMMU) Specification

Revision History

Public Release, Revision 2.62 — January, 2015

Revisions relative to Revision 2.0 — March 2011

* Made the following changes to the format of the IVRS (See Chapter 5.):

* Eliminated relative device name (subtree/endpoint) PCI device entries from the IVHD
block.

* Defined new ACPI Hardware ID device entries.

* Redefined Type 40h IVHD to use a header similar to the Type 11h header and support the
mixing of fixed DevicelD device entries and ACPI Hardware ID device entries.

* Eliminated Type 50h and 51h IVMD blocks.

» Added Privileged Page Access Abort feature. Adds USSup bit to the IOMMU Extended Feature
Register [MMIO Offset 0030h]. Adds PrivAbrtEn[1:0] field to [OMMU Control Register
[MMIO Offset 0018h].

* Added Device Table Segmentation featue. Adds DevTblSegSup[1:0] field to [IOMMU Extended
Feature Register [MMIO Offset 0030h]. Adds DevTblSegEn[1:0] field to IOMMU Control
Register [MMIO Offset 0018h]. Adds 7 new Device Table Base Address Registers.

* Added PPR and EVENT Dual Buffer features. Adds feature bits to the EFR, Control, and Status
Registers; adds 6 new MMIO registers.

* Added PPR Log Overflow Protection features. Provides PPR Auto Response, PPR Overflow
Early Warning, and PPR Always-On Auto Response features.

» Added Device-Specific Extensions feature. Adds Device-Specific Feature Extension (DSFX)
Register [MMIO Offset 0138h], Device-Specific Control Extension (DSCX) Register [MMIO
Offset 0140h], and Device-Specific Status Extension (DSSX) Register [MMIO Offset 0148h].

* Added Interrupt registers MMIO space feature. Provides MMIO access to 8 Capability space
registers related to MSI interrupts. See Section 3.3.8 [MMIO Access to MSI Capability Block
Registers].

* Added Memory Access Routing and Control (MARC) feature. Adds MarcSup[1:0] field to
IOMMU Extended Feature Register [MMIO Offset 0030h] and MarcEn bit to IOMMU Control
Register [MMIO Offset 0018h]. Adds 12 new MMIO registers.

* Added Block StopMark Messages feature. Adds BlkStopMrkrSup bit to [IOMMU Extended
Feature Register [MMIO Offset 0030h] and BlkStopMrkrEn bit to IOMMU Control Register
[MMIO Offset 0018h].

» Updated Figure 50 [Event Log State Diagram] and Figure 65 [PPR Log State Diagram].

* Added Figure 69 [Guest Virtual APIC Log State Diagram].

» Updated “Event Log Restart Procedure” on page 126, “Peripheral Page Request Log Restart
Procedure” on page 155, and “Guest Virtual APIC Log Restart Procedure” on page 165.

» Updated Figure 44 [INVALIDATE IOTLB PAGES Command Format] to support a 20-bit
PASID field.

* Defined new IVHD block types to support reporting of full 64 bits of EFR information. See

17

AMDAA
AMD /0O Virtualization Technology (IOMMU) Specification 48882—Rev 2.62—February 2015

Type 11h IVHD.
* Reorganized introductory material: Added a Preface.
* Architecture section is now Chapter 2.
 Registers are now described in Chapter 3.
» Updated “Definitions” on page 20.
» Added Section 1.3.7 [Interrupt Virtualization (Guest Virtual APIC Interrupt Controller)].
* Added Section 1.3.8 [SMI Filter].
» Updated Section 2.1 [Behavior].
» Updated Section 2.1.1 [Normal Operation].
» Updated Section 2.1.2 [[OMMU Logical Topology].
* Added Section 2.1.5 [System Management Interrupt (SMI) Controls].
» Updated Section 2.2 [Data Structures], including Figure 4.
» Updated Section 2.2.2.1 [Device Table Entry Format], including Figure 7 and Table 7.
* Added Section 2.3 [Starting the IOMMU].
» Updated Section 2.2.5 [Interrupt Remapping Tables], including Table 20.

» Updated Section 2.2.5.1 [Interrupt Remapping Tables, Guest Virtual APIC Not Enabled],
Table 21.

* Added Section 2.2.5.2 [Interrupt Virtualization Tables with Guest Virtual APIC Enabled].
* Added Section 2.2.8 [Guest Virtual APIC Table for Interrupt Virtualization].

» Updated Section 2.4.4 [INVALIDATE IOTLB PAGES].

» Updated Section 2.5.3 [[0O_ PAGE FAULT Event].

* Added Section 2.7 [Guest Virtual APIC (GA) Logging].

» Updated Section 3.3 [[OMMU MMIO Registers].

» Updated Section 3.3.1 [Control and Status Registers], IOMMU Control Register [MMIO Offset
0018h] and IOMMU Extended Feature Register [MMIO Offset 0030h].

» Updated Section 5.3 [[OMMU ACPI Table Definitions for Assigned DevicelDs].
» Added Section 5.4 [IOMMU ACPI Table Definitions for Relative Device Names].

18

AMDA
48882—Rev 2.62—February 2015 AMD /0 Virtualization Technology (IOMMU) Specification

Preface

About this Document

This document describes AMD 1/O Virtualization Technology. AMD I/O Virtualization Technology is
embodied in the system-level function called the I/O Memory Management Unit (IOMMU).

Intended Audience

This document provides the IOMMU behavioral definition and associated design notes. It is intended
for the use of system designers, chipset designers, and programmers involved in the development of
low-level BIOS (basic input/output system) functions, drivers, operating system kernel modules, and
virtual machine monitor (VMM) software. The intended user should have prior experience in per-
sonal computer design, microprocessor programming, and legacy x86 and AMD64 microprocessor
architecture. See “Related Documents™ on page 25 for a list of references.

Organization

* Chapter 1 “IOMMU Overview” on page 27 provides an introduction to AMD 1/O Virtualization
Technology and the IOMMU.

» Chapter 2 “Architecture” on page 43 describes the operation of the IOMMU and the registers and
system memory data structures that control its behavior.

* Chapter 3 “Registers” on page 169 shows the format of the [IOMMU registers and describes the
data fields within each register.

* Chapter 4 “Implementation Considerations” on page 237 discusses design and implementation
issues that are primarily of concern to IOMMU implementers.

* Chapter 5 “I/O Virtualization ACPI Table” on page 243 defines the ACPI tables used to describe
the platform configuration information for [IOMMU control fields.

* Chapter 6 “IOMMU Pseudo Code” on page 265 describes how the IOMMU would perform a
page table walk using pseudo code.

* The appendix “Index to Registers” on page 265 provides an index to all the IOMMU register
definitions.

Conventions and Definitions

Notation
« 128

Numbers without an alpha suffix are decimal unless the context indicates otherwise.
« 1011b

A binary value—in this example, a 4-bit value.
+ FOEA 0BO2h

19

AMDAQ

AMD /0O Virtualization Technology (IOMMU) Specification 48882—Rev 2.62—February 2015

A hexadecimal value. Underscore characters may be inserted to improve readability. CRO—CR4
A register range, from register CRO through CR4, inclusive, with the low-order register first.

CRO[PE]

Notation for referring to a field within a register—in this case, the PE field of the CRO register.
7:4

A bit range, from bit 7 to 4, inclusive. The high-order bit is shown first. Commas may be inserted
to indicate gaps.

Definitions

Accessed bit (A). A bit in the page table that indicates the corresponding memory has been read
or written. Usually set to 1 by hardware.

ACPI. Advanced Configuration and Power Interface, a specification of industry-standard
interfaces enabling OS-directed configuration and other management.

APIC. Advanced programmable interrupt controller (see specifications under the model numbers
82093 AA and 82489DX).

ARI. Alternative Routing Information is a PCI-SIG specification that allows a PCI Device to
have more than eight PCI Functions but no more than 256.

ATS. Address translation service, a PCI-SIG specification, allows a PCI peripheral to request
virtual-to-physical address translation from an IOMMU or TA. The resulting translation may be

stored in an IOTLB. ATS is optional on a peripheral. This specification requires the Address
Translation Services 1.1 Specification or later. See http://www.pcisig.com/specifications/iov/ats/ .

AVIC. AMD’s Advanced Virtual Interrupt Controller (see Advanced Virtual Interrupt Controller
in Chapter 15 of APM?2). AVIC is an implementation of a guest virtual APIC. Allows the
processor and the [IOMMU to coordinate the delivery of interrupts directly to running guest VMs.

BAR. PClI-defined base address register.
BDF. PCI bus I/O device identifier; concatenation of the bus, device, and function numbers.
BIOS. Refers to the platform firmware (Basic Input/Output Services). See also, UEFI.

Bounce Buffer. A buffer located in low system memory for DMA traffic from devices that do not
support 64-bit addressing. The OS copies the DMA data to or from the buffer to the real buffer in
high memory used by the driver.

Cold Reset. A reset generated by removing and reapplying power to the device.

Dirty bit (D). A bit in the page table that indicates the corresponding memory has been written.
Usually set to 1 by hardware.

Device Exclusion Vector (DEV). Contiguous arrays of bits in physical memory. Each bit in the
DEV table represents a 4KB page of physical memory (including system memory and MMIO).
The DEV table is packed as follows: bit[0] of byte 0 controls the first 4 Kbytes of physical
memory; bit[1] of byte 0 controls the second 4 Kbytes of physical memory; etc.

DevicelD. A 16 bit device identification number consisting of the Bus number, Device number
and Function number. Used by an [OMMU to select the nested mapping tables for an address

20

AMDA

48882—Rev 2.62—February 2015 AMD /0 Virtualization Technology (IOMMU) Specification

translation or interrupt remapping operation.

Device Processing Complex. A computational unit on the peripheral such as a dedicated function
(e.g., NIC, encryption engine), a graphics processing unit (GPU), or an accelerated computing
element (AC)

Device Table. A table in system memory that maps DevicelDs to DomainIDs and page table root
pointers.
Device Table Entry (DTE). An entry in the Device Table.

Direct Memory Access (DMA). A feature that enables a peripheral to access memory without
intervention by the central processor.

Device Virtual Address (DVA). The untranslated address emitted by a device in a DMA
transaction. This address can correspond to the system physical address if the device is excluded
from translation by the IOMMU or to the GPA if the device is owned and programmed by a guest
operating system.

Domain. See Protection Domain.

DomainlID. A 16-bit number chosen by software to identify a domain.

GART. Graphics Address Remapping Table.

GPU. Graphical processing unit, usually used for graphics-specific computation.
GPGPU. A GPU used for general-purpose computation.

Guest. An application or OS run by the host in its own virtual environment.

Guest address translation. Translation for GVA to GPA. May be serviced by an IOMMU or by a
private MMU on the peripheral.

Guest Physical Address (GPA). The x86-canonical virtual address used by a guest operating
system in a VM. A GPA is created by using the guest page tables to translate a guest virtual
address. The GPA may be further translated to a System Physical Address.

Guest Virtual Address (GVA). The virtual addresses used by a guest application. A GVA may
be translated into a Guest Physical Address. Guest virtual addresses are treated as canonical x86
addresses.

Guest Virtual APIC. Optionally the IOMMU can support the delivery of interrupts to guest VMs
without hypervisor intervention. The guest APIC is described in the AMD Virtual Interrupt
Controller Specification, Revision 1.0 or newer.

Host Data Path (HDP). A functional unit that can convert CPU linear addressing to GPU-style
tiled or rectangular addressing for improved performance. Often found in advanced graphics
processing peripherals.

High memory. In the x86 platform architecture, system memory located at an address equal to or
greater than 4 Gbytes.

Host. The system software layer responsible for running guests. See also Nested paging and
Nested address translation.

Hypervisor. See VMM, Virtual Machine Monitor.

21

AMDAA
AMD /0O Virtualization Technology (IOMMU) Specification 48882—Rev 2.62—February 2015

*+ IOMMU. Refers to the /O Memory Management Unit defined by this specification.

* 1OTLB. I/O Translation Look-aside Buffer. A buffer located in a peripheral device that holds a
pretranslated address. Sometimes called a “remote IOTLB.” An example of an IOTLB is the
PCle® Address Translation Cache.

e |IVHD. I/O Virtualization Hardware Definition block, an ACPI table defined in Section 5.2.2.1
[[/O Virtualization Hardware Definition (IVHD) Block].

* IVMD. I/O Virtualization Memory Definition block, an ACPI table defined in Section 5.2.2.2
[I/O Virtualization Memory Definition (IVMD) Block].

* IVRS. I/O Virtualization Reporting Structure block, an ACPI table defined in Section 5.2 [I/O
Virtualization Reporting Structure (IVRS)].

* LMA. Local Memory Address; corresponds to the physical address space used on the peripheral
to access on-board or private memory. In some peripherals, aperture hardware maps some or all of
the local memory address space into the system physical address space. The aperture hardware is
usually managed by a device driver in an operating system.

« Local Memory. Memory on the peripheral that is typically accessed more quickly than system
memory and is usually not coherent with system memory. Part of the local memory may be
addressable from the CPU (called "public") and part may be inaccessible from the CPU (called
"private"). An aperture mechanism is commonly used to select the portion of local memory that is
public.

« Local Memory Protection Map. A hardware component that enforces the separation of virtual
machine contexts within the local memory of a peripheral.

* Low memory. In the x86 platform architecture, system memory located below 4 Gbytes.

* MMIO. Memory Mapped /0. Read or write access to memory mapped resources provided by
devices.

* MMU. Memory Management Unit.

* Message Signalled Interrupt (MSI). An interrupt that is signalled by generating a posted write
to a system-defined physical address.

» Nested address translation. Translation for GPA to SPA. May be serviced directly by an
IOMMU or by a remote IOTLB. Use of an IOTLB requires ATS and/or PRI.

» Nested paging. An optional feature in AMDG64 processors, the nested paging feature provides for
two levels of address translation, thus eliminating the need for the virtual machine manager to
maintain shadow page tables. See AMD64 Architecture Programmer’s Manual, Volume 2:
System Programming, AMD publication number 24593 (APM Volume 2).

* NW. A PCI-SIG term (bit) used to signal lack of intent to perform write operations.

« Page Tables. A table structure in main memory used to translate an address from one
representation to an alternate representation.

* PASID. The Process Address Space ID used to identify the application address space within a
x86-canonical guest virtual machine. It is used on a peripheral to isolate concurrent contexts
residing in shared local memory. Together, PASID and DevicelD uniquely identify an application

22

AMDA

48882—Rev 2.62—February 2015 AMD /0 Virtualization Technology (IOMMU) Specification

address space. See PASID TLP prefix.

PASID TLP prefix. The IOMMU requires that a virtual address with a PASID carry the PASID
value using the PASID TLP prefix. See also PASID and TLP. See the PCI-SIG PASID TLP Prefix
ECN specification.

PCI, PCI-SIG, PCle, PCI-X. The PCI-SIG is an industry standards body that defines I/O
connection technology, including PCI, PCI-X, and PCle. See http://www.pcisig.com/home for
more information.

PDE. Page directory entry for address translation (see example in Figure 10 on page 74).

Pinned memory. Memory pages that are to be maintained in real memory all the time. Pinning a
memory page prevents the page management software from using it for other purposes. A
memory page must typically be pinned before DMA starts and may be unpinned when DMA
completes.

Platform firmware. The firmware or software that controls startup and configuration of the
platform. Platform firmware is commonly implemented as BIOS or UEFI.

PPR. Peripheral Page Request. When the IOMMU receives a valid PRI request, it creates a PPR
message to request changes to the virtual address space.

PR, P. Present. Page table entry (PTE) field indicating that the page table or physical page pointed
to is currently loaded in system memory.

Pretranslated address. An address that has been translated to an SPA by a peripheral with an
IOTLB.

Page Request Interface (PRI). The Page Request Interface is a PCI-SIG specification that
defines how a peripheral requests memory management services from a host OS or hypervisor
(e.g., page fault service for the peripheral). PRI is optional on a peripheral, but if PRI is
implemented, ATS is required.

Private MMU. A peripheral-specific mechanism to translate addresses generated on the
peripheral. In the simplest case, it generates a single bit to indicate the input address is an access
to peripheral local memory or to system memory. When present, the private MMU provides guest
address translation. On a GPU, a private MMU is often referred to as the VM component of the
memory controller.

Protection Domain. A set of address mappings and access rights that can be shared by multiple
devices.

PTE. Page Table Entry. A page table translation entry controls virtual-to-physical address
translation and memory page access (see example in Figure 9 on page 72).

Reserved. A register field designated as reserved requires special handling by software. Reserved
fields in writable registers must be written with all zeros. When read, software cannot rely on the
value returned.

System Physical Address (SPA). The address directly used to address system memory. Under
SVM, this is also known as the host physical address. See HPA.

System software. Privileged software that manages the hardware resources of a system and
controls access to these resources by lesser privileged software. In a non-virtualized environment,

23

AMDAA
AMD /0O Virtualization Technology (IOMMU) Specification 48882—Rev 2.62—February 2015

the operating system is system software. In a virtualized environment, the virtual machine
monitor (VMM), commonly known as the hypervisor, is system software.

* TA. Translation Agent is a PCI-SIG term to refer to the IOMMU table walker.

» TLB. Translation Look-aside Buffer is a cache of address translation information usually
implemented within an MMU to improve translation speed.

* TLP. Transaction Layer Packet is a PCle term for non-control packets. The TLP packet may have
a prefix.

+ UEFI. Refers to the “Unified Extensible Firmware Interface” specification for platform firmware.
See http://www.uefi.org’/home/ . See also BIOS.

* Untranslated address. A virtual address (GVA or GPA) issued by a peripheral that will be
translated to an SPA by the IOMMU. The handling of an untranslated address on a peripheral is
outside the scope of this specification.

» User, U/S, User/Supervisor level. The IOMMU can provide privilege-level information to a
peripheral. The value Ob means supervisor level access is allowed, but user level is not; 1b means
user and supervisor access are allowed. The terms User and U/S are used, depending on the
context.

* VM. A virtual machine is created and managed by a hypervisor so that multiple virtual machines
can share a single hardware system and run independent operating system instances.

* VMM. Virtual Machine Monitor. A VMM is the controlling software for a computer. It manages
the physical hardware and VMs to allow multiple operating systems to run concurrently on a
computer system. Also known as a hypervisor.

24

AMDA

48882—Rev 2.62—February 2015

AMD /0 Virtualization Technology (IOMMU) Specification

Bit Attributes

All bit attributes used in this specification are defined in Table 1. These attributes apply to register
definitions, Device Table entries, page table entries, Command Buffer entries and Event Log entries.

Table 1: Bit Attribute Definitions

Attribute

Description

Hwlnit

Hardware Initialized: Register fields are initialized by firmware or hardware mecha-
nisms such as pin strapping or serial EEPROM. Fields are read-only after initialization
and can only be reset (or write-once by firmware) with a cold reset.

Ignored |Ignored or Ign: For an IOMMU register, the state of the field is ignored by the IOMMU,

Ign writes may be discarded and reads return undefined results. For a memory location, the
contents of the field is ignored by the IOMMU when read, but the value is preserved
when the memory location is written by the IOMMU. Note that some ignored fields may
be used by other system components (e.g., a memory field in a page table entry that is
ignored by the IOMMU may be used by the processor).

RO Read-only register: Register fields are read-only and cannot be altered by software.

RW Read-Write register: Register fields are read-write and may be either set or cleared by
software to the desired state.

RWIC |Read-only status, Write-1-to-clear status register: Register bits indicate status when
read, a set bit indicating a status event may be cleared by writing a 1. Writing a 0 to
RWIC bits has no effect.

RWIS |Write-1-to-set register: Register bits indicate status of an operation when read, setting
the bit initiates the operation. Hardware clears the bit when the operation completes.
Writing a 0 to RW1S bits has no effect.

Reserved |Reserved, Resv, or Res: Reserved for future implementations. Reserved fields in a regis-

Resv ter must be implemented as read-only zero. Reserved fields in a memory location must be

Res Zero.

Unused |Unused or Un: Field is not used by hardware. Software is allowed to use the field for its

Un OwWn purposes.

Related Documents

* AMD64 Architecture Programmer’s Manual, Volume 1: Application Programming, order #24592
(APM1)

* AMDO64 Architecture Programmer’s Manual, Volume 2: System Programming, order #24593
(APM2)

* AMDO64 Architecture Programmer’s Manual, Volume 3: General-Purpose and System
Instructions, order #24594 (APM3)

* AMD64 Architecture Programmer’s Manual, Volume 4: 128-Bit and 256-Bit Media Instructions,
order #26568 (APM4)

25

AMDAQ

AMD /0O Virtualization Technology (IOMMU) Specification 48882—Rev 2.62—February 2015

AMD64 Architecture Programmer’s Manual, Volume 5: 64-Bit Media and x87 Floating-Point
Instructions, order #26569 (APMS)

PCI Specification "PCI Express® Base Specification, Revision 3.0."
URL: http://www.pcisig.com/specifications/pciexpress/base3/

PCI Specification "Address Translation Services Specification, Revision 1.1."
URL: http://www.pcisig.com/specifications/iov/ats/

PCI ECN "TLP Prefix, December 15, 2008."
URL: http://www.pcisig.com/specifications/pciexpress/specifications/ECN_TLP_Prefix 2008-
12-15.pdf

PCI ECN “End-End TLP Prefix Changes for RCs, May 26, 2010.”

URL: http://www.pcisig.com/specifications/pciexpress/specifications/ECN_EE TLP Prefix Cha
nges 26May2010.pdf

PCI ECN “PASID Translation, March 31, 2011.”

URL: http://www.pcisig.com/specifications/pciexpress/specifications/ECN-PASID-ATS-2011-
03-31.pdf

PCI ECN “Process Address Space ID (PASID), March 31, 2011.”

URL: http://www.pcisig.com/specifications/pciexpress/specifications/ECN-PASID-Base-2011-
03-31.pdf

Advanced Configuration and Power Interface Specification, Revision 5.0a, November 13, 2013.
URL: http://acpi.info/spec.htm

26

AMDA
48882—Rev 2.62—February 2015 AMD /0 Virtualization Technology (IOMMU) Specification

1 IOMMU Overview

This chapter provides an overview of the capabilities of the IOMMU and presents several usage mod-
els. The detailed architecture of the IOMMU is discussed in Chapter 2, "Architecture".

The I/O Memory Management Unit (IOMMU) extends the AMDG64 system architecture by adding
support for address translation and system memory access protection on DMA transfers from periph-
eral devices. IOMMU also optionally provides the capability to remap peripheral interrupt vectors.

The IOMMU enables several significant system-level enhancements:

» Legacy 32-bit I/O device support on 64-bit systems (generally without requiring bounce buffers
and expensive memory copies).

* More secure user-level application access to selected I/O devices.

* More secure virtual machine guest operating system access to selected 1/0 devices.

The IOMMU can be used to:

* Replace the existing Graphics Address Remapping Table (GART) mechanism.

* Remap addresses above 4GB for I/O devices that do not support 64-bit addressing.
* Allow a guest OS running on a virtual machine to have direct control of a device.
* Provide page granularity control of device access to system memory.

» Allow a device direct access to user space I/O.

» Filter and remap interrupts.

The IOMMU can be thought of as a generalization of two facilities included in the AMD64 architec-
ture: the GART and the Device Exclusion Vector (DEV). The GART provides address translation of
I/O device accesses to a small range of the system physical address space, and the DEV provides a
limited degree of I/O device classification and memory protection. With appropriate software sup-
port, the IOMMU can emulate the capabilites of the GART or DEV.

1.1 Summary of IOMMU Capabilities

The IOMMU extends the concept of protection domains (or domains, for short) first introduced with
the DEV. The IOMMU allows each I/O device in the system to be assigned to a specific domain and a
distinct set of I/O page tables. When an I/O device attempts to read or write system memory, the
IOMMU intercepts the access, determines the domain to which the device has been assigned, and
uses the TLB entries associated with that domain or the I/O page tables associated with that I/O
device to determine whether the access is to be permitted as well as the actual location in system
memory that is to be accessed.

The IOMMU may include optional support for remote IOTLBs. A trusted I/O device with IOTLB
support can cooperate with the IOMMU to maintain its own cache of address translations. This cre-
ates a framework for creating scalable systems with an IOMMU in which I/O devices may have dif-
ferent usage models and working set sizes. IOTLB-capable I/O devices contain private TLBs tailored
for their own needs, creating a scalable distributed system of TLBs. The performance of IOTLB-

IOMMU Overview 27

AMDAA
AMD /0O Virtualization Technology (IOMMU) Specification 48882—Rev 2.62—February 2015

capable I/O devices is not limited by the number of TLB entries implemented in the IOMMU. A
peripheral with an IOTLB may issue untranslated addresses or pretranslated addresses that are deter-
mined from IOTLB entries. Pretranslated addresses are not checked by the IOMMU except to vali-
date that the peripheral has the IOTLB enable bit set (I = 1) in the corresponding Device Table Entry
(see Figure 7 and Table 7).

Major system resources provided by the IOMMU include:

* [/O DMA access permission checking and address translation using memory-based translation
tables.

* Optional support for translation tables compatible with the AMD64 long mode page table format.

* A Device Table that allows I/O devices to be assigned to specific domains and contains pointers
to the I/O devices’ page tables.

* An interrupt remapping table which the IOMMU uses to provide permission checking and
interrupt remapping for I/O device interrupts.

* Optional guest virtual APIC mechanism which the IOMMU uses to deliver interrupts to guest
VMs.

* Memory-based queues for exchanging command and status information between the [OMMU
and the system processor(s).

» Optional support for a peripheral page request (PPR) log.
* Features to mitigate PPR and Event Log overflow.

* Optional support for a hardware-based mechanism for allowing privileged I/O devices to directly
access defining regions of system memory.

The IOMMU is similar to the processor's memory management unit, except that it provides address
translation and page protection for direct memory accesses (DMA) by peripheral devices rather than
memory accesses by the processor. The IOMMU also provides hardware-based interrupt remapping.

The IOMMU provides no direct indication to an I/O device of a failed translation when processing an
untranslated posted request. This is in contrast to the page fault mechanism employed by the MMU.

AMD64 systems can consist of a number of processor and device nodes connected to each other by
HyperTransport™ links or other means. The IOMMU can only process memory transactions that are
routed through its node in the system fabric. In a system with multiple links and buses to I/O devices,
multiple IOMMU s are required to ensure that each I/O link or bus has appropriate protection and
translation applied. Figure 1 shows an example of a platform with two I/O interconnect trees. Note
that an IOMMU is required in the root node of both trees. In this example, the IOMMU is imple-
mented as part of the /O Hub. Other implementations are possible given that they conform to the
same topology.

28 IOMMU Overview

AMDA
48882—Rev 2.62—February 2015 AMD /0 Virtualization Technology (IOMMU) Specification

CPU

DRAM <« »{ Memory Controller

} }

HyperTransport™ HyperTransport

link link
IOMMU TLB IOMMU TLB
4—LPC
1/O Hub /OHub | .,
Integrated
Peripherials 4-SATA»
PCle® bus PCle bus PCle bus
o o IO0TLB
Device Device 1/O Device

Figure 1: Example Platform Architecture

The IOMMU uses a command queue in memory (the Command Buffer) to accept explicit translation
buffer invalidation commands initiated by system software.

Optionally the IOMMU may include support for peripheral page requests (PPR) for peripherals that
use Address Translation Services (ATS). This creates a mechanism for peripherals and software to
reduce the need for pinned pages during I/O. The IOMMU may include optional support for interrupt
virtualization. This uses a virtualized guest APIC (one implementation of a guest APIC is the
Advanced Virtual Interrupt Controller) with memory tables to deliver interrupts to guest VMs.

1.2 Usage Models

Seven models are discussed to highlight potential uses of the IOMMU in conventional and virtualized
systems. These usage models can enhance system security and stability.

1.2.1 Replacing the GART

The GART is a system facility that performs physical-to-physical translation of memory addresses
within a graphics aperture. The GART was defined to allow complex graphical objects, such as tex-
ture maps, to appear to a graphics co-processor as if they were located in contiguous pages of mem-
ory, even though they are actually scattered across randomly allocated pages by most operating

IOMMU Overview 29

AMDAA
AMD /0O Virtualization Technology (IOMMU) Specification 48882—Rev 2.62—February 2015

systems. The GART translates all accesses to the graphics aperture, including loads and stores exe-
cuted by the host processor as well as memory reads and writes performed by I/O devices. Only
accesses whose system physical addresses are within the GART aperture are translated; however, the
results of the translation can be any system physical address.

To set up the equivalent translations for I/O device-initiated accesses, the host OS must:

» Construct I/O page tables that specify the desired translations.
* Make an entry in the Device Table pointing to the newly constructed I/O page tables.
* Notify the IOMMU of the newly updated Device Table entry.

At this point, all accesses by both the host processor and the graphics device are mapped to the same
pages as they would have been by the GART.

If the host OS changes the page protection or translation, it must update both the processor page
tables and, if not shared, the I/O page tables and issue appropriate page-invalidate commands to both
the processor and the IOMMU. Unlike the processor, the IOMMU requires page-invalidate com-
mands after any change to the I/O page tables. (AMD64 processors do not require page-invalidate
operations after changes to leaf page table entries that add permission and make no change to transla-
tion.) Sharing of page tables is discussed in Section 2.2.1 [Updating Shared Tables] and Section 2.2.4
[Sharing AMDG64 Processor and IOMMU Page Tables—GPA-to-SPA].

Since the IOMMU offers no facilities for restarting device accesses to unmapped or protected
addresses, all pages that the device might access must be mapped with appropriate permissions. In
this respect the IOMMU is similar to the GART.

1.2.2 Replacing the Device Exclusion Vector Mechanism

The Device Exclusion Vector (DEV) is a basic security mechanism that was introduced with Secure

Virtual Machine (SVM) Architecture. Like the IOMMU, the DEV allows I/O devices to be classified
into different domains. Associated with each domain is a bit vector, indexed by physical page address,
indicating whether I/O devices in that domain are allowed to access the corresponding physical page.

The IOMMU provides protection and translation. If only protection is needed, software can create
identity-mapped /O page tables that specify the desired protection.

1.2.3 32-bit to 64-bit Legacy I/O Device Mapping

With the advent of large physical memories, legacy 32-bit devices that rely on DMA can no longer
arbitrarily access system memory. This complicates operating systems, which must introduce a dis-
tinction between low memory and high memory and perform appropriate bookkeeping to ensure that
legacy I/O devices are only commanded to perform transfers using low memory. The cost is not just
complexity; to perform a transfer from a legacy I/O device to high memory, for example, the operat-
ing system typically allocates a bounce buffer in low memory, performs the transfer in low memory,
and then copies the result to the real destination in high memory. For high-bandwidth I/O devices like
disk controllers and network interfaces, the performance cost of bounce buffer allocation and copying
can be large.

In some operating systems, the GART has been used to work around this problem. When the OS
wishes to perform a transfer between a legacy I/O device and high memory, it allocates a portion of

30 IOMMU Overview

AMDA
48882—Rev 2.62—February 2015 AMD /0 Virtualization Technology (IOMMU) Specification

the GART aperture and maps those pages to high memory. It then commands the I/O device to exe-
cute the transfer using the address within the GART aperture, which must be located in low memory.
Although this approach avoids the cost of bounce buffer copies, it is less than desirable, since the rel-
atively small GART aperture must be shared by all legacy I/O devices and any graphics processors in
the system. The device drivers have additional locking and synchronization overhead associated with
page allocation and de-allocation in the GART aperture and system performance may be degraded
due to serialization waiting for the GART aperture to become available.

The IOMMU provides a better solution. First, IOMMU translation applies to the full range of
addresses an I/0 device can generate, rather than requiring high-memory transfers to be mapped only
within the narrow range of GART addresses. Moreover, the IOMMU's ability to assign each 1/O
device to a different domain means that heavily used I/O devices can be given their own sets of I/O
page tables and do not have to contend with other I/O devices for allocation and de-allocation of I/O

pages.
1.2.4 User Mode Device Accesses

The IOMMU plays a crucial role in allowing arbitrary I/O devices to be safely controlled by user-
level processes, since I/O devices whose memory accesses are translated by the IOMMU can only
access pages that are explicitly mapped by the associated I/O page tables. The I/O devices' access can
therefore be limited to those pages to which the user processes legitimately have access.

Setting up the IOMMU for user-level I/O to an I/O device may be set up similarly to GART emulation
with two differences; first, the mappable address range is the entire range of I/O device-generatable
addresses, and secondly, the operating system is not necessarily required to make exactly equivalent
mappings in the processor page tables (although most likely it will).

Even with the help of the IOMMU, enabling user level I/O device access involves many design con-
siderations. Protecting and remapping DMA is one part of the problem; the other part is interrupt
management, for which the IOMMU provides help.

As was the case with GART emulation, system software must assess the need to lock in memory all
pages that might ever be accessed by an I/O device controlled by a user-level process. Peripherals that
implement an IOTLB or use ATS can use the peripheral page request mechanism optionally imple-
mented by an [OMMU.

1.2.5 Virtual Machine Guest Access to Devices

The IOMMU can be used to allow unmodified virtual machine guest operating systems to directly
access I/O devices. This is really just a special case of allowing user-level access to I/O devices, but
there are a few considerations that warrant separate mention.

First of all, a non-VM-aware guest has no current way of informing its Virtual Machine Monitor
(VMM) which pages an I/O device might access, so the VMM must lock the entire guest in memory.
The VMM '’s I/O page tables for the guest should then simply map guest physical addresses to system
physical addresses. If the VMM is running the guest under nested paging and is using nested page
tables built to be compatible with the IOMMU, then the IOMMU can directly share the host page
tables for the guest.

IOMMU Overview 31

AMDAA
AMD /0O Virtualization Technology (IOMMU) Specification 48882—Rev 2.62—February 2015

Often a single VM guest has direct access to multiple I/O devices. By design, all I/O devices in the
guest that need to see exactly the same I/O page translations can share a DomainID (see “Data Struc-
tures” on page 52). If all the I/O devices belonging to a given VM guest are assigned to the same
domain then the IOMMU can share translation cache entries among any of the guest’s I/O devices.

Finally, guest I/O throughput is often significantly enhanced when guest memory is allocated using
large pages on the host system. Then the I/O page tables can similarly use large pages and the
IOMMU is more likely to avoid thrashing in its translation cache.

1.2.6 Virtualizing the IOMMU

The IOMMU has been designed so that it can be emulated in software by a VMM that wishes to pres-
ent its VM guests the illusion that they have an IOMMU.

VMMs that run non-VM-aware guests already intercept and emulate attempts by their guests to
access PCI” configuration space. Therefore, emulation of the IOMMU configuration registers is
straightforward; the emulation can be hooked directly to the existing facilities of the VMM for inter-
cepting PCI configuration space accesses.

The VMM must also arrange to intercept and emulate guest accesses to the [OMMU's MMIO-
mapped command registers. Since the overhead of each VMM intercept is high, guest operating sys-
tems accessing the IOMMU have better performance when they enqueue batches of commands in the
IOMMU's Command Buffer located in system memory prior to initiating IOMMU command pro-
cessing via an MMIO register access.

Since an untrusted guest OS cannot be allowed to write in the real Device Table, the VMM must
maintain shadow entries in the real table on behalf of the guest. The IOMMU architecture requires
software to issue invalidate-entry commands to the IOMMU after updating Device Table entries. The
VMM can intercept these invalidate commands, look up the corresponding entries in the guest's sim-
ulated Device Table, and make shadow entries in the real Device Table on behalf of the guest. Note
that the DevicelDs as seen by the guest need not be the same as the real DevicelDs and the
DomainIDs used by the guest are almost certainly not the same as the DomainIDs used by the VMM
in the real Device Table.

In addition, for each guest VM 1/O page table, the VMM must construct a shadow /O page table.
This shadow I/O page table is the page table that is given to the real IOMMU. Unfortunately, since an
incomplete I/O device access cannot be restarted, the VMM must construct each guest domain's com-
plete shadow 1/O page tables eagerly as soon as the guest enables paging for that domain. The VMM
must write-protect guest I/O page tables from the guest in order to intercept all guest updates and
propagate the updates to the shadow I/O page tables.

The virtual machine monitor (VMM) can also implement a subset of the IOMMU optional features
by reporting that subset via the IOMMU Extended Feature Register [MMIO Offset 0030h]. The sub-
set of additional features can be implemented using the same techniques described above.

1.2.7 Virtualized User Mode Device Accesses

An IOMMU with two-level translation enforces system protection policies while allowing arbitrary
I/O devices to be properly controlled by user-level processes in a virtualized system. As noted in Sec-

32 IOMMU Overview

AMDA
48882—Rev 2.62—February 2015 AMD /0 Virtualization Technology (IOMMU) Specification

tion 1.2.4 [User Mode Device Accesses], I/O devices whose memory accesses are translated by the
IOMMU can only access pages that are explicitly mapped by the associated I/O page tables as
granted by the VMM and operating system. The I/O devices' access can therefore be limited to only
those pages to which the user-level processes legitimately have access when the device supplies
PASID information. This means I/O operations can be initiated without hypervisor or operating sys-
tem intervention.

In addition to address translation, enabling user level I/O device access involves other design consid-
erations such as remapping interrupts.

System software must assess the need to lock in memory all pages that might ever be accessed by an
I/O device controlled by a user-level process. Peripherals that use ATS can use the peripheral page
request mechanism when implemented by an IOMMU.

1.3 IOMMU Optional Features

All implementations of the IOMMU provide a base set of capabilities. This base functionality is also
known as IOMMU Revision 1.

Subsequent revisions of this specification added new software-observable features. All these features
are technically optional, although most IOMMU implemenations included all or most of the features
that were defined at the time of their design.

Architecturally, however, software must determine support for each feature and must enable each fea-
ture before using it.

Optional features include:

* Guest virtual to guest physical address translation capability

* Enhanced AMD64 long mode page table compatibility

* Support for PCI ATS

» PCI-SIG PRI and PASID TLP prefix ECN support

» Support for a guest virtual APIC (AVIC is an implementation of a guest virtual APIC)
* Enhanced performance and error logging features

* Guest page table User/Supervisor access privilege checking

* Guest page table Global Supervisor-level access protection

* Guest page table non-executable page protection

* Segmentation of the Device Table

« PPR and Event Log dual buffers with optional autoswap

* PPR Auto Response with Always-on feature

» PPR Log early overflow warning

* Device-specific feature reporting registers

* MMIO access to MSI setup and mapping configuration space fields
* Memory Access Routing and Control (MARC)

* Automatic Block StopMark Message Handling

To determine if a particular implementation of the IOMMU supports any of the architecturally-

IOMMU Overview 33

AMDAA
AMD /0O Virtualization Technology (IOMMU) Specification 48882—Rev 2.62—February 2015

defined optional features, software must first check that the EFRSup bit of the IOMMU Capability
Header [Capability Offset 00h] is set. If the EFRSup bit is set, the IOMMU Extended Feature Regis-
ter [MMIO Offset 0030h] (EFR) is supported. For most features, support is indicated by a bit in the
EFR. By reading the EFR and testing the bit corresponding to the feature, software can determine if
that feature is supported by the IOMMU implementation in that system. In most cases, support for a
feature is indicated by a non-zero value in the respective field of the EFR. Refer to Table 2 below for
details.

All optional features must be explicitly enabled, usually by set bits in the IOMMU Control Register
[MMIO Offset 0018h].

The EFRSup bit and many of the feature and capability reporting fields related to I/O virtualization
are replicated in the IOMMU ACPI Tables. Information reported via this method supersedes informa-
tion reported via the Extended Feature Register and the Miscellaneous Information Register. See
Chapter 5, "I/O Virtualization ACPI Table".

Software Implementation Note: Software should not rely on the feature support information con-
veyed by the IOMMU Extended Feature Register for any feature that is also reported in the ACPI
tables since system firmware can override the functional capabilities reported by the IOMMU hard-
ware.

Table 2 below lists all the architecturally defined features and specifies the field to test to determine
support for that feature. In the table, EFR refers to the IOMMU Extended Feature Register [MMIO
Offset 0030h], CapHdr refers to the IOMMU Capability Header [Capability Offset 00h], and CNTRL
refers to the IOMMU Control Register [MMIO Offset 0018h].

34 IOMMU Overview

AMDA

48882—Rev 2.62—February 2015

Table 2: Software-Visible Features

AMD /0 Virtualization Technology (IOMMU) Specification

Feature Name

Feature Description

Determining Support

Single layer address
translation

Section 2.2.3 [1/O Page Tables for Host Transla-
tions]

Base Support

Interrupt remapping

Section 2.2.5 [Interrupt Remapping Tables]

Base Support

tection

IOMMU EFR IOMMU Extended Feature Register [MMIO Off- |CapHdr[EfrSup]
set 0030h].

Address Translation |Section 2.2.7 [Guest and Nested Address Transla- |CapHdr[IotlbSup]

Services (ATS) tion]

Guest Translation Section 1.3.1 [Two-level Translation for Guest and |EFR[GTSup]
Host Address Spaces],

PASID Section 2.2.7.7 [PCle TLP PASID Prefix] EFR[GTSup]

PPR Support Section 1.3.5 [Peripheral Page Request Support |EFR[PPRSup]
Compatible with PCI-SIG PRI]

Performance Counter |Section 1.3.3.1 [Performance Counters] EFR[PCSup]

Support

SMI filter Section 1.3.8 [SMI Filter] EFR[SmiFSup]

Guest virtual APIC [Section 1.3.7 [Interrupt Virtualization (Guest Vir- |EFR[GASup]
tual APIC Interrupt Controller)]

Hardware error regis- |Section 1.3.9 [Hardware Error Registers] EFR[HESup]

ters

Multi-level guest CR3 [Section 2.2.6.3 [Guest CR3 Table] EFR[GLXSup]

Table

Invalidate all com- [Section 2.4.8 [INVALIDATE IOMMU_ ALL] EFR[IASup]

mand

Prefetch command [Section 2.4.6 [PREFETCH _IOMMU_PAGES] EFR[PreFSup]

No Execute page pro- |Section 2.2.6.1 [Support for Guest Page Table NX |[EFR[NXSup]

tection field]

Privileged access pro- [Section 2.2.6.2 [Guest Page Table Access Protec- |[EFR[USSup]

tion]

Global Privileged Section 2.2.6.2 [Guest Page Table Access Protec- |[EFR[USSup] &&

Page Access Abort |tion] CNTRL[PrivAbrtEn] =
01b

Device Table Seg- Section 2.2.2.3 [Device Table Segmentation] EFR[DevTblSegSup]

mentation

Dual Event Buffer Section 2.5.13 [Event Log Dual Buffering] EFR[DualEventLogSup]

Dual PPR Buffer Section 2.6.1 [PPR Log Dual Buffering] EFR[DualPprLogSup]

IOMMU Overview

35

AMDAA
AMD /0O Virtualization Technology (IOMMU) Specification 48882—Rev 2.62—February 2015

Table 2: Software-Visible Features

Feature Name Feature Description Determining Support

Device-Specific Section 3.3.7 [Device-Specific Feature Registers] |—
Extensions Reporting

MMIO access to MSI [Section 3.3.8 [MMIO Access to MSI Capability |EFR[MsiCapMmioSup]
Capability Registers |Block Registers]

PPR log overflow Section 2.6.4 [PPR Log Overflow Protection] EFR[PprAutoRspSup]
protection—Auto

Response

PPR log overflow Section 2.6.4 [PPR Log Overflow Protection] EFR[PPRautoRspSup]
protection—Always- && CNTRL[AutoResp-
On Auto Response AON]

PPR log overflow Section 2.6.4 [PPR Log Overflow Protection] EFR
protection—Overflow [PprOvrflwEarlySup]
Early Warning

PPR log overflow Section 2.6.4 [PPR Log Overflow Protection] EFR[BIlkStopMrkSup]
protection—Block
StopMark

Memory Access Section 2.9 [Memory Address Routing and Control |EFR[MarcSup]
Routing and Control |(MARC)]

IOMMU Performance |Section 3.3.9 [Performance Optimization Control |EFR[PerfOptSup]
Optimization Register]

1.3.1 Two-level Translation for Guest and Host Address Spaces

The IOMMU adds an optional layer of guest address translation similar to the processor nested pag-
ing capability. The layered address translation may be viewed as nested address spaces as illustrated
in Figure 2. Each address space has a set of address translation tables. The IOMMU can provide
guest-physical-to-system-physical address translation managed by the hypervisor (sometimes called
“L2 translation”). The Device Table entry is extended to include optional address translation informa-
tion for guest-virtual-to-guest-physical address translation managed by the guest operating system
(sometimes called “L1 translation™). This allows for advanced computation architectures in virtual-
ized systems such as compute-offload, user-level I/O, and accelerated I/O devices. The IOMMU indi-
cates that two-level translation is supported via MMIO Offset 0030h[GTSup]. When supported, two-
level translation is activated by programming the appropriate Device Table entries.

36 IOMMU Overview

AMDA

48882—Rev 2.62—February 2015 AMD /0 Virtualization Technology (IOMMU) Specification
| |
Process Process
\ N\
translation trangfation
Guest Operating System Guest Operating System
(Guest Physical Address (Guest Physical Address
Spage) Spac\e)
sted sted
translati translati
Hypervisor (System Physical Address Space)

Figure 2: Nested Address Spaces

Guest address translation tables can support up to 1048576 (2*°) concurrent processes as an architec-
tural limit. However, a given implementation may may support fewer. The value of the field MMIO
Offset 0030h|PASmax] can be used to calculate the maximum PASID supported. The guest address
translation tables contain guest physical addresses and the tables are indexed using guest virtual
addresses. As a result, the tables are managed by the guest operating system within a virtual machine.
The VMM manages the nested translation tables and the IOMMU hardware provides mechanisms to
keep the tables synchronized and to handle exception conditions. The IOMMU automatically walks
address translation tables based on control bits set by system software.

The IOMMU may be used in three operational modes to do legacy one-level translation, guest and

nested translation, and one-level translation with AMD64 long mode page tables. These three modes

may be used concurrently for different peripherals.

» For legacy operation, software clears the GV bit in Device Table Entry (DTE). See “Device Table
Entry Format™ on page 56.

* For guest and nested two-level translation, software checks MMIO Offset 0030h[GTSup]=1.
Software is then able to program Device Table entries for two-level translations.

» For one-level translation with AMD64 long mode page tables, software programs the [OMMU
for guest and nested translation but programs DTE[Mode] = 000b for the nested translation.

IOMMU Overview 37

AMDAA
AMD /0O Virtualization Technology (IOMMU) Specification 48882—Rev 2.62—February 2015

1.3.2 Enhanced AMD64 Long Mode Page Table Compatibility

In its base functionality, the IOMMU can share nested (host) page tables with the processor when the
Reserved fields are programmed to zeros. In contrast to the AMD64 CPU, the IOMMU does not
rewalk page tables when an access violation is detected using cached information. When the IOMMU
detects an access violation in a nested transaction, either from a TLB hit or from a page-table walk
(TLB miss), it blocks the access or returns an ATS response with the calculated access privileges.
When the IOMMU determines the proper access privileges are present, it allows the requested access
or returns an ATS response with the calculated access privileges.

Long Mode Page Table Compatibility Feature. The compatibility of the IOMMU with

AMD64 long mode page tables is enhanced. The IOMMU can directly share AMD64 long mode
page tables with the processor for guest address translations. The guest page translation tables are
strictly compatible with the AMD64 long mode format and semantics, including IOMMU updates to
the Accessed and Dirty bits (see Section 2.2.6 [I/O Page Tables for Guest Translations] and Section
2.2.7.4 [Updating Accessed and Dirty Bits in the Guest Address Tables]). When guest translation is
used, the IOMMU follows the AMD64 long mode address translation requirements for guest virtual
addresses and thus software is not required to issue an invalidation command when it promotes guest
access privileges; only when software demotes guest access privileges or removes the guest page
(“present to not-present”) must software issue an invalidation. Therefore an ATS request or DMA ref-
erence that results in insufficient guest privileges calculated from a TLB entry may be based on stale
information. To determine current permissions, the [OMMU rewalks the guest page tables to recom-
pute access permission using information read from memory. The nested page tables may be read as a
consequence of the guest table rewalk. The IOMMU determines the results of the access based on the
newly read page table information. The rewalk may require a full walk of both guest and nested trans-
lations. Details are in Section 2.2.7 [Guest and Nested Address Translation]). The AMD64 long mode
page tables contain information about memory types in the Page Attribute Table (PAT); the IOMMU
can provide memory type information to a peripheral but does not interpret or validate the informa-
tion.

1.3.3 Performance Features

The IOMMU provides three performance-oriented features: performance counters, the PREFETCH
command, and the FLUSH_ALL command.

1.3.3.1 Performance Counters

To provide system software with consistent performance monitoring and evaluation mechanisms, an
optional set of performance counters are defined. Support is indicated by the PCSup bit of the
IOMMU Extended Feature Register [MMIO Offset 0030h]. An implementation may provide coun-
ters in addition to the architecturally defined counters. The counters run independently from proces-
sor activity. The counters are organized into n counter banks, each of which fits in a 4-Kbyte page.
The VMM may privately control all counter banks or assign one or more counter banks to a guest
operating system. The number of counters and counter banks are reported to system software (see
Section 3.3 [[OMMU MMIO Registers] and Section 5.2.2.1 [I/O Virtualization Hardware Definition
(IVHD) Block]). Each counter bank has controls that filter for devices and event sources of interest.
Each event counter is programmed to count events or the duration of the events and each counter reg-

38 IOMMU Overview

AMDA
48882—Rev 2.62—February 2015 AMD /0 Virtualization Technology (IOMMU) Specification

ister has an optional signal for thresholding purposes (see Section 2.5.11
[EVENT COUNTER ZERO Event]).

When performance counters are supported (MMIO Offset 0030h[PCSup] = 1), software must allocate
a 512-Kbyte region of contiguous system memory for the IOMMU MMIO registers. The region must
be 4-Kbyte aligned. If performance counters are not supported by the IOMMU (MMIO Offset
0030h[PCSup] = 0), the allocation requirement drops to 16 Kbytes.

1.3.3.2 Loading the IOMMU TLB

The optional PREFETCH_IOMMU _ PAGES command gives system software the ability to load the
IOMMU TLB with relevant translation information (see Section 2.4.6

[PREFETCH _IOMMU_ PAGES]), especially error processing information (Section 2.4.6.1 [Event
Processing for PREFETCH IOMMU_PAGES)).

Support for the prefetch feature is indicated by MMIO Offset 0030h[PreFSup]. If PreFSup=0, a
PREFETCH IOMMU_ PAGES command causes the IOMMU to create an error event (Section 2.5.6
[ILLEGAL COMMAND ERROR Event]). Because a TLB is a caching structure, the prefetch com-
mand must be considered advisory. Even if the IOMMU were to fetch the address translation infor-
mation for every prefetch command, the TLB entry may be overwritten by other translation
information before it is ever used and an attempt to use the translation information would cause a
page table walk after all.

The PREFETCH _IOMMU_ PAGES command is a hint to the IOMMU that the associated translation
records will be needed relatively soon and that the IOMMU should execute a page table walk to load
the translation information. Based on internal status and workloads, the IOMMU may fetch the trans-
lation information into a TLB. If an entry is already in the TLB, the IOMMU may adjust LRU or
other control tags to lengthen cache residency.

1.3.3.3 Flushing the IOMMU TLB

The base function of the IOMMU provides the INVALIDATE DEVTAB ENTRY command (per
DevicelD), the INVALIDATE IOMMU_ PAGES command (per DomainlID), and the
INVALIDATE INTERRUPT TABLE command (per DevicelD) which software can use to invali-
date I/O TLB entries.

The optional INVALIDATE IOMMU ALL command may simplify trusted boot, error recovery, and
resumption from low-power states (see Section 2.4.8 [INVALIDATE IOMMU_ ALL]). At the com-
pletion of an INVALIDATE IOMMU_ALL command, all IOMMU TLBs are invalidated, including
cached portions of the Device Table, guest CR3 table, page directory entries, page table entries, and
interrupt remapping entries (including the Guest APIC Table Root Pointer). Section 2.4.9 [IOMMU
Ordering Rules] describes how outstanding operations must be handled.

The operational status of the IOMMU is not affected by INVALIDATE IOMMU_ALL. Translations,
command and event processing, address translation requests, and peripheral page request processing
continue normally. The contents of the MMIO registers are not affected except to advance the Com-
mand Buffer Head Pointer Register [MMIO Offset 2000h] beyond the INVALIDATE IOMMU_ALL
command. The IOMMU may start reloading internal caches with information at any time after the
INVALIDATE IOMMU_ALL command completes. The INVALIDATE IOMMU_ALL command

IOMMU Overview 39

AMDAA
AMD /0O Virtualization Technology (IOMMU) Specification 48882—Rev 2.62—February 2015

guarantees ordering as described in Section 2.4.9 [[OMMU Ordering Rules].

Note that the INVALIDATE IOMMU_ALL command does not invalidate remote I[OTLBs. In the
case of ATS, invalidation can be achieved by disabling and re-enabling ATS on each PCI device/func-
tion.

Support for the INVALIDATE IOMMU_ALL command is indicated by the [ASup bit of the
IOMMU Extended Feature Register [MMIO Offset 0030h].

1.3.4 Address Translation Services for Guest Virtual Addresses

Base Function. Address translation services can be used by a peripheral to translate a GPA to an
SPA. To translate a GPA to an SPA, a PCle®-connected peripheral issues an ATS request lacking a
PASID TLP prefix recognized by the IOMMU (see Section 2.2.7.7 [PCle TLP PASID Prefix]). The
IOMMU evaluates access privileges using cached information and walks the page tables when
required. The resulting access privileges are returned in the ATS response.

Optional Enhancements. Address translation services can be used by a peripheral to translate a GVA
or GPA to an SPA. To translate a GVA to an SPA, a peripheral connected by PCle issues an ATS
request containing a valid PASID to present flags and a canonical virtual address (see Section 1.3.6
[Selecting Translation Tables in a Memory Transaction] and Section 2.2.7.7 [PCle TLP PASID Pre-
fix]). An integrated peripheral may use means other than the ATS protocol to present flags and the
virtual address, such as wire signals. The IOMMU evaluates access privileges using cached informa-
tion for efficiency and walks the page tables when required. To match AMD64 semantics, the
IOMMU must rewalk the guest page tables if previously cached information indicate insufficient
privileges for the access (see Section 2.2.7.1 [Combining Guest and Host Address Translation] and
Table 33 on page 103). The resulting access privileges are returned in the ATS response. To carry the
additional information for a guest address, the IOMMU uses a PCle TLP prefix containing a valid
PASID.

The IOMMU must update the Accessed and Dirty bits in the GVA page table while servicing an ATS
request as if the peripheral had actually accessed memory (see Section 2.2.7.4 [Updating Accessed
and Dirty Bits in the Guest Address Tables]). For the purpose of evaluating GVA Accessed and Dirty
bits, the IOMMU must use the access level indicated in the ATS packet. An ATS request for read-only
access determines the Accessed bit setting and an ATS request for read-write access determines the
Dirty bit setting (see Table 33 on page 103). When processing a GPA, the IOMMU treats the page
tables as read-only.

Software note: Software must issue an invalidation command when it changes A or D bits in a page
table entry to O from 1. This requirement allows the IOMMU to cache the A & D bits in a TLB for
higher performance.

Software issues an INVALIDATE IOTLB PAGES command to cause the IOMMU to generate an
invalidation request to the peripheral (see Section 2.4.4 [INVALIDATE IOTLB PAGES]). An
invalidation request sent downstream to the device lacks a valid PASID prefix when the contents are a

GPA. An invalidation request sent downstream to the device has a valid PASID prefix when the con-
tents are a GVA and the PASID is in the PASID TLP prefix.

The conditions under which a peripheral with an IOTLB must invalidate a cached translation entry

40 IOMMU Overview

AMDA
48882—Rev 2.62—February 2015 AMD /0 Virtualization Technology (IOMMU) Specification

that caused an insufficient-privilege check and obtain a fresh translation using ATS are in Section
2.1.4.8 [Discarding IOTLB Information to Rewalk Page Tables].

1.3.5 Peripheral Page Request Support Compatible with PCI-SIG PRI

IOMMU optionally supports the PCI-SIG PRI specification as a complement to PCI-SIG Address
Translation Service (ATS) specification (see Section 2.1.1 [Normal Operation]). The IOMMU sup-
port for PRI is called peripheral page request (PPR) logging (see Section 2.6 [Peripheral Page
Request (PPR) Logging]).

The operating system is usually required to pin memory pages used for I/O; the pinned pages are
often allocated from a separate memory pool of limited capacity. ATS and PRI can be used together to
enable the peripheral to use unpinned pages for I/O. When processing ATS requests, the [OMMU
does not signal events when insufficient access privileges or not-present pages are detected; instead it
returns the permissions calculated from the page tables. The peripheral examines the response to
determine an appropriate action (e.g., use PRI to request system software to service a page table
entry). Use of PPR/PRI allows a peripheral to request the operating system to change the access priv-
ileges of the page. Use of ATS with PPR can allow a system to operate efficiently in a reduced mem-
ory footprint.

1.3.6 Selecting Translation Tables in a Memory Transaction

In the base capabilities of the IOMMU, a PCle packet contains a GPA and the originating BDF is
used to select GPA-to-SPA translation tables. A PCI-SIG TLP prefix is not interpreted by the
IOMMU.

An optional feature adds support for translating guest virtual addresses to system physical addresses
using the page tables programmed by the guest operating system. The PCI-SIG defines a method to
add information to a transaction called the TLP prefix. An AMD-specific extension uses the TLP pre-
fix to carry added information for a transaction that bears an x86-canonical GVA. When a PCle trans-
action has a TLP prefix, the packet contains a GVA and the TLP prefix selects the guest tables for
GVA-to-GPA translation; when a PCle transaction has no TLP prefix, the packet contains a GPA. The
originating BDF is used to select GPA-to-SPA translation tables. Details are in Section 2.2.7.7 [PCle
TLP PASID Prefix].

1.3.7 Interrupt Virtualization (Guest Virtual APIC Interrupt Controller)

The IOMMU optionally supports interrupt virtualization. Device interrupts can be delivered directly
to running guest virtual machines without hypervisor intervention when interrupts are virtualized (see
MMIO Offset 0030h[GASup] and MMIO Offset 0018h[GAEn]). This can reduce the delivery latency
and overhead of guest VM interrupts. This feature requires compatible APIC virtualization support in
the processor. The processor and the IOMMU coordinate to maintain interrupt state in the Guest Vir-
tual APIC Table when delivering interrupts. Interrupt remapping and interrupt virtualization may be
enabled independently. See details in Section 2.2.8 [Guest Virtual APIC Table for Interrupt Virtual-
ization].

1.3.8 SMI Filter
The IOMMU optionally supports the interception of System Management Interrupts (SMI) that are

IOMMU Overview 41

AMDAA
AMD /0O Virtualization Technology (IOMMU) Specification 48882—Rev 2.62—February 2015

unexpected by system firmware or software. SMIs that are vital to system operation and integrity are
delivered as usual but SMIs from suspect sources can be blocked or deferred for later processing or
analysis. See Section 2.1.5 [System Management Interrupt (SMI) Controls] for details of SMI filter
operation.

1.3.9 Hardware Error Registers

All error events are reported in the IOMMU event log. Optionally, error reporting is enhanced by log-
ging critical events in the hardware error registers. See IOMMU Hardware Event Upper Register
[MMIO Offset 0040h], IOMMU Hardware Event Lower Register [MMIO Offset 0048h], and
IOMMU Hardware Event Status Register [MMIO Offset 0050h].

42 IOMMU Overview

AMDA

48882—Rev 2.62—February 2015 AMD /0 Virtualization Technology (IOMMU) Specification

2 Architecture

This chapter describes the IOMMU's architecture mainly from a system software point of view. The
discussion starts with the normal steady state behavior of the IOMMU once it has been set up, focus-
ing on how the IOMMU handles various device transactions. The following section describes the in-
memory data structures used to control the IOMMU, together with the procedures software must fol-
low to correctly update these (shared) data structures. Finally, the chapter concludes with a descrip-
tion of the PCI resources that must be initialized at system startup time to configure the [OMMU.

2.1 Behavior
When the IOMMU is disabled it simply passes all bus traffic through without alteration.

When the IOMMU is enabled, it intercepts requests arriving from downstream devices (which may be
attached to the system via a HyperTransport™ link, PCI bus, or other means), performs permission
checks and address translation on the requests, and sends translated versions upstream to system
memory. Other requests are passed through unaltered (details in Section 2.1.1 [Normal Operation]).
PCI devices serviced by a single IOMMU must be on the same PCI Segment Group (see PCI Firm-
ware specification for further details of PCI Segment Groups).

The IOMMU reads three tables in system memory to perform its permission checks, interrupt remap-
ping, and address translations. To avoid deadlock, memory accesses for device tables, page tables,
and interrupt remapping tables by the IOMMU use an isochronous virtual channel and may only ref-
erence addresses in system memory. Other memory reads originated by the IOMMU to command
buffers, event log entries, and optional request queue entries use the normal virtual channel. System
performance could be substantially reduced if the IOMMU performed the full table lookup process
for every device request it handled. Therefore, implementations of the IOMMU are expected to main-
tain internal caches for the contents of the IOMMU's in-memory tables, and correct operation of the
IOMMU requires system software to send appropriate invalidation commands to the IOMMU when it
updates table entries that may have been cached by the IOMMU.

The IOMMU writes to the event log in system memory using the normal virtual channel. The
IOMMU can optionally write to the peripheral page request log in system memory and these writes
use the normal virtual channel. The IOMMU can optionally write to the guest virtual APIC log in sys-
tem memory and these writes use the normal virtual channel.

The IOMMU signals interrupts using standard PCI MSI or MSI-X interrupts.

2.1.1 Normal Operation
The typical flow of requests through the IOMMU is as follows:

* Read, write and interrupt transactions generated by the IOMMU are not translated by the
IOMMU.

» Transactions arriving from upstream must be passed downstream unaltered.

» Transactions arriving from downstream that are response, fence, or flush commands must be

Architecture 43

AMDAA
AMD /0O Virtualization Technology (IOMMU) Specification 48882—Rev 2.62—February 2015

passed upstream unaltered.

* Transactions arriving from downstream that reference addresses within the IOMMU exclusion
range must be passed upstream unaltered.

* Memory read and write transactions from downstream result in table lookups in the Device Table
to obtain the DomainID of the requesting I/O device and to locate I/O page tables. Further table
lookups are required in I/O page tables to perform address translation and permission checking.
After performing permission checks and address translation, the [IOMMU forwards the resulting
transactions upstream if the transaction is allowed from the I/O device.

* Address translation requests from downstream result in table lookups as for memory read and
write transactions. Translated address and access permission information is returned to the
requesting peripheral. Software is required to invalidate address translation mappings cached by a
peripheral.

» Peripheral page requests from downstream result in an event log entry if not supported, or result
in a peripheral page request log entry written to system memory. (Optional PPR Auto response
modifies this behavior.)

* Interrupt addresses are never translated to system memory addresses, but other special address
ranges may be optionally treated as memory addresses for translation.

* Interrupts from downstream result in table lookups in the Device Table and then in the interrupt
remapping tables to remap the interrupt. After performing checks and interrupt remapping, the
IOMMU forwards the resulting interrupts upstream if the interrupt is allowed from the I/O device.
SMI requests optionally go through the SMI filter and do not use the interrupt remapping tables.

» Port I/O space transactions from downstream devices result in a Device Table lookup to determine
if the I/O device is allowed to access port I/O space.

* The IOMMU maintains an event log in system memory containing the details of transactions that
do not complete normally.

* The IOMMU maintains an optional guest virtual APIC log containing details of interrupt requests
that arrive when the guest is not running.

* The IOMMU does not further translate pretranslated memory read and write requests from
devices if the I/O device is marked as being able to generate pretranslated addresses.

* The IOMMU processes commands from the command queue.

The optional MARC feature allows accesses from integrated I/O devices such as GPUs to bypass the
IOMMU when accessing defined regions of system memory.

In addition to passing on transactions from downstream devices, the IOMMU inserts transactions of
its own to perform reads to and writes from system memory and to signal interrupts.

The IOMMU is allowed to cache page table and Device Table contents to speed translations. An
invalidation protocol is defined so that software can keep the cache contents consistent with memory
when it updates the tables. When software initiates a suspend operation that does not preserve the
state of the processor or chipset, the state of the IOMMU stored in registers is lost and must be
restored as part of the resume sequence.

When system software processes a PCI hot-plug notification, the ACPI tables should be inspected to

44 Architecture

AMDA

48882—Rev 2.62—February 2015

AMD /0 Virtualization Technology (IOMMU) Specification

determine the IOMMU that will service the peripheral and then program the IOMMU appropriately.

2.1.2

IOMMU Logical Topology

Once configured, the IOMMU logically resides between the I/O devices and the upstream interface.
As a result of this logical topology the transactions seen by the IOMMU are defined in terms of
HyperTransport™ transactions. Accesses to the HyperTransport™ address range FD 0000 _0000h -
FF_FFFF_FFFFh, inclusive, have special meanings. The meaning is encoded into various portions of
the address as shown in Table 3 and Table 19; complete details are in the HyperTransport™ 1/O Link
Specification. Upstream transactions to these address ranges are controlled by Device Table control
bits, page tables or the interrupt remapping tables. The special address controls do not apply to pre-

translated addresses.

When supported, special address controls in Table 3 are interpreted against untranslated guest physi-
cal addresses (GPA) that lack a PASID TLP prefix. These special address controls do not apply to
intermediate translation results during the translation of a guest virtual address to a system physical
address by the IOMMU.

Table 3: Special Address Controls (GPA)

Base Address

Top Address

Use

Access controlled by

FD 0000 _0000h

FD F7FF FFFFh

Reserved interrupt
address space

See Section 2.5.9
[INVALID DEVICE REQUE
ST Event]

FD F800 0000h |FD F8FF FFFFh |Interrupt/EOI IntCtl, Interrupt Remapping
Tables

FD F900 0000h |FD F90F FFFFh |Legacy PIC IACK Page Tables

FD F910 0000h |FD F91F FFFFh |System Management SysMgt, Page Tables

FD F920 0000h |(FD _FAFF FFFFh |Reserved Page Tables

FD_FB00_0000h

FD FBFF FFFFh

Address Translation

HtAtsResv, Page Tables

FD FC00 0000h [(FD FDFF FFFFh |I/O Space IoCtl, Page Tables

FD FEO0 0000h |FD FFFF FFFFh |Configuration Page Tables

FE 0000 0000h |FE 1FFF FFFFh |Extended Configuration/ |Page Tables
Device Messages

FE 2000 0000h |FF_FFFF FFFFh |Reserved Page Tables

During configuration, an [IOMMU may appear connected in different topologies that are implementa-

tion dependent.

2.1.3

IOMMU Event Reporting

The IOMMU must detect and may report several kinds of events that may arise due to unusual hard-
ware or software behavior. When the IOMMU detects an event of any kind and event logging is

enabled, it writes an appropriate event entry into the event log located in system memory. In addition,
it may optionally signal an interrupt when the event log is written.

Architecture

45

AMDAA
AMD /0O Virtualization Technology (IOMMU) Specification 48882—Rev 2.62—February 2015

Events detected by the IOMMU include 1/O page faults as well as hardware memory errors detected
when walking the I/O page tables. A detected event may cause a page table or interrupt remapping
table walk to terminate before reaching the final memory-translation or interrupt-remap entry. When a
walk is terminated early, the event information reported is based on the results calculated in the com-
pleted portion of the walk, starting with the Device Table Entry (DTE).

Software note: the TLB caching behavior of the IOMMU is not defined for an entry causing an
event; some implementations may insert an entry in the TLB cache before verifying that it causes no
exceptions. System software should invalidate the address that caused the event.

2.1.3.1 IOMMU Event Responses

The IOMMU response to events depends on the type of event detected, the type of transaction that
caused the event, and the state of the IOMMU at the time of the event.

If an IOMMU is not enabled or does not support address translation requests, the IOMMU responds
to translation requests with a master abort.

If the IOMMU is enabled, it can have one of three event responses:

* For upstream transactions that are master aborted or target aborted, the PCI/Host bridge that is co-
located with the IOMMU is the completer of the transaction. Transactions that are target aborted
set the legacy Signaled Target Abort bit in a manner consistent with the bus specification over
which the transaction was received (secondary port). These aborted transactions should not set
any AER bits (if implemented and otherwise applicable).

* Exceptions detected in transactions that target the IOMMU function are not logged in the
IOMMU event log. The exceptions are signaled following the rules of the bus specification
applicable to the primary bus with which the IOMMU function is associated.

* Exceptions detected in the transactions originating from the IOMMU function signal the event
following the rules of the bus specification applicable to the primary bus with which the IOMMU
is associated. Additionally, exceptions in command buffer and table walk reads are logged in the
IOMMU event log.

A transaction that attempts to use a Device Table entry beyond the end of the table is treated as in
Table 46. The size of the Device Table is defined by the Device Table Base Address Register, MMIO
Offset 0000h[Size].

2.1.3.2 1/0O Page Faults

The IOMMU may detect page-fault conditions when processing peripheral requests and the response
of the IOMMU depends on the type of the request and IOMMU control settings.

A peripheral’s memory transaction may result in an I/O page fault. These page faults can arise for a
variety of reasons, such as I/O page table entries lacking sufficient permission or memory pages
marked not-present. In a traditional processor virtual memory implementation, page faults activate an
exception handler that has the option to correct the underlying problem and retry the faulting instruc-
tion. The IOMMU has no such option: the underlying HyperTransport™ and PCI bus protocols do
not provide a means for the IOMMU to signal a device that it should attempt to retry an access. Con-
sequently, when the IOMMU detects an I/O page fault, it target aborts the faulting request. The

46 Architecture

AMDA
48882—Rev 2.62—February 2015 AMD /0 Virtualization Technology (IOMMU) Specification

IOMMU sets the legacy PCI Signaled Target Abort bit, if appropriate, and records 1/O page fault
information in its event log when event logging is enabled

For an address translation request, the IOMMU returns the translation result and does not signal a
fault (see also Section 2.1.4.5 [Address Translation Requests in the Special Address Range]). The
peripheral can examine the translation response to determine if a particular memory transaction
would cause an exception. Peripherals may request page fault service as described in Section 2.6
[Peripheral Page Request (PPR) Logging].

2.1.3.3 Memory Access Errors

The IOMMU's own memory accesses to its in-memory tables may themselves result in several kinds

of errors, including:

* Accesses to nonexistent or non-DRAM addresses because the IOMMU's isochronous virtual
channel is restricted to DRAM addresses only.

* Uncorrectable ECC errors.

» Use of reserved values, including invalid or unsupported type codes in Device Table entries and
reserved bits in page table entries.

The IOMMU records all detected memory access errors in its event log when event logging is
enabled. Optionally hardware errors may also be stored in the error registers (see Section 2.5.12.2
[I/O Hardware Event Reporting Registers]).

2.1.4 Special Conditions
This section defines the behavior of the IOMMU for particular operating conditions.
2.1.4.1 Zero-byte Read Operations

In some bus architectures, a zero-byte read operation is defined as a special operation with well-
defined side effects. Because of these side effects, the IOMMU must permit a zero-byte read opera-
tion when a page is marked to allow either read or write access. Further, because the zero-byte read
operation returns undefined data in some bus specifications, protecting the contents of a non-readable
memory location requires that the IOMMU obscure the returned data for a zero-byte read operation.

Implementation note: methods to obscure the returned data in a zero-byte read operation include
returning a constant, a random value, or a predictable value not based on the data contents such as the
address.

2.1.4.2 Interrupt Address Range

Accesses to the interrupt address range (Table 3) are defined to go through the interrupt remapping
portion of the IOMMU and not through address translation processing. Therefore, when a transaction
is being processed as an interrupt remapping operation, the transaction attribute of pretranslated or
untranslated is ignored.

Software note: The IOMMU should not be configured such that an address translation results in a
special address such as the interrupt address range.

Architecture 47

AMDAA
AMD /0O Virtualization Technology (IOMMU) Specification 48882—Rev 2.62—February 2015

2.1.4.3 Multi-page Address Translation Requests Lacking a PDE

An address translation transaction to the IOMMU can request multiple pages. The page size (stride) is
generally determined by the PDE used with level=0 or level=7. The page stride is always a power of
two. For situations where there is no relevant PDE (within the IOMMU exclusion range or when the
DTE[Mode] = 0), the results returned by the IOMMU are implementation-specific.

2.1.4.4 Address Translation Requests in the IOMMU Exclusion Range

I/O devices may request address translations for addresses in the IOMMU exclusion range, defined
by IOMMU Exclusion Base Register [MMIO Offset 0020h] and IOMMU Exclusion Range Limit
Register [MMIO Offset 0028h], and may cache the results. When software changes the exclusion
range, it must invalidate remote IOTLBs that may contain affected translation entries. Address trans-
lation requests to the exclusion range always return permissions that allow reading and writing

An address translation request for a GPA within the exclusion range returns an implementation-
defined result.

2.1.4.5 Address Translation Requests in the Special Address Range

I/O device address translation requests for a GPA within special address ranges in Table 3 are con-
trolled by the SysMgt and IoCtl settings in the Device Table entry (see Section 2.2.2.1 [Device Table
Entry Format]) and can either return a translation or cause a target abort.

2.1.4.6 Page Translation Entries Spanning Memory and Special Address Ranges

An IOMMU address translation entry for a GPA may be constructed to cover both conventional mem-
ory addresses and special addresses (see Table 3). The DTE[IoCtl] and DTE[SysMgt] fields control
IOMMU behavior. To translate a GPA address in a special address range, set the corresponding spe-
cial address range control in the DTE to direct the IOMMU to translate the desired special address
ranges as memory addresses.

2.1.4.7 Discarding IOMMU TLB Information to Rewalk Page Tables

An optional feature adds the capability for the IOMMU to rewalk the page tables under certain condi-
tions. When the IOMMU detects an access violation based on cached information, it discards the
information in the IOMMU TLB and reloads the translation information from memory. Interrupt
remapping information is only loaded from memory on a TLB miss. See Section 1.3.4 [Address
Translation Services for Guest Virtual Addresses] for details.

2.1.4.8 Discarding IOTLB Information to Rewalk Page Tables

An optional feature adds the capability for the IOMMU to rewalk the page tables under certain condi-
tions. The peripheral can use address translation information from the IOTLB or obtained via ATS to
determine access privileges for a nested (host) access. As an AMD extension, a peripheral with an
IOTLB must invalidate a cached entry causing an insufficient-privilege failure when R=1 or W=1 in
the IOTLB entry for a guest access. The peripheral must then request the guest translation informa-
tion using ATS and retry the access. If the revised privileges are insufficient for the retry, the periph-
eral must take appropriate action to abandon the access or issue a PCle® PRI request for escalated
privileges.

48 Architecture

AMDA
48882—Rev 2.62—February 2015 AMD /0 Virtualization Technology (IOMMU) Specification

2.1.4.9 Updating the Accessed and Dirty Bits in Guest Page Tables

An optional feature adds the capability for the IOMMU to write to the guest page table. The IOMMU
must update the guest page table Accessed and Dirty bits in a manner compatible with the processor,
so the IOMMU implements the equivalent of a locked-OR. Specifically, the IOMMU must set the
Accessed bit in a locked operation and it must set the Accessed and Dirty bits in a single locked oper-
ation. The IOMMU never clears the Accessed or Dirty bits; software is responsible to clear the bits.
The IOMMU is allowed to cache these bits, so software must issue invalidation commands when it
clears the bits in PTE. See Section 2.2.7.4 [Updating Accessed and Dirty Bits in the Guest Address
Tables] and Section 2.2.7.5 [Clearing Accessed and Dirty Bits] for details.

2.1.4.10 Address Translation Response When DTE[Mode] =0

A peripheral can request address translations when DTE[Mode] = 000b; the translated physical
address is equal to the supplied virtual address (GPA).

2.1.4.11 Page Splintering

An optional feature allows the IOMMU to perform page splintering. When an address is mapped by
guest and nested page table entries with different page sizes, the [IOMMU TLB entry that is created
matches the size of the smaller page (see also AMDG64 Technology, AMD64 Architecture Program-
mer’s Manual, Volume 2: System Programming, Page Splintering).

2.1.4.12 Atomic Operations Require Read and Write Permissions

Atomic operations both read and write a page. The IOMMU must permit atomic operations from the
peripheral only when the page is marked to allow both read and write operations.

2.1.4.13 INVALIDATE_IOTLB_PAGES and Peripheral Reset

If a peripheral is reset while an INVALIDATE IOTLB_PAGES command is being executed by the
IOMMU (Section 2.4.4 [INVALIDATE IOTLB_ PAGES)]), the peripheral may stop processing
invalidations and software must process any IOTLB _INV_TIMEOUT events that result (Section
2.5.8 [IOTLB_INV_TIMEOUT Event]).

2.1.5 System Management Interrupt (SMI) Controls

In order to ensure system management interrupts delivered to the processor come from valid periph-
eral sources (DevicelDs), the IOMMU optionally supports an SMI filter. When MMIO Offset
0030h[SmiFSup]=00b or MMIO Offset 0018h[SmiFEn]=0b, SMI interrupts from any source are
delivered to the processor(s); for other values of MMIO Offset 0030h[SmiFSup], SMI interrupts are
filtered according to the values programmed in the SMI filter registers (see IOMMU SMI Filter Reg-
ister [MMIO Offset 00[60-D8]h]). The number of SMI filter registers available is in MMIO Offset
0030h[SmiFRC]. Each SMI filter register contains a DevicelD and control bits; together, the set of
SMI filter registers can be programmed to define the set of devices from which system management
interrupts will be delivered.

2.1.5.1 SMI Filter Operation

While SMI filtering is enabled and supported by the IOMMU, each upstream SMI is checked to
match against the SMI filter registers that are valid and enabled and an upstream SMI from a Devi-
celD failing to match any SMI filter register will be blocked. The fields MMIO Offset 0018h[Smi-

Architecture 49

AMDAA
AMD /0O Virtualization Technology (IOMMU) Specification 48882—Rev 2.62—February 2015

FEn] and MMIO Offset 0018h[SmiFLogEn] control the behavior of the SMI filter. When
SmiFEn=1b, an upstream SMI interrupt request that matches any of the valid SMI filter registers is
delivered upstream without modification. When SmiFEn=1b and SmiFLogEn=0b, an upstream SMI
interrupt request that fails to match any of the valid SMI filter registers is discarded silently (i.e., not
forwarded upstream). When SmiFEn=1b and SmiFLogEn=1b, an upstream SMI interrupt request that
fails to match any of the valid SMI filter registers is logged in the IOMMU event log and the
upstream SMI request is discarded. The event log entry format used is the IO PAGE FAULT log buf-
fer entry (Section 2.5.3 [I0_ PAGE_FAULT Event]) with the Address[63:0] field set to the value
addressed by the SMI interrupt request (see Table 4). Software must examine the Address field of the
event log entry to determine if the logged interrupt request was an attempted SMI interrupt.

2.1.5.2 SMI Filter Address Format

For the purposes of the SMI filter, an SMI is defined as a posted write operation from a peripheral to
an address of the format shown in Figure 3, derived from the Hypertransport specification. The SMI
filter in the IOMMU does not process posted write operations generated by processors.

63 48 47 40 39 32
Reserved 00h FDh
31 24 23 16 15 8 7 6 5 4 2 1 0
o
F8h Vector Destination =|Z |2 | MT[2:0] | 00b
=

Figure 3: System Management Interrupt Address Format

Table 4: System Management Interrupt Address Fields

Bits |Value Description
47:40 |00h MBZ: must be zero.

39:24 |FDF8h |FDF8h: marks the interrupt region.

23:16 |(ignored) |Vector: vector (ignored by the SMI filter).

15:8 |(ignored) | Destination: destination (ignored by the SMI filter).

7 Ob MTI3]: Message Type[3].

6 0Ob DM: Destination Mode.

5 (ignored) | TM: Trigger Mode (ignored by the SMI filter).
4:2 010b MT][2:0]: Message Type [2:0].

1:0 00b MBZ: must be zero.

2.1.5.3 Recommended Programming of the SMI Filter

The SMI filter registers are designed to be programmed by any software component. However, the
system software currently available is not typically aware of SMI requests or the valid sources of SMI
requests, so it does not have the information necessary to program the SMI filter. In the typical system
hardware design, all SMI requests will be routed through a single source (typically a component

50 Architecture

AMDA
48882—Rev 2.62—February 2015 AMD /0 Virtualization Technology (IOMMU) Specification

called the baseboard management controller, or BMC) to be handled by firmware such as BIOS or
UEFI. As a result, the SMI filter should be programmed by the firmware to handle a single source of
SMI requests when the SMI filter is supported by the hardware (see MMIO Offset 0030h[SmiFSup]).

The recommended method to program the SMI filter is:

1. check that the SMI filter is supported (see MMIO Offset 0030h[SmiFSup]),

2. choose an SMI filter register to use from the available set (see MMIO Offset 0030h[SmiFRC]),
3. program the selected SMI filter register to the DevicelD of the BMC (see MMIO Offset 00[60-
D8]h[SmiDID]),

program the selected SMI filter register to be valid (see MMIO Offset 00[60-D8]h[SmiDV]),
program the selected SMI filter register to be locked (see MMIO Offset 00[60-D8Th[SmiFLock]),
program any remaining SMI filter registers to be not-valid and locked, and

program MMIO Offset 0018h[SmiFLogEn] to disable SMI logging.

N o n ke

If the system software that processes the IOMMU event log is aware of the SMI filter, MMIO Offset
0018h[SmiFLogEn] should instead be programmed to enable SMI logging.

The more general case of programming the SMI filter registers is discussed in the following section.

2.1.5.4 General Programming of the SMI Filter Registers

When the IOMMU is reset, software must program the registers to make the SMI filter active. The
optional SMI filter is implemented when MMIO Offset 0030h[SmiFSup] = 01b and enabled when
software programs MMIO Offset 0018h[SmiFEn] = 1b. The SMI filter registers work as a set and the
number of SMI filter registers implemented by an IOMMU is reported in MMIO Offset 0030h[Smi-
FRC] (see also Table 70). Each SMI filter register contains three fields: SmiDV, SmiDID, and Smi-
FLock (see IOMMU SMI Filter Register [MMIO Offset 00[60-D8]h]).

The values of SmiDID and SmiDV are read-only when SmiFLock = 1b and are read-write when Smi-
FLock = 0b. An SMI filter register containing SmiDV = 0b is inactive (never matches) and may be
activated by programming SmiDV = 1b when SmiFLock = Ob; the entire SMI filter register may be
programmed in one operation (i.e., software may set SmiDID, SmiDV = 1b and SmiFLock = 1b in the
same operation). Software may lock an SMI filter register to be inactive by programming SmiDV

= 0b and SmiFLock = 1b. Software may lock a value into an SMI filter register by programming Smi-
DID and SmiDV to the desired values and SmiFLock = 1b. Once locked, an SMI filter register can
only be changed after a system reset sets SmiFLock = Ob.

An entry describing the blocked SMI interrupt request is optionally recorded in the IOMMU event
log (see MMIO Offset 0018h[SmiFLogEn]). When logging is enabled, software can monitor the log
entries to detect if excessive SMI interrupts are being received from an unexpected source device
(DevicelD). When it detects excessive SMI interrupts, software can turn off the logging to reduce
processing overhead. After software throttles or stops the source of the unexpected SMI interrupts,
software can program MMIO Offset 0018h[SmiFLogEn] to resume the creation of event log notifica-
tions for SMI interrupts blocked by the SMI filter. The DTE and IRTE fields SA, SE, IG, and Supl-

Architecture ol

AMDAA
AMD /0O Virtualization Technology (IOMMU) Specification 48882—Rev 2.62—February 2015

OPF do not affect logging of events from the SMI filter (see Table 7 and Table 20).

To freeze a particular configuration of SMI filtering, program the SmiFLock=1b in each implemented
SMI filter register.

System software that is not aware of SMI requests or the valid sources of SMI requests does not have
the information necessary to program the SMI filter and the recommended programming procedure is
described in Section 2.1.5.3 [Recommended Programming of the SMI Filter].

In a more general system design, SMI requests may originate from multiple sources that are not lim-
ited to the baseboard management controller (BMC). The SMI filter can be programmed by the BIOS
or UEFI to allow multiple sources of SMI requests when the SMI filter is supported by the hardware
(see MMIO Offset 0030h[SmiFSup]). The procedure for this case is to:
1. check that the SMI filter is supported (see MMIO Offset 0030h[SmiFSup]),
2. for each expected source of SMI requests:
* choose an SMI filter register to use from the available set (see MMIO Offset
0030h[SmiFRC]),
» program the selected SMI filter register to the DevicelD of the peripheral (see MMIO Offset
00[60-D8Th[SmiDID]),
* program the selected SMI filter register to be valid (see MMIO Offset 00[60-D8]h[SmiDV]),
» program the selected SMI filter register to be locked (see MMIO Offset 00[60-
D8]h[SmiFLock]),
3. reserve one or more of the remaining SMI filter registers to be unprogrammed and unlocked for
use by the system software,
4. program remaining SMI filter registers not reserved for use by system software to be not-valid
and locked,
5. program MMIO Offset 0018h[SmiFLogEn] to enable SMI logging so that system software is
informed of SMI requests blocked by the SMI filter.

In this configuration, system software may program the unlocked SMI filter registers to allow SMI
requests from additional peripherals. Software should be aware that once an SMI filter register is
locked, it cannot be reprogrammed until the system is reset. System software and firmware will need
to coordinate use of SMI filter registers using a method that is outside the scope this document.

2.2 Data Structures

Host software must maintain up to eight in-memory data structures for use by the IOMMU. These

data structures are:

1. The Device Table is a table indexed by DevicelDs. Each Device Table entry contains mode bits, a
pointer to the I/O page tables, a pointer to an interrupt remapping control table, a set of control
bits, and a 16-bit DomainID. The DomainID acts as an address space identifier, allowing multiple
devices sharing the same I/O page tables to share the same translation cache resources on the
IOMMU. The page tables must be the same for all devices that share a DomainID.

2. The I/O page table(s): Each Device Table entry may specify a different I/O page table, or different
Device Table entries may share the same I/O page tables. Each time the IOMMU processes a

52 Architecture

AMDA
48882—Rev 2.62—February 2015 AMD /0 Virtualization Technology (IOMMU) Specification

device access to memory, it looks up the device virtual address (DVA) in its translation cache
and/or the appropriate I/O page tables to determine whether the device has permission, as well as
(if permitted) the system physical address to access.

3. The command buffer: The IOMMU accepts commands queued by the processor through a circu-
lar bufter located in system memory.

4. The event log: The IOMMU reports atypical events to the processor by means of another circular
buffer, the event log, located in system memory.

5. The interrupt remapping table(s): Each Device Table entry may specify an interrupt remapping
table. Each time the IOMMU processes a device interrupt request, it looks up the IRTE to remap
the interrupt to the destination with a translated vector.

6. The peripheral page request log: The IOMMU can accept requests from PRI-capable peripherals
to service page change requests. These requests are reported in a circular buffer, the PPR log,
located in system memory.

7. The guest virtual APIC tables: The IOMMU can update guest interrupt request status.

8. The guest virtual APIC log: The IOMMU can report guest virtual interrupts sent to a guest that is
not running.

Figure 4 illustrates the relationships among the IOMMU data structures. Figure elements with dashed
borders are optional.

Architecture 53

AMDA

AMD 1/0 Virtualization Technology (IOMMU) Specification 48882—Rev 2.62—February 2015
IOMMU
Guest Device SMI Filter Hardware Event Command Page Req
Virtual Table Base registers Error Counter Buffer base Log base
APIC Log register 9 registers registers register register
Event Log
base register
........ System memory
‘GCR3™
. fable
FVitualy, | e] et
WAPIC S _translation",.':
e X AT
’ | 4
<« |
RGIDRINAY b v v
L translation
v I (
R “"""'""“
IRT
Host
translation
I D8
> @) = 0 i
wn 3 = A (@] c
U ~+ -] D W
=< QD O 3 0
g 2T 8 < S5 s =
o =2 5 = 0 35 O o 0O
S2 53T o o I/O page tables T3 @32 @

Figure 4: IOMMU Data Structures

The base funtionality of the IOMMU supports one-level translation tables for address translation and
for interrupt remapping. The event log is the only data structures in system memory that is written by
the [IOMMU. The maximum size of a virtual address (GPA) is defined in Capability Offset
10h[VAsize] and the maximum size of a physical address (SPA) is defined in Capability Offset
10h[PAsize].

The IOMMU optionally supports both one-level and two-level translation tables (Table 5) as well as
guest APIC virtualization, hardware error registers, performance counter registers, peripheral page-

54 Architecture

AMDA
48882—Rev 2.62—February 2015 AMD /0 Virtualization Technology (IOMMU) Specification

request services, and an SMI filter. An IOMMU can write to the event log, the peripheral page request
log, the guest virtual APIC tables, the guest virtual APIC log, and the guest page tables. The maxi-
mum size of a guest virtual address (GVA) is defined in Capability Offset 10h[GVAsize].

2.2.1 Updating Shared Tables

The I/0 page table structures have been designed so they can be shared among processors and IOM-
MUs. The table structures (Interrupt Remapping Table, Device Table, and host I/O page tables) can
be shared among IOMMUs. The guest I/O page table structures are directly compatible with
AMD64 long mode page table formats and the IOMMU accesses and can optionally update the tables
so they can be shared with a processor. Shared tables have requirements for correct updates by system
software.

When updating a table entry, system software is encouraged to use aligned 64-bit accesses although
control bits are defined that allow system software updating a table to use byte accesses.

Each table can also have its contents cached by the IOMMU or peripheral IOTLBs. Therefore, after
updating a table entry that can be cached, system software must send the IOMMU an appropriate
invalidate command. Information in the peripheral IOTLBs must also be invalidated.

The IOMMU optionally supports hardware updates of Accessed and Dirty bits in guest page tables.
The IOMMU is allowed to cache these bits, so software must issue invalidation commands when it
clears the bits in memory.

2.2.2 Device Table

I/O devices that originate transactions are identified by a 16-bit DevicelD. The derivation of the Devi-
celD is fabric-dependent; for example, Figure 5 shows how PCle and PCI-X® RequesterIDs are
mapped into IOMMU DevicelDs and Figure 6 shows how HyperTransport™ UnitIDs are mapped
into [IOMMU DevicelDs.

Software note: the mapping of DevicelD from one bus to another is platform specific; consult the
platform documentation for details.

15 8 7 3 2 0

Bus Device Function

Figure 5: Example DevicelD Derived from Peripheral RequesterID

The number of bits allocated to the Bus, Device, and Function fields varies according to settings in
the PCI configuration. The partitioning shown is a typical example.

15 8 7 3 2 0

Bus Unit ID 0

Note: The HyperTransport bus number is located in the Slave/Pri-
mary Interface Block associated with the inbound link that the sup-
plied the data traffic.

Figure 6: DevicelD Derived from Peripheral UnitID

Architecture 95

AMDAA
AMD /0O Virtualization Technology (IOMMU) Specification

48882—Rev 2.62—February 2015

The Device Table is represented as an array of 256-bit entries with the DevicelD being used as an
index into the array. Since there are 65,536 (64K) possible DevicelDs, the Device Table can be up to
2 Mbytes in length. When Device Table segmentation is not supported or not enabled, space for the
Device Table must be contiguous, although it can be less than 64K entries in length if it is known that
1 or more of the most-significant bits of the DevicelD are not used in the system.

The Device Table Base Address Register [MMIO Offset 0000h], controls the system physical address
and size of the Device Table. The Device Table must be aligned on a 4-Kbyte boundary in system
memory and must be a multiple of 4 Kbytes in length.

The IOMMU reads the entire Device Table entry in either two 128-bit transactions (as defined by the
scope of the validity indicators) or a single 256-bit transaction.

When the IOMMU is enabled, any I/O device whose DevicelD is beyond the end of the Device Table
is denied I/O permission (the IOMMU target aborts the access) and all attempted accesses by such I/O
devices are logged when event logging is enabled. When PPR logging is supported, PRI requests are
not validated using the Device Table and so the IOMMU may create a PPR log entry for an I/O device
whose DevicelD is beyond the end of the Device Table when page requests are enabled (see MMIO
Offset 0018h[PPREn]), so software must validate the DevicelD as part of PPR processing.

If an I/O device uses PCI phantom functions, software must replicate Device Table entries such that
index calculations retrieve the correct entries for any phantom function used by the I/O device.

Device Table segmentation is an optional feature described in Section 2.2.2.3 [Device Table Segmen-
tation] on page 68.

2.2.2.1 Device Table Entry Format

Device table entry format is augmented when guest translations are supported. Device table entries
have an address translation portion, an interrupt remapping portion, and an interrupt virtualization
portion; control bits govern the use of each portion for a given DevicelD. The address translation por-
tion has guest and nested translation portions that can be manipulated separately; guest translation
cannot operate without nested translation.

The address translation features in Table 5 may be implemented separately from the interrupt remap-
ping and virtualization features in Table 6; when implemented, address and interrupt features may be
enabled and operated independently.

Table 5: Feature Enablement for Address Translation

GTSup |GTEn |Device Table Entry |Address Translation Features Available for Use
(MMIO |(MMIO |Address Translation
Offset |Offset |Settings
0030h) |0018h) [y, V. |GV
0 X X X X Host Translation supported; Guest Translation
not supported.
1 0 X X X Guest Translation supported, but not enabled.
56 Architecture

AMDA

48882—Rev 2.62—February 2015

AMD /0 Virtualization Technology (IOMMU) Specification

Table 5: Feature Enablement for Address Translation

GTSup |GTEn |Device Table Entry |Address Translation Features Available for Use

(MMIO |(MMIO |Address Translation

Offset |Offset |Settings

0030h) |0018h) [v/ V. |GV

1 1 0 X X Address for this DevicelD is passed untrans-
lated.

1 1 1 0 X Nested page table entry for this DevicelD is not
valid; Guest translation is not available for this
DevicelD

1 1 1 1 0 Guest Translation can not be performed for this
DevicelD because the guest page table entry is
not valid.

1 1 1 1 1 Guest Translation is available and active for this
DevicelD.

Table 6: Feature Enablement for Interrupt Remapping and Virtualization

GASup |GAEn v Guest- Interrupt Features Available for Use

(MMIO |(MMIO |(DTE) Mode

Offset Offset (IRTE)

0030h) |0018h)

0 X X X Interrupt remapping only available.

1 0 X X Interrupt virtualization is supported, but not
enabled.

1 1 0 0 Remapping is available, but not active for this
DevicelD. Virtualization is available, but not
active for the DevicelD.

1 1 1 0 Interrupt remapping is active for the Devi-
celD, but interrupt virtualization is not.

1 1 0 1 Interrupt virtualization is active for the Devi-
celD, but interrupt remapping is not.

1 1 1 1 Interrupt remapping and virtualization are
active for the DevicelD.

The Device Table entry (DTE) format is shown in Figure 7.

Architecture

S7

AMDAQ

AMD /0O Virtualization Technology (IOMMU) Specification

48882—Rev 2.62—February 2015

255 224
Reserved
223 192
Reserved
191190189 188 187 186 185 184 183 180179 160
= || IntCtl |8 % ‘:"é =] Reserved Interrupt Table Root Pointer [51:32]
=R 3] S |8
S5 2 |Z|=]5
159 134133132 129128
Interrupt Table Root Pointer [31:6] IG| IntTabLen |IV
127 107 106 105 104 103 102 101 100 99 98 97 96
(o]
GCR3 Table Root Pointer[51:31] Res|SysMgt|EX|SD § IoCtl |SA|SE| 1
O
95 80 79 64
GCR3 Table Root Pointer[30:15] DomainID[15:0]
63 62 61 60 58 57 56 55 54 52 51 32
Res| IW| IR GCR3 GLX |GV| Reserved Host Page Table Root Pointer [51:32]
TRP[14:12] & :
31 12 11 9 8 2 1 0
Host Page Table Root Pointer [31:12] Mode[2:0] Reserved TV|V

Figure 7: Device Table Entry (DTE) Fields

Fields in the Device Table entry are defined in Table 7. Where indicated in Table 7, events are
reported as described in Section 2.5.2 [ILLEGAL DEV _TABLE ENTRY Event]. Shaded areas

mark fields that are reserved.

Table 7: Device Table Entry (DTE) Field Definitions

Bits

Description.

255:192

Reserved. Reserved. Non-zero bits in this field are reported as an event when IV=I.

191

LintlPass: LINT1 (legacy PIC NMI) pass-through. This bit enables device initiated LINT1
interrupts to be forwarded by the IOMMU. 1=Device initiated LINT1 interrupts are for-
warded unmapped. O0=Device initiated LINT1 interrupts are target aborted by the IOMMU.

See Table 10.

190

LintOPass: LINTO (legacy PIC Extlnt) pass-through. This bit enables device initiated
LINTO interrupts to be forwarded by the IOMMU. 1=Device initiated LINTO interrupts are
forwarded unmapped. 0=Device initiated LINTO interrupts are target aborted by the

IOMMU. See Table 10.

58

Architecture

AMDA

48882—Rev 2.62—February 2015 AMD /0 Virtualization Technology (IOMMU) Specification

Table 7:

Device Table Entry (DTE) Field Definitions

189:188

IntCtl: Interrupt control. This field controls how fixed and arbitrated interrupt messages are
handled. Fixed and arbitrated interrupt messages use a HyperTransport™ special addresses
as shown in Table 3 and Table 19.

00b=Fixed and arbitrated interrupts target aborted

01b=Fixed and arbitrated interrupts are forwarded unmapped

10b=Fixed and arbitrated interrupts remapped

11b=Reserved

See Table 9.

If IntCtl=10b, a valid interrupt table root pointer must be present; if not(IntCtl=10b) the
interrupt table root pointer is ignored.

Note: IntCtl=11b is reported as an event when [V=1.

187

Reserved.
Note: Non-zero bits in this field are reported as an event when IV=1.

186

NMIPass: NMI pass-through. 1=pass through NMI interrupt messages unmapped. 0=NMI
interrupt message is target aborted by the [OMMU. See Table 10.

185

ElIntPass: ExtInt pass-through. 1=pass through ExtInt interrupt messages unmapped.
O0=External interrupt message is target aborted by the IOMMU. See Table 10.

184

InitPass: INIT pass-through. 1=pass through INIT interrupt messages unmapped. O=INIT
interrupt message handling target aborted by the IOMMU. See Table 10.

183-180

Reserved.
Note: Non-zero bits in this field are reported as an event when [V=1.

179:134

Interrupt table root pointer. The interrupt table root pointer is only used when interrupt
translation is enabled (IntCtl=10b). It contains the SPA of the base address of the interrupt
remapping table for the I/O device. The interrupt remapping table must be aligned to start on
a 128-byte boundary.

133

IG: ignore unmapped interrupts. 1=Suppress event logging for interrupt messages causing
10 PAGE FAULT events. O=creation of event log entries for IO PAGE FAULT events is
controlled by SupIOPF in the interrupt remapping table entry (see Section 2.2.5 [Interrupt
Remapping Tables]).

132:129

IntTabLen: interrupt table length. This field specifies the length of the interrupt remapping
table.

0000b = 1 entry0001b = 2 entries

0010b = 4 entries 0011b = 8 entries

1010b = 1024 entries 1011b = 2048 entries
11xxb = reserved
Note: IntTabLen=11xxb is reported as an event when [V=1.

128

IV: interrupt map valid. See Table 9 and Table 10.

Architecture 59

AMDAQ

AMD /0O Virtualization Technology (IOMMU) Specification 48882—Rev 2.62—February 2015

Table 7: Device Table Entry (DTE) Field Definitions

127:107

GCR3 Table Root Pointer[51:31]. When guest translations are supported, this field con-
tains the SPA of the guest CR3 table for the I/O device. The guest CR3 table root pointer
may be used by hardware when V=1 and TV=I and GV=1; it is ignored otherwise. See Sec-
tion 2.2.6 [I/O Page Tables for Guest Translations].

106

Reserved.

105:104

SysMgt: system management message enable. Specifies whether device-initiated untrans-
lated memory requests that target the system management address space in Table 3 are
blocked, forwarded, or translated by the IOMMU.

00b=Device initiated DMA transactions in the system management address range are return
target abort status by the IOMMU. Translation requests return target abort status.
01b=Device initiated system management messages, including INTx messages, are for-
warded untranslated by the IOMMU. Upstream reads or non-posted writes return target
abort status. Translation requests return target abort status.

10b=Device initiated INTx messages are forwarded by the IOMMU untranslated; device ini-
tiated system management messages other than INTx messages return target abort status.
Upstream reads and non-posted writes return target abort status. Translation requests return
target abort status.

11b=Device initiated DMA transactions in the system management address range are trans-
lated by the IOMMU.

103

EX: allow exclusion. I=Accesses from this device that address the IOMMU exclusion range
are excluded from translation and access checks. 0=Accesses from this device to the
IOMMU exclusion range are translated and checked for access rights. See IOMMU Exclu-
sion Base Register [MMIO Offset 0020h] and IOMMU Exclusion Range Limit Register
[MMIO Offset 0028h)].

102

SD: snoop disable. I=IOMMU page table walk transactions for this device are not snooped.
HyperTransport™ transactions by an IOMMU must not set the coherent bit in page table
walk requests for this device. 0=IOMMU page table walk transactions for this device are
snooped. HyperTransport™ transactions by an IOMMU must set the coherent bit in page
table walk requests for this device. See also the Coherent bit in the [IOMMU Control Regis-
ter [MMIO Offset 0018h].

101

Cache: IOTLB cache hint. 1=the IOMMU avoids caching GPA-to-SPA translation informa-
tion obtained for ATS requests. 0=the IOMMU caches GPA-to-SPA translation information
obtained for ATS requests when the peripheral is directed to issue untranslated addresses
(see Table 12). For ATS requests containing a GVA, the IOMMU optionally caches transla-
tion information and sets U=0 in an ATS response.

Software note: It is recommended that software set Cache=0 for peripherals with an
IOTLB.

1=Caching of translations for explicit translation requests is not recommended. See Section
2.2.7.3 [Recalculating Read and Write Access Permissions].

60

Architecture

AMDA

48882—Rev 2.62—February 2015 AMD /0 Virtualization Technology (IOMMU) Specification

Table 7:

Device Table Entry (DTE) Field Definitions

100:99

10Ctl: Port I/O control. Specifies whether device-initiated port I/O space transactions are
blocked, forwarded, or translated.

00b=Device-initiated port I/O is not allowed. The IOMMU target aborts the transaction if a
port I/O space transaction is received. Translation requests are target aborted.
01b=Device-initiated port I/O space transactions are allowed. The IOMMU must pass port
I/O accesses untranslated. Translation requests are target aborted.

10b=Transactions in the port I/O space address range are translated by the [OMMU page
tables as memory transactions.

11b=Reserved.

Note: IoCtl=00b and IoCtl=01b control the forwarding upstream of port I/O, if it is imple-
mented.

Note: IoCtl=11b is reported as an event when V=1.

98

SA: Suppress all I/O page fault events. 1=Suppress event logging for all IO PAGE FAULT
events caused by memory accesses from this I/O device. See also the SupIOPF control in the
IRTE (Table 20).

Note: SA does not affect events logged due to interrupts or IOMMU command processing.
Note: When V=0 the value of SA is ignored by the IOMMU.

Note: SmiFLogEn independently controls the creation of IO PAGE FAULT log entries
generated by the SMI filter (see Section 1.3.8 [SMI Filter]).

97

SE: suppress 1/O page fault events. Suppress event logging for [0 PAGE FAULT events if
an IO PAGE FAULT event has already been logged in the event log for this I/O device.
1=The IOMMU must only update the event log with an IO PAGE FAULT event for the
first page fault seen for the device as long as the DevicelD remains in the IOMMU cache.
The IOMMU clears all state associated with this bit when an

INVALIDATE DEVTAB ENTRY command is received for the device or when the Devi-
celD is replaced in the cache by a different DevicelD. See also the SupIOPF control in the
IRTE (Table 20).

Software note: The SE bit controls a mechanism that reduces the number of event log
entries on a per-device basis. The degree of filtering depends on the behavior of the Device
Table cache. As such, software should not assume that only a single entry per device is made
in the event log.

Note: SE does not affect events logged due to interrupts or IOMMU command processing.
Note: When V=0 the value of SE is ignored by the IOMMU.

Note: SmiFLogEn independently controls the creation of IO PAGE FAULT log entries
generated by the SMI filter (see Section 1.3.8 [SMI Filter]).

96

I: IOTLB enable. Controls IOMMU response to address translation requests from peripher-
als. 0=IOMMU returns target abort status when it receives an ATS requests from the periph-
eral. 1I=IOMMU responds to ATS requests from the peripheral.

This bit does not affect interrupts from the peripheral.

If I=1 when Capability Offset 00h[IotlbSup]=0, the results are undefined.

Architecture 61

AMDAQ

AMD /0O Virtualization Technology (IOMMU) Specification 48882—Rev 2.62—February 2015

Table 7: Device Table Entry (DTE) Field Definitions

95:80

GCR3 Table Root Pointer[30:15]. When guest translations are supported, this field con-
tains the SPA of the top (or only) level of the guest CR3 table for the peripheral. The guest
CR3 table root pointer may be used by hardware when V=1 and TV=1 and GV=1. See Sec-
tion 2.2.6 [I/O Page Tables for Guest Translations]. Must be zero when MMIO Offset
0030h[GTSup]=0.

79:64

DomainlD. The DomainID is a 16-bit integer chosen by software that the IOMMU must use
to tag its internal translation caches and to mark event log entries. I/O devices with different
page tables must be given different DomainIDs. I/O devices that share the same page tables
may be given the same DomainID. I/O devices that share the same DTE[DomainID] must
have the same settings in the DTE[Mode] and page table root pointer fields, however they
may have different values in the DTE[I] and DTE[SysMgt] fields. If devices with the same
DTE[DomainID] are given different non-zero values in the DTE[Mode] field or different
page table root pointer values, the behavior of the IOMMU is undefined. The value of the
DTE[DomainID] recorded in an event log entry is undefined when V=0 and IV=1.

63

Reserved.
Note: A non-zero value in this field is reported as an event when V=1.

62

IW: 1/0 write permission. Used in the calculation of effective write access with the permis-
sion bits in the page tables; if there are no page tables (DTE[Mode]=000b), then this bit
defines the I/O write permission. 1=I/O device is allowed to perform DMA write transac-
tions and 0-byte read transactions (see Section 2.1.4 [Special Conditions]); the I/O device is
allowed to perform DMA atomic operations when IR is also programmed to allow read
access. 0=Device initiated DMA write and atomic transactions are target aborted.

61

IR: I/0 read permission. Used in the calculation of effective read access with the permission
bits in the page tables; if there are no page tables (DTE[Mode]=000b), then this bit defines
the I/O read permission. 1=I/O device is allowed to perform DMA read transactions; the I/O
device is allowed to perform atomic transactions when IW is also programmed to allow
write operations. 0=Device initiated DMA read transactions are target aborted. When both
IW and IW are programmed to Ob, device-initiated 0-byte read transactions are target
aborted.

60:58

GCR3 TRP: guest CR3 table root pointer[14:12]. When guest translations are supported,
this field contains the SPA of the top (or only) level of the guest CR3 table for the I/O
device. The guest CR3 table root pointer may be used by hardware when V=1 and TV=1 and
GV=1. See Section 2.2.6 [I/O Page Tables for Guest Translations]. Must be zero when
MMIO Offset 0030h[GTSup]=0.

62

Architecture

AMDA

48882—Rev 2.62—February 2015 AMD /0 Virtualization Technology (IOMMU) Specification

Table 7: Device Table Entry (DTE) Field Definitions

57:56

GLX: guest levels translated. When guest translations are supported, this field specifies the
type of guest CR3 lookup performed by the IOMMU for the I/O device when the device
presents an address with a valid PASID. 00b=GCR3 table is single-level. 01b=GCR3 table is
two-level. 10b=GCR3 table is three-level. 11b=reserved. The GLX value is ignored when
GV=0. See Table 11 and Section 2.2.6.3 [Guest CR3 Table]. Must be zero when MMIO Oft-
set 0030h[GTSup]=0.

Implementation note: The number of levels in a guest CR3 table supported by hardware is
indicated by MMIO Offset 0030h[GLXSup].

Software note: For a peripheral using PASID values up to 9 bits, software may program
GLX=00b and build one-level GCR3 tables. For a peripheral using PASID values that use
more than 9 bits but fewer than 19 bits, software must program GLX=01b and build two-
level GCR3 base address tables. For a peripheral using PASID values that use 19 or 20 bits,
software must program GLX=10b and build three-level GCR3 base address tables.

55

GV: guest translation valid. When guest translations are supported, this field controls guest-
level translation. 0=IOMMU performs GPA-to-SPA translation only; GLX and the GCR3
table root pointer fields are ignored. 1=IOMMU performs GPA-to-SPA translation or GVA-
to-SPA when a valid PASID is provided; GLX and the GCR3 table root pointer values are
used for GVA-to-GPA translations. Software programs this bit when guest page translation
is available (see Table 5). This bit is meaningful when V=1 and TV=1 and MMIO Offset
0030h[GTSup]=1. Must be zero when MMIO Offset 0030h[GTSup]=0.

54:52

Reserved.
Note: a non-zero value in this field is reported as an event when V=1.

51:12

Page Table Root Pointer. The page table root pointer contains the system physical address
of the root page table for the I/O device for GPA-to-SPA translations. The pointer is only
used in modes where GPA-to-SPA translation is enabled.

11:9

Mode: paging mode. Specify how the IOMMU performs GPA-to-SPA translation on behalf
of the device. If GPA-to-SPA translation is enabled, this field specifies the depth of the host
page tables associated with the device (see page table root pointer).

000b Translation disabled (Access controlled by IR and IW bits)

001b : 1 Level Page Table (provides a 21-bit DVA space)

010b : 2 Level Page Table (provides a 30-bit DVA space)

011b : 3 Level Page Table (provides a 39-bit DVA space)

100b : 4 Level Page Table (provides a 48-bit DVA space)

101b : 5 Level Page Table (provides a 57-bit DVA space)

110b : 6 Level Page Table (provides a 64-bit DVA space)

111b : Reserved
Note: the page table root pointer for GPA-to-SPA translation is ignored when Mode=000b
and when Mode=111b.
Note: Mode=111b is reported as an event when V=1 and TV=I. See also MMIO Offset
0030h[HATS].

8:2

Reserved. Non-zero bits in this field are reported as an event when V=1.

Architecture 63

AMDAQ

AMD /0O Virtualization Technology (IOMMU) Specification

48882—Rev 2.62—February 2015

Table 7: Device Table Entry (DTE) Field Definitions

1 TV: translation information valid. 1=Page translation information is valid, specifically IW,
IR, the page table root pointer, Mode, and GV. 0=Page translation information is not valid.
TV is not meaningful when V=0. See Table 8.

0 V: valid. 1=Device table entry bits [127:1] are valid. 0=Device table entry bits [127:1] are

invalid and transactions not intercepted by the interrupt remapping portion of the IOMMU
are passed through.

Note: The interrupt remapping portion of the Device Table entry is controlled by the IV bit.
Software note: DomainID must be valid when V=1. See Table 8.

The interactions of the V, TV, IV, and IntCtl control bits are stated in Table 8 and Table 9. The inter-
actions of IV and the pass control bits are defined in Table 10. The event log entries for operations
causing a target abort are defined in Section 2.5 [Event Logging].

Table 8: V, TV, and GV Fields in Device Table Entry

v

TV

GV

Description

0

X

X

All addresses are forwarded without translation; individual control fields are
ignored.

The SysMgt, EX, SD, Cache, IoCtl, SA, SE, and I fields are valid. The value
of DomainlID is used for event log entries. If the request requires a table walk,
the table walk is terminated. The Mode and Host Page Table Root Pointer
fields are ignored. When guest translation is supported, the GV, GLX, GCR3
Table Root Pointer fields are ignored.

The SysMgt, EX, SD, Cache, IoCtl, SA, SE, and I fields are valid. The value
of DomainlID is used for event log entries. If the request requires a table walk,
the table walk is terminated. The Mode, Host Page Table Root Pointer, GV,
GLX, GCR3 Table Root Pointer fields are ignored. If GTsup = 0, this setting
results in ILLEGAL DEV_TABLE ENTRY event (see Section 2.5.2
[ILLEGAL DEV_TABLE ENTRY Event]).

All fields in bits [127:2] are valid and GPA-to-SPA translation is active (see
Section 2.2.6 [I/O Page Tables for Guest Translations]).

All fields in bits [127:2] are valid and GVA-to-SPA translation is active (see
Section 2.2.6 [I/O Page Tables for Guest Translations]). If GTSup = 0, this
setting results in ILLEGAL DEV_TABLE ENTRY event.

Table 9: IV and IntCtl Fields in Device Table Entry for Fixed and Arbitrated Interrupts

v IntCtl |Description

0 X All interrupts are forwarded without remapping.

1 00b |All fixed and arbitrated interrupts are target aborted.

1 01b |All fixed and arbitrated interrupts are forwarded without remapping.

64 Architecture

AMDA

48882—Rev 2.62—February 2015

AMD /0 Virtualization Technology (IOMMU) Specification

Table 9: IV and IntCtl Fields in Device Table Entry for Fixed and Arbitrated Interrupts

v IntCtl |Description
1 10b |All fixed and arbitrated interrupts are remapped.
1 11b |Behavior undefined.

Table 10: IV and Pass Fields in Device Table Entry for Selected Interrupts

v Pass Field Pass Field=0b Pass Field=1b
Name
0 X LINTO, LINT1, SMI, NMI, INIT, and ExtInt interrupts are passed through
unmapped.
1 X SMI interrupts are passed through unmapped. There is no pass field to control

SMI requests. See instead Section 1.3.8 [SMI Filter].

1 LintOPass

LINTO interrupts are target aborted.

LINTO interrupts are passed through
unmapped.

1 Lint1Pass LINT]1 interrupts are target aborted. |LINT1 interrupts are passed through
unmapped.
1 NMIPass NMI interrupts are target aborted. NMI interrupts are passed through

unmapped.

1 INITPass

INIT interrupts are target aborted.

INIT interrupts are passed through
unmapped.

1 ElIntPass

ExtInt interrupts are target aborted.

ExtInt interrupts are passed through
unmapped.

Table 11: GLX and maximum translatable PASID size

MMIO Offset |DTE[GV] MMIO Offset |[DTE[GLX] Maximum Levels in
0030h (see Table 8) [0030h GLXSup translatable GCR3 table
GTSup PASID size
(bits)
0 X X XXb none -
1 0 X XXb none -
1 1 00b 00b 9 1
1 1 00b 01b, 10b not defined -
1 1 01b 00b 9 1
1 1 01b 01b 18 2
1 1 01b 10b not defined -
1 1 10b 00b 9 1
1 1 10b 01b 18 2

Architecture

65

AMDAQ

AMD /0O Virtualization Technology (IOMMU) Specification

48882—Rev 2.62—February 2015

Table 11: GLX and maximum translatable PASID size

MMIO Offset |DTE[GV] MMIO Offset |[DTE[GLX] Maximum Levels in
0030h (see Table 8) |0030h GLXSup translatable GCR3 table
GTSup PASID size

(bits)
1 1 10b 10b 20 3
1 1 X 11b not defined -

Table 12: Cache bit and U bit for ATS requests

U Cache IOMMU Comments

(I/O PTE, (DTE, behavior

Table 17) Table 7) (advised)

0 0,1 IOMMU not |The peripheral issues pretranslated addresses (SPA) for
advised to read, write, and atomic operations; the IOMMU is not
cache results |likely to need translation information.
from ATS
request

1 0 IOMMU is |The peripheral issues untranslated addresses (GVA or
advised to GPA) for read, write, and atomic operations; the
cache results |IOMMU needs translation information to process the
from ATS memory transactions.
requests

1 1 IOMMU not |The peripheral issues untranslated addresses (GVA or
advised to GPA) for read, write, and atomic operations. Note that
cache results [the IOMMU is likely to walk page tables to obtain the
from ATS needed translation information.
requests

Implementation note: An ATS response for a GVA always returns U=0 (see Table 17) and software
must account for this when deciding if an invalidation operation is required.
Note: For more information on the U bit, see the PCI Address Translation Services 1.1 Specification.

Although Table 11 defines the maximum PASID size that can be translated using a GCR3 table,
MMIO Offset 0030h[|PASmax] defines the maximum PASID size that can be handled internally by
the IOMMU. Figure 19 and Figure 21 illustrate the structure of 1- and 2-level GCR3 tables, respec-
tively. Guest address translation control fields are in Table 24.

Table 12 defines the caching behavior of the IOMMU based on the per-device Cache bit in the DTE

and the per-page U bit in the PTE. In the PCI Address Translation Services 1.1 Specification, the U bit
defines whether the peripheral can issue translated or untranslated addresses to access a page for read,
write, or atomic operations. When PTE[U]=1, software can use the Cache bit in the DTE to provide a

caching hint to the IOMMU.

66

Architecture

AMDA
48882—Rev 2.62—February 2015 AMD /0 Virtualization Technology (IOMMU) Specification

2.2.2.2 Making Device Table Entry Changes

This section contains information for software that changes the IOMMU tables. Software should
issue invalidate commands after certain types of changes to tables and note that I/O device accesses
are neither queued nor throttled by the IOMMU. Software may change the interrupt remapping infor-
mation independently of the address translation information in a Device Table entry. These opera-
tional sequences are general and system conditions may allow optimizations.

Software may change the interrupt remapping information in a Device Table entry with a single 64-bit
write. The change must be followed by an INVALIDATE DEVTAB ENTRY command when either
the value of [IV=1Db or the value of V=1b before the change. If a 64-bit operation cannot be used, soft-
ware may change the interrupt remapping information in the Device Table entry in the following
manner, according to the value of IV before the change in the relevant Device Table entry.

» If IV=0Db before the change, changes can be made in any order as long as the last change is to set
to IV=1b; an INVALIDATE DEVTAB_ENTRY command is required when the V=1b before the
change.

» [fIV=1b before the change, the following steps may be followed to change interrupt remapping
information for fixed and arbitrated interrupts:

* Set IntCtl=00b in the Device Table entry to block interrupts; any device-initiated interrupts for
the domain are target aborted and, when enabled, logged to the event log.
» Update the interrupt table root pointer, IG, and IntTabLen.

» Invalidate the interrupt table if the interrupt table root pointer or IntTabLen was changed (see
Section 2.4.5 [INVALIDATE INTERRUPT TABLE]).

» Change IntCtl to cease blocking interrupts from the device (set IntCtl=01b or 10b).

» Invalidate the Device Table entry (see Section 2.4.2 [INVALIDATE DEVTAB ENTRY]).

» IfIV=1b before the change, the following steps change interrupt control information in the

Device Table entry for NMI, LINTO, LINT1, INIT, and EXTINT interrupts:

* Update LintlPass, LintOPass, IntCtl, NMIPass, EIntPass, and InitPass. The setting of IntCtl
can be changed at the same time.

» Invalidate the Device Table entry for the device (see Section 2.4.2
[INVALIDATE DEVTAB ENTRY])).

Software may change the address translation information in a Device Table entry with a single 128-bit
write operation followed by an INVALIDATE DEVTAB ENTRY command when either IV=1b or
V=1b before the change. If a 128-bit operation cannot be used, software may change the address
translation information in the following ways, according to the values of V and TV before the change.
» If V=0b before the change, address translation changes can be made in any order as long as the
last change is to set V=1b. An INVALIDATE DEVTAB ENTRY command is required if [V=1b
before the change.
» If V=1b before the change, software can use the following steps to set the [OMMU to pass
addresses untranslated with access controlled by IR and IW, depending on the value of TV.
» If TV=0Db before the change, set values for IW, IR, Mode=000b, and TV=1b (maintaining
V=1b), then issue an INVALIDATE DEVTAB ENTRY command. If not done as a 64-bit
write, the values of TV and V must be in the final change. Note that the DomainID and other

Architecture 67

AMDAA
AMD /0O Virtualization Technology (IOMMU) Specification 48882—Rev 2.62—February 2015

values in bits [127:96] are already valid because V=1b.
* If TV=1b before the change, software must change IW and IR concurrent with or before

changing Mode and the values of TV and V must be in the final change. Software then issues
an INVALIDATE DEVTAB ENTRY command.

The IOMMU optionally supports hardware updates of Accessed and Dirty bits in page tables. The
IOMMU is allowed to cache these bits, so software must issue invalidation commands when it clears
the A or D bit in memory.

2.2.2.3 Device Table Segmentation

Device Table segmentation is an optional feature that allows the Device Table to be divided into 2, 4,
or 8 smaller tables that can be independently located in the system physical address space. This capa-
bility to divide the table into smaller allocation blocks makes it easier to fit the table into system
memory and can make it possible to allocate less total memory space for the Device Table in situa-
tions where the DevicelD space is sparsely populated.

The two-bit field DevTblSegSup of the IOMMU Extended Feature Register [MMIO Offset 0030h]
indicates the number of segments supported by a given implementation. When the value of
DevTblSegSup = 00b, Device Table segmentation is not supported and the Device Table Base
Address Register [MMIO Offset 0000h] controls the location and size of the single, unified Device
Table.

When DevTblSegSup > 00b, Device Table Base Address Register [MMIO Offset 0000h] defines the
location and size of the first (n = 0) segment and additional Device Table Base Address registers are
supported. The architecture defines seven Device Table Segment n Base Address registers located at
MMIO Offsets 100—130h. See Device Table Segment n Base Address Register [MMIO Offset 01[00—
30]h] for details on the layout of these registers.

The number of segments enabled is controlled by the 3-bit DevTblSegEn field of the IOMMU Con-
trol Register [MMIO Offset 0018h]. Table 13 shows the registers used to define the location and size

of each Device Table segment based on the number of segments enabled using the DevTblSegEn
field.

Table 13: Registers Utilized to Allocate Device Table Segments

Number of Segment
DevTblSegEn |Active Nugmber Device Table Base Address Registers Utilized (MMIO Offset)
Segments
000b 1 0 Device Table Base Address Register (0000h)
001b 5 Device Table Base Address Register (0000h)
Device Table Segment 1 Base Address Register (0100h)

68 Architecture

AMDA
48882—Rev 2.62—February 2015 AMD /0 Virtualization Technology (IOMMU) Specification

Table 13: Registers Utilized to Allocate Device Table Segments

Number of Segment . . -
DevTblSegEn |Active Number Device Table Base Address Registers Utilized (MMIO Offset)
Segments
0 Device Table Base Address Register (0000h)
010b 4 1 Device Table Segment 1 Base Address Register (0100h)
2 Device Table Segment 2 Base Address Register (0108h)
3 Device Table Segment 3 Base Address Register (0110h)
0 Device Table Base Address Register (0000h)
1 Device Table Segment 1 Base Address Register (0100h)
2 Device Table Segment 2 Base Address Register (0108h)
ollb o 3 Device Table Segment 3 Base Address Register (0110h)
4 Device Table Segment 4 Base Address Register (0118h)
5 Device Table Segment 5 Base Address Register (0120h)
6 Device Table Segment 6 Base Address Register (0128h)
7 Device Table Segment 7 Base Address Register (0130h)
100b—111b |Reserved. |— —

The most-significant 1, 2, or 3 bits of the DevicelD selects the table segment to be used for a DTE
lookup when the table is divided respectively into 2, 4, or 8 segments. When two segments are
enabled, the most significant bit of the DevicelD (DevicelD[15]) selects the table segment and bits
[14:0] provide the index into the table segment to find the correct DTE for the device. When four seg-
ments are enabled, DevicelD[15:14] selects the table segment and bits [13:0] provide the index into
the table segment to find the DTE for the device. When eight segments are enabled, DevicelD[15:13]
selects the table segment and bits [12:0] provide the index into the segment.

To provide full coverage of the DevicelD space, when two segments are enabled, each table segment
must be 1 Mbytes in length; when four segments are enabled, each table segment must be 512 Kbytes;
when eight segments are enabled, each table segment must be 256 Kbytes. If the DevicelD space is
sparsely filled, segments can be sized smaller in increments of 4 Kbytes. However, it should be noted
that the first entry in each table segment m will always correspond to DevicelD = m(65536 / n); where
n = number of table segments.

DevTblSegEn should not be programmed to a value greater than the value DevTblSegSup.

2.2.3 1/0 Page Tables for Host Translations

The IOMMU uses a page table structure designed to support a full 64-bit DVA space while allowing
faster translation in many common cases. The format of the IOMMU page tables is a generalization
of AMD64 Architecture long mode page tables while maintaining compatibility with them. The
IOMMU page tables are a multi-level tree of 4-Kbyte tables indexed by groups of 9 virtual address
bits (determined by the level within the tree) to obtain 8-byte entries. Each page table entry is either a

Architecture 69

AMDAA
AMD /0O Virtualization Technology (IOMMU) Specification 48882—Rev 2.62—February 2015

page directory entry pointing to a lower-level 4-Kbyte page table, or a page translation entry specify-
ing a system physical page address. A page translation entry is a page table entry with the Next Level
field set to Oh or 7h. A page directory entry is a page table entry with the Next Level field not equal to
Oh or 7h. The maximum value of Next Level in a page directory entry is defined in MMIO Offset
0030h[HATS]; exceeding this limit causes an [0 PAGE FAULT.

The first generalization in the IOMMU page tables compared to AMD64 processor page tables is that
directory entries, in addition to specifying the address of the lower page table, also specify the level,
or grouping of bits within the virtual address, that is used for the next page table lookup step. This
allows the IOMMU to skip page translation steps in cases where the virtual address often contains
long strings of 0 bits, such as software architectures that allocate virtual memory sparsely.

The second generalization in the IOMMU page tables is that page translation entries can specify the
page size of the translation. The default page size of a translation can be overridden by setting the
Next Level bits to 7h. When the Next Level bits are 7h, the size of the page is determined by the first
zero bit in the page address, starting from bit 12 (illustrated in Table 14). The page size specified by
this method must be larger than the default page size and smaller than the default page size for the
next higher level.

The page addresses illustrated in Table 14 are 64-bit values that have been zero-extended from the
52-bit values specified in the DTE and page tables.

Table 14: Example Page Size Encodings

Level |Address Bits Page |Default
63:52%%, 332222222222t [t [t]t]t]t]1]1|Size |Page
51:32% 110[9|8(7]6|5/4|13(2(110(9(8(71]6|514]3 |2 Size

1 Page Address 0 [8KB |4 Kbytes

1 Page Address 0 |1 |16 KB |4 Kbytes

1 Page Address O (1 (1 (11 1]|1 |l |IMB |4Kbytes

2 Page Address O (1|1 {1 (1|l |1 |1l {1 |4MB |2Mbytes

3 Page O (1 {1 |1 (1 |1 |1 {1 {1 {1 |1 |1 {1 {1 1|1]|l (1|1 |1 |4GB |1 Gbytes
Address

6 7 FFFFh |1 (1 |1 |1 (1 |1 (1 |1 |1 {1 |1 |1 {1 {1 {1 {1 |1l {1 {1 |1 |Entire [NA

cache

6 F FFFFh |1 (1 {1 |1 |1 |1 {1 |1 (1 {1 |1 {1 |1 |1 {1 |1 |1 |1 |1l |1 {Undef |Undef

* Address bits 51:32 can be used to encode page sizes greater that 4 Gbytes.

** Address bits 63:52 are zero-extended.

Software note: The page tables are required to have one PTE for each default page size (see

Table 15). When the Next Level bits are equal to 7h, some of the least significant bits of the virtual
address indexing the PTE are used for indexing the enlarged physical page, therefore those bits are
not unique for indexing the PTE and the PTE must be repeated accordingly. For example, if the phys-
ical page is 32 Kbytes, the 3 least significant bits of the Page Table Level 1 virtual address cannot be
used only for indexing within the page table and therefore the PTE must be repeated 8 times for each

70 Architecture

AMDA
48882—Rev 2.62—February 2015 AMD /0 Virtualization Technology (IOMMU) Specification

of the 64 unique PTEs given 4-Kbyte page tables. Another example for 4-Mbyte pages is illustrated in
Figure 12. The PTE in the Level-2 page table is replicated twice and bit 21 of the virtual address is
used twice for indexing, first to index the Level-2 table of PTEs and again to index into the 4-Mbyte
page for the data. The replicated Level-2 PTEs have identical contents and follow the example in
Table 14 for a page size of 4 Mbytes. For larger page sizes, the PTEs must be replicated an appropri-
ate number of times so that more bits of the virtual address can be used for indexing.

Implementation note: While IOMMU implementations are not strictly required to include transla-
tion caches, it is strongly recommended that they include at least a cache for translations of 4-Kbyte
page table entries. IOMMU implementations can cache translations of larger pages by splitting them
into multiple 4-Kbyte cache entries.

The page table pointer for each domain specifies the system physical address and level of the root
page table for that domain. Translation of a DVA begins by comparing it to the root page table’s level.
If the address contains any nonzero bits in bit positions higher than the range selected by the root page
table’s level, translation terminates with an IO PAGE_FAULT. Otherwise, the appropriate group of
virtual address bits is used to fetch a page table entry from the root page table. If this entry is marked
not present, translation terminates with an IO PAGE FAULT. Otherwise the entry may be a page
directory entry pointing to a lower-level page table (in which case the translation process repeats
starting at the new page table using the remaining virtual address bits), or it may be a page translation
entry containing the final system physical address (in which case the translation process terminates
and the remaining DVA bits are concatenated with the translation entry’s physical address to obtain a
translated address). If a translation skips levels and any of the skipped virtual address bits are non-
zero, translation terminates with an [0 PAGE FAULT.

Effective write permission is calculated using the IW bits in the DTE (see Table 7), the I/O PDEs, and
the I/O PTE. Device accesses to translated addresses are first checked against these cumulative per-
missions before being allowed to proceed. IW and IR bits from skipped levels are treated as if they
were 1s. For a discussion of guest and host permissions, see Section 2.2.7 [Guest and Nested Address
Translation].

Table 15 specifies the virtual address bit groups used for indexing at each level of the page tables, as
well as the default page sizes associated with page translation entries fetched from page tables at each
level. Figure 8 and Figure 9 illustrate the formats of page table entries. If a page table entry contains
nonzero bits in any of the fields marked reserved, if the Next Level field is greater than or equal to the
current page table entry table’s level, or if a page translation entry’s physical address is not aligned to
a multiple of the appropriate page size for the current page table entry page table’s level, translation

terminates with an IO PAGE FAULT.

The layout of IOMMU page table entries has been chosen so that the [IOMMU can use AMD64 long
mode processor page tables, provided the Next Level fields (which occupy bit positions ignored by
AMD64 processors) are properly initialized according to their level within the processor page tables.
(AMD64 processors lack the IOMMU’s level skipping facility.) All other page table entry fields used
by the IOMMU are either ignored by AMD64 processors, or have the same meaning to both the pro-
cessor and the IOMMU. For more details on sharing page tables see Section 2.2.4 [Sharing AMD64
Processor and IOMMU Page Tables—GPA-to-SPA].

Architecture 71

AMDAA
AMD /0O Virtualization Technology (IOMMU) Specification 48882—Rev 2.62—February 2015

The U bit in the page tables is an attribute bit passed to peripherals in ATS responses. See Table 12
for the behavior of the IOMMU for settings of the DTE[Cache] and PTE[U] fields.

IOMMU implementations must zero-fill all high-order physical address (SPA).The IOMMU fields
are architected to produce a physical address of up to 52 bits, thus physical address bits [63:53] are
always zero.

Table 15: Page Table Level Parameters

Page Table Virtual address bits indexing |Default Page size (bytes) for

Level table translation entries

6 63:57 NA

5 56:48 24

4 47:39 2%

3 38:30 230

2 29:21 22!

1 20:12 4096

63 32

Ignored

31 1 0

Tgnored i
&

Figure 8: I/0O Page Table Entry Not Present (any level)

Table 16: I/0O Page Table Entry Not Present Fields, PR=0

Bits Description
63:1 |Ignored when PR=0.

0 PR: Present. O=the remainder of the I/O page table entry is ignored and the corresponding
memory page is considered not-present (see Section 2.5.3 [[O PAGE FAULT Event]).
When PR=1, see Table 17 and Table 18.

63 62 61 60 59 58 52 51 32
Ign|IW|IR |FC| U Reserved Page Address[51:32]

31 12 11 9 8 1 0

Next Level —_

Page Address[31:12] [2:0]=000b Ignored a”a

or 111b A

Figure 9: I/O Page Translation Entry (PTE), PR=1

72 Architecture

AMDA

48882—Rev 2.62—February 2015 AMD /0 Virtualization Technology (IOMMU) Specification

Table 17: I/O Page Translation Entry (PTE) Fields, PR=1

Bits

Description

63

Ignored.

62

IW: write permission. 1=write operations are allowed. O=write operations are not allowed
(see Section 2.5.3 [IO_ PAGE FAULT Event]). Effective write permission is calculated
using the IW bits in the DTE (see Table 7), the I/O PDEs, and the I/O PTE. At each step of
the translation process, I/0O write permission (IW) bits from fetched page table entries are
logically ANDed into cumulative I/O write permissions for the translation including the IW
bit in the DTE. IW bits from skipped levels are treated as if they were 1s. For a discussion of
guest and host permissions, see Section 2.2.7 [Guest and Nested Address Translation].

61

IR: read permission. 1=read operations are allowed. O=read operations are not allowed (see
Section 2.5.3 [I0_ PAGE FAULT Event]). Effective read permission is calculated using the
IR bits in the DTE (see Table 7), the I/O PDEs, and the I/O PTE. At each step of the transla-
tion process, I/O read permission (IR) bits from fetched page table entries are logically
ANDed into cumulative I/O read permissions for the translation including the IR bit in the
DTE. IR bits from skipped levels are treated as if they were 1s. For a discussion of guest and
host permissions, see Section 2.2.7 [Guest and Nested Address Translation].

60

FC: Force Coherent. The FC bit in the page translation entry is used to specify if DMA
transactions that target the page must clear the PCI-defined No Snoop bit. The state of FC is
returned to a peripheral in an ATS response. 1=for an untranslated access, the IOMMU sets
the coherent bit in the upstream HyperTransport™ request packet. 0=for an untranslated
access, the IOMMU passes upstream the coherent attribute from the originating request.

59

U. The U bit in the I/O page table entry is an attribute bit passed to a peripheral in an ATS
response for a GPA-to-SPA translation. For a GVA-to-SPA translation, hardware must set
U=0 in the ATS response. For details, see Table 12 and the PCI ATS Specification Version
1.1 or newer.

58:52

Reserved.

51:12

Page Address[51:12]: Specifies the SPA of the page.

11:9

NextLevel: next page translation level. Specifies the level of page translation as described

in this section. The value of NextLevel cannot exceed the value of the Mode field in the
DTE (Table 7).

Ignored.

PR: Present. 1=the remainder of the I/O PTE contains valid information. O=see Table 16.

Architecture 73

AMDAQ

AMD /0O Virtualization Technology (IOMMU) Specification 48882—Rev 2.62—February 2015
63 62 61 60 52 51 32
Ign|IW|IR Reserved Next Table Address [51:32]/Page Address[51:32]
31 12 11 9 8 1 0
Next Level —
Next Table Address [31:12]/Page Address[31:12] [2:0]!'=000b Ignored a”a
or 111b A

Figure 10: 1/0O Page Directory Entry (PDE), PR=1

Table 18: I/O Page Directory Entry (PDE) Fields, PR=1

Bits Description

63 Ignored.

62 IW: write permission. 1=write operations are allowed. O=write operations are not allowed
(see Section 2.5.3 [IO_ PAGE FAULT Event]). Effective write permission is calculated
using the IW bits in the DTE (see Table 7), the /O PDEs, and the I/O PTE. Effective write
permission is calculated using the IW bits in the DTE (see Table 7), the I/O PDEs, and the
I/O PTE. At each step of the translation process, I/O write permission (IW) bits from fetched
page table entries are logically ANDed into cumulative I/O write permissions for the transla-
tion including the IW bit in the DTE. IW bits from skipped levels are treated as if they were
Is. For a discussion of guest and host permissions, see Section 2.2.7 [Guest and Nested
Address Translation].

61 IR: read permission. 1=read operations are allowed. O=read operations are not allowed (see
Section 2.5.3 [I0O_ PAGE_FAULT Event]). Effective read permission is calculated using the
IR bits in the DTE (see Table 7), the I/O PDEs, and the I/O PTE. At each step of the transla-
tion process, I/0O read permission (IR) bits from fetched page table entries are logically
ANDed into cumulative I/O read permissions for the translation including the IR bit in the
DTE. IR bits from skipped levels are treated as if they were 1s. For a discussion of guest and
host permissions, see Section 2.2.7 [Guest and Nested Address Translation].

60:52 |Reserved.

51:12 |Next Table Address[51:12]/Page Address[51:12]: Specifies the SPA of the next page
descriptor entry when NextLevel != 000b or 111b; specifies the SPA of the page when Next-
Level = 000b or 111b. See discussion in this section.

11:9 |NextLevel: next page translation level. Specifies the level of page translation as described
in this section. The value of NextLevel cannot exceed the value of the Mode field in the
DTE (Table 7).

8:1 Ignored.

PR: Present. 1=the remainder of the I/O PTE contains valid information. O=see Table 16.

74 Architecture

AMDA

48882—Rev 2.62—February 2015

AMD /0 Virtualization Technology (IOMMU) Specification

Input Address (GPA)
63 57 56 48 47 3938 30 29 2120 0
Level-4 Page Level-2 Page Physical-
000_00006 - 0_0000_00006 Table Offset 0_0000_0000b Table Offset Page Offset
A9 Y9 Y21
2-Mbyte
Level-4 Level-2 Physical
Page Table Page Table Page
52 52
—»| PDE |2l | _~ —»| PTE |Oh [z | Data
"1 Byte
——— > >
52
// 51 1211 9
4‘ Level 4 Page Table Address’ 4h ‘ Device Table Entry

Figure 11: Address Translation Example with Skipped Level and 2-Mbyte page

The input address in Figure 11 is a GPA that is supplied by the peripheral or translated from a GVA.

Using the nested page tables, the IOMMU translates the input GPA to an SPA within a 2-Mbyte phys-
ical page. The input address is mapped into page table offsets for the levels of address translation. The
level-4 page table offset is used to index into the level-4 page table. The level-3 table offset is zero, so
the contents of the level-4 page table entry points directly to a level-2 page table. The level-2 page
table contains an entry with the next level=0, so that entry points directly to a 2-Mbyte page and the
physical page offset is the 21 low-order bits of the input address.

Architecture

75

AMDAQ

AMD /0O Virtualization Technology (IOMMU) Specification 48882—Rev 2.62—February 2015
Input Address (GPA)
63 57 56 4847 3938 30 29 2120 0
Level-4 Page Level-3 Page Level-2 Page
000_0000b-0_0000_0000b Table Offset Table Offset Table Offset
A9 A9 /1 A 21
4-Mbyte
Level-4 Level-3 Level-2 L Physical
Page Table Page Table Page Table Page
22
PTE |7h
52 52 52
—» PDE (3h —| PDE |2h —»| PTE |7h| |~ _ | Data
Byte
52
pd 51 1211 9
4‘ Level 4 Page Table Address ‘ 4h ‘ Device Table Entry

Figure 12: Address Translation Example with Page Size Larger than Default Size
The top address in Figure 12 is a GPA that is supplied by the peripheral or translated from a GVA.

Using the nested page tables, the IOMMU translates the input GPA to an SPA within a 4-Mbyte phys-
ical page. The translations for level-4 and level-3 are conventional and the next level fields are used to
indicate contiguous levels of translation with no level skipping. The level-2 table contains paired
entries with the next level fields set to 7h; as a result, bit 21 of the input GPA can be treated as an
additional offset bit within a larger physical page 4 Mbytes in size. The adjacent PTE values in the
level-2 page table must be adjacent 2-Mbyte page base addresses and the lower base address value
must be set so that the page is 4-Mbyte aligned.

2.2.4 Sharing AMD64 Processor and IOMMU Page Tables—GPA-to-SPA

This section outlines the topics to be considered so that the host or GPA-to-SPA page tables may be
shared with an IOMMU. A more complete discussion depends on many implementation factors.

AMD64 processors and the IOMMU treat upper virtual address bits [63:48] differently. The proces-
sor requires canonical addresses (in which address bits [63:48] are equal to bit 47). By contrast, the
IOMMU is designed to support the full PCI 64-bit address space. If 6-level page tables are used, the
IOMMU can map any 64-bit address. If fewer than 6 levels are used, the IOMMU requires upper vir-
tual address bits (beyond the range mapped by the page tables) to be 0. This ensures that software can
always add levels to page tables without changing the address space as seen by devices.

76 Architecture

AMDA
48882—Rev 2.62—February 2015 AMD /0 Virtualization Technology (IOMMU) Specification

In AMDG64 long mode level 4 page tables, the bottom 256 entries of the root page table correspond to
positive virtual addresses with bits [63:47] all Os and the top 256 entries correspond to negative vir-
tual addresses with bits [63:47] all 1s.

For the IOMMU to directly share processor page tables, at a minimum the Next Level fields in all
page table entries must be initialized with correct values for the IOMMU.

Once the Next Level fields are initialized, the IOMMU may directly share exactly the same page
tables. In

3-level 32-bit PAE mode this is all that's needed. However, in 4-level long mode software should be
aware that processor virtual addresses in the range FFFF_8000 0000 0000h to

FFFF_FFFF FFFF FFFFh correspond to I/O virtual addresses in the range 00008000 0000 0000h
to 0000 FFFF_FFFF FFFFh.

If software requires 64-bit processor virtual addresses to be identical to I/O virtual addresses, includ-
ing negative addresses, software needs to configure the IOMMU with the 6-level paging structure
illustrated in Figure 13, where 4 extra 4-Kbyte page tables (shaded) at levels 6, 5, and 4 are used
solely by the IOMMU, and sharing with processor page tables occurs only at levels 3 and below.

Host Page Table Root

Pointer IOMMU device table entry
CPU register CR3 /
6" level page table

(used only by IOMMU;
only table entries 0 and

127 are valid) \

0f..0.10

5" level page table (used . \Q\‘?'Q 0
only by IOMMU) G2 N
4™ Jevel page \
tables
(CPU and 0. 0.
IOMMU are
separate) \ /
3" level page
tables (shared
by CPU and
IOMMU)
Shared page tables for “non-negative” Shared page tables for “negative”
virtual addresses virtual addresses

Figure 13: Sharing AMD64 and IOMMU Host Page Tables with Identical Addressing

2.2.5 Interrupt Remapping Tables

Interrupt messages use a HyperTransport™ interrupt special address range shown in Table 3. All
fixed and arbitrated interrupt requests are mapped into the HyperTransport™ address space where

Architecture I

AMDAA
AMD /0O Virtualization Technology (IOMMU) Specification 48882—Rev 2.62—February 2015

they can be remapped by the IOMMU. Other interrupts are handled specially. Startup interrupts can-
not originate from I/O devices thus the IOMMU cannot remap them. LINTO, LINT1, NMI, INIT, and
External (Extlnt) interrupts are controlled individually using the Device Table entry control fields
(see Table 10 and Table 19). The binary encodings listed in Table 19 are from the HyperTransport™
architecture specification for the MT field.

When interrupt remapping and interrupt virtualization are active (Section 2.2.8 [Guest Virtual APIC
Table for Interrupt Virtualization]), interrupts are remapped using the remapping tables and then
posted for delivery to a guest VM. When the SMI filter is active (see Section 1.3.8 [SMI Filter]),
upstream SMI requests are controlled through the SMI filter.

Table 19: IOMMU Controls and Actions for Upstream Interrupts

Interrupt type Destination Mode |Controlled by

(with MT encoding) (DM)

0000b Fixed Ob DTE and IRTE (Table 7 and

0001b Arbitrated Table 20)

0010b SMI MMIO Offset 0018h[SmiFLogEn]

0011b NMI DTE[NMIPass] (Table 7)

0100b INIT DTE[InitPass] (Table 7)

0110b ExtInt DTE[EIntPass] (Table 7)

1011b Lintl DTE[Lint1Pass] (Table 7)

1110b Lint0 DTE[LintOPass] (Table 7)

0101b, Startup, Target abort

0111b, EOI,

1000b,

1001b,

1010b,

1100b,

1101b,

1111b EOI

0000b-1111b 1b DTE and IRTE (Table 7 and
Table 20)

The IOMMU remaps HyperTransport™ addresses for fixed and arbitrated interrupts as shown in the
concatenation in Figure 14 on page 79. The offset created by this concatenation corresponds directly
to data bits 10:0 in the originating MSI interrupt message. After reading the interrupt remapping table
entry, the [OMMU creates a new interrupt message address by OR’ing IRTE[23:2] with bits [63:2] of
HyperTransport™ interrupt address range base (FD_F800 0000h). Interrupt table walks are always
coherent.

2.2.5.1 Interrupt Remapping Tables, Guest Virtual APIC Not Enabled
The IOMMU remaps fixed and arbitrated interrupts as shown in Figure 14. The IOMMU uses the

78 Architecture

AMDA

48882—Rev 2.62—February 2015

information from the interrupt remapping table entry shown in Figure 15 and Table 20.

AMD /0 Virtualization Technology (IOMMU) Specification

63

Interrupt table

MSI Data
15 1o 8 7 0 HyperTransport™
MSI Data MSI Data 24 Address
XXXXXb Bits[10:8] Bits[7:0] 2
£€
28
= £
T M
16
15
7
6 > DM
5 >
4
< —
g
B
» = ?
==
)
12 10 2 1 0
2 4 4
1 2 MSI Data MSI Data 00b
0 S Bits[10:8] Bits[7:0]
Interrupt
Remapping
Table
/
/ 13
IRTE
Device Table Entry
179 134

Interrupt Remapping Table Address

offset

FD_F800_0000h

Interrupt
message

Figure 14: Interrupt Remapping Table Lookup for Fixed and Arbitrated Interrupts

To handle fixed and arbitrated interrupts with interrupt remapping, software programs the IRTE as
shown in Figure 15 and Table 20.

31

24 23

16

15

(9}

Reserved

Vector

Destination

DM|

GuestMode| <

RqEoi

IntType

SupIOPF | —
RemapEn | ©

Figure 15: Interrupt Remapping Table Entry - Basic Format

Table 20: Interrupt Remapping Table Fields - Basic Format

Bits Description

31:24 |Reserved.

23:16 |Vector. Specifies the interrupt vector for the interrupt.

15:8 |Destination. Specifies the APIC logical or physical address to send the interrupt to.

Architecture

79

AMDAA
AMD /0O Virtualization Technology (IOMMU) Specification 48882—Rev 2.62—February 2015

Table 20: Interrupt Remapping Table Fields - Basic Format

7 GuestMode. Must be zero for IRTE in the format defined by Figure 15 and this table. See
also Figure 18 and Table 23

DM: destination mode. 1=Logical destination mode. 0=Physical destination mode.

5 RqEoi: request EOI. 1=EOI cycle required.
Software note: If RqEoi=1, software is responsible for performing the reverse mapping of
the vector number.

4:2 IntType: interrupt type. This field specifies the type of interrupt message to deliver to the
Local APIC. 000b = Fixed. 001b = Arbitrated. 010b — 111b = Reserved.
1 SuplOPF: suppress IO PAGE FAULT events. 1=Supress logging when use of this remap-

ping entry causes an IO PAGE FAULT. 0=Log event when this entry causes an
I0_PAGE_FAULT. See the IG control bit in the Device Table entry (Section 2.2.2.1 [Device
Table Entry Format]).

Note: SmiFLogEn independently controls the creation of IO PAGE FAULT log entries
generated by the SMI filter (see Section 1.3.8 [SMI Filter]).

0 RemapEn. 1=Interrupt is remapped. O=Interrupt is target aborted.
Note: SuplOPF is meaningful independent of the value of RemapEn.

2.2.5.2 Interrupt Virtualization Tables with Guest Virtual APIC Enabled

Legacy interrupts are processed using the SMI filter (see Section 2.1.5 [System Management Inter-
rupt (SMI) Controls]) and control fields in the DTE (see Section 2.2.2.1 [Device Table Entry For-
mat]).

In the base functionality, interrupt virtualization using the guest virtual APIC is not supported; for
interrupt remapping of fixed and arbitrated interrupts, see Section 2.2.5.1 [Interrupt Remapping
Tables, Guest Virtual APIC Not Enabled]. The IRTE format defined in Table 20 and Figure 15 is sup-
ported. The IRTE formats defined by Table 22, Table 23, Figure 17 and Figure 18 are not supported.

Optional features provide support for the virtualization of device interrupts using the guest virtual
APIC (see MMIO Offset 0030h|GASup] and MMIO Offset 0030h[GAMSup]). Virtual interrupts are
enabled when programmed by MMIO Offset 0018h[GAEn] and MMIO Offset 0018h[GAMEn], see
Table 21. When virtual interrupts are enabled, the IOMMU uses IRTE entries listed in Table 21 for
fixed and arbitrated interrupts. The IRTE formats defined by Table 20, Table 22, Table 23, Figure 15,
Figure 17 and Figure 18 are supported and selected as shown in Table 21. When IRTE[Guest-
Mode]=0, the IOMMU uses Table 22 and Figure 17 for interrupt remapping. When IRTE[Guest-
Mode]=1, the IOMMU uses Table 23 and Figure 18 for interrupt virtualization using the guest virtual
APIC. Software must program all IOMMUSs in a system to use the same size of IRTE (in Table 21, all
IOMMUSs must be programmed with the same values of MMIO Offset 0018h[GAEn] and MMIO
Offset 0018h[GAMEn]).

80 Architecture

AMDA

48882—Rev 2.62—February 2015

AMD /0 Virtualization Technology (IOMMU) Specification

Table 21: Interrupt Virtualization Controls for Upstream Interrupts

MMIO Offset 0030h MMIO Offset 0018h IRTE Size [[OMMU Interrupt Transformation
GASup |GAMSup |GAEn GAMEn |(bits)
0 XXXb Xb XXXb 32 Interrupt remapping
1 XXXb 0 XXXb (see Table 20 and Figure 15).
1 000b 1 XXXb 128 Interrupt remapping
(see Table 22 and Figure 17)
1 001b 1 001b Virtualized interrupts using the
guest virtual APIC
(see Table 23 and Figure 18),
1 010b-111b |1 010b-111b |N/A Reserved.

When guest APIC virtualization is supported, the [OMMU processes upstream fixed and arbitrated
interrupts as follows:

l.
2.

The IOMMU receives the upstream interrupt request.

The IOMMU checks the values of MMIO Offset 0030h[GASup], MMIO Offset 0030h|GAM-
Sup], MMIO Offset 0018h[GAEn], and MMIO Offset 0018h[GAMEn].

The IOMMU selects the 32-bit or 128-bit IRTE formats and the corresponding table stride based
on the register settings as shown in Table 21.

If programmed for 32-bit mode, the IOMMU handles the interrupt as defined in Section 2.2.5.1
[Interrupt Remapping Tables, Guest Virtual APIC Not Enabled].

The IOMMU uses the DevicelD of the upstream interrupt to select the appropriate DTE (see Sec
tion 2.2.2.1 [Device Table Entry Format]).

The IOMMU uses the Interrupt Table Root Pointer in the DTE and the incoming interrupt vector
to select an IRTE.

If IRTE[RemapEn]=0, then the interrupt is reported as an IO PAGE FAULT event (see Table 46
and Section 2.5.3).

If IRTE[GuestMode]=0, then use the IRTE format shown in Figure 17 and Table 22 to remap the
upstream interrupt using the IRTE information in the same manner as described in Section 2.2.5.1
[Interrupt Remapping Tables, Guest Virtual APIC Not Enabled] while using the IRTE format in
Figure 17 and Table 22.

If IRTE[GuestMode]=1, then treat the upstream interrupt as a guest virtual interrupt and the sup-
plied destination and vector information are used as follows using the IRTE format in Figure 18
and Table 23.

* Determine the bit index by calculating IRTE[Vector] modulo 32 (see Figure 16).
* Determine the byte offset by calculating (IRTE[Vector] / 32) << 4.

* Calculate the target byte of the virtual IRR in the guest virtual APIC backing page by adding:
IRTE[GuestVirtual APICTableRootPointer] + 0200h + the calculated byte offset.

* Atomically set one bit using the calculated bit index within the calculated target byte.

Architecture 81

AMDAA
AMD /0O Virtualization Technology (IOMMU) Specification 48882—Rev 2.62—February 2015

* Read the IRTE from memory.

* IfIRTE[IsRun]=0b and IRTE[GALogIntr]=1b, then the IOMMU creates a guest virtual APIC
log entry using IRTE[GATag] (see Section 2.7 [Guest Virtual APIC (GA) Logging]) and
signals an interrupt.

+ IfIRTE[IsRun]=1b, then the IOMMU sends a guest APIC doorbell signal using the
Destination field in Table 23.

Hardware note: The bit index and byte offset calculations are described using an 8-bit byte for a 1-
byte memory operation. The calculation method may be converted to a multi-byte-wide operation that
does not exceed 256 bits and the atomic-OR operation may use any byte width that is a power of 2
between 1 and 32 bytes, inclusive, by scaling the divisor. Using an 8-bit example, the bits of the vir-
tual IRR in the virtual APIC backing page are numbered as in Figure 16 (where n is calculated as
IRTE[Vector] modulo 8):

7 6 5 4 3 2 1 0
Byte n

Figure 16: Bit numbering of virtual IRR in the virtual APIC backing page

To handle an interrupt for remapping when the guest APIC is enabled, software programs the IRTE as
shown in Figure 17 and Table 22 with GuestMode=0.

127 96
Reserved
95 72 71 64
Reserved Vector
63 32
Reserved
31 16 15 8 7 6 5 4 2 1 0
T
2.3 £ |4
Reserved Destination b= E .| IntType % g
ik 5|2
O

Figure 17: IRTE Fields with Guest Virtual APIC, IRTE[GuestMode]=0

Table 22: IRTE Field Descriptions with Guest Virtual APIC, IRTE[GuestMode]=0

Bits Description

127:72 |Reserved when RemapEn=1. Ignored when RemapEn=0.

71:64 |Vector. Specifies the interrupt vector for the upstream interrupt.

63:16 |Reserved when RemapEn=1. Ignored when RemapEn=0.
15:8 |Destination. Specifies the APIC logical or physical address to which to send the interrupt.

82 Architecture

AMDA

48882—Rev 2.62—February 2015 AMD /0 Virtualization Technology (IOMMU) Specification

Table 22: IRTE Field Descriptions with Guest Virtual APIC, IRTE[GuestMode]=0

7

GuestMode. Must be zero for IRTE in the format defined by Figure 17 and this table. See
also Figure 18 and Table 23

DM: destination mode. 1=Logical destination mode. 0=Physical destination mode.

RqEoi: request EOI. 1=EOI cycle required.

Software note: If RqEoi=1, software is responsible for performing the reverse mapping of
the vector number.

4:2

IntType: interrupt type. This field specifies the type of interrupt message to deliver to the
Local APIC.

000b Fixed 001b Arbitrated
010b Reserved 011b Reserved
100b Reserved 101b Reserved
110b Reserved 111b Reserved

SuplOPF: suppress IO PAGE FAULT events. 1=Supress logging when use of this remap-
ping entry causes an IO PAGE_FAULT. 0=Log event when this entry causes an

I0 PAGE FAULT. See the IG control bit in the Device Table entry (Section 2.2.2.1 [Device
Table Entry Format]).

Note: SmiFLogEn independently controls the creation of IO PAGE _FAULT log entries
generated by the SMI filter (see Section 1.3.8 [SMI Filter]).

RemapEn. 1=Interrupt is remapped. O=Interrupt is target aborted.

Note: SupIOPF is meaningful independent of the value of RemapEn.

To handle an interrupt using the guest APIC, software programs the IRTE as shown in Figure 18 and
Table 23 with GuestMode=1.

127 116 115 96
Reserved Guest Virtual APIC Table Root Pointer[51:32]
95 76 75 72 71 64
Guest Virtual APIC Table Root Pointer[31:12] Reserved Vector
63 32
GATag[31:0]
31 16 15 9 8 7 6 5 3 2 1 0
1 5
S| g A
. . S| = | o | &
Reserved Destination S | &2 | Reserved Sl= g
His s|2|2
)

Figure 18: IRTE Fields with Guest Virtual APIC, IRTE[GuestMode]=1

Architecture 83

AMDAA
AMD /0O Virtualization Technology (IOMMU) Specification 48882—Rev 2.62—February 2015

Table 23: IRTE Field Descriptions with Guest Virtual APIC, IRTE[GuestMode]=1

Bits Description

127:11 |Reserved when RemapEn=1. Ignored when RemapEn=0.
6

115:76 |Guest Virtual APIC Table Root Pointer. Specifies the system physical address of the
APIC backing page when RemapEn=1.

75:72 |Reserved when RemapEn=1. Ignored when RemapEn=0.

71:64 |Vector[8:0]. Used to calculate the address within the guest virtual APIC backing page.

63:32 |GATag: The GATag field is used when the IOMMU writes to the guest virtual APIC log (see
Section 2.7 [Guest Virtual APIC (GA) Logging]).

31:16 |Reserved.

15:8 |Destination[8:0]. Destination core for the Guest Virtual APIC doorbell message.

7 GuestMode. Must be 1 for an IRTE in the format defined by Figure 18 and this table to indi-
cate this IRTE contains guest virtual APIC information. When GuestMode=0, see Figure 15
and Table 20.

6 IsRun: is-running hint. Ob=the guest is not running and the interrupt information will be

logged to the guest APIC memory page and the guest APIC log (see Section 2.7 [Guest Vir-
tual APIC (GA) Logging]). 1b=the guest is running and can accept the virtualized interrupt.

5:2 Reserved.

SuplOPF. Not governed by RemapEn.

0 RemapEn: remap enable. This bit indicates the IRTE fields, except SuplOPF, are valid.
O=the IRTE contents are ignored by hardware except SuplOPF. When the IOMMU attempts
to use the contents of this IRTE, it will generate an IO PAGE FAULT (see Section 2.5.3
[I0 PAGE FAULT Event]). 1=the guest virtual APIC table root pointer, vector, GATag,
destination, GuestMode, and IsRun fields are valid.

2.