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Preface

About This Book

This book is part of a multivolume work entitled the AMD64 Architecture Programmer’s Manual. This
table lists each volume and its order number.

Title Order No.
Volume 1: Application Programming 24592
Volume 2: System Programming 24593
Volume 3: General-Purpose and System Instructions 24594
Volume 4: 128-Bit and 256-Bit Media Instructions 26568
Volume 5: 64-Bit Media and x87 Floating-Point Instructions 26569

Audience

This volume is intended for programmers writing application programs, compilers, or assemblers. It
assumes prior experience in microprocessor programming, although it does not assume prior
experience with the legacy x86 or AMD64 microprocessor architecture.

This volume describes the AMDG64 architecture’s resources and functions that are accessible to
application software, including memory, registers, instructions, operands, I/O facilities, and
application-software aspects of control transfers (including interrupts and exceptions) and
performance optimization.

System-programming topics—including the use of instructions running at a current privilege level
(CPL) of 0 (most-privileged)—are described in Volume 2. Details about each instruction are described
in Volumes 3, 4, and 5.

Organization

This volume begins with an overview of the architecture and its memory organization and is followed
by chapters that describe the four application-programming models available in the AMD64
architecture:

* General-Purpose Programming—This model uses the integer general-purpose registers (GPRs).
The chapter describing it also describes the basic application environment for exceptions, control
transfers, I/O, and memory optimization that applies to all other application-programming models.
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» Streaming SIMD Extensions (SSE) Programming—This model uses the SSE (YMM/XMM)
registers and supports integer and floating-point operations on vector (packed) and scalar data

types.

*  Multimedia Extensions (MMX™) Programming—This model uses the 64-bit MMX registers and
supports integer and floating-point operations on vector (packed) and scalar data types.

* x87 Floating-Point Programming—This model uses the 80-bit x87 registers and supports floating-
point operations on scalar data types.

The index at the end of this volume cross-references topics within the volume. For other topics relating
to the AMDG64 architecture, see the tables of contents and indexes of the other volumes.

Conventions and Definitions

The following section Notational Conventions describes notational conventions used in this volume
and in the remaining volumes of this AMD64 Architecture Programmer’s Manual. This is followed by
a Definitions section which lists a number of terms used in the manual along with their technical
definitions. Some of these definitions assume knowledge of the legacy x86 architecture. See “Related
Documents” on page xxx for further information about the legacy x86 architecture. Finally, the
Registers section lists the registers which are a part of the application programming model.

Notational Conventions
#GP(0)
An instruction exception—in this example, a general-protection exception with error code of 0.

1011b
A binary value—in this example, a 4-bit value.

FOEA 0BO02h
A hexadecimal value. Underscore characters may be inserted to improve readability.

128
Numbers without an alpha suffix are decimal unless the context indicates otherwise.

7:4

A bit range, from bit 7 to 4, inclusive. The high-order bit is shown first. Commas may be inserted
to indicate gaps.

CRO-CR4
A register range, from register CRO through CR4, inclusive, with the low-order register first.

CRO[PE], CRO.PE
Notation for referring to a field within a register—in this case, the PE field of the CRO register.
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CRO[PE]=1,CRO.PE=1
The PE field of the CRO register is set (contains the value 1).

EFER[LME] =0, EFER.LME =0
The LME field of the EFER register is cleared (contains a value of 0).

DS:SI

A far pointer or logical address. The real address or segment descriptor specified by the segment
register (DS in this example) is combined with the offset contained in the second register (SI in this
example) to form a real or virtual address.

RFLAGS[13:12]

A field within a register identified by its bit range. In this example, corresponding to the IOPL
field.

Definitions

128-bit media instructions

Instructions that operate on the various 128-bit vector data types. Supported within both the legacy
SSE and extended SSE instruction sets.

256-bit media instructions

Instructions that operate on the various 256-bit vector data types. Supported within the extended
SSE instruction set.

64-bit media instructions

Instructions that operate on the 64-bit vector data types. These are primarily a combination of
MMX and 3DNow!™ instruction sets and their extensions, with some additional instructions from
the SSEI and SSE?2 instruction sets.

16-bit mode
Legacy mode or compatibility mode in which a 16-bit address size is active. See legacy mode and
compatibility mode.

32-bit mode
Legacy mode or compatibility mode in which a 32-bit address size is active. See legacy mode and
compatibility mode.

64-bit mode
A submode of long mode. In 64-bit mode, the default address size is 64 bits and new features, such
as register extensions, are supported for system and application software.

absolute

Said of a displacement that references the base of a code segment rather than an instruction pointer.
Contrast with relative.
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AES

Advance Encryption Standard (AES) algorithm acceleration instructions; part of Streaming SIMD
Extensions (SSE).

ASID
Address space identifier.

AVX

Extension of the SSE instruction set supporting 128- and 256-bit vector (packed) operands. See
Streaming SIMD Extensions.

AVX2

Extension of the AVX instruction subset that adds more support for 256-bit vector (mostly packed
integer) operands and a few new SIMD instructions. See Streaming SIMD Extensions.

biased exponent

The sum of a floating-point value’s exponent and a constant bias for a particular floating-point data
type. The bias makes the range of the biased exponent always positive, which allows reciprocation
without overflow.

byte
Eight bits.

clear

To write a bit value of 0. Compare set.

compatibility mode
A submode of long mode. In compatibility mode, the default address size is 32 bits, and legacy 16-
bit and 32-bit applications run without modification.

commit
To irreversibly write, in program order, an instruction’s result to software-visible storage, such as a
register (including flags), the data cache, an internal write buffer, or memory.

CPL
Current privilege level.

direct

Referencing a memory location whose address is included in the instruction’s syntax as an
immediate operand. The address may be an absolute or relative address. Compare indirect.

dirty data
Data held in the processor’s caches or internal buffers that is more recent than the copy held in
main memory.
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displacement

A signed value that is added to the base of a segment (absolute addressing) or an instruction pointer
(relative addressing). Same as offset.

doubleword
Two words, or four bytes, or 32 bits.

double quadword
Eight words, or 16 bytes, or 128 bits. Also called octword.

effective address size

The address size for the current instruction after accounting for the default address size and any
address-size override prefix.

effective operand size

The operand size for the current instruction after accounting for the default operand size and any
operand-size override prefix.

element

See vector.

exception

An abnormal condition that occurs as the result of executing an instruction. The processor’s
response to an exception depends on the type of the exception. For all exceptions except SSE
floating-point exceptions and x87 floating-point exceptions, control is transferred to the handler
(or service routine) for that exception, as defined by the exception’s vector. For floating-point
exceptions defined by the IEEE 754 standard, there are both masked and unmasked responses.
When unmasked, the exception handler is called, and when masked, a default response is provided
instead of calling the handler.

extended SSE
Enhanced set of SIMD instructions supporting 256-bit vector data types and allowing the
specification of up to four operands. A subset of the Streaming SIMD Extensions (SSE). Includes
the AVX, AVX2, FMA, FMA4, and XOP instructions. Compare legacy SSE.
flush
An often ambiguous term meaning (1) writeback, if modified, and invalidate, as in “flush the cache
line,” or (2) invalidate, as in “flush the pipeline,” or (3) change a value, as in “flush to zero.”
FMA4
Fused Multiply Add, four operand. Part of the extended SSE instruction set.

FMA
Fused Multiply Add. Part of the extended SSE instruction set.
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GDT
Global descriptor table.

GIF
Global interrupt flag.

IDT
Interrupt descriptor table.

IGN

Ignored. Value written is ignored by hardware. Value returned on a read is indeterminate. See
reserved.

indirect

Referencing a memory location whose address is in a register or other memory location. The
address may be an absolute or relative address. Compare direct.

IRB
The virtual-8086 mode interrupt-redirection bitmap.

IST
The long-mode interrupt-stack table.

IVT
The real-address mode interrupt-vector table.

LDT
Local descriptor table.

legacy x86

The legacy x86 architecture. See “Related Documents” on page xxx for descriptions of the legacy
x86 architecture.

legacy mode

An operating mode of the AMD64 architecture in which existing 16-bit and 32-bit applications and
operating systems run without modification. A processor implementation of the AMD64
architecture can run in either long mode or legacy mode. Legacy mode has three submodes, real
mode, protected mode, and virtual-8086 mode.

legacy SSE

A subset of the Streaming SIMD Extensions (SSE) composed of the SSE1, SSE2, SSE3, SSSE3,
SSE4.1, SSE4.2, and SSE4A instruction sets. Compare extended SSE.

LIP
Linear Instruction Pointer. LIP = (CS.base + rIP).
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long mode

An operating mode unique to the AMDG64 architecture. A processor implementation of the
AMDG64 architecture can run in either long mode or legacy mode. Long mode has two submodes,
64-bit mode and compatibility mode.

Isb
Least-significant bit.

LSB
Least-significant byte.

main memory

Physical memory, such as RAM and ROM (but not cache memory) that is installed in a particular
computer system.

mask

(1) A control bit that prevents the occurrence of a floating-point exception from invoking an
exception-handling routine. (2) A field of bits used for a control purpose.

MBZ
Must be zero. If software attempts to set an MBZ bit to 1, a general-protection exception (#GP)
occurs. See reserved.

memory
Unless otherwise specified, main memory.

msb
Most-significant bit.

MSB
Most-significant byte.

multimedia instructions

Those instructions that operate simultaneously on multiple elements within a vector data type.
Comprises the 256-bit media instructions, 128-bit media instructions, and 64-bit media
instructions.

octword
Same as double quadword.

offset

Same as displacement.

overflow

The condition in which a floating-point number is larger in magnitude than the largest, finite,
positive or negative number that can be represented in the data-type format being used.
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packed
See vector.

PAE
Physical-address extensions.

physical memory
Actual memory, consisting of main memory and cache.

probe

A check for an address in a processor’s caches or internal buffers. External probes originate
outside the processor, and internal probes originate within the processor.

procedure stack

A portion of a stack segment in memory that is used to link procedures. Also known as a program
stack.

program stack
See procedure stack.

protected mode
A submode of legacy mode.

quadword
Four words, or eight bytes, or 64 bits.

RAZ

Read as zero. Value returned on a read is always zero (0) regardless of what was previously
written. (See reserved)

real-address mode
See real mode.

real mode
A short name for real-address mode, a submode of legacy mode.

relative

Referencing with a displacement (also called offset) from an instruction pointer rather than the
base of a code segment. Contrast with absolute.

reserved
Fields marked as reserved may be used at some future time.

To preserve compatibility with future processors, reserved fields require special handling when
read or written by software. Software must not depend on the state of a reserved field (unless
qualified as RAZ), nor upon the ability of such fields to return a previously written state.
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If a field is marked reserved without qualification, software must not change the state of that field;
it must reload that field with the same value returned from a prior read.

Reserved fields may be qualified as IGN, MBZ, RAZ, or SBZ (see definitions).
REX

An instruction encoding prefix that specifies a 64-bit operand size and provides access to
additional registers.

RIP-relative addressing
Addressing relative to the 64-bit RIP instruction pointer.

SBZ

Should be zero. An attempt by software to set an SBZ bit to 1 results in undefined behavior. See
reserved.

scalar

An atomic value existing independently of any specification of location, direction, etc., as opposed
to vectors.

set
To write a bit value of 1. Compare clear.

shadow stack

A shadow stack is a separate, protected stack that is conceptually parallel to the procedure stack
and used only by the shadow stack feature.

SIB

A byte following an instruction opcode that specifies address calculation based on scale (S), index
(I), and base (B).

SIMD
Single instruction, multiple data. See vector.

Streaming SIMD Extensions (SSE)

Instructions that operate on scalar or vector (packed) integer and floating point numbers. The SSE
instruction set comprises the legacy SSE and extended SSE instruction sets.

SSEI

Original SSE instruction set. Includes instructions that operate on vector operands in both the
MMX and the XMM registers.

SSE2
Extensions to the SSE instruction set.

SSE3
Further extensions to the SSE instruction set.
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SSSE3
Further extensions to the SSE instruction set.

SSE4.1
Further extensions to the SSE instruction set.

SSE4.2
Further extensions to the SSE instruction set.

SSE4A

A minor extension to the SSE instruction set adding the instructions EXTRQ, INSERTQ,
MOVNTSS, and MOVNTSD.

sticky bit
A bit that is set or cleared by hardware and that remains in that state until explicitly changed by
software.

TOP
The x87 top-of-stack pointer.

TSS
Task-state segment.

underflow

The condition in which a floating-point number is smaller in magnitude than the smallest nonzero,
positive or negative number that can be represented in the data-type format being used.

vector

(1) A set of integer or floating-point values, called elements, that are packed into a single operand.
Most of the media instructions support vectors as operands. Vectors are also called packed or
SIMD (single-instruction multiple-data) operands.

(2) An index into an interrupt descriptor table (IDT), used to access exception handlers. Compare
exception.

VEX

An instruction encoding escape prefix that opens a new extended instruction encoding space,
specifies a 64-bit operand size, and provides access to additional registers. See XOP prefix.

virtual-8086 mode
A submode of legacy mode.

VMCB
Virtual machine control block.
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VMM
Virtual machine monitor.

word
Two bytes, or 16 bits.

XOP instructions
Part of the extended SSE instruction set using the XOP prefix. See Streaming SIMD Extensions.

XOP prefix

Extended instruction identifier prefix, used by XOP instructions allowing the specification of up to
four operands and 128 or 256-bit operand widths.

Registers

In the following list of registers, the names are used to refer either to a given register or to the contents
of that register:

AH-DH

The high 8-bit AH, BH, CH, and DH registers. Compare AL-DL.
AL-DL

The low 8-bit AL, BL, CL, and DL registers. Compare A H-DH.

AL-r15B

The low 8-bit AL, BL, CL, DL, SIL, DIL, BPL, SPL, and R8B—R15B registers, available in 64-bit
mode.

BP

Base pointer register.

CRn
Control register number 7.

CS
Code segment register.

eAX—eSP

The 16-bit AX, BX, CX, DX, DI, SI, BP, and SP registers or the 32-bit EAX, EBX, ECX, EDX,
EDI, ESI, EBP, and ESP registers. Compare r4X—rSP.

EFER
Extended features enable register.

eFLAGS
16-bit or 32-bit flags register. Compare rFLAGS.
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EFLAGS
32-bit (extended) flags register.

elP
16-bit or 32-bit instruction-pointer register. Compare r/P.

EIP
32-bit (extended) instruction-pointer register.

FLAGS
16-bit flags register.

GDTR
Global descriptor table register.

GPRs
General-purpose registers. For the 16-bit data size, these are AX, BX, CX, DX, DI, SI, BP, and SP.
For the 32-bit data size, these are EAX, EBX, ECX, EDX, EDI, ESI, EBP, and ESP. For the 64-bit
data size, these include RAX, RBX, RCX, RDX, RDI, RSI, RBP, RSP, and R8R15.

IDTR
Interrupt descriptor table register.

IP
16-bit instruction-pointer register.

LDTR
Local descriptor table register.

MSR
Model-specific register.

r&rl5

The 8-bit REB—R15B registers, or the 16-bit RSW-R15W registers, or the 32-bit RED-R15D
registers, or the 64-bit R§—R 15 registers.

rAX-rSP

The 16-bit AX, BX, CX, DX, DI, SI, BP, and SP registers, or the 32-bit EAX, EBX, ECX, EDX,
EDI, ESI, EBP, and ESP registers, or the 64-bit RAX, RBX, RCX, RDX, RDI, RSI, RBP, and RSP
registers. Replace the placeholder » with nothing for 16-bit size, “E” for 32-bit size, or “R” for 64-
bit size.

RAX
64-bit version of the EAX register.
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RBP
64-bit version of the EBP register.

RBX

64-bit version of the EBX register.

RCX

64-bit version of the ECX register.

RDI
64-bit version of the EDI register.

RDX

64-bit version of the EDX register.

rFLAGS

16-bit, 32-bit, or 64-bit flags register. Compare RFLAGS.

RFLAGS

64-bit flags register. Compare rFLAGS.

rIP

16-bit, 32-bit, or 64-bit instruction-pointer register. Compare RIP.

RIP
64-bit instruction-pointer register.

RSI
64-bit version of the ESI register.

RSP
64-bit version of the ESP register.

SP
Stack pointer register.

SS
Stack segment register.

SSP
Shadow-stack pointer register.

TPR

AMDG64 Technology

Task priority register (CR8), a new register introduced in the AMDG64 architecture to speed

interrupt management.
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TR

Task register.

Endian Order

The x86 and AMD64 architectures address memory using little-endian byte-ordering. Multibyte
values are stored with their least-significant byte at the lowest byte address, and they are illustrated
with their least significant byte at the right side. Strings are illustrated in reverse order, because the
addresses of their bytes increase from right to left.
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1 Overview of the AMD64 Architecture

1.1 Introduction

The AMDG64 architecture is a simple yet powerful 64-bit, backward-compatible extension of the
industry-standard (legacy) x86 architecture. It adds 64-bit addressing and expands register resources
to support higher performance for recompiled 64-bit programs, while supporting legacy 16-bit and 32-
bit applications and operating systems without modification or recompilation. It is the architectural
basis on which new processors can provide seamless, high-performance support for both the vast body
of existing software and 64-bit software required for higher-performance applications.

The need for a 64-bit x86 architecture is driven by applications that address large amounts of virtual
and physical memory, such as high-performance servers, database management systems, and CAD
tools. These applications benefit from both 64-bit addresses and an increased number of registers. The
small number of registers available in the legacy x86 architecture limits performance in computation-
intensive applications. Increasing the number of registers provides a performance boost to many such
applications.

1.1.1 AMDG64 Features

The AMD64 architecture includes these features:

* Register Extensions (see Figure 1-1 on page 2):

- 8 additional general-purpose registers (GPRs).

- All 16 GPRs are 64 bits wide.

- 8 additional YMM/XMM registers.

- Uniform byte-register addressing for all GPRs.

- An instruction prefix (REX) accesses the extended registers.
* Long Mode (see Table 1-1 on page 2):

- Up to 64 bits of virtual address.

- 64-bit instruction pointer (RIP).

- Instruction-pointer-relative data-addressing mode.

- Flat address space.

Overview of the AMDG64 Architecture 1
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General-Purpose 64-Bit Media and SSE Media

Registers (GPRs) Floating-Point Registers Registers
RAX MMXO0/FPRO YMM/XMMO
RBX MMX1/FPR1 YMM/XMM1
RCX MMX2/FPR2 YMM/XMM?2
RDX MMX3/FPR3 YMM/XMM3
RBP MMX4/FPR4 YMM/XMM4
RSI MMX5/FPR5 YMM/XMM5
RDI MMX6/FPR6 YMM/XMM6
RSP MMX7/FPR7 YMM/XMM7
R8 79 0 YMM/XMM8
R9 YMM/XMM9
R10 Flags Register YMM/XMM10
RT1 [ o [eFLAGS] RFLAGS YMM/XMMT1
R12 YMM/XMM12
R13 63 0 YMM/XMM13
R14 Instruction Pointer YMM/XMM14
RIS | | ep | R YMM/XMM15

63

0

63

:I Legacy x86 registers, supported in all modes

:| Register extensions, supported in 64-bit mode

0

255

127

0

Application-programming registers not shown include
Media eXension Control and Status Register (MXCSR) and
x87 tag-word, control-word, and status-word registers

Figure 1-1. Application-Programming Register Set
Table 1-1. Operating Modes
L Defaults Typical
Operatin Application A Register
Operating Mode P 9 Recompile | Address | Operand gis! GPR
System Required Required Size Size Extensions Width (bit
(bits) (bits) idth (bits)

64-Bit yes 64 yes 64

Long | Mode 64-bit OS %2
-bi
Mode | Compatibility 32 32
no no
Mode 16 16 16
Protected 32 32
32
Mode , 16 16
Legacy 32-bit OS

Legacy | virtual-8086 no o
Mode |Mode

Real 16 16 16

ea .

Mode Legacy 16-bit OS
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1.1.2 Registers

AMDG64 Technology

Table 1-2 compares the register and stack resources available to application software, by operating
mode. The left set of columns shows the legacy x86 resources, which are available in the AMD64
architecture’s legacy and compatibility modes. The right set of columns shows the comparable
resources in 64-bit mode. Gray shading indicates differences between the modes. These register
differences (not including stack-width difference) represent the register extensions shown in

Figure 1-1.

Table 1-2. Application Registers and Stack, by Operating Mode

Register Legacy and Compatibility Modes 64-Bit Mode!
or Stack Name Number | Size (bits) Name Number | Size (bits)
RAX, RBX, RCX,
General-Purpose EAX, EBX, ECX, RDX, RBP, RS,
) 9 EDX, EBP, ESI, 8 32 16 64
Registers (GPRs) EDI. ESP RDI, RSP,
’ R8-R15
256-.b|t YMM YMMO-YMM73 8 256 YMMO-YMM153 16 256
Registers
128-Bit XMM XMMO-XMM73 8 128 XMMO-XMM153 16 128
Registers
64-Bit MMX MMX0-MMX7* 8 64 MMXO0-MMX7* 8 64
Registers
x87 Registers FPRO-FPR74 8 80 FPRO-FPR74 8 80
Instruction Pointer? EIP 32 RIP 1 64
Flags2 EFLAGS 1 32 RFLAGS 1 64
Stack — 16 or 32 — 64
Note:

1. Gray-shaded entries indicate differences between the modes. These differences (except stack-width difference) are
the AMDG64 architecture’s register extensions.

2. GPRs are listed using their full-width names. In legacy and compatibility modes, 16-bit and 8-bit mappings of the
registers are also accessible. In 64-bit mode, 32-bit, 16-bit, and 8-bit mappings of the registers are accessible. See
Section 3.1. “Registers” on page 23.

3. The XMM registers overlay the lower octword of the YMM registers. See Section 4.2. “Registers” on page 113.

4. The MMX0-MMXT7 registers are mapped onto the FPRO—FPRY7 physical registers, as shown in Figure 1-1. The x87
stack registers, ST(0)-ST(7), are the logical mappings of the FPRO-FPRY physical registers.

As Table 1-2 shows, the legacy x86 architecture (called /egacy mode in the AMDG64 architecture)
supports eight GPRs. In reality, however, the general use of at least four registers (EBP, ESI, EDI, and
ESP) is compromised because they serve special purposes when executing many instructions. The
AMDG64 architecture’s addition of eight GPRs—and the increased width of these registers from 32 bits
to 64 bits—allows compilers to substantially improve software performance. Compilers have more
flexibility in using registers to hold variables. Compilers can also minimize memory traffic—and thus
boost performance—by localizing work within the GPRs.

Overview of the AMDG64 Architecture
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1.1.3 Instruction Set

The AMDG64 architecture supports the full legacy x86 instruction set, with additional instructions to
support long mode (see Table 1-1 on page 2 for a summary of operating modes). The application-
programming instructions are organized into four subsets, as follows:

*  General-Purpose Instructions—These are the basic x86 integer instructions used in virtually all
programs. Most of these instructions load, store, or operate on data located in the general-purpose
registers (GPRs) or memory. Some of the instructions alter sequential program flow by branching
to other program locations.

o Streaming SIMD Extensions Instructions (SSE)—These instructions load, store, or operate on data
located primarily in the YMM/XMM registers. 128-bit media instructions operate on the lower
half of the YMM registers. SSE instructions perform integer and floating-point operations on
vector (packed) and scalar data types. Because the vector instructions can independently and
simultaneously perform a single operation on multiple sets of data, they are called single-
instruction, multiple-data (SIMD) instructions. They are useful for high-performance media and
scientific applications that operate on blocks of data.

*  Multimedia Extension Instructions—These include the MM X™ technology and AMD 3DNow!™
technology instructions. These instructions load, store, or operate on data located primarily in the
64-bit MM X registers which are mapped onto the 80-bit x87 floating-point registers. Like the SSE
instructions, they perform integer and floating-point operations on vector (packed) and scalar data
types. These instructions are useful in media applications that do not require high precision.
Multimedia Extension Instructions use saturating mathematical operations that do not generate
operation exceptions. AMD has de-emphasized the use of 3DNow! instructions, which have been
superceded by their more efficient SSE counterparts. Relevant recommendations are provided in
Chapter 5, “64-Bit Media Programming” on page 239, and in the AMD64 Programmer’s Manual
Volume 4. 64-Bit Media and x87 Floating-Point Instructions.

*  x87 Floating-Point Instructions—These are the floating-point instructions used in legacy x87
applications. They load, store, or operate on data located in the 80-bit x87 registers.

Some of these application-programming instructions bridge two or more of the above subsets. For
example, there are instructions that move data between the general-purpose registers and the
YMM/XMM or MMX registers, and many of the integer vector (packed) instructions can operate on
either YMM/XMM or MMX registers, although not simultaneously. If instructions bridge two or more
subsets, their descriptions are repeated in all subsets to which they apply.

1.1.4 Media Instructions

Media applications—such as image processing, music synthesis, speech recognition, full-motion
video, and 3D graphics rendering—share certain characteristics:

* They process large amounts of data.
* They often perform the same sequence of operations repeatedly across the data.

* The data are often represented as small quantities, such as 8 bits for pixel values, 16 bits for audio
samples, and 32 bits for object coordinates in floating-point format.

4 Overview of the AMDG64 Architecture
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SSE and MMX instructions are designed to accelerate these applications. The instructions use a form
of vector (or packed) parallel processing known as single-instruction, multiple data (SIMD)
processing. This vector technology has the following characteristics:

* Asingle register can hold multiple independent pieces of data. For example, a single YMM
register can hold 32 8-bit integer data elements, or eight 32-bit single-precision floating-point data
elements.

* The vector instructions can operate on all data elements in a register, independently and
simultaneously. For example, a PADDB instruction operating on byte elements of two vector
operands in 128-bit XMM registers performs 16 simultaneous additions and returns 16
independent results in a single operation.

SSE and MMX instructions take SIMD vector technology a step further by including special
instructions that perform operations commonly found in media applications. For example, a graphics
application that adds the brightness values of two pixels must prevent the add operation from wrapping
around to a small value if the result overflows the destination register, because an overflow result can
produce unexpected effects such as a dark pixel where a bright one is expected. These instructions
include saturating-arithmetic instructions to simplify this type of operation. A result that otherwise
would wrap around due to overflow or underflow is instead forced to saturate at the largest or smallest
value that can be represented in the destination register.

1.1.5 Floating-Point Instructions

The AMDG64 architecture provides three floating-point instruction subsets, using three distinct register
sets:

* SSE instructions support 32-bit single-precision and 64-bit double-precision floating-point
operations, in addition to integer operations. Operations on both vector data and scalar data are
supported, with a dedicated floating-point exception-reporting mechanism. These floating-point
operations comply with the IEEE-754 standard.

*  MMX Instructions support single-precision floating-point operations. Operations on both vector
data and scalar data are supported, but these instructions do not support floating-point exception
reporting.

* x87 Floating-Point Instructions support single-precision, double-precision, and 80-bit extended-
precision floating-point operations. Only scalar data are supported, with a dedicated floating-point
exception-reporting mechanism. The x87 floating-point instructions contain special instructions
for performing trigonometric and logarithmic transcendental operations. The single-precision and
double-precision floating-point operations comply with the IEEE-754 standard.

Maximum floating-point performance can be achieved using the 256-bit media instructions. One of
these vector instructions can support up to eight single-precision (or four double-precision) operations
in parallel. A total of 16 256-bit YMM registers, available in 64-bit mode, speeds up applications by
providing more registers to hold intermediate results, thus reducing the need to store these results in
memory. Fewer loads and stores results in better performance.

Overview of the AMDG64 Architecture 5
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1.2 Modes of Operation

Table 1-1 on page 2 summarizes the modes of operation supported by the AMD64 architecture. In
most cases, the default address and operand sizes can be overridden with instruction prefixes. The
register extensions shown in the second-from-right column of Table 1-1 are those illustrated in
Figure 1-1 on page 2.

1.2.1 Long Mode

Long mode is an extension of legacy protected mode. Long mode consists of two submodes: 64-bit
mode and compatibility mode. 64-bit mode supports all of the features and register extensions of the
AMDG64 architecture. Compatibility mode supports binary compatibility with existing 16-bit and 32-
bit applications. Long mode does not support legacy real mode or legacy virtual-8086 mode, and it
does not support hardware task switching.

Throughout this document, references to /long mode refer to both 64-bit mode and compatibility mode.
If a function is specific to either of these submodes, then the name of the specific submode is used
instead of the name long mode.

1.2.2 64-Bit Mode

64-bit mode—a submode of long mode—supports the full range of 64-bit virtual-addressing and
register-extension features. This mode is enabled by the operating system on an individual code-
segment basis. Because 64-bit mode supports a 64-bit virtual-address space, it requires a 64-bit
operating system and tool chain. Existing application binaries can run without recompilation in
compatibility mode, under an operating system that runs in 64-bit mode, or the applications can also be
recompiled to run in 64-bit mode.

Addressing features include a 64-bit instruction pointer (RIP) and an RIP-relative data-addressing
mode. This mode accommodates modern operating systems by supporting only a flat address space,
with single code, data, and stack space.

Register Extensions. 64-bit mode implements register extensions through a group of instruction
prefixes, called REX prefixes. These extensions add eight GPRs (R8-R15), widen all GPRs to 64 bits,
and add eight YMM/XMM registers (YMM/XMMS8-15).

The REX instruction prefixes also provide a byte-register capability that makes the low byte of any of
the sixteen GPRs available for byte operations. This results in a uniform set of byte, word,
doubleword, and quadword registers that is better suited to compiler register-allocation.

64-Bit Addresses and Operands. In 64-bit mode, the default virtual-address size is 64 bits
(implementations can have fewer). The default operand size for most instructions is 32 bits. For most
instructions, these defaults can be overridden on an instruction-by-instruction basis using instruction
prefixes. REX prefixes specify the 64-bit operand size and register extensions.

RIP-Relative Data Addressing. 64-bit mode supports data addressing relative to the 64-bit
instruction pointer (RIP). The legacy x86 architecture supports IP-relative addressing only in control-

6 Overview of the AMDG64 Architecture
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transfer instructions. RIP-relative addressing improves the efficiency of position-independent code
and code that addresses global data.

Opcodes. A few instruction opcodes and prefix bytes are redefined to allow register extensions and
64-bit addressing. These differences are described in Appendix B “General-Purpose Instructions in
64-Bit Mode” and Appendix C “Differences Between Long Mode and Legacy Mode” in Volume 3.

1.2.3 Compatibility Mode

Compatibility mode—the second submode of long mode—allows 64-bit operating systems to run
existing 16-bit and 32-bit x86 applications. These legacy applications run in compatibility mode
without recompilation.

Applications running in compatibility mode use 32-bit or 16-bit addressing and can access the first
4GB of virtual-address space. Legacy x86 instruction prefixes toggle between 16-bit and 32-bit
address and operand sizes.

As with 64-bit mode, compatibility mode is enabled by the operating system on an individual code-
segment basis. Unlike 64-bit mode, however, x86 segmentation functions the same as in the legacy
x86 architecture, using 16-bit or 32-bit protected-mode semantics. From the application viewpoint,
compatibility mode looks like the legacy x86 protected-mode environment. From the operating-
system viewpoint, however, address translation, interrupt and exception handling, and system data
structures use the 64-bit long-mode mechanisms.

1.2.4 Legacy Mode

Legacy mode preserves binary compatibility not only with existing 16-bit and 32-bit applications but
also with existing 16-bit and 32-bit operating systems. Legacy mode consists of the following three
submodes:

*  Protected Mode—Protected mode supports 16-bit and 32-bit programs with memory
segmentation, optional paging, and privilege-checking. Programs running in protected mode can
access up to 4GB of memory space.

*  Virtual-8086 Mode—Virtual-8086 mode supports 16-bit real-mode programs running as tasks
under protected mode. It uses a simple form of memory segmentation, optional paging, and limited
protection-checking. Programs running in virtual-8086 mode can access up to 1MB of memory
space.

*  Real Mode—Real mode supports 16-bit programs using simple register-based memory
segmentation. It does not support paging or protection-checking. Programs running in real mode
can access up to IMB of memory space.

Legacy mode is compatible with existing 32-bit processor implementations of the x86 architecture.
Processors that implement the AMD64 architecture boot in legacy real mode, just like processors that
implement the legacy x86 architecture.

Overview of the AMDG64 Architecture 7
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Throughout this document, references to legacy mode refer to all three submodes—protected mode,
virtual-8086 mode, and real mode. If a function is specific to either of these submodes, then the name
of the specific submode is used instead of the name /egacy mode.

8 Overview of the AMDG64 Architecture
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2 Memory Model

This chapter describes the memory characteristics that apply to application software in the various
operating modes of the AMD64 architecture. These characteristics apply to all instructions in the
architecture. Several additional system-level details about memory and cache management are
described in Volume 2.

2.1 Memory Organization

2.1.1 Virtual Memory

Virtual memory consists of the entire address space available to programs. It is a large linear-address
space that is translated by a combination of hardware and operating-system software to a smaller
physical-address space, parts of which are located in memory and parts on disk or other external
storage media.

Figure 2-1 on page 10 shows how the virtual-memory space is treated in the two submodes of long
mode:

*  64-bit mode—This mode uses a flat segmentation model of virtual memory. The 64-bit virtual-
memory space is treated as a single, flat (unsegmented) address space. Program addresses access
locations that can be anywhere in the linear 64-bit address space. The operating system can use
separate selectors for code, stack, and data segments for memory-protection purposes, but the base
address of all these segments is always 0. (For an exception to this general rule, see “FS and GS as
Base of Address Calculation” on page 17.)

*  Compatibility mode—This mode uses a protected, multi-segment model of virtual memory, just as
in legacy protected mode. The 32-bit virtual-memory space is treated as a segmented set of address
spaces for code, stack, and data segments, each with its own base address and protection
parameters. A segmented space is specified by adding a segment selector to an address.

Memory Model 9
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64-Bit Mode
(Flat Segmentation Model)

2641

Legacy and Compatibility Mode
(Multi-Segment Model)

1 221

Code Segment (CS) Base =} -----------

Stack Segment (SS) Base &} - - - -===- - - -

Base Address for data
All Segments __, o  Data Segment (DS) Base |- - - - - ------- 0

Figure 2-1. Virtual-Memory Segmentation

Operating systems have used segmented memory as a method to isolate programs from the data they
used, in an effort to increase the reliability of systems running multiple programs simultaneously.
However, most modern operating systems do not use the segmentation features available in the legacy
x86 architecture. Instead, these operating systems handle segmentation functions entirely in software.
For this reason, the AMD64 architecture dispenses with most of the legacy segmentation functions in
64-bit mode. This allows 64-bit operating systems to be coded more simply, and it supports more
efficient management of multi-tasking environments than is possible in the legacy x86 architecture.

2.1.2 Segment Registers

Segment registers hold the selectors used to access memory segments. Figure 2-2 on page 11 shows
the application-visible portion of the segment registers. In legacy and compatibility modes, all
segment registers are accessible to software. In 64-bit mode, only the CS, FS, and GS segments are
recognized by the processor, and software can use the FS and GS segment-base registers as base
registers for address calculation, as described in “FS and GS as Base of Address Calculation” on
page 17. For references to the DS, ES, or SS segments in 64-bit mode, the processor assumes that the
base for each of these segments is zero, neither their segment limit nor attributes are checked, and the
processor simply checks that all such addresses are in canonical form, as described in “64-Bit
Canonical Addresses” on page 15.
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Legacy Mode and 64-Bit
Compatibility Mode Mode
(Attributes only)
DS ignored
ES ignored
FS
FS (Base only)
GS
GS (Base only)
SS ignored
15 0 15 0

Figure 2-2. Segment Registers

For details on segmentation and the segment registers, see “Segmented Virtual Memory” in Volume 2.

2.1.3 Physical Memory

Physical memory is the installed memory (excluding cache memory) in a particular computer system
that can be accessed through the processor’s bus interface. The maximum size of the physical memory
space is determined by the number of address bits on the bus interface. In a virtual-memory system, the
large virtual-address space (also called linear-address space) is translated to a smaller physical-
address space by a combination of segmentation and paging hardware and software.

Segmentation is illustrated in Figure 2-1 on page 10. Paging is a mechanism for translating linear
(virtual) addresses into fixed-size blocks called pages, which the operating system can move, as
needed, between memory and external storage media (typically disk). The AMD64 architecture
supports an expanded version of the legacy x86 paging mechanism, one that is able to translate the full
64-bit virtual-address space into the physical-address space supported by the particular
implementation.

2.1.4 Memory Management

Memory management strategies translate addresses generated by programs into addresses in physical
memory using segmentation and/or paging. Memory management is not visible to application
programs. It is handled by the operating system and processor hardware. The following description
gives a very brief overview of these functions. Details are given in “System-Management
Instructions” in Volume 2.

2.1.4.1 Long-Mode Memory Management

Figure 2-3 shows the flow, from top to bottom, of memory management functions performed in the
two submodes of long mode.
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64-Bit Mode Compatibility Mode
63 0 15 0 31 0
Virtual (Linear) Address | Selector | Effective Address
L
63 3231 0
| 0 Virtual Address
A\ A\
Paging Paging
51 v 0 51 v 0
| Physical Address | Physical Address

Figure 2-3. Long-Mode Memory Management

In 64-bit mode, programs generate virtual (linear) addresses that can be up to 64 bits in size. The
virtual addresses are passed to the long-mode paging function, which generates physical addresses that
can be up to 52 bits in size. (Specific implementations of the architecture can support smaller virtual-
address and physical-address sizes.)

In compatibility mode, legacy 16-bit and 32-bit applications run using legacy x86 protected-mode
segmentation semantics. The 16-bit or 32-bit effective addresses generated by programs are combined
with their segments to produce 32-bit virtual (linear) addresses that are zero-extended to a maximum
of 64 bits. The paging that follows is the same long-mode paging function used in 64-bit mode. It
translates the virtual addresses into physical addresses. The combination of segment selector and
effective address is also called a logical address or far pointer. The virtual address is also called the
linear address.

2.1.4.2 Legacy-Mode Memory Management

Figure 2-4 on page 13 shows the memory-management functions performed in the three submodes of
legacy mode.
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Protected Mode Virtual-8086 Mode Real Mode
15 0 31 0 15 015 0 15 0 15 0
| Selector | Effective Address (EA) | Selector | EA | Selector | EA

— — ——

3] l 0 19 l 0 19 l 0
| Linear Address | Linear Address | Linear Address

v

» »
» »

31 \4 0 31 v 0 31 19v 0
| Physical Address (PA) | Physical Address (PA) | 0 PA

Figure 2-4. Legacy-Mode Memory Management

The memory-management functions differ, depending on the submode, as follows:

Protected Mode—Protected mode supports 16-bit and 32-bit programs with table-based memory
segmentation, paging, and privilege-checking. The segmentation function takes 32-bit effective
addresses and 16-bit segment selectors and produces 32-bit linear addresses into one of 16K
memory segments, each of which can be up to 4GB in size. Paging is optional. The 32-bit physical
addresses are either produced by the paging function or the linear addresses are used without
modification as physical addresses.

Virtual-8086 Mode—Virtual-8086 mode supports 16-bit programs running as tasks under
protected mode. 20-bit linear addresses are formed in the same way as in real mode, but they can
optionally be translated through the paging function to form 32-bit physical addresses that access
up to 4GB of memory space.

Real Mode—Real mode supports 16-bit programs using register-based shift-and-add
segmentation, but it does not support paging. Sixteen-bit effective addresses are zero-extended and
added to a 16-bit segment-base address that is left-shifted four bits, producing a 20-bit linear
address. The linear address is zero-extended to a 32-bit physical address that can access up to 1MB
of memory space.
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2.2 Memory Addressing

2.2.1 Byte Ordering

Instructions and data are stored in memory in /ittle-endian byte order. Little-endian ordering places the
least-significant byte of the instruction or data item at the lowest memory address and the most-
significant byte at the highest memory address.

Figure 2-5 shows a generalization of little-endian memory and register images of a quadword data
type. The least-significant byte is at the lowest address in memory and at the right-most byte location
of the register image.

Quadword in Memory byte7 | 07h <— High (mostsignificant)
byte 6 | o6h
byte 5 ] 0sh
byte 4 | 04h
byte 3 | o3h
byte2 | o2h
byte 1 | oth
byteO J ooh «— Low (least-significant)

High (most-significant) Low (least-significant)

Quadword in General-Purpose Register ’

byte7 | byte6 | byte5 | byte4 | byte3 | byte2 | bytel byte 0

63 0

Figure 2-5. Byte Ordering

Figure 2-6 on page 15 shows the memory image of a 10-byte instruction. Instructions are byte data
types. They are read from memory one byte at a time, starting with the least-significant byte (lowest
address). For example, the following instruction specifies the 64-bit instruction MOV RAX,
1122334455667788 instruction that consists of the following ten bytes:

48 B8 8877665544332211

48 is a REX instruction prefix that specifies a 64-bit operand size, B8 is the opcode that—together
with the REX prefix—specifies the 64-bit RAX destination register, and 8877665544332211 is the 8-
byte immediate value to be moved, where 88 represents the eighth (least-significant) byte and 11
represents the first (most-significant) byte. In memory, the REX prefix byte (48) would be stored at the
lowest address, and the first immediate byte (11) would be stored at the highest instruction address.
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11 0%h  «— High (most-significant)
22 08h
33 07h
44 06h
55 05h
66 04h
77 03h
88 02h
B8 0th
48 00h  «— Low (least-significant)

Figure 2-6. Example of 10-Byte Instruction in Memory

2.2.2 64-Bit Canonical Addresses

Long mode defines 64 bits of virtual address, but implementations of the AMD64 architecture may
support fewer bits of virtual address. Although implementations might not use all 64 bits of the virtual
address, they check bits 63 through the most-significant implemented bit to see if those bits are all
zeros or all ones. An address that complies with this property is said to be in canonical address form. If
a virtual-memory reference is not in canonical form, the implementation causes a general-protection
exception or stack fault.

2.2.3 Effective Addresses

Programs provide effective addresses to the hardware prior to segmentation and paging translations.
Long-mode effective addresses are a maximum of 64 bits wide, as shown in Figure 2-3 on page 12.
Programs running in compatibility mode generate (by default) 32-bit effective addresses, which the
hardware zero-extends to 64 bits. Legacy-mode effective addresses, with no address-size override, are
32 or 16 bits wide, as shown in Figure 2-4 on page 13. These sizes can be overridden with an address-
size instruction prefix, as described in “Instruction Prefixes” on page 76.

There are five methods for generating effective addresses, depending on the specific instruction
encoding:

*  Absolute Addresses—These addresses are given as displacements (or offsets) from the base
address of a data segment. They point directly to a memory location in the data segment.

* Instruction-Relative Addresses—These addresses are given as displacements (or offsets) from the
current instruction pointer (IP), also called the program counter (PC). They are generated by
control-transfer instructions. A displacement in the instruction encoding, or one read from
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memory, serves as an offset from the address that follows the transfer. See “RIP-Relative
Addressing” on page 18 for details about RIP-relative addressing in 64-bit mode.

* Indexed Register-Indirect Addresses—These addresses are calculated off a base address contained
in a general-purpose register specified by the instruction (base). Different encodings allow offsets
from this base using a signed displacement or using the sum of the displacement and a scaled index
value. Instruction encodings may utilize up to ten bytes—the ModRM byte, the optional SIB
(scale, index, base) byte and a variable length displacement—to specify the values to be used in the
effective address calculation. The base and index values are contained in general-purpose registers
specified by the SIB byte. The scale and displacement values are specified directly in the
instruction encoding. Figure 2-7 shows the components of the address calculation. The resultant
effective address is added to the data-segment base address to form a linear address, as described in
“Segmented Virtual Memory” in Volume 2. “Instruction Formats” in Volume 3 gives further
details on specifying this form of address.

Base | Index Displacement

* Scaleby1,2,4,0r8

|
l

| Effective Address

Figure 2-7. Complex Address Calculation (Protected Mode)

» Stack Addresses—PUSH, POP, CALL, RET, IRET, and INT instructions implicitly use the stack
pointer, which contains the address of the procedure stack. See “Stack Operation” on page 19 for
details about the size of the stack pointer.

*  String Addresses—String instructions generate sequential addresses using the rDI and rSI registers,
as described in “Implicit Uses of GPRs” on page 30.

In 64-bit mode, with no address-size override, the size of effective-address calculations is 64 bits. An
effective-address calculation uses 64-bit base and index registers and sign-extends displacements to 64
bits. Due to the flat address space in 64-bit mode, virtual addresses are equal to effective addresses.
(For an exception to this general rule, see “FS and GS as Base of Address Calculation” on page 17.)

2.2.3.1 Long-Mode Zero-Extension of 16-Bit and 32-Bit Addresses

In long mode, all 16-bit and 32-bit address calculations are zero-extended to form 64-bit addresses.
Address calculations are first truncated to the effective-address size of the current mode (64-bit mode

or compatibility mode), as overridden by any address-size prefix. The result is then zero-extended to
the full 64-bit address width.
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Because of this, 16-bit and 32-bit applications running in compatibility mode can access only the low
4GB of the long-mode virtual-address space. Likewise, a 32-bit address generated in 64-bit mode can
access only the low 4GB of the long-mode virtual-address space.

2.2.3.2 Displacements and Immediates

In general, the maximum size of address displacements and immediate operands is 32 bits. They can
be 8, 16, or 32 bits in size, depending on the instruction or, for displacements, the effective address
size. In 64-bit mode, displacements are sign-extended to 64 bits during use, but their actual size (for
value representation) remains a maximum of 32 bits. The same is true for immediates in 64-bit mode,
when the operand size is 64 bits. However, support is provided in 64-bit mode for some 64-bit
displacement and immediate forms of the MOV instruction.

2.2.3.3 FS and GS as Base of Address Calculation

In 64-bit mode, the FS and GS segment-base registers (unlike the DS, ES, and SS segment-base
registers) can be used as non-zero data-segment base registers for address calculations, as described in

“Segmented Virtual Memory” in Volume 2. 64-bit mode assumes all other data-segment registers (DS,
ES, and SS) have a base address of 0.

2.2.4 Address-Size Prefix

The default address size of an instruction is determined by the default-size (D) bit and long-mode (L)
bit in the current code-segment descriptor (for details, see “Segmented Virtual Memory” in Volume 2).
Application software can override the default address size in any operating mode by using the 67h
address-size instruction prefix byte. The address-size prefix allows mixing 32-bit and 64-bit addresses
on an instruction-by-instruction basis.

Table 2-1 on page 18 shows the effects of using the address-size prefix in all operating modes. In 64-
bit mode, the default address size is 64 bits. The address size can be overridden to 32 bits. 16-bit
addresses are not supported in 64-bit mode. In compatibility and legacy modes, the address-size prefix
works the same as in the legacy x86 architecture.
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Table 2-1. Address-Size Prefixes

Add -
Default Effective | gio0 profix
Operating Mode Address | Address Size (67h)"
Size (Bits Bits
ize (Bits) (Bits) Required?
. 64 no
64-Bit Mode 64
32 yes
32 no
Long Mode 32
L 16 yes
Compatibility Mode
32 yes
16
16 no
32 no
Legacy Mode 32 16 yes
(Protected, Virtual-8086, or Real
Mode) 16 32 yes
16 no
Note:
1. “No” indicates that the default address size is used.

2.2.5 RIP-Relative Addressing

RIP-relative addressing—that is, addressing relative to the 64-bit instruction pointer (also called
program counter)—is available in 64-bit mode. The effective address is formed by adding the
displacement to the 64-bit RIP of the next instruction.

In the legacy x86 architecture, addressing relative to the instruction pointer (IP or EIP) is available
only in control-transfer instructions. In the 64-bit mode, any instruction that uses ModRM addressing
(see “ModRM and SIB Bytes” in Volume 3) can use RIP-relative addressing. The feature is
particularly useful for addressing data in position-independent code and for code that addresses global
data.

Programs usually have many references to data, especially global data, that are not register-based. To
load such a program, the loader typically selects a location for the program in memory and then adjusts
the program’s references to global data based on the load location. RIP-relative addressing of data
makes this adjustment unnecessary.

2.2.5.1 Range of RIP-Relative Addressing

Without RIP-relative addressing, instructions encoded with a ModRM byte address memory relative
to zero. With RIP-relative addressing, instructions with a ModRM byte can address memory relative to
the 64-bit RIP using a signed 32-bit displacement. This provides an offset range of £2 GBytes from the
RIP.
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2.2.5.2 Effect of Address-Size Prefix on RIP-Relative Addressing

RIP-relative addressing is enabled by 64-bit mode, not by a 64-bit address-size. Conversely, use of the
address-size prefix does not disable RIP-relative addressing. The effect of the address-size prefix is to
truncate and zero-extend the computed effective address to 32 bits, like any other addressing mode.

2.2.5.3 Encoding

For details on instruction encoding of RIP-relative addressing, see in “Encoding for RIP-Relative
Addressing” in Volume 3.

2.3 Pointers

Pointers are variables that contain addresses rather than data. They are used by instructions to
reference memory. Instructions access data using near and far pointers. Stack pointers locate the
current stack.

2.3.1 Near and Far Pointers

Near pointers contain only an effective address, which is used as an offset into the current segment. Far
pointers contain both an effective address and a segment selector that specifies one of several
segments. Figure 2-8 illustrates the two types of pointers.

Near Pointer Far Pointer

| Effective Address (EA) | Selector | Effective Address (EA)

Figure 2-8. Near and Far Pointers

In 64-bit mode, the AMDG64 architecture supports only the flat-memory model in which there is only
one data segment, so the effective address is used as the virtual (linear) address and far pointers are not
needed. In compatibility mode and legacy protected mode, the AMD64 architecture supports multiple
memory segments, so effective addresses can be combined with segment selectors to form far pointers,
and the terms logical address (segment selector and effective address) and far pointer are synonyms.
Near pointers can also be used in compatibility mode and legacy mode.

24 Stack Operation

A procedure stack (also known as a ‘program stack’) is a portion of a stack segment in memory that is
used to link procedures. Software conventions typically define stacks using a stack frame, which
consists of two registers—a stack-frame base pointer (tBP) and a stack pointer (rSP)—as shown in
Figure 2-9 on page 20. These stack pointers can be either near pointers or far pointers.
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The stack-segment (SS) register, points to the base address of the current stack segment. The stack
pointers contain offsets from the base address of the current stack segment. All instructions that
address memory using the rBP or rSP registers cause the processor to access the current stack segment.

Stack Frame Before Procedure Call Stack Frame After Procedure Call

Stack-Frame Base Pointer (rBP) .
and Stack Pointer (1SP) — Stack-Frame Base Pointer (rBP) —» assed dala

Stack Pointer (rSP) —» | - -2 --- - -

Stack-Segment (SS) Base Address —» Stack-Segment (SS) Base Address —»

Figure 2-9. Stack Pointer Mechanism

In typical APIs, the stack-frame base pointer and the stack pointer point to the same location before a
procedure call (the top-of-stack of the prior stack frame). After data is pushed onto the procedure
stack, the stack-frame base pointer remains where it was and the stack pointer advances downward to
the address below the pushed data, where it becomes the new top-of-stack.

In legacy and compatibility modes, the default stack pointer size is 16 bits (SP) or 32 bits (ESP),
depending on the default-size (B) bit in the stack-segment descriptor, and multiple stacks can be
maintained in separate stack segments. In 64-bit mode, stack pointers are always 64 bits wide (RSP).

Further application-programming details on the procedure stack mechanism are described in “Control
Transfers” on page 80. System-programming details on the stack segments are described in
“Segmented Virtual Memory” in Volume 2.

A shadow stack is a separate, protected stack that is conceptually parallel to the procedure stack and
used only by the shadow stack feature. When enabled by system software, the shadow stack feature
provides, in a manner that is transparent to application software, protection against a class of computer
exploit known as 'return oriented programming'. System-programming details on the shadow stack
feature are described in “Shadow Stacks” in Volume 2.

2.5 Instruction Pointer

The instruction pointer is used in conjunction with the code-segment (CS) register to locate the next
instruction in memory. The instruction-pointer register contains the displacement (offset)—from the
base address of the current CS segment, or from address 0 in 64-bit mode—to the next instruction to be
executed. The pointer is incremented sequentially, except for branch instructions, as described in
“Control Transfers” on page 80.
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In legacy and compatibility modes, the instruction pointer is a 16-bit (IP) or 32-bit (EIP) register. In
64-bit mode, the instruction pointer is extended to a 64-bit (RIP) register to support 64-bit offsets. The
case-sensitive acronym, 7/P, is used to refer to any of these three instruction-pointer sizes, depending
on the software context.

Figure 2-10 on page 21 shows the relationship between RIP, EIP, and IP. The 64-bit RIP can be used
for RIP-relative addressing, as described in “RIP-Relative Addressing” on page 18.

EIP riP

RIP
63 32 31 0

Figure 2-10. Instruction Pointer (rlP) Register

The contents of the rIP are not directly readable by software. However, the rIP is pushed onto the stack
by a call instruction.

The memory model described in this chapter is used by all of the programming environments that
make up the AMD64 architecture. The next four chapters of this volume describe the application
programming environments, which include:

e General-purpose programming (Chapter 3 on page 23).

* Streaming SIMD extensions used in media and scientific programming (Chapter 4 on page 111).
e 64-bit media programming (Chapter 5 on page 239).

* x87 floating-point programming (Chapter 6 on page 285).
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3 General-Purpose Programming

The general-purpose programming model includes the general-purpose registers (GPRs), integer
instructions and operands that use the GPRs, program-flow control methods, memory optimization
methods, and I/O. This programming model includes the original x86 integer-programming
architecture, plus 64-bit extensions and a few additional instructions. Only the application-
programming instructions and resources are described in this chapter. Integer instructions typically
used in system programming, including all of the privileged instructions, are described in Volume 2,
along with other system-programming topics.

The general-purpose programming model is used to some extent by almost all programs, including
programs consisting primarily of 256-bit or 128-bit media instructions, 64-bit media instructions, x87
floating-point instructions, or system instructions. For this reason, an understanding of the general-
purpose programming model is essential for any programming work using the AMD64 instruction set
architecture.

3.1 Registers

Figure 3-1 on page 24 shows an overview of the registers used in general-purpose application
programming. They include the general-purpose registers (GPRs), segment registers, flags register,
and instruction-pointer register. The number and width of available registers depends on the operating
mode.

The registers and register ranges shaded light gray in Figure 3-1 on page 24 are available only in 64-
bit mode. Those shaded dark gray are available only in legacy mode and compatibility mode. Thus, in
64-bit mode, the 32-bit general-purpose, flags, and instruction-pointer registers available in legacy
mode and compatibility mode are extended to 64-bit widths, eight new GPRs are available, and the
DS, ES, and SS segment registers are ignored.

When naming registers, if reference is made to multiple register widths, a lower-case » notation is
used. For example, the notation 74 X refers to the 16-bit AX, 32-bit EAX, or 64-bit RAX register,
depending on an instruction’s effective operand size.
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General-Purpose Registers (GPRs)

rAX

rBX

rcX

DX

rBP

rSl

DI

rSP

R8

R9

R10

RN

R12

Segment
Registers

R13

R14

R15

63 32 31 0

Flags and Instruction Pointer Registers

rFLAGS

rlP

63 32 31 0

:| Available to sofware in all modes

:| Available to sofware only in 64-bit mode
- Ignored by hardware in 64-bit mode

Figure 3-1. General-Purpose Programming Registers

3.1.1 Legacy Registers

In legacy and compatibility modes, all of the legacy x86 registers are available. Figure 3-2 on page 25
shows a detailed view of the GPR, flag, and instruction-pointer registers.
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register high  low
encoding 8-bit 8-bit 16-bit  32-bit
0 AH@| AL | AX  EAX
3 BH@z)| BL BX EBX
1 CHe)| CL X ECX
2 DH )| DL DX EDX
6 SI SI ESI
7 DI DI EDI
5 BP BP EBP
4 SP SP ESP
31 16 15 0
FLAGS FLAGS EFLAGS
P IP EIP
31 0

Figure 3-2. General Registers in Legacy and Compatibility Modes

The legacy GPRs include:

* Eight 8-bit registers (AH, AL, BH, BL, CH, CL, DH, DL).

e Eight 16-bit registers (AX, BX, CX, DX, DI, SI, BP, SP).

e Eight 32-bit registers (EAX, EBX, ECX, EDX, EDI, ESI, EBP, ESP).

The size of register used by an instruction depends on the effective operand size or, for certain
instructions, the opcode, address size, or stack size. The 16-bit and 32-bit registers are encoded as 0
through 7 in Figure 3-2. For opcodes that specify a byte operand, registers encoded as 0 through 3 refer
to the low-byte registers (AL, BL, CL, DL) and registers encoded as 4 through 7 refer to the high-byte
registers (AH, BH, CH, DH).

The 16-bit FLAGS register, which is also the low 16 bits of the 32-bit EFLAGS register, shown in
Figure 3-2, contains control and status bits accessible to application software, as described in
Section 3.1.4, “Flags Register,” on page 34. The 16-bit IP or 32-bit EIP instruction-pointer register
contains the address of the next instruction to be executed, as described in Section 2.5, “Instruction
Pointer,” on page 20.
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3.1.2 64-Bit-Mode Registers

In 64-bit mode, eight new GPRs are added to the eight legacy GPRs, all 16 GPRs are 64 bits wide, and
the low bytes of all registers are accessible. Figure 3-3 on page 27 shows the GPRs, flags register, and
instruction-pointer register available in 64-bit mode. The GPRs include:

* Sixteen 8-bit low-byte registers (AL, BL, CL, DL, SIL, DIL, BPL, SPL, R8B, R9B, R10B, R11B,
RI12B, R13B, R14B, R15B).

* Four 8-bit high-byte registers (AH, BH, CH, DH), addressable only when no REX prefix is used.

* Sixteen 16-bit registers (AX, BX, CX, DX, DI, SI, BP, SP, R§W, ROW, R10W, R11W, R12W,
R13W, R14W, R15W).

«  Sixteen 32-bit registers (EAX, EBX, ECX, EDX, EDI, ESI, EBP, ESP, R8D, R9D, R10D, R11D,
R12D, R13D, R14D, R15D).

* Sixteen 64-bit registers (RAX, RBX, RCX, RDX, RDI, RSI, RBP, RSP, R§, R9, R10, R11, R12,
R13,R14,R15).

The size of register used by an instruction depends on the effective operand size or, for certain
instructions, the opcode, address size, or stack size. For most instructions, access to the extended
GPRs requires a REX prefix (Section 3.5.2, “REX Prefixes,” on page 79). The four high-byte registers
(AH, BH, CH, DH) available in legacy mode are not addressable when a REX prefix is used.

In general, byte and word operands are stored in the low 8 or 16 bits of GPRs without modifying their
high 56 or 48 bits, respectively. Doubleword operands, however, are normally stored in the low 32 bits
of GPRs and zero-extended to 64 bits.

The 64-bit RELAGS register, shown in Figure 3-3 on page 27, contains the legacy EFLAGS in its low
32-bit range. The high 32 bits are reserved. They can be written with anything but they always read as
zero (RAZ). The 64-bit RIP instruction-pointer register contains the address of the next instruction to
be executed, as described in Section 3.1.5, “Instruction Pointer Register,” on page 36.
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zero-extended
for 32-bit operands

<— not modified for 16-bit operands —>|
<«—— not modified for 8-bit operands —>|8 hits

low

AH*
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3231
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16-bit
AX

BX
CX
DX

Sl

DI

BP
SP
R8W
ROW
R10W
R11W
R12W
R13W
R14W
R15W

RFLAGS
RIP

* Not addressable in REX prefix instruction forms
** Only addressable in REX prefix instruction forms

Figure 3-3. General Purpose Registers in 64-Bit Mode
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32-hit
EAX
EBX
ECX
EDX
ESI
EDI
EBP
ESP
R8D
R9D
R10D
R11D
R12D
R13D
R14D
R15D

64-bit
RAX
RBX
RCX
RDX
RSI
RDI
RBP
RSP
R8
R9
R10
R11
R12
R13
R14
R15

Figure 3-4 on page 28 illustrates another way of viewing the 64-bit-mode GPRs, showing how the
legacy GPRs overlay the extended GPRs. Gray-shaded bits are not modified in 64-bit mode.
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63 32 31 16 15 8 7 0
Gray areas are not modified in 64-bit mode. AH* | AL
0 AX
0 | EAX
RAX
BHF | Bl
3 BX
0 | EBX
RBX
i
] X
0 | ECX
RCX
DAF | DL
DX
2 0 | EDX
RDX
oI
| S|
6 0 | EST
o RSI
= DI
E—
s 0 | EDI
2 RDI
= [ BPL™ |
| BP
° 0 | EBP
RBP
[~ SPC
| SP
4 0 | ESP
RSP
| RSB
8 | R8W
0 | R8D
R8
R15B
| R15W
1> 0 | R15D
R15
* Not addressable when a REX prefix is used ** Only addressable when a REX prefix is used.

Figure 3-4. GPRs in 64-Bit Mode
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3.1.2.1 Default Operand Size

For most instructions, the default operand size in 64-bit mode is 32 bits. To access 16-bit operand
sizes, an instruction must contain an operand-size prefix (66h), as described in Section 3.2.3,
“Operand Sizes and Overrides,” on page 41. To access the full 64-bit operand size, most instructions
must contain a REX prefix.

For details on operand size, see Section 3.2.3, “Operand Sizes and Overrides,” on page 41.

3.1.2.2 Byte Registers

64-bit mode provides a uniform set of low-byte, low-word, low-doubleword, and quadword registers
that is well-suited for register allocation by compilers. Access to the four new low-byte registers in the
legacy-GPR range (SIL, DIL, BPL, SPL), or any of the low-byte registers in the extended registers
(R8B—R15B), requires a REX instruction prefix. However, the legacy high-byte registers (AH, BH,
CH, DH) are not accessible when a REX prefix is used.

3.1.2.3 Zero-Extension of 32-Bit Results

As Figure 3-3 on page 27 and Figure 3-4 on page 28 show, when performing 32-bit operations with a
GPR destination in 64-bit mode, the processor zero-extends the 32-bit result into the full 64-bit
destination. 8-bit and 16-bit operations on GPRs preserve all unwritten upper bits of the destination
GPR. This is consistent with legacy 16-bit and 32-bit semantics for partial-width results.

Software should explicitly sign-extend the results of 8-bit, 16-bit, and 32-bit operations to the full 64-
bit width before using the results in 64-bit address calculations.

The following four code examples show how 64-bit, 32-bit, 16-bit, and 8-bit ADDs work. In these
examples, “48” is a REX prefix specifying 64-bit operand size, and “01C3” and “00C3” are the
opcode and ModRM bytes of each instruction (see “Opcode Syntax” in Volume 3 for details on the
opcode and ModRM encoding).

Example 1: 64-bit Add:

Before:RAX =0002_ 0001 8000 2201
RBX =0002_0002_0123 3301

48 01C3 ADD RBX,RAX ;48 is a REX prefix for size.

Result:RBX = 0004 0003 8123 5502

Example 2: 32-bit Add:

Before:RAX
RBX

002_0001_8000 2201
002_0002_0123 3301

0
0
01C3 ADD EBX,EAX ;32-bit add

Result:RBX = 0000 0000 8123 5502
(32-bit result is zero extended)
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Example 3: 16-bit Add:

Before:RAX = 0002 0001 8000 2201
RBX = 0002 0002 0123 3301

66 01C3 ADD BX,AX ;66 is 1l6-bit size override

Result:RBX = 0002 0002 0123 5502
(bits 63:16 are preserved)

Example 4: 8-bit Add.:

Before:RAX = 0002 0001 8000 2201
RBX = 0002 0002 0123 3301

00C3 ADD BL,AL ;8-bit add

Result:RBX = 0002 0002 0123 3302
(bits 63:08 are preserved)

3.1.2.4 GPR High 32 Bits Across Mode Switches

The processor does not preserve the upper 32 bits of the 64-bit GPRs across switches from 64-bit mode
to compatibility or legacy modes. When using 32-bit operands in compatibility or legacy mode, the
high 32 bits of GPRs are undefined. Software must not rely on these undefined bits, because they can
change from one implementation to the next or even on a cycle-to-cycle basis within a given
implementation. The undefined bits are not a function of the data left by any previously running
process.

3.1.3 Implicit Uses of GPRs

Most instructions can use any of the GPRs for operands. However, as Figure 3-1 on page 31 shows,
some instructions use some GPRs implicitly. Details about implicit use of GPRs are described in
“General-Purpose Instructions in 64-Bit Mode” in Volume 3.

Table 3-1 on page 31 shows implicit register uses only for application instructions. Certain system
instructions also make implicit use of registers. These system instructions are described in “System
Instruction Reference” in Volume 3.
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Table 3-1. Implicit Uses of GPRs

Registers1

Name Implicit Uses
Low 8-Bit 16-Bit 32-Bit 64-Bit

» Operand for decimal
arithmetic, multiply, divide,
string, compare-and-
exchange, table-translation,
and /O instructions.

» Special accumulator encoding
for ADD, XOR, and MOV
instructions.

» Used with EDX to hold double-
precision operands.

» CPUID processor-feature
information.

AL AX EAX RAX? | Accumulator

« Address generation in 16-bit
code.

* Memory address for XLAT
instruction.

» CPUID processor-feature
information.

BL BX EBX RBX? Base

« Bit index for shift and rotate
instructions.

* |teration count for loop and

CL CX ECX RCX? Count repeated string instructions.

* Jump conditional if zero.

» CPUID processor-feature
information.

» Operand for multiply and
divide instructions.

* Port number for I/O
instructions.

» Used with EAX to hold double-
precision operands.

» CPUID processor-feature
information.

DL DX EDX RDX? I/O Address

* Memory address of source
operand for string instructions.

* Memory index for 16-bit
addresses.

SIL? Sl ESI RSI2 Source Index

Note:
1. Gray-shaded registers have no implicit uses.
2. Accessible only in 64-bit mode.
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Table 3-1. Implicit Uses of GPRs (continued)

: 1
Registers Name Implicit Uses
Low 8-Bit 16-Bit 32-Bit 64-Bit
* Memory address of destination
Destination operand for string instructions.
DIL? DI EDI RDI?
Index * Memory index for 16-bit
addresses.
BPL2 BP EBP RBP?  |Base Pointer |” Memory address of stack-
frame base pointer.
SPL2 sp ESP RSP2  |Stack Pointer|” Memory address of last stack
entry (top of stack).
R8B-R10B? | RBW—R10W? | R8D-R10D? | R8-R10° None No implicit uses
2 2 2 2 * Holds the value of RFLAGS on
R11B R11W R11D R11 None SYSCALL/SYSRET
R12B-R15B? | R12W-R15W? | R12D-R15D? | R12-R15° None No implicit uses
Note:
1. Gray-shaded registers have no implicit uses.
2. Accessible only in 64-bit mode.

3.1.3.1 Arithmetic Operations

Several forms of the add, subtract, multiply, and divide instructions use AL or rAX implicitly. The
multiply and divide instructions also use the concatenation of rDX:rAX for double-sized results
(multiplies) or quotient and remainder (divides).

3.1.3.2 Sign-Extensions

The instructions that double the size of operands by sign extension (for example, CBW, CWDE,
CDQE, CWD, CDQ, CQO) use rAX register implicitly for the operand. The CWD, CDQ, and CQO
instructions also uses the rDX register.

3.1.3.3 Special MOVs

The MOV instruction has several opcodes that implicitly use the AL or rAX register for one operand.

3.1.3.4 String Operations

Many types of string instructions use the accumulators implicitly. Load string, store string, and scan
string instructions use AL or rAX for data and rDI or rSI for the offset of a memory address.

3.1.3.5 1/0-Address-Space Operations.

The I/0 and string I/O instructions use rAX to hold data that is received from or sent to a device
located in the I/O-address space. DX holds the device I/0O-address (the port number).
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3.1.3.6 Table Translations

The table translate instruction (XLATB) uses AL for an memory index and rBX for memory base
address.

3.1.3.7 Compares and Exchanges

Compare and exchange instructions (CMPXCHG) use the AL or rAX register for one operand.

3.1.3.8 Decimal Arithmetic

The decimal arithmetic instructions (AAA, AAD, AAM, AAS, DAA, DAS) that adjust binary-coded
decimal (BCD) operands implicitly use the AL and AH register for their operations.

3.1.3.9 Shifts and Rotates

Shift and rotate instructions can use the CL register to specify the number of bits an operand is to be
shifted or rotated.

3.1.3.10 Conditional Jumps

Special conditional-jump instructions use the rCX register instead of flags. The JCXZ and JrCXZ
instructions check the value of the rCX register and pass control to the target instruction when the
value of rCX register reaches 0.

3.1.3.11 Repeated String Operations

With the exception of I/O string instructions, all string operations use rSI as the source-operand pointer
and rDI as the destination-operand pointer. I/O string instructions use rDX to specify the input-port or
output-port number. For repeated string operations (those preceded with a repeat-instruction prefix),
the rSI and rDI registers are incremented or decremented as the string elements are moved from the
source location to the destination. Repeat-string operations also use rCX to hold the string length, and
decrement it as data is moved from one location to the other.

3.1.3.12 Stack Operations

Stack operations make implicit use of the rSP register, and in some cases, the rBP register. The rSP
register is used to hold the top-of-stack pointer (or simply, stack pointer). rSP is decremented when
items are pushed onto the stack, and incremented when they are popped off the stack. The ENTER and
LEAVE instructions use rBP as a stack-frame base pointer. Here, rBP points to the last entry in a data
structure that is passed from one block-structured procedure to another.

The use of rSP or rBP as a base register in an address calculation implies the use of SS (stack segment)
as the default segment. Using any other GPR as a base register without a segment-override prefix
implies the use of the DS data segment as the default segment.

The push all and pop all instructions (PUSHA, PUSHAD, POPA, POPAD) implicitly use all of the
GPRs.
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3.1.3.13 CPUID Information

The CPUID instruction makes implicit use of the EAX, EBX, ECX, and EDX registers. Software
loads a function code into EAX and, for some function codes, a sub-function code in ECX, executes
the CPUID instruction, and then reads the associated processor-feature information in EAX, EBX,
ECX, and EDX.

3.1.4 Flags Register

Figure 3-5 on page 34 shows the 64-bit RFLAGS register and the flag bits visible to application
software. Bits 15:0 are the FLAGS register (accessed in legacy real and virtual-8086 modes), bits 31:0
are the EFLAGS register (accessed in legacy protected mode and compatibility mode), and bits 63:0
are the RFLAGS register (accessed in 64-bit mode). The name rFLAGS refers to any of the three
register widths, depending on the current software context.

63 32

Reserved, RAZ

31 121110 9 8 7 6 5 4 3 2 1 0
O|D S|Z A P C
See Volume 2 for System Flags FlE FlF E F F

Bits Mnemonic Description R/IW
11 OF Overflow Flag R/W
10 DF Direction Flag R/W
7 SF Sign Flag R/W
6 ZF Zero Flag R/W
4 AF Auxiliary Carry Flag R/W
2 PF Parity Flag R/W
0 CF Carry Flag R/W

Figure 3-5. rFLAGS Register—Flags Visible to Application Software

The low 16 bits (FLAGS portion) of fFLAGS are accessible by application software and hold the

following flags:

e One control flag (the direction flag DF).

* Six status flags (carry flag CF, parity flag PF, auxiliary carry flag AF, zero flag ZF, sign flag SF,
and overflow flag OF).

The direction flag (DF) controls the direction of string operations. The status flags provide result
information from logical and arithmetic operations and control information for conditional move and
jump instructions.
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Bits 31:16 of the rFLAGS register contain flags that are accessible only to system software. These
flags are described in “System Registers” in Volume 2. The highest 32 bits of RFLAGS are reserved.
In 64-bit mode, writes to these bits are ignored. They are read as zeros (RAZ). The rTFLAGS register is
initialized to 02h on reset, so that all of the programmable bits are cleared to zero.

The effects that rTFLAGS bit-values have on instructions are summarized in the following places:

* Conditional Moves (CMOVcc)—Table 3-4 on page 46.
* Conditional Jumps (Jcc)—Table 3-5 on page 60.
* Conditional Sets (SETcc)—Table 3-6 on page 64.

The effects that instructions have on rTFLAGS bit-values are summarized in “Instruction Effects on
RFLAGS” in Volume 3.

The sections below describe each application-visible flag. All of these flags are readable and writable.
For example, the POPF, POPFD, POPFQ, IRET, IRETD, and IRETQ instructions write all flags. The
carry and direction flags are writable by dedicated application instructions. Other application-visible
flags are written indirectly by specific instructions. Reserved bits and bits whose writability is
prevented by the current values of system flags, current privilege level (CPL), or the current operating
mode, are unaffected by the POPFx instructions.

Carry Flag (CF). Bit 0. Hardware sets the carry flag to 1 if the last integer addition or subtraction
operation resulted in a carry (for addition) or a borrow (for subtraction) out of the most-significant bit
position of the result. Otherwise, hardware clears the flag to 0.

The increment and decrement instructions—unlike the addition and subtraction instructions—do not
affect the carry flag. The bit shift and bit rotate instructions shift bits of operands into the carry flag.
Logical instructions like AND, OR, XOR clear the carry flag. Bit-test instructions (BTx) set the value
of the carry flag depending on the value of the tested bit of the operand.

Software can set or clear the carry flag with the STC and CLC instructions, respectively. Software can
complement the flag with the CMC instruction.

Parity Flag (PF). Bit 2. Hardware sets the parity flag to 1 if there is an even number of 1 bits in the
least-significant byte of the last result of certain operations. Otherwise (i.e., for an odd number of 1
bits), hardware clears the flag to 0. Software can read the flag to implement parity checking.

Auxiliary Carry Flag (AF). Bit 4. Hardware sets the auxiliary carry flag if an arithmetic operation or
a binary-coded decimal (BCD) operation generates a carry (in the case of an addition) or a borrow (in
the case of a subtraction) out of bit 3 of the result. Otherwise, AF is cleared to zero.

The main application of this flag is to support decimal arithmetic operations. Most commonly, this flag
is used internally by correction commands for decimal addition (AAA) and subtraction (AAS).

Zero Flag (ZF). Bit 6. Hardware sets the zero flag to 1 if the last arithmetic operation resulted in a
value of zero. Otherwise (for a non-zero result), hardware clears the flag to 0. The compare and test
instructions also affect the zero flag.
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The zero flag is typically used to test whether the result of an arithmetic or logical operation is zero, or
to test whether two operands are equal.

Sign Flag (SF). Bit 7. Hardware sets the sign flag to 1 if the last arithmetic operation resulted in a
negative value. Otherwise (for a positive-valued result), hardware clears the flag to 0. Thus, in such
operations, the value of the sign flag is set equal to the value of the most-significant bit of the result.
Depending on the size of operands, the most-significant bit is bit 7 (for bytes), bit 15 (for words), bit 31
(for doublewords), or bit 63 (for quadwords).

Direction Flag (DF). Bit 10. The direction flag determines the order in which strings are processed.
Software can set the direction flag to 1 to specify decrementing the data pointer for the next string
instruction (LODSx, STOSx, MOV Sx, SCASx, CMPSx, OUTSx, or INSx). Clearing the direction flag
to 0 specifies incrementing the data pointer. The pointers are stored in the rSI or rDI register. Software
can set or clear the flag with the STD and CLD instructions, respectively.

Overflow Flag (OF). Bit 11. Hardware sets the overflow flag to 1 to indicate that the most-significant
(sign) bit of the result of the last signed integer operation differed from the signs of both source
operands. Otherwise, hardware clears the flag to 0. A set overflow flag means that the magnitude of
the positive or negative result is too big (overflow) or too small (underflow) to fit its defined data type.

The OF flag is undefined after the DIV instruction and after a shift of more than one bit. Logical
instructions clear the overflow flag.

3.1.5 Instruction Pointer Register

The instruction pointer register—IP, EIP, or RIP, or simply rIP for any of the three depending on the
context—is used in conjunction with the code-segment (CS) register to locate the next instruction in
memory. See Section 2.5, “Instruction Pointer,” on page 20 for details.

3.2 Operands

Operands are either referenced by an instruction's encoding or included as an immediate value in the
instruction encoding. Depending on the instruction, referenced operands can be located in registers,
memory locations, or I/O ports.

3.2.1 Fundamental Data Types

At the most fundamental level, a datum is an ordered string of a specific length composed of binary
digits (bits). Bits are indexed from 0 to length-1. While technically the size of a datum is not restricted,
for convenience in storing and manipulating data the Architecture defines a finite number of data
objects of specific size and names them.

A datum of length 1 is simply a bit. A datum of length 4 is a nibble, a datum of length 8 is a byte, a
datum of length 16 is a word, a datum of length 32 is a doubleword, a datum of length 64 is a
quadword, a datum of length 128 is a double quadword (also called an octword), a datum of length 256
is a double octword.
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For instructions that move or reorder data, the significance of each bit within the datum is immaterial.
An instruction of this type may operate on bits, bytes, words, doublewords, and so on. The majority of
instructions, however, expect operand data to be of a specific format. The format assigns a particular
significance to each bit based on its position within the datum. This assignment of significance or
meaning to each bit is called data typing.

The Architecture defines the following fundamental data types:

* Untyped data objects
- bit
- nibble (4 bits)
- byte (8 bits)
- word (16 bits)
- doubleword (32 bits)
- quadword (64 bits)
- double quadword (octword) (128 bits)
- double octword (256 bits)
* Unsigned integers
- 8-bit (byte) unsigned integer
- 16-bit (word) unsigned integer
- 32-bit (doubleword) unsigned integer
- 64-bit (quadword) unsigned integer
- 128-bit (octword) unsigned integer
e Signed (two's-complement) integers
- 8-bit (byte) signed integer
- 16-bit (word) signed integer
- 32-bit (doubleword) signed integer
- 64-bit (quadword) signed integer
- 128-bit (octword) signed integer
* Binary coded decimal (BCD) digits
* Floating-point data types
- half-precision floating point (16 bits)
- single-precision floating point (32 bits)
- double-precision floating point (64 bits)

These fundamental data types may be aggregated into composite data types. The defined composite
data types are:

* strings
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- character strings (composed of bytes or words)
- doubleword and quadword
* packed BCD
» packed signed and unsigned integers (also called integer vectors)
* packed single- or double-precision floating point (also called floating-point vectors)

Integer, BCD, and string data types are described in the following section. The floating-point and
vector data types are discussed in Section 4.3.3, “SSE Instruction Data Types,” on page 121.

3.2.2 General-Purpose Instruction Data types

The following data types are supported in the general-purpose programming environment:

* Signed (two's-complement) integers.

e Unsigned integers.

e BCD digits.

* Packed BCD digits.

e Strings, including bit strings.

* Untyped data objects.

Figure 3-6 on page 39 illustrates the data types used by most general-purpose instructions. Software
can define data types in ways other than those shown, but the AMD64 architecture does not directly
support such interpretations and software must handle them entirely on its own. Note that the bit

positions are numbered from right to left starting with 0 and ending with /ength-1. The untyped data
objects bit, nibble, byte, word, doubleword, quadword, and octword are not shown.
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127 Signed Integer 0

S 16 bytes (64-bit mode only)

Double
Quadword

s 8 bytes (64-bit mode only) Quadword

63 s 4 bytes Doubleword

31 sl 2 bytes | word

15 S Byte

7 0

Unsigned Integer
127 9 9 0

16 bytes (64-bit mode only)

Double
Quadword

8 bytes (64-bit mode only) Quadword

63 4 bytes Doubleword

31 2 bytes | Word

15 Byte

Packed BCD

BCD Digit

73|.Bit

Figure 3-6. General-Purpose Data Types

3.2.2.1 Signed and Unsigned Integers

The architecture supports signed and unsigned 1-byte, 2-byte, 4- byte, 8-byte, and 16-byte integers.
The sign bit (S) occupies the most significant bit (datum bit position length-1). Signed integers are
represented in two’s complement format. S = 0 represents positive numbers and S = 1 negative
numbers.

The table below presents the representable range of values for each integer data type and the BCD data
types discussed in the following section:
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Table 3-2. Representable Values of General-Purpose Data Types

Data Type Byte Word Doubleword Quadword Qi(:;‘j::dz
Signed Integers! | 27 to +(27 -1) | 2% to +(21° -1) | 237 to +(231 -1) | -2%3 to +(253 -1) | 2727 to +(2727 -1)
Unsigned Integers 0 to +25-1 0 to +276-1 0 to +2%2-1 . 0 to +25%-1 . 0to +2128-138

(0 to 255) (0 t0 65,535) | (0 to 4.29 x 10%) | (0 to 1.84 x 10"%)| (0 to 3.40 x 1038)
E?;ilt(:d BCD 00 to 99 multiple packed BCD-digit bytes
BCD Digit 0to9 multiple BCD-digit bytes
Note:

1. The sign bit is the most-significant bit (e.g., bit 7 for a byte, bit 15 for a word, efc.).

2. The double quadword data type is supported in the RDX:RAX registers by the MUL, IMUL, DIV, IDIV, and CQO
instructions.

In 64-bit mode, the double quadword (octword) integer data type is supported in the RDX:RAX
registers by the MUL, IMUL, DIV, IDIV, and CQO instructions.

3.2.2.2 Binary-Coded-Decimal (BCD) Digits

BCD digits have values ranging from 0 to 9. These values can be represented in binary encoding with
four bits. For example, 0000b represents the decimal number 0 and 1001b represents the decimal
number 9. Values ranging from 1010b to 1111b are invalid for this data type. Because a byte contains
eight bits, two BCD digits can be stored in a single byte. This is referred to as packed-BCD. If a single
BCD digit is stored per byte, it is referred to as unpacked-BCD. In the x87 floating-point programming
environment (described in Section 6, “x87 Floating-Point Programming,” on page 285) an 80-bit
packed BCD data type is also supported, along with conversions between floating-point and BCD data
types, so that data expressed in the BCD format can be operated on as floating-point values.

Integer add, subtract, multiply, and divide instructions can be used to operate on single (unpacked)
BCD digits. The result must be adjusted to produce a correct BCD representation. For unpacked BCD
numbers, the ASCII-adjust instructions are provided to simplify that correction. In the case of division,
the adjustment must be made prior to executing the integer-divide instruction.

Similarly, integer add and subtract instructions can be used to operate on packed-BCD digits. The
result must be adjusted to produce a correct packed-BCD representation. Decimal-adjust instructions
are provided to simplify packed-BCD result corrections.

3.2.2.3 Strings

Strings are a continuous sequence of a single data type. The string instructions can be used to operate
on byte, word, doubleword, or quadword data types. The maximum length of a string of any data type
is 232-1 bytes, in legacy or compatibility modes, or 26*-1 bytes in 64-bit mode. One of the more
common types of strings used by applications are byte data-type strings known as ASCII strings,
which can be used to represent character data.
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Bit strings are also supported by instructions that operate specifically on bit strings. In general, bit
strings can start and end at any bit location within any byte, although the BTx bit-string instructions
assume that strings start on a byte boundary. The length of a bit string can range in size from a single
bit up to 232_1 bits, in legacy or compatibility modes, or 2641 bits in 64-bit mode.

3.2.2.4 Untyped Data Objects

Move instructions: register to register, memory to register (load) or register to memory (store); pack,
unpack, swap, permutate, and merge instructions operate on data without regard to data type.

SIMD instructions operate on vector data types based on the fundamental data types described above.
See Section 4.3. “Operands” on page 118 for a discussion of vector data types

3.2.3 Operand Sizes and Overrides

3.2.3.1 Default Operand Size

In legacy and compatibility modes, the default operand size is either 16 bits or 32 bits, as determined
by the default-size (D) bit in the current code-segment descriptor (for details, see “Segmented Virtual
Memory” in Volume 2). In 64-bit mode, the default operand size for most instructions is 32 bits.

Application software can override the default operand size by using an operand-size instruction prefix.
Table 3-3 shows the instruction prefixes for operand-size overrides in all operating modes. In 64-bit
mode, the default operand size for most instructions is 32 bits. A REX prefix (see Section 3.5.2, “REX
Prefixes,” on page 79) specifies a 64-bit operand size, and a 66h prefix specifies a 16-bit operand size.
The REX prefix takes precedence over the 66h prefix.

General-Purpose Programming 41
[AMD Public Use]



AMDZ\
AMDG64 Technology 24592—Rev. 3.23—October 2020

Table 3-3. Operand-Size Overrides

Effective Instruction Prefix
Default Operand
Operating Mode Operand pSize 66h" REX
Size (Bits) (Bits)
64 X yes
64-Bit 2
Mode 32 32 no no
16 yes no
Long
Mode 32 32 no
Compatibility 16 yes
Mode 32 yes
16
16 no Not
32 no Applicable
Legacy Mode 32 16 yes
(Protected, Virtual-8086,
or Real Mode) 16 32 yes
16 no
Note:
1. A “no” indicates that the default operand size is used. An “x” means “don’t care.”
2. Near branches, instructions that implicitly reference the stack pointer, and certain
other instructions default to 64-bit operand size. See “General-Purpose Instructions
in 64-Bit Mode” in Volume 3

There are several exceptions to the 32-bit operand-size default in 64-bit mode, including near branches
and instructions that implicitly reference the RSP stack pointer. For example, the near CALL, near
IMP, Jee, LOOPcc, POP, and PUSH instructions all default to a 64-bit operand size in 64-bit mode.
Such instructions do not need a REX prefix for the 64-bit operand size. For details, see “General-
Purpose Instructions in 64-Bit Mode” in Volume 3.

3.2.3.2 Effective Operand Size

The term effective operand size describes the operand size for the current instruction, after accounting
for the instruction’s default operand size and any operand-size override or REX prefix that is used with
the instruction.

3.2.3.3 Immediate Operand Size

In legacy mode and compatibility modes, the size of immediate operands can be 8, 16, or 32 bits,
depending on the instruction. In 64-bit mode, the maximum size of an immediate operand is also 32
bits, except that 64-bit immediates can be copied into a 64-bit GPR using the MOV instruction.

When the operand size of a MOV instruction is 64 bits, the processor sign-extends immediates to 64
bits before using them. Support for true 64-bit immediates is accomplished by expanding the
semantics of the MOV reg, imml16/32 instructions. In legacy and compatibility modes, these
instructions—opcodes B8h through BFh—copy a 16-bit or 32-bit immediate (depending on the
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effective operand size) into a GPR. In 64-bit mode, if the operand size is 64 bits (requires a REX
prefix), these instructions can be used to copy a true 64-bit immediate into a GPR.

3.2.4 Operand Addressing

Operands for general-purpose instructions are referenced by the instruction's syntax or they are
incorporated in the instruction as an immediate value. Referenced operands can be in registers,
memory, or I/O ports.

3.2.4.1 Register Operands

Most general-purpose instructions that take register operands reference the general-purpose registers
(GPRs). A few general-purpose instructions reference operands in the RFLAGS register, XMM
registers, or MMX™ registers.

The type of register addressed is specified in the instruction syntax. When addressing GPRs or XMM
registers, the REX instruction prefix can be used to access the extended GPRs or XMM registers, as
described in Section 3.5, “Instruction Prefixes,” on page 76.

3.2.4.2 Memory Operands

Many general-purpose instructions can access operands in memory. Section 2.2, “Memory
Addressing,” on page 14 describes the general methods and conditions for addressing memory
operands.

3.2.4.3 1/0 Ports

Operands in I/O ports are referenced according to the conventions described in Section 3.8,
“Input/Output,” on page 95.

3.2.4.4 Immediate Operands

In certain instructions, a source operand—called an immediate operand, or simply immediate—is
included as part of the instruction rather than being accessed from a register or memory location. For
details on the size of immediate operands, see “Immediate Operand Size” on page 42.

3.2.5 Data Alignment

A data access is aligned if its address is a multiple of its operand size, in bytes. The following
examples illustrate this definition:

* Byte accesses are always aligned. Bytes are the smallest addressable parts of memory.
e Word (two-byte) accesses are aligned if their address is a multiple of 2.

*  Doubleword (four-byte) accesses are aligned if their address is a multiple of 4.

*  Quadword (eight-byte) accesses are aligned if their address is a multiple of 8.

The AMDG64 architecture does not impose data-alignment requirements for accessing data in memory.
However, depending on the location of the misaligned operand with respect to the width of the data
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bus and other aspects of the hardware implementation (such as store-to-load forwarding mechanisms),
a misaligned memory access can require more bus cycles than an aligned access. For maximum
performance, avoid misaligned memory accesses.

Performance on many hardware implementations will benefit from observing the following operand-
alignment and operand-size conventions:

e Avoid misaligned data accesses.

* Maintain consistent use of operand size across all loads and stores. Larger operand sizes
(doubleword and quadword) tend to make more efficient use of the data bus and any data-
forwarding features that are implemented by the hardware.

*  When using word or byte stores, avoid loading data from the same doubleword of memory, other
than the identical start addresses of the stores.

3.3 Instruction Summary

This section summarizes the functions of the general-purpose instructions. The instructions are
organized by functional group—such as, data-transfer instructions, arithmetic instructions, and so on.
Details on individual instructions are given in the alphabetically organized “General-Purpose
Instructions in 64-Bit Mode” in Volume 3.

3.3.1 Syntax

Each instruction has a mnemonic syntax used by assemblers to specify the operation and the operands
to be used for source and destination (result) data. Figure 3-7 shows an example of the mnemonic
syntax for a compare (CMP) instruction. In this example, the CMP mnemonic is followed by two
operands, a 32-bit register or memory operand and an 8-bit immediate operand.

CMP reg/mem32, imm8

Mnemonic j

First Source Operand
and Destination Operand

Second Source Operand

Figure 3-7. Mnemonic Syntax Example

In most instructions that take two operands, the first (left-most) operand is both a source operand and
the destination operand. The second (right-most) operand serves only as a source. Instructions can
have one or more prefixes that modify default instruction functions or operand properties. These
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prefixes are summarized in Section 3.5, “Instruction Prefixes,” on page 76. Instructions that access
64-bit operands in a general-purpose register (GPR) or any of the extended GPR or XMM registers
require a REX instruction prefix.

Unless otherwise stated in this section, the word register means a general-purpose register (GPR).
Several instructions affect the flag bits in the RFLAGS register. “Instruction Effects on RFLAGS” in
Volume 3 summarizes the effects that instructions have on rFLAGS bits.

3.3.2 Data Transfer
The data-transfer instructions copy data between registers and memory.

Move

* MOV—Move

* MOVBE—Move Big-Endian

e MOVSX—Move with Sign-Extend

* MOVZX—Move with Zero-Extend

e  MOVD—Move Doubleword or Quadword

*  MOVNTI—Move Non-temporal Doubleword or Quadword

The move instructions copy a byte, word, doubleword, or quadword from a register or memory
location to a register or memory location. The source and destination cannot both be memory
locations. For MOVBE, both operands cannot be registers and the operand size must be greater than
one byte. MOVBE performs a reordering of the bytes within the source operand as it is copied.

An immediate constant can be used as a source operand with the MOV instruction. For most move
instructions, the destination must be of the same size as the source, but the MOVSX and MOVZX
instructions copy values of smaller size to a larger size by using sign-extension or zero-extension
respectively. The MOVD instruction copies a doubleword or quadword between a general-purpose
register or memory and an XMM or MMX register.

The MOV instruction is in many aspects similar to the assignment operator in high-level languages.
The simplest example of their use is to initialize variables. To initialize a register to 0, rather than using
a MOV instruction it may be more efficient to use the XOR instruction with identical destination and
source operands.

The MOVNTI instruction stores a doubleword or quadword from a register into memory as “non-
temporal” data, which assumes a single access (as opposed to frequent subsequent accesses of
“temporal data”). The operation therefore minimizes cache pollution. The exact method by which
cache pollution is minimized depends on the hardware implementation of the instruction. For further
information, see Section 3.9, “Memory Optimization,” on page 98.

Conditional Move
¢  (CMOVcce—Conditional Move If condition
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The CMOVcec instructions conditionally copy a word, doubleword, or quadword from a register or
memory location to a register location. The source and destination must be of the same size.

The CMOVcc instructions perform the same task as MOV but work conditionally, depending on the
state of status flags in the RFLAGS register. If the condition is not satisfied, the instruction has no
effect and control is passed to the next instruction. The mnemonics of CMOVcc instructions indicate
the condition that must be satisfied. Several mnemonics are often used for one opcode to make the
mnemonics easier to remember. For example, CMOVE (conditional move if equal) and CMOVZ
(conditional move if zero) are aliases and compile to the same opcode. Table 3-4 shows the RFLAGS
values required for each CMOVcc instruction.

In assembly languages, the conditional move instructions correspond to small conditional statements
like:

IF a = b THEN x = y

CMOVcc instructions can replace two instructions—a conditional jump and a move. For example, to
perform a high-level statement like:

IF ECX = 5 THEN EAX = EBX

without a CMOVcc instruction, the code would look like:

cmp ecx, 5 ; test if ecx equals 5

jnz Continue ; test condition and skip if not met
mov eax, ebx ; move

Continue: ; continuation

but with a CMOVcec instruction, the code would look like:

cmp ecx, 5 ; test if ecx equals to 5
cmovz eax, ebx ; test condition and move

Replacing conditional jumps with conditional moves also has the advantage that it can avoid branch-
prediction penalties that may be caused by conditional jumps.

Support for CMOV cc instructions depends on the processor implementation. To find out if a processor
1s able to perform CMOVcc instructions, use the CPUID instruction. For more information on using
the CPUID instruction, see Section 3.6, “Feature Detection,” on page 79.

Table 3-4. rFLAGS for CMOVcc Instructions

Mnemonic Required Flag State Description
CMOVO OF =1 Conditional move if overflow
CMOVNO OF=0 Conditional move if not overflow
CMOVB Conditional move if below
CMOvC CF=1 Conditional move if carry
CMOVNAE Conditional move if not above or equal
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Table 3-4. rFLAGS for CMOVcc Instructions (continued)
Mnemonic Required Flag State Description

CMOVAE Conditional move if above or equal

CMOVNB CF=0 Conditional move if not below

CMOVNC Conditional move if not carry

CMOVE ZF = 1 Conditional move if equal

CMOVZz - Conditional move if zero

CMOVNE ZE =0 Conditional move if not equal

CMOVNZ Conditional move if not zero

CMOVBE CF =1orZF = 1 Conditional move if below or equal

CMOVNA Conditional move if not above

CMOVA _ _ Conditional move if not below or equal

cMOVNBE ~ |CF=0andZF=0 " fco jitional move if not below or equal

CMOVS SF =1 Conditional move if sign

CMOVNS SF=0 Conditional move if not sign

CMOVP PE = 1 Conditional move if parity

CMOVPE Conditional move if parity even

CMOVNP PE = 0 Conditional move if not parity

CMOVPO Conditional move if parity odd

CMOVL SF <> OF Conditional move if less

CMOVNGE Conditional move if not greater or equal

CMOVGE SF = OF Conditional move if greater or equal

CMOVNL Conditional move if not less

CMOVLE _ Conditional move if less or equal

CMOVNG ZF =1or SF <> OF Conditional move if not greater

CMOVG _ _ Conditional move if greater

CMOVNLE ZF =0and SF =OF | &, ditional move if not less or equal

Stack Operations

POP—Pop Stack

POPA—Pop All to GPR Words
POPAD—Pop All to GPR Doublewords
PUSH—Push onto Stack

PUSHA—Push All GPR Words onto Stack
PUSHAD—Push All GPR Doublewords onto Stack
ENTER—Create Procedure Stack Frame
LEAVE—Delete Procedure Stack Frame

PUSH copies the specified register, memory location, or immediate value to the top of stack. This
instruction decrements the stack pointer by 2, 4, or 8, depending on the operand size, and then copies
the operand into the memory location pointed to by SS:rSP.
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POP copies a word, doubleword, or quadword from the memory location pointed to by the SS:rSP
registers (the top of stack) to a specified register or memory location. Then, the rSP register is
incremented by 2, 4, or 8. After the POP operation, rSP points to the new top of stack.

PUSHA or PUSHAD stores eight word-sized or doubleword-sized registers onto the stack: eAX, eCX,
eDX, eBX, eSP, eBP, eSI and eDlI, in that order. The stored value of eSP is sampled at the moment
when the PUSHA instruction started. The resulting stack-pointer value is decremented by 16 or 32.

POPA or POPAD extracts eight word-sized or doubleword-sized registers from the stack: eDI, eSI,
eBP, eSP, eBX, eDX, eCX and eAX, in that order (which is the reverse of the order used in the PUSHA
instruction). The stored eSP value is ignored by the POPA instruction. The resulting stack pointer
value is incremented by 16 or 32.

It is a common practi